Calculations/Siemens-Star-Analyzer/siemens_star_analysis.py

248 lines
7.2 KiB
Python
Raw Normal View History

2024-06-18 19:01:35 +02:00
import math
import numpy as np
from matplotlib import pyplot as plt
from scipy.signal import find_peaks
from scipy.optimize import curve_fit
def show_acquisition(recon_sum_norm, recon_sum, recon_sum_normalized, x0, y0):
plt.figure(figsize=(16,16), tight_layout=True)
plt.subplot(131)
plt.imshow(recon_sum_norm, cmap='gray')
plt.title('Normalization image')
plt.subplot(132)
plt.imshow(recon_sum, cmap='gray')
plt.scatter(x=y0,y=x0,s=8,color='r')
plt.title('Acquired image')
plt.subplot(133)
plt.imshow(recon_sum_normalized, cmap='gray')
plt.title('Normalized image')
def show_radii(img, x0, y0, R_MAX, R_MIN, title=None):
plt.figure(figsize=(8,8))
plt.imshow(img, cmap='gray')
plt.scatter(x=y0, y=x0, s=4, color='r')
if title is not None:
plt.title(title)
theta = np.arange(0,360,0.1)
x = np.zeros(len(theta))
y = np.zeros(len(theta))
for index,angle in enumerate(theta*np.pi/180):
x[index] = x0 + R_MAX*np.sin(angle)
y[index] = y0 + R_MAX*np.cos(angle)
plt.scatter(y,x,s=4)
for index,angle in enumerate(theta*np.pi/180):
x[index] = x0 + R_MIN*np.sin(angle)
y[index] = y0 + R_MIN*np.cos(angle)
plt.scatter(y,x,s=4)
def get_freq(radius, Np):
'''
Returns spatial frequency in cycles/pixel
'''
freq = Np/(2*np.pi*radius)
return freq
def pix_to_mm(res_radius: int, siemens_radius: int, phys_mag: float, ext_r: int,
zoom:int=1) -> float:
return res_radius * siemens_radius * phys_mag / (ext_r * zoom)
def calculate_lpmm(radius_pix: int, siemens_freq: int, siemens_radius: int,
phys_mag: float, ext_r: int, zoom:int=1) -> float:
"""Calculates resolution in linepairs per millimter (lp/mm).
Args:
radius_pix (int):
Radius in pixels at which resolution is determined.
siemens_freq (int):
Amount of black black bars in the Siemens Star.
siemens_radius (int):
Siemens Star radius in mm.
phys_mag (float):
Physical magnification due to the system's optics.
ext_r (int):
External radius in pixels.
zoom (int, optional):
Zoom applied to the acquisition. If present, the external radius
(ext_r) must be the same as in the image without zoom and this
function will calculate the correct external radius after zooming.
Defaults to 1.
Returns:
float: resolution in lp/mm.
"""
radius_mm = pix_to_mm(radius_pix, siemens_radius, phys_mag, ext_r, zoom)
theta = 2 * math.pi / siemens_freq
c = 2 * radius_mm * math.sin(theta/2)
return 1/c
def calculate_contrast(maxima, minima):
Imax = np.median(maxima)
Imax_mean = np.mean(maxima)
Imax_std = np.std(maxima)
Imax_unc = Imax_std/np.sqrt(len(maxima))
Imin = np.median(minima)
Imin_mean = np.mean(minima)
Imin_std = np.std(minima)
Imin_unc = Imin_std/np.sqrt(len(minima))
contrast = (Imax-Imin)/(Imax+Imin)
dImax2 = (2*Imax/(Imax+Imin)**2)**2
dImin2 = (2*Imin/(Imax+Imin)**2)**2
contrast_unc = np.sqrt(dImax2 * (Imax_unc**2) + dImin2 * (Imin_unc**2))
return contrast, contrast_unc, Imax, Imin
def object_resolution(res_radius: int, siemens_radius: int, siemens_freq: int,
phys_mag: float, ext_r: int, zoom:int=1) -> float:
"""Calculates resolution in mm.
Args:
res_radius (int):
Radius in pixels at which resolution is determined.
siemens_radius (int):
Siemens Star radius in mm.
siemens_freq (int):
Amount of black black bars in the Siemens Star.
phys_mag (float):
Physical magnification due to the system's optics.
ext_r (int):
External radius in pixels.
zoom (int, optional):
Zoom applied to the acquisition. If present, the external radius
(ext_r) must be the same as in the image without zoom and this
function will calculate the correct external radius after zooming.
Defaults to 1.
Returns:
float:
Real resolution at the object plane.
"""
res_r = pix_to_mm(res_radius, siemens_radius, phys_mag, ext_r, zoom)
res = 2 * np.pi * res_r / siemens_freq
return res
def find_resolution(img, x0, y0, radii, interactive=False):
d_theta = 0.0001
theta = np.arange(0,2*np.pi, d_theta)
d = int(10*np.pi/180/d_theta * 2/3)
contrast = np.zeros(len(radii))
contrast_unc = np.zeros(len(radii))
for index, R in enumerate(radii):
values = np.zeros(len(theta))
x = np.around(x0 + R*np.cos(theta)).astype('int')
y = np.around(y0 + R*np.sin(theta)).astype('int')
for i in range(len(theta)):
values[i] = img[x[i],y[i]]
# Finding maxima and minima
maxima,_ = find_peaks(values,distance=d)
minima,_ = find_peaks(-values,distance=d)
contrast[index],contrast_unc[index],Imax,Imin = calculate_contrast(
values[maxima],
values[minima])
if interactive:
plt.figure()
plt.plot(theta, values, label='profile')
plt.scatter(theta[maxima], values[maxima], label='maxima')
plt.scatter(theta[minima], values[minima], label='minima')
plt.axhline(Imax, label=f'median maximum = {Imax:.2f}')
plt.axhline(Imin, label=f'median minimum = {Imin:.2f}')
plt.xlabel('theta (rad)')
plt.ylabel('Normalized intensity')
plt.title(f'R={R} pix, contrast={contrast[index]:.3f}')
plt.legend()
plt.waitforbuttonpress()
plt.close()
ind = np.abs(contrast - 0.1).argmin()
# Forcing the contrast to be at least 0.1
if contrast[ind] < 0.1:
ind += 1
res_radius = radii[ind]
res_MTF = contrast[ind]
print(f'Found resolution at R={res_radius} pix, MTF={res_MTF}')
return res_radius, res_MTF, contrast, contrast_unc
def plot_MTF_radius(radii, contrast, contrast_unc=None):
plt.figure()
plt.plot(radii,contrast, label='MTF')
plt.axhline(0.1, label='Resolution limit') # Resolution limit at 10% of the MTF
if contrast_unc is not None:
plt.errorbar(radii,contrast,yerr=contrast_unc, label='MTF error')
plt.xlabel('Radius (pix)')
plt.ylabel('Contrast')
plt.legend()
def plot_MTF_freq(radii, contrast, contrast_unc=None):
freqs = [get_freq(R,36) for R in radii]
plt.figure()
plt.plot(freqs,contrast, label='MTF')
plt.axhline(0.1, label='Resolution limit') # Resolution limit at 10% of the MTF
if contrast_unc is not None:
plt.errorbar(freqs,contrast,yerr=contrast_unc, label='MTF error')
plt.xlabel('f (cycles/pixel)')
plt.ylabel('Contrast')
plt.title('MTF')
plt.legend()
def reciprocal_func(x, A):
return A/x
def resolution_curve_coeffs(zooms, resolutions):
popt, pcov = curve_fit(reciprocal_func, zooms, resolutions)
return popt[0]