Modified script to plot multiple RIN curves.
This commit is contained in:
parent
557d84649e
commit
0d2ce1aa76
143
Time-Series-Analyzer/computeAndcompareRIN.m
Normal file
143
Time-Series-Analyzer/computeAndcompareRIN.m
Normal file
@ -0,0 +1,143 @@
|
||||
% Script to compute the Relative Intensity Noise of a laser by recording the y-t signal
|
||||
% by Mathias Neidig in 2012
|
||||
% modified for DyLab use by Karthik in 2024
|
||||
|
||||
% The RIN is defined as
|
||||
%
|
||||
% RIN = 10* log10 [Single-sided power spectrum density / (average power)]
|
||||
%
|
||||
% and is given in [RIN] = dB/Hz
|
||||
|
||||
clear all
|
||||
close all
|
||||
|
||||
%% Set the directory where the data is
|
||||
|
||||
dirDCData = 'C:\\Users\\Karthik\\Documents\\GitRepositories\\Calculations\\Time-Series-Analyzer\\Time-Series-Data\\20240915\\After_AOD\\DC_Coupling\\';
|
||||
dirACData = 'C:\\Users\\Karthik\\Documents\\GitRepositories\\Calculations\\Time-Series-Analyzer\\Time-Series-Data\\20240915\\After_AOD\\AC_Coupling\\';
|
||||
|
||||
%% Load the files which contain: - the DC coupled y-t signal to obtain the averaged power
|
||||
% - the AC coupled y-t signal to obtain the fluctuations
|
||||
% - the AC coupled y-t signal with the beam blocked to obtain the background fluctuations
|
||||
|
||||
%------------------------------------------------------------------------- %
|
||||
bgsignal = load( [ dirACData '20240915_Background_AC'] ); %
|
||||
dcsignal = load( [ dirDCData '20240915_1V_-3Mod_DC_PID_Inactive'] ); %
|
||||
acsignal_1 = load( [ dirACData '20240915_1V_-3Mod_AC_PID_Inactive'] ); %
|
||||
acsignal_2 = load( [ dirACData '20240915_1V_-3Mod_AC_PID_Active'] ); %
|
||||
|
||||
label_0 = 'Background'; %
|
||||
label_1 = 'Power = 1 V, Modulation = -3.0 V, PID Inactive'; %
|
||||
label_2 = 'Power = 1 V, Modulation = -3.0 V, PID Active'; %
|
||||
%------------------------------------------------------------------------- %
|
||||
|
||||
%% Read out the important parameters
|
||||
|
||||
dcdata = dcsignal.A;
|
||||
acdata_1 = acsignal_1.A;
|
||||
acdata_2 = acsignal_2.A;
|
||||
bgdata = bgsignal.A;
|
||||
|
||||
N = length(dcdata); % #samples
|
||||
f_s = 1/dcsignal.Tinterval; % Sample Frequency
|
||||
delta_f = f_s/N; % step size in frequency domain
|
||||
delta_t = 1/f_s; % time step
|
||||
|
||||
%% Custom Control Parameters
|
||||
|
||||
% Choose smoothing parameter; has to be odd
|
||||
%----------------%
|
||||
span = 21; %
|
||||
%----------------%
|
||||
|
||||
%% Computes the RIN
|
||||
|
||||
% compute the average power (voltage^2)
|
||||
average_P = mean(dcdata.*dcdata);
|
||||
|
||||
% compute the power spectrum density FFT(A) x FFT*(A)/N^2 of the source & the bg
|
||||
psd_src_1 = fft(acdata_1) .* conj(fft(acdata_1))/N^2;
|
||||
psd_src_2 = fft(acdata_2) .* conj(fft(acdata_2))/N^2;
|
||||
psd_bg = fft(bgdata) .* conj(fft(bgdata))/N^2;
|
||||
|
||||
% converts the psd to the single-sided psd --> psd is symmetric around zero --> omit
|
||||
% negative frequencies and put the power into the positive ones --> spsd
|
||||
|
||||
for i = 1 : N/2+1
|
||||
if i>1
|
||||
spsd_src_1(i) = 2*psd_src_1(i);
|
||||
spsd_src_2(i) = 2*psd_src_2(i);
|
||||
spsd_bg(i) = 2*psd_bg(i);
|
||||
else
|
||||
spsd_src_1(i) = psd_src_1(i);
|
||||
spsd_src_2(i) = psd_src_2(i);
|
||||
spsd_bg(i) = psd_bg(i);
|
||||
end
|
||||
end
|
||||
|
||||
% smooths the spsd by doing a moving average
|
||||
spsd_src_smooth_1 = smooth(spsd_src_1,span,'moving');
|
||||
spsd_src_smooth_2 = smooth(spsd_src_2,span,'moving');
|
||||
spsd_bg_smooth = smooth(spsd_bg, span,'moving');
|
||||
|
||||
% calculates the RIN given in dB/Hz; the factor delta_f is needed to convert from dB/bin into dB/Hz
|
||||
RIN_src_smooth_1 = 10*log10(spsd_src_smooth_1/(average_P*delta_f));
|
||||
RIN_src_smooth_2 = 10*log10(spsd_src_smooth_2/(average_P*delta_f));
|
||||
RIN_bg_smooth = 10*log10(spsd_bg_smooth /(average_P*delta_f));
|
||||
|
||||
% creates an array for the frequencies up to half the sampling frequency
|
||||
f = f_s/2 * linspace(0,1,N/2+1);
|
||||
f_smooth = smooth(f,span,'moving');
|
||||
%
|
||||
% Calculates the shot noise limit of the used PD given the wavelength of the light source and
|
||||
% incident average power
|
||||
PlanckConstant = 6.62607015E-34;
|
||||
SpeedOfLight = 299792458;
|
||||
WavelengthOfLaserLight = 1064E-9;
|
||||
FrequencyOfLaserLight = SpeedOfLight / WavelengthOfLaserLight;
|
||||
QuantumEfficiencyOfPD = 1;
|
||||
AverageIncidentPower = 0.001; % (in W)
|
||||
ShotNoiseLimit = 10*log10((2 * PlanckConstant * FrequencyOfLaserLight) / (QuantumEfficiencyOfPD * AverageIncidentPower));
|
||||
|
||||
%% Plots the RIN
|
||||
|
||||
% Plots the RIN vs frequency
|
||||
f_ = clf;
|
||||
figure(f_);
|
||||
set(gcf,'Position',[100 100 950 750])
|
||||
semilogx(f_smooth, RIN_bg_smooth, LineStyle = "-", Color = [.7 .7 .7])
|
||||
hold on
|
||||
semilogx(f_smooth,RIN_src_smooth_1,'r-')
|
||||
semilogx(f_smooth,RIN_src_smooth_2,'b-')
|
||||
ax = gca(f_);
|
||||
ax.XAxis.FontSize = 14;
|
||||
ax.YAxis.FontSize = 14;
|
||||
xlabel('Frequency [Hz]', FontSize=16)
|
||||
ylabel('RIN [dBc/Hz]', FontSize=16)
|
||||
xlim([10 5E6]);
|
||||
ylim([-140 -25]);
|
||||
title('\bf Intensity noise of Arm 1 of the ODT as measured by an Out-of-loop PD', FontSize=14)
|
||||
legend(label_0, label_1, label_2, 'Location','NorthWest', FontSize=12);
|
||||
grid on
|
||||
|
||||
% optional: save the picture without editing wherever you want
|
||||
%------------------------------------------%
|
||||
% saveas(f_,'FileName','png'); %
|
||||
%------------------------------------------%
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user