22 lines
1.3 KiB
Mathematica
22 lines
1.3 KiB
Mathematica
|
function [LoadingRate, StandardError, ConfidenceInterval] = bootstrapErrorEstimation(this, ovenObj, NumberOfLoadedAtoms)
|
||
|
n = this.NumberOfAtoms;
|
||
|
SampleLength = this.BootstrapSampleLength;
|
||
|
NumberOfBootsrapSamples = this.BootstrapSampleNumber;
|
||
|
MeanCaptureRatioInEachSample = zeros(1,NumberOfBootsrapSamples);
|
||
|
for SampleNumber = 1:NumberOfBootsrapSamples
|
||
|
BoostrapSample = datasample(NumberOfLoadedAtoms, SampleLength); % Sample with replacement
|
||
|
MeanCaptureRatioInEachSample(SampleNumber) = mean(BoostrapSample) / n; % Empirical bootstrap distribution of sample means
|
||
|
end
|
||
|
|
||
|
LoadingRate = mean(MeanCaptureRatioInEachSample) * ovenObj.ReducedFlux;
|
||
|
|
||
|
Variance = 0; % Bootstrap Estimate of Variance
|
||
|
for SampleNumber = 1:NumberOfBootsrapSamples
|
||
|
Variance = Variance + (MeanCaptureRatioInEachSample(SampleNumber) - mean(MeanCaptureRatioInEachSample))^2;
|
||
|
end
|
||
|
|
||
|
StandardError = sqrt((1 / (NumberOfBootsrapSamples-1)) * Variance) * ovenObj.ReducedFlux;
|
||
|
|
||
|
ts = tinv([0.025 0.975],NumberOfBootsrapSamples-1); % T-Score
|
||
|
ConfidenceInterval = LoadingRate + ts*StandardError; % 95% Confidence Intervals
|
||
|
end
|