MAJOR CHANGE: Refactored code, added functions to calculate PSD, collision rate
This commit is contained in:
parent
a8d4d00e41
commit
7a6c4c82e4
@ -66,6 +66,9 @@ def calculateTrapFrequency(w_x, w_z, Power, Polarizability, m = 164*u.u, dir = '
|
||||
TrapFrequency = np.nan
|
||||
if dir == 'x':
|
||||
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth / (m*w_x**2))).decompose()
|
||||
elif dir == 'y':
|
||||
zReff = np.sqrt(2) * z_R(w_x, 1.064*u.um) * z_R(w_z, 1.064*u.um) / np.sqrt(z_R(w_x, 1.064*u.um)**2 + z_R(w_z, 1.064*u.um)**2)
|
||||
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(2 * TrapDepth/ (m*zReff**2))).decompose()
|
||||
elif dir == 'z':
|
||||
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth/ (m*w_z**2))).decompose()
|
||||
return round(TrapFrequency.value, 2)*u.Hz
|
||||
@ -84,6 +87,134 @@ def extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis):
|
||||
dv = pcov[0][0]**0.5
|
||||
return v, dv, popt, pcov
|
||||
|
||||
def meanThermalVelocity(T, m = 164*u.u):
|
||||
return 4 * np.sqrt((ac.k_B * T) /(np.pi * m))
|
||||
|
||||
def particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u): # For a thermal cloud
|
||||
v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x')
|
||||
v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y')
|
||||
v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z')
|
||||
|
||||
return N * (2 * np.pi)**3 * (v_x * v_y * v_z) * (m / (2 * np.pi * ac.k_B * T))**(3/2)
|
||||
|
||||
def thermaldeBroglieWavelength(T, m = 164*u.u):
|
||||
return np.sqrt((2*np.pi*ac.hbar**2)/(m*ac.k_B*T))
|
||||
|
||||
def scatteringLength(B):
|
||||
a_bkg = 87 * ac.a0
|
||||
#resonanceWidth = 0.005 * u.G
|
||||
#resonanceB = 0.5 * u.G
|
||||
|
||||
#return a_bkg * (1 - resonanceWidth/(B - resonanceB))
|
||||
return a_bkg
|
||||
|
||||
def dipolarLength(mu = 9.93 * ac.muB, m = 164*u.u):
|
||||
return (m * ac.mu0 * mu**2) / (8 * np.pi * ac.hbar**2)
|
||||
|
||||
def scatteringCrossSection(B):
|
||||
return 8 * np.pi * scatteringLength(B)**2 + ((32*np.pi)/45) * dipolarLength()**2
|
||||
|
||||
def calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N, T, B): #For a 3D Harmonic Trap
|
||||
return (particleDensity(w_x, w_z, Power, Polarizability, N, T) * scatteringCrossSection(B) * meanThermalVelocity(T) / (2 * np.sqrt(2))).decompose()
|
||||
|
||||
def calculatePSD(w_x, w_z, Power, Polarizability, N, T):
|
||||
return (particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u) * thermaldeBroglieWavelength(T)**3).decompose()
|
||||
|
||||
def computeTrapPotential(w_x, w_z, Power, Polarizability, options):
|
||||
|
||||
axis = options['axis']
|
||||
extent = options['extent']
|
||||
gravity = options['gravity']
|
||||
astigmatism = options['astigmatism']
|
||||
|
||||
TrappingPotential = []
|
||||
TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability)
|
||||
IdealTrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK)
|
||||
|
||||
projection_axis = np.array([0, 1, 0]) # default
|
||||
|
||||
if axis == 0:
|
||||
projection_axis = np.array([1, 0, 0]) # radial direction (X-axis)
|
||||
|
||||
elif axis == 1:
|
||||
projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis)
|
||||
|
||||
elif axis == 2:
|
||||
projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis)
|
||||
|
||||
x_Positions = np.arange(-extent, extent, 1)*u.um
|
||||
y_Positions = np.arange(-extent, extent, 1)*u.um
|
||||
z_Positions = np.arange(-extent, extent, 1)*u.um
|
||||
Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis]
|
||||
|
||||
IdealTrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability)
|
||||
IdealTrappingPotential = IdealTrappingPotential * (np.ones((3, len(IdealTrappingPotential))) * projection_axis[:, np.newaxis])
|
||||
IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
if gravity and not astigmatism:
|
||||
# Influence of Gravity
|
||||
m = 164*u.u
|
||||
gravity_axis = np.array([0, 0, 1])
|
||||
tilt_gravity = options['tilt_gravity']
|
||||
theta = options['theta']
|
||||
tilt_axis = options['tilt_axis']
|
||||
if tilt_gravity:
|
||||
R = rotation_matrix(tilt_axis, np.radians(theta))
|
||||
gravity_axis = np.dot(R, gravity_axis)
|
||||
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||||
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability)
|
||||
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
elif not gravity and astigmatism:
|
||||
# Influence of Astigmatism
|
||||
disp_foci = options['disp_foci']
|
||||
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability)
|
||||
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis])
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
elif gravity and astigmatism:
|
||||
# Influence of Gravity and Astigmatism
|
||||
m = 164*u.u
|
||||
gravity_axis = np.array([0, 0, 1])
|
||||
tilt_gravity = options['tilt_gravity']
|
||||
theta = options['theta']
|
||||
tilt_axis = options['tilt_axis']
|
||||
disp_foci = options['disp_foci']
|
||||
if tilt_gravity:
|
||||
R = rotation_matrix(tilt_axis, np.radians(theta))
|
||||
gravity_axis = np.dot(R, gravity_axis)
|
||||
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||||
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability)
|
||||
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
else:
|
||||
TrappingPotential = IdealTrappingPotential
|
||||
|
||||
if TrappingPotential[axis][0] > TrappingPotential[axis][-1]:
|
||||
EffectiveTrapDepthInKelvin = TrappingPotential[axis][-1] - min(TrappingPotential[axis])
|
||||
elif TrappingPotential[axis][0] < TrappingPotential[axis][-1]:
|
||||
EffectiveTrapDepthInKelvin = TrappingPotential[axis][0] - min(TrappingPotential[axis])
|
||||
|
||||
TrapDepthsInKelvin = [IdealTrapDepthInKelvin, EffectiveTrapDepthInKelvin]
|
||||
|
||||
v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x')
|
||||
v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y')
|
||||
v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z')
|
||||
CalculatedTrapFrequencies = [v_x, v_y, v_z]
|
||||
|
||||
v, dv, popt, pcov = extractTrapFrequency(Positions, IdealTrappingPotential, IdealTrapDepthInKelvin, axis)
|
||||
IdealTrapFrequency = [v, dv]
|
||||
v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, EffectiveTrapDepthInKelvin, axis)
|
||||
TrapFrequency = [v, dv]
|
||||
ExtractedTrapFrequencies = [IdealTrapFrequency, TrapFrequency]
|
||||
|
||||
# Gamma_elastic = calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N = 1.13 * 1e7, T = 22 * u.uK, B = 0 * u.G)
|
||||
# PSD = calculatePSD(w_x, w_z, Power, Polarizability, N = 1.13 * 1e7, T = 22 * u.uK).decompose()
|
||||
|
||||
return Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies
|
||||
|
||||
def plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt, pcov):
|
||||
v = popt[0]
|
||||
dv = pcov[0][0]**0.5
|
||||
@ -99,31 +230,51 @@ def plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt,
|
||||
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
||||
plt.show()
|
||||
|
||||
def plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels):
|
||||
|
||||
## plot of the measured parameter vs. scan parameter
|
||||
plt.figure(figsize=(9, 7))
|
||||
j = 0
|
||||
for i in range(np.size(ComputedPotentials, 0)):
|
||||
v, dv, popt, pcov = extractTrapFrequency(Positions, ComputedPotentials[i], TrapDepthInKelvin, axis)
|
||||
def generate_label(v, dv):
|
||||
unit = 'Hz'
|
||||
if v <= 0.0:
|
||||
v = np.nan
|
||||
dv = np.nan
|
||||
unit = 'Hz'
|
||||
if v <= 0.0:
|
||||
v = np.nan
|
||||
dv = np.nan
|
||||
unit = 'Hz'
|
||||
elif v > 0.0 and orderOfMagnitude(v) > 2:
|
||||
v = v / 1e3 # in kHz
|
||||
dv = dv / 1e3 # in kHz
|
||||
unit = 'kHz'
|
||||
tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit])
|
||||
if np.size(ComputedPotentials, 0) == len(Powers):
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[i]) + ' W; ' + TrapDepthLabels[i] + '; ' + tf_label)
|
||||
elif v > 0.0 and orderOfMagnitude(v) > 2:
|
||||
v = v / 1e3 # in kHz
|
||||
dv = dv / 1e3 # in kHz
|
||||
unit = 'kHz'
|
||||
tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit])
|
||||
return tf_label
|
||||
|
||||
def plotPotential(Positions, ComputedPotentials, axis, Params = [], listToIterateOver = [], save = False):
|
||||
|
||||
plt.figure(figsize=(9, 7))
|
||||
for i in range(np.size(ComputedPotentials, 0)):
|
||||
|
||||
if i % 2 == 0:
|
||||
j = int(i / 2)
|
||||
else:
|
||||
if i % 2 == 0 and j < len(Powers):
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], '--',label = 'P = ' + str(Powers[j]) + ' W; ' + TrapDepthLabels[j] + '; ' + tf_label)
|
||||
elif i % 2 != 0 and j < len(Powers):
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[j]) + ' W; ' + tf_label)
|
||||
j = j + 1
|
||||
j = int((i - 1) / 2)
|
||||
|
||||
IdealTrapDepthInKelvin = Params[j][0][0]
|
||||
EffectiveTrapDepthInKelvin = Params[j][0][1]
|
||||
|
||||
idealv = Params[j][2][0][0]
|
||||
idealdv = Params[j][2][0][1]
|
||||
|
||||
v = Params[j][2][1][0]
|
||||
dv = Params[j][2][1][1]
|
||||
|
||||
if listToIterateOver:
|
||||
if np.size(ComputedPotentials, 0) == len(listToIterateOver):
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv))
|
||||
else:
|
||||
if i % 2 == 0:
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv))
|
||||
elif i % 2 != 0:
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv))
|
||||
else:
|
||||
if i % 2 == 0:
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv))
|
||||
elif i % 2 != 0:
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv))
|
||||
if axis == 0:
|
||||
dir = 'X'
|
||||
elif axis == 1:
|
||||
@ -135,104 +286,47 @@ def plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels):
|
||||
plt.tight_layout()
|
||||
plt.grid(visible=1)
|
||||
plt.legend(loc=3, prop={'size': 12, 'weight': 'bold'})
|
||||
if save:
|
||||
plt.savefig('pot_' + dir + '.png')
|
||||
plt.show()
|
||||
# plt.savefig('pot_' + dir + '.png')
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Powers = [0.1, 0.5, 2]
|
||||
# Powers = [5, 20, 40]
|
||||
Powers = [40]
|
||||
Power = 40*u.W
|
||||
Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|
||||
w_x, w_z = 34*u.um, 27.5*u.um # Beam Waists in the x and y directions
|
||||
# w_x, w_z = 30*u.um, 30*u.um # Beam Waists in the x and y directions
|
||||
# w_x, w_z = 20.5*u.um, 20.5*u.um
|
||||
w_x, w_z = 27.5*u.um, 33.8*u.um # Beam Waists in the x and y directions
|
||||
|
||||
axis = 1 # axis referenced to the beam along which you want the dipole trap potential
|
||||
extent = 1e4 # range of spatial coordinates in one direction to calculate trap potential over
|
||||
options = {
|
||||
'axis': 1, # axis referenced to the beam along which you want the dipole trap potential
|
||||
'extent': 1e4, # range of spatial coordinates in one direction to calculate trap potential over
|
||||
'gravity': True,
|
||||
'astigmatism': False,
|
||||
'tilt_gravity': True,
|
||||
'theta': 5, # in degrees
|
||||
'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam
|
||||
'disp_foci': 3 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism)
|
||||
}
|
||||
|
||||
TrappingPotential = []
|
||||
ComputedPotentials = []
|
||||
TrapDepthLabels = []
|
||||
Params = []
|
||||
|
||||
gravity = True
|
||||
astigmatism = True
|
||||
|
||||
tilt_gravity = True
|
||||
theta = 5 # in degrees
|
||||
tilt_axis = [1, 0, 0] # lab space coordinates are rotated about x-axis in reference frame of beam
|
||||
|
||||
disp_foci = 3 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism)
|
||||
|
||||
for p in Powers:
|
||||
|
||||
Power = p*u.W # Single Beam Power
|
||||
|
||||
TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability)
|
||||
TrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK)
|
||||
TrapDepthLabels.append("Trap Depth = " + str(round(TrapDepthInKelvin.value, 2)) + " " + str(TrapDepthInKelvin.unit))
|
||||
|
||||
projection_axis = np.array([0, 1, 0]) # default
|
||||
|
||||
if axis == 0:
|
||||
projection_axis = np.array([1, 0, 0]) # radial direction (X-axis)
|
||||
|
||||
elif axis == 1:
|
||||
projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis)
|
||||
|
||||
elif axis == 2:
|
||||
projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis)
|
||||
|
||||
x_Positions = np.arange(-extent, extent, 1)*u.um
|
||||
y_Positions = np.arange(-extent, extent, 1)*u.um
|
||||
z_Positions = np.arange(-extent, extent, 1)*u.um
|
||||
Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis]
|
||||
|
||||
IdealTrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability)
|
||||
IdealTrappingPotential = IdealTrappingPotential + np.zeros((3, len(IdealTrappingPotential))) * IdealTrappingPotential.unit
|
||||
IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
if gravity and not astigmatism:
|
||||
ComputedPotentials.append(IdealTrappingPotential)
|
||||
# Influence of Gravity
|
||||
m = 164*u.u
|
||||
gravity_axis = np.array([0, 0, 1])
|
||||
if tilt_gravity:
|
||||
R = rotation_matrix(tilt_axis, np.radians(theta))
|
||||
gravity_axis = np.dot(R, gravity_axis)
|
||||
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||||
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) + gravitational_potential(gravity_axis_positions, m)
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
elif not gravity and astigmatism:
|
||||
ComputedPotentials.append(IdealTrappingPotential)
|
||||
# Influence of Astigmatism
|
||||
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability)
|
||||
TrappingPotential = TrappingPotential + np.zeros((3, len(TrappingPotential))) * TrappingPotential.unit
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
elif gravity and astigmatism:
|
||||
ComputedPotentials.append(IdealTrappingPotential)
|
||||
# Influence of Gravity and Astigmatism
|
||||
m = 164*u.u
|
||||
gravity_axis = np.array([0, 0, 1])
|
||||
if tilt_gravity:
|
||||
R = rotation_matrix(tilt_axis, np.radians(theta))
|
||||
gravity_axis = np.dot(R, gravity_axis)
|
||||
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||||
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability) + gravitational_potential(gravity_axis_positions, m)
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
else:
|
||||
TrappingPotential = IdealTrappingPotential
|
||||
|
||||
# v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x')
|
||||
# v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z')
|
||||
|
||||
# v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis)
|
||||
# plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt, pcov)
|
||||
|
||||
ComputedPotentials.append(TrappingPotential)
|
||||
Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Power, Polarizability, options)
|
||||
ComputedPotentials.append(IdealTrappingPotential)
|
||||
ComputedPotentials.append(TrappingPotential)
|
||||
Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])
|
||||
|
||||
ComputedPotentials = np.asarray(ComputedPotentials)
|
||||
plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels)
|
||||
plotPotential(Positions, ComputedPotentials, options['axis'], Params)
|
||||
|
||||
# v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, options['axis'])
|
||||
# plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, options['axis'], popt, pcov)
|
||||
|
||||
# Power = [10, 20, 25, 30, 35, 40]*u.W # Single Beam Power
|
||||
# for p in Power:
|
||||
# Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, p, Polarizability, options)
|
||||
# ComputedPotentials.append(IdealTrappingPotential)
|
||||
# ComputedPotentials.append(TrappingPotential)
|
||||
# Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])
|
||||
|
||||
# ComputedPotentials = np.asarray(ComputedPotentials)
|
||||
# plotPotential(Positions, ComputedPotentials, options['axis'], Params)
|
Loading…
Reference in New Issue
Block a user