dylab/HelperClasses/Plotting/DataExtractorLyse.py
2022-08-09 15:37:34 +02:00

147 lines
4.2 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Mon Mar 15 15:08:46 2021
@author: Nick Sauerwein
"""
import lyse
import numpy as np
import os.path
import time
import h5py
def get_mtime(filename):
return time.ctime(os.path.getmtime(filename))
class DataExtractorManager:
def __init__(self, data_path=None):
self.data_extractors = {}
self.h5_file = None
self.data_path = data_path
self.local_data_changed = False
def update_local_data(self, h5_path):
with h5py.File(h5_path, 'r') as h5_file:
self.local_data_changed = False
for key in self.data_extractors:
self.data_extractors[key].update_local_data(h5_path, h5_file=h5_file)
if self.data_extractors[key].local_data_changed:
self.local_data_changed = True
def clean_memory(self, h5_paths):
for key in self.data_extractors:
self.data_extractors[key].clean_memory(h5_paths)
def __getitem__(self, key):
return self.data_extractors[key]
def __setitem__(self, key, de):
self.data_extractors[key] = de
def add_data_extractor(self, label, type, data_path):
result = DataExtractor(label, type, data_path)
self.data_extractors[label] = result
return result
def get_data(self, h5_path, h5_file=None):
result = {}
for key in self.data_extractors:
result[key] = self.data_extractors[key].get_data(h5_path, h5_file=h5_file)
return result
class DataExtractor:
def __init__(self, label, type, data_path, load_to_ram=True):
self.load_to_ram = load_to_ram
self.local_datas = {}
self.local_mtimes = {}
if self.load_to_ram:
self.local_data_changed = True
# The path of data in hdf5 file
self.data_path = data_path
self.data_type = type
self.data_label = label
def extract_data(self, h5_path, h5_file=None):
result = None
data_handle = lyse.Run(h5_path, no_write=True)
if self.data_type == 'array':
try:
result = data_handle.get_result_array(self.data_path[0], self.data_path[1],
h5_file=h5_file)
result = np.array(result)
except:
result = None
elif self.data_type == 'single':
try:
result = data_handle.get_result(self.data_path[0], self.data_path[1],
h5_file=h5_file)
except:
result = None
elif self.data_type == 'global':
try:
result = data_handle.get_globals(self.data_path[0], h5_file=h5_file)
result = result[self.data_path[1]]
except:
result = None
elif self.data_type == 'image':
try:
result = data_handle.get_image(self.data_path[0], self.data_path[1],
self.data_path[2], h5_file=h5_file)
result = np.array(result)
except:
result = None
return result
def update_local_data(self, h5_path, h5_file=None):
if h5_path in self.local_datas and self.local_mtimes[h5_path] == get_mtime(h5_path):
self.local_data_changed = False
elif self.load_to_ram:
self.local_datas[h5_path] = self.extract_data(h5_path, h5_file=h5_file)
self.local_mtimes[h5_path] = get_mtime(h5_path)
self.local_data_changed = True
def update_local_datas(self):
for key in self.local_datas:
self.update_local_data(key)
def get_data(self, h5_path, h5_file=None):
if self.load_to_ram:
self.update_local_data(h5_path)
return self.local_datas[h5_path]
else:
return self.extract_data(h5_path, h5_file=h5_file)
def clean_memory(self, h5_paths):
for key in list(self.local_datas):
if key not in h5_paths.to_list():
del self.local_datas[key]
del self.local_mtimes[key]
self.local_data_changed = True
self.update_local_datas()