40 lines
2.0 KiB
Mathematica
40 lines
2.0 KiB
Mathematica
|
function [LoadingRate, StandardError, ConfidenceInterval] = bootstrapErrorEstimation(this, NumberOfLoadedAtoms)
|
||
|
|
||
|
n = this.NumberOfAtoms;
|
||
|
NumberOfTimeSteps = int64(this.SimulationTime/this.TimeStep);
|
||
|
|
||
|
Autocorrelation = autocorr(NumberOfLoadedAtoms,'NumLags', double(NumberOfTimeSteps - 1));
|
||
|
|
||
|
if Autocorrelation(1)~=0
|
||
|
CorrelationFactor = table(Helper.findAllZeroCrossings(linspace(1, double(NumberOfTimeSteps), double(NumberOfTimeSteps)), Autocorrelation)).Var1(1);
|
||
|
if ~isnan(CorrelationFactor)
|
||
|
SampleLength = floor(CorrelationFactor);
|
||
|
NumberOfBootsrapSamples = 1000;
|
||
|
MeanLoadingRatioInEachSample = zeros(1,NumberOfBootsrapSamples);
|
||
|
for SampleNumber = 1:NumberOfBootsrapSamples
|
||
|
BoostrapSample = datasample(NumberOfLoadedAtoms, SampleLength); % Sample with replacement
|
||
|
MeanLoadingRatioInEachSample(SampleNumber) = mean(BoostrapSample) / n; % Empirical bootstrap distribution of sample means
|
||
|
end
|
||
|
|
||
|
LoadingRate = mean(MeanLoadingRatioInEachSample) * this.ReducedFlux;
|
||
|
|
||
|
Variance = 0; % Bootstrap Estimate of Variance
|
||
|
for SampleNumber = 1:NumberOfBootsrapSamples
|
||
|
Variance = Variance + (MeanLoadingRatioInEachSample(SampleNumber) - mean(MeanLoadingRatioInEachSample))^2;
|
||
|
end
|
||
|
|
||
|
StandardError = sqrt((1 / (NumberOfBootsrapSamples-1)) * Variance) * this.ReducedFlux;
|
||
|
|
||
|
ts = tinv([0.025 0.975],NumberOfBootsrapSamples-1); % T-Score
|
||
|
ConfidenceInterval = LoadingRate + ts*StandardError; % 95% Confidence Intervals
|
||
|
else
|
||
|
LoadingRate = nan;
|
||
|
StandardError = nan;
|
||
|
ConfidenceInterval = [nan nan];
|
||
|
end
|
||
|
else
|
||
|
LoadingRate = nan;
|
||
|
StandardError = nan;
|
||
|
ConfidenceInterval = [nan nan];
|
||
|
end
|
||
|
end
|