Adding a new script to calculate Dipole Trap characteristics
This commit is contained in:
parent
df395f5311
commit
435fbccbfa
@ -173,7 +173,7 @@ OptionsStruct.RescalingFactorForSecondParameter = 1000;
|
|||||||
OptionsStruct.YLabelString = 'Beam Waist (mW)';
|
OptionsStruct.YLabelString = 'Beam Waist (mW)';
|
||||||
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-10;
|
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-10;
|
||||||
% OptionsStruct.ZLabelString = 'Enhancement Factor (\eta)';
|
% OptionsStruct.ZLabelString = 'Enhancement Factor (\eta)';
|
||||||
OptionsStruct.ZLabelString = 'Loading rate (x 10^{9} atoms/s)';
|
OptionsStruct.ZLabelString = 'Loading rate (x 10^{10} atoms/s)';
|
||||||
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
|
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
|
||||||
|
|
||||||
options = Helper.convertstruct2cell(OptionsStruct);
|
options = Helper.convertstruct2cell(OptionsStruct);
|
||||||
@ -189,7 +189,7 @@ SidebandBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'BlueSideban
|
|||||||
SidebandBeam.Power = 0.2;
|
SidebandBeam.Power = 0.2;
|
||||||
NumberOfPointsForFirstParam = 20; %iterations of the simulation
|
NumberOfPointsForFirstParam = 20; %iterations of the simulation
|
||||||
NumberOfPointsForSecondParam = 20;
|
NumberOfPointsForSecondParam = 20;
|
||||||
DetuningArray = linspace(-1.0, -5.0, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth;
|
DetuningArray = linspace(-0.5, -2.5, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth;
|
||||||
BeamWaistArray = linspace(10, 25, NumberOfPointsForSecondParam) * 1e-03;
|
BeamWaistArray = linspace(10, 25, NumberOfPointsForSecondParam) * 1e-03;
|
||||||
|
|
||||||
tStart = tic;
|
tStart = tic;
|
||||||
@ -229,7 +229,7 @@ OptionsStruct.RescalingFactorForSecondParameter = 1000;
|
|||||||
OptionsStruct.YLabelString = 'Beam Waist (mW)';
|
OptionsStruct.YLabelString = 'Beam Waist (mW)';
|
||||||
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-10;
|
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-10;
|
||||||
% OptionsStruct.ZLabelString = 'Enhancement Factor (\eta)';
|
% OptionsStruct.ZLabelString = 'Enhancement Factor (\eta)';
|
||||||
OptionsStruct.ZLabelString = 'Loading rate (x 10^{9} atoms/s)';
|
OptionsStruct.ZLabelString = 'Loading rate (x 10^{10} atoms/s)';
|
||||||
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
|
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
|
||||||
|
|
||||||
options = Helper.convertstruct2cell(OptionsStruct);
|
options = Helper.convertstruct2cell(OptionsStruct);
|
||||||
|
151
calculateDipoleTrapPotential.py
Normal file
151
calculateDipoleTrapPotential.py
Normal file
@ -0,0 +1,151 @@
|
|||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from astropy import units as u, constants as ac
|
||||||
|
|
||||||
|
def rotation_matrix(axis, theta):
|
||||||
|
"""
|
||||||
|
Return the rotation matrix associated with counterclockwise rotation about
|
||||||
|
the given axis by theta radians.
|
||||||
|
|
||||||
|
In 2-D it is just,
|
||||||
|
thetaInRadians = np.radians(theta)
|
||||||
|
c, s = np.cos(thetaInRadians), np.sin(thetaInRadians)
|
||||||
|
R = np.array(((c, -s), (s, c)))
|
||||||
|
|
||||||
|
In 3-D, one way to do it is use the Euler-Rodrigues Formula as is done here
|
||||||
|
"""
|
||||||
|
axis = np.asarray(axis)
|
||||||
|
axis = axis / math.sqrt(np.dot(axis, axis))
|
||||||
|
a = math.cos(theta / 2.0)
|
||||||
|
b, c, d = -axis * math.sin(theta / 2.0)
|
||||||
|
aa, bb, cc, dd = a * a, b * b, c * c, d * d
|
||||||
|
bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d
|
||||||
|
return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)],
|
||||||
|
[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)],
|
||||||
|
[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])
|
||||||
|
|
||||||
|
# Rayleigh range
|
||||||
|
def z_R(w_0:np.ndarray, lamb:float)->np.ndarray:
|
||||||
|
return np.pi*w_0**2/lamb
|
||||||
|
|
||||||
|
# Beam Radius
|
||||||
|
def w(pos, w_0, lamb):
|
||||||
|
return w_0*np.sqrt(1+(pos*lamb/(np.pi*w_0**2))**2)
|
||||||
|
|
||||||
|
def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity", alpha:float)->"float|u.quantity.Quantity":
|
||||||
|
return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||||
|
|
||||||
|
def gravitational_potential(positions: "np.ndarray|u.quantity.Quantity", m:"float|u.quantity.Quantity"):
|
||||||
|
return m * ac.g0 * positions
|
||||||
|
|
||||||
|
def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um, alpha:"float|u.quantity.Quantity"=184.4)->np.ndarray:
|
||||||
|
A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength))
|
||||||
|
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||||
|
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2))
|
||||||
|
return U
|
||||||
|
|
||||||
|
def single_gaussian_beam_potential_harmonic_approximation(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", depth:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
|
||||||
|
U = - depth * (1 - (2 * (positions[0,:]/waists[0])**2) - (2 * (positions[2,:]/waists[1])**2) - (0.5 * positions[1,:]**2 * np.sum(np.reciprocal(z_R(waists, wavelength)))**2))
|
||||||
|
return U
|
||||||
|
|
||||||
|
def plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels):
|
||||||
|
|
||||||
|
## plot of the measured parameter vs. scan parameter
|
||||||
|
plt.figure(figsize=(9, 7))
|
||||||
|
for i in range(np.size(ComputedPotentials, 0)):
|
||||||
|
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[i]) + ' W; ' + TrapDepthLabels[i])
|
||||||
|
if axis == 0:
|
||||||
|
dir = 'X'
|
||||||
|
elif axis == 1:
|
||||||
|
dir = 'Y'
|
||||||
|
else:
|
||||||
|
dir = 'Z'
|
||||||
|
# maxPotentialValue = max(ComputedPotentials.flatten())
|
||||||
|
# minPotentialValue = min(ComputedPotentials.flatten())
|
||||||
|
# PotentialValueRange = maxPotentialValue - minPotentialValue
|
||||||
|
# upperlimit = 5
|
||||||
|
# if maxPotentialValue > 0:
|
||||||
|
# upperlimit = maxPotentialValue
|
||||||
|
# lowerlimit = min(ComputedPotentials.flatten()) - PotentialValueRange/6
|
||||||
|
# plt.ylim([lowerlimit, upperlimit])
|
||||||
|
plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold')
|
||||||
|
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.grid(visible=1)
|
||||||
|
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
||||||
|
plt.tight_layout()
|
||||||
|
# plt.show()
|
||||||
|
plt.savefig('pot_' + dir + '.png')
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
# Powers = [0.1, 0.5, 2]
|
||||||
|
# Powers = [5, 10, 20, 30, 40]
|
||||||
|
Powers = [40]
|
||||||
|
Polarizability = 160 # in a.u., should we use alpha = 136 or 160 or 184.4?
|
||||||
|
# w_x, w_z = 34*u.um, 27.5*u.um # Beam Waists in the x and y directions
|
||||||
|
w_x, w_z = 35*u.um, 35*u.um # Beam Waists in the x and y directions
|
||||||
|
# w_x, w_z = 20.5*u.um, 20.5*u.um
|
||||||
|
|
||||||
|
axis = 1 # axis referenced to the beam along which you want the dipole trap potential
|
||||||
|
extent = 1e4 # range of spatial coordinates in one direction to calculate trap potential over
|
||||||
|
|
||||||
|
TrappingPotential = []
|
||||||
|
ComputedPotentials = []
|
||||||
|
TrapDepthLabels = []
|
||||||
|
|
||||||
|
gravity = False
|
||||||
|
astigmatism = False
|
||||||
|
|
||||||
|
tilt_gravity = True
|
||||||
|
theta = 0 # in degrees
|
||||||
|
tilt_axis = [1, 0, 0] # lab space coordinates are rotated about x-axis in reference frame of beam
|
||||||
|
|
||||||
|
for p in Powers:
|
||||||
|
|
||||||
|
Power = p*u.W # Single Beam Power
|
||||||
|
|
||||||
|
TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability)
|
||||||
|
TrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK)
|
||||||
|
TrapDepthLabels.append("Trap Depth = " + str(round(TrapDepthInKelvin.value, 2)) + " " + str(TrapDepthInKelvin.unit))
|
||||||
|
|
||||||
|
projection_axis = np.array([0, 1, 0]) # default
|
||||||
|
if axis == 0:
|
||||||
|
projection_axis = np.array([1, 0, 0]) # radial direction (X-axis)
|
||||||
|
elif axis == 1:
|
||||||
|
projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis)
|
||||||
|
elif axis == 2:
|
||||||
|
projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis)
|
||||||
|
|
||||||
|
x_Positions = np.arange(-extent, extent, 1)*u.um
|
||||||
|
y_Positions = np.arange(-extent, extent, 1)*u.um
|
||||||
|
z_Positions = np.arange(-extent, extent, 1)*u.um
|
||||||
|
Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis]
|
||||||
|
|
||||||
|
if not gravity and not astigmatism:
|
||||||
|
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability)
|
||||||
|
TrappingPotential = TrappingPotential + np.zeros((3, len(TrappingPotential))) * TrappingPotential.unit
|
||||||
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||||
|
|
||||||
|
elif gravity and not astigmatism:
|
||||||
|
# Influence of Gravity
|
||||||
|
m = 164*u.u
|
||||||
|
gravity_axis = np.array([0, 0, 1])
|
||||||
|
if tilt_gravity:
|
||||||
|
R = rotation_matrix(tilt_axis, np.radians(theta))
|
||||||
|
gravity_axis = np.dot(R, gravity_axis)
|
||||||
|
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||||||
|
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) + gravitational_potential(gravity_axis_positions, m)
|
||||||
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||||
|
|
||||||
|
ComputedPotentials.append(TrappingPotential)
|
||||||
|
|
||||||
|
ComputedPotentials = np.asarray(ComputedPotentials)
|
||||||
|
plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels)
|
||||||
|
|
||||||
|
# Influence of Astigmatism
|
||||||
|
|
||||||
|
# TrappingPotential = single_gaussian_beam_potential_harmonic_approximation(Positions, np.asarray([w_x.value, w_z.value])*u.um, depth = TrapDepth)
|
||||||
|
# TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||||
|
|
@ -25,16 +25,16 @@ MOT2D = Simulator.TwoDimensionalMOT(options{:});
|
|||||||
Beams = MOT2D.Beams;
|
Beams = MOT2D.Beams;
|
||||||
|
|
||||||
%% - Run Simulation
|
%% - Run Simulation
|
||||||
MOT2D.NumberOfAtoms = 5000;
|
MOT2D.NumberOfAtoms = 10000;
|
||||||
MOT2D.SidebandBeam = true;
|
MOT2D.SidebandBeam = true;
|
||||||
MOT2D.PushBeam = false;
|
MOT2D.PushBeam = false;
|
||||||
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
|
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
|
||||||
CoolingBeam.Power = 0.2;
|
CoolingBeam.Power = 0.2;
|
||||||
CoolingBeam.Waist = 16.67e-03;
|
CoolingBeam.Waist = 20e-03;
|
||||||
CoolingBeam.Detuning = -1.33*Helper.PhysicsConstants.BlueLinewidth;
|
CoolingBeam.Detuning = -1.33*Helper.PhysicsConstants.BlueLinewidth;
|
||||||
SidebandBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'BlueSideband'), Beams)};
|
SidebandBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'BlueSideband'), Beams)};
|
||||||
SidebandBeam.Power = 0.4;
|
SidebandBeam.Power = 0.2;
|
||||||
SidebandBeam.Waist = 16.67e-03;
|
SidebandBeam.Waist = 20e-03;
|
||||||
SidebandBeam.Detuning = -2.66*Helper.PhysicsConstants.BlueLinewidth;
|
SidebandBeam.Detuning = -2.66*Helper.PhysicsConstants.BlueLinewidth;
|
||||||
PushBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Push'), Beams)};
|
PushBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Push'), Beams)};
|
||||||
PushBeam.Power = 0.025;
|
PushBeam.Power = 0.025;
|
||||||
@ -227,7 +227,7 @@ clear OptionsStruct
|
|||||||
%% COOLING BEAM WAIST VS DETUNING
|
%% COOLING BEAM WAIST VS DETUNING
|
||||||
|
|
||||||
MOT2D.NumberOfAtoms = 20000;
|
MOT2D.NumberOfAtoms = 20000;
|
||||||
MOT2D.MagneticGradient = 0.38;
|
MOT2D.MagneticGradient = 0.40;
|
||||||
MOT2D.SidebandBeam = false;
|
MOT2D.SidebandBeam = false;
|
||||||
MOT2D.PushBeam = false;
|
MOT2D.PushBeam = false;
|
||||||
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
|
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
|
||||||
@ -320,15 +320,24 @@ CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
|
|||||||
SaturationIntensity = CoolingBeam.SaturationIntensity;
|
SaturationIntensity = CoolingBeam.SaturationIntensity;
|
||||||
SaturationParameter = 0.1 * (8 * Power) / (pi*BeamWaist^2 * SaturationIntensity); % two beams are reflected
|
SaturationParameter = 0.1 * (8 * Power) / (pi*BeamWaist^2 * SaturationIntensity); % two beams are reflected
|
||||||
|
|
||||||
n = 1000;
|
n = 10000;
|
||||||
t = 2*pi*rand(n,1);
|
xmin = -BeamRadius;
|
||||||
r = BeamRadius*sqrt(rand(n,1));
|
xmax = BeamRadius;
|
||||||
% xmin = -15e-03;
|
x = xmin+rand(n,1)*(xmax-xmin);
|
||||||
% xmax = 15e-03;
|
|
||||||
% x = xmin+rand(n,1)*(xmax-xmin);
|
y = ones(n,1) * 0;
|
||||||
x = r.*cos(t);
|
|
||||||
y = ones(n,1) * 2e-03;
|
zmin = -BeamRadius;
|
||||||
z = r.*sin(t);
|
zmax = BeamRadius;
|
||||||
|
z = zmin+rand(n,1)*(zmax-zmin);
|
||||||
|
|
||||||
|
|
||||||
|
% t = 2*pi*rand(n,1);
|
||||||
|
% r = BeamRadius*sqrt(rand(n,1));
|
||||||
|
% x = r.*cos(t);
|
||||||
|
% y = ones(n,1) * 0;
|
||||||
|
% z = r.*sin(t);
|
||||||
|
|
||||||
PositionVector = horzcat(x, y, z); %scatter3(zeros(n,1), y, z)
|
PositionVector = horzcat(x, y, z); %scatter3(zeros(n,1), y, z)
|
||||||
CoolingBeamLocalSaturationIntensity = @(x) MOT2D.calculateLocalSaturationIntensity(0.25 * SaturationParameter, x, Origin, WaveVectorEndPoint(BeamNumber,:), BeamRadius, BeamWaist);
|
CoolingBeamLocalSaturationIntensity = @(x) MOT2D.calculateLocalSaturationIntensity(0.25 * SaturationParameter, x, Origin, WaveVectorEndPoint(BeamNumber,:), BeamRadius, BeamWaist);
|
||||||
IntensityProfile = zeros(n,1);
|
IntensityProfile = zeros(n,1);
|
||||||
@ -337,8 +346,8 @@ for i=1:n
|
|||||||
end
|
end
|
||||||
|
|
||||||
v = IntensityProfile; % Extract intensity value
|
v = IntensityProfile; % Extract intensity value
|
||||||
rows = 100;
|
rows = 35;
|
||||||
columns = 100;
|
columns = 35;
|
||||||
Image = zeros(rows, columns);
|
Image = zeros(rows, columns);
|
||||||
for k = 1 : length(x)
|
for k = 1 : length(x)
|
||||||
row = ceil((x(k) - min(x)) * columns / (max(x) - min(x)));
|
row = ceil((x(k) - min(x)) * columns / (max(x) - min(x)));
|
||||||
@ -395,7 +404,7 @@ f_h.Units = 'pixels';
|
|||||||
set(0,'units','pixels');
|
set(0,'units','pixels');
|
||||||
screensize = get(0,'ScreenSize');
|
screensize = get(0,'ScreenSize');
|
||||||
f_h.Position = [[screensize(3)/3.5 screensize(4)/3.5] 750 600];
|
f_h.Position = [[screensize(3)/3.5 screensize(4)/3.5] 750 600];
|
||||||
[xq,zq] = meshgrid(linspace(-BeamWaist, BeamWaist, n), linspace(-BeamWaist, BeamWaist, n));
|
[xq,zq] = meshgrid(linspace(-BeamRadius, BeamRadius, n), linspace(-BeamRadius, BeamRadius, n));
|
||||||
vq = griddata(x,z,v,xq,zq);
|
vq = griddata(x,z,v,xq,zq);
|
||||||
mesh(xq,zq,vq)
|
mesh(xq,zq,vq)
|
||||||
hold on
|
hold on
|
||||||
|
Loading…
Reference in New Issue
Block a user