Added progress bar functionality.
This commit is contained in:
parent
e67f82b564
commit
1e94302160
68
Dipolar Gas Simulator/+Helper/ProgressBar.m
Normal file
68
Dipolar Gas Simulator/+Helper/ProgressBar.m
Normal file
@ -0,0 +1,68 @@
|
||||
classdef ProgressBar < handle
|
||||
% class for command-line progress-bar notification.
|
||||
properties
|
||||
strPercentageLength;
|
||||
strDotsMaximum;
|
||||
end
|
||||
methods
|
||||
%--- constructor
|
||||
function this = ProgressBar()
|
||||
%% Initialization
|
||||
% Vizualization parameters
|
||||
this.strPercentageLength = 10; % Length of percentage string (must be >5)
|
||||
this.strDotsMaximum = 10; % The total number of dots in a progress bar
|
||||
end
|
||||
%--- print method
|
||||
function run(this, msg)
|
||||
% This function creates a text progress bar. It should be called with a
|
||||
% STRING argument to initialize and terminate. Otherwise the number corresponding
|
||||
% to progress in % should be supplied.
|
||||
% INPUTS: C Either: Text string to initialize or terminate
|
||||
% Percentage number to show progress
|
||||
% OUTPUTS: N/A
|
||||
% Example: Please refer to demo_textprogressbar.m
|
||||
% Author: Paul Proteus (e-mail: proteus.paul (at) yahoo (dot) com)
|
||||
% Version: 1.0
|
||||
% Changes tracker: 29.06.2010 - First version
|
||||
% Inspired by: http://blogs.mathworks.com/loren/2007/08/01/monitoring-progress-of-a-calculation/
|
||||
%% Main
|
||||
persistent strCR; % Carriage return pesistent variable
|
||||
if isempty(strCR) && ~ischar(msg)
|
||||
% Progress bar must be initialized with a string
|
||||
error('The text progress must be initialized with a string!');
|
||||
elseif isempty(strCR) && ischar(msg)
|
||||
% Progress bar - initialization
|
||||
fprintf('%s',msg);
|
||||
strCR = -1;
|
||||
elseif ~isempty(strCR) && ischar(msg)
|
||||
% Progress bar - termination
|
||||
strCR = [];
|
||||
fprintf([msg '\n']);
|
||||
elseif isnumeric(msg)
|
||||
% Progress bar - normal progress
|
||||
msg = floor(msg);
|
||||
percentageOut = [num2str(msg) '%%'];
|
||||
percentageOut = [percentageOut repmat(' ',1,this.strPercentageLength-length(percentageOut)-1)];
|
||||
nDots = floor(msg/100*this.strDotsMaximum);
|
||||
dotOut = ['[' repmat('.',1,nDots) repmat(' ',1,this.strDotsMaximum-nDots) ']'];
|
||||
strOut = [percentageOut dotOut];
|
||||
|
||||
% Print it on the screen
|
||||
if strCR == -1
|
||||
% Don't do carriage return during first run
|
||||
fprintf(strOut);
|
||||
else
|
||||
% Do it during all the other runs
|
||||
fprintf([strCR strOut]);
|
||||
end
|
||||
|
||||
% Update carriage return
|
||||
strCR = repmat('\b',1,length(strOut)-1);
|
||||
|
||||
else
|
||||
% Any other unexpected input
|
||||
error('Unsupported argument type');
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
@ -1,148 +0,0 @@
|
||||
% Copyright (c) 2019 Andrea Alberti
|
||||
%
|
||||
% All rights reserved.
|
||||
classdef parforNotifications < handle
|
||||
properties
|
||||
N; % number of iterations
|
||||
text = 'Please wait ...'; % text to show
|
||||
width = 50;
|
||||
showWarning = true;
|
||||
end
|
||||
properties (GetAccess = public, SetAccess = private)
|
||||
n;
|
||||
end
|
||||
properties (Access = private)
|
||||
inProgress = false;
|
||||
percent;
|
||||
DataQueue;
|
||||
usePercent;
|
||||
Nstr;
|
||||
NstrL;
|
||||
lastComment;
|
||||
end
|
||||
methods
|
||||
function this = parforNotifications()
|
||||
this.DataQueue = parallel.pool.DataQueue;
|
||||
afterEach(this.DataQueue, @this.updateStatus);
|
||||
end
|
||||
% Start progress bar
|
||||
function PB_start(this,N,varargin)
|
||||
assert(isscalar(N) && isnumeric(N) && N == floor(N) && N>0, 'Error: ''N'' must be a scalar positive integer.');
|
||||
|
||||
this.N = N;
|
||||
|
||||
p = inputParser;
|
||||
addParameter(p,'message','Please wait: ');
|
||||
addParameter(p,'usePercentage',true);
|
||||
|
||||
parse(p,varargin{:});
|
||||
|
||||
this.text = p.Results.message;
|
||||
assert(ischar(this.text), 'Error: ''Message'' must be a string.');
|
||||
|
||||
this.usePercent = p.Results.usePercentage;
|
||||
assert(isscalar(this.usePercent) && islogical(this.usePercent), 'Error: ''usePercentage'' must be a logical scalar.');
|
||||
|
||||
this.percent = 0;
|
||||
this.n = 0;
|
||||
this.lastComment = '';
|
||||
if this.usePercent
|
||||
fprintf('%s [%s]: %3d%%\n',this.text, char(32*ones(1,this.width)),0);
|
||||
else
|
||||
this.Nstr = sprintf('%d',this.N);
|
||||
this.NstrL = numel(this.Nstr);
|
||||
fprintf('%s [%s]: %s/%s\n',this.text, char(32*ones(1,this.width)),[char(32*ones(1,this.NstrL-1)),'0'],this.Nstr);
|
||||
end
|
||||
|
||||
this.inProgress = true;
|
||||
end
|
||||
% Iterate progress bar
|
||||
function PB_iterate(this,str)
|
||||
if nargin == 1
|
||||
send(this.DataQueue,'');
|
||||
else
|
||||
send(this.DataQueue,str);
|
||||
end
|
||||
end
|
||||
function warning(this,warn_id,msg)
|
||||
if this.showWarning
|
||||
msg = struct('Action','Warning','Id',warn_id,'Message',msg);
|
||||
send(this.DataQueue,msg);
|
||||
end
|
||||
end
|
||||
function PB_reprint(this)
|
||||
p = round(100*this.n/this.N);
|
||||
|
||||
this.percent = p;
|
||||
|
||||
cursor_pos=1+round((this.width-1)*p/100);
|
||||
|
||||
if p < 100
|
||||
sep_char = '|';
|
||||
else
|
||||
sep_char = '.';
|
||||
end
|
||||
|
||||
if this.usePercent
|
||||
fprintf('%s [%s%s%s]: %3d%%\n', this.text, char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),p);
|
||||
else
|
||||
nstr=sprintf('%d',this.n);
|
||||
fprintf('%s [%s%s%s]: %s/%s\n', this.text, char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),[char(32*ones(1,this.NstrL-numel(nstr))),nstr],this.Nstr);
|
||||
end
|
||||
end
|
||||
function updateStatus(this,data)
|
||||
|
||||
if ischar(data)
|
||||
|
||||
this.n = this.n + 1;
|
||||
|
||||
p = round(100*this.n/this.N);
|
||||
|
||||
if p >= this.percent+1 || this.n == this.N
|
||||
this.percent = p;
|
||||
|
||||
cursor_pos=1+round((this.width-1)*p/100);
|
||||
|
||||
if p < 100
|
||||
sep_char = '|';
|
||||
else
|
||||
sep_char = '.';
|
||||
end
|
||||
|
||||
if ~isempty(data)
|
||||
comment = [' (',data,')'];
|
||||
else
|
||||
comment = '';
|
||||
end
|
||||
|
||||
if this.usePercent
|
||||
fprintf('%s%s%s%s]: %3d%%%s\n',char(8*ones(1,58+numel(this.lastComment))), char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),p,comment);
|
||||
else
|
||||
nstr=sprintf('%d',this.n);
|
||||
fprintf('%s%s%s%s]: %s/%s%s\n',char(8*ones(1,55+2*numel(this.Nstr)+numel(this.lastComment))), char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),[char(32*ones(1,this.NstrL-numel(nstr))),nstr],this.Nstr,comment)
|
||||
end
|
||||
|
||||
this.lastComment = comment;
|
||||
|
||||
|
||||
if p == 100
|
||||
this.inProgress = false;
|
||||
end
|
||||
end
|
||||
|
||||
else
|
||||
switch data.Action
|
||||
case 'Warning'
|
||||
warning(data.Id,[data.Message,newline]);
|
||||
if this.inProgress
|
||||
this.PB_reprint();
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
|
@ -21,7 +21,7 @@ OptionsStruct.Dimensions = [40, 40, 20];
|
||||
OptionsStruct.CutoffType = 'Cylindrical';
|
||||
OptionsStruct.SimulationMode = 'ImaginaryTimeEvolution'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution'
|
||||
OptionsStruct.TimeStepSize = 50E-6; % in s
|
||||
OptionsStruct.NumberOfTimeSteps = 2E6; % in s
|
||||
OptionsStruct.NumberOfTimeSteps = 10; % in s
|
||||
OptionsStruct.EnergyTolerance = 5E-10;
|
||||
|
||||
OptionsStruct.SaveData = true;
|
||||
|
@ -1,29 +0,0 @@
|
||||
function muchem = calculateChemicalPotential(~,psi,Params,Transf,VDk,V)
|
||||
|
||||
%Parameters
|
||||
normfac = Params.Lx*Params.Ly*Params.Lz/numel(psi);
|
||||
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
|
||||
|
||||
% DDIs
|
||||
frho=fftn(abs(psi).^2);
|
||||
Phi=real(ifftn(frho.*VDk));
|
||||
|
||||
Eddi = (Params.gdd*Phi.*abs(psi).^2);
|
||||
|
||||
%Kinetic energy
|
||||
Ekin = KEop.*abs(fftn(psi)*normfac).^2;
|
||||
Ekin = trapz(Ekin(:))*Transf.dkx*Transf.dky*Transf.dkz/(2*pi)^3;
|
||||
|
||||
%Potential energy
|
||||
Epot = V.*abs(psi).^2;
|
||||
|
||||
%Contact interactions
|
||||
Eint = Params.gs*abs(psi).^4;
|
||||
|
||||
%Quantum fluctuations
|
||||
Eqf = Params.gammaQF*abs(psi).^5;
|
||||
|
||||
%Total energy
|
||||
muchem = Ekin + trapz(Epot(:) + Eint(:) + Eddi(:) + Eqf(:))*Transf.dx*Transf.dy*Transf.dz; %
|
||||
muchem = muchem / Params.N;
|
||||
end
|
@ -1,35 +0,0 @@
|
||||
function E = calculateEnergyComponents(~,psi,Params,Transf,VDk,V)
|
||||
|
||||
%Parameters
|
||||
|
||||
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
|
||||
normfac = Params.Lx*Params.Ly*Params.Lz/numel(psi);
|
||||
|
||||
% DDIs
|
||||
frho = fftn(abs(psi).^2);
|
||||
Phi = real(ifftn(frho.*VDk));
|
||||
|
||||
Eddi = 0.5*Params.gdd*Phi.*abs(psi).^2;
|
||||
E.Eddi = trapz(Eddi(:))*Transf.dx*Transf.dy*Transf.dz;
|
||||
|
||||
% EddiTot = trapz(Eddi(:))*Transf.dx*Transf.dy*Transf.dz;
|
||||
|
||||
%Kinetic energy
|
||||
% psik = ifftshift(fftn(fftshift(psi)))*normfac;
|
||||
|
||||
Ekin = KEop.*abs(fftn(psi)*normfac).^2;
|
||||
E.Ekin = trapz(Ekin(:))*Transf.dkx*Transf.dky*Transf.dkz/(2*pi)^3;
|
||||
|
||||
% Potential energy
|
||||
Epot = V.*abs(psi).^2;
|
||||
E.Epot = trapz(Epot(:))*Transf.dx*Transf.dy*Transf.dz;
|
||||
|
||||
%Contact interactions
|
||||
Eint = 0.5*Params.gs*abs(psi).^4;
|
||||
E.Eint = trapz(Eint(:))*Transf.dx*Transf.dy*Transf.dz;
|
||||
|
||||
%Quantum fluctuations
|
||||
Eqf = 0.4*Params.gammaQF*abs(psi).^5;
|
||||
E.Eqf = trapz(Eqf(:))*Transf.dx*Transf.dy*Transf.dz;
|
||||
|
||||
end
|
@ -1,25 +0,0 @@
|
||||
function res = calculateNormalizedResiduals(~,psi,Params,Transf,VDk,V,muchem)
|
||||
|
||||
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
|
||||
|
||||
% DDIs
|
||||
frho=fftn(abs(psi).^2);
|
||||
Phi=real(ifftn(frho.*VDk));
|
||||
|
||||
Eddi = Params.gdd*Phi.*psi;
|
||||
|
||||
%Kinetic energy
|
||||
Ekin = ifftn(KEop.*fftn(psi));
|
||||
|
||||
%Potential energy
|
||||
Epot = V.*psi;
|
||||
|
||||
%Contact interactions
|
||||
Eint = Params.gs*abs(psi).^2.*psi;
|
||||
|
||||
%Quantum fluctuations
|
||||
Eqf = Params.gammaQF*abs(psi).^3.*psi;
|
||||
|
||||
%Total energy
|
||||
res = trapz(abs(Ekin(:) + Epot(:) + Eint(:) + Eddi(:) + Eqf(:) - muchem*psi(:))*Transf.dx*Transf.dy*Transf.dz)/trapz(abs(muchem*psi(:))*Transf.dx*Transf.dy*Transf.dz);
|
||||
end
|
@ -1,39 +0,0 @@
|
||||
function VDkSemi = calculateNumericalHankelTransform(~,kr,kz,Rmax,Zmax,Nr)
|
||||
|
||||
% accuracy inputs for numerical integration
|
||||
if(nargin==5)
|
||||
Nr = 5e4;
|
||||
end
|
||||
|
||||
Nz = 64;
|
||||
farRmultiple = 2000;
|
||||
|
||||
% midpoint grids for the integration over 0<z<Zmax, Rmax<r<farRmultiple*Rmax (i.e. starts at Rmax)
|
||||
dr=(farRmultiple-1)*Rmax/Nr;
|
||||
r = ((1:Nr)'-0.5)*dr+Rmax;
|
||||
dz=Zmax/Nz;
|
||||
z = ((1:Nz)-0.5)*dz;
|
||||
[R, Z] = ndgrid(r,z);
|
||||
Rsq = R.^2 + Z.^2;
|
||||
|
||||
% real space interaction to be transformed
|
||||
igrandbase = (1 - 3*Z.^2./Rsq)./Rsq.^(3/2);
|
||||
|
||||
% do the Hankel/Fourier-Bessel transform numerically
|
||||
% prestore to ensure each besselj is only calculated once
|
||||
% cell is faster than (:,:,krn) slicing
|
||||
Nkr = numel(kr);
|
||||
besselr = cell(Nkr,1);
|
||||
for krn = 1:Nkr
|
||||
besselr{krn} = repmat(r.*besselj(0,kr(krn)*r),1,Nz);
|
||||
end
|
||||
|
||||
VDkSemi = zeros([Nkr,numel(kz)]);
|
||||
for kzn = 1:numel(kz)
|
||||
igrandbasez = repmat(cos(kz(kzn)*z),Nr,1) .* igrandbase;
|
||||
for krn = 1:Nkr
|
||||
igrand = igrandbasez.*besselr{krn};
|
||||
VDkSemi(krn,kzn) = VDkSemi(krn,kzn) - sum(igrand(:))*dz*dr;
|
||||
end
|
||||
end
|
||||
end
|
@ -1,58 +0,0 @@
|
||||
function [m_Order] = calculateOrderParameter(~,psi,Transf,Params,VDk,V,T,muchem)
|
||||
|
||||
NumRealiz = 100;
|
||||
|
||||
Mx = numel(Transf.x);
|
||||
My = numel(Transf.y);
|
||||
Mz = numel(Transf.z);
|
||||
|
||||
r = normrnd(0,1,size(psi));
|
||||
theta = rand(size(psi));
|
||||
noise = r.*exp(2*pi*1i*theta);
|
||||
|
||||
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
|
||||
Gamma = 1-1i*Params.gamma_S;
|
||||
dt = Params.dt;
|
||||
|
||||
avgpsi = 0;
|
||||
avgpsi2 = 0;
|
||||
|
||||
for jj = 1:NumRealiz
|
||||
%generate initial state
|
||||
xi = sqrt(2*Params.gamma_S*Params.kbol*T*10^(-9)*dt/(Params.hbar*Params.w0*Transf.dx*Transf.dy*Transf.dz));
|
||||
swapx = randi(length(Transf.x),1,length(Transf.x));
|
||||
swapy = randi(length(Transf.y),1,length(Transf.y));
|
||||
swapz = randi(length(Transf.z),1,length(Transf.z));
|
||||
psi_j = psi + xi * noise(swapx,swapy,swapz);
|
||||
|
||||
% --- % propagate forward in time 1 time step:
|
||||
%kin
|
||||
psi_j = fftn(psi_j);
|
||||
psi_j = psi_j.*exp(-0.5*1i*Gamma*dt*KEop);
|
||||
psi_j = ifftn(psi_j);
|
||||
|
||||
%DDI
|
||||
frho = fftn(abs(psi_j).^2);
|
||||
Phi = real(ifftn(frho.*VDk));
|
||||
|
||||
%Real-space
|
||||
psi_j = psi_j.*exp(-1i*Gamma*dt*(V + Params.gs*abs(psi_j).^2 + Params.gammaQF*abs(psi_j).^3 + Params.gdd*Phi - muchem));
|
||||
|
||||
%kin
|
||||
psi_j = fftn(psi_j);
|
||||
psi_j = psi_j.*exp(-0.5*1i*Gamma*dt*KEop);
|
||||
psi_j = ifftn(psi_j);
|
||||
|
||||
%Projection
|
||||
kcut = sqrt(2*Params.e_cut);
|
||||
K = (Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2)<kcut.^2;
|
||||
psi_j = ifftn(K.*fftn(psi_j));
|
||||
|
||||
% --- %
|
||||
avgpsi = avgpsi + abs(sum(psi_j(:)))/NumRealiz;
|
||||
avgpsi2 = avgpsi2 + sum(abs(psi_j(:)).^2)/NumRealiz;
|
||||
|
||||
end
|
||||
|
||||
m_Order = 1/sqrt(Mx*My*Mz)*avgpsi/sqrt(avgpsi2);
|
||||
end
|
@ -1,19 +0,0 @@
|
||||
function [PhaseC] = calculatePhaseCoherence(~,psi,Transf,Params)
|
||||
|
||||
norm = sum(sum(sum(abs(psi).^2,1),2),3)*Transf.dx*Transf.dy*Transf.dz;
|
||||
psi = psi/sqrt(norm);
|
||||
|
||||
NumGlobalShifts = 800;
|
||||
betas = []; phishift = [];
|
||||
for jj = 1:NumGlobalShifts
|
||||
phishift(jj) = -pi + 2*pi*(jj-1)/NumGlobalShifts;
|
||||
betas(jj) = sum(sum(sum(abs(angle(psi*exp(-1i*phishift(jj)))).*abs(psi).^2)));
|
||||
end
|
||||
[minbeta,minidx] = min(betas);
|
||||
|
||||
psi = psi*exp(-1i*phishift(minidx));
|
||||
phi = angle(psi);
|
||||
|
||||
avgphi = sum(sum(sum(phi.*abs(psi).^2,1),2),3)*Transf.dx*Transf.dy*Transf.dz;
|
||||
PhaseC = sum(sum(sum(abs(angle(psi)-avgphi).*abs(psi).^2)))*Transf.dx*Transf.dy*Transf.dz;
|
||||
end
|
@ -1,32 +0,0 @@
|
||||
function E = calculateTotalEnergy(~,psi,Params,Transf,VDk,V)
|
||||
|
||||
%Parameters
|
||||
|
||||
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
|
||||
normfac = Params.Lx*Params.Ly*Params.Lz/numel(psi);
|
||||
|
||||
% DDIs
|
||||
frho = fftn(abs(psi).^2);
|
||||
Phi = real(ifftn(frho.*VDk));
|
||||
|
||||
Eddi = 0.5*Params.gdd*Phi.*abs(psi).^2;
|
||||
|
||||
% EddiTot = trapz(Eddi(:))*Transf.dx*Transf.dy*Transf.dz;
|
||||
|
||||
%Kinetic energy
|
||||
% psik = ifftshift(fftn(fftshift(psi)))*normfac;
|
||||
|
||||
Ekin = KEop.*abs(fftn(psi)*normfac).^2;
|
||||
Ekin = trapz(Ekin(:))*Transf.dkx*Transf.dky*Transf.dkz/(2*pi)^3;
|
||||
|
||||
% Potential energy
|
||||
Epot = V.*abs(psi).^2;
|
||||
|
||||
%Contact interactions
|
||||
Eint = 0.5*Params.gs*abs(psi).^4;
|
||||
|
||||
%Quantum fluctuations
|
||||
Eqf = 0.4*Params.gammaQF*abs(psi).^5;
|
||||
|
||||
E = Ekin + trapz(Epot(:) + Eint(:) + Eddi(:) + Eqf(:))*Transf.dx*Transf.dy*Transf.dz;
|
||||
end
|
@ -1,64 +0,0 @@
|
||||
function VDk = calculateVDCutoff(this,Params,Transf,TransfRad)
|
||||
% makes the dipolar interaction matrix, size numel(Params.kr) * numel(Params.kz)
|
||||
% Rmax and Zmax are the interaction cutoffs
|
||||
% VDk needs to be multiplied by Cdd
|
||||
% approach is that of Lu, PRA 82, 023622 (2010)
|
||||
|
||||
% == Calulating the DDI potential in Fourier space with appropriate cutoff == %
|
||||
% Cylindrical (semianalytic)
|
||||
% Cylindrical infinite Z, polarized along x (analytic)
|
||||
% Spherical
|
||||
|
||||
switch this.CutoffType
|
||||
case 'Cylindrical' %Cylindrical (semianalytic)
|
||||
Zcutoff = Params.Lz/2;
|
||||
alph = acos((Transf.KX*sin(Params.theta)*cos(Params.phi)+Transf.KY*sin(Params.theta)*sin(Params.phi)+Transf.KZ*cos(Params.theta))./sqrt(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2));
|
||||
alph(1) = pi/2;
|
||||
|
||||
% Analytic part of cutoff for slice 0<z<Zmax, 0<r<Inf Ronen, PRL 98, 030406 (2007)
|
||||
cossq = cos(alph).^2;
|
||||
VDk = cossq-1/3;
|
||||
sinsq = 1 - cossq;
|
||||
VDk = VDk + exp(-Zcutoff*sqrt(Transf.KX.^2+Transf.KY.^2)).*( sinsq .* cos(Zcutoff * Transf.KZ) - sqrt(sinsq.*cossq).*sin(Zcutoff * Transf.KZ) );
|
||||
|
||||
% Nonanalytic part
|
||||
% For a cylindrical cutoff, we need to construct a kr grid based on the 3D parameters using Bessel quadrature
|
||||
VDkNon = this.calculateNumericalHankelTransform(TransfRad.kr, TransfRad.kz, TransfRad.Rmax, Zcutoff);
|
||||
|
||||
% Interpolating the nonanalytic part onto 3D grid
|
||||
fullkr = [-flip(TransfRad.kr)',TransfRad.kr'];
|
||||
[KR,KZ] = ndgrid(fullkr,TransfRad.kz);
|
||||
[KX3D,KY3D,KZ3D] = ndgrid(ifftshift(Transf.kx),ifftshift(Transf.ky),ifftshift(Transf.kz));
|
||||
KR3D = sqrt(KX3D.^2 + KY3D.^2);
|
||||
fullVDK = [flip(VDkNon',2),VDkNon']';
|
||||
VDkNon = interpn(KR,KZ,fullVDK,KR3D,KZ3D,'spline',0); %Last argument is -1/3 for full VDk. 0 for nonanalytic piece?
|
||||
VDkNon = fftshift(VDkNon);
|
||||
|
||||
VDk = VDk + VDkNon;
|
||||
|
||||
case 'CylindricalInfiniteZ' %Cylindrical infinite Z, polarized along x -- PRA 107, 033301 (2023)
|
||||
alph = acos((Transf.KX*sin(Params.theta)*cos(Params.phi)+Transf.KY*sin(Params.theta)*sin(Params.phi)+Transf.KZ*cos(Params.theta))./sqrt(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2));
|
||||
alph(1) = pi/2;
|
||||
rhoc = max([abs(Transf.x),abs(Transf.y)]);
|
||||
KR = sqrt(Transf.KX.^2+Transf.KY.^2);
|
||||
func = @(n,u,v) v.^2./(u.^2+v.^2).*(v.*besselj(n,u).*besselk(n+1,v) - u.*besselj(n+1,u).*besselk(n,v));
|
||||
VDk = -0.5*func(0,KR*rhoc,abs(Transf.KZ)*rhoc) + (Transf.KX.^2./KR.^2 - 0.5).*func(2,KR*rhoc,abs(Transf.KZ)*rhoc);
|
||||
VDk = (1/3)*(3*(cos(alph).^2)-1) - VDk;
|
||||
|
||||
VDk(KR==0) = -1/3 + 1/2*abs(Transf.KZ(KR==0))*rhoc.*besselk(1,abs(Transf.KZ(KR==0))*rhoc);
|
||||
VDk(Transf.KZ==0) = 1/6 + (Transf.KX(Transf.KZ==0).^2-Transf.KY(Transf.KZ==0).^2)./(KR(Transf.KZ==0).^2).*(1/2 - besselj(1,KR(Transf.KZ==0)*rhoc)./(KR(Transf.KZ==0)*rhoc));
|
||||
VDk(1,1,1) = 1/6;
|
||||
|
||||
case 'Spherical' %Spherical
|
||||
Rcut = min(Params.Lx/2,Params.Ly/2,Params.Lz/2);
|
||||
alph = acos((Transf.KX*sin(Params.theta)*cos(Params.phi)+Transf.KY*sin(Params.theta)*sin(Params.phi)+Transf.KZ*cos(Params.theta))./sqrt(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2));
|
||||
alph(1) = pi/2;
|
||||
|
||||
K = sqrt(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
|
||||
VDk = (cos(alph).^2-1/3).*(1 + 3*cos(Rcut*K)./(Rcut^2.*K.^2) - 3*sin(Rcut*K)./(Rcut^3.*K.^3));
|
||||
|
||||
otherwise
|
||||
disp('Choose a valid DDI cutoff type!')
|
||||
return
|
||||
end
|
||||
end
|
@ -1,4 +1,4 @@
|
||||
function [psi] = propagateWavefunction(this,psi,Params,Transf,VDk,V,njob,t_idx,Observ)
|
||||
function [psi] = propagateWavefunction(this,psi,Params,Transf,VDk,V,t_idx,Observ)
|
||||
set(0,'defaulttextInterpreter','latex')
|
||||
set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
|
||||
|
||||
@ -9,10 +9,16 @@ function [psi] = propagateWavefunction(this,psi,Params,Transf,VDk,V,njob,t_idx,O
|
||||
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
|
||||
Observ.residual = 1; Observ.res = 1;
|
||||
|
||||
muchem = this.Calculator.ChemicalPotential(psi,Params,Transf,VDk,V);
|
||||
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
|
||||
AdaptIdx = 0;
|
||||
|
||||
pb = Helper.ProgressBar();
|
||||
pb.run('Running evolution in imaginary time: ');
|
||||
|
||||
while t_idx < Params.sim_time_cut_off
|
||||
|
||||
pb.run(t_idx);
|
||||
|
||||
%kin
|
||||
psi = fftn(psi);
|
||||
psi = psi.*exp(-0.5*1i*dt*KEop);
|
||||
@ -34,12 +40,12 @@ function [psi] = propagateWavefunction(this,psi,Params,Transf,VDk,V,njob,t_idx,O
|
||||
Norm = trapz(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz;
|
||||
psi = sqrt(Params.N)*psi/sqrt(Norm);
|
||||
|
||||
muchem = this.Calculator.ChemicalPotential(psi,Params,Transf,VDk,V);
|
||||
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
|
||||
|
||||
if mod(t_idx,1000) == 0
|
||||
|
||||
%Change in Energy
|
||||
E = this.Calculator.TotalEnergy(psi,Params,Transf,VDk,V);
|
||||
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
|
||||
E = E/Norm;
|
||||
Observ.EVec = [Observ.EVec E];
|
||||
|
||||
@ -47,12 +53,12 @@ function [psi] = propagateWavefunction(this,psi,Params,Transf,VDk,V,njob,t_idx,O
|
||||
Observ.mucVec = [Observ.mucVec muchem];
|
||||
|
||||
%Normalized residuals
|
||||
res = this.Calculator.NormalizedResiduals(psi,Params,Transf,VDk,V,muchem);
|
||||
res = this.Calculator.calculateNormalizedResiduals(psi,Params,Transf,VDk,V,muchem);
|
||||
Observ.residual = [Observ.residual res];
|
||||
|
||||
Observ.res_idx = Observ.res_idx + 1;
|
||||
|
||||
save(sprintf('./Data/Run_%03i/psi_gs.mat',njob),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V');
|
||||
save(sprintf('./Data/Run_%03i/psi_gs.mat',Params.njob),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V');
|
||||
|
||||
%Adaptive time step -- Careful, this can quickly get out of control
|
||||
relres = abs(Observ.residual(Observ.res_idx)-Observ.residual(Observ.res_idx-1))/Observ.residual(Observ.res_idx);
|
||||
@ -78,16 +84,17 @@ function [psi] = propagateWavefunction(this,psi,Params,Transf,VDk,V,njob,t_idx,O
|
||||
end
|
||||
|
||||
%Change in Energy
|
||||
E = this.Calculator.TotalEnergy(psi,Params,Transf,VDk,V);
|
||||
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
|
||||
E = E/Norm;
|
||||
Observ.EVec = [Observ.EVec E];
|
||||
|
||||
% Phase coherence
|
||||
[PhaseC] = this.Calculator.PhaseCoherence(psi,Transf,Params);
|
||||
[PhaseC] = this.Calculator.calculatePhaseCoherence(psi,Transf,Params);
|
||||
Observ.PCVec = [Observ.PCVec PhaseC];
|
||||
|
||||
Observ.res_idx = Observ.res_idx + 1;
|
||||
save(sprintf('./Data/Run_%03i/psi_gs.mat',njob),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V');
|
||||
save(sprintf('./Data/Run_%03i/psi_gs.mat',Params.njob),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V');
|
||||
pb.run(' - Job Completed!\n');
|
||||
|
||||
case 'RealTimeEvolution'
|
||||
|
||||
@ -95,9 +102,15 @@ function [psi] = propagateWavefunction(this,psi,Params,Transf,VDk,V,njob,t_idx,O
|
||||
|
||||
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
|
||||
|
||||
muchem = chemicalpotential(psi,Params,Transf,VDk,V);
|
||||
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
|
||||
|
||||
pb = Helper.ProgressBar();
|
||||
pb.run('Running evolution in real time: ');
|
||||
|
||||
while t_idx < Params.sim_time_cut_off
|
||||
|
||||
pb.run(t_idx);
|
||||
|
||||
% Parameters at time t
|
||||
|
||||
%kin
|
||||
@ -117,7 +130,7 @@ function [psi] = propagateWavefunction(this,psi,Params,Transf,VDk,V,njob,t_idx,O
|
||||
psi = psi.*exp(-0.5*1i*dt*KEop);
|
||||
psi = ifftn(psi);
|
||||
|
||||
muchem = chemicalpotential(psi,Params,Transf,VDk,V);
|
||||
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
|
||||
|
||||
if mod(t_idx,1000)==0
|
||||
%Change in Normalization
|
||||
@ -125,18 +138,18 @@ function [psi] = propagateWavefunction(this,psi,Params,Transf,VDk,V,njob,t_idx,O
|
||||
Observ.NormVec = [Observ.NormVec Norm];
|
||||
|
||||
%Change in Energy
|
||||
E = energytotal(psi,Params,Transf,VDk,V);
|
||||
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
|
||||
E = E/Norm;
|
||||
Observ.EVec = [Observ.EVec E];
|
||||
|
||||
% Phase coherence
|
||||
[PhaseC] = PhaseCoherence(psi,Transf);
|
||||
[PhaseC] = this.Calculator.calculatePhaseCoherence(psi,Transf);
|
||||
Observ.PCVec = [Observ.PCVec PhaseC];
|
||||
|
||||
Observ.tVecPlot = [Observ.tVecPlot tVal];
|
||||
Observ.res_idx = Observ.res_idx + 1;
|
||||
|
||||
save(sprintf('./Data/Run_%03i/TimeEvolution/psi_%i.mat',njob,Observ.res_idx),'psi','muchem','Observ','t_idx');
|
||||
save(sprintf('./Data/Run_%03i/TimeEvolution/psi_%i.mat',Params.njob,Observ.res_idx),'psi','muchem','Observ','t_idx');
|
||||
end
|
||||
if any(isnan(psi(:)))
|
||||
disp('NaNs encountered!')
|
||||
@ -150,18 +163,19 @@ function [psi] = propagateWavefunction(this,psi,Params,Transf,VDk,V,njob,t_idx,O
|
||||
Observ.NormVec = [Observ.NormVec Norm];
|
||||
|
||||
%Change in Energy
|
||||
E = energytotal(psi,Params,Transf,VDk,V);
|
||||
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
|
||||
E = E/Norm;
|
||||
Observ.EVec = [Observ.EVec E];
|
||||
|
||||
% Phase coherence
|
||||
[PhaseC] = PhaseCoherence(psi,Transf);
|
||||
[PhaseC] = this.Calculator.calculatePhaseCoherence(psi,Transf);
|
||||
Observ.PCVec = [Observ.PCVec PhaseC];
|
||||
|
||||
Observ.tVecPlot = [Observ.tVecPlot tVal];
|
||||
|
||||
Observ.res_idx = Observ.res_idx + 1;
|
||||
save(sprintf('./Data/Run_%03i/TimeEvolution/psi_%i.mat',njob,Observ.res_idx),'psi','muchem','Observ','t_idx');
|
||||
save(sprintf('./Data/Run_%03i/TimeEvolution/psi_%i.mat',Params.njob,Observ.res_idx),'psi','muchem','Observ','t_idx');
|
||||
pb.run(' - Job Completed!\n');
|
||||
|
||||
otherwise
|
||||
disp('Choose a valid DDI cutoff type!')
|
||||
|
@ -13,10 +13,10 @@ function [Params, Transf, psi,V,VDk] = run(this)
|
||||
[psi,V,VDk] = this.initialize(Params,Transf,TransfRad);
|
||||
|
||||
Observ.EVec = []; Observ.NormVec = []; Observ.PCVec = []; Observ.tVecPlot = []; Observ.mucVec = [];
|
||||
t_idx = 1; %Start at t = 0;
|
||||
t_idx = 1; % Start at t = 0;
|
||||
Observ.res_idx = 1;
|
||||
|
||||
% --- Run Simulation ---
|
||||
% mkdir(sprintf('./Data/Run_%03i',Params.njob))
|
||||
% [psi] = this.propagateWavefunction(psi,Params,Transf,VDk,V,njob,t_idx,Observ);
|
||||
mkdir(sprintf('./Data/Run_%03i',Params.njob))
|
||||
[psi] = this.propagateWavefunction(psi,Params,Transf,VDk,V,t_idx,Observ);
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user