Corrected code to more accurately depict the distribution of the order parameter
This commit is contained in:
parent
4a4ddf0e9c
commit
24392f2e35
@ -1,174 +1,166 @@
|
||||
%% Evolve to skewed to single gaussian with lower mean
|
||||
%% Evolve across a second-order-like transition
|
||||
clear; clc;
|
||||
|
||||
N_params = 50;
|
||||
N_reps = 500;
|
||||
N_reps = 50;
|
||||
alpha_values = linspace(0, 45, N_params);
|
||||
all_data = cell(1, N_params);
|
||||
|
||||
% Transition control
|
||||
alpha_start = 5; % where transition begins
|
||||
alpha_end = 40; % where transition ends
|
||||
alpha_start = 5; % where sigma starts changing
|
||||
alpha_widen_end = 15; % when sigma finishes first change
|
||||
alpha_shift_start = 15; % when mean starts shifting
|
||||
alpha_end = 40; % when mean finishes shifting and sigma narrows
|
||||
|
||||
mu_start = 1.2; % high initial mean
|
||||
mu_end = 0.8; % low final mean
|
||||
mu_start = 1.2; % high initial mean
|
||||
mu_end = 0.2; % low final mean
|
||||
|
||||
sigma_start = 0.2; % wide initial std
|
||||
sigma_end = 0.07; % narrow final std
|
||||
sigma_start = 0.25; % wide std at start
|
||||
sigma_mid = 0.15; % mid-range std in middle
|
||||
sigma_end = 0.07; % narrow std at end
|
||||
|
||||
max_skew = 5; % peak skew strength
|
||||
max_skew = 5; % peak skew strength
|
||||
|
||||
% Loop through alpha
|
||||
for i = 1:N_params
|
||||
alpha = alpha_values(i);
|
||||
alpha = alpha_values(i);
|
||||
|
||||
% Normalized transition variable t ∈ [0, 1]
|
||||
t = min(max((alpha - alpha_start) / (alpha_end - alpha_start), 0), 1);
|
||||
|
||||
% Use cosine-based smooth interpolation
|
||||
smooth_t = (1 - cos(pi * t)) / 2; % ease-in-out
|
||||
|
||||
% Mean and sigma interpolation (smoothly decrease)
|
||||
mu = mu_start * (1 - smooth_t) + mu_end * smooth_t;
|
||||
sigma = sigma_start * (1 - smooth_t) + sigma_end * smooth_t;
|
||||
|
||||
% Skewness: sinusoidal profile, max at middle
|
||||
skew_strength = max_skew * sin(t * pi);
|
||||
|
||||
% Generate data
|
||||
if abs(skew_strength) < 1e-2 % near-zero skew, use normal
|
||||
data = normrnd(mu, sigma, [N_reps, 1]);
|
||||
% === Sigma evolution (variance large -> small) ===
|
||||
if alpha < alpha_start
|
||||
sigma = sigma_start; % wide at start
|
||||
elseif alpha < alpha_widen_end
|
||||
% Smooth transition from wide to mid
|
||||
t_sigma = (alpha - alpha_start) / (alpha_widen_end - alpha_start);
|
||||
sigma = sigma_start * (1 - t_sigma) + sigma_mid * t_sigma;
|
||||
elseif alpha < alpha_end
|
||||
% Smooth transition from mid to narrow
|
||||
t_sigma = (alpha - alpha_widen_end) / (alpha_end - alpha_widen_end);
|
||||
sigma = sigma_mid * (1 - t_sigma) + sigma_end * t_sigma;
|
||||
else
|
||||
data = skewnormrnd(mu, sigma, skew_strength, N_reps);
|
||||
sigma = sigma_end; % narrow at end
|
||||
end
|
||||
|
||||
all_data{i} = data;
|
||||
% === Mean evolution ===
|
||||
if alpha < alpha_shift_start
|
||||
mu = mu_start; % fixed at high initially
|
||||
elseif alpha <= alpha_end
|
||||
% Smooth cosine shift
|
||||
t_mu = (alpha - alpha_shift_start) / (alpha_end - alpha_shift_start);
|
||||
smooth_t_mu = (1 - cos(pi * t_mu)) / 2;
|
||||
mu = mu_start * (1 - smooth_t_mu) + mu_end * smooth_t_mu;
|
||||
else
|
||||
mu = mu_end;
|
||||
end
|
||||
|
||||
% === Skew evolution ===
|
||||
if alpha < alpha_end
|
||||
t_skew = (alpha - alpha_start) / (alpha_end - alpha_start);
|
||||
skew_strength = max_skew * (1 - t_skew); % fade out
|
||||
else
|
||||
skew_strength = 0;
|
||||
end
|
||||
|
||||
% Generate data
|
||||
if abs(skew_strength) < 1e-2
|
||||
data = normrnd(mu, sigma, [N_reps, 1]);
|
||||
else
|
||||
data = skewnormrnd(mu, sigma, skew_strength, N_reps);
|
||||
end
|
||||
|
||||
all_data{i} = data;
|
||||
|
||||
% Cumulants
|
||||
kappa = computeCumulants(data, 6);
|
||||
mean_vals(i) = kappa(1);
|
||||
var_vals(i) = kappa(2);
|
||||
skew_vals(i) = kappa(3);
|
||||
kurt_vals(i) = kappa(4);
|
||||
kappa4_vals(i) = kappa(4);
|
||||
kappa5_vals(i) = kappa(5);
|
||||
kappa6_vals(i) = kappa(6);
|
||||
end
|
||||
|
||||
%% Evolve to bimodal
|
||||
%% Evolve across a first-order-like transition
|
||||
% First-order-like distribution evolution with significant bimodality
|
||||
clear; clc;
|
||||
|
||||
N_params = 50;
|
||||
N_reps = 500;
|
||||
alpha_values = linspace(0, 45, N_params);
|
||||
N_params = 50;
|
||||
N_reps = 50;
|
||||
alpha_values = linspace(0, 45, N_params);
|
||||
|
||||
all_data = cell(1, N_params);
|
||||
all_data = cell(1, N_params);
|
||||
|
||||
bimodal_start = 20; % start earlier
|
||||
transition_width = 5; % wider window for smoothness
|
||||
% Define transition regions
|
||||
skewed_start = 10;
|
||||
bimodal_start = 20;
|
||||
bimodal_end = 35;
|
||||
final_narrow_start = 40;
|
||||
|
||||
% Peak positions and widths
|
||||
mu_high = 1.2; % Initial metastable peak
|
||||
mu_low = 0.2; % Final stable peak
|
||||
mu_new_peak = 0.8; % New peak appears slightly lower
|
||||
sigma_initial = 0.08;
|
||||
|
||||
for i = 1:N_params
|
||||
alpha = alpha_values(i);
|
||||
|
||||
if alpha < (bimodal_start - transition_width)
|
||||
% Pure skewed unimodal, smaller max skewness for subtlety
|
||||
skew_strength = 3 * (alpha / bimodal_start);
|
||||
data = skewnormrnd(1, 0.1, skew_strength, N_reps);
|
||||
|
||||
elseif alpha <= (bimodal_start + transition_width)
|
||||
% Smooth transition window
|
||||
t = (alpha - (bimodal_start - transition_width)) / (2 * transition_width);
|
||||
|
||||
% Weights transition 1 -> 0.7
|
||||
w1 = 1 - 0.3 * t;
|
||||
w2 = 1 - w1;
|
||||
|
||||
% Peak separation smaller (max delta = 0.3)
|
||||
delta_max = 0.3;
|
||||
delta = delta_max * t;
|
||||
|
||||
mu1 = 1 - delta;
|
||||
mu2 = 1 + delta;
|
||||
|
||||
sigma1 = 0.1;
|
||||
sigma2 = 0.1;
|
||||
|
||||
N1 = round(N_reps * w1);
|
||||
N2 = N_reps - N1;
|
||||
|
||||
mode1_samples = normrnd(mu1, sigma1, [N1, 1]);
|
||||
mode2_samples = normrnd(mu2, sigma2, [N2, 1]);
|
||||
|
||||
data = [mode1_samples; mode2_samples];
|
||||
data = data(randperm(length(data)));
|
||||
|
||||
alpha = alpha_values(i);
|
||||
|
||||
if alpha < skewed_start
|
||||
% Region I: Narrow unimodal at high mean
|
||||
data = normrnd(mu_high, sigma_initial, [N_reps, 1]);
|
||||
|
||||
elseif alpha < bimodal_start
|
||||
% Region II: Slightly skewed
|
||||
t_skew = (alpha - skewed_start) / (bimodal_start - skewed_start);
|
||||
mu = mu_high - 0.15 * t_skew;
|
||||
sigma = sigma_initial + 0.02 * t_skew;
|
||||
skew_strength = 3 * t_skew;
|
||||
data = skewnormrnd(mu, sigma, skew_strength, N_reps);
|
||||
|
||||
elseif alpha < bimodal_end
|
||||
% Region III: Bimodal with fixed or slowly drifting peak positions
|
||||
t = (alpha - bimodal_start) / (bimodal_end - bimodal_start); % t in [0, 1]
|
||||
|
||||
% Increased separation between peaks
|
||||
drift_amount = 0.3; % larger = more drift toward final mean
|
||||
sep_offset = 0.25; % larger = more initial separation between peaks
|
||||
|
||||
% Peaks start separated and move toward mu_low
|
||||
mu1 = mu_high * (1 - t)^drift_amount + mu_low * (1 - (1 - t)^drift_amount); % Right peak drifts to left
|
||||
mu2 = (mu_new_peak - sep_offset) * (1 - t)^drift_amount + mu_low * (1 - (1 - t)^drift_amount); % Left peak moves slightly
|
||||
|
||||
sigma1 = sigma_initial + 0.02 * (1 - abs(0.5 - t) * 2);
|
||||
sigma2 = sigma1;
|
||||
|
||||
% Weight shift: right peak dies out, left peak grows
|
||||
w2 = 0.5 + 0.5 * t; % left peak grows: 0.5 → 1
|
||||
w1 = 1 - w2; % right peak fades: 0.5 → 0
|
||||
|
||||
N1 = round(N_reps * w1);
|
||||
N2 = N_reps - N1;
|
||||
|
||||
mode1 = normrnd(mu1, sigma1, [N1, 1]);
|
||||
mode2 = normrnd(mu2, sigma2, [N2, 1]);
|
||||
|
||||
data = [mode1; mode2];
|
||||
data = data(randperm(length(data)));
|
||||
|
||||
else
|
||||
% After transition: bimodal, but not strongly balanced
|
||||
w1 = 0.5;
|
||||
w2 = 0.5;
|
||||
|
||||
mu1 = 1 - 0.3;
|
||||
mu2 = 1 + 0.3;
|
||||
|
||||
sigma1 = 0.1;
|
||||
sigma2 = 0.1;
|
||||
|
||||
N1 = round(N_reps * w1);
|
||||
N2 = N_reps - N1;
|
||||
|
||||
mode1_samples = normrnd(mu1, sigma1, [N1, 1]);
|
||||
mode2_samples = normrnd(mu2, sigma2, [N2, 1]);
|
||||
|
||||
data = [mode1_samples; mode2_samples];
|
||||
data = data(randperm(length(data)));
|
||||
% Region IV: Final stable low-mean Gaussian
|
||||
data = normrnd(mu_low, sigma_initial, [N_reps, 1]);
|
||||
end
|
||||
|
||||
all_data{i} = data;
|
||||
kappa = computeCumulants(data,6);
|
||||
mean_vals(i) = kappa(1);
|
||||
var_vals(i) = kappa(2);
|
||||
skew_vals(i) = kappa(3);
|
||||
kurt_vals(i) = kappa(4);
|
||||
kappa5_vals(i) = kappa(5);
|
||||
kappa6_vals(i) = kappa(6);
|
||||
end
|
||||
|
||||
%% Animate evolving distribution and cumulant value
|
||||
figure(1); clf;
|
||||
set(gcf, 'Color', 'w', 'Position',[100 100 1300 750])
|
||||
|
||||
for i = 1:N_params
|
||||
clf;
|
||||
|
||||
% PDF
|
||||
subplot(1,2,1); cla; hold on;
|
||||
data = all_data{i};
|
||||
|
||||
% Plot histogram with normalized PDF
|
||||
histogram(data, 'Normalization', 'pdf', 'BinWidth', 0.03, ...
|
||||
'FaceColor', [0.3 0.5 0.8], 'EdgeColor', 'k', 'FaceAlpha', 0.6);
|
||||
|
||||
title(sprintf('Histogram at $\\alpha = %.1f^\\circ$', alpha_values(i)), ...
|
||||
'Interpreter', 'latex', 'FontSize', 16);
|
||||
xlabel('$\mathrm{max}[g^{(2)}]$', 'Interpreter', 'latex', 'FontSize', 14);
|
||||
ylabel('PDF', 'FontSize', 14);
|
||||
set(gca, 'FontSize', 12); grid on;
|
||||
xlim([0.5, 1.8]);
|
||||
|
||||
|
||||
% Cumulant evolution (e.g., Variance)
|
||||
subplot(1,2,2); hold on;
|
||||
plot(alpha_values(1:i), var_vals(1:i), 'bo-', 'LineWidth', 2);
|
||||
title('Cumulant Tracking', 'Interpreter', 'latex', 'FontSize', 16);
|
||||
xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', 'FontSize', 14);
|
||||
ylabel('$\kappa_2$', 'Interpreter', 'latex', 'FontSize', 14);
|
||||
xlim([0, 45]); grid on;
|
||||
set(gca, 'FontSize', 12);
|
||||
|
||||
pause(0.3);
|
||||
% Store data and compute cumulants
|
||||
all_data{i} = data;
|
||||
kappa = computeCumulants(data, 6);
|
||||
mean_vals(i) = kappa(1);
|
||||
var_vals(i) = kappa(2);
|
||||
skew_vals(i) = kappa(3);
|
||||
kappa4_vals(i) = kappa(4);
|
||||
kappa5_vals(i) = kappa(5);
|
||||
kappa6_vals(i) = kappa(6);
|
||||
end
|
||||
|
||||
%% === Compute 2D PDF heatmap: f(x, alpha) ===
|
||||
x_grid = linspace(0.5, 1.8, 200); % max[g²] values on y-axis
|
||||
x_grid = linspace(0.0, 1.8, 200); % max[g²] values on y-axis
|
||||
pdf_matrix = zeros(numel(x_grid), N_params); % Now: rows = y, columns = alpha
|
||||
|
||||
for i = 1:N_params
|
||||
@ -194,9 +186,45 @@ c = colorbar;
|
||||
ylabel(c, 'PDF', 'FontSize', 14, 'Interpreter', 'latex');
|
||||
set(gca, 'FontSize', 14);
|
||||
|
||||
%% Animate evolving distribution and cumulant value
|
||||
figure(1); clf;
|
||||
set(gcf, 'Color', 'w', 'Position',[100 100 1300 750])
|
||||
|
||||
for i = 1:N_params
|
||||
clf;
|
||||
|
||||
% PDF
|
||||
subplot(1,2,1); cla; hold on;
|
||||
data = all_data{i};
|
||||
|
||||
% Plot histogram with normalized PDF
|
||||
histogram(data, 'Normalization', 'pdf', 'BinWidth', 0.03, ...
|
||||
'FaceColor', [0.3 0.5 0.8], 'EdgeColor', 'k', 'FaceAlpha', 0.6);
|
||||
|
||||
title(sprintf('Histogram at $\\alpha = %.1f^\\circ$', alpha_values(i)), ...
|
||||
'Interpreter', 'latex', 'FontSize', 16);
|
||||
xlabel('$\mathrm{max}[g^{(2)}]$', 'Interpreter', 'latex', 'FontSize', 14);
|
||||
ylabel('PDF', 'FontSize', 14);
|
||||
set(gca, 'FontSize', 12); grid on;
|
||||
xlim([0.0, 2.0]);
|
||||
|
||||
|
||||
% Cumulant evolution
|
||||
subplot(1,2,2); hold on;
|
||||
plot(alpha_values(1:i), kappa4_vals(1:i), 'bo-', 'LineWidth', 2);
|
||||
title('Binder Cumulant Tracking', 'Interpreter', 'latex', 'FontSize', 16);
|
||||
xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', 'FontSize', 14);
|
||||
ylabel('$\kappa_4$', 'Interpreter', 'latex', 'FontSize', 14);
|
||||
xlim([0, 45]); grid on;
|
||||
set(gca, 'FontSize', 12);
|
||||
|
||||
pause(0.3);
|
||||
end
|
||||
|
||||
%% === Plotting ===
|
||||
figure(1)
|
||||
set(gcf, 'Color', 'w', 'Position', [100 100 950 750])
|
||||
t = tiledlayout(2, 2, 'TileSpacing', 'compact', 'Padding', 'compact');
|
||||
|
||||
scan_vals = alpha_values; % your parameter sweep values
|
||||
|
||||
@ -208,59 +236,41 @@ title_fontsize = 16;
|
||||
% 1. Mean with error bars (if you have error data, else just plot)
|
||||
% If no error, replace errorbar with plot or omit error data
|
||||
% For now, no error bars assumed
|
||||
subplot(3,2,1);
|
||||
nexttile;
|
||||
plot(scan_vals, mean_vals, 'o-', 'LineWidth', 1.5, 'MarkerSize', 6);
|
||||
title('Mean of Distribution', 'FontSize', title_fontsize, 'Interpreter', 'latex');
|
||||
title('Mean', 'FontSize', title_fontsize, 'Interpreter', 'latex');
|
||||
xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', 'FontSize', label_fontsize);
|
||||
ylabel('$\kappa_1$', 'Interpreter', 'latex', 'FontSize', label_fontsize);
|
||||
set(gca, 'FontSize', axis_fontsize);
|
||||
grid on;
|
||||
|
||||
% 2. Variance
|
||||
subplot(3,2,2);
|
||||
nexttile;
|
||||
plot(scan_vals, var_vals, 's-', 'LineWidth', 1.5, 'MarkerSize', 6);
|
||||
title('Variance of Distribution', 'FontSize', title_fontsize, 'Interpreter', 'latex');
|
||||
title('Variance', 'FontSize', title_fontsize, 'Interpreter', 'latex');
|
||||
xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', 'FontSize', label_fontsize);
|
||||
ylabel('$\kappa_2$', 'Interpreter', 'latex', 'FontSize', label_fontsize);
|
||||
set(gca, 'FontSize', axis_fontsize);
|
||||
grid on;
|
||||
|
||||
% 3. Skewness
|
||||
subplot(3,2,3);
|
||||
nexttile;
|
||||
plot(scan_vals, skew_vals, 'd-', 'LineWidth', 1.5, 'MarkerSize', 6);
|
||||
title('Skewness of Distribution', 'FontSize', title_fontsize, 'Interpreter', 'latex');
|
||||
title('Skewness', 'FontSize', title_fontsize, 'Interpreter', 'latex');
|
||||
xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', 'FontSize', label_fontsize);
|
||||
ylabel('$\kappa_3$', 'Interpreter', 'latex', 'FontSize', label_fontsize);
|
||||
set(gca, 'FontSize', axis_fontsize);
|
||||
grid on;
|
||||
|
||||
% 4. Kurtosis
|
||||
subplot(3,2,4);
|
||||
plot(scan_vals, kurt_vals, '^-', 'LineWidth', 1.5, 'MarkerSize', 6);
|
||||
title('Fourth-order Cumulant of Distribution', 'FontSize', title_fontsize, 'Interpreter', 'latex');
|
||||
% 4. Binder Cumulant
|
||||
nexttile;
|
||||
plot(scan_vals, kappa4_vals, '^-', 'LineWidth', 1.5, 'MarkerSize', 6);
|
||||
title('Binder Cumulant', 'FontSize', title_fontsize, 'Interpreter', 'latex');
|
||||
xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', 'FontSize', label_fontsize);
|
||||
ylabel('$\kappa_4$', 'Interpreter', 'latex', 'FontSize', label_fontsize);
|
||||
set(gca, 'FontSize', axis_fontsize);
|
||||
grid on;
|
||||
|
||||
% 5. 5th-order cumulant
|
||||
subplot(3,2,5);
|
||||
plot(scan_vals, kappa5_vals, 'v-', 'LineWidth', 1.5, 'MarkerSize', 6);
|
||||
title('Fifth-order Cumulant of Distribution', 'FontSize', title_fontsize, 'Interpreter', 'latex');
|
||||
xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', 'FontSize', label_fontsize);
|
||||
ylabel('$\kappa_5$', 'Interpreter', 'latex', 'FontSize', label_fontsize);
|
||||
set(gca, 'FontSize', axis_fontsize);
|
||||
grid on;
|
||||
|
||||
% 6. 6th-order cumulant
|
||||
subplot(3,2,6);
|
||||
plot(scan_vals, kappa6_vals, '>-', 'LineWidth', 1.5, 'MarkerSize', 6);
|
||||
title('Sixth-order Cumulant of Distribution', 'FontSize', title_fontsize, 'Interpreter', 'latex');
|
||||
xlabel('$\alpha$ (degrees)', 'Interpreter', 'latex', 'FontSize', label_fontsize);
|
||||
ylabel('$\kappa_6$', 'Interpreter', 'latex', 'FontSize', label_fontsize);
|
||||
set(gca, 'FontSize', axis_fontsize);
|
||||
grid on;
|
||||
|
||||
% Super title (you can customize the string)
|
||||
sgtitle('Cumulants of a simulated evolving distribution', ...
|
||||
'FontWeight', 'bold', 'FontSize', 18, 'Interpreter', 'latex');
|
||||
|
Loading…
Reference in New Issue
Block a user