Fixed issue with fitting of harmonic potential, rearranged functions

This commit is contained in:
Karthik 2023-02-08 16:58:16 +01:00
parent 7a6c4c82e4
commit 8b327d8ed6

View File

@ -4,6 +4,10 @@ import matplotlib.pyplot as plt
from scipy.optimize import curve_fit from scipy.optimize import curve_fit
from astropy import units as u, constants as ac from astropy import units as u, constants as ac
#####################################################################
# HELPER FUNCTIONS #
#####################################################################
def orderOfMagnitude(number): def orderOfMagnitude(number):
return math.floor(math.log(number, 10)) return math.floor(math.log(number, 10))
@ -27,6 +31,10 @@ def rotation_matrix(axis, theta):
[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)],
[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]]) [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])
#####################################################################
# BEAM PARAMETERS #
#####################################################################
# Rayleigh range # Rayleigh range
def z_R(w_0:np.ndarray, lamb:float)->np.ndarray: def z_R(w_0:np.ndarray, lamb:float)->np.ndarray:
return np.pi*w_0**2/lamb return np.pi*w_0**2/lamb
@ -35,57 +43,9 @@ def z_R(w_0:np.ndarray, lamb:float)->np.ndarray:
def w(pos, w_0, lamb): def w(pos, w_0, lamb):
return w_0*np.sqrt(1+(pos / z_R(w_0, lamb))**2) return w_0*np.sqrt(1+(pos / z_R(w_0, lamb))**2)
def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity", alpha:float)->"float|u.quantity.Quantity": #####################################################################
return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) # RELEVANT PARAMETERS FOR EVAPORATIVE COOLING #
#####################################################################
def gravitational_potential(positions: "np.ndarray|u.quantity.Quantity", m:"float|u.quantity.Quantity"):
return m * ac.g0 * positions
def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength))
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2))
return U
def astigmatic_single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", del_y:"float|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
A = 2*P/(np.pi*w(positions[1,:] - (del_y/2), waists[0], wavelength)*w(positions[1,:] + (del_y/2), waists[1], wavelength))
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:] - (del_y/2), waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:] + (del_y/2), waists[1], wavelength))**2))
return U
def single_gaussian_beam_potential_harmonic_approximation(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", depth:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
U = - depth * (1 - (2 * (positions[0,:]/waists[0])**2) - (2 * (positions[2,:]/waists[1])**2) - (0.5 * positions[1,:]**2 * np.sum(np.reciprocal(z_R(waists, wavelength)))**2))
return U
def harmonic_potential(pos, v, offset, m = 164*u.u):
U_Harmonic = ((0.5 * m * (2 * np.pi * v*u.Hz)**2 * (pos*u.um)**2)/ac.k_B).to(u.uK) + offset*u.uK
return U_Harmonic.value
def calculateTrapFrequency(w_x, w_z, Power, Polarizability, m = 164*u.u, dir = 'x'):
TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability)
TrapFrequency = np.nan
if dir == 'x':
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth / (m*w_x**2))).decompose()
elif dir == 'y':
zReff = np.sqrt(2) * z_R(w_x, 1.064*u.um) * z_R(w_z, 1.064*u.um) / np.sqrt(z_R(w_x, 1.064*u.um)**2 + z_R(w_z, 1.064*u.um)**2)
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(2 * TrapDepth/ (m*zReff**2))).decompose()
elif dir == 'z':
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth/ (m*w_z**2))).decompose()
return round(TrapFrequency.value, 2)*u.Hz
def extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis):
tmp_pos = Positions[axis, :]
center_idx = np.where(tmp_pos == 0)[0][0]
lb = int(round(center_idx - len(tmp_pos)/20, 1))
ub = int(round(center_idx + len(tmp_pos)/20, 1))
xdata = tmp_pos[lb:ub]
tmp_pot = TrappingPotential[axis]
Potential = tmp_pot[lb:ub]
p0=[1e3, -TrapDepthInKelvin.value]
popt, pcov = curve_fit(harmonic_potential, xdata, Potential, p0)
v = popt[0]
dv = pcov[0][0]**0.5
return v, dv, popt, pcov
def meanThermalVelocity(T, m = 164*u.u): def meanThermalVelocity(T, m = 164*u.u):
return 4 * np.sqrt((ac.k_B * T) /(np.pi * m)) return 4 * np.sqrt((ac.k_B * T) /(np.pi * m))
@ -120,6 +80,66 @@ def calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N, T, B): #Fo
def calculatePSD(w_x, w_z, Power, Polarizability, N, T): def calculatePSD(w_x, w_z, Power, Polarizability, N, T):
return (particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u) * thermaldeBroglieWavelength(T)**3).decompose() return (particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u) * thermaldeBroglieWavelength(T)**3).decompose()
#####################################################################
# POTENTIALS #
#####################################################################
def gravitational_potential(positions: "np.ndarray|u.quantity.Quantity", m:"float|u.quantity.Quantity"):
return m * ac.g0 * positions
def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength))
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2))
return U
def astigmatic_single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", del_y:"float|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
A = 2*P/(np.pi*w(positions[1,:] - (del_y/2), waists[0], wavelength)*w(positions[1,:] + (del_y/2), waists[1], wavelength))
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:] - (del_y/2), waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:] + (del_y/2), waists[1], wavelength))**2))
return U
def single_gaussian_beam_potential_harmonic_approximation(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", depth:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
U = - depth * (1 - (2 * (positions[0,:]/waists[0])**2) - (2 * (positions[2,:]/waists[1])**2) - (0.5 * positions[1,:]**2 * np.sum(np.reciprocal(z_R(waists, wavelength)))**2))
return U
def harmonic_potential(pos, v, xoffset, yoffset, m = 164*u.u):
U_Harmonic = ((0.5 * m * (2 * np.pi * v*u.Hz)**2 * (pos*u.um - xoffset*u.um)**2)/ac.k_B).to(u.uK) + yoffset*u.uK
return U_Harmonic.value
#####################################################################
# COMPUTE/EXTRACT TRAP POTENTIAL AND PARAMETERS #
#####################################################################
def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity", alpha:float)->"float|u.quantity.Quantity":
return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
def calculateTrapFrequency(w_x, w_z, Power, Polarizability, m = 164*u.u, dir = 'x'):
TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability)
TrapFrequency = np.nan
if dir == 'x':
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth / (m*w_x**2))).decompose()
elif dir == 'y':
zReff = np.sqrt(2) * z_R(w_x, 1.064*u.um) * z_R(w_z, 1.064*u.um) / np.sqrt(z_R(w_x, 1.064*u.um)**2 + z_R(w_z, 1.064*u.um)**2)
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(2 * TrapDepth/ (m*zReff**2))).decompose()
elif dir == 'z':
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth/ (m*w_z**2))).decompose()
return round(TrapFrequency.value, 2)*u.Hz
def extractTrapFrequency(Positions, TrappingPotential, axis):
tmp_pos = Positions[axis, :]
tmp_pot = TrappingPotential[axis]
center_idx = np.argmin(tmp_pot)
lb = int(round(center_idx - len(tmp_pot)/150, 1))
ub = int(round(center_idx + len(tmp_pot)/150, 1))
xdata = tmp_pos[lb:ub]
Potential = tmp_pot[lb:ub]
p0=[1e3, tmp_pos[center_idx].value, np.argmin(tmp_pot.value)]
popt, pcov = curve_fit(harmonic_potential, xdata, Potential, p0)
v = popt[0]
dv = pcov[0][0]**0.5
return v, dv, popt, pcov
def computeTrapPotential(w_x, w_z, Power, Polarizability, options): def computeTrapPotential(w_x, w_z, Power, Polarizability, options):
axis = options['axis'] axis = options['axis']
@ -204,9 +224,9 @@ def computeTrapPotential(w_x, w_z, Power, Polarizability, options):
v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z') v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z')
CalculatedTrapFrequencies = [v_x, v_y, v_z] CalculatedTrapFrequencies = [v_x, v_y, v_z]
v, dv, popt, pcov = extractTrapFrequency(Positions, IdealTrappingPotential, IdealTrapDepthInKelvin, axis) v, dv, popt, pcov = extractTrapFrequency(Positions, IdealTrappingPotential, axis)
IdealTrapFrequency = [v, dv] IdealTrapFrequency = [v, dv]
v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, EffectiveTrapDepthInKelvin, axis) v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, axis)
TrapFrequency = [v, dv] TrapFrequency = [v, dv]
ExtractedTrapFrequencies = [IdealTrapFrequency, TrapFrequency] ExtractedTrapFrequencies = [IdealTrapFrequency, TrapFrequency]
@ -215,7 +235,11 @@ def computeTrapPotential(w_x, w_z, Power, Polarizability, options):
return Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies return Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies
def plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt, pcov): #####################################################################
# PLOT TRAP POTENTIALS #
#####################################################################
def plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, axis, popt, pcov):
v = popt[0] v = popt[0]
dv = pcov[0][0]**0.5 dv = pcov[0][0]**0.5
happrox = harmonic_potential(Positions[axis, :].value, *popt) happrox = harmonic_potential(Positions[axis, :].value, *popt)
@ -224,7 +248,7 @@ def plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt,
plt.plot(Positions[axis, :], TrappingPotential[axis], 'ob', label = 'Gaussian Potential') plt.plot(Positions[axis, :], TrappingPotential[axis], 'ob', label = 'Gaussian Potential')
plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold') plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold')
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
plt.ylim([-TrapDepthInKelvin.value, max(TrappingPotential[axis].value)]) plt.ylim([-TrapDepthsInKelvin[0].value, max(TrappingPotential[axis].value)])
plt.tight_layout() plt.tight_layout()
plt.grid(visible=1) plt.grid(visible=1)
plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.legend(prop={'size': 12, 'weight': 'bold'})
@ -290,6 +314,10 @@ def plotPotential(Positions, ComputedPotentials, axis, Params = [], listToIterat
plt.savefig('pot_' + dir + '.png') plt.savefig('pot_' + dir + '.png')
plt.show() plt.show()
#####################################################################
# FUNCTION CALLS BELOW #
#####################################################################
if __name__ == '__main__': if __name__ == '__main__':
Power = 40*u.W Power = 40*u.W
@ -318,8 +346,8 @@ if __name__ == '__main__':
ComputedPotentials = np.asarray(ComputedPotentials) ComputedPotentials = np.asarray(ComputedPotentials)
plotPotential(Positions, ComputedPotentials, options['axis'], Params) plotPotential(Positions, ComputedPotentials, options['axis'], Params)
# v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, options['axis']) # v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, options['axis'])
# plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, options['axis'], popt, pcov) # plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, options['axis'], popt, pcov)
# Power = [10, 20, 25, 30, 35, 40]*u.W # Single Beam Power # Power = [10, 20, 25, 30, 35, 40]*u.W # Single Beam Power
# for p in Power: # for p in Power: