32 lines
2.0 KiB
Mathematica
32 lines
2.0 KiB
Mathematica
|
function reinitializeSimulator(this)
|
||
|
%% PHYSICAL CONSTANTS
|
||
|
pc = Helper.PhysicsConstants;
|
||
|
%% SIMULATION PARAMETERS
|
||
|
this.NozzleLength = 60e-3;
|
||
|
this.NozzleRadius = 2.50e-3;
|
||
|
this.Beta = 2 * (this.NozzleRadius/this.NozzleLength);
|
||
|
this.ApertureCut = max(2.5e-3,this.NozzleRadius);
|
||
|
this.OvenDistance = ((25+12.5)*1e-3 + (this.NozzleRadius + this.ApertureCut)) / tan(15/360 * 2 * pi);
|
||
|
% Distance between the nozzle and the 2-D MOT chamber center
|
||
|
% 25 is the beam radius/sqrt(2)
|
||
|
% 12.5 is the radius of the oven
|
||
|
% 15 eg is the angle between the 2-D MOT chamber center and the nozzle
|
||
|
this.OvenTemperature = 1000; % Temperature in Celsius
|
||
|
this.MOTDistance = 320e-3; % Distance between the 2-D MOT the 3-D MOT
|
||
|
this.MagneticGradient = 0.425; % T/m
|
||
|
this.BlueWaveVector = 2*pi/pc.BlueWavelength;
|
||
|
this.BlueSaturationIntensity = 2*pi^2*pc.PlanckConstantReduced*pc.SpeedOfLight*pc.BlueLinewidth/3/(pc.BlueWavelength)^3/10;
|
||
|
this.OrangeWaveVector = 2*pi/pc.OrangeWavelength;
|
||
|
this.OrangeSaturationIntensity = 2*pi^2*pc.PlanckConstantReduced*pc.SpeedOfLight*pc.OrangeLinewidth/3/(pc.OrangeWavelength)^3/10;
|
||
|
this.BlueBeamRadius = min(0.035/2,sqrt(2)/2*this.OvenDistance); % Diameter of CF40 flange = 0.035
|
||
|
Theta_Nozzle = atan((this.NozzleRadius+this.BlueBeamRadius*sqrt(2))/this.OvenDistance); % The angle of capture region towards the oven nozzle
|
||
|
Theta_Aperture = 15/360*2*pi; % The limitation angle of the second aperture in the oven
|
||
|
this.NozzleExitDivergence = min(Theta_Nozzle,Theta_Aperture);
|
||
|
this.MOTExitDivergence = 0.016; % The limitation angle between 2D-MOT and 3D-MOT
|
||
|
this.TotalPower = 0.4;
|
||
|
this.OrangeBeamRadius = 1.2e-03;
|
||
|
this.PushBeamRadius = 0;
|
||
|
this.PushBeamDistance = 0;
|
||
|
this.DistanceBetweenPushBeamAnd3DMOTCenter = 1;
|
||
|
this.ZeemanSlowerBeamRadius = 1;
|
||
|
end
|