Added plotting of dispersion on the roton boundary.
This commit is contained in:
parent
cbf817e7e9
commit
5e130e2d93
@ -24,9 +24,9 @@ HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity *
|
|||||||
AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3
|
AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3
|
||||||
|
|
||||||
% Dy specific constants
|
% Dy specific constants
|
||||||
Dy164Mass = 163.929174751*1.660539066E-27;
|
Dy164Mass = 163.929174751*AtomicMassUnit;
|
||||||
Dy164IsotopicAbundance = 0.2826;
|
Dy164IsotopicAbundance = 0.2826;
|
||||||
DyMagneticMoment = 9.93*9.274009994E-24;
|
DyMagneticMoment = 9.93*BohrMagneton;
|
||||||
|
|
||||||
%% Bogoliubov excitation spectrum for quasi-2D dipolar gas with QF correction
|
%% Bogoliubov excitation spectrum for quasi-2D dipolar gas with QF correction
|
||||||
AtomNumber = 1E5; % Total atom number in the system
|
AtomNumber = 1E5; % Total atom number in the system
|
||||||
@ -37,7 +37,9 @@ Trapsize = 7.5815 * lz;
|
|||||||
alpha = 0; % Polar angle of dipole moment
|
alpha = 0; % Polar angle of dipole moment
|
||||||
phi = 0; % Azimuthal angle of momentum vector
|
phi = 0; % Azimuthal angle of momentum vector
|
||||||
MeanWidth = 5.7304888515 * lz; % Mean width of Gaussian ansatz
|
MeanWidth = 5.7304888515 * lz; % Mean width of Gaussian ansatz
|
||||||
k = linspace(0, 3e6, 1000); % Vector of magnitudes of k vector
|
k = linspace(0, 2e6, 1000); % Vector of magnitudes of k vector
|
||||||
|
|
||||||
|
% no = 2.0429e+15, eps_dd = 1.2755, as = 5.4249e-09
|
||||||
|
|
||||||
AtomNumberDensity = AtomNumber / Trapsize^2; % Areal density of atoms
|
AtomNumberDensity = AtomNumber / Trapsize^2; % Areal density of atoms
|
||||||
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
||||||
@ -74,17 +76,17 @@ Trapsize = 7.5815 * lz;
|
|||||||
alpha = 0; % Polar angle of dipole moment
|
alpha = 0; % Polar angle of dipole moment
|
||||||
phi = 0; % Azimuthal angle of momentum vector
|
phi = 0; % Azimuthal angle of momentum vector
|
||||||
MeanWidth = 5.7304888515 * lz; % Mean width of Gaussian ansatz
|
MeanWidth = 5.7304888515 * lz; % Mean width of Gaussian ansatz
|
||||||
k = linspace(0, 3e6, 1000); % Vector of magnitudes of k vector
|
k = linspace(0, 2e6, 1000); % Vector of magnitudes of k vector
|
||||||
|
|
||||||
AtomNumberDensity = AtomNumber / Trapsize^2; % Areal density of atoms
|
AtomNumberDensity = AtomNumber / Trapsize^2; % Areal density of atoms
|
||||||
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
||||||
|
|
||||||
ScatteringLengths = [];
|
ScatteringLengths = [108.5, 105.9, 103.3, 102.5150];
|
||||||
eps_dds = [];
|
eps_dds = zeros(1, length(ScatteringLengths));
|
||||||
EpsilonKs = [];
|
EpsilonKs = zeros(length(k), length(ScatteringLengths));
|
||||||
for a = linspace(131,102.515,5)
|
for idx = 1:length(ScatteringLengths)
|
||||||
|
|
||||||
as = a * BohrRadius; % Scattering length
|
as = ScatteringLengths(idx) * BohrRadius; % Scattering length
|
||||||
eps_dd = add/as; % Relative interaction strength
|
eps_dd = add/as; % Relative interaction strength
|
||||||
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
||||||
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
||||||
@ -100,19 +102,19 @@ for a = linspace(131,102.515,5)
|
|||||||
DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2));
|
DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2));
|
||||||
EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK);
|
EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK);
|
||||||
|
|
||||||
ScatteringLengths(end+1) = as;
|
eps_dds(idx) = eps_dd;
|
||||||
eps_dds(end+1) = eps_dd;
|
EpsilonKs(:,idx) = EpsilonK;
|
||||||
EpsilonKs(end+1,:) = EpsilonK;
|
|
||||||
end
|
end
|
||||||
|
|
||||||
figure(2)
|
figure(2)
|
||||||
|
clf
|
||||||
set(gcf,'Position',[50 50 950 750])
|
set(gcf,'Position',[50 50 950 750])
|
||||||
xvals = (k .* add);
|
xvals = (k .* add);
|
||||||
yvals = EpsilonKs(1, :) ./ PlanckConstant;
|
yvals = EpsilonKs(:, 1) ./ PlanckConstant;
|
||||||
plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(1/eps_dds(1),3)),'a_{dd}$'])
|
plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(1/eps_dds(1),3)),'a_{dd}$'])
|
||||||
hold on
|
hold on
|
||||||
for idx = 2:length(ScatteringLengths)
|
for idx = 2:length(ScatteringLengths)
|
||||||
yvals = EpsilonKs(idx, :) ./ PlanckConstant;
|
yvals = EpsilonKs(:, idx) ./ PlanckConstant;
|
||||||
plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(1/eps_dds(idx),3)),'a_{dd}$'])
|
plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(1/eps_dds(idx),3)),'a_{dd}$'])
|
||||||
end
|
end
|
||||||
title(['$na_{dd}^2 = ',num2str(round(AtomNumberDensity * add^2,4)),'$'],'fontsize',16,'interpreter','latex')
|
title(['$na_{dd}^2 = ',num2str(round(AtomNumberDensity * add^2,4)),'$'],'fontsize',16,'interpreter','latex')
|
||||||
@ -121,6 +123,58 @@ ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex')
|
|||||||
grid on
|
grid on
|
||||||
legend('location', 'northwest','fontsize',16, 'Interpreter','latex')
|
legend('location', 'northwest','fontsize',16, 'Interpreter','latex')
|
||||||
|
|
||||||
|
%% Bogoliubov excitation spectrum for quasi-2D dipolar gas with QF correction
|
||||||
|
wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction
|
||||||
|
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
|
||||||
|
alpha = 0; % Polar angle of dipole moment
|
||||||
|
phi = 0; % Azimuthal angle of momentum vector
|
||||||
|
k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector
|
||||||
|
|
||||||
|
nadd2s = [0.0844, 0.0978, 0.123];
|
||||||
|
as_to_add = [0.7730, 0.7840, 0.7819];
|
||||||
|
var_widths = [4.97165, 5.72960, 5.93178];
|
||||||
|
|
||||||
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
||||||
|
EpsilonKs = zeros(length(k), length(nadd2s));
|
||||||
|
|
||||||
|
for idx = 1:length(nadd2s)
|
||||||
|
|
||||||
|
AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms
|
||||||
|
as = (as_to_add(idx) * add); % Scattering length
|
||||||
|
eps_dd = add/as; % Relative interaction strength
|
||||||
|
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
||||||
|
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
||||||
|
MeanWidth = var_widths(idx) * lz; % Mean width of Gaussian ansatz
|
||||||
|
|
||||||
|
[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi); % DDI potential in k-space
|
||||||
|
|
||||||
|
% == Quantum Fluctuations term == %
|
||||||
|
gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2));
|
||||||
|
gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2);
|
||||||
|
gQF = gamma5 * gammaQF;
|
||||||
|
|
||||||
|
% == Dispersion relation == %
|
||||||
|
DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2));
|
||||||
|
EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK);
|
||||||
|
EpsilonKs(:,idx) = EpsilonK;
|
||||||
|
end
|
||||||
|
|
||||||
|
figure(3)
|
||||||
|
clf
|
||||||
|
set(gcf,'Position',[50 50 950 750])
|
||||||
|
xvals = (k .* add);
|
||||||
|
yvals = EpsilonKs(:, 1) ./ PlanckConstant;
|
||||||
|
plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(as_to_add(1),4)),'a_{dd}, na_{dd}^2 = ',num2str(round(nadd2s(1),4)),'$'])
|
||||||
|
hold on
|
||||||
|
for idx = 2:length(nadd2s)
|
||||||
|
yvals = EpsilonKs(:, idx) ./ PlanckConstant;
|
||||||
|
plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(as_to_add(idx),4)),'a_{dd}, na_{dd}^2 = ',num2str(round(nadd2s(idx),4)),'$'])
|
||||||
|
end
|
||||||
|
xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex')
|
||||||
|
ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex')
|
||||||
|
grid on
|
||||||
|
legend('location', 'northwest','fontsize',16, 'Interpreter','latex')
|
||||||
|
|
||||||
%%
|
%%
|
||||||
function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi)
|
function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi)
|
||||||
Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2)));
|
Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2)));
|
||||||
|
Loading…
Reference in New Issue
Block a user