Calculations/EstimatesForAccordionLattice.m

129 lines
5.3 KiB
Mathematica
Raw Normal View History

%% Physical constants
PlanckConstant = 6.62607015E-34;
PlanckConstantReduced = 6.62607015E-34/(2*pi);
FineStructureConstant = 7.2973525698E-3;
ElectronMass = 9.10938291E-31;
GravitationalConstant = 6.67384E-11;
ProtonMass = 1.672621777E-27;
AtomicMassUnit = 1.660539066E-27;
BohrRadius = 5.2917721067E-11;
BohrMagneton = 9.274009994E-24;
BoltzmannConstant = 1.38064852E-23;
StandardGravityAcceleration = 9.80665;
SpeedOfLight = 299792458;
StefanBoltzmannConstant = 5.670373E-8;
ElectronCharge = 1.602176634E-19;
VacuumPermeability = 1.25663706212E-6;
DielectricConstant = 8.8541878128E-12;
ElectronGyromagneticFactor = -2.00231930436153;
AvogadroConstant = 6.02214076E23;
ZeroKelvin = 273.15;
GravitationalAcceleration = 9.80553;
VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability);
HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius);
AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3
% Dy specific constants
Dy164Mass = 163.929174751*1.660539066E-27;
Dy164IsotopicAbundance = 0.2826;
DyMagneticMoment = 9.93*9.274009994E-24;
%% Lattice spacing
Wavelength = 532e-9;
theta = linspace(1.5, 18.0, 100);
LatticeSpacing = Wavelength ./ (2.*sin((theta*pi/180)/2));
figure(1);
set(gcf,'Position',[100 100 950 750])
plot(theta, LatticeSpacing * 1E6, LineWidth=2.0)
xlim([0 19]);
ylim([0.5 21]);
xlabel('Angle (deg)', FontSize=16)
ylabel('Lattice spacing (µm)', FontSize=16)
title(['\bf Upper bound = ' num2str(round(max(LatticeSpacing * 1E6),1)) ' µm ; \bf Lower bound = ' num2str(round(min(LatticeSpacing * 1E6),1)) ' µm'], FontSize=16)
grid on
%% Scaling of vertical trap frequency with lattice spacing
Wavelength = 532e-9;
a = 180 * (AtomicUnitOfPolarizability / (2 * SpeedOfLight * VacuumPermittivity));
Power = 5;
waist_y = 250E-6;
waist_z = 50E-6;
thetas = linspace(1.5, 18.0, 100);
LatticeSpacings = zeros(1, length(thetas));
Omega_z = zeros(1, length(thetas));
for idx = 1:length(thetas)
theta = 0.5 * thetas(idx) .* pi/180;
LatticeSpacings(idx) = Wavelength ./ (2.*sin(theta));
Omega_z(idx) = sqrt(((16 * a * Power) / (pi * Dy164Mass * waist_y * waist_z)) * ...
((2 * (cos(theta)/waist_z)^2) + ((Wavelength * sin(theta)/pi)^2 * ...
((1/waist_y^4) + (1/waist_z^4))) + (pi / LatticeSpacings(idx))^2));
end
nu_z = Omega_z ./ (2*pi);
figure(2);
set(gcf,'Position',[100 100 950 750])
plot(LatticeSpacings * 1E6, nu_z * 1E-3, LineWidth=2.0)
xlim([0.5 21]);
xlabel('Lattice spacing (µm)', FontSize=16)
ylabel('Trap frequency (kHz)', FontSize=16)
title(['\bf Upper bound = ' num2str(round(max(nu_z * 1E-3),2)) ' kHz ; \bf Lower bound = ' num2str(round(min(nu_z * 1E-3),2)) ' kHz'], FontSize=16)
grid on
%% Scaling of trap depth with power
a = 180 * (AtomicUnitOfPolarizability / (2 * SpeedOfLight * VacuumPermittivity));
waist_y = 250E-6;
waist_z = 50E-6;
Powers = linspace(0.1, 5, 100);
TrapDepth = ((8 * a .* Powers) ./ (pi * waist_y * waist_z)) / (BoltzmannConstant * 1E-6); % in µK
figure(3);
set(gcf,'Position',[100 100 950 750])
plot(Powers, TrapDepth, LineWidth=2.0)
xlim([0.0 5.5]);
xlabel('Powers (W)', FontSize=16)
ylabel('Trap depth (µK)', FontSize=16)
title(['\bf Upper bound = ' num2str(round(max(TrapDepth),2)) ' µK ; \bf Lower bound = ' num2str(round(min(TrapDepth),2)) ' µK'], FontSize=16)
grid on
%% Scaling of Recoil Energy - All energy scales in an optical lattice are naturally parametrized by the lattice recoil energy
LatticeSpacing = linspace(2E-6, 20E-6, 100);
RecoilEnergy = PlanckConstant^2 ./ (8 .* Dy164Mass .* LatticeSpacing.^2);
figure(4);
set(gcf,'Position',[100 100 950 750])
semilogy(LatticeSpacing * 1E6, RecoilEnergy/PlanckConstant, LineWidth=2.0)
xlim([0.5 21]);
xlabel('Lattice spacing (µm)', FontSize=16)
ylabel('Recoil Energy (Hz)', FontSize=16)
title(['\bf Upper bound = ' num2str(round(max(RecoilEnergy / PlanckConstant),1)) ' Hz; Lower bound = ' num2str(round(min(RecoilEnergy / PlanckConstant),1)) ' Hz'], FontSize=16)
grid on
%% Interference pattern spacing in ToF - de Broglie wavelength associated with the relative motion of atoms
ExpansionTime = linspace(1E-3, 20.0E-3, 100);
figure(5);
set(gcf,'Position',[100 100 950 750])
labels = [];
for ls = [2E-6:2E-6:5E-6 6E-6:6E-6:20E-6]
InteferencePatternSpacing = (PlanckConstant .* ExpansionTime) ./ (Dy164Mass * ls);
plot(ExpansionTime*1E3, InteferencePatternSpacing* 1E6, LineWidth=2.0, DisplayName=['\bf Lattice spacing = ' num2str(round(max(ls * 1E6),1)) ' µm'])
hold on
end
xlim([0 22]);
xlabel('Free expansion time (milliseconds)', FontSize=16)
ylabel('Interference pattern period (µm)', FontSize=16)
title('\bf Interference of condensates - Fringe period is the de Broglie wavelength associated with the relative motion of atoms', FontSize=12)
legend(labels, 'Location','NorthWest', FontSize=12);
grid on
legend show