Modification to plot variational width across runs, new script for computing with in plane trap.

This commit is contained in:
Karthik 2025-02-03 23:58:23 +01:00
parent 7cff9c2262
commit a3899a7827
7 changed files with 215 additions and 18 deletions

View File

@ -1,4 +1,4 @@
function plotLive2D(psi, Params, Transf, Observ, vrun)
function plotLive2D(psi, Params, VParams, Transf, Observ, vrun)
set(0,'defaulttextInterpreter','latex')
set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
@ -69,8 +69,17 @@ function plotLive2D(psi, Params, Transf, Observ, vrun)
% Plot variational width
nexttile; % Equivalent to subplot('Position', [0.67, 0.05, 0.26, 0.4]);
xlabel('$\ell$', 'FontSize', 14)
ylabel('$E_{var}$', 'FontSize', 14)
title('Variational Energy', 'FontSize', 14);
grid on
if vrun < 2
xlabel('$\ell$', 'FontSize', 14)
ylabel('$E_{var}$', 'FontSize', 14)
title('Variational Energy', 'FontSize', 14);
grid on
else
plot(VParams.ells,VParams.E_vs_iter,'LineStyle','none','Marker','o','MarkerSize',3,'Color','b','MarkerFaceColor','b')
xlabel('$\ell$', 'FontSize', 14)
ylabel('$E_{var}$', 'FontSize', 14)
title('Variational Energy', 'FontSize', 14);
grid on
end
end

View File

@ -251,7 +251,7 @@ Plotter.visualizeGSWavefunction2D(SaveDirectory, JobNumber)
%% - Analysis
SaveDirectory = './Results/Data_TiltingOfDipoles/AdjustedSystemSize/Hz500';
JobNumber = 2;
JobNumber = 1;
% Plotter.visualizeGSWavefunction2D(SaveDirectory, JobNumber)
[contrast, period_X, period_Y] = Scripts.analyzeGSWavefunction(SaveDirectory, JobNumber);
@ -275,20 +275,20 @@ Plotter.visualizeGSWavefunction2D(SaveDirectory, JobNumber)
%% - Analysis
SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz500';
NumberOfJobs = 14;
NumberOfJobs = 16;
[contrast_array, periodX_array, periodY_array] = Scripts.analyzeGSWavefunction_multipleruns(SaveDirectory, NumberOfJobs);
%% - Analysis
SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz750';
NumberOfJobs = 14;
NumberOfJobs = 16;
[contrast_array, periodX_array, periodY_array] = Scripts.analyzeGSWavefunction_multipleruns(SaveDirectory, NumberOfJobs);
%% - Analysis
SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz1000';
NumberOfJobs = 14;
NumberOfJobs = 16;
[contrast_array, periodX_array, periodY_array] = Scripts.analyzeGSWavefunction_multipleruns(SaveDirectory, NumberOfJobs);
%% - Analysis
SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz2000';
NumberOfJobs = 14;
NumberOfJobs = 16;
[contrast_array, periodX_array, periodY_array] = Scripts.analyzeGSWavefunction_multipleruns(SaveDirectory, NumberOfJobs);

View File

@ -1,5 +1,5 @@
%% Tilting of the dipoles
% Atom Number = 1.00e+05
% Atom Number = 1250 ppum
% System size = [5 * l_rot, 5 * l_rot]
%% v_z = 500, theta = 0: a_s = 76.41

View File

@ -0,0 +1,184 @@
%% Tilting of the dipoles
% Atom Number = 1250 ppum
% System size = [5 * l_rot, 5 * l_rot]
%% v_z = 500, theta = 0: a_s = 76.41
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 101250;
OptionsStruct.DipolarPolarAngle = 0;
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 76.41;
vz = 500;
AspectRatio = 10;
OptionsStruct.TrapFrequencies = [vz/AspectRatio, vz/AspectRatio, 500];
OptionsStruct.TrapPotentialType = 'Harmonic';
OptionsStruct.NumberOfGridPoints = [128, 128];
OptionsStruct.Dimensions = [10, 10];
OptionsStruct.TimeStepSize = 0.005; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.05;
OptionsStruct.MaxIterations = 10;
OptionsStruct.VariationalWidth = 1.2;
OptionsStruct.WidthLowerBound = 0.01;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 1;
OptionsStruct.RunOnGPU = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/HarmonicTrap/Hz500';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%% v_z = 500, theta = 15: a_s = 77.45
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 101250;
OptionsStruct.DipolarPolarAngle = deg2rad(15);
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 77.45;
vz = 500;
AspectRatio = 10;
OptionsStruct.TrapFrequencies = [vz/AspectRatio, vz/AspectRatio, 500];
OptionsStruct.TrapPotentialType = 'Harmonic';
OptionsStruct.NumberOfGridPoints = [128, 128];
OptionsStruct.Dimensions = [10, 10];
OptionsStruct.TimeStepSize = 0.005; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.05;
OptionsStruct.MaxIterations = 10;
OptionsStruct.VariationalWidth = 1.2;
OptionsStruct.WidthLowerBound = 0.01;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 2;
OptionsStruct.RunOnGPU = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/HarmonicTrap/Hz500';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%% v_z = 500, theta = 0: a_s = 76.41
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 101250;
OptionsStruct.DipolarPolarAngle = 0;
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 76.41;
vz = 500;
AspectRatio = 5;
OptionsStruct.TrapFrequencies = [vz/AspectRatio, vz/AspectRatio, 500];
OptionsStruct.TrapPotentialType = 'Harmonic';
OptionsStruct.NumberOfGridPoints = [128, 128];
OptionsStruct.Dimensions = [10, 10];
OptionsStruct.TimeStepSize = 0.005; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.05;
OptionsStruct.MaxIterations = 10;
OptionsStruct.VariationalWidth = 1.2;
OptionsStruct.WidthLowerBound = 0.01;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 3;
OptionsStruct.RunOnGPU = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/HarmonicTrap/Hz500';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%% v_z = 500, theta = 15: a_s = 77.45
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 101250;
OptionsStruct.DipolarPolarAngle = deg2rad(15);
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 77.45;
vz = 500;
AspectRatio = 5;
OptionsStruct.TrapFrequencies = [vz/AspectRatio, vz/AspectRatio, 500];
OptionsStruct.TrapPotentialType = 'Harmonic';
OptionsStruct.NumberOfGridPoints = [128, 128];
OptionsStruct.Dimensions = [10, 10];
OptionsStruct.TimeStepSize = 0.005; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.05;
OptionsStruct.MaxIterations = 10;
OptionsStruct.VariationalWidth = 1.2;
OptionsStruct.WidthLowerBound = 0.01;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 4;
OptionsStruct.RunOnGPU = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/HarmonicTrap/Hz500';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%% - Analysis
SaveDirectory = './Results/Data_TiltingOfDipoles/HarmonicTrap/Hz500';
JobNumber = 4;
% Plotter.visualizeGSWavefunction2D(SaveDirectory, JobNumber)
[contrast, period_X, period_Y] = Scripts.analyzeGSWavefunction(SaveDirectory, JobNumber);

View File

@ -1,4 +1,5 @@
%% Tilting of the dipoles
% Atom Number = 1250 ppum
% System size = [5 * l_rot, 5 * l_rot]
theta_values = 1:1:14;

View File

@ -26,7 +26,7 @@ function [psi, Observ] = propagateWavefunction(this, psi, Params, VParams, Trans
Observ.residual = [Observ.residual res];
if this.PlotLive
Plotter.plotLive2D(psi,Params,Transf,Observ,vrun)
Plotter.plotLive2D(psi,Params,VParams,Transf,Observ,vrun)
drawnow
end
@ -77,7 +77,7 @@ function [psi, Observ] = propagateWavefunction(this, psi, Params, VParams, Trans
% Plotting
if this.PlotLive
Plotter.plotLive2D(psi,Params,Transf,Observ,vrun)
Plotter.plotLive2D(psi,Params,VParams,Transf,Observ,vrun)
drawnow
end
%

View File

@ -80,18 +80,21 @@ function [Params, Transf, psi, V, VDk] = run(this)
last_subplot_handle = subplots(end); % Grab the handle of the last subplot
axes(last_subplot_handle); % Set the last subplot as the current axes
plot(ells,E_vs_iter,'LineStyle','none','Marker','o','MarkerSize',3,'Color','b','MarkerFaceColor','b')
xlabel('$\ell$', 'FontSize', 14)
ylabel('$E_{var}$', 'FontSize', 14)
title('Variational Energy', 'FontSize', 14);
grid on
drawnow
end
if relelldiff < Params.ellcutoff && relevardiff < Params.evarcutoff
break
end
VParams.ells = ells;
VParams.E_vs_iter = E_vs_iter;
end
VParams.ells = ells;
VParams.E_vs_iter = E_vs_iter;
fprintf('\n')
disp('Saving data...');
save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','Observ','Transf','Params','VDk','V','VParams');