Calculations/MOT-Simulator/+Simulator/@TwoDimensionalMOT/bootstrapErrorEstimation.m

22 lines
1.3 KiB
Mathematica
Raw Permalink Normal View History

2024-06-18 19:01:35 +02:00
function [LoadingRate, StandardError, ConfidenceInterval] = bootstrapErrorEstimation(this, ovenObj, NumberOfLoadedAtoms)
n = this.NumberOfAtoms;
SampleLength = this.BootstrapSampleLength;
NumberOfBootsrapSamples = this.BootstrapSampleNumber;
MeanCaptureRatioInEachSample = zeros(1,NumberOfBootsrapSamples);
for SampleNumber = 1:NumberOfBootsrapSamples
BoostrapSample = datasample(NumberOfLoadedAtoms, SampleLength); % Sample with replacement
MeanCaptureRatioInEachSample(SampleNumber) = mean(BoostrapSample) / n; % Empirical bootstrap distribution of sample means
end
LoadingRate = mean(MeanCaptureRatioInEachSample) * ovenObj.ReducedFlux;
Variance = 0; % Bootstrap Estimate of Variance
for SampleNumber = 1:NumberOfBootsrapSamples
Variance = Variance + (MeanCaptureRatioInEachSample(SampleNumber) - mean(MeanCaptureRatioInEachSample))^2;
end
StandardError = sqrt((1 / (NumberOfBootsrapSamples-1)) * Variance) * ovenObj.ReducedFlux;
ts = tinv([0.025 0.975],NumberOfBootsrapSamples-1); % T-Score
ConfidenceInterval = LoadingRate + ts*StandardError; % 95% Confidence Intervals
end