import laserbeamsize as lbs from dylab import Fitting import numpy as np import lmfit import matplotlib.pyplot as plt from dylab.FittingFunction import twoD_Gaussian xc = 300 yc = 200 dx = 100 dy = 50 phi = np.radians(0) h = 600 v = 400 max_value = 1023 noise = 25 x = np.linspace(0, h - 1, h) y = np.linspace(0, v - 1, v) # generate test image test = lbs.beam_test_image(h, v, xc, yc, dx, dy, phi, noise=noise) # a = Fitting.TwoD_Gaussian_fitting(test, x, y) # # a.run_fitting() # # lmfit.report_fit(a.result) # print(a.result.best_values) # # plt.subplots(2, 1, figsize=(12, 12)) # plt.subplot(2, 1, 1) # plt.imshow(test) # plt.colorbar() # plt.xticks([]) # plt.yticks([]) # plt.title('Original') # # plt.subplot(2, 1, 2) # # aaa = twoD_Gaussian(a.x, a.y, **a.result.best_values) # # aaa = aaa.reshape(np.shape(a.data_origin)) # aaa = a.get_fitting_data(test.shape) # plt.imshow(aaa) # plt.colorbar() # plt.xticks([]) # plt.yticks([]) # plt.title('Original') # plt.show() # test_b = test[199:200][:] # b = Fitting.OneD_Gaussian_fitting(test_b, x) # b.run_fitting() # bbb = b.get_fitting_data(np.shape(test_b)) # bbb = bbb.flatten() # lmfit.report_fit(b.result) # plt.plot(x, bbb) # # plt.show() a = Fitting.Two_OneD_Gaussian_fitting(test, x, y) a.run_fitting() plt.subplots(2, 1, figsize=(12, 12)) plt.subplot(2, 1, 1) plt.imshow(test) plt.colorbar() plt.xticks([]) plt.yticks([]) plt.title('Original') plt.subplot(2, 1, 2) # aaa = twoD_Gaussian(a.x, a.y, **a.result.best_values) # aaa = aaa.reshape(np.shape(a.data_origin)) aaa = a.get_fitting_data(test.shape) print(a.result.best_values) plt.imshow(aaa) plt.colorbar() plt.xticks([]) plt.yticks([]) plt.title('Original') plt.show()