New additions, minor modifications to existing files
This commit is contained in:
parent
f9bc6d032c
commit
305335f519
1
.gitignore
vendored
1
.gitignore
vendored
@ -9,5 +9,6 @@ Time-Series-Analyzer/Time-Series-Data
|
|||||||
*.gif
|
*.gif
|
||||||
*.mp4
|
*.mp4
|
||||||
*.bat
|
*.bat
|
||||||
|
*.json
|
||||||
.ipynb_checkpoints/
|
.ipynb_checkpoints/
|
||||||
.vscode/
|
.vscode/
|
75
Data-Analyzer/compareSpectralWeights.m
Normal file
75
Data-Analyzer/compareSpectralWeights.m
Normal file
@ -0,0 +1,75 @@
|
|||||||
|
%% Track spectral weight across the transition
|
||||||
|
|
||||||
|
set(0,'defaulttextInterpreter','latex')
|
||||||
|
set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
|
||||||
|
|
||||||
|
format long
|
||||||
|
|
||||||
|
% Load data
|
||||||
|
Data = load('C:/Users/Karthik/Documents/GitRepositories/Calculations/Data-Analyzer/B2.3G/WithoutProcessing/DropletsToStripes.mat', 'unique_theta', 'mean_sf', 'stderr_sf');
|
||||||
|
|
||||||
|
down_scan_parameter_values = Data.unique_theta;
|
||||||
|
dts_mean_sf = Data.mean_sf;
|
||||||
|
down_stderr_sf = Data.stderr_sf;
|
||||||
|
|
||||||
|
Data = load('C:/Users/Karthik/Documents/GitRepositories/Calculations/Data-Analyzer/B2.3G/WithoutProcessing/StripesToDroplets.mat', 'unique_theta', 'mean_sf', 'stderr_sf');
|
||||||
|
|
||||||
|
std_theta_values = Data.unique_theta;
|
||||||
|
std_mean_sf = Data.mean_sf;
|
||||||
|
std_stderr_sf = Data.stderr_sf;
|
||||||
|
|
||||||
|
figure(1);
|
||||||
|
set(gcf,'Position',[100 100 950 750])
|
||||||
|
errorbar(down_scan_parameter_values, dts_mean_sf, down_stderr_sf, 'o--', ...
|
||||||
|
'LineWidth', 1.5, 'MarkerSize', 6, 'CapSize', 5, 'DisplayName' , 'Droplets to Stripes');
|
||||||
|
hold on
|
||||||
|
errorbar(std_theta_values, std_mean_sf, std_stderr_sf, 'o--', ...
|
||||||
|
'LineWidth', 1.5, 'MarkerSize', 6, 'CapSize', 5, 'DisplayName', 'Stripes to Droplets');
|
||||||
|
set(gca, 'FontSize', 14); % For tick labels only
|
||||||
|
hXLabel = xlabel('\alpha (degrees)', 'Interpreter', 'tex');
|
||||||
|
hYLabel = ylabel('Spectral Weight', 'Interpreter', 'tex');
|
||||||
|
hTitle = title('B = 2.3 G', 'Interpreter', 'tex');
|
||||||
|
legend
|
||||||
|
set([hXLabel, hYLabel], 'FontName', font)
|
||||||
|
set([hXLabel, hYLabel], 'FontSize', 14)
|
||||||
|
set(hTitle, 'FontName', font, 'FontSize', 16, 'FontWeight', 'bold'); % Set font and size for title
|
||||||
|
grid on
|
||||||
|
|
||||||
|
%%
|
||||||
|
|
||||||
|
%% Track spectral weight across the transition
|
||||||
|
|
||||||
|
set(0,'defaulttextInterpreter','latex')
|
||||||
|
set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
|
||||||
|
|
||||||
|
format long
|
||||||
|
|
||||||
|
% Load data
|
||||||
|
Data = load('C:/Users/Karthik/Documents/GitRepositories/Calculations/Data-Analyzer/RampDownSL.mat', 'unique_scan_parameter_values', 'mean_sf', 'stderr_sf');
|
||||||
|
|
||||||
|
down_scan_parameter_values = Data.unique_scan_parameter_values;
|
||||||
|
down_mean_sf = Data.mean_sf;
|
||||||
|
down_stderr_sf = Data.stderr_sf;
|
||||||
|
|
||||||
|
Data = load('C:/Users/Karthik/Documents/GitRepositories/Calculations/Data-Analyzer/RampUpSL.mat', 'unique_scan_parameter_values', 'mean_sf', 'stderr_sf');
|
||||||
|
|
||||||
|
up_scan_parameter_values = Data.unique_scan_parameter_values;
|
||||||
|
up_mean_sf = Data.mean_sf;
|
||||||
|
up_stderr_sf = Data.stderr_sf;
|
||||||
|
|
||||||
|
figure(1);
|
||||||
|
set(gcf,'Position',[100 100 950 750])
|
||||||
|
errorbar(down_scan_parameter_values, down_mean_sf, down_stderr_sf, 'o--', ...
|
||||||
|
'LineWidth', 1.5, 'MarkerSize', 6, 'CapSize', 5, 'DisplayName' , 'BEC to Droplets');
|
||||||
|
hold on
|
||||||
|
errorbar(up_scan_parameter_values, up_mean_sf, up_stderr_sf, 'o--', ...
|
||||||
|
'LineWidth', 1.5, 'MarkerSize', 6, 'CapSize', 5, 'DisplayName', 'Droplets to BEC');
|
||||||
|
set(gca, 'FontSize', 14); % For tick labels only
|
||||||
|
hXLabel = xlabel('B_z (G)', 'Interpreter', 'tex');
|
||||||
|
hYLabel = ylabel('Spectral Weight', 'Interpreter', 'tex');
|
||||||
|
hTitle = title('\alpha = 0', 'Interpreter', 'tex');
|
||||||
|
legend
|
||||||
|
set([hXLabel, hYLabel], 'FontName', font)
|
||||||
|
set([hXLabel, hYLabel], 'FontSize', 14)
|
||||||
|
set(hTitle, 'FontName', font, 'FontSize', 16, 'FontWeight', 'bold'); % Set font and size for title
|
||||||
|
grid on
|
@ -0,0 +1,127 @@
|
|||||||
|
% Compare numerical methods
|
||||||
|
|
||||||
|
%% - Polyak's heavy-ball GD
|
||||||
|
|
||||||
|
OptionsStruct = struct;
|
||||||
|
|
||||||
|
OptionsStruct.NumberOfAtoms = 40000;
|
||||||
|
OptionsStruct.DipolarPolarAngle = deg2rad(0);
|
||||||
|
OptionsStruct.DipolarAzimuthAngle = 0;
|
||||||
|
OptionsStruct.ScatteringLength = 95;
|
||||||
|
|
||||||
|
OptionsStruct.TrapFrequencies = [30, 60, 90];
|
||||||
|
OptionsStruct.TrapPotentialType = 'Harmonic';
|
||||||
|
|
||||||
|
OptionsStruct.NumberOfGridPoints = [128, 64, 64];
|
||||||
|
OptionsStruct.Dimensions = [30, 20, 20];
|
||||||
|
OptionsStruct.UseApproximationForLHY = true;
|
||||||
|
OptionsStruct.IncludeDDICutOff = true;
|
||||||
|
OptionsStruct.CutoffType = 'Cylindrical';
|
||||||
|
OptionsStruct.SimulationMode = 'EnergyMinimization'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution' | 'EnergyMinimization'
|
||||||
|
OptionsStruct.GradientDescentMethod = 'HeavyBall'; % 'HeavyBall' | 'NonLinearCGD'
|
||||||
|
OptionsStruct.MaxIterationsForGD = 1000;
|
||||||
|
OptionsStruct.NoiseScaleFactor = 0.010;
|
||||||
|
|
||||||
|
OptionsStruct.PlotLive = true;
|
||||||
|
OptionsStruct.JobNumber = 0;
|
||||||
|
OptionsStruct.RunOnGPU = false;
|
||||||
|
OptionsStruct.SaveData = true;
|
||||||
|
OptionsStruct.SaveDirectory = './Results/Data_3D/GradientDescent';
|
||||||
|
options = Helper.convertstruct2cell(OptionsStruct);
|
||||||
|
|
||||||
|
sim = Simulator.DipolarGas(options{:});
|
||||||
|
pot = Simulator.Potentials(options{:});
|
||||||
|
sim.Potential = pot.trap();
|
||||||
|
|
||||||
|
%-% Run Simulation %-%
|
||||||
|
NumberOfOutputs = 5;
|
||||||
|
[Params, Transf, psi, V, VDk, stats] = Helper.runWithProfiling(@() sim.run(), NumberOfOutputs, OptionsStruct.SaveDirectory);
|
||||||
|
fprintf('Runtime: %.3f seconds\n', stats.runtime);
|
||||||
|
fprintf('Memory used: %.2f MB\n', stats.workspaceMemoryMB);
|
||||||
|
|
||||||
|
clear all
|
||||||
|
|
||||||
|
%% - Non-linear CGD
|
||||||
|
|
||||||
|
OptionsStruct = struct;
|
||||||
|
|
||||||
|
OptionsStruct.NumberOfAtoms = 40000;
|
||||||
|
OptionsStruct.DipolarPolarAngle = deg2rad(0);
|
||||||
|
OptionsStruct.DipolarAzimuthAngle = 0;
|
||||||
|
OptionsStruct.ScatteringLength = 95;
|
||||||
|
|
||||||
|
OptionsStruct.TrapFrequencies = [30, 60, 90];
|
||||||
|
OptionsStruct.TrapPotentialType = 'Harmonic';
|
||||||
|
|
||||||
|
OptionsStruct.NumberOfGridPoints = [128, 64, 64];
|
||||||
|
OptionsStruct.Dimensions = [30, 20, 20];
|
||||||
|
OptionsStruct.UseApproximationForLHY = true;
|
||||||
|
OptionsStruct.IncludeDDICutOff = true;
|
||||||
|
OptionsStruct.CutoffType = 'Cylindrical';
|
||||||
|
OptionsStruct.SimulationMode = 'EnergyMinimization'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution' | 'EnergyMinimization'
|
||||||
|
OptionsStruct.GradientDescentMethod = 'NonLinearCGD'; % 'HeavyBall' | 'NonLinearCGD'
|
||||||
|
OptionsStruct.MaxIterationsForGD = 1000;
|
||||||
|
OptionsStruct.NoiseScaleFactor = 0.010;
|
||||||
|
|
||||||
|
OptionsStruct.PlotLive = true;
|
||||||
|
OptionsStruct.JobNumber = 1;
|
||||||
|
OptionsStruct.RunOnGPU = false;
|
||||||
|
OptionsStruct.SaveData = true;
|
||||||
|
OptionsStruct.SaveDirectory = './Results/Data_3D/GradientDescent';
|
||||||
|
options = Helper.convertstruct2cell(OptionsStruct);
|
||||||
|
|
||||||
|
sim = Simulator.DipolarGas(options{:});
|
||||||
|
pot = Simulator.Potentials(options{:});
|
||||||
|
sim.Potential = pot.trap();
|
||||||
|
|
||||||
|
%-% Run Simulation %-%
|
||||||
|
NumberOfOutputs = 5;
|
||||||
|
[Params, Transf, psi, V, VDk, stats] = Helper.runWithProfiling(@() sim.run(), NumberOfOutputs, OptionsStruct.SaveDirectory);
|
||||||
|
fprintf('Runtime: %.3f seconds\n', stats.runtime);
|
||||||
|
fprintf('Memory used: %.2f MB\n', stats.workspaceMemoryMB);
|
||||||
|
|
||||||
|
clear all
|
||||||
|
|
||||||
|
%% - Imaginary time propagation
|
||||||
|
|
||||||
|
OptionsStruct = struct;
|
||||||
|
|
||||||
|
OptionsStruct.NumberOfAtoms = 40000;
|
||||||
|
OptionsStruct.DipolarPolarAngle = deg2rad(0);
|
||||||
|
OptionsStruct.DipolarAzimuthAngle = 0;
|
||||||
|
OptionsStruct.ScatteringLength = 95;
|
||||||
|
|
||||||
|
OptionsStruct.TrapFrequencies = [30, 60, 90];
|
||||||
|
OptionsStruct.TrapPotentialType = 'Harmonic';
|
||||||
|
|
||||||
|
OptionsStruct.NumberOfGridPoints = [128, 64, 64];
|
||||||
|
OptionsStruct.Dimensions = [30, 20, 20];
|
||||||
|
OptionsStruct.UseApproximationForLHY = true;
|
||||||
|
OptionsStruct.IncludeDDICutOff = true;
|
||||||
|
OptionsStruct.CutoffType = 'Cylindrical';
|
||||||
|
OptionsStruct.SimulationMode = 'ImaginaryTimeEvolution'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution' | 'EnergyMinimization'
|
||||||
|
OptionsStruct.TimeStepSize = 1E-3; % in s
|
||||||
|
OptionsStruct.MinimumTimeStepSize = 1E-6; % in s
|
||||||
|
OptionsStruct.TimeCutOff = 1E5; % in s
|
||||||
|
OptionsStruct.EnergyTolerance = 5E-10;
|
||||||
|
OptionsStruct.ResidualTolerance = 1E-08;
|
||||||
|
OptionsStruct.NoiseScaleFactor = 0.010;
|
||||||
|
|
||||||
|
OptionsStruct.PlotLive = true;
|
||||||
|
OptionsStruct.JobNumber = 0;
|
||||||
|
OptionsStruct.RunOnGPU = false;
|
||||||
|
OptionsStruct.SaveData = true;
|
||||||
|
OptionsStruct.SaveDirectory = './Results/Data_3D/AnisotropicTrap/Tilted0';
|
||||||
|
options = Helper.convertstruct2cell(OptionsStruct);
|
||||||
|
|
||||||
|
sim = Simulator.DipolarGas(options{:});
|
||||||
|
pot = Simulator.Potentials(options{:});
|
||||||
|
sim.Potential = pot.trap();
|
||||||
|
|
||||||
|
%-% Run Simulation %-%
|
||||||
|
NumberOfOutputs = 5;
|
||||||
|
[Params, Transf, psi, V, VDk, stats] = Helper.runWithProfiling(@() sim.run(), NumberOfOutputs, OptionsStruct.SaveDirectory);
|
||||||
|
fprintf('Runtime: %.3f seconds\n', stats.runtime);
|
||||||
|
fprintf('Memory used: %.2f MB\n', stats.workspaceMemoryMB);
|
||||||
|
|
||||||
|
clear all
|
@ -104,3 +104,7 @@ subplot(2,3,3); imagesc(x, y, abs(psi).^2 - abs(psi_analytic).^2); title('Differ
|
|||||||
subplot(2,3,[4 5 6]); plot(1:idx, energy, 'b-', 'LineWidth', 1.5); hold on;
|
subplot(2,3,[4 5 6]); plot(1:idx, energy, 'b-', 'LineWidth', 1.5); hold on;
|
||||||
yline(1, 'r--', 'Analytical E=1'); xlabel('Iteration'); ylabel('Energy');
|
yline(1, 'r--', 'Analytical E=1'); xlabel('Iteration'); ylabel('Energy');
|
||||||
title('Energy Convergence'); grid on; legend('Numerical', 'Analytical');
|
title('Energy Convergence'); grid on; legend('Numerical', 'Analytical');
|
||||||
|
|
||||||
|
%%
|
||||||
|
|
||||||
|
|
||||||
|
@ -11,9 +11,7 @@ folderPath = strcat(folderPath, run);
|
|||||||
cam = 5;
|
cam = 5;
|
||||||
|
|
||||||
angle = 0;
|
angle = 0;
|
||||||
% center = [1137, 2023];
|
|
||||||
center = [1141, 2049];
|
center = [1141, 2049];
|
||||||
% center = [1166, 2055];
|
|
||||||
span = [255, 255];
|
span = [255, 255];
|
||||||
fraction = [0.1, 0.1];
|
fraction = [0.1, 0.1];
|
||||||
|
|
||||||
@ -29,7 +27,7 @@ d = 1.22 * (lambda / NA);
|
|||||||
AbbeLimit = lambda / (2 * NA);
|
AbbeLimit = lambda / (2 * NA);
|
||||||
|
|
||||||
% Maximum resolvable spatial frequency for the coherent case
|
% Maximum resolvable spatial frequency for the coherent case
|
||||||
k_cutoff = (NA/lambda) * 1e-6; % (in units of 1/µm)
|
k_cutoff = 2 * pi * (NA/lambda) * 1e-6; % (in units of 1/µm)
|
||||||
|
|
||||||
removeFringes = false;
|
removeFringes = false;
|
||||||
|
|
||||||
@ -38,8 +36,8 @@ removeFringes = false;
|
|||||||
|
|
||||||
filePattern = fullfile(folderPath, '*.h5');
|
filePattern = fullfile(folderPath, '*.h5');
|
||||||
files = dir(filePattern);
|
files = dir(filePattern);
|
||||||
refimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
refimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
||||||
absimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
absimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
||||||
|
|
||||||
for k = 1 : length(files)
|
for k = 1 : length(files)
|
||||||
baseFileName = files(k).name;
|
baseFileName = files(k).name;
|
||||||
@ -103,14 +101,14 @@ ky = 2*pi*vy; % Wavenumber axis in Y
|
|||||||
|
|
||||||
% Create Circular Mask
|
% Create Circular Mask
|
||||||
n = 2^8; % size of mask
|
n = 2^8; % size of mask
|
||||||
mask = zeros(n);
|
fftmask = zeros(n);
|
||||||
I = 1:n;
|
I = 1:n;
|
||||||
x = I-n/2; % mask x-coordinates
|
x = I-n/2; % mask x-coordinates
|
||||||
y = n/2-I; % mask y-coordinates
|
y = n/2-I; % mask y-coordinates
|
||||||
[X,Y] = meshgrid(x,y); % create 2-D mask grid
|
[X,Y] = meshgrid(x,y); % create 2-D mask grid
|
||||||
R = 32; % aperture radius
|
R = 32; % aperture radius
|
||||||
A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
|
A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
|
||||||
mask(A) = 1; % set mask elements inside aperture to 1
|
fftmask(A) = 1; % set mask elements inside aperture to 1
|
||||||
|
|
||||||
% Calculate Power Spectrum and plot
|
% Calculate Power Spectrum and plot
|
||||||
figure(1)
|
figure(1)
|
||||||
@ -122,7 +120,7 @@ t = tiledlayout(2, 3, 'TileSpacing', 'compact', 'Padding', 'compact');
|
|||||||
|
|
||||||
for k = 1 : length(od_imgs)
|
for k = 1 : length(od_imgs)
|
||||||
mean_subtracted_od_imgs{k} = od_imgs{k} - mean_od_img;
|
mean_subtracted_od_imgs{k} = od_imgs{k} - mean_od_img;
|
||||||
masked_img = mean_subtracted_od_imgs{k} .* mask;
|
masked_img = mean_subtracted_od_imgs{k} .* fftmask;
|
||||||
density_fft{k} = (1/numel(masked_img)) * abs(fftshift(fft2(masked_img)));
|
density_fft{k} = (1/numel(masked_img)) * abs(fftshift(fft2(masked_img)));
|
||||||
density_noise_spectrum{k} = density_fft{k}.^2;
|
density_noise_spectrum{k} = density_fft{k}.^2;
|
||||||
|
|
||||||
@ -161,7 +159,7 @@ for k = 1 : length(od_imgs)
|
|||||||
|
|
||||||
% Tile 4: Masked Noise
|
% Tile 4: Masked Noise
|
||||||
nexttile(4);
|
nexttile(4);
|
||||||
imagesc(xvals, yvals, mean_subtracted_od_imgs{k} .* mask)
|
imagesc(xvals, yvals, mean_subtracted_od_imgs{k} .* fftmask)
|
||||||
xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
|
xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
|
ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
axis equal tight;
|
axis equal tight;
|
||||||
@ -216,27 +214,27 @@ colormap(flip(jet));
|
|||||||
title('Average Density Noise Spectrum', 'FontSize', 16);
|
title('Average Density Noise Spectrum', 'FontSize', 16);
|
||||||
grid on;
|
grid on;
|
||||||
|
|
||||||
centers = ginput;
|
centers = ginput;
|
||||||
radius = 3;
|
radius = 3;
|
||||||
% Plot where clicked.
|
% Plot where clicked
|
||||||
hVC = viscircles(centers, radius, 'Color', 'r', 'LineWidth', 2);
|
hVC = viscircles(centers, radius, 'Color', 'r', 'LineWidth', 2);
|
||||||
xc = centers(:,1);
|
xc = centers(:,1);
|
||||||
yc = centers(:,2);
|
yc = centers(:,2);
|
||||||
[yDim, xDim] = size(averagePowerSpectrum);
|
[yDim, xDim] = size(averagePowerSpectrum);
|
||||||
[xx,yy] = meshgrid(1:yDim,1:xDim);
|
[xx,yy] = meshgrid(1:yDim,1:xDim);
|
||||||
mask = false(xDim,yDim);
|
MaskToRemoveUnwantedPeaks = false(xDim,yDim);
|
||||||
for ii = 1:size(centers, 1)
|
for ii = 1:size(centers, 1)
|
||||||
mask = mask | hypot(xx - xc(ii), yy - yc(ii)) <= radius;
|
MaskToRemoveUnwantedPeaks = MaskToRemoveUnwantedPeaks | hypot(xx - xc(ii), yy - yc(ii)) <= radius;
|
||||||
end
|
end
|
||||||
mask = not(mask);
|
MaskToRemoveUnwantedPeaks = not(MaskToRemoveUnwantedPeaks);
|
||||||
|
|
||||||
% Ask user if the circle is acceptable.
|
% Ask user if the circle is acceptable.
|
||||||
message = sprintf('Is this acceptable?');
|
message = sprintf('Is this acceptable?');
|
||||||
button = questdlg(message, message, 'Accept', 'Reject and Quit', 'Accept');
|
button = questdlg(message, message, 'Accept', 'Reject and Quit', 'Accept');
|
||||||
if contains(button, 'Accept','IgnoreCase',true)
|
if contains(button, 'Accept','IgnoreCase',true)
|
||||||
image = mask.*averagePowerSpectrum;
|
image = MaskToRemoveUnwantedPeaks.*averagePowerSpectrum;
|
||||||
image(image==0) = NaN;
|
image(image==0) = NaN;
|
||||||
imagesc(kx*1E-6, ky*1E-6, mask.*abs(10*log10(averagePowerSpectrum)))
|
imagesc(kx*1E-6, ky*1E-6, MaskToRemoveUnwantedPeaks.*abs(10*log10(averagePowerSpectrum)))
|
||||||
hold on
|
hold on
|
||||||
xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
@ -386,101 +384,6 @@ xlim([1, xSize]);
|
|||||||
ylim([1, ySize]);
|
ylim([1, ySize]);
|
||||||
zlim([min(10 * log10(averagePowerSpectrum(:))), max(10 * log10(averagePowerSpectrum(:)))]); % Optional for Z-axis limits
|
zlim([min(10 * log10(averagePowerSpectrum(:))), max(10 * log10(averagePowerSpectrum(:)))]); % Optional for Z-axis limits
|
||||||
|
|
||||||
|
|
||||||
%% Decompose in Zernike Polynomial basis
|
|
||||||
|
|
||||||
N = size(averagePowerSpectrum, 1);
|
|
||||||
[X, Y] = meshgrid(linspace(-1, 1, N));
|
|
||||||
|
|
||||||
max_n = 6; % Adjust based on your needs
|
|
||||||
basis = [];
|
|
||||||
orders = [];
|
|
||||||
|
|
||||||
for n = 0:max_n
|
|
||||||
for m = -n:2:n
|
|
||||||
% Generate Zernike polynomial for (n, m)
|
|
||||||
Z = zernike_polynomial(n, m, X, Y);
|
|
||||||
% Flatten and store valid points
|
|
||||||
basis = [basis, Z(mask)];
|
|
||||||
orders = [orders; [n, m]];
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
data = 10 * log10(averagePowerSpectrum);
|
|
||||||
valid_data = data(mask);
|
|
||||||
|
|
||||||
% Solve Ax = b (A = basis matrix, b = data)
|
|
||||||
coeffs = basis \ valid_data(:);
|
|
||||||
|
|
||||||
% Reconstruct the surface using the coefficients
|
|
||||||
reconstructed = basis * coeffs;
|
|
||||||
reconstructed_surface = zeros(size(X));
|
|
||||||
reconstructed_surface(mask) = reconstructed;
|
|
||||||
|
|
||||||
figure(5)
|
|
||||||
clf
|
|
||||||
set(gcf,'Position',[100, 100, 1500, 700])
|
|
||||||
|
|
||||||
% Create tiled layout with 2 rows and 3 columns
|
|
||||||
t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact');
|
|
||||||
|
|
||||||
nexttile(1);
|
|
||||||
imagesc(data); title('Imaging Response Function', 'FontSize', 16);
|
|
||||||
axis square;
|
|
||||||
colorbar
|
|
||||||
colormap(jet);
|
|
||||||
grid on;
|
|
||||||
|
|
||||||
nexttile(2);
|
|
||||||
imagesc(reconstructed_surface); title('Reconstructed with Zernike', 'FontSize', 16);
|
|
||||||
axis square;
|
|
||||||
colorbar
|
|
||||||
colormap(jet);
|
|
||||||
grid on;
|
|
||||||
|
|
||||||
nexttile(3);
|
|
||||||
imagesc(data - reconstructed_surface); title('Residuals', 'FontSize', 16);
|
|
||||||
axis square;
|
|
||||||
colorbar
|
|
||||||
colormap(jet);
|
|
||||||
grid on;
|
|
||||||
|
|
||||||
disp('Zernike Coefficients:');
|
|
||||||
disp('---------------------');
|
|
||||||
for i = 1:length(coeffs)
|
|
||||||
fprintf('Order (n=%d, m=%d): Coefficient = %.4f\n', orders(i,1), orders(i,2), coeffs(i));
|
|
||||||
end
|
|
||||||
|
|
||||||
% Plot Zernike Coeffecients
|
|
||||||
|
|
||||||
% Find the index of the (n=0, m=0) term
|
|
||||||
idx_remove = find(orders(:,1) == 0 & orders(:,2) == 0);
|
|
||||||
|
|
||||||
% Remove the Z_0^0 term from coefficients and orders
|
|
||||||
coeffs_filtered = coeffs;
|
|
||||||
coeffs_filtered(idx_remove) = [];
|
|
||||||
orders_filtered = orders;
|
|
||||||
orders_filtered(idx_remove, :) = [];
|
|
||||||
|
|
||||||
% Generate labels for filtered modes (n, m)
|
|
||||||
labels_filtered = cell(length(coeffs_filtered), 1);
|
|
||||||
for i = 1:length(coeffs_filtered)
|
|
||||||
labels_filtered{i} = sprintf('(%d, %d)', orders_filtered(i,1), orders_filtered(i,2));
|
|
||||||
end
|
|
||||||
|
|
||||||
figure(6)
|
|
||||||
clf
|
|
||||||
set(gcf,'Position',[100, 100, 1500, 700])
|
|
||||||
bar(coeffs_filtered, 'FaceColor', [0.2, 0.6, 0.8]); % Customize bar color
|
|
||||||
ylim([-2.0, 2.0])
|
|
||||||
title('Zernike Coefficients', 'FontSize', 16);
|
|
||||||
xlabel('Zernike Mode (n, m)', 'FontSize', 16);
|
|
||||||
ylabel('Coefficient Value', 'FontSize', 16);
|
|
||||||
xticks(1:length(coeffs_filtered)); % Set x-ticks for all coefficients
|
|
||||||
xticklabels(labels_filtered); % Assign (n, m) labels
|
|
||||||
xtickangle(45); % Rotate labels for readability
|
|
||||||
grid on;
|
|
||||||
|
|
||||||
%% Helper Functions
|
%% Helper Functions
|
||||||
|
|
||||||
function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction)
|
function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction)
|
||||||
|
Loading…
Reference in New Issue
Block a user