Latest analysis script for IRF, new script to model imaging aberrations, modified plotting script for data from experiment.
This commit is contained in:
parent
88c0d18066
commit
1ac6182f31
@ -1,12 +1,12 @@
|
|||||||
%% Parameters
|
%% Parameters
|
||||||
|
|
||||||
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", "/images/Vertical_Axis_Camera/in_situ_absorption"];
|
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", "/images/Vertical_Axis_Camera/in_situ_absorption"];
|
||||||
|
|
||||||
folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/Data-Analyzer/20/";
|
%{
|
||||||
|
|
||||||
run = '0140';
|
folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/Data-Analyzer/";
|
||||||
|
|
||||||
folderPath = strcat(folderPath, run);
|
run = '0140';
|
||||||
|
|
||||||
cam = 4;
|
cam = 4;
|
||||||
|
|
||||||
@ -16,7 +16,25 @@ span = [50, 50];
|
|||||||
fraction = [0.1, 0.1];
|
fraction = [0.1, 0.1];
|
||||||
|
|
||||||
pixel_size = 5.86e-6;
|
pixel_size = 5.86e-6;
|
||||||
removeFringes = true;
|
removeFringes = false;
|
||||||
|
|
||||||
|
%}
|
||||||
|
|
||||||
|
folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/Imaging-Response-Function-Extractor/";
|
||||||
|
|
||||||
|
run = '0096';
|
||||||
|
|
||||||
|
folderPath = strcat(folderPath, run);
|
||||||
|
|
||||||
|
cam = 5;
|
||||||
|
|
||||||
|
angle = 0;
|
||||||
|
center = [1137, 2023];
|
||||||
|
span = [500, 500];
|
||||||
|
fraction = [0.1, 0.1];
|
||||||
|
|
||||||
|
pixel_size = 5.86e-6;
|
||||||
|
removeFringes = false;
|
||||||
|
|
||||||
% Compute OD image, rotate and extract ROI for analysis
|
% Compute OD image, rotate and extract ROI for analysis
|
||||||
% Get a list of all files in the folder with the desired file name pattern.
|
% Get a list of all files in the folder with the desired file name pattern.
|
||||||
@ -36,8 +54,8 @@ for k = 1 : length(files)
|
|||||||
bkg_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
|
bkg_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
|
||||||
dark_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
|
dark_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
|
||||||
|
|
||||||
refimages(:,:,k) = subtract_offset(crop_image(bkg_img, center, span), fraction)';
|
refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)';
|
||||||
absimages(:,:,k) = subtract_offset(crop_image(calculate_OD(atm_img, bkg_img, dark_img), center, span), fraction)';
|
absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img), center, span), fraction)';
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
@ -123,7 +141,7 @@ hold off;
|
|||||||
|
|
||||||
%% Helper Functions
|
%% Helper Functions
|
||||||
|
|
||||||
function ret = get_offset_from_corner(img, x_fraction, y_fraction)
|
function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction)
|
||||||
% image must be a 2D numerical array
|
% image must be a 2D numerical array
|
||||||
[dim1, dim2] = size(img);
|
[dim1, dim2] = size(img);
|
||||||
|
|
||||||
@ -135,7 +153,7 @@ function ret = get_offset_from_corner(img, x_fraction, y_fraction)
|
|||||||
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
|
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
|
||||||
end
|
end
|
||||||
|
|
||||||
function ret = subtract_offset(img, fraction)
|
function ret = subtractBackgroundOffset(img, fraction)
|
||||||
% Remove the background from the image.
|
% Remove the background from the image.
|
||||||
% :param dataArray: The image
|
% :param dataArray: The image
|
||||||
% :type dataArray: xarray DataArray
|
% :type dataArray: xarray DataArray
|
||||||
@ -148,11 +166,11 @@ function ret = subtract_offset(img, fraction)
|
|||||||
|
|
||||||
x_fraction = fraction(1);
|
x_fraction = fraction(1);
|
||||||
y_fraction = fraction(2);
|
y_fraction = fraction(2);
|
||||||
offset = get_offset_from_corner(img, x_fraction, y_fraction);
|
offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction);
|
||||||
ret = img - offset;
|
ret = img - offset;
|
||||||
end
|
end
|
||||||
|
|
||||||
function ret = crop_image(img, center, span)
|
function ret = cropODImage(img, center, span)
|
||||||
% Crop the image according to the region of interest (ROI).
|
% Crop the image according to the region of interest (ROI).
|
||||||
% :param dataSet: The images
|
% :param dataSet: The images
|
||||||
% :type dataSet: xarray DataArray or DataSet
|
% :type dataSet: xarray DataArray or DataSet
|
||||||
@ -171,7 +189,7 @@ function ret = crop_image(img, center, span)
|
|||||||
ret = img(y_start:y_end, x_start:x_end);
|
ret = img(y_start:y_end, x_start:x_end);
|
||||||
end
|
end
|
||||||
|
|
||||||
function ret = calculate_OD(imageAtom, imageBackground, imageDark)
|
function ret = calculateODImage(imageAtom, imageBackground, imageDark)
|
||||||
% Calculate the OD image for absorption imaging.
|
% Calculate the OD image for absorption imaging.
|
||||||
% :param imageAtom: The image with atoms
|
% :param imageAtom: The image with atoms
|
||||||
% :type imageAtom: numpy array
|
% :type imageAtom: numpy array
|
||||||
@ -264,4 +282,4 @@ function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
|
|||||||
% Compute optimised reference image
|
% Compute optimised reference image
|
||||||
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
|
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
127
Estimations/ModellingImagingAberrations.m
Normal file
127
Estimations/ModellingImagingAberrations.m
Normal file
@ -0,0 +1,127 @@
|
|||||||
|
%% Zernike Polynomials
|
||||||
|
|
||||||
|
resolution = 100; % Resolution
|
||||||
|
|
||||||
|
plotZernike(2, 0, resolution) % Defocus (Z2^0)
|
||||||
|
%%
|
||||||
|
plotZernike(2, 2, resolution) % Astigmatism (Z2^2)
|
||||||
|
%%
|
||||||
|
plotZernike(3, 1, resolution) % Coma (Z3^1, x-direction)
|
||||||
|
%%
|
||||||
|
plotZernike(3, -1, resolution) % Coma (Z3^-1, y-direction)
|
||||||
|
%%
|
||||||
|
plotZernike(4, 0, resolution) % Spherical Aberration (Z4^0)
|
||||||
|
|
||||||
|
%% Aberrated PSF
|
||||||
|
C = [0.0, 0.0, 0.0, 0.0, 0.0]; % Zernike coefficients
|
||||||
|
pupil_radius = 0.5; % Pupil radius (normalized)
|
||||||
|
|
||||||
|
plotAberratedPSF(C, pupil_radius, resolution);
|
||||||
|
|
||||||
|
function Z = computeZernikePolynomials(n, m, r, theta)
|
||||||
|
% Zernike polynomial function for radial and angular coordinates (r, theta)
|
||||||
|
% Input:
|
||||||
|
% n - radial order
|
||||||
|
% m - azimuthal frequency
|
||||||
|
% r - radial coordinate (normalized to unit circle, 0 <= r <= 1)
|
||||||
|
% theta - angular coordinate (angle in radians)
|
||||||
|
%
|
||||||
|
% Output:
|
||||||
|
% Z - Zernike polynomial value at (r, theta)
|
||||||
|
|
||||||
|
if n == 2 && m == 0
|
||||||
|
% Defocus (Z2^0)
|
||||||
|
Z = 2 * r.^2 - 1;
|
||||||
|
elseif n == 2 && m == 2
|
||||||
|
% Astigmatism (Z2^2)
|
||||||
|
Z = r.^2 .* cos(2 * theta);
|
||||||
|
elseif n == 3 && m == 1
|
||||||
|
% Coma (Z3^1)
|
||||||
|
Z = (3 * r.^3 - 2 * r) .* cos(theta);
|
||||||
|
elseif n == 3 && m == -1
|
||||||
|
% Coma (Z3^-1)
|
||||||
|
Z = (3 * r.^3 - 2 * r) .* sin(theta);
|
||||||
|
elseif n == 4 && m == 0
|
||||||
|
% Spherical Aberration (Z4^0)
|
||||||
|
Z = 6 * r.^4 - 6 * r.^2 + 1;
|
||||||
|
else
|
||||||
|
% Default to zero if no known Zernike polynomial matches
|
||||||
|
Z = 0;
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function plotZernike(n, m, resolution)
|
||||||
|
% n: radial order
|
||||||
|
% m: azimuthal frequency
|
||||||
|
% resolution: number of points for plotting
|
||||||
|
|
||||||
|
% Create a grid of (r, theta) coordinates
|
||||||
|
[theta, r] = meshgrid(linspace(0, 2*pi, resolution), linspace(0, 1, resolution));
|
||||||
|
|
||||||
|
% Calculate the Zernike polynomial for the given (n, m)
|
||||||
|
Z = computeZernikePolynomials(n, m, r, theta);
|
||||||
|
|
||||||
|
% Convert polar to Cartesian coordinates for plotting
|
||||||
|
[X, Y] = pol2cart(theta, r);
|
||||||
|
|
||||||
|
% Plot the Zernike polynomial using a surface plot
|
||||||
|
figure(1)
|
||||||
|
clf
|
||||||
|
set(gcf,'Position',[50 50 950 750])
|
||||||
|
surf(X, Y, Z, 'EdgeColor', 'none');
|
||||||
|
colormap jet;
|
||||||
|
colorbar;
|
||||||
|
title(sprintf('Zernike Polynomial Z_{%d}^{%d}', n, m), 'Interpreter', 'tex', 'FontSize', 16);
|
||||||
|
xlabel('X', 'FontSize', 16);
|
||||||
|
ylabel('Y', 'FontSize', 16);
|
||||||
|
zlabel('Zernike Value', 'FontSize', 16);
|
||||||
|
axis equal;
|
||||||
|
shading interp;
|
||||||
|
end
|
||||||
|
|
||||||
|
function [theta, r, PSF] = modelPSF(C, pupil_radius, resolution)
|
||||||
|
% C is the vector of Zernike coefficients [C_defocus, C_astigmatism, C_coma, C_spherical, ...]
|
||||||
|
% resolution is the number of points for the grid (NxN grid)
|
||||||
|
% pupil_radius is the radius of the pupil aperture
|
||||||
|
|
||||||
|
% Create a grid of (r, theta) coordinates
|
||||||
|
[theta, r] = meshgrid(linspace(0, 2*pi, resolution), linspace(0, 1, resolution));
|
||||||
|
|
||||||
|
% Pupil function: 1 inside the pupil radius, 0 outside
|
||||||
|
P = double(r <= pupil_radius); % 2D mask
|
||||||
|
|
||||||
|
% Wavefront error from Zernike polynomials
|
||||||
|
W = C(1) * computeZernikePolynomials(2, 0, r, theta) + ... % Defocus (Z2^0)
|
||||||
|
C(2) * computeZernikePolynomials(2, 2, r, theta) + ... % Astigmatism (Z2^2)
|
||||||
|
C(3) * computeZernikePolynomials(3, 1, r, theta) + ... % Coma (Z3^1, x-direction)
|
||||||
|
C(4) * computeZernikePolynomials(3, -1, r, theta) + ... % Coma (Z3^-1, y-direction)
|
||||||
|
C(5) * computeZernikePolynomials(4, 0, r, theta); % Spherical Aberration (Z4^0)
|
||||||
|
|
||||||
|
% Fourier transform of the pupil function with aberrations
|
||||||
|
PSF = abs(fftshift(fft2(P .* exp(1i * W)))).^2; % Intensity distribution
|
||||||
|
end
|
||||||
|
|
||||||
|
function plotAberratedPSF(C, pupil_radius, resolution)
|
||||||
|
% C: Zernike coefficients [C_defocus, C_astigmatism, C_coma_x, C_coma_y, C_spherical]
|
||||||
|
% pupil_radius: Radius of the pupil aperture
|
||||||
|
% resolution: Number of points for plotting
|
||||||
|
|
||||||
|
% Generate PSF using the updated modelPSF function
|
||||||
|
[theta, r, PSF] = modelPSF(C, pupil_radius, resolution);
|
||||||
|
|
||||||
|
% Convert polar to Cartesian coordinates for plotting
|
||||||
|
[X, Y] = pol2cart(theta, r);
|
||||||
|
|
||||||
|
figure(1)
|
||||||
|
clf
|
||||||
|
set(gcf,'Position',[50 50 950 750])
|
||||||
|
surf(X, Y, PSF, 'EdgeColor', 'none');
|
||||||
|
view(2); % 2D view
|
||||||
|
axis equal tight;
|
||||||
|
shading interp;
|
||||||
|
colorbar;
|
||||||
|
colormap jet;
|
||||||
|
title('PSF', 'FontSize', 16);
|
||||||
|
xlabel('X', 'FontSize', 16);
|
||||||
|
ylabel('Y', 'FontSize', 16);
|
||||||
|
end
|
@ -1,26 +1,34 @@
|
|||||||
%% Parameters
|
%% Parameters
|
||||||
|
|
||||||
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", "/images/Vertical_Axis_Camera/in_situ_absorption"];
|
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", "/images/Vertical_Axis_Camera/in_situ_absorption"];
|
||||||
|
|
||||||
folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/Imaging-Response-Function-Extractor/0127/";
|
folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/Imaging-Response-Function-Extractor/";
|
||||||
|
|
||||||
cam = 5;
|
run = '0096';
|
||||||
|
|
||||||
% angle = 90 + 51.5;
|
folderPath = strcat(folderPath, run);
|
||||||
% center = [1700, 2300];
|
|
||||||
angle = 90;
|
|
||||||
center = [2035 1250];
|
|
||||||
span = [255, 255];
|
|
||||||
fraction = [0.1, 0.1];
|
|
||||||
|
|
||||||
NA = 0.6;
|
cam = 5;
|
||||||
pixel_size = 4.6e-6;
|
|
||||||
lambda = 421e-9;
|
|
||||||
|
|
||||||
d = 0.61*lambda/NA;
|
angle = 0;
|
||||||
k_cutoff = 2*NA/lambda/1e6; % in units of 1/µm)
|
center = [1137, 2023];
|
||||||
|
span = [255, 255];
|
||||||
|
fraction = [0.1, 0.1];
|
||||||
|
|
||||||
removeFringes = true;
|
NA = 0.6;
|
||||||
|
pixel_size = 4.6e-6;
|
||||||
|
lambda = 421e-9;
|
||||||
|
|
||||||
|
% The diameter of the first dark concentric ring surrounding the central intensity peak of a point spread function (or Airy disk)
|
||||||
|
d = 1.22 * (lambda / NA);
|
||||||
|
|
||||||
|
% Abbe limit
|
||||||
|
AbbeLimit = lambda / (2 * NA);
|
||||||
|
|
||||||
|
% Maximum resolvable spatial frequency for the coherent case
|
||||||
|
k_cutoff = (NA/lambda) * 1e-6; % (in units of 1/µm)
|
||||||
|
|
||||||
|
removeFringes = false;
|
||||||
|
|
||||||
%% Compute OD image, rotate and extract ROI for analysis
|
%% Compute OD image, rotate and extract ROI for analysis
|
||||||
% Get a list of all files in the folder with the desired file name pattern.
|
% Get a list of all files in the folder with the desired file name pattern.
|
||||||
@ -40,12 +48,12 @@ for k = 1 : length(files)
|
|||||||
bkg_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
|
bkg_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
|
||||||
dark_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
|
dark_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
|
||||||
|
|
||||||
refimages(:,:,k) = subtract_offset(crop_image(bkg_img, center, span), fraction);
|
refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)';
|
||||||
absimages(:,:,k) = subtract_offset(crop_image(calculate_OD(atm_img, bkg_img, dark_img), center, span), fraction);
|
absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img), center, span), fraction)';
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
%% Fringe removal
|
% Fringe removal
|
||||||
|
|
||||||
if removeFringes
|
if removeFringes
|
||||||
optrefimages = removefringesInImage(absimages, refimages);
|
optrefimages = removefringesInImage(absimages, refimages);
|
||||||
@ -79,116 +87,109 @@ dy = pixel_size;
|
|||||||
xvals = (1:Nx)*dx*1e6;
|
xvals = (1:Nx)*dx*1e6;
|
||||||
yvals = (1:Ny)*dy*1e6;
|
yvals = (1:Ny)*dy*1e6;
|
||||||
|
|
||||||
Nyq_k = 1/dx; % Nyquist
|
dvx = 1 / (Nx * dx); % reciprocal space increment in the X direction (in units of 1/dx)
|
||||||
dk = 1/(Nx*dx); % Wavenumber increment
|
dvy = 1 / (Ny * dy); % reciprocal space increment in the Y direction (in units of 1/dy)
|
||||||
kx = -Nyq_k/2:dk:Nyq_k/2-dk; % wavenumber
|
|
||||||
kx = kx * dx; % wavenumber (in units of 1/dx)
|
|
||||||
|
|
||||||
Nyq_k = 1/dy; % Nyquist
|
% Create the frequency axes
|
||||||
dk = 1/(Ny*dy); % Wavenumber increment
|
vx = (-Nx/2:Nx/2-1) * dvx; % Frequency axis in X (in units of 1/dx)
|
||||||
ky = -Nyq_k/2:dk:Nyq_k/2-dk; % wavenumber
|
vy = (-Ny/2:Ny/2-1) * dvy; % Frequency axis in Y (in units of 1/dy)
|
||||||
ky = ky * dy; % wavenumber (in units of 1/dy)
|
|
||||||
|
% Create the Wavenumber axes
|
||||||
|
kx = 2*pi*vx; % Wavenumber axis in X
|
||||||
|
ky = 2*pi*vy; % Wavenumber axis in Y
|
||||||
|
|
||||||
% Create Circular Mask
|
% Create Circular Mask
|
||||||
n = 2^8; % size of mask
|
n = 2^8; % size of mask
|
||||||
mask = zeros(n);
|
mask = zeros(n);
|
||||||
I = 1:n;
|
I = 1:n;
|
||||||
x = I-n/2; % mask x-coordinates
|
x = I-n/2; % mask x-coordinates
|
||||||
y = n/2-I; % mask y-coordinates
|
y = n/2-I; % mask y-coordinates
|
||||||
[X,Y] = meshgrid(x,y); % create 2-D mask grid
|
[X,Y] = meshgrid(x,y); % create 2-D mask grid
|
||||||
R = 32; % aperture radius
|
R = 32; % aperture radius
|
||||||
A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
|
A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
|
||||||
mask(A) = 1; % set mask elements inside aperture to 1
|
mask(A) = 1; % set mask elements inside aperture to 1
|
||||||
|
|
||||||
|
|
||||||
% Calculate Power Spectrum and plot
|
% Calculate Power Spectrum and plot
|
||||||
figure('Position', [100, 100, 1200, 800]);
|
figure(1)
|
||||||
clf
|
clf
|
||||||
|
set(gcf,'Position',[100, 100, 1200, 800])
|
||||||
|
|
||||||
|
% Create tiled layout with 2 rows and 3 columns
|
||||||
|
t = tiledlayout(2, 3, 'TileSpacing', 'compact', 'Padding', 'compact');
|
||||||
|
|
||||||
for k = 1 : length(od_imgs)
|
for k = 1 : length(od_imgs)
|
||||||
mean_subtracted_od_imgs{k} = od_imgs{k} - mean_od_img;
|
mean_subtracted_od_imgs{k} = od_imgs{k} - mean_od_img;
|
||||||
masked_img = mean_subtracted_od_imgs{k} .* mask;
|
masked_img = mean_subtracted_od_imgs{k} .* mask;
|
||||||
density_fft{k} = (1/numel(masked_img)) * abs(fftshift(fft2(masked_img)));
|
density_fft{k} = (1/numel(masked_img)) * abs(fftshift(fft2(masked_img)));
|
||||||
density_noise_spectrum{k} = density_fft{k}.^2;
|
density_noise_spectrum{k} = density_fft{k}.^2;
|
||||||
|
|
||||||
% Subplot 1
|
% Tile 1: Single-shot image
|
||||||
% subplot(2, 3, 1);
|
nexttile(1);
|
||||||
subplot('Position', [0.05, 0.55, 0.28, 0.4])
|
|
||||||
imagesc(xvals, yvals, od_imgs{k})
|
imagesc(xvals, yvals, od_imgs{k})
|
||||||
xlabel('µm', 'FontSize', 16)
|
xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
ylabel('µm', 'FontSize', 16)
|
ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
axis equal tight;
|
axis equal tight;
|
||||||
colorbar
|
colorbar
|
||||||
colormap jet; % (flip(jet))
|
colormap jet;
|
||||||
% set(gca,'CLim',[0 100]);
|
|
||||||
set(gca,'YDir','normal')
|
set(gca,'YDir','normal')
|
||||||
title('Single-shot image', 'FontSize', 16);
|
title('Single-shot image', 'FontSize', 16);
|
||||||
|
|
||||||
% Subplot 2
|
% Tile 2: Averaged density image
|
||||||
% subplot(2, 3, 2);
|
nexttile(2);
|
||||||
subplot('Position', [0.36, 0.55, 0.28, 0.4])
|
|
||||||
imagesc(xvals, yvals, mean_od_img)
|
imagesc(xvals, yvals, mean_od_img)
|
||||||
xlabel('µm', 'FontSize', 16)
|
xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
ylabel('µm', 'FontSize', 16)
|
ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
axis equal tight;
|
axis equal tight;
|
||||||
colorbar
|
colorbar
|
||||||
colormap jet; % (flip(jet))
|
colormap jet;
|
||||||
% set(gca,'CLim',[0 100]);
|
|
||||||
set(gca,'YDir','normal')
|
set(gca,'YDir','normal')
|
||||||
title('Averaged density image', 'FontSize', 16);
|
title('Averaged density image', 'FontSize', 16);
|
||||||
|
|
||||||
% Subplot 3
|
% Tile 3: Image noise = Single-shot - Average
|
||||||
% subplot(2, 3, 3);
|
nexttile(3);
|
||||||
subplot('Position', [0.67, 0.55, 0.28, 0.4]);
|
|
||||||
imagesc(xvals, yvals, mean_subtracted_od_imgs{k})
|
imagesc(xvals, yvals, mean_subtracted_od_imgs{k})
|
||||||
xlabel('µm', 'FontSize', 16)
|
xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
ylabel('µm', 'FontSize', 16)
|
ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
axis equal tight;
|
axis equal tight;
|
||||||
colorbar
|
colorbar
|
||||||
colormap jet; % (flip(jet))
|
colormap jet;
|
||||||
% set(gca,'CLim',[0 100]);
|
|
||||||
set(gca,'YDir','normal')
|
set(gca,'YDir','normal')
|
||||||
title('Image noise = Single-shot - Average', 'FontSize', 16);
|
title('Image noise = Single-shot - Average', 'FontSize', 16);
|
||||||
|
|
||||||
% Subplot 4
|
% Tile 4: Masked Noise
|
||||||
% subplot(2, 3, 4);
|
nexttile(4);
|
||||||
subplot('Position', [0.05, 0.05, 0.28, 0.4]);
|
|
||||||
imagesc(xvals, yvals, mean_subtracted_od_imgs{k} .* mask)
|
imagesc(xvals, yvals, mean_subtracted_od_imgs{k} .* mask)
|
||||||
xlabel('µm', 'FontSize', 16)
|
xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
ylabel('µm', 'FontSize', 16)
|
ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
axis equal tight;
|
axis equal tight;
|
||||||
colorbar
|
colorbar
|
||||||
colormap jet; % (flip(jet))
|
colormap jet;
|
||||||
% set(gca,'CLim',[0 100]);
|
|
||||||
set(gca,'YDir','normal')
|
set(gca,'YDir','normal')
|
||||||
title('Masked Noise', 'FontSize', 16);
|
title('Masked Noise', 'FontSize', 16);
|
||||||
|
|
||||||
% Subplot 5
|
% Tile 5: DFT
|
||||||
% subplot(2, 3, 5);
|
nexttile(5);
|
||||||
subplot('Position', [0.36, 0.05, 0.28, 0.4]);
|
imagesc(kx*1E-6, ky*1E-6, abs(log2(density_fft{k})))
|
||||||
imagesc(kx, ky, abs(log2(density_fft{k})))
|
xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
xlabel('1/dx', 'FontSize', 16)
|
ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
ylabel('1/dy', 'FontSize', 16)
|
|
||||||
axis equal tight;
|
axis equal tight;
|
||||||
colorbar
|
colorbar
|
||||||
colormap jet; % (flip(jet))
|
colormap jet;
|
||||||
% set(gca,'CLim',[0 100]);
|
|
||||||
set(gca,'YDir','normal')
|
set(gca,'YDir','normal')
|
||||||
title('DFT', 'FontSize', 16);
|
title('DFT', 'FontSize', 16);
|
||||||
|
|
||||||
% Subplot 6
|
% Tile 6: Density Noise Spectrum = |DFT|^2
|
||||||
% subplot(2, 3, 6);
|
nexttile(6);
|
||||||
subplot('Position', [0.67, 0.05, 0.28, 0.4]);
|
imagesc(kx*1E-6, ky*1E-6, abs(log2(density_noise_spectrum{k})))
|
||||||
imagesc(kx, ky, abs(log2(density_noise_spectrum{k})))
|
xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
xlabel('1/dx', 'FontSize', 16)
|
ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
ylabel('1/dy', 'FontSize', 16)
|
|
||||||
axis equal tight;
|
axis equal tight;
|
||||||
colorbar
|
colorbar
|
||||||
colormap jet; % (flip(jet))
|
colormap jet;
|
||||||
% set(gca,'CLim',[0 100]);
|
|
||||||
set(gca,'YDir','normal')
|
set(gca,'YDir','normal')
|
||||||
title('Density Noise Spectrum = |DFT|^2', 'FontSize', 16);
|
title('Density Noise Spectrum', 'FontSize', 16);
|
||||||
|
|
||||||
drawnow;
|
drawnow;
|
||||||
end
|
end
|
||||||
|
|
||||||
@ -198,25 +199,27 @@ end
|
|||||||
averagePowerSpectrum = mean(cat(3, density_noise_spectrum{:}), 3, 'double');
|
averagePowerSpectrum = mean(cat(3, density_noise_spectrum{:}), 3, 'double');
|
||||||
|
|
||||||
% Plot the average power spectrum.
|
% Plot the average power spectrum.
|
||||||
figure('Position', [100, 100, 1200, 500]);
|
figure(2)
|
||||||
clf
|
clf
|
||||||
|
set(gcf,'Position',[100, 100, 1500, 700])
|
||||||
|
|
||||||
subplot('Position', [0.05, 0.1, 0.4, 0.8]) % Adjusted position
|
% Create tiled layout with 2 rows and 3 columns
|
||||||
|
t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact');
|
||||||
|
|
||||||
|
nexttile(1);
|
||||||
imagesc(abs(10*log10(averagePowerSpectrum)))
|
imagesc(abs(10*log10(averagePowerSpectrum)))
|
||||||
axis equal tight;
|
axis equal tight;
|
||||||
colorbar
|
colorbar
|
||||||
colormap(flip(jet));
|
colormap(flip(jet));
|
||||||
% set(gca,'CLim',[0 1e-7]);
|
|
||||||
title('Average Density Noise Spectrum', 'FontSize', 16);
|
title('Average Density Noise Spectrum', 'FontSize', 16);
|
||||||
grid on;
|
grid on;
|
||||||
|
|
||||||
centers = ginput;
|
centers = ginput;
|
||||||
radius = 6;
|
radius = 3;
|
||||||
% Plot where clicked.
|
% Plot where clicked.
|
||||||
hVC = viscircles(centers, radius, 'Color', 'r', 'LineWidth', 2);
|
hVC = viscircles(centers, radius, 'Color', 'r', 'LineWidth', 2);
|
||||||
xc = centers(:,1);
|
xc = centers(:,1);
|
||||||
% xc = [78.2600, 108.3400, 128.8200, 150.5800, 181.3000];
|
|
||||||
yc = centers(:,2);
|
yc = centers(:,2);
|
||||||
% yc = [131.3800, 155.7000, 128.8200, 101.3000, 126.2600];
|
|
||||||
[yDim, xDim] = size(averagePowerSpectrum);
|
[yDim, xDim] = size(averagePowerSpectrum);
|
||||||
[xx,yy] = meshgrid(1:yDim,1:xDim);
|
[xx,yy] = meshgrid(1:yDim,1:xDim);
|
||||||
mask = false(xDim,yDim);
|
mask = false(xDim,yDim);
|
||||||
@ -225,78 +228,74 @@ for ii = 1:length(centers)
|
|||||||
end
|
end
|
||||||
mask = not(mask);
|
mask = not(mask);
|
||||||
|
|
||||||
x1 = 1;
|
|
||||||
y1 = 1;
|
|
||||||
x2 = 256;
|
|
||||||
y2 = 256;
|
|
||||||
|
|
||||||
% Ask user if the circle is acceptable.
|
% Ask user if the circle is acceptable.
|
||||||
message = sprintf('Is this acceptable?');
|
message = sprintf('Is this acceptable?');
|
||||||
button = questdlg(message, message, 'Accept', 'Reject and Quit', 'Accept');
|
button = questdlg(message, message, 'Accept', 'Reject and Quit', 'Accept');
|
||||||
if contains(button, 'Accept','IgnoreCase',true)
|
if contains(button, 'Accept','IgnoreCase',true)
|
||||||
image = mask.*averagePowerSpectrum;
|
image = mask.*averagePowerSpectrum;
|
||||||
image(image==0) = NaN;
|
image(image==0) = NaN;
|
||||||
imagesc(kx, ky, mask.*abs(10*log10(averagePowerSpectrum)))
|
imagesc(kx*1E-6, ky*1E-6, mask.*abs(10*log10(averagePowerSpectrum)))
|
||||||
hold on
|
hold on
|
||||||
line([kx(x1),kx(x2)], [ky(y1),ky(y2)], 'Color','white', 'LineStyle','--', 'LineWidth', 4);
|
xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
% imagesc(kx, ky, 10*log10(averagePowerSpectrum))
|
ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
% imagesc(kx, ky, log2(averagePowerSpectrum))
|
|
||||||
% imagesc(kx, ky, averagePowerSpectrum)
|
|
||||||
xlabel('1/dx', 'FontSize', 16)
|
|
||||||
ylabel('1/dy', 'FontSize', 16)
|
|
||||||
axis equal tight;
|
axis equal tight;
|
||||||
colorbar
|
colorbar
|
||||||
colormap(flip(jet));
|
colormap(flip(jet));
|
||||||
% set(gca,'CLim',[0 1e-7]);
|
|
||||||
title('Average Density Noise Spectrum', 'FontSize', 16);
|
title('Average Density Noise Spectrum', 'FontSize', 16);
|
||||||
grid on;
|
grid on;
|
||||||
elseif contains(button, 'Quit','IgnoreCase',true)
|
elseif contains(button, 'Quit','IgnoreCase',true)
|
||||||
delete(hVC); % Delete the circle from the overlay.
|
delete(hVC); % Delete the circle from the overlay.
|
||||||
image = averagePowerSpectrum;
|
image = averagePowerSpectrum;
|
||||||
imagesc(kx, ky, abs(10*log10(averagePowerSpectrum)))
|
imagesc(kx*1E-6, ky*1E-6, abs(10*log10(averagePowerSpectrum)))
|
||||||
% imagesc(kx, ky, 10*log10(averagePowerSpectrum))
|
xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
% imagesc(kx, ky, log2(averagePowerSpectrum))
|
ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
% imagesc(kx, ky, averagePowerSpectrum)
|
|
||||||
xlabel('1/dx', 'FontSize', 16)
|
|
||||||
ylabel('1/dy', 'FontSize', 16)
|
|
||||||
axis equal tight;
|
axis equal tight;
|
||||||
colorbar
|
colorbar
|
||||||
colormap(flip(jet));
|
colormap(flip(jet));
|
||||||
% set(gca,'CLim',[0 1e-7]);
|
|
||||||
title('Average Density Noise Spectrum', 'FontSize', 16);
|
title('Average Density Noise Spectrum', 'FontSize', 16);
|
||||||
grid on;
|
grid on;
|
||||||
end
|
end
|
||||||
|
|
||||||
subplot('Position', [0.55, 0.1, 0.4, 0.8]) % Adjusted position
|
% Fit
|
||||||
% [r, Zr] = radial_profile(averagePowerSpectrum, 1);
|
nexttile(2);
|
||||||
% Zr = (Zr - min(Zr))./(max(Zr) - min(Zr));
|
radialStep = 1; % in pixels
|
||||||
% plot(r, Zr, 'o-', 'MarkerSize', 4, 'MarkerFaceColor', 'none');
|
[R, Profile] = getRadialProfile(averagePowerSpectrum, radialStep);
|
||||||
% set(gca, 'XScale', 'log'); % Setting x-axis to log scale
|
kvec = (2 * pi) .* R(2:end) .* (sqrt(dvx^2 + dvy^2) * radialStep) * 1E-6; % in units of micrometers^-1
|
||||||
|
NormalisedProfile = (Profile(2:end) - min(Profile(2:end)))./(max(Profile(2:end)) - min(Profile(2:end)));
|
||||||
|
kmax = k_cutoff;
|
||||||
|
|
||||||
[xi, yi, profile] = improfile(image, [x1,x2], [y1,y2]);
|
% Define the objective function to minimize (the difference between model and data)
|
||||||
profile = (profile - min(profile))./(max(profile) - min(profile));
|
objectiveFunction = @(C, k) RadialImagingResponseFunction(C, k, kmax) - NormalisedProfile;
|
||||||
ks = sqrt(kx.^2 + ky.^2);
|
|
||||||
|
|
||||||
profile = profile(length(profile)/2:end);
|
% Initial guess for the parameters [C1, C2, C3, C4, C5, C6]
|
||||||
ks = ks(length(ks)/2:end);
|
initialGuess = [2E6, 1E-6, 1E-6, 1E-6, 1E-6, 0.8];
|
||||||
|
|
||||||
n = 0.05;
|
% Set upper and lower bounds for the parameters (optional)
|
||||||
[val,slice_idx]=min(abs(ks-n));
|
lb = [-Inf, -Inf, -Inf, -Inf, -Inf, 0]; % Lower bounds
|
||||||
ks = ks(1:slice_idx);
|
ub = [Inf, Inf, Inf, Inf, Inf, 1]; % Upper bounds
|
||||||
profile = profile(1:slice_idx);
|
|
||||||
plot(ks, profile, 'b*-');
|
% Perform the non-linear least squares fitting using lsqcurvefit
|
||||||
% plot(profile, 'b*-');
|
options = optimoptions('lsqcurvefit', 'Display', 'iter'); % Display iterations during fitting
|
||||||
grid on;
|
[C_fit, resnorm] = lsqcurvefit(objectiveFunction, initialGuess, kvec, NormalisedProfile, lb, ub, options);
|
||||||
% xlim([min(ks) max(ks)])
|
|
||||||
xlabel('k (1/µm)', 'FontSize', 16)
|
% Plot the fitted result against the data
|
||||||
|
k_new = linspace(kvec(1), kvec(end), 1000);
|
||||||
|
fittedProfile = RadialImagingResponseFunction(C_fit, k_new, kmax);
|
||||||
|
|
||||||
|
nexttile(2)
|
||||||
|
plot(kvec, NormalisedProfile, 'o-', 'MarkerSize', 4, 'MarkerFaceColor', 'none', 'DisplayName', 'Radial (average) profile');
|
||||||
|
hold on
|
||||||
|
plot(k_new, fittedProfile, 'r-', 'DisplayName', 'Fitted Curve');
|
||||||
|
set(gca, 'XScale', 'log'); % Setting x-axis to log scale
|
||||||
|
xlabel('k_\rho (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
||||||
ylabel('Normalised amplitude', 'FontSize', 16)
|
ylabel('Normalised amplitude', 'FontSize', 16)
|
||||||
title('Radial profile', 'FontSize', 16);
|
title('Modulation Transfer Function', 'FontSize', 16);
|
||||||
|
legend('FontSize', 16);
|
||||||
grid on;
|
grid on;
|
||||||
|
|
||||||
|
|
||||||
%% Helper Functions
|
%% Helper Functions
|
||||||
|
|
||||||
function ret = get_offset_from_corner(img, x_fraction, y_fraction)
|
function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction)
|
||||||
% image must be a 2D numerical array
|
% image must be a 2D numerical array
|
||||||
[dim1, dim2] = size(img);
|
[dim1, dim2] = size(img);
|
||||||
|
|
||||||
@ -308,7 +307,7 @@ function ret = get_offset_from_corner(img, x_fraction, y_fraction)
|
|||||||
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
|
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
|
||||||
end
|
end
|
||||||
|
|
||||||
function ret = subtract_offset(img, fraction)
|
function ret = subtractBackgroundOffset(img, fraction)
|
||||||
% Remove the background from the image.
|
% Remove the background from the image.
|
||||||
% :param dataArray: The image
|
% :param dataArray: The image
|
||||||
% :type dataArray: xarray DataArray
|
% :type dataArray: xarray DataArray
|
||||||
@ -321,11 +320,11 @@ function ret = subtract_offset(img, fraction)
|
|||||||
|
|
||||||
x_fraction = fraction(1);
|
x_fraction = fraction(1);
|
||||||
y_fraction = fraction(2);
|
y_fraction = fraction(2);
|
||||||
offset = get_offset_from_corner(img, x_fraction, y_fraction);
|
offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction);
|
||||||
ret = img - offset;
|
ret = img - offset;
|
||||||
end
|
end
|
||||||
|
|
||||||
function ret = crop_image(img, center, span)
|
function ret = cropODImage(img, center, span)
|
||||||
% Crop the image according to the region of interest (ROI).
|
% Crop the image according to the region of interest (ROI).
|
||||||
% :param dataSet: The images
|
% :param dataSet: The images
|
||||||
% :type dataSet: xarray DataArray or DataSet
|
% :type dataSet: xarray DataArray or DataSet
|
||||||
@ -344,7 +343,7 @@ function ret = crop_image(img, center, span)
|
|||||||
ret = img(y_start:y_end, x_start:x_end);
|
ret = img(y_start:y_end, x_start:x_end);
|
||||||
end
|
end
|
||||||
|
|
||||||
function ret = calculate_OD(imageAtom, imageBackground, imageDark)
|
function ret = calculateODImage(imageAtom, imageBackground, imageDark)
|
||||||
% Calculate the OD image for absorption imaging.
|
% Calculate the OD image for absorption imaging.
|
||||||
% :param imageAtom: The image with atoms
|
% :param imageAtom: The image with atoms
|
||||||
% :type imageAtom: numpy array
|
% :type imageAtom: numpy array
|
||||||
@ -368,50 +367,6 @@ function ret = calculate_OD(imageAtom, imageBackground, imageDark)
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
function [R, Zr] = radial_profile(data,radial_step)
|
|
||||||
x = (1:size(data,2))-size(data,2)/2;
|
|
||||||
y = (1:size(data,1))-size(data,1)/2;
|
|
||||||
% coordinate grid:
|
|
||||||
[X,Y] = meshgrid(x,y);
|
|
||||||
% creating circular layers
|
|
||||||
Z_integer = round(abs(X+1i*Y)/radial_step)+1;
|
|
||||||
% very fast MatLab calculations:
|
|
||||||
R = accumarray(Z_integer(:),abs(X(:)+1i*Y(:)),[],@mean);
|
|
||||||
Zr = accumarray(Z_integer(:),data(:),[],@mean);
|
|
||||||
end
|
|
||||||
|
|
||||||
function [M] = ImagingResponseFunction(B)
|
|
||||||
x = -100:100;
|
|
||||||
y = x;
|
|
||||||
[X,Y] = meshgrid(x,y);
|
|
||||||
R = sqrt(X.^2+Y.^2);
|
|
||||||
PHI = atan2(X,Y)+pi;
|
|
||||||
%fit parameters
|
|
||||||
tau = B(1);
|
|
||||||
alpha = B(2);
|
|
||||||
S0 = B(3);
|
|
||||||
phi = B(4);
|
|
||||||
beta = B(5);
|
|
||||||
delta = B(6);
|
|
||||||
A = B(7);
|
|
||||||
C = B(8);
|
|
||||||
a = B(9);
|
|
||||||
U = heaviside(1-R/a).*exp(-R.^2/a^2/tau^2);
|
|
||||||
THETA = S0*(R/a).^4 + alpha*(R/a).^2.*cos(2*PHI-2*phi) + beta*(R/a).^2;
|
|
||||||
p = U.*exp(1i.*THETA);
|
|
||||||
M = A*abs((ifft2(real(exp(1i*delta).*fftshift(fft2(p)))))).^2 + C;
|
|
||||||
end
|
|
||||||
|
|
||||||
function [RadialResponseFunc] = RadialImagingResponseFunction(C, k, kmax)
|
|
||||||
A = heaviside(1-k/kmax).*exp(-C(1)*k.^4);
|
|
||||||
W = C(2) + C(3)*k.^2 + C(4)*k.^4;
|
|
||||||
RadialResponseFunc = 0;
|
|
||||||
for n = -30:30
|
|
||||||
RadialResponseFunc = RadialResponseFunc + besselj(n,C(5)*k.^2).^2 + besselj(n,C(5)*k.^2).*besselj(-n,C(5)*k.^2).*cos(2*W);
|
|
||||||
end
|
|
||||||
RadialResponseFunc = C(6)*1/2*A.*RadialResponseFunc;
|
|
||||||
end
|
|
||||||
|
|
||||||
function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
|
function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
|
||||||
% removefringesInImage - Fringe removal and noise reduction from absorption images.
|
% removefringesInImage - Fringe removal and noise reduction from absorption images.
|
||||||
% Creates an optimal reference image for each absorption image in a set as
|
% Creates an optimal reference image for each absorption image in a set as
|
||||||
@ -481,4 +436,50 @@ function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
|
|||||||
% Compute optimised reference image
|
% Compute optimised reference image
|
||||||
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
|
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
function [M] = ImagingResponseFunction(B)
|
||||||
|
x = -100:100;
|
||||||
|
y = x;
|
||||||
|
[X,Y] = meshgrid(x,y);
|
||||||
|
R = sqrt(X.^2+Y.^2);
|
||||||
|
PHI = atan2(X,Y)+pi;
|
||||||
|
%fit parameters
|
||||||
|
tau = B(1);
|
||||||
|
alpha = B(2);
|
||||||
|
S0 = B(3);
|
||||||
|
phi = B(4);
|
||||||
|
beta = B(5);
|
||||||
|
delta = B(6);
|
||||||
|
A = B(7);
|
||||||
|
C = B(8);
|
||||||
|
a = B(9);
|
||||||
|
U = heaviside(1-R/a).*exp(-R.^2/a^2/tau^2);
|
||||||
|
THETA = S0*(R/a).^4 + alpha*(R/a).^2.*cos(2*PHI-2*phi) + beta*(R/a).^2;
|
||||||
|
p = U.*exp(1i.*THETA);
|
||||||
|
M = A*abs((ifft2(real(exp(1i*delta).*fftshift(fft2(p)))))).^2 + C;
|
||||||
|
end
|
||||||
|
|
||||||
|
function [R, Zr] = getRadialProfile(data, radialStep)
|
||||||
|
x = (1:size(data,2))-size(data,2)/2;
|
||||||
|
y = (1:size(data,1))-size(data,1)/2;
|
||||||
|
% coordinate grid:
|
||||||
|
[X,Y] = meshgrid(x,y);
|
||||||
|
% creating circular layers
|
||||||
|
Z_integer = round(abs(X+1i*Y)/radialStep)+1;
|
||||||
|
% very fast MatLab calculations:
|
||||||
|
R = accumarray(Z_integer(:),abs(X(:)+1i*Y(:)),[],@mean);
|
||||||
|
Zr = accumarray(Z_integer(:),data(:),[],@mean);
|
||||||
|
end
|
||||||
|
|
||||||
|
function [RadialResponseFunc] = RadialImagingResponseFunction(C, k, kmax)
|
||||||
|
A = heaviside(1 - k/kmax) .* exp(-C(1) * k.^4);
|
||||||
|
W = C(2) + C(3) * k.^2 + C(4) * k.^4;
|
||||||
|
RadialResponseFunc = 0;
|
||||||
|
for n = -30:30
|
||||||
|
RadialResponseFunc = RadialResponseFunc + ...
|
||||||
|
besselj(n, C(5) * k.^2).^2 + ...
|
||||||
|
besselj(n, C(5) * k.^2) .* besselj(-n, C(5) * k.^2) .* cos(2 * W);
|
||||||
|
end
|
||||||
|
RadialResponseFunc = C(6) * 1/2 * A .* RadialResponseFunc;
|
||||||
|
end
|
||||||
|
Loading…
Reference in New Issue
Block a user