Calculations/MOT-Simulator/+Plotter/visualizeMagneticField.m

72 lines
1.8 KiB
Mathematica
Raw Permalink Normal View History

2024-06-18 19:01:35 +02:00
function visualizeMagneticField(obj, x_range, y_range, z_range)
f_h = Helper.getFigureByTag('VisualizeMagneticFieldFor2DMOT');
set(groot,'CurrentFigure',f_h);
a_h = get(f_h, 'CurrentAxes');
if ~isempty(get(a_h, 'Children'))
clf(f_h);
end
f_h.Name = 'Visualization';
f_h.Units = 'pixels';
set(0,'units','pixels');
screensize = get(0,'ScreenSize');
f_h.Position = [[screensize(3)/3.5 screensize(4)/3.5] 820 645];
xmin = x_range(1);
xmax = x_range(2);
ymin = y_range(1);
ymax = y_range(2);
zmin = z_range(1);
zmax = z_range(2);
dx = (xmax-xmin)/8;
dy = (ymax-ymin)/8;
dz = (zmax-zmin)/8;
if dx ~= 0
xm = xmin:dx:xmax;
else
xm = zeros(1,5);
end
if dy ~= 0
ym = ymin:dy:ymax;
else
ym = zeros(1,5);
end
if dz ~= 0
zm = zmin:dz:zmax;
else
zm = zeros(1,5);
end
[meshx,meshy,meshz] = meshgrid(xm,ym,zm); % construct data points
switch obj.SimulationMode
case '2D'
alpha = obj.MagneticGradient;
Bx = @(x,y,z) alpha .* z;
By = @(x,y,z) 0 .* y;
Bz = @(x,y,z) alpha .* x;
Bx_val = Bx(meshx, meshy, meshz);
By_val = By(meshx, meshy, meshz);
Bz_val = Bz(meshx, meshy, meshz);
case '3D'
% Development in progress
end
quiver3(meshx, meshy, meshz, Bx_val, By_val, Bz_val, 'Color', ' #6600ff');
axis equal
hXLabel = xlabel('x');
hYLabel = ylabel('y');
hZLabel = zlabel('z');
hTitle = sgtitle('Magnetic Field for 2-D MOT');
set([hXLabel, hYLabel, hZLabel] , ...
'FontSize' , 14 );
set( hTitle , ...
'FontSize' , 18 );
Helper.bringFiguresWithTagInForeground();
end