Calculations/Time-Series-Analyzer/computeRIN.m

130 lines
4.2 KiB
Mathematica
Raw Normal View History

% Script to compute the Relative Intensity Noise of a laser by recording the y-t signal
% by Mathias Neidig 2012_09_11
% The RIN is defined as
%
% RIN = 10* log10 [Single-sided power spectrum density / (average power)]
%
% and is given in [RIN] = dB/Hz
clear all
close all
%% Set the directory where the data is
dirDCData = ['C:\\Users\\Karthik\\Documents\\GitRepositories\\Calculations\\Time-Series-Analyzer\\Time-Series-Data\\20240807\\DC Coupling\\'];
dirACData = ['C:\\Users\\Karthik\\Documents\\GitRepositories\\Calculations\\Time-Series-Analyzer\\Time-Series-Data\\20240807\\AC Coupling\\'];
%% Load the files which contain: - the DC coupled y-t signal to obtain the averaged power
% - the AC coupled y-t signal to obtain the fluctuations
% - the AC coupled y-t signal with the beam blocked to obtain the background fluctuations
%-------------------------------------------------------------------------%
dcsignal = readmatrix( [ dirDCData 'P7.0_M3.0_OOL.csv'] ); %
acsignal = readmatrix( [ dirACData 'P7.0_M3.0_OOL.csv'] ); %
bgsignal = readmatrix( [ dirACData 'Bkg_OOL.csv'] ); %
%-------------------------------------------------------------------------%
%% Read out the important parameters
time_increment = 2E-6;
dctime = dcsignal(1:end, 1) .* time_increment;
actime = acsignal(1:end, 1) .* time_increment;
bgtime = bgsignal(1:end, 1) .* time_increment;
dcdata = dcsignal(1:end, 2);
acdata = acsignal(1:end, 2);
bgdata = bgsignal(1:end, 2);
N = length(actime); % #samples
f_s = 1/time_increment; % Sample Frequency
delta_f = f_s/N; % step size in frequency domain
delta_t = 1/f_s; % time step
%% Custom Control Parameters
% Choose smoothing parameter; has to be odd
%----------------%
span = 21; %
%----------------%
%% Computes the RIN
% compute the average power (voltage^2)
average_P = mean(dcdata.*dcdata);
% compute the power spectrum density FFT(A) x FFT*(A)/N^2 of the source & the bg
psd_src = fft(acdata) .* conj(fft(acdata))/N^2;
psd_bg = fft(bgdata) .* conj(fft(bgdata))/N^2;
% converts the psd to the single-sided psd --> psd is symmetric around zero --> omit
% negative frequencies and put the power into the positive ones --> spsd
for i = 1 : N/2+1
if i>1
spsd_src(i) = 2*psd_src(i);
spsd_bg(i) = 2*psd_bg(i);
else spsd_src(i) = psd_src(i);
spsd_bg(i) = psd_bg(i);
end
end
% smooths the spsd by doing a moving average
spsd_src_smooth = smooth(spsd_src,span,'moving');
spsd_bg_smooth = smooth(spsd_bg, span,'moving');
% calculates the RIN given in dB/Hz; the factor delta_f is needed to convert from dB/bin into dB/Hz
RIN_src_smooth = 10*log10(spsd_src_smooth/(average_P*delta_f));
RIN_bg_smooth = 10*log10(spsd_bg_smooth /(average_P*delta_f));
% creates an array for the frequencies up to half the sampling frequency
f = f_s/2 * linspace(0,1,N/2+1);
f_smooth = smooth(f,span,'moving');
% Calculates the shot noise limit of the used PD given the wavelength of the light source and
% incident average power
PlanckConstant = 6.62607015E-34;
SpeedOfLight = 299792458;
WavelengthOfLaserLight = 1064E-9;
FrequencyOfLaserLight = SpeedOfLight / WavelengthOfLaserLight;
QuantumEfficiencyOfPD = 1;
ShotNoiseLimit = 10*log10((2 * PlanckConstant * FrequencyOfLaserLight / QuantumEfficiencyOfPD) * average_P);
%% Plots the RIN
% Plots the RIN vs frequency
f_ = clf;
figure(f_);
semilogx(f_smooth,RIN_bg_smooth,'k-')
hold on
semilogx(f_smooth,RIN_src_smooth,'r-')
yline(ShotNoiseLimit,'--b');
xlabel('Frequency [Hz]')
ylabel('RIN [dB/Hz]')
xlim([10 max(f)]);
title('\bf Relative Intensity Noise of ODT Arm 1')
legend('Detector Noise', 'Power:7 V, Mod: 100%, with PID ON', 'Shot-Noise limit','Location','NorthWest');
% text(1e5,-95,['\bf MovingAverage = ' num2str(span) ]);
grid on
% optional: save the picture without editing wherever you want
%------------------------------------------%
% saveas(f_,'FileName','png'); %
%------------------------------------------%