2024-11-13 18:37:35 +01:00
|
|
|
function [evals, modes] = solveBogoliubovdeGennesIn2D(psi, Params, VDk, VParams, Transf, muchem)
|
2024-11-12 18:50:42 +01:00
|
|
|
|
2024-11-22 16:18:27 +01:00
|
|
|
Size = length(psi(:));
|
|
|
|
Neigs = length(psi(:));
|
2024-11-12 18:50:42 +01:00
|
|
|
opts.tol = 1e-16;
|
|
|
|
opts.disp = 1;
|
|
|
|
opts.issym = 0;
|
|
|
|
opts.isreal = 1;
|
|
|
|
opts.maxit = 1e4;
|
|
|
|
|
2024-11-22 16:18:27 +01:00
|
|
|
BdGVec = @(g) BdGSolver2D.BdGMatrix(g, psi, Params, VDk, VParams, Transf, muchem);
|
|
|
|
|
|
|
|
[g,D] = eigs(BdGVec,Size,Neigs,'sr',opts);
|
2024-11-12 18:50:42 +01:00
|
|
|
evals = diag(D);
|
|
|
|
clear D;
|
|
|
|
|
|
|
|
% Eigenvalues
|
|
|
|
evals = sqrt(evals);
|
|
|
|
|
2024-11-12 20:16:09 +01:00
|
|
|
% Obtain f from g
|
|
|
|
f = zeros(size(g));
|
|
|
|
for ii = 1:Neigs
|
2024-11-13 14:06:07 +01:00
|
|
|
f(:,:,ii) = (1/evals(ii)) * (muHC(g(:,:,ii)) + (2.*X(g(:,:,ii))));
|
2024-11-12 20:16:09 +01:00
|
|
|
end
|
|
|
|
|
|
|
|
% Obtain u and v from f and g
|
|
|
|
u = (f + g)/2;
|
|
|
|
v = (f - g)/2;
|
|
|
|
|
|
|
|
% Renormalize to \int |u|^2 - |v|^2 = 1
|
|
|
|
for ii=1:Neigs
|
2024-11-13 14:06:07 +01:00
|
|
|
normalization = sum(abs(u(:,:,ii)).^2 - abs(v(:,:,ii)).^2);
|
|
|
|
u(:,:,ii) = u(:,:,ii)/sqrt(normalization);
|
|
|
|
v(:,:,ii) = v(:,:,ii)/sqrt(normalization);
|
2024-11-12 20:16:09 +01:00
|
|
|
end
|
|
|
|
|
|
|
|
modes.u = u'; modes.v = v';
|
|
|
|
modes.g = g'; modes.f = f';
|
|
|
|
|
2024-11-12 18:50:42 +01:00
|
|
|
end
|
|
|
|
|