From 5b91c20246982f99bdc76bf55f7d677ae65eaa24 Mon Sep 17 00:00:00 2001 From: Karthik Chandrashekara Date: Sun, 11 Jul 2021 14:47:13 +0200 Subject: [PATCH] Major changes - rewrote how autocorrelation, resampling and determination of loading rate is done. --- .../@MOTSimulator/calculateLoadingRate.m | 112 ++++++------------ 1 file changed, 33 insertions(+), 79 deletions(-) diff --git a/MOT Capture Process Simulation/@MOTSimulator/calculateLoadingRate.m b/MOT Capture Process Simulation/@MOTSimulator/calculateLoadingRate.m index 84cd469..d40d249 100644 --- a/MOT Capture Process Simulation/@MOTSimulator/calculateLoadingRate.m +++ b/MOT Capture Process Simulation/@MOTSimulator/calculateLoadingRate.m @@ -1,84 +1,38 @@ -function [LoadingRate, StandardError] = calculateLoadingRate(this, FinalDynamicalQuantities) - - NumberOfLoadedAtoms = zeros(1, this.NumberOfAtoms); - AutocorrelationFunction = zeros(1, this.NumberOfAtoms); - - for i = 1:this.NumberOfAtoms - FinalPosition = FinalDynamicalQuantities(i,1:3); - DivergenceAngle = atan(sqrt((FinalPosition(1)^2+FinalPosition(3)^2)/(FinalPosition(2)^2))); - if (DivergenceAngle <= this.MOTExitDivergence) && (FinalPosition(2) >= 0) - if i == 1 - NumberOfLoadedAtoms(1) = 1; - else - NumberOfLoadedAtoms(i) = NumberOfLoadedAtoms(i-1) + 1; +function [LoadingRate, StandardError, ConfidenceInterval] = calculateLoadingRate(this, ParticleDynamicalQuantities) + switch this.SimulationMode + case "2D" + n = this.NumberOfAtoms; + NumberOfTimeSteps = int64(this.SimulationTime/this.TimeStep); + NumberOfLoadedAtoms = zeros(1, NumberOfTimeSteps); + TimeCounts = zeros(1, n); + CollisionEvents = zeros(1, n); + + % Include the stochastic process of background collisions + for AtomIndex = 1:n + TimeCounts(AtomIndex) = this.computeTimeSpentInInteractionRegion(squeeze(ParticleDynamicalQuantities(AtomIndex,:,1:3))); + end + this.TimeSpentInInteractionRegion = mean(TimeCounts); + for AtomIndex = 1:n + CollisionEvents(AtomIndex) = this.computeCollisionProbability(); end - else - if i == 1 - NumberOfLoadedAtoms(1) = 0; - else - NumberOfLoadedAtoms(i) = NumberOfLoadedAtoms(i-1); + % Count the number of loaded atoms subject to conditions + for TimeIndex = 1:NumberOfTimeSteps + if TimeIndex ~= 1 + NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex-1); + end + for AtomIndex = 1:n + Position = squeeze(ParticleDynamicalQuantities(AtomIndex, TimeIndex, 1:3))'; + Velocity = squeeze(ParticleDynamicalQuantities(AtomIndex, TimeIndex, 4:6))'; + if this.exitCondition(Position, Velocity, CollisionEvents(AtomIndex)) + NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex) + 1; + end + end end - end + + [LoadingRate, StandardError, ConfidenceInterval] = this.bootstrapErrorEstimation(NumberOfLoadedAtoms); + + case "3D" + % Development In progress end - - for i = 1:this.NumberOfAtoms-1 - MeanTrappingEfficiency = 0; - MeanLoadingRateShifted = 0; - for j = 1:this.NumberOfAtoms-i - MeanTrappingEfficiency = MeanTrappingEfficiency + NumberOfLoadedAtoms(j)/j; - MeanLoadingRateShifted = MeanLoadingRateShifted + (NumberOfLoadedAtoms(i+j))/(i+j); - AutocorrelationFunction(i) = AutocorrelationFunction(i) + ((NumberOfLoadedAtoms(j)/j).*(NumberOfLoadedAtoms(i+j)/(i+j))); - end - AutocorrelationFunction(i) = ((this.NumberOfAtoms-i)^-1 * (AutocorrelationFunction(i)) - ((this.NumberOfAtoms-i)^-1 * MeanTrappingEfficiency * MeanLoadingRateShifted)); - end - - if AutocorrelationFunction(1)~=0 % To handle cases where there is no atom loading - - AutocorrelationFunction = AutocorrelationFunction./AutocorrelationFunction(1); - x = linspace(1, this.NumberOfAtoms, this.NumberOfAtoms); - [FitObject,~] = fit(x',AutocorrelationFunction',"exp(-x/n)",'Startpoint', 100); - CorrelationFactor = FitObject.n; % n is the autocorrelation factor - SumOfAllMeanTrappingEfficiencies = 0; - NumberOfBlocks = floor(this.NumberOfAtoms/(2*CorrelationFactor+1)); - MeanTrappingEfficiencyInEachBlock = zeros(1,NumberOfBlocks); - BlockNumberLimit = min(NumberOfBlocks-1,5); - - % Jackknife method is a systematic way of obtaining the “standard deviation” error of a - % set of stochastic measurements: - % 1. Calculate average (or some function f) from the full dataset. - % 2. Divide data into M blocks, with block length ≫ correlation factor . This is done in order to - % get rid of autocorrelations; if there are no correlations, block length can be 1. - % 3. For each m = 1 . . .M, take away block m and calculate the average using - % the data from all other blocks. - % 4. Estimate the error by calculating the deviation of the average in each block from average of the full dataset - - %Jackknife estimate of the loading rate - - for i = 1:NumberOfBlocks-BlockNumberLimit - MeanTrappingEfficiencyInEachBlock(i) = NumberOfLoadedAtoms(this.NumberOfAtoms - ceil((i-1)*(2*CorrelationFactor+1))) / (this.NumberOfAtoms - ceil((i-1)*(2*CorrelationFactor+1))); - SumOfAllMeanTrappingEfficiencies = SumOfAllMeanTrappingEfficiencies + MeanTrappingEfficiencyInEachBlock(i); - end - - MeanTrappingEfficiency = SumOfAllMeanTrappingEfficiencies / (NumberOfBlocks-BlockNumberLimit); - - c = integral(@(velocity) sqrt(2 / pi) * (Helper.PhysicsConstants.Dy164Mass/(Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperatureinKelvin)) ... - * velocity.^3 .* exp(-velocity.^2 .* (Helper.PhysicsConstants.Dy164Mass / (2 * Helper.PhysicsConstants.BoltzmannConstant ... - * this.OvenTemperatureinKelvin))), 0, this.VelocityCutoff); - - LoadingRate = MeanTrappingEfficiency * c * this.calculateFreeMolecularRegimeFlux(); - - % Jackknife estimate of the variance of the loading rate - Variance = 0; - for i = 1:NumberOfBlocks-BlockNumberLimit - Variance = Variance + (MeanTrappingEfficiencyInEachBlock(i) - MeanTrappingEfficiency)^2; - end - - StandardError = sqrt((((NumberOfBlocks-BlockNumberLimit) - 1) / (NumberOfBlocks-BlockNumberLimit)) * Variance); - - else - LoadingRate = 0; - StandardError = 0; - end - end