Updated to plot convolution of aberrated psf with an object
This commit is contained in:
parent
cfc6b7ec9a
commit
2f8f8d02fe
@ -1,22 +1,37 @@
|
||||
%% Zernike Polynomials
|
||||
%% Compute and plot Zernike Polynomials
|
||||
|
||||
resolution = 100; % Resolution
|
||||
NumberOfGridPoints = 100; % Resolution
|
||||
|
||||
plotZernike(2, 0, resolution) % Defocus (Z2^0)
|
||||
plotZernike(2, 0, NumberOfGridPoints) % Defocus (Z2^0)
|
||||
%%
|
||||
plotZernike(2, 2, resolution) % Astigmatism (Z2^2)
|
||||
plotZernike(2, 2, NumberOfGridPoints) % Astigmatism (Z2^2)
|
||||
%%
|
||||
plotZernike(3, 1, resolution) % Coma (Z3^1, x-direction)
|
||||
plotZernike(3, 1, NumberOfGridPoints) % Coma (Z3^1, x-direction)
|
||||
%%
|
||||
plotZernike(3, -1, resolution) % Coma (Z3^-1, y-direction)
|
||||
plotZernike(3, -1, NumberOfGridPoints) % Coma (Z3^-1, y-direction)
|
||||
%%
|
||||
plotZernike(4, 0, resolution) % Spherical Aberration (Z4^0)
|
||||
plotZernike(4, 0, NumberOfGridPoints) % Spherical Aberration (Z4^0)
|
||||
|
||||
%% Aberrated PSF
|
||||
C = [0.0, 0.0, 0.0, 0.0, 0.0]; % Zernike coefficients
|
||||
pupil_radius = 0.5; % Pupil radius (normalized)
|
||||
%% Compute and plot Aberrated PSF, Image
|
||||
NumberOfGridPoints = 1024; % Number of grid points per side
|
||||
PupilRadius = 0.010; % Radius of pupil [m]
|
||||
Length = 0.5; % Total size of the grid [m]
|
||||
GridSpacing = Length / NumberOfGridPoints; % Grid spacing [m]
|
||||
Wavelength = 421e-9; % Optical wavelength [m]
|
||||
ImageDistance = 0.7; % Image distance [m]
|
||||
|
||||
plotAberratedPSF(C, pupil_radius, resolution);
|
||||
% Generate PSF
|
||||
C = [0.3, 0.2, 0.1, -0.1, 0.4]; % Zernike coefficients
|
||||
[X, Y, PSF] = generateAberratedPSF(C, PupilRadius, NumberOfGridPoints, GridSpacing);
|
||||
plotAberratedPSF(X, Y, PSF);
|
||||
|
||||
% Generate object
|
||||
Object = generateObject(Wavelength, ImageDistance, NumberOfGridPoints, GridSpacing);
|
||||
|
||||
% Convolve the object with the PSF to simulate imaging
|
||||
Image = convolveObjectWithPSF(abs(Object).^2, PSF, 1);
|
||||
|
||||
%% Functions
|
||||
|
||||
function Z = computeZernikePolynomials(n, m, r, theta)
|
||||
% Zernike polynomial function for radial and angular coordinates (r, theta)
|
||||
@ -50,13 +65,13 @@ function Z = computeZernikePolynomials(n, m, r, theta)
|
||||
end
|
||||
end
|
||||
|
||||
function plotZernike(n, m, resolution)
|
||||
function plotZernike(n, m, NumberOfGridPoints)
|
||||
% n: radial order
|
||||
% m: azimuthal frequency
|
||||
% resolution: number of points for plotting
|
||||
% NumberOfGridPoints: number of points for plotting
|
||||
|
||||
% Create a grid of (r, theta) coordinates
|
||||
[theta, r] = meshgrid(linspace(0, 2*pi, resolution), linspace(0, 1, resolution));
|
||||
[theta, r] = meshgrid(linspace(0, 2*pi, NumberOfGridPoints), linspace(0, 1, NumberOfGridPoints));
|
||||
|
||||
% Calculate the Zernike polynomial for the given (n, m)
|
||||
Z = computeZernikePolynomials(n, m, r, theta);
|
||||
@ -79,16 +94,19 @@ function plotZernike(n, m, resolution)
|
||||
shading interp;
|
||||
end
|
||||
|
||||
function [theta, r, PSF] = modelPSF(C, pupil_radius, resolution)
|
||||
function [X, Y, PSF] = generateAberratedPSF(C, PupilRadius, NumberOfGridPoints, GridSpacing)
|
||||
% C is the vector of Zernike coefficients [C_defocus, C_astigmatism, C_coma, C_spherical, ...]
|
||||
% resolution is the number of points for the grid (NxN grid)
|
||||
% pupil_radius is the radius of the pupil aperture
|
||||
% NumberOfGridPoints is the number of points for the grid (NxN grid)
|
||||
% PupilRadius is the radius of the pupil aperture
|
||||
|
||||
% Create a grid of (r, theta) coordinates
|
||||
[theta, r] = meshgrid(linspace(0, 2*pi, resolution), linspace(0, 1, resolution));
|
||||
% Create a grid of (x, y) of pupil-plane coordinates in Cartesian space
|
||||
[X, Y] = meshgrid((-NumberOfGridPoints/2 : NumberOfGridPoints/2-1) * GridSpacing);
|
||||
|
||||
% Convert (x, y) to polar coordinates (r, theta)
|
||||
[theta, r] = cart2pol(X, Y);
|
||||
|
||||
% Pupil function: 1 inside the pupil radius, 0 outside
|
||||
P = double(r <= pupil_radius); % 2D mask
|
||||
P = generateCircularMask(X, Y, 2 * PupilRadius); % 2D mask
|
||||
|
||||
% Wavefront error from Zernike polynomials
|
||||
W = C(1) * computeZernikePolynomials(2, 0, r, theta) + ... % Defocus (Z2^0)
|
||||
@ -98,26 +116,22 @@ function [theta, r, PSF] = modelPSF(C, pupil_radius, resolution)
|
||||
C(5) * computeZernikePolynomials(4, 0, r, theta); % Spherical Aberration (Z4^0)
|
||||
|
||||
% Fourier transform of the pupil function with aberrations
|
||||
PSF = abs(fftshift(fft2(P .* exp(1i * W)))).^2; % Intensity distribution
|
||||
PSF = abs(calculateExtendedFFT2(P .* exp(-1i * 2*pi * W), GridSpacing)).^2;
|
||||
end
|
||||
|
||||
function plotAberratedPSF(C, pupil_radius, resolution)
|
||||
function plotAberratedPSF(X, Y, PSF)
|
||||
% C: Zernike coefficients [C_defocus, C_astigmatism, C_coma_x, C_coma_y, C_spherical]
|
||||
% pupil_radius: Radius of the pupil aperture
|
||||
% resolution: Number of points for plotting
|
||||
|
||||
% PupilRadius: Radius of the pupil aperture
|
||||
% NumberOfGridPoints: Number of points for plotting
|
||||
% Generate PSF using the updated modelPSF function
|
||||
[theta, r, PSF] = modelPSF(C, pupil_radius, resolution);
|
||||
|
||||
% Convert polar to Cartesian coordinates for plotting
|
||||
[X, Y] = pol2cart(theta, r);
|
||||
|
||||
PSF = PSF / max(PSF(:));
|
||||
figure(1)
|
||||
clf
|
||||
set(gcf,'Position',[50 50 950 750])
|
||||
surf(X, Y, PSF, 'EdgeColor', 'none');
|
||||
xlim([-0.05 0.05])
|
||||
ylim([-0.05 0.05])
|
||||
view(2); % 2D view
|
||||
axis equal tight;
|
||||
shading interp;
|
||||
colorbar;
|
||||
colormap jet;
|
||||
@ -125,3 +139,36 @@ function plotAberratedPSF(C, pupil_radius, resolution)
|
||||
xlabel('X', 'FontSize', 16);
|
||||
ylabel('Y', 'FontSize', 16);
|
||||
end
|
||||
|
||||
function C = convolveObjectWithPSF(A, B, GridSpacing)
|
||||
N = size(A, 1);
|
||||
C = calculateExtendedInverseFFT2(calculateExtendedFFT2(A, GridSpacing) .* calculateExtendedFFT2(B, GridSpacing), 1/(N*GridSpacing));
|
||||
end
|
||||
|
||||
function z = generateCircularMask(x, y, D)
|
||||
r = sqrt(x.^2+y.^2);
|
||||
z = double(r<D/2);
|
||||
z(r==D/2) = 0.5;
|
||||
end
|
||||
|
||||
function G = calculateExtendedFFT2(g, Delta)
|
||||
G = fftshift(fft2(fftshift(g))) * Delta^2;
|
||||
end
|
||||
|
||||
function g = calculateExtendedInverseFFT2(G, Delta_f)
|
||||
N = size(G, 1);
|
||||
g = ifftshift(ifft2(ifftshift(G))) * (N * Delta_f)^2;
|
||||
end
|
||||
|
||||
function ret = generateRectangle(x, D)
|
||||
if nargin == 1, D = 1; end
|
||||
x = abs(x);
|
||||
ret = double(x<D/2);
|
||||
ret(x == D/2) = 0.5;
|
||||
end
|
||||
|
||||
function obj = generateObject(Wavelength, ImageDistance, NumberOfGridPoints, GridSpacing)
|
||||
% Image-plane coordinates
|
||||
[U, V] = meshgrid((-NumberOfGridPoints/2 : NumberOfGridPoints/2-1) * ((Wavelength * ImageDistance) / (NumberOfGridPoints * GridSpacing)));
|
||||
obj = (generateRectangle((U-1.4e-4)/5e-5) + generateRectangle(U/5e-5)+ generateRectangle((U+1.4e-4)/5e-5)) .* generateRectangle(V/2e-4);
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user