Working version of the influence of aberrations on a PSF
This commit is contained in:
parent
66576da594
commit
612bae7fa1
@ -13,24 +13,27 @@ plotZernike(3, -1, NumberOfGridPoints) % Coma (Z3^-1, y-direction)
|
||||
plotZernike(4, 0, NumberOfGridPoints) % Spherical Aberration (Z4^0)
|
||||
|
||||
%% Compute and plot Aberrated PSF, Image
|
||||
NumberOfGridPoints = 1024; % Number of grid points per side
|
||||
PupilRadius = 0.010; % Radius of pupil [m]
|
||||
Length = 0.5; % Total size of the grid [m]
|
||||
NumberOfGridPoints = 256; % Number of grid points per side
|
||||
PupilRadius = 10E-3; % Radius of pupil [m]
|
||||
Length = 32E-6; % Total size of the grid [m]
|
||||
GridSpacing = Length / NumberOfGridPoints; % Grid spacing [m]
|
||||
Wavelength = 421e-9; % Optical wavelength [m]
|
||||
ImageDistance = 0.7; % Image distance [m]
|
||||
Wavelength = 421E-9; % Optical wavelength [m]
|
||||
FocalLength = 3*PupilRadius; % Focal Length
|
||||
|
||||
% Generate PSF
|
||||
C = [0.3, 0.2, 0.1, -0.1, 0.4]; % Zernike coefficients
|
||||
[X, Y, PSF] = generateAberratedPSF(C, PupilRadius, NumberOfGridPoints, GridSpacing);
|
||||
plotAberratedPSF(X, Y, PSF);
|
||||
C = [1.5, 0.0, 0.1, -0.1, 0.5]; % Zernike coefficients
|
||||
PSF = generateAberratedPSF(C, Wavelength, PupilRadius, NumberOfGridPoints, GridSpacing, FocalLength);
|
||||
|
||||
xvals = (-NumberOfGridPoints/2 : NumberOfGridPoints/2-1) * GridSpacing * 1E6;
|
||||
yvals = (-NumberOfGridPoints/2 : NumberOfGridPoints/2-1) * GridSpacing * 1E6;
|
||||
plotImage(xvals, yvals, PSF, 'PSF');
|
||||
|
||||
% Generate object
|
||||
Object = generateObject(Wavelength, ImageDistance, NumberOfGridPoints, GridSpacing);
|
||||
% Object = generateObject(Wavelength, NumberOfGridPoints, GridSpacing, FocalLength);
|
||||
|
||||
% Convolve the object with the PSF to simulate imaging
|
||||
Image = convolveObjectWithPSF(abs(Object).^2, PSF, 1);
|
||||
|
||||
% Image = convolveObjectWithPSF(abs(Object).^2, PSF);
|
||||
% plotImage(xvals, yvals, Image, 'Image of Object formed by convolving with the PSF');
|
||||
%% Functions
|
||||
|
||||
function Z = computeZernikePolynomials(n, m, r, theta)
|
||||
@ -46,19 +49,19 @@ function Z = computeZernikePolynomials(n, m, r, theta)
|
||||
|
||||
if n == 2 && m == 0
|
||||
% Defocus (Z2^0)
|
||||
Z = 2 * r.^2 - 1;
|
||||
Z = sqrt(3) * (2 * r.^2 - 1);
|
||||
elseif n == 2 && m == 2
|
||||
% Astigmatism (Z2^2)
|
||||
Z = r.^2 .* cos(2 * theta);
|
||||
% Vertical Astigmatism (Z2^2)
|
||||
Z = sqrt(6) * r.^2 .* cos(2 * theta);
|
||||
elseif n == 3 && m == 1
|
||||
% Coma (Z3^1)
|
||||
Z = (3 * r.^3 - 2 * r) .* cos(theta);
|
||||
% Horizontal Coma (Z3^1)
|
||||
Z = sqrt(8) * (3 * r.^3 - 2 * r) .* cos(theta);
|
||||
elseif n == 3 && m == -1
|
||||
% Coma (Z3^-1)
|
||||
Z = (3 * r.^3 - 2 * r) .* sin(theta);
|
||||
% Vertical Coma (Z3^-1)
|
||||
Z = sqrt(8) * (3 * r.^3 - 2 * r) .* sin(theta);
|
||||
elseif n == 4 && m == 0
|
||||
% Spherical Aberration (Z4^0)
|
||||
Z = 6 * r.^4 - 6 * r.^2 + 1;
|
||||
Z = sqrt(5) * (6 * r.^4 - 6 * r.^2 + 1);
|
||||
else
|
||||
% Default to zero if no known Zernike polynomial matches
|
||||
Z = 0;
|
||||
@ -94,7 +97,7 @@ function plotZernike(n, m, NumberOfGridPoints)
|
||||
shading interp;
|
||||
end
|
||||
|
||||
function [X, Y, PSF] = generateAberratedPSF(C, PupilRadius, NumberOfGridPoints, GridSpacing)
|
||||
function PSF = generateAberratedPSF(C, Wavelength, PupilRadius, NumberOfGridPoints, GridSpacing, FocalLength)
|
||||
% C is the vector of Zernike coefficients [C_defocus, C_astigmatism, C_coma, C_spherical, ...]
|
||||
% NumberOfGridPoints is the number of points for the grid (NxN grid)
|
||||
% PupilRadius is the radius of the pupil aperture
|
||||
@ -103,72 +106,65 @@ function [X, Y, PSF] = generateAberratedPSF(C, PupilRadius, NumberOfGridPoints,
|
||||
[X, Y] = meshgrid((-NumberOfGridPoints/2 : NumberOfGridPoints/2-1) * GridSpacing);
|
||||
|
||||
% Convert (x, y) to polar coordinates (r, theta)
|
||||
[theta, r] = cart2pol(X, Y);
|
||||
[theta, ~] = cart2pol(X, Y);
|
||||
|
||||
% Pupil function: 1 inside the pupil radius, 0 outside
|
||||
P = generateCircularMask(X, Y, 2 * PupilRadius); % 2D mask
|
||||
% Pupil function
|
||||
P = generatePupil(Wavelength, PupilRadius, NumberOfGridPoints, GridSpacing, FocalLength);
|
||||
|
||||
% Wavefront error from Zernike polynomials
|
||||
W = C(1) * computeZernikePolynomials(2, 0, r, theta) + ... % Defocus (Z2^0)
|
||||
C(2) * computeZernikePolynomials(2, 2, r, theta) + ... % Astigmatism (Z2^2)
|
||||
C(3) * computeZernikePolynomials(3, 1, r, theta) + ... % Coma (Z3^1, x-direction)
|
||||
C(4) * computeZernikePolynomials(3, -1, r, theta) + ... % Coma (Z3^-1, y-direction)
|
||||
C(5) * computeZernikePolynomials(4, 0, r, theta); % Spherical Aberration (Z4^0)
|
||||
W = C(1) * computeZernikePolynomials(2, 0, P, theta) + ... % Defocus (Z2^0)
|
||||
C(2) * computeZernikePolynomials(2, 2, P, theta) + ... % Astigmatism (Z2^2)
|
||||
C(3) * computeZernikePolynomials(3, 1, P, theta) + ... % Coma (Z3^1, x-direction)
|
||||
C(4) * computeZernikePolynomials(3, -1, P, theta) + ... % Coma (Z3^-1, y-direction)
|
||||
C(5) * computeZernikePolynomials(4, 0, P, theta); % Spherical Aberration (Z4^0)
|
||||
|
||||
W(P>1) = 0;
|
||||
E = exp(1i*2*pi*W); % Complex amplitude
|
||||
E(P>1) = 0; % Impose aperture size
|
||||
|
||||
% Fourier transform of the pupil function with aberrations
|
||||
PSF = abs(calculateExtendedFFT2(P .* exp(-1i * 2*pi * W), GridSpacing)).^2;
|
||||
PSF = abs(calculateFFT2(E)).^2;
|
||||
PSF = PSF/sum(PSF(:));
|
||||
end
|
||||
|
||||
function plotAberratedPSF(X, Y, PSF)
|
||||
% C: Zernike coefficients [C_defocus, C_astigmatism, C_coma_x, C_coma_y, C_spherical]
|
||||
% PupilRadius: Radius of the pupil aperture
|
||||
% NumberOfGridPoints: Number of points for plotting
|
||||
% Generate PSF using the updated modelPSF function
|
||||
PSF = PSF / max(PSF(:));
|
||||
figure(1)
|
||||
function plotImage(xvals, yvals, image, titlestring)
|
||||
figure
|
||||
clf
|
||||
set(gcf,'Position',[50 50 950 750])
|
||||
surf(X, Y, PSF, 'EdgeColor', 'none');
|
||||
xlim([-0.05 0.05])
|
||||
ylim([-0.05 0.05])
|
||||
view(2); % 2D view
|
||||
shading interp;
|
||||
imagesc(xvals, yvals, image);
|
||||
colorbar;
|
||||
colormap jet;
|
||||
title('PSF', 'FontSize', 16);
|
||||
title(titlestring, 'FontSize', 16);
|
||||
xlabel('X', 'FontSize', 16);
|
||||
ylabel('Y', 'FontSize', 16);
|
||||
end
|
||||
|
||||
function C = convolveObjectWithPSF(A, B, GridSpacing)
|
||||
N = size(A, 1);
|
||||
C = calculateExtendedInverseFFT2(calculateExtendedFFT2(A, GridSpacing) .* calculateExtendedFFT2(B, GridSpacing), 1/(N*GridSpacing));
|
||||
function P_Norm = generatePupil(Wavelength, PupilRadius, NumberOfGridPoints, GridSpacing, FocalLength)
|
||||
[X,Y] = meshgrid((-NumberOfGridPoints/2 : NumberOfGridPoints/2-1) * ((Wavelength * FocalLength) / (NumberOfGridPoints * GridSpacing)));
|
||||
P = sqrt(X.^2 + Y.^2);
|
||||
P_Norm = P/PupilRadius; % Pupil normalized by aperture radius
|
||||
assert(max(P_Norm(:))>=sqrt(2),'Sampling is not sufficient to reconstruct the entire wavefront.');
|
||||
end
|
||||
|
||||
function z = generateCircularMask(x, y, D)
|
||||
r = sqrt(x.^2+y.^2);
|
||||
z = double(r<D/2);
|
||||
z(r==D/2) = 0.5;
|
||||
function G = calculateFFT2(g)
|
||||
G = fftshift(fft2(ifftshift(g)));
|
||||
end
|
||||
|
||||
function G = calculateExtendedFFT2(g, Delta)
|
||||
G = fftshift(fft2(fftshift(g))) * Delta^2;
|
||||
%{
|
||||
|
||||
function g = calculateInverseFFT2(G)
|
||||
g = ifftshift(ifft2(fftshift(G)));
|
||||
end
|
||||
|
||||
function g = calculateExtendedInverseFFT2(G, Delta_f)
|
||||
N = size(G, 1);
|
||||
g = ifftshift(ifft2(ifftshift(G))) * (N * Delta_f)^2;
|
||||
end
|
||||
|
||||
function ret = generateRectangle(x, D)
|
||||
if nargin == 1, D = 1; end
|
||||
x = abs(x);
|
||||
ret = double(x<D/2);
|
||||
ret(x == D/2) = 0.5;
|
||||
end
|
||||
|
||||
function obj = generateObject(Wavelength, ImageDistance, NumberOfGridPoints, GridSpacing)
|
||||
function obj = generateObject(Wavelength, NumberOfGridPoints, GridSpacing, FocalLength)
|
||||
% Image-plane coordinates
|
||||
[U, V] = meshgrid((-NumberOfGridPoints/2 : NumberOfGridPoints/2-1) * ((Wavelength * ImageDistance) / (NumberOfGridPoints * GridSpacing)));
|
||||
obj = (generateRectangle((U-1.4e-4)/5e-5) + generateRectangle(U/5e-5)+ generateRectangle((U+1.4e-4)/5e-5)) .* generateRectangle(V/2e-4);
|
||||
[U, V] = meshgrid((-NumberOfGridPoints/2 : NumberOfGridPoints/2-1) * ((Wavelength * FocalLength) / (NumberOfGridPoints * GridSpacing)));
|
||||
obj = ;
|
||||
end
|
||||
|
||||
function C = convolveObjectWithPSF(A, B)
|
||||
C = calculateInverseFFT2(calculateFFT2(A) .* calculateFFT2(B));
|
||||
end
|
||||
|
||||
%}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user