diff --git a/Quasi2DBogoliubovSpectrum.m b/Quasi2DBogoliubovSpectrum.m new file mode 100644 index 0000000..2d96620 --- /dev/null +++ b/Quasi2DBogoliubovSpectrum.m @@ -0,0 +1,75 @@ +%% Physical constants +PlanckConstant = 6.62607015E-34; +PlanckConstantReduced = 6.62607015E-34/(2*pi); +FineStructureConstant = 7.2973525698E-3; +ElectronMass = 9.10938291E-31; +GravitationalConstant = 6.67384E-11; +ProtonMass = 1.672621777E-27; +AtomicMassUnit = 1.660539066E-27; +BohrRadius = 5.2917721067E-11; +BohrMagneton = 9.274009994E-24; +BoltzmannConstant = 1.38064852E-23; +StandardGravityAcceleration = 9.80665; +SpeedOfLight = 299792458; +StefanBoltzmannConstant = 5.670373E-8; +ElectronCharge = 1.602176634E-19; +VacuumPermeability = 1.25663706212E-6; +DielectricConstant = 8.8541878128E-12; +ElectronGyromagneticFactor = -2.00231930436153; +AvogadroConstant = 6.02214076E23; +ZeroKelvin = 273.15; +GravitationalAcceleration = 9.80553; +VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); +HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); +AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 + +% Dy specific constants +Dy164Mass = 163.929174751*1.660539066E-27; +Dy164IsotopicAbundance = 0.2826; +DyMagneticMoment = 9.93*9.274009994E-24; + +%% Dispersion relation of the quasiparticle excitations +AtomNumber = 1E5; +wz = 2*pi*72.4; +lz = sqrt(PlanckConstantReduced/(Dy164Mass*wz)); % Defining a harmonic oscillator length +as = 102.4*BohrRadius; % Scattering length +Trapsize = 7.6; +alpha = 0; +phi = 0; +MeanWidth = 2.8215042184E3*lz; +k = linspace(0, 1e7, 1000); + + +AtomNumberDensity = AtomNumber / (Trapsize * lz)^2; +add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length +eps_dd = add/as; +gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength + +[fk,Fka,Ukk] = computePotentialInMomentumSpace(k, lz, alpha, phi, gs, eps_dd); + +% == Quantum Fluctuations term == % +gQF = ((256 * PlanckConstantReduced^2) / (15*Dy164Mass*MeanWidth^3)) * as^(5/2) * (1 + ((3/2) * eps_dd^2)); + + +DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); +EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); + +figure(1) +set(gcf,'Position',[100 100 950 750]) +% xvals = (k .* lz/sqrt(2)); +xvals = (k .* add); +yvals = EpsilonK ./ (PlanckConstantReduced * wz); +plot(xvals, yvals,LineWidth=2.0) +% xlim([3.45, 3.65]) +% ylim([0, 0.001]) +title(horzcat(['$a_s = ',num2str(1/eps_dd),'a_{dd}, '], ['na_{dd}^2 = ',num2str(AtomNumberDensity * add^2),'$']),'fontsize',16,'interpreter','latex') +xlabel('$ka_{dd}$','fontsize',16,'interpreter','latex') +ylabel('$\epsilon(k)/\hbar \omega_z$','fontsize',16,'interpreter','latex') +grid on + +%% +function [fk,Fka,Ukk] = computePotentialInMomentumSpace(k, lz, alpha, phi, gs, eps_dd) + fk = (3 * sqrt(pi)) * (k .* lz/sqrt(2)) .* exp((k .* lz/sqrt(2)).^2) .* erfc((k .* lz/sqrt(2))) ; + Fka = (fk .* sin(deg2rad(phi))^2 - 1) + (cos(deg2rad(alpha))^2 .* (3 - (fk .* (sin(deg2rad(phi))^2 + 1)))); + Ukk = (gs/ (sqrt(2 * pi) * lz)) .* (1 + (eps_dd .* Fka)); +end \ No newline at end of file