Calculations/test_MOTCaptureProcessSimulation.m

188 lines
7.8 KiB
Mathematica
Raw Normal View History

%% This script is testing the functionalities of the MOT Capture Process Simulation Classes
%
% Important: Run only sectionwise!!
%% - Testing the MOTCaptureProcess-Class
% - Create MOTCaptureProcess object with specified options
% - Automatically creates Beams objects
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 10000;
OptionsStruct.TimeStep = 50e-06; % in s
OptionsStruct.SimulationTime = 4e-03; % in s
OptionsStruct.SpontaneousEmission = true;
OptionsStruct.Sideband = false;
OptionsStruct.PushBeam = true;
OptionsStruct.Gravity = true;
OptionsStruct.BackgroundCollision = true;
OptionsStruct.SaveData = false;
OptionsStruct.SaveDirectory = 'C:\DY LAB\MOT Simulation Project\Calculations\Code\MOT Capture Process Simulation';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
Oven = Simulator.Oven(options{:});
MOT2D = Simulator.TwoDimensionalMOT(options{:});
Beams = MOT2D.Beams;
%% - Run Simulation
poolobj = gcp('nocreate'); % Check if pool is open
if isempty(poolobj)
parpool;
end
[LoadingRate, ~] = MOT2D.runSimulation(Oven);
%% - Plot initial distribution
% - sampling the position distribution
InitialPositions = Oven.initialPositionSampling();
% - sampling the velocity distribution
InitialVelocities = Oven.initialVelocitySampling(MOT2D);
NumberOfBins = 100;
Plotter.plotPositionAndVelocitySampling(NumberOfBins, InitialPositions, InitialVelocities);
%% - Plot distributions of magnitude and direction of initial velocities
NumberOfBins = 50;
Plotter.plotInitialVeloctiySamplingVsAngle(Oven, MOT2D, NumberOfBins)
%% - Plot Magnetic Field
XAxisRange = [-5 5];
YAxisRange = [-5 5];
ZAxisRange = [-5 5];
Plotter.visualizeMagneticField(MOT2D, XAxisRange, YAxisRange, ZAxisRange)
%% - Plot MFP & VP for different temperatures
TemperatureinCelsius = linspace(750,1100,2000); % Temperature in Celsius
Plotter.plotMeanFreePathAndVapourPressureVsTemp(TemperatureinCelsius)
%% - Plot the Free Molecular Flux for different temperatures
Temperature = [950, 1000, 1050]; % Temperature
Plotter.plotFreeMolecularFluxVsTemp(Oven,Temperature)
%% - Plot Angular Distribution for different Beta
Beta = [0.5, 0.1 , 0.05, 0.02, 0.01]; %Beta = 2 * radius / length of the tube
Plotter.plotAngularDistributionForDifferentBeta(Oven, Beta)
%% - Plot Capture Velocity
Plotter.plotCaptureVelocityVsAngle(Oven, MOT2D); % Takes a long time to plot!
%% - Plot Phase Space with Acceleration Field
MOT2D.Sideband = false;
MOT2D.NumberOfAtoms = 50;
MinimumVelocity = 0;
MaximumVelocity = 150;
NumberOfBins = 200; %Along each axis
IncidentAtomDirection = 0*2*pi/360;
IncidentAtomPosition = 0;
Plotter.plotPhaseSpaceWithAccelerationField(Oven, MOT2D, MinimumVelocity, MaximumVelocity, NumberOfBins, IncidentAtomDirection, IncidentAtomPosition)
%% - Plot Trajectories along the 3 directions
MOT2D.NumberOfAtoms = 100;
MaximumVelocity = 150;
IncidentAtomDirection = 0*2*pi/360;
IncidentAtomPosition = 0;
%% - Positions
Plotter.plotDynamicalQuantities(Oven, MOT2D, MaximumVelocity, IncidentAtomDirection, IncidentAtomPosition, 'PlotPositions', true);
%% - Velocities
Plotter.plotDynamicalQuantities(Oven, MOT2D, MaximumVelocity, IncidentAtomDirection, IncidentAtomPosition, 'PlotVelocities', true);
%% - Scan parameters: One-Parameter Scan
MOT2D.NumberOfAtoms = 5000;
MOT2D.TotalPower = 0.4;
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
NumberOfPointsForFirstParam = 5; %iterations of the simulation
% Scan Cooling Beam Power
PowerArray = linspace(0.1, 1.0, NumberOfPointsForFirstParam) * MOT2D.TotalPower;
% Scan Cooling Beam Detuning
% DetuningArray = linspace(-0.5,-10, NumberOfPointsForParam) * Helper.PhysicsConstants.BlueLinewidth;
LoadingRateArray = zeros(1,NumberOfPointsForFirstParam);
StandardErrorArray = zeros(1,NumberOfPointsForFirstParam);
ConfidenceIntervalArray = zeros(NumberOfPointsForFirstParam, 2);
tStart = tic;
for i=1:NumberOfPointsForFirstParam
CoolingBeam.Power = PowerArray(i);
[LoadingRateArray(i), StandardErrorArray(i), ConfidenceIntervalArray(i, :)] = MOT2D.runSimulation(Oven);
end
tEnd = toc(tStart);
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
clear OptionsStruct
% - Plot results
ParameterArray = PowerArray;
QuantityOfInterestArray = LoadingRateArray;
OptionsStruct = struct;
OptionsStruct.RescalingFactorForParameter = 1000;
OptionsStruct.XLabelString = 'Cooling Beam Power (mW)';
OptionsStruct.RescalingFactorForYQuantity = 1e-10;
OptionsStruct.ErrorsForYQuantity = true;
OptionsStruct.ErrorsArray = StandardErrorArray;
OptionsStruct.CIForYQuantity = true;
OptionsStruct.CIArray = ConfidenceIntervalArray;
OptionsStruct.RemoveOutliers = true;
OptionsStruct.YLabelString = 'Loading rate (x 10^{10} atoms/s)';
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
options = Helper.convertstruct2cell(OptionsStruct);
Plotter.plotResultForOneParameterScan(ParameterArray, QuantityOfInterestArray, options{:})
clear OptionsStruct
%% - Scan parameters: Two-Parameter Scan
MOT2D.NumberOfAtoms = 5000;
MOT2D.TotalPower = 0.6;
MOT2D.Sideband = true;
SidebandBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'BlueSideband'), Beams)};
NumberOfPointsForFirstParam = 10; %iterations of the simulation
NumberOfPointsForSecondParam = 10;
% Scan Sideband Detuning and Power Ratio
DetuningArray = linspace(-0.5,-10, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth;
SidebandPowerArray = linspace(0.1,0.9, NumberOfPointsForSecondParam) * MOT2D.TotalPower;
BluePowerArray = MOT2D.TotalPower - SidebandPowerArray;
LoadingRateArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam);
StandardErrorArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam);
ConfidenceIntervalArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam, 2);
tStart = tic;
for i = 1:NumberOfPointsForFirstParam
SidebandBeam.Detuning = DetuningArray(i);
for j = 1:NumberOfPointsForSecondParam
SidebandBeam.Power = SidebandPowerArray(j);
CoolingBeam.Power = BluePowerArray(j);
[LoadingRateArray(i,j), StandardErrorArray(i,j), ConfidenceIntervalArray(i,j,:)] = MOT2D.runSimulation(Oven);
end
end
tEnd = toc(tStart);
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
clear OptionsStruct
% - Plot results
FirstParameterArray = DetuningArray;
SecondParameterArray = SidebandPowerArray;
QuantityOfInterestArray = LoadingRateArray;
OptionsStruct = struct;
OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.BlueLinewidth)^-1;
OptionsStruct.XLabelString = 'Sideband Detuning (\Delta/\Gamma)';
OptionsStruct.RescalingFactorForSecondParameter = 1000;
OptionsStruct.YLabelString = 'Sideband Power (mW)';
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-10;
OptionsStruct.ZLabelString = 'Loading rate (x 10^{10} atoms/s)';
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
options = Helper.convertstruct2cell(OptionsStruct);
Plotter.plotResultForTwoParameterScan(FirstParameterArray, SecondParameterArray, QuantityOfInterestArray, options{:})
clear OptionsStruct