Calculations/MOT-Simulator/+Simulator/@TwoDimensionalMOT/solver.m

40 lines
1.3 KiB
Mathematica
Raw Permalink Normal View History

2024-06-18 19:01:35 +02:00
function ParticleDynamicalQuantities = solver(this, InitialPosition, InitialVelocity)
if this.Gravity
g = [0,0,-Helper.PhysicsConstants.GravitationalAcceleration];
else
g = 0;
end
ParticleDynamicalQuantities = zeros(int64(this.SimulationTime/this.TimeStep),6);
for i=1:int64(this.SimulationTime/this.TimeStep)
ParticleDynamicalQuantities(i,1:3) = InitialPosition;
ParticleDynamicalQuantities(i,4:6) = InitialVelocity;
rt = InitialPosition;
vt = InitialVelocity;
ga1 = this.calculateTotalAcceleration(rt,vt) + g;
gv1 = vt .* this.TimeStep;
rt = rt + 0.5 * gv1;
vt = vt + 0.5 * ga1 .* this.TimeStep;
ga2 = this.calculateTotalAcceleration(rt,vt) + g;
gv2 = vt .* this.TimeStep;
rt = rt + 0.5 * gv2;
vt = vt + 0.5 * ga2 .* this.TimeStep;
ga3 = this.calculateTotalAcceleration(rt,vt) + g;
gv3 = vt .* this.TimeStep;
rt = rt + 0.5 * gv3;
vt = vt + ga3 .* this.TimeStep;
ga4 = this.calculateTotalAcceleration(rt,vt) + g;
gv4 = vt .* this.TimeStep;
InitialPosition = InitialPosition + (gv1+2*(gv2+gv3)+gv4)./6;
InitialVelocity = InitialVelocity + this.TimeStep*(ga1+2*(ga2+ga3)+ga4)./6;
end
end