Calculations/Imaging Response Function Extractor/extractIRF.m

469 lines
16 KiB
Mathematica
Raw Normal View History

%% Parameters
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", "/images/Vertical_Axis_Camera/in_situ_absorption"];
folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/IRF/0044/";
cam = 5;
angle = 90 + 51.5;
center = [1700, 2300];
span = [255, 255];
fraction = [0.1, 0.1];
NA = 0.6;
pixel_size = 4.6e-6;
lambda = 421e-9;
d = lambda/2/pi/NA;
k_cutoff = NA/lambda/1e6;
%% Compute OD image, rotate and extract ROI for analysis
% Get a list of all files in the folder with the desired file name pattern.
filePattern = fullfile(folderPath, '*.h5');
files = dir(filePattern);
refimages = zeros(span(1) + 1, span(2) + 1, length(files));
absimages = zeros(span(1) + 1, span(2) + 1, length(files));
for k = 1 : length(files)
baseFileName = files(k).name;
fullFileName = fullfile(files(k).folder, baseFileName);
fprintf(1, 'Now reading %s\n', fullFileName);
atm_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle));
bkg_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
dark_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
refimages(:,:,k) = subtract_offset(crop_image(bkg_img, center, span), fraction);
absimages(:,:,k) = subtract_offset(crop_image(calculate_OD(atm_img, bkg_img, dark_img), center, span), fraction);
end
%% Fringe removal
2024-06-12 19:24:55 +02:00
optrefimages = removefringesInImage(absimages, refimages);
absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :);
nimgs = size(absimages_fringe_removed,3);
od_imgs = cell(1, nimgs);
for i = 1:nimgs
od_imgs{i} = absimages_fringe_removed(:, :, i);
end
%% Compute the Density Noise Spectrum
mean_subtracted_od_imgs = cell(1, length(od_imgs));
mean_od_img = mean(cat(3, od_imgs{:}), 3, 'double');
density_fft = cell(1, length(od_imgs));
density_noise_spectrum = cell(1, length(od_imgs));
[Nx, Ny] = size(mean_od_img);
dx = pixel_size;
dy = pixel_size;
xvals = (1:Nx)*dx*1e6;
yvals = (1:Ny)*dy*1e6;
Nyq_k = 1/dx; % Nyquist
dk = 1/(Nx*dx); % Wavenumber increment
kx = -Nyq_k/2:dk:Nyq_k/2-dk; % wavenumber
kx = kx * dx; % wavenumber (in units of 1/dx)
Nyq_k = 1/dy; % Nyquist
dk = 1/(Ny*dy); % Wavenumber increment
ky = -Nyq_k/2:dk:Nyq_k/2-dk; % wavenumber
ky = ky * dy; % wavenumber (in units of 1/dy)
% Create Circular Mask
n = 2^8; % size of mask
mask = zeros(n);
I = 1:n;
x = I-n/2; % mask x-coordinates
y = n/2-I; % mask y-coordinates
[X,Y] = meshgrid(x,y); % create 2-D mask grid
R = 32; % aperture radius
A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
mask(A) = 1; % set mask elements inside aperture to 1
% Calculate Power Spectrum and plot
figure('Position', [100, 100, 1200, 800]);
clf
for k = 1 : length(od_imgs)
mean_subtracted_od_imgs{k} = od_imgs{k} - mean_od_img;
masked_img = mean_subtracted_od_imgs{k} .* mask;
density_fft{k} = (1/numel(masked_img)) * abs(fftshift(fft2(masked_img)));
density_noise_spectrum{k} = density_fft{k}.^2;
% Subplot 1
% subplot(2, 3, 1);
subplot('Position', [0.05, 0.55, 0.28, 0.4])
imagesc(xvals, yvals, od_imgs{k})
xlabel('µm', 'FontSize', 16)
ylabel('µm', 'FontSize', 16)
axis equal tight;
colorbar
colormap (flip(jet));
% set(gca,'CLim',[0 100]);
set(gca,'YDir','normal')
title('Single-shot image', 'FontSize', 16);
% Subplot 2
% subplot(2, 3, 2);
subplot('Position', [0.36, 0.55, 0.28, 0.4])
imagesc(xvals, yvals, mean_od_img)
xlabel('µm', 'FontSize', 16)
ylabel('µm', 'FontSize', 16)
axis equal tight;
colorbar
colormap (flip(jet));
% set(gca,'CLim',[0 100]);
set(gca,'YDir','normal')
title('Averaged density image', 'FontSize', 16);
% Subplot 3
% subplot(2, 3, 3);
subplot('Position', [0.67, 0.55, 0.28, 0.4]);
imagesc(xvals, yvals, mean_subtracted_od_imgs{k})
xlabel('µm', 'FontSize', 16)
ylabel('µm', 'FontSize', 16)
axis equal tight;
colorbar
colormap (flip(jet));
% set(gca,'CLim',[0 100]);
set(gca,'YDir','normal')
title('Image noise = Single-shot - Average', 'FontSize', 16);
% Subplot 4
% subplot(2, 3, 4);
subplot('Position', [0.05, 0.05, 0.28, 0.4]);
imagesc(xvals, yvals, mean_subtracted_od_imgs{k} .* mask)
xlabel('µm', 'FontSize', 16)
ylabel('µm', 'FontSize', 16)
axis equal tight;
colorbar
colormap (flip(jet));
% set(gca,'CLim',[0 100]);
set(gca,'YDir','normal')
title('Masked Noise', 'FontSize', 16);
% Subplot 5
% subplot(2, 3, 5);
subplot('Position', [0.36, 0.05, 0.28, 0.4]);
imagesc(kx, ky, abs(log2(density_fft{k})))
xlabel('1/dx', 'FontSize', 16)
ylabel('1/dy', 'FontSize', 16)
axis equal tight;
colorbar
colormap (flip(jet));
% set(gca,'CLim',[0 100]);
set(gca,'YDir','normal')
title('DFT', 'FontSize', 16);
% Subplot 6
% subplot(2, 3, 6);
subplot('Position', [0.67, 0.05, 0.28, 0.4]);
imagesc(kx, ky, abs(log2(density_noise_spectrum{k})))
xlabel('1/dx', 'FontSize', 16)
ylabel('1/dy', 'FontSize', 16)
axis equal tight;
colorbar
colormap (flip(jet));
% set(gca,'CLim',[0 100]);
set(gca,'YDir','normal')
title('Density Noise Spectrum = |DFT|^2', 'FontSize', 16);
drawnow;
end
%% Compute the average 2D spectrum and do radial averaging to get the 1D spectrum
% Compute the average power spectrum.
averagePowerSpectrum = mean(cat(3, density_noise_spectrum{:}), 3, 'double');
% Plot the average power spectrum.
figure('Position', [100, 100, 1200, 500]);
clf
subplot('Position', [0.05, 0.1, 0.4, 0.8]) % Adjusted position
imagesc(abs(10*log10(averagePowerSpectrum)))
axis equal tight;
colorbar
colormap(flip(jet));
% set(gca,'CLim',[0 1e-7]);
title('Average Density Noise Spectrum', 'FontSize', 16);
grid on;
centers = ginput;
radius = 6;
% Plot where clicked.
hVC = viscircles(centers, radius, 'Color', 'r', 'LineWidth', 2);
xc = centers(:,1);
% xc = [78.2600, 108.3400, 128.8200, 150.5800, 181.3000];
yc = centers(:,2);
% yc = [131.3800, 155.7000, 128.8200, 101.3000, 126.2600];
[yDim, xDim] = size(averagePowerSpectrum);
[xx,yy] = meshgrid(1:yDim,1:xDim);
mask = false(xDim,yDim);
for ii = 1:length(centers)
mask = mask | hypot(xx - xc(ii), yy - yc(ii)) <= radius;
end
mask = not(mask);
x1 = 1;
y1 = 1;
x2 = 256;
y2 = 256;
% Ask user if the circle is acceptable.
message = sprintf('Is this acceptable?');
button = questdlg(message, message, 'Accept', 'Reject and Quit', 'Accept');
if contains(button, 'Accept','IgnoreCase',true)
image = mask.*averagePowerSpectrum;
image(image==0) = NaN;
imagesc(kx, ky, mask.*abs(10*log10(averagePowerSpectrum)))
hold on
line([kx(x1),kx(x2)], [ky(y1),ky(y2)], 'Color','white', 'LineStyle','--', 'LineWidth', 4);
% imagesc(kx, ky, 10*log10(averagePowerSpectrum))
% imagesc(kx, ky, log2(averagePowerSpectrum))
% imagesc(kx, ky, averagePowerSpectrum)
xlabel('1/dx', 'FontSize', 16)
ylabel('1/dy', 'FontSize', 16)
axis equal tight;
colorbar
colormap(flip(jet));
% set(gca,'CLim',[0 1e-7]);
title('Average Density Noise Spectrum', 'FontSize', 16);
grid on;
elseif contains(button, 'Quit','IgnoreCase',true)
delete(hVC); % Delete the circle from the overlay.
image = averagePowerSpectrum;
imagesc(kx, ky, abs(10*log10(averagePowerSpectrum)))
% imagesc(kx, ky, 10*log10(averagePowerSpectrum))
% imagesc(kx, ky, log2(averagePowerSpectrum))
% imagesc(kx, ky, averagePowerSpectrum)
xlabel('1/dx', 'FontSize', 16)
ylabel('1/dy', 'FontSize', 16)
axis equal tight;
colorbar
colormap(flip(jet));
% set(gca,'CLim',[0 1e-7]);
title('Average Density Noise Spectrum', 'FontSize', 16);
grid on;
end
subplot('Position', [0.55, 0.1, 0.4, 0.8]) % Adjusted position
% [r, Zr] = radial_profile(averagePowerSpectrum, 1);
% Zr = (Zr - min(Zr))./(max(Zr) - min(Zr));
% plot(r, Zr, 'o-', 'MarkerSize', 4, 'MarkerFaceColor', 'none');
% set(gca, 'XScale', 'log'); % Setting x-axis to log scale
[xi, yi, profile] = improfile(image, [x1,x2], [y1,y2]);
profile = (profile - min(profile))./(max(profile) - min(profile));
ks = sqrt(kx.^2 + ky.^2);
profile = profile(length(profile)/2:end);
ks = ks(length(ks)/2:end);
n = 0.15;
[val,slice_idx]=min(abs(ks-n));
ks = ks(1:slice_idx);
profile = profile(1:slice_idx);
plot(ks, profile, 'b*-');
% plot(profile, 'b*-');
grid on;
% xlim([min(ks) max(ks)])
title('Radial average of Density Noise Spectrum', 'FontSize', 16);
grid on;
%% Helper Functions
function ret = get_offset_from_corner(img, x_fraction, y_fraction)
% image must be a 2D numerical array
[dim1, dim2] = size(img);
s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction));
s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2);
s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction));
s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2);
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
end
function ret = subtract_offset(img, fraction)
% Remove the background from the image.
% :param dataArray: The image
% :type dataArray: xarray DataArray
% :param x_fraction: The fraction of the pixels used in x axis
% :type x_fraction: float
% :param y_fraction: The fraction of the pixels used in y axis
% :type y_fraction: float
% :return: The image after removing background
% :rtype: xarray DataArray
x_fraction = fraction(1);
y_fraction = fraction(2);
offset = get_offset_from_corner(img, x_fraction, y_fraction);
ret = img - offset;
end
function ret = crop_image(img, center, span)
% Crop the image according to the region of interest (ROI).
% :param dataSet: The images
% :type dataSet: xarray DataArray or DataSet
% :param center: The center of region of interest (ROI)
% :type center: tuple
% :param span: The span of region of interest (ROI)
% :type span: tuple
% :return: The cropped images
% :rtype: xarray DataArray or DataSet
x_start = floor(center(1) - span(1) / 2);
x_end = floor(center(1) + span(1) / 2);
y_start = floor(center(2) - span(2) / 2);
y_end = floor(center(2) + span(2) / 2);
ret = img(y_start:y_end, x_start:x_end);
end
function ret = calculate_OD(imageAtom, imageBackground, imageDark)
% Calculate the OD image for absorption imaging.
% :param imageAtom: The image with atoms
% :type imageAtom: numpy array
% :param imageBackground: The image without atoms
% :type imageBackground: numpy array
% :param imageDark: The image without light
% :type imageDark: numpy array
% :return: The OD images
% :rtype: numpy array
numerator = imageBackground - imageDark;
denominator = imageAtom - imageDark;
numerator(numerator == 0) = 1;
denominator(denominator == 0) = 1;
ret = -log(double(abs(denominator ./ numerator)));
if numel(ret) == 1
ret = ret(1);
end
end
function [R, Zr] = radial_profile(data,radial_step)
x = (1:size(data,2))-size(data,2)/2;
y = (1:size(data,1))-size(data,1)/2;
% coordinate grid:
[X,Y] = meshgrid(x,y);
% creating circular layers
Z_integer = round(abs(X+1i*Y)/radial_step)+1;
% very fast MatLab calculations:
R = accumarray(Z_integer(:),abs(X(:)+1i*Y(:)),[],@mean);
Zr = accumarray(Z_integer(:),data(:),[],@mean);
end
function [M] = ImagingResponseFunction(B)
x = -100:100;
y = x;
[X,Y] = meshgrid(x,y);
R = sqrt(X.^2+Y.^2);
PHI = atan2(X,Y)+pi;
%fit parameters
tau = B(1);
alpha = B(2);
S0 = B(3);
phi = B(4);
beta = B(5);
delta = B(6);
A = B(7);
C = B(8);
a = B(9);
U = heaviside(1-R/a).*exp(-R.^2/a^2/tau^2);
THETA = S0*(R/a).^4 + alpha*(R/a).^2.*cos(2*PHI-2*phi) + beta*(R/a).^2;
p = U.*exp(1i.*THETA);
M = A*abs((ifft2(real(exp(1i*delta).*fftshift(fft2(p)))))).^2 + C;
end
function [RadialResponseFunc] = RadialImagingResponseFunction(C, k, kmax)
A = heaviside(1-k/kmax).*exp(-C(1)*k.^4);
W = C(2) + C(3)*k.^2 + C(4)*k.^4;
RadialResponseFunc = 0;
for n = -30:30
RadialResponseFunc = RadialResponseFunc + besselj(n,C(5)*k.^2).^2 + besselj(n,C(5)*k.^2).*besselj(-n,C(5)*k.^2).*cos(2*W);
end
RadialResponseFunc = C(6)*1/2*A.*RadialResponseFunc;
end
2024-06-12 19:24:55 +02:00
function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
% removefringesInImage - Fringe removal and noise reduction from absorption images.
% Creates an optimal reference image for each absorption image in a set as
% a linear combination of reference images, with coefficients chosen to
% minimize the least-squares residuals between each absorption image and
% the optimal reference image. The coefficients are obtained by solving a
% linear set of equations using matrix inverse by LU decomposition.
%
% Application of the algorithm is described in C. F. Ockeloen et al, Improved
% detection of small atom numbers through image processing, arXiv:1007.2136 (2010).
%
% Syntax:
2024-06-12 19:24:55 +02:00
% [optrefimages] = removefringesInImage(absimages,refimages,bgmask);
%
% Required inputs:
% absimages - Absorption image data,
% typically 16 bit grayscale images
% refimages - Raw reference image data
% absimages and refimages are both cell arrays containing
% 2D array data. The number of refimages can differ from the
% number of absimages.
%
% Optional inputs:
% bgmask - Array specifying background region used,
% 1=background, 0=data. Defaults to all ones.
% Outputs:
% optrefimages - Cell array of optimal reference images,
% equal in size to absimages.
%
% Dependencies: none
%
% Authors: Shannon Whitlock, Caspar Ockeloen
% Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and
% S. Whitlock, Improved detection of small atom numbers through
% image processing, arXiv:1007.2136
% Email:
% May 2009; Last revision: 11 August 2010
% Process inputs
% Set variables, and flatten absorption and reference images
nimgs = size(absimages,3);
nimgsR = size(refimages,3);
xdim = size(absimages(:,:,1),2);
ydim = size(absimages(:,:,1),1);
R = single(reshape(refimages,xdim*ydim,nimgsR));
A = single(reshape(absimages,xdim*ydim,nimgs));
optrefimages=zeros(size(absimages)); % preallocate
if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end
k = find(bgmask(:)==1); % Index k specifying background region
% Ensure there are no duplicate reference images
% R=unique(R','rows')'; % comment this line if you run out of memory
% Decompose B = R*R' using singular value or LU decomposition
[L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition
for j=1:nimgs
b=R(k,:)'*A(k,j);
% Obtain coefficients c which minimise least-square residuals
lower.LT = true; upper.UT = true;
c = linsolve(U,linsolve(L,b(p,:),lower),upper);
% Compute optimised reference image
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
end
end