Rewriting of gradient descent algorithm - follows Santo Roccuzzo's implementation.
This commit is contained in:
parent
7aa4c7801b
commit
86b74b30da
@ -17,7 +17,7 @@ classdef DipolarGas < handle & matlab.mixin.Copyable
|
|||||||
EnergyTolerance;
|
EnergyTolerance;
|
||||||
ResidualTolerance;
|
ResidualTolerance;
|
||||||
NoiseScaleFactor;
|
NoiseScaleFactor;
|
||||||
MaxIterationsForCGD;
|
MaxIterationsForGD;
|
||||||
|
|
||||||
Calculator;
|
Calculator;
|
||||||
|
|
||||||
@ -70,7 +70,7 @@ classdef DipolarGas < handle & matlab.mixin.Copyable
|
|||||||
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
|
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
|
||||||
addParameter(p, 'NoiseScaleFactor', 4,...
|
addParameter(p, 'NoiseScaleFactor', 4,...
|
||||||
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
|
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
|
||||||
addParameter(p, 'MaxIterationsForCGD', 100,...
|
addParameter(p, 'MaxIterationsForGD', 100,...
|
||||||
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
|
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
|
||||||
|
|
||||||
addParameter(p, 'IncludeDDICutOff', true,...
|
addParameter(p, 'IncludeDDICutOff', true,...
|
||||||
@ -107,7 +107,7 @@ classdef DipolarGas < handle & matlab.mixin.Copyable
|
|||||||
this.EnergyTolerance = p.Results.EnergyTolerance;
|
this.EnergyTolerance = p.Results.EnergyTolerance;
|
||||||
this.ResidualTolerance = p.Results.ResidualTolerance;
|
this.ResidualTolerance = p.Results.ResidualTolerance;
|
||||||
this.NoiseScaleFactor = p.Results.NoiseScaleFactor;
|
this.NoiseScaleFactor = p.Results.NoiseScaleFactor;
|
||||||
this.MaxIterationsForCGD = p.Results.MaxIterationsForCGD;
|
this.MaxIterationsForGD = p.Results.MaxIterationsForGD;
|
||||||
|
|
||||||
this.IncludeDDICutOff = p.Results.IncludeDDICutOff;
|
this.IncludeDDICutOff = p.Results.IncludeDDICutOff;
|
||||||
this.UseApproximationForLHY = p.Results.UseApproximationForLHY;
|
this.UseApproximationForLHY = p.Results.UseApproximationForLHY;
|
||||||
|
@ -1,20 +1,14 @@
|
|||||||
function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V,Observ)
|
function [psi] = runGradientDescent(this,psi,Params,Transf,VDk,V,Observ)
|
||||||
|
|
||||||
format long;
|
format long;
|
||||||
|
|
||||||
% Define the function handle
|
|
||||||
f = @(X) this.Calculator.calculateTotalEnergy(X, Params, Transf, VDk, V)/Params.N;
|
|
||||||
|
|
||||||
% Convergence Criteria:
|
% Convergence Criteria:
|
||||||
Epsilon = 1E-5;
|
epsilon = 1E-8;
|
||||||
|
alpha = 1E-4;
|
||||||
% Iteration Counter:
|
beta = 0.9;
|
||||||
i = 1;
|
|
||||||
Observ.residual = 1;
|
|
||||||
Observ.res = 1;
|
|
||||||
|
|
||||||
% Initialize the PrematureExitFlag to false
|
Observ.residual = 1;
|
||||||
PrematureExitFlag = false;
|
psi_old = psi; % Previous psi value (for heavy-ball method)
|
||||||
|
|
||||||
if this.PlotLive
|
if this.PlotLive
|
||||||
Plotter.plotLive(psi,Params,Transf,Observ)
|
Plotter.plotLive(psi,Params,Transf,Observ)
|
||||||
@ -22,56 +16,40 @@ function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V,Observ)
|
|||||||
end
|
end
|
||||||
|
|
||||||
% Minimization Loop
|
% Minimization Loop
|
||||||
while true
|
for idx = 1:this.MaxIterationsForGD
|
||||||
|
|
||||||
% Compute gradient
|
% Compute gradient
|
||||||
J = compute_gradient(psi, Params, Transf, VDk, V);
|
J = compute_gradient(psi, Params, Transf, VDk, V);
|
||||||
|
|
||||||
% Check stopping criterion (Gradient norm)
|
% Calculate chemical potential and norm
|
||||||
if norm(J(:)) < Epsilon
|
muchem = sum(real(conj(psi) .* J)) / sum(abs(psi).^2);
|
||||||
disp('Tolerance reached: Gradient norm is below the specified epsilon.');
|
|
||||||
PrematureExitFlag = true; % Set flag to indicate premature exit
|
% Calculate residual and check convergence
|
||||||
break;
|
residual = sum(abs(J - muchem * psi).^2) * Transf.dx * Transf.dy * Transf.dz;
|
||||||
elseif i >= this.MaxIterationsForCGD
|
if residual < epsilon
|
||||||
disp('Maximum number of iterations for CGD reached.');
|
fprintf('Convergence reached at iteration %d\n', idx);
|
||||||
PrematureExitFlag = true; % Set flag to indicate premature exit
|
|
||||||
break;
|
break;
|
||||||
end
|
end
|
||||||
|
|
||||||
% Initialize search direction if first iteration
|
% Update psi using heavy-ball method
|
||||||
if i == 1
|
psi_new = (1 + beta) * psi - alpha * J - beta * psi_old;
|
||||||
S = -J;
|
psi_old = psi;
|
||||||
else
|
|
||||||
% Update search direction
|
|
||||||
S = update_search_direction(S, J, J_old);
|
|
||||||
end
|
|
||||||
|
|
||||||
% Step Size Optimization (Line Search)
|
|
||||||
alpha = optimize_step_size(f, psi, S, Params, Transf, VDk, V);
|
|
||||||
|
|
||||||
% Update solution
|
|
||||||
psi = psi + alpha * S;
|
|
||||||
|
|
||||||
% Normalize psi
|
% Normalize psi
|
||||||
Norm = sum(abs(psi(:)).^2) * Transf.dx * Transf.dy * Transf.dz;
|
Norm = sum(abs(psi_new(:)).^2) * Transf.dx * Transf.dy * Transf.dz;
|
||||||
psi = sqrt(Params.N) * psi / sqrt(Norm);
|
psi = sqrt(Params.N) * psi_new / sqrt(Norm);
|
||||||
|
|
||||||
% Store old gradient
|
if mod(idx,500) == 0
|
||||||
J_old = J;
|
|
||||||
i = i + 1;
|
|
||||||
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
|
|
||||||
|
|
||||||
if mod(i,10) == 0
|
|
||||||
|
|
||||||
% Change in Energy
|
% Collect change in energy
|
||||||
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
|
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
|
||||||
E = E/Norm;
|
E = E/Norm;
|
||||||
Observ.EVec = [Observ.EVec E];
|
Observ.EVec = [Observ.EVec E];
|
||||||
|
|
||||||
% Chemical potential
|
% Collect chemical potentials
|
||||||
Observ.mucVec = [Observ.mucVec muchem];
|
Observ.mucVec = [Observ.mucVec muchem];
|
||||||
|
|
||||||
% Normalized residuals
|
% Collect residuals
|
||||||
res = this.Calculator.calculateNormalizedResiduals(psi,Params,Transf,VDk,V,muchem);
|
|
||||||
Observ.residual = [Observ.residual res];
|
Observ.residual = [Observ.residual res];
|
||||||
Observ.res_idx = Observ.res_idx + 1;
|
Observ.res_idx = Observ.res_idx + 1;
|
||||||
|
|
||||||
@ -84,12 +62,12 @@ function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V,Observ)
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
% Check if loop ended prematurely
|
% Check if max iterations were hit without convergence
|
||||||
if PrematureExitFlag
|
last_iteration_number = idx;
|
||||||
disp('Optimizer ended prematurely without convergence to a minimum.');
|
if last_iteration_number == this.MaxIterationsForGD
|
||||||
|
fprintf('Max iterations reached without convergence. Final chemical potential: %.6f, Residual: %.6f\n', muchem, residual);
|
||||||
else
|
else
|
||||||
disp('Minimum found!');
|
fprintf('Converged in %d iterations. Final chemical potential: %.6f\n', last_iteration_number, muchem);
|
||||||
fprintf('Number of Iterations for Convergence: %d\n\n', i);
|
|
||||||
end
|
end
|
||||||
|
|
||||||
% Change in Energy
|
% Change in Energy
|
||||||
@ -131,42 +109,4 @@ function J = compute_gradient(psi, Params, Transf, VDk, V)
|
|||||||
|
|
||||||
J = H(psi);
|
J = H(psi);
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
% Line Search (Step Size Optimization)
|
|
||||||
function alpha = optimize_step_size(f, X, S, Params, Transf, VDk, V)
|
|
||||||
alpha = 1; % Initial step size
|
|
||||||
rho = 0.5; % Step size reduction factor
|
|
||||||
c = 1E-4; % Armijo condition constant
|
|
||||||
max_iter = 100; % Max iterations for backtracking
|
|
||||||
tol = 1E-4; % Tolerance for stopping
|
|
||||||
|
|
||||||
grad = compute_gradient(X, Params, Transf, VDk, V); % Compute gradient once
|
|
||||||
f_X = f(X); % Evaluate f(X) once
|
|
||||||
|
|
||||||
for k = 1:max_iter
|
|
||||||
% Evaluate Armijo condition with precomputed f(X) and grad
|
|
||||||
if f(X + alpha * S) <= f_X + c * alpha * (S(:)' * grad(:))
|
|
||||||
break;
|
|
||||||
else
|
|
||||||
alpha = rho * alpha; % Reduce the step size
|
|
||||||
end
|
|
||||||
|
|
||||||
% Early stopping if step size becomes too small
|
|
||||||
if alpha < tol
|
|
||||||
break;
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
% Update Search Direction
|
|
||||||
function S_new = update_search_direction(S, J_new, J_old)
|
|
||||||
% (Fletcher-Reeves method)
|
|
||||||
% beta = (norm(J_new(:))^2) / (norm(J_old(:))^2);
|
|
||||||
% S_new = -J_new + beta * S;
|
|
||||||
|
|
||||||
% (Polak-Ribiere method)
|
|
||||||
beta = max(0, (J_new(:)' * (J_new(:) - J_old(:))) / (norm(J_old(:))^2));
|
|
||||||
S_new = -J_new + beta * S;
|
|
||||||
end
|
end
|
Loading…
Reference in New Issue
Block a user