diff --git a/EstimatesForAccordionLattice.m b/EstimatesForAccordionLattice.m index 34f681c..19cac75 100644 --- a/EstimatesForAccordionLattice.m +++ b/EstimatesForAccordionLattice.m @@ -43,6 +43,7 @@ xlabel('Angle (deg)', FontSize=16) ylabel('Lattice spacing (µm)', FontSize=16) title(['\bf Upper bound = ' num2str(round(max(LatticeSpacing * 1E6),1)) ' µm ; \bf Lower bound = ' num2str(round(min(LatticeSpacing * 1E6),1)) ' µm'], FontSize=16) grid on + %% Scaling of vertical trap frequency with lattice spacing Wavelength = 532e-9; a = 180 * (AtomicUnitOfPolarizability / (2 * SpeedOfLight * VacuumPermittivity)); @@ -74,22 +75,36 @@ title(['\bf Upper bound = ' num2str(round(max(nu_z * 1E-3),2)) ' kHz ; \bf Lower grid on %% Scaling of trap depth with power -a = 180 * (AtomicUnitOfPolarizability / (2 * SpeedOfLight * VacuumPermittivity)); -waist_y = 250E-6; -waist_z = 50E-6; -Powers = linspace(0.1, 5, 100); -TrapDepth = ((8 * a .* Powers) ./ (pi * waist_y * waist_z)) / (BoltzmannConstant * 1E-6); % in µK +a = 180 * (AtomicUnitOfPolarizability / (2 * SpeedOfLight * VacuumPermittivity)); +waist_y = 250E-6; +waist_z = 50E-6; +Powers = linspace(0.1, 5, 100); +TrapDepths = ((8 * a .* Powers) ./ (pi * waist_y * waist_z)); +TrapDepthsInHz = TrapDepths ./ PlanckConstant; % in Hz +TrapDepthsInmicroK = TrapDepths ./ BoltzmannConstant; % in µK +TwoPhotonRecoilEnergy = (2*PlanckConstantReduced*2*pi/Wavelength)^2 / (2 * Dy164Mass); +TrapDepthsInUnitsOfRecoilEnergy = TrapDepths ./ TwoPhotonRecoilEnergy; + +% TrapDepthsToPlot = TrapDepthsInHz * 1E-3; +% units = ' kHz'; + +% TrapDepthsToPlot = TrapDepthsInmicroK * 1E6; +% units = ' µK'; + +TrapDepthsToPlot = TrapDepthsInUnitsOfRecoilEnergy; +units = ' E_r'; + figure(3); set(gcf,'Position',[100 100 950 750]) -plot(Powers, TrapDepth, LineWidth=2.0) -xlim([0.0 5.5]); +plot(Powers, TrapDepthsToPlot, LineWidth=2.0) +xlim([0.0 5.25]); xlabel('Powers (W)', FontSize=16) -ylabel('Trap depth (µK)', FontSize=16) -title(['\bf Upper bound = ' num2str(round(max(TrapDepth),2)) ' µK ; \bf Lower bound = ' num2str(round(min(TrapDepth),2)) ' µK'], FontSize=16) +ylabel(['Trap depth (' units ' )'], FontSize=16) +title(['\bf Upper bound = ' num2str(round(max(TrapDepthsToPlot),2)) units '; \bf Lower bound = ' num2str(round(min(TrapDepthsToPlot),2)) units], FontSize=16) grid on -%% Scaling of Recoil Energy - All energy scales in an optical lattice are naturally parametrized by the lattice recoil energy +%% Scaling of the lattice recoil Energy - All energy scales in an optical lattice are naturally parametrized by the lattice recoil energy LatticeSpacing = linspace(2E-6, 20E-6, 100); RecoilEnergy = PlanckConstant^2 ./ (8 .* Dy164Mass .* LatticeSpacing.^2); @@ -124,5 +139,25 @@ legend(labels, 'Location','NorthWest', FontSize=12); grid on legend show +%% Scaling of frequency of oscillation in the first order in Kapitza-Dirac scattering +a = 180 * (AtomicUnitOfPolarizability / (2 * SpeedOfLight * VacuumPermittivity)); +waist_y = 250E-6; +waist_z = 50E-6; +Powers = linspace(0.001, 0.4, 100); +TrapDepths = ((8 * a .* Powers) ./ (pi * waist_y * waist_z)); +TwoPhotonRecoilEnergy = (2*PlanckConstantReduced*2*pi/Wavelength)^2 / (2 * Dy164Mass); +RabiOscillationFrequency = (1/PlanckConstantReduced) .* (sqrt(TrapDepths.^2/2 + TwoPhotonRecoilEnergy^2)); +TrapDepthsInHz = TrapDepths./ PlanckConstant; +TwoPhotonRecoilEnergyInHz = TwoPhotonRecoilEnergy / PlanckConstant; +TrapDepthsInUnitsOfRecoilEnergy = TrapDepthsInHz ./ TwoPhotonRecoilEnergyInHz; + +figure(6); +set(gcf,'Position',[100 100 950 750]) +plot(TrapDepthsInUnitsOfRecoilEnergy, RabiOscillationFrequency .* 1E-3, LineWidth=2.0) +xlim([0 4]); +xlabel('Trap depths (E_r)', FontSize=16) +ylabel('Rabi oscillation frequency (kHz)', FontSize=16) +title(['\bf Upper bound = ' num2str(round(max(RabiOscillationFrequency .* 1E-3),1)) ' kHz; Lower bound = ' num2str(round(min(RabiOscillationFrequency .* 1E-3),1)) ' kHz'], FontSize=16) +grid on \ No newline at end of file