Calculations/Estimations/ModellingImagingAberrations.m

175 lines
6.3 KiB
Mathematica
Raw Normal View History

%% Compute and plot Zernike Polynomials
NumberOfGridPoints = 100; % Resolution
plotZernike(2, 0, NumberOfGridPoints) % Defocus (Z2^0)
%%
plotZernike(2, 2, NumberOfGridPoints) % Astigmatism (Z2^2)
%%
plotZernike(3, 1, NumberOfGridPoints) % Coma (Z3^1, x-direction)
%%
plotZernike(3, -1, NumberOfGridPoints) % Coma (Z3^-1, y-direction)
%%
plotZernike(4, 0, NumberOfGridPoints) % Spherical Aberration (Z4^0)
%% Compute and plot Aberrated PSF, Image
NumberOfGridPoints = 1024; % Number of grid points per side
PupilRadius = 0.010; % Radius of pupil [m]
Length = 0.5; % Total size of the grid [m]
GridSpacing = Length / NumberOfGridPoints; % Grid spacing [m]
Wavelength = 421e-9; % Optical wavelength [m]
ImageDistance = 0.7; % Image distance [m]
% Generate PSF
C = [0.3, 0.2, 0.1, -0.1, 0.4]; % Zernike coefficients
[X, Y, PSF] = generateAberratedPSF(C, PupilRadius, NumberOfGridPoints, GridSpacing);
plotAberratedPSF(X, Y, PSF);
% Generate object
Object = generateObject(Wavelength, ImageDistance, NumberOfGridPoints, GridSpacing);
% Convolve the object with the PSF to simulate imaging
Image = convolveObjectWithPSF(abs(Object).^2, PSF, 1);
%% Functions
function Z = computeZernikePolynomials(n, m, r, theta)
% Zernike polynomial function for radial and angular coordinates (r, theta)
% Input:
% n - radial order
% m - azimuthal frequency
% r - radial coordinate (normalized to unit circle, 0 <= r <= 1)
% theta - angular coordinate (angle in radians)
%
% Output:
% Z - Zernike polynomial value at (r, theta)
if n == 2 && m == 0
% Defocus (Z2^0)
Z = 2 * r.^2 - 1;
elseif n == 2 && m == 2
% Astigmatism (Z2^2)
Z = r.^2 .* cos(2 * theta);
elseif n == 3 && m == 1
% Coma (Z3^1)
Z = (3 * r.^3 - 2 * r) .* cos(theta);
elseif n == 3 && m == -1
% Coma (Z3^-1)
Z = (3 * r.^3 - 2 * r) .* sin(theta);
elseif n == 4 && m == 0
% Spherical Aberration (Z4^0)
Z = 6 * r.^4 - 6 * r.^2 + 1;
else
% Default to zero if no known Zernike polynomial matches
Z = 0;
end
end
function plotZernike(n, m, NumberOfGridPoints)
% n: radial order
% m: azimuthal frequency
% NumberOfGridPoints: number of points for plotting
% Create a grid of (r, theta) coordinates
[theta, r] = meshgrid(linspace(0, 2*pi, NumberOfGridPoints), linspace(0, 1, NumberOfGridPoints));
% Calculate the Zernike polynomial for the given (n, m)
Z = computeZernikePolynomials(n, m, r, theta);
% Convert polar to Cartesian coordinates for plotting
[X, Y] = pol2cart(theta, r);
% Plot the Zernike polynomial using a surface plot
figure(1)
clf
set(gcf,'Position',[50 50 950 750])
surf(X, Y, Z, 'EdgeColor', 'none');
colormap jet;
colorbar;
title(sprintf('Zernike Polynomial Z_{%d}^{%d}', n, m), 'Interpreter', 'tex', 'FontSize', 16);
xlabel('X', 'FontSize', 16);
ylabel('Y', 'FontSize', 16);
zlabel('Zernike Value', 'FontSize', 16);
axis equal;
shading interp;
end
function [X, Y, PSF] = generateAberratedPSF(C, PupilRadius, NumberOfGridPoints, GridSpacing)
% C is the vector of Zernike coefficients [C_defocus, C_astigmatism, C_coma, C_spherical, ...]
% NumberOfGridPoints is the number of points for the grid (NxN grid)
% PupilRadius is the radius of the pupil aperture
% Create a grid of (x, y) of pupil-plane coordinates in Cartesian space
[X, Y] = meshgrid((-NumberOfGridPoints/2 : NumberOfGridPoints/2-1) * GridSpacing);
% Convert (x, y) to polar coordinates (r, theta)
[theta, r] = cart2pol(X, Y);
% Pupil function: 1 inside the pupil radius, 0 outside
P = generateCircularMask(X, Y, 2 * PupilRadius); % 2D mask
% Wavefront error from Zernike polynomials
W = C(1) * computeZernikePolynomials(2, 0, r, theta) + ... % Defocus (Z2^0)
C(2) * computeZernikePolynomials(2, 2, r, theta) + ... % Astigmatism (Z2^2)
C(3) * computeZernikePolynomials(3, 1, r, theta) + ... % Coma (Z3^1, x-direction)
C(4) * computeZernikePolynomials(3, -1, r, theta) + ... % Coma (Z3^-1, y-direction)
C(5) * computeZernikePolynomials(4, 0, r, theta); % Spherical Aberration (Z4^0)
% Fourier transform of the pupil function with aberrations
PSF = abs(calculateExtendedFFT2(P .* exp(-1i * 2*pi * W), GridSpacing)).^2;
end
function plotAberratedPSF(X, Y, PSF)
% C: Zernike coefficients [C_defocus, C_astigmatism, C_coma_x, C_coma_y, C_spherical]
% PupilRadius: Radius of the pupil aperture
% NumberOfGridPoints: Number of points for plotting
% Generate PSF using the updated modelPSF function
PSF = PSF / max(PSF(:));
figure(1)
clf
set(gcf,'Position',[50 50 950 750])
surf(X, Y, PSF, 'EdgeColor', 'none');
xlim([-0.05 0.05])
ylim([-0.05 0.05])
view(2); % 2D view
shading interp;
colorbar;
colormap jet;
title('PSF', 'FontSize', 16);
xlabel('X', 'FontSize', 16);
ylabel('Y', 'FontSize', 16);
end
function C = convolveObjectWithPSF(A, B, GridSpacing)
N = size(A, 1);
C = calculateExtendedInverseFFT2(calculateExtendedFFT2(A, GridSpacing) .* calculateExtendedFFT2(B, GridSpacing), 1/(N*GridSpacing));
end
function z = generateCircularMask(x, y, D)
r = sqrt(x.^2+y.^2);
z = double(r<D/2);
z(r==D/2) = 0.5;
end
function G = calculateExtendedFFT2(g, Delta)
G = fftshift(fft2(fftshift(g))) * Delta^2;
end
function g = calculateExtendedInverseFFT2(G, Delta_f)
N = size(G, 1);
g = ifftshift(ifft2(ifftshift(G))) * (N * Delta_f)^2;
end
function ret = generateRectangle(x, D)
if nargin == 1, D = 1; end
x = abs(x);
ret = double(x<D/2);
ret(x == D/2) = 0.5;
end
function obj = generateObject(Wavelength, ImageDistance, NumberOfGridPoints, GridSpacing)
% Image-plane coordinates
[U, V] = meshgrid((-NumberOfGridPoints/2 : NumberOfGridPoints/2-1) * ((Wavelength * ImageDistance) / (NumberOfGridPoints * GridSpacing)));
obj = (generateRectangle((U-1.4e-4)/5e-5) + generateRectangle(U/5e-5)+ generateRectangle((U+1.4e-4)/5e-5)) .* generateRectangle(V/2e-4);
end