analyseScript/backupScript/2D-MOT power.ipynb
2023-07-12 17:23:18 +02:00

3914 lines
589 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Import supporting package"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'DataContainer'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32mf:\\Jianshun\\analyseScript\\backupScript\\2D-MOT power.ipynb Cell 2\u001b[0m in \u001b[0;36m1\n\u001b[0;32m <a href='vscode-notebook-cell:/f%3A/Jianshun/analyseScript/backupScript/2D-MOT%20power.ipynb#W1sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39muncertainties\u001b[39;00m \u001b[39mimport\u001b[39;00m umath\n\u001b[0;32m <a href='vscode-notebook-cell:/f%3A/Jianshun/analyseScript/backupScript/2D-MOT%20power.ipynb#W1sZmlsZQ%3D%3D?line=7'>8</a>\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mmatplotlib\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mpyplot\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mplt\u001b[39;00m\n\u001b[1;32m---> <a href='vscode-notebook-cell:/f%3A/Jianshun/analyseScript/backupScript/2D-MOT%20power.ipynb#W1sZmlsZQ%3D%3D?line=9'>10</a>\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mDataContainer\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mReadData\u001b[39;00m \u001b[39mimport\u001b[39;00m read_hdf5_file\n\u001b[0;32m <a href='vscode-notebook-cell:/f%3A/Jianshun/analyseScript/backupScript/2D-MOT%20power.ipynb#W1sZmlsZQ%3D%3D?line=10'>11</a>\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mAnalyser\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mImagingAnalyser\u001b[39;00m \u001b[39mimport\u001b[39;00m ImageAnalyser\n\u001b[0;32m <a href='vscode-notebook-cell:/f%3A/Jianshun/analyseScript/backupScript/2D-MOT%20power.ipynb#W1sZmlsZQ%3D%3D?line=11'>12</a>\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mAnalyser\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mFitAnalyser\u001b[39;00m \u001b[39mimport\u001b[39;00m FitAnalyser\n",
"\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'DataContainer'"
]
}
],
"source": [
"import xarray as xr\n",
"import numpy as np\n",
"\n",
"from uncertainties import ufloat\n",
"from uncertainties import unumpy as unp\n",
"from uncertainties import umath\n",
"\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from DataContainer.ReadData import read_hdf5_file\n",
"from Analyser.ImagingAnalyser import ImageAnalyser\n",
"from Analyser.FitAnalyser import FitAnalyser\n",
"from Analyser.FitAnalyser import ThomasFermi2dModel, DensityProfileBEC2dModel, Polylog22dModel\n",
"from Analyser.FitAnalyser import NewFitModel\n",
"from ToolFunction.ToolFunction import *\n",
"\n",
"from ToolFunction.HomeMadeXarrayFunction import errorbar, dataarray_plot_errorbar\n",
"xr.plot.dataarray_plot.errorbar = errorbar\n",
"xr.plot.accessor.DataArrayPlotAccessor.errorbar = dataarray_plot_errorbar\n",
"\n",
"imageAnalyser = ImageAnalyser()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"from matplotlib.colors import ListedColormap, LinearSegmentedColormap\n",
"\n",
"import matplotlib.pyplot as plt\n",
"plt.rcParams[\"font.family\"] = \"arial\""
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"def Ncount_to_atoms():\n",
" return 1 / 8.4743e-14 / 0.3725 * 5.86e-6**2 / 0.6606**2"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"import csv\n",
"\n",
"colormap = np.zeros((1024, 3))\n",
"\n",
"with open('smooth-cool-warm-table-float-1024.csv', newline='') as csvfile:\n",
" spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|')\n",
" i = 0\n",
" for row in spamreader:\n",
" try:\n",
" a = row[0].split(',')\n",
" colormap[i, 0] = float(a[1])\n",
" colormap[i, 1] = float(a[2])\n",
" colormap[i, 2] = float(a[3])\n",
" i = i + 1\n",
" except:\n",
" pass\n",
"\n",
"colormap = ListedColormap(colormap)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"data_colors = colormap(np.linspace(0, 1, 7))\n",
"plot_blue = data_colors[0]\n",
"plot_red = data_colors[-1]\n",
"plot_red_alpha = 1"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Start a client for parallel computing"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px;\">Client</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Client-eb14457e-1720-11ee-8c04-80e82ce2fa8e</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
"\n",
" <tr>\n",
" \n",
" <td style=\"text-align: left;\"><strong>Connection method:</strong> Cluster object</td>\n",
" <td style=\"text-align: left;\"><strong>Cluster type:</strong> distributed.LocalCluster</td>\n",
" \n",
" </tr>\n",
"\n",
" \n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" \n",
"\n",
" </table>\n",
"\n",
" \n",
"\n",
" \n",
" <details>\n",
" <summary style=\"margin-bottom: 20px;\"><h3 style=\"display: inline;\">Cluster Info</h3></summary>\n",
" <div class=\"jp-RenderedHTMLCommon jp-RenderedHTML jp-mod-trusted jp-OutputArea-output\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\">\n",
" </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px; margin-top: 0px;\">LocalCluster</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">c071fe85</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Workers:</strong> 6\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads:</strong> 60\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total memory:</strong> 55.88 GiB\n",
" </td>\n",
" </tr>\n",
" \n",
" <tr>\n",
" <td style=\"text-align: left;\"><strong>Status:</strong> running</td>\n",
" <td style=\"text-align: left;\"><strong>Using processes:</strong> True</td>\n",
"</tr>\n",
"\n",
" \n",
" </table>\n",
"\n",
" <details>\n",
" <summary style=\"margin-bottom: 20px;\">\n",
" <h3 style=\"display: inline;\">Scheduler Info</h3>\n",
" </summary>\n",
"\n",
" <div style=\"\">\n",
" <div>\n",
" <div style=\"width: 24px; height: 24px; background-color: #FFF7E5; border: 3px solid #FF6132; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px;\">Scheduler</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Scheduler-d47e28b4-5276-45c0-964e-87f3987b2160</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm:</strong> tcp://127.0.0.1:54927\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Workers:</strong> 6\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads:</strong> 60\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Started:</strong> Just now\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total memory:</strong> 55.88 GiB\n",
" </td>\n",
" </tr>\n",
" </table>\n",
" </div>\n",
" </div>\n",
"\n",
" <details style=\"margin-left: 48px;\">\n",
" <summary style=\"margin-bottom: 20px;\">\n",
" <h3 style=\"display: inline;\">Workers</h3>\n",
" </summary>\n",
"\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 0</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:54966\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:54967/status\" target=\"_blank\">http://127.0.0.1:54967/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:54930\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-cvobjmxg\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 1</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:54960\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:54963/status\" target=\"_blank\">http://127.0.0.1:54963/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:54931\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-r0l_epl5\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 2</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:54965\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:54968/status\" target=\"_blank\">http://127.0.0.1:54968/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:54932\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-mnfl9i_m\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 3</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:54954\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:54955/status\" target=\"_blank\">http://127.0.0.1:54955/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:54933\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-qkxkq62s\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 4</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:54958\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:54961/status\" target=\"_blank\">http://127.0.0.1:54961/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:54934\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-zk2j62q_\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 5</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:54971\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:54972/status\" target=\"_blank\">http://127.0.0.1:54972/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:54935\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-641vd42d\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
"\n",
" </details>\n",
"</div>\n",
"\n",
" </details>\n",
" </div>\n",
"</div>\n",
" </details>\n",
" \n",
"\n",
" </div>\n",
"</div>"
],
"text/plain": [
"<Client: 'tcp://127.0.0.1:54927' processes=6 threads=60, memory=55.88 GiB>"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from dask.distributed import Client\n",
"client = Client(n_workers=6, threads_per_worker=10, processes=True, memory_limit='10GB')\n",
"client"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set global path for experiment"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"groupList = [\n",
" \"images/MOT_3D_Camera/in_situ_absorption\",\n",
" \"images/ODT_1_Axis_Camera/in_situ_absorption\",\n",
" \"images/ODT_2_Axis_Camera/in_situ_absorption\",\n",
"]\n",
"\n",
"dskey = {\n",
" \"images/MOT_3D_Camera/in_situ_absorption\": \"camera_0\",\n",
" \"images/ODT_1_Axis_Camera/in_situ_absorption\": \"camera_1\",\n",
" \"images/ODT_2_Axis_Camera/in_situ_absorption\": \"camera_2\",\n",
"}\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Old Loading Rate"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"img_dir = '//DyLabNAS/Data/'\n",
"SequenceName = \"MOT_3D_Imaging\" + \"/\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## With red push"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The detected scaning axes and values are: \n",
"\n",
"{'final_amp': array([0.16, 0.24, 0.32, 0.4 , 0.48, 0.56, 0.64, 0.72, 0.8 , 0.88, 0.96]), 'mot_load_duration': array([ 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 6. ,\n",
" 7. , 8. , 9. , 10. ]), 'runs': array([0., 1., 2.])}\n"
]
}
],
"source": [
"folderPath = img_dir + SequenceName + '2022/10/14'# get_date()\n",
"\n",
"shotNum = \"0012\"\n",
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
"\n",
"dataSetDict = {\n",
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
" for i in [0]\n",
"}\n",
"\n",
"dataSet = dataSetDict[\"camera_0\"]\n",
"\n",
"print_scanAxis(dataSet)\n",
"\n",
"scanAxis = get_scanAxis(dataSet)\n",
"\n",
"dataSet = auto_rechunk(dataSet)\n",
"\n",
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
"\n",
"imageAnalyser.center = (600, 1150)\n",
"imageAnalyser.span = (1100, 1260)\n",
"imageAnalyser.fraction = (0.1, 0.1)\n",
"\n",
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
"\n",
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
"Ncount_mean = calculate_mean(Ncount)\n",
"Ncount_std = calculate_std(Ncount)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUZf7H39uzJb03SAIBEkIXsICC9fQU5UdTQRRRPBUVvYPDu8ND0fP09LAXrIB6iuipJ3LKKWBXEKQkoQQCIQnpbXub+f2xyZIlCQRIz/N+veLszPPMzDNr2P3kWxWyLMsIBAKBQCAQCLo9ys5egEAgEAgEAoGgbRDCTiAQCAQCgaCHIISdQCAQCAQCQQ9BCDuBQCAQCASCHoIQdgKBQCAQCAQ9BCHsBAKBQCAQCHoIQtgJBAKBQCAQ9BCEsBMIBAKBQCDoIag7ewHdCUmSKC4uJjg4GIVC0dnLEQgEAoFA0AuQZRmz2UxCQgJK5YltckLYnQLFxcUkJyd39jIEAoFAIBD0Qo4cOUJSUtIJ5whhdwoEBwcDvjc2JCSkk1cjEAgEAoGgN1BXV0dycrJfh5wIIexOgQb3a0hIiBB2AoFAIBAIOpTWhIGJ5AmBQCAQCASCHoIQdgKBQCAQCAQ9BCHsBAKBQCAQCHoIIsauHfB6vbjd7s5eRpdGo9GgUqk6exkCgUAgEPQohLBrQ2RZpqSkhJqams5eSrcgLCyMuLg4URNQIBAIBII2Qgi7NqRB1MXExGAwGIRgaQFZlrHZbJSVlQEQHx/fySsSCAQCgaBnIIRdG+H1ev2iLjIysrOX0+XR6/UAlJWVERMTI9yyAoFAIBC0ASJ5oo1oiKkzGAydvJLuQ8N7JeIRBQKBQCBoG4Swa2OE+7X1iPdKIBAIBIK2RQi7TmDNmjXExMSgUChQq9UUFBSc8TWXLl3KhAkTznxxAoFAIBAIui1C2HUCr7zyCtdeey2yLOPxeOjTp09nL0kgEAgEAkEPQAi7DmbMmDF89dVXvPTSS6hUKhQKBYcOHQJ8rslnn32WgQMHEhwczHnnnceuXbv8577++uuMGjWKyMhIgoODufLKKykvLz/lNdTV1XHrrbeSnp6O0WgkMTGRv/3tb/7xlJQU/vnPfzJs2DAMBgPjxo1j27ZtXHHFFZhMJjIzM/n5558BePPNNzn77LO57bbbCAkJIT4+nocffhhZls/sjRIIBAKBQHDKCGHXwfz888+MHz+eP/3pTxw4cKDJ+L/+9S82b95MYWEhBoOBhQsX+s+76667ePHFF6msrCQ3N5f9+/fzzDPPnPIaFi9eTH5+Plu2bMFisfDMM8/w5z//mby8PP+cV199lXXr1lFSUkJZWRkTJkxgyZIlVFZWMmTIEBYvXuyf+9NPP2E0GikrK+M///kPTz31FK+//vppvDsCgUAgEAjOBCHsuhh33303cXFxhIaGMn36dPbt2wfAkCFDyM7OZsyYMVRXV1NcXEx0dDRFRUWnfI+lS5eyZs0aQkJCKCwsJCgoCIDi4mL/nJtvvpmkpCRCQkIYO3YsEydO5JxzzkGn03HZZZf5rYwAkZGRPPbYYwQFBXHWWWcxb948Vq9efWZvhEAgEAgEglNG1LHrYsTFxflfazQaJEkCQKVS8fTTT/P2229jMpkYOnQodXV1/vFToaysjHvuuYdt27aRmprKWWedBRBwrca1+FQqFeHh4f59pVIZMDclJQWNRuPf79OnDx988MEpr0sgEAgEgu6Aw+2l3OykzOyo3zq5OCOWhDB9Zy9NCLvuwvLly/niiy/YtWsXsbGxAFx11VWnda1p06YxadIkPv/8c9RqNZWVlbzyyisBc06lFElxcTGyLPvPyc/PFwkhAoFAIOhWyLKM2emhrK6RYKsLFG9lZidldQ7qHJ4m58eH6oWwE7Se2tpaNBoNWq0Wj8fDu+++y3//+1+mTZt2WtfS6/WoVCrKy8u55557AHC5XKe1tqNHj/L3v/+dP/zhD2zfvp1XXnmFF1988bSuJRAIBAJBWyJJMpVWV4BAK68XaH6xVj/mcLfeC6ZVK4kJ1hETrCM6WEeYQXPykzoAIey6CX/4wx/YtWsXffv2JSgoiJEjR3LnnXfy5ZdfnvK13njjDRYsWMCTTz5JeHg41157LSNGjGDXrl1ceumlp3y9+Ph48vPziY+PJzg4mIcffpgZM2ac8nUEAoFAIGgtLo9EuSVQoJXXvy5vJNgqLC68UusrNQTr1ESH6OpFW5BvG+ITb/794CBC9OouWWhfIYu6FK2mrq6O0NBQamtrCQkJCRhzOBzk5+eTmprqT0boDbz55pssXbo0IJmitfTW90wgEAgELWNxevxirbFAK6879rrM7KTG1vp2lAoFRBq1RJl0xIQE+S1tPtEW5Le6xQQHodd2vd7lJ9IfxyMsdgKBQCAQCNoUWZaxu73YXF7sLi9Wl+fYa6eHOocn0DVad0yw2VzeVt9Ho1IQbdIRHSDOAi1tMcFBRJq0aFS9oxCIEHY9jH/+85888MADLY7PmjWLl156qQNXJBAIBIKuiCzLuLwSdpdPgNnqxVeT104PNrf3hPMaxFvDHLvby5n4Aw1alV+gNXaL+oVbvWAL02tQKrueO7QzEa7YU0C4YtsW8Z4JBALByZFlGYvTUy+efGKq4bW9Xlg1ft1UcDU/ZnN5Tyn27HQJ0igxaNUYtCoMWhV6rZpgndpnYQtpHLdWb3ELCcKkE3anxghXrEAgEAgE3QxZlqmwuNhXam70Y2FfqRlzM+U12hKtSoneL7xUGLVq/37j1w1jzc3z/RwbM2jV6DUqVMKi1qEIYScQCAQCQQdTba0XcGUW9pUcE3LVJ0gIUCpoYvkyNCOqGo8Zm8xrXpT1lviz3oAQdgKBQCAQtBNmh5t9pRb2l5rZW2pmf6mFvaVmys3OZucrFJASaSQ9xsTAuGDSY4MZGBtMnwgDQRpllyyvIehaCGEnEAgEAsEZYnN5yCuzsLfEzP6GbamZ4lpHi+ckhesZEBtc/2NiQGww/WNMBGm6XrkNQfehU4RdVVUVCxYsYN26dUiSxAUXXMCLL75IfHw8P/30E3fffTfZ2dlER0fzl7/8hblz5/rPXblyJcuWLePo0aNkZGTw7LPPcs455wDg9XpZvHgxq1atwmazceGFF/LSSy8RHx8P+Hqkzps3j02bNqFWq5k1axZPPPEEarXQtwKBQCA4OQ63l4Pl1iZxcEeqbS1mgcaFBDEgLpgBMSbfNjaY9BgTRpEgIGgHOuW3asqUKYSHh3PgwAFUKhU33XQTt956K6tXr+aKK67goYce4rbbbuPrr7/mmmuuYciQIYwZM4ZNmzZx1113sX79esaMGcNzzz3HpEmTOHz4MAaDgYcffpgvvviCrVu3Ehoayrx587jllltYt24dADNmzCAxMZHi4mJKSkqYNGkSy5cvZ+HChZ3xNggEAoGgi+L2SuRXWI8lMJSY2Vdm5lCFlZYSSaNM2kYWOJ8VLj02mFB912g1JegddHi5k19++YVx48ZRWlrqT9mtqqri6NGj/PDDDzz++OPs27fPP//222/HZrOxcuVKZs2ahcFgYMWKFf7xjIwMFi1axJw5c0hOTuaxxx7j+uuvB6C0tJT4+Hjy8vKQJIn09HSKiopISEgA4L333mPRokUcPny4VWsX5U7aFvGeCQSCzsYryRyutPqzTxt+8iusuL3Nfz2G6jUMjA0mPbY+Di7GJ+IiTboOXr2gt9Cly538/PPPZGZm+hvFW61WfvOb3/Dkk0+SnZ3NkCFDAuZnZmby2muvAZCdnc3NN9/cZHzHjh3U1tZSWFgYcH5sbCzh4eHs3LkThUJBRESEX9Q1nFtQUEBNTQ1hYWHt99BdnNNxUX/wwQcsXLiQgwcPBhx/8cUXefLJJykpKSE1NZVHH32UK6+8sr0fQSAQCE6IJMkU1djZ1ziJocTMgXILTk/zjd9NOrVPvMX6khgG1L+ODtaJJAZBl6XDhV1VVRU7d+5k9OjRbN++HZvNxg033MDs2bOJi4vDaDQGzDcYDFgsFgDMZnOL42azGeCE5zc3BmCxWJoVdk6nE6fzWOZSXV3daTxx1+dUXNRut5vly5fz5z//mcTExICxlStX8uCDD/LJJ58wevRo3n33XaZMmUJ+fn6AoBYIBIL2pNzsJOdoXUAZkf1llhZbVQVplPVWt/okhvo4uITQICHgBN2ODhd2Op3PVP3UU08RFBREcHAwjzzyCGPHjmXOnDnYbLaA+TabjeDgYMAnzJobj4qK8ou2ls6XJKnZMcB//eN59NFHefDBB0/zSY/1yuto9BpVqz+M8vLy2LRpE0VFRRgMBtLS0liyZAmLFi1qVthdeumlBAUFsXjxYlavXh0w9sQTT7Bs2TLGjBkDwHXXXcfAgQNPajYWCASC08Xlkcg9Wse2gmq2F9Sw/Ug1R6rszc7VqpSkRRsZGBcYB5ccbhBtqToYWZaFaG4nOlzYZWZmIkkSLpfLH1fl9frEz/Dhw3nhhRcC5ufk5JCVlQVAVlYW2dnZTcavuOIKwsPDSUxMJDs72z+/pKSEqqoqsrKykCSJyspKSktLiY2N9Z+blJREaGhos2u9//77ue+++/z7dXV1JCcnt/pZ7W4vmQ983ur5bUXOQ5dh0Lbuf212dvYpuahXr15NUlISb775ZsBxm81GdnY2KpWK888/n+zsbAYOHMhjjz2GyWQ600cSCAQCAEpqHWwvqPYLuV1FtU1cqQoF9Iv2uU0bJzGkRBpQi0K8HYIsy1S4PeTbnBxyuMi3OTns3zqpcntRK0CjUKJTKtDW/+gUSrRKBZpGr7VKBTql4ri5SnQKRQtzlWgUipbnKpVoFc3P1SgU3V5wdriwu+SSS0hLS+Pmm2/mzTffxG638+c//5lrrrmG66+/ngceeICnnnqKO++8k2+//Za3336bjz/+GICbb76ZyZMnM336dMaNG8fzzz9PaWkpkydPBmDOnDk8/PDDjBkzhqioKBYsWMAFF1xAv379ABg3bhwLFixgxYoVVFRUsGzZsoBSKsej0+n8FsaeSkvubWjeRZ2UlNTsdaqrq5FlmSeeeIL333+f9PR0VqxYweWXX87u3btJSUlpj+ULBIIejMPtJbu4ju31Im5bQTVHm6kLF2bQMCI5jJF9whnRJ5xhyaEEB4lM1PZGkmWKnW4O2Z0csrvItzvrX/v2rd7mYxcb8MjgkSXsJ57W4eiUCrSKk4tArVIZMPfmxGiGhxg6e/kdL+w0Gg2bN2/mvvvuIz09HYfDwaRJk3j66acJCwtjw4YN3HPPPTzwwANER0fzzDPPMHHiRAAuuugiXnjhBW6//XYKCwsZPHgw69evJyIiAoAHHngAt9vN+PHjMZvNTJw4kTVr1vjvvXbtWubPn09qaipKpZLZs2ezZMmSdntWvUZFzkOXtdv1T3Tf1tKSextadlE3R4MAvu+++xg8eDAA8+fP58UXX+Szzz7jjjvuaPW1BAJB70OWfckN2wpq6i1yNeQU1zbJTFUqYFBcCCP7hjEiOZyRfcNJiTR0eytLV8UtyRxxNBVth+xOChwunC3VfgEUQGKQhpQgHakGHSl6HSl6Lal6HdFaNR5ZxiXJOCUZlyThqt/3HQvcd8lS/byW57obriVL/uu6JRln/X5Lc49PfnZKMk5k8EL9f1rF5VGhDKcXCjuAhIQE3n333WbHzjrrLL777rsWz501axazZs1qdkyj0fD3v/+dv//9782Ox8bG8v7775/6gk8ThULRapdoZ5GVlXXKLurmiIqKIiYmJiDZBHxu9g6uqCMQCLoBdpeXnYU1bD9Sw7bD1Ww/UtNsm60ok5YRfcIZ0cdnkRuSGCoK+7YxNq/E4UaiLd/u5HD9ttDh4kQGNY1CQZ8g7THRZtDRN8i3TQ7SolN2fde3V24QgT7R52wkAt1yI0EoyY0EpYSz8WtJZqBR39mPAoiWYr2e9PT0U3ZRt8Tvfvc7HnroIc477zyysrJ44YUXKCoq4pprrmn7hQsEgm6DLMscrrSx/Ug12w77Ehxyj5rxHmftUSsVDE4ICRBySeF6YY1rA2rdnmOxbgFuUxclLvcJz9UrlX5LW9/6bYOQSwzSourm/39UCgUGlQJ6SPylEHaCE7qoTSYTL7/8MjNnzjzpdf76178SEhLCjBkzKCoqIiMjg88++6xJWRSBQNCzsTg97DxS0yhTtYYqq6vJvNgQXX1cnE/EZSWGij6pp0lDssKh40Rb42SFExGqVvnFW4NoS9HrSNXriNGqhbjuRnR454nujOg80baI90wg6P5IkszBCqs/Lm57QTX7Ss1N2m5pVUqyEn3WuAYxlxDWNVxX3YUzTVaI0aqbiLaG/XCNsPN0Zbp05wmBQCAQdF9q7W52NLLG/Xqkhlp7U1deYpjeb4kb0SeMzIQQdGphjTsZTkniiMPlT1A4bHeSb3dx+DSSFRpi3VL1vtdG8f73CoSwEwgEAkGzeCWZvDJLvYjzWeTyyixN5gVplAxNDGNEQ6ZqnzBiQoQVviXMHm9Adunh+u0hh5Mih5sTudEakhUaYt26Y7KCoH0Rwk4gEAgEAFRbXWw/cqxm3I4jtVicnibz+kYa/Ja4EcnhDIoPRtNDAs/bgubi3fzize6i0t30PW2MQaUkpT7TtCcmKwjaFyHsBAKBoJficHv5Lq+C/+WW8uPBKvIrrE3mGLQqhiWF+evGjegTRqSpZxdubw0eSabI6fILtvwAy5sL20ni3SI1an+s2/HiLUojkhUEp48QdgKBQNCLqLK6+GpPGRtySvh6X0WTftZp0caATNUBscGoemkfVbtX4rAj0NrWkKxwxOHCcwKfaeN4twbx1jhxIVjEuwnaCSHsBAKBoIdzqMLK/3JL+SKnlK2HqgIyVhNCg7g4M5aJA2MY0SeMMIO28xbaCdS4Pf7khIC4N4eLo84T13fTKRvi3XSk6n3bBvEm4t0EnYUQdgKBQNDDkCSZHYU1bMgpZUNOKfuPS3jIiA/hksxYLs2MZXBCSI92+0myTKnLHdBR4VCjuLcaz4nru4WolaQE6epF27EivSl6HfE6Dcoe/N4JuidC2AkEAkEPwOH28sOBSr7IKeXL3FLKGrXnUisVjE2L4JKMWC7KiCU5ovP7WbYHbklme52VzdVmdpntHLK7KHA4cZygRAhAbH19t2Pu0mMu03C1qkcLX0HPQwg7gUAg6KbU2Bri5Ur5el85Vtcx65NJp+aCgdFcmhnLhAExhBo0nbjS9kGWZfLtLjZXm9lcVcd31RbMzSQtqBSQpAuMcWvY9tFrMapEvJug5yCEnUAgEHQjjlTZ+CKnlA05JWw5VB3QbzUuJIiLM2O4JDOOs9MiemRB4Gq3h2+rLWyuMrO52swRR2CrsgiNivHhwYwNNZJm8FnfEnVaNL00AUTQ+xDCTkBZWRnz5s1j06ZNqNVqZs2axRNPPIFa3fTX46WXXmL58uUUFxcTHx/PggULuOOOO5rMe/XVV7n11lsRHesEgjNDlmV2FdX64+X2lJgDxgfFBXNJZiyXZMYyJDG0x7kNXZLEL3U2vq4ys6nKzA6zjcY2OY1CwZhQIxdEBHNBRDBDTHoR9ybo1QhhJ2DGjBkkJiZSXFxMSUkJkyZNYvny5SxcuDBg3kcffcT999/P+vXrGTt2LD/++CNXXHEFsbGxTJkyxT8vOzube++9t6MfQyDoMbg8Ej8crGRDTgn/yymjpM7hH1MpFYxOCeeSzDguyYilT2TPipeTZZk8m7PevWrm+xpLkx6oAwxBTIgI5vyIYM4JMwpXqkDQCCHs2hNZBret4++rMUAr/2LNy8tj06ZNFBUVYTAYSEtLY8mSJSxatKiJsCsuLmbx4sWcffbZAJxzzjlMnDiRr7/+2i/sbDYb1157Lffccw+PPPJI2z6XQNCDqbW72bS3jC9yStm8tzyg44NBq+KCAdFcUl+WJNzYs0qSVLo8fFPtc61+XWWm6LgyI5EaNRdEBHN+uIkLIoKJ1/Ws5xcI2hIh7NoTtw3+ltDx9/1TMWiNrZqanZ1NREQECQnH1pmZmUlBQQE1NTWEhYX5jx/vci0rK+Prr7/mn//8p//YnXfeyZVXXsnFF18shJ1AcBKKauxsyC5hQ24pPx2swtMoXi46WMfFGb6SJOf0iyRI03OsUk5JYkut1ederc9gbRy0oVPWu1fDfe7VwcK9KhC0GiHsejlmsxmjMVAEGgw+147FYgkQdo0pKSnht7/9LaNGjeL6668H4K233iI3N5dXXnmFb7/9tl3XLRB0R2RZJru4zh8vl3O0LmA8Pcbkj5cblhSGsocE/MuyzF6bwx8n90ONFbsU6F7NMAb54uTCgxkbZsIges8KBKeFEHbticbgs551xn1bidFoxGYLdBc37AcHBzd7zo8//si0adMYP348b7zxBmq1mr1797J48WK++eabZpMuBILeitsr8dPBKl+8XG4ZRTV2/5hSAWf1jfCLuZSo1lnauwPlLjffVFvYVFXH11UWSlyB7tVordpvkTs/PJhYXc8rxyLw4fFYcDpLcTpL6releLwWVMogVCoDSpUelVKPSuX7UaoM/jH/MaUepVLX45KD2gPxDdyeKBStdol2FllZWVRWVlJaWkpsbCwAOTk5JCUlERoa2mT+66+/zl133cVDDz3E73//e//xtWvXUl1dzYgRIwDweHzxQWFhYbzwwgt+q55A0BswO9xs2lvOhpxSNu4tw+w4Fi+n16gYnx7FJZm+YsERPSRezuGV+LnW6k962G2xB4wHKRWcHWryZ69mGIPEl3Q3R5a9uFwVftHmqBdtjQWc01mK12s5+cVahcIv8nyir14YNhaBSr1PKAaIRQPK+rkNx5qIyfrXCkX3txQrZFGPotXU1dURGhpKbW0tISEhAWMOh4P8/HxSU1MJCgrqpBWeHuPHjycpKYkVK1ZQUVHBVVddxdSpU1m6dGnAvA8++IDrr7+eTz75hMsuu+yE19y0aRMTJ048YbmT7vyeCQTHU1xj58v6fqw/HqzE7T32ux9l0nJxhs8qd17/qB4RLyfLMrlWh6+eXJWZH2stTTo8ZJn0fvfqmFAjQcK92m1ozsrWZN9VDjQtCN0cKpUJnS7W/6NWhyBJDiSvA6/XhtdrxyvZ8XrtSPXbhh9Zdp38Bm2ETyQ2LxAD95taGsPDz0GvT26XdZ1IfxyPsNgJWLt2LfPnzyc1NRWlUsns2bNZsmQJACaTiZdffpmZM2fy4IMP4vF4AkqbAMyaNYuXXnqpM5YuEHQasiyzp8Tsj5fbVVQbMN4v2ugrSZIZy4jknhEvV+p083W9Re7rajNlLk/AeJxWw/kRJiZEhDA+3ES0VrhXuxqy7MXpKsflLGsjK5sSnS7mmGjTxgYIOJ0url7ImU57zZLkqRd79SJQsiN57fWvfcf8AtG/3yAUbXi9DqRGY8fvS5Kj0b0cSJIDN9WnvM4hWc+3m7A7FYSwExAbG8v777/f7JjFcuwf986dO1t9zQkTJojixIIeyf5SM2u2HmH97hIKq4+5GxUKGNUn3B8vlxZ9+l9kXQWbV+KnGovfvZprdQSM65VKzgkz+mvKDTQI92pn0t5WtgaRFtTotVYbhULRvhZopVKNUhmMWt183PeZIssSkuRoZCW01e8fsyRKDWMNVsVGcxuO6YLi22V9p4oQdgKBQHASLE4P/9lRzJqtR9heUOM/rlMrGZ/u68d6YUYMUSZd5y2yDZBkmWyL3d+u6+daK85G7lUFMCRYz4Rwn5AbHWpEpxTu1fZGliWcrrLjRFrZaVvZFAoVWm10oGjTxh0n4s7MytadUCiU9TF6PaPYtxB2AoFA0AyyLLP1cDXvbTnCup1Hsbu9AKiVCi4cFMP/jUziggHR6LXdO16uwuXhq6o6NlbW8XW1hUp3oHs1Uafh/Po4ufHhwURqxddGeyFJLmz2w1itediseVhtB7BaD2CzHQxwF54In5Utrt6qFou2ftvRVjZB5yH+hQoEAkEjyswOPtxWxJqtRzhYbvUfT4s2MuOsZP5vZBLRwd3XMteQ9LChoo4NlbX8UmcLKA5sVCk5N8zkT3robxAlJtoaj8eKrV60WW0H/CLObj+MLHubPefkVraGWLauXYlB0P4IYScQCHo9Hq/Exr3lvLflCBv3luGtdz8atCquHBrPjNHJjOwT3m0Fjt0r8V2NhQ0Vtfyvsq5Jy64hJj0XRoYwISKYUSEGtMK92ia43dVYAqxvedisB3A4W65vqlKZMBr7YTT0w2Dsj9HQD6OxH0FBySiV4itbcHLEb4lAIOi1HCy3sGZrIR9sK6Tc7PQfH9knjBmjk/nt0ARMuu75MXnU6eJ/lXVsqKjjm2oz9kaxcnqlgvHhwVwSFcJFESEkBPWMWnqdgSzLOJ0lWK15WG0+4dYg4tzuqhbP02giMBrTm4g4nS6u2/4BIegadM9PLIFAIDhNbC4Pn+0qYc2WI/x86NgXb6RRy/+NTGT6Wcmkx7ZP9l17Iskyv9bZ2FBZx/8q69h1XIHgRJ2GiyNDuCQqlPPCTOhFTblTQpI8OBxHfALOeqCRiDt4wqSFoKDE46xv/TEa+6HRhHfg6gW9CSHsBAJBj0eWZX49UsOarYX8Z0cxFqcvQUCpgAsGRDNjdDIXDopFq+5eYsfi8bK52swXFXV8WVlHRaPEBwUwKsTAJZGhXBIVIjo9tBKv14nNno/Vuj/A+mazHWqxUK5CoUKvT2lifTMY0kTMm6DDEcJOIBD0WKqsLj7cVsiarUfYV3rMqtI30sD0s5KZMjKJuNDu1fXkkN3pT3z4ocaKu1G9yGCVkgkRIVwSFcKFESFEiQzWFvF4zD7LW4ALNQ+7vZCW6rwplUH1wq2f3/pmMPbDoO+LUinc2YKugfhXLxAIehReSeab/eWs2XqEDTml/tZeOrWSK4bEM/2sZMamRnSbThAeSebnWisbKn2JD/ttzoDxVL2WS+utcmNCjSLxoRGyLONyV/qSF+oFnNV6AJv1AE5XaYvnqdWh9da3/gEiLigosUf0EhX0bISwE1BWVsa8efPYtGkTarWaWbNm8cQTT6BWB/56SJLEQw89xGuvvUZ1dTWpqaksWbKE6dOnA77er4sXL2bt2rWYzWYGDRrE3//+dyZOnNgZjyXoZUiSzIpvDrLy+0McrT1W82tIYijTRyczaVgCofru0eKqyu1hY2UdGyrr2FhlptZzrASGWgFjQ01cEumzzPUzdC+LY3sgyzJOVylWy36feLPs84s4j6e2xfN02lifcAsQcf3r67x1D+EvEByPEHYCZsyYQWJiIsXFxZSUlDBp0iSWL1/OwoULA+Y9//zzrFq1ik2bNtGvXz8+/fRTrr76akaNGkW/fv1YvHgx3333HT/88AMJCQm8/vrrXHnlleTm5tKnT59OejpBb8Du8rLgve18nu2zwoQZNFwz3JcIkZlw4obZXQFZltlr89WW+19lHVtqrQHOwAiNigvrXawTwoMJ1fTOj26/gLPmYbXu9wk4q0/MeTzmFs5SoNcnBwg3o9FngWuvFlUCQWfSOz8dBH7y8vLYtGkTRUVFGAwG0tLSWLJkCYsWLWoi7O68805uvvlmjEYjTqeT8vJyjEYjBoOvDYvdbuehhx4iOdnXBPnWW2/lj3/8I7/88osQdoJ2o8zs4NaVW9lRWItWpeSBqzKZOiqJIE3Xrqzv8Er8UGNhQ71l7ogjMDA/wxhUb5ULZWSIAVUvsiA1K+BsvtctCbhjCQz968uI9PeJOUMqKpWwagp6D0LYtSOyLGP32E8+sY3Rq/WtdiNkZ2cTERFBQkKC/1hmZiYFBQXU1NQQFhbmP65UKjEajXzxxRdcfvnlyLLM8uXLiY/3NT5++eWXA6791VdfUVtby/Dhw8/4mQSC5thXambOG1soqrETZtCw4oazGJMa0dnLapFSp5sv64Xc5mozNu8xu5xOqeC8MBOXRIVycWQIyb2gtpwsy7hcZVis+30Czv+Th8dT1+w5xws4kzEdozEdgyEFpbL7dgQRCNoKIezaEbvHzth3xnb4fX+6/icMmtY1MzabzRiNgen4DRY4i8USIOwauOCCC3A6nWzevJlrrrmGuLg4ZsyYETDnxx9/ZNq0aSxdupTU1NTTexCB4AR8u7+C29/6BbPTQ0qkgTfmjCE1qmuVlpBkmV0Wuz+LdYc58A+9WK3aX45kXLgJo6prWxlPl9MXcH3rrW8+C5zJOEAIOIHgJAhh18sxGo3YbLaAYw37wcHNx5/odL4P1YsuuogbbriBd955J0DYvfrqqyxYsICHHnqI++67r51WLujNvLelgD//ezceSWZ0SjgrbjiLcGPXsHBZvV6+qbL4s1hLXZ6A8eHBBn/iwxBT663r3YEzF3ANVjgh4ASC00UIu3ZEr9bz0/U/dcp9W0tWVhaVlZWUlpYSGxsLQE5ODklJSYSGhgbM/f3vfw/Ak08+6T/mdDqJiPC5vrxeL3fccQcffvghH330ERdffPGZPopAEIAkyfzji728uOkAAFcPT+DxqUPRqTvX0lVgd/rad1XW8X2NBWej9l0GlZIJ4cFcHBXCxREhxOi6R2buiWgQcFZrHhbrPr9488XACQEnCMTlcmGxWLBarf6t1+slNDSUsLAwwsLCCAoScZBthRB27YhCoWi1S7SzSE9PZ9y4cSxYsIAVK1ZQUVHBsmXLmDt3bpO5559/Ptdffz1XX30148aNY926dbz77rts2LABgHvvvZf169ezdetW+vbt29GPIujhONxefr9mB+t2HQXg7ovSuffi9E6xeHllmV9qrf7Ehz1WR8B4nyAtl0aFcHFkCOeEmdB109pyZybg+jdyo6ZjNKQKAddD8P1eNBVrFoul2WNut/uk1wwKCiI8PNwv9I7/afAUCU6OEHYC1q5dy/z580lNTUWpVDJ79myWLFkCgMlk4uWXX2bmzJlcffXVPPvss9xyyy2UlpYyYMAAPvzwQ84991wqKip4/vnnUalUDB48OOD6DecLBKdLpcXJrau2sq2gBo1KwaP/N5Spo5I6ZS1fVtZx/75CChplsSqBMaFGLokK5ZLIENINum7lYvV9UZdjte6vF3B5fjeqEHC9A1mWcTgcTURZS1uPx3PyizZCrVZjNBoxmUwYjUZUKhU1NTXU1NRgt9txOBwcPXqUo0ePNnu+wWBoUfSFhYWh1XaNUIyugEKWG/WjEZyQuro6QkNDqa2tJSQksDaWw+EgPz+f1NRUYVJuJeI9E7SGvDILN7+5hYIqGyFBal66YRTn9ovq8HWUu9ws2V/ER2U1AISqVVwUGcIlkSFMiAgmvJvVlvN4rFRXf09F5UYqKzfjdJa0MFOJwdAoicHQH6NpgBBw3QBZlrHb7a0Sag3u0VNBo9H4hdrJtjpdy3/sOJ1Ov8hr/FNdXU1NTQ0Oh6PZ8xpjNBpPKPw0mu4dAnEi/XE83euTSCAQ9Cp+OFDJbau3UufwkByh542bxtA/xtSha5BlmX8dreLBA8XUerwogVuTo1mUEoexk2P7ThWbLZ+Kyk1UVmykumbLcU3thYDrDkiShM1ma5VQs1qtSFLzfW9bQqfTtUqomUymNrOS6XQ6YmNj/XHex+NwOFoUfTU1NTidTv/zFhUVNXsNk8l0QuF3fKel7kzPeRKBQNCjWPtLIfd/uBO3V2ZknzBemX0WkaaOFRh5NgcL9x7hhxorAENMep4YlMyw4K4dO9uA1+ukpuYnn5ir3ITdfjhgXK/vQ2TkRKIiJxAWNkYU8u1gJEnC4XBgs9mw2+3+bXOvbTYbFosFm83GqTragoKCWm1Z64qWraCgIOLi4oiLi2t23G63n1D4NcQDWiwWCgsLm71GcHBws4IvPDyckJCQbiX8us9KBQJBr0CWZZb/bz/PfLkfgN8OiefJ6cM6tJOEU5J47nAZTx8uxSXL6JVK/pgaxy1J0aiVXTt2zuEo9gu5qqrvkaRjtfMUCg3hYWOIjPKJOb0+pVvFAnZVGpIJGguy5kTa8cda42JsCYPB0CqhZjQau5UoOR30ej16vd5fLL8xDe7oEwk/t9uN2WzGbDZz5MiRZu8REhJyQuGn6kI1KHv2/22BQNCtcHq8LFq7k49/LQbgjgn9+MOlA1F2oJj6scbCwr1H2G9zAnBhRDB/H5BEH33XdEdKkpva2u1UVm6konITVuu+gHGdLo7IyAuIipxAePi5qNUd68rubng8npNaz5o7dqouz8bodDr0ej0Gg8EvUo5/3VjIGQyGLiUkujIKhcL//jXusNSALMvYbLYWRV9NTQ0ej4e6ujrq6uooKCho9h4hISFcfvnlDBo0qCMe64QIYScQCLoE1VYX81ZvZcuhatRKBY9MzmLG6I7rMVzj9vDIwaOsLq4EIEqj5uH0RK6OCetyVi2nq4Kqys1UVG6iquqb4/qnKgkNHUFU5EQiIydgMg3qcuvvCBrcnK0VZg2vXS7XyS/eAiqVyi/ImhNpLQk3IdI6D4VC4bdsJiYmNhmXZRmr1XpC4ef1eqmtre0yltGusQqBQNCrya+wcvObW8ivsBKsU/PirFGMS++YzFdZlvmkvIa/7C+ivL5LxKz4SP7SL56wLpLpKssSdeZdVFb4XKx15p0B4xpNBJER5xMZNYHIiPFoNGGds9BOwuv1UlJSQmFhof+npqbmlGPRGlAoFH7RdSoiTaPR9EoR3ZNRKBSYTCZMJhNJSU1LLEmS5Bd+0dHRnbDCpnSNTy2BQNBr+Tm/inmrt1Jjc5MYpueNOaMZENt8O7u25ojDxf37Cvlfpa9WW7pBxz8GJnN2WOe7K93uWqqqvqmPl9uM210VMB4cnEVk5ASiIicSEjIEhaL3WH3q6uoCRFxxcXGLddW0Wu0pWc8MBgM6nQ5lNy0qLehYlEolwcHBLbbg7AyEsBMIBJ3Gx78WsfD9nbi8EsOSQnnlxrOICW7/zEyPJPNaUTl/P1iCXZLQKhTc3TeWu/rGdFqXCJ/LZx8VFRuprNxEbd02ZPlYXTGVykRkxHgiIycQGXk+Ol1Mp6yzo3G73Rw9ejRAyNXVNS2aHBQURFJSkv8nNjYWvV7fZdxjAkFH0Sm/8e+99x4zZ84MKEo7efJkVq9ezU8//cTdd99NdnY20dHR/OUvfwlob7Vy5UqWLVvG0aNHycjI4Nlnn+Wcc84BfOb4xYsXs2rVKmw2GxdeeCEvvfSSP1OmrKyMefPmsWnTJtRqNbNmzeKJJ54Q//AFgg5GlmWe/SqPf27wBfpfNjiWp2aMQK9tf6vTLrON3+89wk6zL1v07FAj/xiYTLqx40t9+IoE/0Bl5SYqKjfhdAZW3Tca0+sTHyYSGjoKpbLrlaJoS2RZprq6OkDElZSUNElMUCgUxMbGBgi5iIgIYWUTCOgkYbdlyxZuuOEG3njjjYDj1dXVXHHFFTz00EPcdtttfP3111xzzTUMGTKEMWPGsGnTJu666y7Wr1/PmDFjeO6555g0aRKHDx/GYDDw8MMP88UXX7B161ZCQ0OZN28et9xyC+vWrQNgxowZJCYmUlxcTElJCZMmTWL58uUsXLiwM94GgaBX4vJI3P/hLj7Y5qsnNe/8NBb/ZlC7Z75avV7+kV/CiiPlSPg6RzzQL4Hr4iNQdmBclL9IcOVmqqt/CigSrFQGER5+DlGRE4iMnIBe3zlt0zoKp9NJcXFxgJCzWq1N5hmNRpKSkkhOTiYpKYn4+HjRO1QgaIFOaSl2wQUXMH36dO68886A46+++iqPP/44+/YdS9e//fbbsdlsrFy5klmzZmEwGFixYoV/PCMjg0WLFjFnzhySk5N57LHHuP766wEoLS0lPj6evLw8JEkiPT2doqIif8rze++9x6JFizh8OLBoZ0v01JZip2PJ3L17N2PGjOGzzz5jwoQJp3Xf7vyeCU6PWpub297ayo8Hq1ApFTw4aTCzzu7b7vf9srKOP+47QqHD14z8mpgwHuqfSIyu/S1gkuSkuvpnv1XObj8UMB4UlExUlE/IhYed3WOLBEuSRGVlZYCIKysra5LgoFQqiY+PD7DGhYV1vcxkgaAj6dItxSRJYtu2bRiNRh5//HG8Xi9XXHEFjz32GNnZ2QwZMiRgfmZmJq+99hoA2dnZ3HzzzU3Gd+zYQW1tLYWFhQHnx8bGEh4ezs6dO1EoFERERATUscnMzKSgoICamhrCwsKarNXpdOJ0Ov37zcV19ARO1ZJps9m47rrrsNvtzY4LBM1RUGnjpjd/5mC5FZNOzXPXj2DCwPaNEzu+v2tSkIbHBiRzUeSJPxjPFIejmMr6ciTV1d/j9dr8YwqFmrCw0f5yJAZDWo8ULTabjaKiIr+IKyoqarYgb2hoaICIi4uL65LdDwSC7kKHC7vy8nJGjBjB1KlTWbt2LRUVFdx4443MmjWL+Ph4jEZjwHyDwYDFYgHAbDa3OG42++o4nej85sYALBZLs8Lu0Ucf5cEHHzztZ5VlGbkTxI9Cr2/1F0VeXh6bNm2iqKgIg8FAWloaS5YsYdGiRS0KuzvuuIPJkyeze/futly2oAfzy+Fq5q3aSqXVRXxoEK/fNJqM+PYTV1J9f9eHGvV3nZcczcLUOIztUDNMkjzU1m2nsr4Pq8W6N2Bcq43xu1cjIs5Fre46GXRtgdfrpby8nMLCQo4cOUJhYSGVlZVN5qnVahITE/0iLjEx8aTWB4FAcGp0uLCLjY3l66+/9u/36dOHxx9/nLFjxzJnzhxsNlvAfJvN5k8jNhqNzY5HRUX5RVtL5zc0Tj5+DGgxTfn+++/nvvvu8+/X1dWRnJzc6meV7Xb2jhzV6vltxcBtv6AwtK6XZXZ29ilZMletWkVeXh6vvfYay5Yta8tlC3ooH20vYtEHO3F5JAYnhPD6TaOJDWk/d+N+q6+/64+1vlitocF6nhiYzNA27u/qclVQWfl1oyLBjS36CkJDhvtbd5lMmT3KKtfQc7OxNc7tdjeZFxER0SRTVRTjFQjalw4Xdjt37uSdd97h0Ucf9X/QOZ1OlEolY8aM4amnngqYn5OTQ1ZWFgBZWVlkZ2c3Gb/iiisIDw8nMTGR7Oxs//ySkhKqqqrIysryx3eUlpYSGxvrPzcpKYnQ0NBm16rT6Xp8gG5LVlBoasncs2cPf/7zn/nuu+/Eh7PgpHglmX98vpeXNh8A4OKMWJ6+djhGXft87JQ53bxWVMGLBWX+/q6L0+KYm9h2/V1lWaKychOHC16lpuZn4Fh8mFodRmTk+URFTiQiYhxabUSb3LOz8Xg8zRb/PR6dTtfEGnf8Z4tAIGh/OlzYRURE8NxzzxEREcF9991HcXExCxcu5KabbmLq1KksXryYp556ijvvvJNvv/2Wt99+m48//hiAm2++mcmTJzN9+nTGjRvH888/T2lpKZMnTwZgzpw5PPzww4wZM4aoqCgWLFjABRdcQL9+/QAYN24cCxYsYMWKFVRUVLBs2bKAUiptjUKvZ+C2X9rt+ie6b2tpyQoKgZZMh8PBjBkzeOqpp+jTp+PaPAm6J2aHmwXv/sqXe8qA9u35uq3OyuuFFXxcVoO7PhD/4sgQHh2QRHKQtk3uIUluSks/5XDBy1it+/3Hg02DiYy8gMioCYSGDO/2RYJlWaaurs7vTi0sLOTo0aN4vd4mc2NiYgKscVFRUaLciEDQBehwYZeUlMS6deu4//77efjhhwkKCuLaa6/l8ccfJygoiA0bNnDPPffwwAMPEB0dzTPPPMPEiRMBuOiii3jhhRe4/fbbKSwsZPDgwaxfv56ICN9fxg888ABut5vx48djNpuZOHEia9as8d977dq1zJ8/n9TUVJRKJbNnz2bJkiXt9qwKhaLVLtHOIisrq1WWzC1btrBv3z7mzp0bIIavvPJKZs+ezQsvvNDhaxd0TQoqbcxduYX9ZRa0aiX/mDqUq4c37cF4Jrgkif+U1fBaUQXb6o79YXJWiIE7+sRweVRom7g+vV4bxcVrKCh4DYezGPAVCk5MvI7kpNkEBTVtKt7dqKmpYc+ePRw+fJjCwkJ/vHJj9Hp9QLmRhIQEkckuEHRROqXcSXelp5Y7GT9+PElJSX5L5lVXXcXUqVNZunTpCc9TKBRs3LhRlDsR+Pn+QAV3vL2NGpubmGAdr8w+i2HJYW12/VKnm1XFFawqrvT3ddUqFFwdG8bcxGiGh7TNH1IuVxWFhaspLFqN213tu482iuSkm0hMnIlG070D/svLy8nNzSU3N5ejRwOLIisUCuLi4poU/+1JMYICQXejS5c7EXQ9TmTJNJlMvPzyy8ycObOTVyno6qz+8TAPfpKNR5IZlhTKitlntUmShCzLbKuz8VpRBf9p5G6N02q4MTGSWQmRRGvbpjyG3V5EwZHXKC5egyT5Mtr1+j706XMr8XFTUKm6Z8ytLMsUFxf7xdzxGat9+vRhwIABJCcnEx8fj1bbNi5sgUDQ8QhhJyA2Npb333+/2bGGUjHNIYy9AgC3V+LB/2Tz1o8FAFw9PIHHpgwlSHNm8WZOSeKTshpeLSxnh/lY2aAxoUZuTozit9FhaNooZs9i2cvhghWUlv7H3581OHgwffvcRkzMb7pl7JzX66WgoIDc3Fz27NkTUIdTqVSSlpZGRkYGAwcOxGQydeJKBQJBWyKEnUAgOG2qrS7ueHsbPxysRKGAhZcN5PYL+p2R267E6WZlUQWriyupcPvcrTqlgmtiwpmbFNWmZUtqarZy+PDLVFR+5T8WHn4uffveRkT4ed3O/eh2uzl48CC5ubns3bs3oIi4RqMhPT2djIwM0tPTRfiDQNBDEcJOIBCcFvtKzdyycisFVTaMWhVPXTuCSzJjT+tasiyztc7Ga4XlfFpeg6feGByv03BTQhQzEyKJ0rbNx5UsS1RUbuTw4Zeord1Wf1RBTPRv6Nt3HiEhQ9vkPh2Fw+Fg//795Obmsn///oB6cnq9noEDB5KRkUFaWpro6CAQtBOy2wtKBQpV52eGC2EnEAhOmS9zS7nn3V+xOD0kR+h5dfZoBsadejcFh1fi47IaXissZ6flmHXp7FAjNydFc3lUaJu5W30lSz7hcMEr/pIlCoWW+PjJ9O1zKwZDapvcpyOwWCzs3buX3NxcDh48iCRJ/rGQkBAGDRpERkYGffr0ETUnBYJWIru9SHbPsR+bJ2BftgfuS3a3/zUemag5gwka2Pn1K4WwEwgErUaWZV7afJDHP9+DLMPY1AhenDWKCOOpBdsXO1ysKq5kVXEFVW5fTFuQUsHk2HDmJkaR1YbuVo/HSvFRX8kSp9OXAapSmUhKnEly8k3odO3br7atqK6uZs+ePeTm5lJQUBAwFhUV5RdzCQkJ3c6FLBC0FbJbChRdpyjOzgTJ7mmjpzgzhLATCAStwuH2cv+Hu/j39iIArh/bh6VXDUarbp3rQZZlfq618mphBZ9V1OCt/wxN0GmYkxjF9fGRRLaRuxUaSpas4kjhajyeGgC02miSk+eQlHh9l+/XKssyZWVlfjFXUlISMJ6QkEBGRgaDBg0iOjq6k1YpELQ9TcTZcVa0puLM00icSSe/wYlQgFKvRqlXo6jfHvvRHHttaDqu0HUN67gQdgKB4KSU1Tm4dfUv7DhSg0qpYOlVmdxwTkqrzpVlmY/Lani+oIxdx7lbb0mK5jdRoW3W8gsaSpa8Wl+yxAGAXt+Xvn3mERc3uUuXLJEkiaKiIr+Yq6qq8o8pFAr69u3rF3MttUIUCLoKsiwjO714LW4kiwvJ6q5/7UayuZsItrYWZ02FWaA4azJuUKPQqlC0Q4ecjkQIO4FAcEJ2FtZw66qtlNY5CdVreGHmSM7rH9Wqc92SzJ/3F7Kq2Fc3LUipYEpsODcnRTPY1PrWd63B4Sjm4MHllJR+3KhkSRZ9+/6OmOhLu2zJEq/Xy6FDh9izZw979uwJ6PygUqno168fGRkZDBgwQPReFXQ6ksvrE2ZWN16LC8nixmt1HztmrRdx9cf9pvlTRQGKIJ/YairOjhdmmh4nzs4EIewEAkGLfLKjmIXv78DpkegfY+LV2WeREtU6cVHt9nDr7kN8W2NBASzoG8utydFEaNr2Y8fjsXK4YAUFBa/6LXQR4ePo23ce4eHndsl4M5fLxYEDB9izZw979+7F4XD4x7RaLQMGDCAjI4P+/fuj03VdC6Og+yN7pEBhVi/K/Na1hmP1c2T3qVvTFFoVSpMGlUmD0uj7URk1zbgzNQFuzd4szs4EIewEAkETJEnmyQ17eX7jAQAmDozm6etGEBLUunIZ+60OZu86SL7dhVGl5IXMvlwW1bauQ1n2cvTovzlw8ElcrjIAwsLGkN7//i5ZssRut7Nv3z727NlDXl5eQFkSg8HgT35ITU1FrRYfzYLTQ/bKPjdnSxa1+q1kceG1uJGd3lO/iVqByqgNFGsmjf+Y0lh/3OQTcIozLFYuODXEp4dAIAjA4vRw73u/siGnFIDbzk9j0W8GoWrlX8+bquqYl32IOo9Eok7D6qFpZLax27W6+kf27X8EiyUH8LX96t9/MdFRl3YpC53ZbPa7WPPz8wPKkoSGhpKRkUFGRgbJyckolZ1f/0rQ9ZA9EpKjPgbN4sZrPbFFTbJ74FS9n0rFMTFmPCbIlCZt/bbxMY3P1dmF/p0JAhHCTkBZWRnz5s1j06ZNqNVqZs2axRNPPHFCq8Hu3bsZM2YMn332GRMmTAB8Fol7772Xjz76CKfTyciRI1m+fDlDh3Y964mgeY5U2bh11Vb2lJjRqpQ8+n9DmDIqqVXnyrLM60UVPJBXhFf2tf56LSulzfq4Aths+eTlPUZ5xQYA1OpgUlLmk5x0A0pl13BZVlVV+dt4HTlyJGAsOjraL+bi4uLEl2MvQJZlZJdPnMkNSQKOZkpwNHfM7jkt1ycKfLFpRq3fcuZ3f5q0TS1qerX4XexBCGEnYMaMGSQmJlJcXExJSQmTJk1i+fLlLFy4sNn5NpuN6667LqBdEcDSpUvZt28fOTk5mEwmFi9ezOTJkzlw4EBHPIbgDPnpYCW3v72NKquL6GAdL98wipF9wlt17vFJEtPjwvnHwGR0bWSFcrtryT/0LIWFq5FlDwqFisSE60lNvRuttnMLgsqyTGlpqV/MlZaWBownJib6M1mjolqXdCLoWsiSjHyc8GoQYj4B5j1WmsPhbVIvDenM+2orglSo6kVZYxeoX6w1sqgpDRoRn9aLEcKuHZFlGY/rDNO2TwO1Vtnqv77y8vLYtGkTRUVFGAwG0tLSWLJkCYsWLWpR2N1xxx1MnjyZ3bt3BxzPzc1FkiTfX6iyjEqlwmBou0KzgvbjXz8XsOSj3XgkmazEEF6ZfRbxoa1znx6fJPGXfgnckRzdJhYASXJTVPQOB/Of8deii4ycQHr/+zEa+5/x9U9/XRKFhYV+MVddXe0fUygUpKSk+MVcSEhIp61TcAzZIzWpeea3lB1nRZOPE3Cy4zTi0I5HqWiazRmkapQ0oGp0/LjszyC1EGqCViOEXTvicUmsuGdzh9933tMXoGllocTs7GwiIiJISEjwH8vMzKSgoICamhrCwsIC5q9atYq8vDxee+01li1bFjD2+9//nilTphAVFYVKpSIqKoqNGzee8fMI2g+PV+Lhdbm8+f0hAK4cGs8/pg5Dr23d7097JUnIskxl5Ub25z2KzXYQAKNxAOn9/0Rk5Pgzvv7pIEkSBQUFZGdnk5ubi8Vi8Y+p1eqAsiTiD5r2Q/ZKPiFmc/u2Vt/Wa6uvjWZtNNaWhWsBhUbZfP2zoOaP+bM+g9QoTuEPboHgTBDCrpdjNpub1MZq+FKyWCwBwm7Pnj38+c9/5rvvvmu2/6TH42HKlCk88MADhISEsHDhQq6++mp27txJUFBQuz6H4NSptbm5851tfJtXAcDvLxnA/Av7t/rLp3GSRFKQhlVD2iZJwmzZQ97+v1FV/R0AGk0EaWn3khA/HaWyYz+yJEni8OHD5OTkNBFzOp0uoCyJVntqbdUE9Va0epHmtbqbiDWp/pi3QchZ3WdmPVOAQteoNloji5lCrwoUZccLuCA1ilZ2WREIOhMh7NoRtVbJvKcv6JT7thaj0YjNZgs41rAfHHys5ZLD4WDGjBk89dRT9OnTp8l13G4306ZN47PPPiMxMRGAZ599lrCwMDZs2MBVV111Oo8iaCcOlFu4ZeVW8iusGLQq/jl9OL/JimvVue2VJOF0lnPw4D8pProWkFAotPRJnkNKyu0d2v7L6/UGiDmr1eofCwoKYtCgQWRmZpKWlibKkjRCdnt9Asx6nOWsQaQdJ9Akm+f0Sm3AsbZPBl8tNKWhPpvT//q4orWiNpqgFyE+ldoRhULRapdoZ5GVlUVlZSWlpaXExsYCkJOTQ1JSUkDLoi1btrBv3z7mzp3L3Llz/cevvPJKZs+ezSOPPEJ1dTVOp9M/plKpUCqVwpLRxfhmfzl3vr2NOoeHxDA9r8w+i8yE1sWBtUeShNfr4MiRNzh0+EW8Xp+Iiom5gv79FqHXJ5/2dU9tDT4x1+BmbfzHTlBQEBkZGWRmZvaKGnOyLPt6dR5nNZOsjYRZMwLutLI3oT6Ds16UGTUBr1UNQq1BrDUIOL2IORMIWqJnf0IJTkp6ejrjxo1jwYIFrFixgoqKCpYtWxYg3gDGjx/fJAtWoVDw6aef+sudjBs3jj/+8Y988sknhISEsGTJEqKiohg3blxHPY7gBMiyzKofDvPQpzl4JZlRfcN5adYoooNbVyakrZMkZFmmtOxTDhz4Bw5HEQAhIcNIT/8zYaGjTuuap0JDK68Gy1xjMafX6xk0aBCDBw8mNTW12dCDnoAsy7jya7FuLcVdbK23qrnBc5pZnErFMQFmqBdmx4m1xgJOZRCJAQJBWyOEnYC1a9cyf/58UlNTUSqVzJ49myVLlgBgMpl4+eWXmTlzZquus3DhQoYOHYrb7ebss8/m888/F/0tuwBur8TST7J5+6cCAP5vZCKP/t8QdOrOSZKord3Ovv2PUFe3HQCdLo7+/RYRG3sVCkX7xTF5vV7y8/PJyclhz549TcRcY8tcTxVzAF6LC9svZVi3lOCpsDc/Sa1A1Zy17DjXp6qRaFPoROFagaCzEcJOQGxsLO+//36zY42DxY9HlgP/qo+NjWXVqlVtujbBmVNtdXHH29v44WAlCgUs/s0g5p2f1ilJEnZ7EQcO/oPS0v8AoFIZ6NvnNvr0mYtK1bbdKRpoEHPZ2dns2bMnwPJsMBj8Yi4lJaVHizlZknHm1WDdUoI9p9LfnF2hVWEYHk1QZiSqYO0xkaYRWZwCQXdECDuBoAeTV2Zm7sqtHK60YdSqePraEVycGduqc9syScLjsXD48EsUHHkdSXICCuLjp9Iv7V50utat51Twer0cPHjQb5lrTswNHjyYvn379mgxB+CtdWLdWop1SwnemmMxsNrkYIxj4tAPjUbZxWOBBQJB6xHCTiDooWzaW8Zd72zH7PSQFK7n1RvPYlBcxydJ1NT+wu7dd+N0lgAQFjaWAel/Jjh48Clf60Q4nU4OHTrkLxrscDj8Y0aj0W+Z6w1iTvbKOPZWYf25BMfeKn/vUEWQGuPIGIxj4tDEiRAJgaAnIoSdQNDDkGWZN747xMPrcpBkGJ3iS5KINHVskoQsyxQWrWb//keQZQ96fR/S+/+JqKiL26grhcTRo0c5cOAABw4c4MiRI0jSsczMBjHXYJlTtlF7s66Mp8qBdUsJ1l9Kkepc/uPa1BCMY+IxZEWi0PRsUSsQ9HaEsBMIehAuj8QDH+/m3S2+5vPTRiXx8OSsDk+S8Hpt7NnzF0pKPwZ85UsyBv0dtfrMrEQ1NTUcPHiQAwcOcPDgwSaZ2mFhYaSnp/stc71BzMkeCXtOJdafS3Dm1fiPK40aDKNiMY6ORRMtOmEIBL0FIewEgh5CldXF7W/9wk/5VSgU8KfLM7hlfOppJ0msHpJGxmkkSdhsh9i16w4s1r0oFCr691tMcvKc07LSNbhXG6xylZWVAeM6nY7U1FT69etHv379iIiIOOV7dFfcZTasW0qwbStFsnp8BxWg6x/mi53LiBSdEgSCXogQdgJBD2B/qS9JoqDKhkmn5tnrRjBxUEyrzm3LJInyii/Jyfk9Ho8ZrTaKrMHPEh4+ptXnn8y9qlAoSExM9Au5xMTEHh8v1xjZ7cW2qwLrzyW4DtX5jytDtBjPisV4VhzqCNG+TyDozQhhJxB0czbuKeOuf23H4vSQHKHntRtHMyC2dS242ipJQpa9HMx/mkOHngcgNHQkQ7Kea1XGa01NjV/I5efnN+te7d+/P/369SMlJQW9vn3KonRlXMUWn3Vue9mxXqlKCBoYgXF0HEEDI1CoRGkSgUAghJ1A0G2RZZnXvs3nb5/lIskwJjWCl2aNIsLYuhZubZUk4XZXszv7XqqqvgEgKWk26f3vR6lsfh3Cvdo6JKcH245yrD+X4C48Vk9SFa7DODoO46hYVKGtS4gRCAS9ByHsBIJuiMsj8ZePdrFmayEA145O5qGrs9C2MqbqgM3BDTvzOWh3nlGSRF3dLnbtvhOHowilMoiMQX8jLu7qJvPKysrYs2ePcK+eBFmWcRdasP5cgm1HGbKr/n1SKdBnRmIcE4euX5howSUQCFpECDuBoJtRaXFy+1vb+PlQFUoF/OW3mcw5L6XVlrZvqszckn2IWo+XRJ2G1UNPr5NEcfEa9u77K5LkQq/vw5AhLxJsGhQwR5ZlfvzxR7744ouATiXh4eF+Iddb3auNkWxubNt9Lb7cJcfanKmj9RhHx2EYGYPK1DpLrEAg6N0IYSegrKyMefPmsWnTJtRqNbNmzeKJJ55ArW7663H55ZezcePGgLG1a9fym9/8BoAXX3yRJ598kpKSElJTU3n00Ue58sorO+xZejp7S8zMXbmFwmo7wTo1z14/ggkDW5ckAbCyqII/7S/EK8NZIQbeGJJ6ykkSXq+TffsfpLj4PQCioi4iM+MJNJrA4scul4tPPvmE3bt3A5CWlkZGRkavdq82RpZlXPl1vti5XRXgqbfOqZUYhkRhHB2HNjVEtPUSCASnhBB2AmbMmEFiYiLFxcWUlJQwadIkli9fzsKFC5vM3bp1K59//jkXXHBBk7GVK1fy4IMP8sknnzB69GjeffddpkyZQn5+PgkJCR3xKD2aL3NLuftf27G6vPSNNPDajWfRP6Z1SRIeSWbpgSJeLawAYGpsOE8MTCZIdWpJEnZ7Ebt234nZvAtQkJZ2Lyl9b0ehCLxOZWUl7733HmVlZSiVSi677DLGjBkjRArgtbiwbfNZ5zzlxxJFNHFGjGPiMAyPRmk49YxkgUAgACHs2hVZlvE4nSef2MaodbpWf4Hm5eWxadMmioqKMBgMpKWlsWTJEhYtWtRE2OXn51NVVcXIkSObvdYTTzzBsmXLGDPGV97iuuuuY+DAgYSEtK6NlaB5ZFlmxdcH+ft/9yDLcHZaBC/OHEV4K5Mk6jxebss+xMYqMwD3p8Zzd9+YUxZZlVXfkp29ALe7GrU6jKzBTxEZOb7JvL179/Lhhx/idDoxmUxMmzaNvn37ntK9ehqyJOPMq8G6pQR7TiV4fW5phVaJYVh9i68kkxC+AoHgjBHCrh3xOJ08c+PUDr/v3SvXoglqXS2r7OxsIiIiAixqmZmZFBQUUFNTQ1hYmP/4li1bCA4OZsaMGWzZsoXY2Fjuu+8+br75Zmw2G9nZ2ahUKs4//3yys7MZOHAgjz32GCaTqa0fsdfg9Hj504e7+WCbL0ni+rF9eHDSYDSttLQdsju5YedB9tuc6JVKnsvsw2+jw05pDbIscfjwSxw4uByQCA7OYkjW8+j1SQHzJEli8+bNbN68GYDk5GSmTZvWq4W9t9aJdWsp1q0leKuP/ZGnSTL5rHPDolHqxMewQCBoO8QnSi/HbDZjNAa2eTIYfO2HLBZLgLBzOp2cc845PPLII2RlZbFx40amTJlCcHAw5557LrIs88QTT/D++++Tnp7OihUruPzyy9m9ezcpKSkd+FQ9gwqLk9+t/oWth6tRKuCBKzO58dzWJ0n8UGNh7u58qtxe4nUaVg5JZWjwqbWW8njMZOf8gYqK/wGQED+dAQOWolIFltmw2+18+OGH7N+/H4AxY8Zw6aWXNhun2dORvTKOvVVYt5Tg2FMF9TkjiiA1hhHRvti5BPHHjkAgaB9636duB6LW6bh75dpOuW9rMRqN2Gy2gGMN+8HBgfFbN9xwAzfccIN//9JLL2X27Nm89957TJw4EYD77ruPwYMHAzB//nxefPFFPvvsM+64447TepbeSu7ROm5ZuZWiGjvBQWqev34k5w+IbvX5/zpayaK9hbhlmWHBelYOSSNOd2pxWxbLXnbuuh27/TAKhZaBA5eSmDCjybySkhLee+89qqurUavVXHXVVQwbNuyU7tUT8FQ5sG4pwfpLKVKdy39cmxLis84NiUKh6Z1lXAQCAMnrxVJVSV15GQ6bFW2QHp3BgKZ+q9XrUWtbH0okaB4h7NoRhULRapdoZ5GVlUVlZSWlpaXExvq6BOTk5JCUlERoaGBds9dff53g4GCmTZvmP+Z0OtHr9URFRRETE4PzuJhCr9cbUOZCcHK2F1Qz69WfsLq8pEYZefXGs+gX3ToLj1eWefhAMS8eKQdgUkwYTw3qg+EUkyRKSj4hd8+fkCQ7QboEhgx5npCQoU3m7dy5k08++QSPx0NYWBgzZswgPj7+lO7VnZE9EvacSqxbSnDm1fitc0qjGsPIWIyj49DEnJqVVCDorrgdDuoqyqirKKeuvIy6ijLMFeW+Y+XlWKoqkWXphNdQKJRoDXq0egPaID1ag2+r0xv8r7UGQ6vG1ZremYQkhF0vJz09nXHjxrFgwQJWrFhBRUUFy5YtY+7cuU3m1tbWcv/999O/f3+GDRvG+vXreeedd/j8888B+N3vfsdDDz3EeeedR1ZWFi+88AJFRUVcc801HfxU3Zfco3Xc9MYWrC4vY1MjePmGUYQZWpckYfF4uSPnMF9U+nqI/j4llt+nxKE8hb9+JcnF/ry/U1i4EoCI8HEMHrwcrTawPInX6+WLL77gp59+AqBfv35MmTLF78bvycheCfdRK7ad5dh+KUOyuv1juv5hGMfEoc+MRNHKYtECQXdAlmXsdbU+0VZRRl15oGirqyzHYa476XVUajXBkdEEmUy4HA5cDjsumw2Xww6yjCxLOK1WnFbrGa9ZqVKjNRjQ6fUBIlDbWATqDcdZDQMFY8NW1Y3CSrrPSgXtxtq1a5k/fz6pqakolUpmz57NkiVLADCZTLz88svMnDmTBQsWYLVamTx5MmVlZaSlpbFq1SrGj/dlRv71r38lJCSEGTNmUFRUREZGBp999hmJiYmd+XjdhvwKKze89jO1djcj+4TxxpzRGLSt+yd6xOHixp0HybE60CkVPD2oD9fEhp/S/Z3OUnbtvova2l8ASOl7B2lpC1AoAt2HZrOZ999/n4KCAgDOP/98JkyYgPIU+8t2B2SPhLvUhqvIjLvIgqvIgvuo1Z/VCqAM1mI8y2edU0d0bQu9QNASXo/H5yY9XrRVlFNXUY65ohyP6+RVHnQGIyFR0QRHRRMSHUNIVIzvdVQMIdExGEPDUDTzWSFLEm6X0y/yXDYbTvux1y67DZfd7tv6x+24HTactsDjbqcDAMnrwWGua5XgPBlqjbbeEqhHG2QIsCo2CMPM8ROJ7pt6xvc6UxSy8JO1mrq6OkJDQ6mtrW2S6edwOMjPzyc1NZWgLu5+7SqI9+wYxTV2pr30A0U1djLiQ3h33tmE6lvnRthaa+WmXflUuD1Ea9WszEplZKjx5Cc2orpmC7t334XLVY5KZWJw5pNER1/cZF5BQQFr1qzBYrGg0+mYPHkygwYNauaK3Q/ZI+EusfrEW4OIKwkUcQ0oglToUkMxjo4jaGAECpWICRJ0bVx2WyNrWznmRqKtrqIMa1XVSd2kKBSYwsIDhFrj1yFR0egMp/bZ0x5Ikhe3w4HTZsPtsONsEIt2WxPh2HTcjstRLyJtNjxu18lvWM+k3/+J9DHntssznUh/HI+w2AkEnUy52cmsV3+iqMZOWpSR1XPHtFrUfVBSxX17j+CUZAabglg1JI3EoNa3npJlmSOFb5KX9yiy7MVoHMDQIS9gMKQ2mbdlyxb++9//IkkS0dHRzJgxg6ioqFN61q6C7PG5U13FrRFxarRJJjSJJrSJJrQJJlSRQSLAW9BlkGUZW21NM6LNtzWXl+GwWk56HZVaHSjaIo9Z3UKiojFFRnWLuDWlUoXOYGwTken1eHA57Ljtdp8FsZEIPF44RiQkt8Hqzxwh7ASCTqTW5mb26z9zsMJKYpiet24ZS5Tp5FnNkizzeH4JTx0uBeDyqFCey+iDUd36rEu3u5Y9e/9CWdlnAMTGTiJj0COoVIbj5rn59NNP2bFjBwCDBw9m0qRJ6E4h+7ozkd0NljgzrkKfkHOX2kBqRsTp1T7xlnhMyKkihIgTdB6yLON2OrDV1vpcpJXHEhN8LlLf1ut2n/RaOqOxRdEWEh2DISS0WTdpb0alVqM3BaM3ta7LT1dACDuBoJOwOj3MefNnco/WEWXS8dYtY0kI05/8PK+Xu3MLWFdeC8BdfWK4Py3+lJIkKis3k5t7P05XKQqFmvT+fyIpaXYTAVNdXc17771HSUkJCoWCSy65hHPOOafLCh3ZLeE62sgKdwIRpzSo/eLNtw1GFS5KLQjaBlmSfMkBdpvfutN42+S13Y7LZj1mFaqPJ3PabdCaiCmFAlN4xLGYtsaiLSqa4KgYdL0guUkghJ1A0Ck43F7mrd7KtoIaQvUa3rplDKlRJ3cbHHW6uHFnPjstdrQKBU8MSmZ6XMRJz2vA47GwP+9vFBe/B4Ben8LgzCcIDR3RZG5eXh5r167F4XBgMBiYNm0aqamdHxh8PJLLi2NvFfZdFTj2VCG7msYJKY1qNInBAdY4VZgQcYKmNI7POpEQ8+83BPnXB/c3dte1SpC1EpVG4xdoja1sDceCIyNRqbu+m1TQ/ghhJxB0MG6vxF3/2s53eZUYtCrenDOaQXEnb7v1a52NG3cdpNTlIUKj4o2sVMaGtb6DQXX1j+Tk/hGHw9eeLDnpJvr1+wMqVaCVUJIkvvnmGzZu3AhAYmIi06dPb1LXsDORXF4cexqJOfcxMac0ao7FwyWa0CSZUIUKEdeTaciodDscvh+nI8Di1RA077Q3FWIumw2nzeq3mrkd9jZdm1Kl8pfU0OoNx71uKLdhbHS8/lh9SQ7fmCjcK2g9QtgJBB2IJMksWruTDTmlaNVKXr3xLEb0OXlZkk/Kargn9zB2SWagMYhVQ1Lpq29djJvXayfvwD/8temCgpLIzHiM8PCzm8x1OBz8+9//Zu/evQCMGjWKyy+/vEu0BjuRmFOF69APicYwJApNkkl8AXZRvB4Pbucx8RUgxPzH7Lidzvpt/XGHI+DY8ed4nCcvw3GqKFVqn9CqF2G6eiHWIMJ89dGOCTHfvjFAnGkNBtQarfh9FHQonf9pLRD0EmRZ5oFPdvPv7UWolQpenDmSc/udOKtUlmWWHy7l8fwSAC6KCOGlwX0JbmWSRG3tNrJzFmK3HwIgIeFa0vvfj1rd1NJXVlbGu+++S1VVFSqVit/+9reMHDny1B6yjZGcDWKuHMfe6kAxFxGEfkiUT8wlCjHXVsiyjMftChBd/m1joXWcEHMdJ8jcDmcTkeb1eNp9/RpdEJog349faDW2ljUWYg2WsgBxVt+1QNv67HKBoCvRqcLO6/Vy0UUXkZKSwptvvgnATz/9xN133012djbR0dH85S9/CeiCsHLlSpYtW8bRo0fJyMjg2Wef5ZxzzvFfb/HixaxatQqbzcaFF17ISy+95G9xVFZWxrx589i0aRNqtZpZs2bxxBNPdAlrhKDn89h/9/LWjwUoFPDPGcO5KCP2hPPtXon79hTw77IaAG5LiuaB/gmoWiFgJMnJwYNPc7jgFUBCp4sjY9DfiIy8oNn5u3fv5uOPP8btdhMaGsr06dM7rbC0T8xVYt9ZgWNfUzFnGBKFXoi5M0KWZWpKj1Kyfy9H8/ZRkrePuspynwBzOE9ez+wMUapUxwRYo63Wv69HE6Q7bkyPRqfzjTUSb43PU2u1IqtT0OvpVEXz4IMP8s0335CSkgL4MvCuuOIKHnroIW677Ta+/vprrrnmGoYMGcKYMWPYtGkTd911F+vXr2fMmDE899xzTJo0icOHD2MwGHj44Yf54osv2Lp1K6GhocybN49bbrmFdevWATBjxgwSExMpLi6mpKSESZMmsXz5chYuXNiJ74KgN/D8xjxe2nwAgEeuGcKkYQknnF/mdHPT7ny21dlQK+DvA5KZlRDZqnvVmXeTk/MHrNb9AMTFXcOA9AfQaJrGyHm9Xr788ku+//57AFJTU5k6dSpGY8cWGZWcHhy5Vdh2VeDYWw2eRmIuskHMRaNJMAoxdxrYLWZK8vZxdP9eSvL2cvTA/lZV41drtAEC6oRCTKc7Tmy1LMRUarX4/ygQtBOd1nniq6++4q677mLw4MEYDAbefPNNXn31VR5//HH27dvnn3f77bdjs9lYuXIls2bNwmAwsGLFCv94RkYGixYtYs6cOSQnJ/PYY49x/fXXA1BaWkp8fDx5eXlIkkR6ejpFRUUkJPi+VN977z0WLVrE4cOHW7Xmntp54lQsmZs3b2bRokVkZ2cTHh7OHXfcwf33399k3quvvsqtt97KiX69uvN7diqs+uEQD3ycDcCfr8jg1vPTTjj/gM3B9F8PUOR0E6ZW8WpWCuPCT15DSZLcHDr8IocOPY8se9BoIhg06GFioi9rdr7FYmHt2rUcOnQIgPPOO48LL7wQlar1tfDOBL+Yq7fMNRZz6sgg9EOifZY5IeZOCa/HTdmhgxzdv88n4vL2UlNytMk8lVpNTGo/4voPIL7/QCISk31CzS/EdCiVHfO7IBAITkyX7zxRVlbG3Llz+eijj1i+fLn/eHZ2NkOGDAmYm5mZyWuvveYfv/nmm5uM79ixg9raWgoLCwPOj42NJTw8nJ07d6JQKIiIiPCLuoZzCwoKqKmpISwsrMk6nU4nzkZBuXV1Z95vrivSWkvmnj17uOKKK3jhhReYPXs2u3bt4sILLyQ9PZ2pU6f652VnZ3Pvvfd29GN0ST74pdAv6u6+sP9JRV2uxc70HQcod3nop9exemgaaYaTJ0lYLPvIyf0DZrPvXtHRv2HQwIfQapu38h05coQ1a9ZgNpvRarVcc801ZGZmnuLTnTqSo5Flbl8VeI4Jf3WUHn2DmzVeiLnWIMsytaUlHK0XcCX791F26ECzsWzh8QnE9R9IfL2Qi05JFeUxBIIeSIcLO0mSmDVrFvfddx/Dhg0LGDObzU1cQAaDAYvFctJxs9kMcMLzmxsDn+WiOWH36KOP8uCDD57iEx5DluWA+KCOQqFRtvpLMS8vj02bNlFUVITBYCAtLY0lS5awaNGiJsLu+eef55prruHGG28EYOjQoXz//fcBfz3YbDauvfZa7rnnHh555JG2e6huyH93l7Bwra9bw03npnDvJQNOOH+H2ca1vx6g2uNlsCmI94b1J0p74n+isuyloOBVDhx8Cll2oVaHMnDAUmJjr2r2d+D41mBRUVHMmDGD6Ojo03/QkyBLMvbsCmzbynDsrxZi7gwIcKke8MXG2ZtxqQYFhxDfL90n5NIHEtd/QLeqnC8QCE6fDhd2jz76KEFBQdx1111NxoxGIzU1NQHHbDYbwcHB/nGbzdZkPCoqyi/amhsPDg5GkqRmxwD/9Y/n/vvv57777vPv19XVkZzc+l5wslui+IHvWz2/rUh46FwU2ta5ULKzs1ttyfz555+5+OKLue6669iwYQPR0dHce++9zJs3zz/nzjvv5Morr+Tiiy/u1cLum/3l3P2v7UgyTB2VxANXZp5QtGyptXL9jgOYvRIjQwy8MzSNMM2J/3nabPnk5Cyktm47AJGRE8kY9Ag6XfNJGS6Xi08//ZSdO3cCvv/PV199dbu2BnMerKXms4O4C4/1qVRHN4i5aDRxBiHmWsDrcVN+KL/eGudzq1YfLW4yT6VWE5PSj7h0nyUuvv9AQmPjxPsqEPRSOlzYrV69muLiYr9gaBBXH330Ef/4xz/44osvAubn5OSQlZUFQFZWFtnZ2U3Gr7jiCsLDw0lMTCQ7O9s/v6SkhKqqKrKyspAkicrKSkpLS4mNjfWfm5SU1GLhVZ1O1236YZ4uLVlBoakls6qqimeeeYZ3332X1atX8/3333PllVcSERHB1KlTeeutt8jNzeWVV17h22+/7cjH6FJsPVTFvFW/4PJKXDEkjr//3xCUypa/ZL+tNjN7Vz42r8TZoUbeGpqG6QTlTGRZorBwNXkHHkeSHKhUJgakLyE+fkqLX+aVlZWsWbOG0tLSDmkN5i63Ubv+EI6cSgAUWhWmcxMwDI9GHSvE3PH4XaoH9tVnqu6l7NDBZvt/hsXFE99/YL01bgDRfdO6RWN2gUDQMXS4sNuzZ0/A/k033QTAm2++SWVlJYsWLeKpp57izjvv5Ntvv+Xtt9/m448/BuDmm29m8uTJTJ8+nXHjxvH8889TWlrK5MmTAZgzZw4PP/wwY8aMISoqigULFnDBBRfQr18/AMaNG8eCBQtYsWIFFRUVLFu2LKCUSluj0ChJeOjcdrv+ie7bWlqygkJTS6ZOp+Pqq6/mt7/9LQDnn38+N9xwA2vWrGHIkCEsXryYb775pleXj9ldVMucN7Zgd3u5YEA0T80YgVrV8v+PLyvrmLs7H4ckMyE8mNeHpGI4wXy7vZDc3D9SXfMjAOHh55Ax6DH0+pZLk+zZs4d///vfOJ1OjEYj06ZN82eitzVeqxvzlwVYfjzq68+qAOOYOEIu7osqWNQFa8BhsdQnNuzzxca15FI1BRPff8Axl2q/dPTBJ+9SIhAIei9d6hs4MjKSDRs2cM899/DAAw8QHR3NM888w8SJEwG46KKLeOGFF7j99tspLCxk8ODBrF+/nogIX6/MBx54ALfbzfjx4zGbzUycOJE1a9b4r7927Vrmz59PamoqSqWS2bNns2TJknZ7HoVC0WqXaGeRlZXVaktmZmZmQDIJ+MplyLLM2rVrqa6uZsQIX89RT33wdlhYGC+88II/U7knk1dmYfbrP2N2ehiTEsFLs0ahVbcs0taV1/C77MO4ZZnLokJYMTgFXQs1uGRZpvjoGvbvfwSv14pSqad//z+SlDgThaL5cyRJYuPGjXzzzTcAJCcnM23atJNmVJ0OskfC8n0xdV8VIDu8AAQNDCf0ilQ0sR1bOqWr4fW4KT98qD65wSfmqo8WNZmnUquJTkmrd6cOIC59IGGx8cK6KRAITolOK3fSHemp5U7Gjx9PUlKS35J51VVXMXXqVJYuXRow76uvvuKyyy7jjTfeYObMmXzzzTf89re/5e2332bSpEkBczdt2sTEiRN7TbmTI1U2pr30AyV1DrISQ3jn1rMJCWrZPfZhaTV35R7GK8PVMWE8l9EXTQvuWoezhD17/kRl5WYAQkNHkZnxOAZDSovXt1qtfPDBBxw8eBCAsWPHcskll7S5NVWWZew7K6j9bz7eap/o18QbCb0ilaD0k7dK62nIskxtWWkjEXdil2pcvwHEpw+sz1IVLlWBQNA8Xb7ciaBrcSJLpslk4uWXX2bmzJlceOGFfPLJJzzwwAPccccdREdH88QTTzQRdb2NsjoHs177iZI6B+kxJlbdPPaEou7t4kr+sPcIMjAjLoJ/DkputpuELMuUlH7Mvn0P4vHUoVRqSUu7jz7JN6NQtGwJLioqYs2aNdTW1qLRaJg0aVKTMkJtgfNwHbWfHsR1xJeRrgzREnppCoaRMShOEFPYk3BYLb4s1Xp36tG8fdjrapvMCzIF19eLG1AfHzdAuFQFAkG7ICx2p0BPtdh1Fj3hPau2upix4gf2lVpIjtCz9nfnEhvS8rO8cqScJXk+N9xNiVH8LT0RZTOizuWqYM/eJZSX+5KJgoOHkJn5D0zG9BavLcsyv/zyC+vXr8fr9RIREcGMGTP8Lva2wlNpp/a/h7DvqgBAoVUSfH4SpvOTUHbx0IMzxeNyUbB7B3lbfqBwTw7VxYVN5ihVamJSUv1xcfH9BxAWlyBcqgKB4LQRFjuBoAOwOD3c9MbP7Cu1EBui4+25Z59Q1D1zuJS/HfR1ALg9OZoH+jX/ZW+x7GX7r7NxuSpQKNSkpsynb9/foVS2bAV0u92sW7eOX3/9FYBBgwZxzTXXtKlglmxu6r46guWHYvDWJ0acFUfIJX1RhfTcxAinzUb+9i3s3/Ij+du34nbYA8bDYuN91rgGl2rfVNFAXiAQdBpC2AkEp4HD7WXum1vYUVhLuEHDW3PH0ifS0OxcWZZ5PL+E5YdLAfhDShy/T4ltVtSZzbls//UG3O5qjMZ0Bmc+SXDw4BOupbq6mvfee4+SkhIUCgUXXXQR5513XptZiGSPhOXHo9R9WYBs9yXF6NLDCPttGpq4npkYYa2p5sAvP5H38w8U7N4R0MnBFB5Bv9HnkDbiLOL6D8AQ0ny5JIFAIOgMhLATCE4Rl0fi9rd+4af8Kkw6NatuHkt6bPNFrmVZZmleMS8XlgOwpF8Cd/aJaXau2ZzNtu2z8XhqCAkeyvDhb6LRnFg07Nu3jw8//BCHw4HBYGDq1KmkpZ24bVlrkWUZ++5KX2JEpQMAdayBsN+mETSg5yVG1JSWkLflB/K2/EDR3lxoFKUSHp9I/zHnkD76HOL6paNoIXtZIBAIOhsh7ASCU8Arydy75lc27i0nSKPk9ZtGMySpefElyTKL9xWyqthXpPdv6YncnNR86666ul1s/3U2Hk8dISHDGTH8TdTqlltASZLE5s2b2bzZlymbmJjI9OnTWyy2fao4C+qoXZeP67CvtprSpCHk0r4YR8WhUPWMWDFZlik/nO8Tcz//QHnBoYDx2LR00secQ//R5xCZ1PqOMwKBQNCZCGEnELQSWZb58793sW7nUTQqBS/NGsWY1Ihm53okmXv3FvB+STUK4MlByVwfH9ns3Lq6nfWizkxoyAiGD3/jhKLOZrPx4YcfkpeXB8Do0aO57LLL2qSUiafKQe3nh7Dv8FkYFRolpvGJBF+QhFLX/T8uJMlL8b495P38A3lbf6S2tMQ/plAqScrIov/oc+g/+mxCotqvf65AIBC0F93/k1og6CDe+vEw7245glIBT187ggkDm3epuiSJO3MK+E95DSoFPJfRl8mxzbsua2u3s/3Xm/B6LYSGnsXwYa+hVptaXMPRo0d57733qKmpQa1Wc+WVVzJ8+PAzfjbJ7qFu4xEs3xX5EyMMI2MJubQv6tDu3VbP43ZzZPcO9m/5gQNbf8JWW+MfU2u09B02gv6jz6HfqDGiBIlAIOj2CGEnELSC3KN1LFuXC8CfrsjgiiHxzc5zeCVuzT7Ehso6tAoFLw/uy+XRYc3Oran9hV9/vRmv10JY2BiGDX0VtbrlZITt27fz6aef4vV6CQ8PZ8aMGcTFxZ3Rc8leCetPJdT97zCSrT4xol8ooVekoU1sWWB2dVx2G/m//sL+n38gf/tWXPZjbfN0RiNpI8eQPvocUoaNRNNNS+0IBAJBcwhhJxCcBJvLw13/2o7LIzFxYDRzx6U2O8/q9TJnVz5fV1sIUip4IyuViZHNW4Bqarby646b8XqthIWNZfiwV1Gpms+qdbvdrF+/nm3btgEwYMAAJk+ejF6vP6PnchbUUf3+PjzlvvId6hg9oVekETQwvFvWXJO8XvZ+/zV7vv+aw7t+Dej2YAyPoP9ZZ9N/zDkkZw5B1Yv7GQsEgp6N+HQTCE7CQ//JIa/MQkywjiemDWu+TInHy6ydB/mp1opRpWT1kDTODW/e4lVd/TM7ds7F67URHn4uw4auQKVqXqTV1NSwZs0aiouLAZg4cSLjx49HeQZZmbJbovZ/h7F8XQgyKI0aQi7pg3F0fLdMjPB63OR8vZGfPloTEDMXHp9QHy93DvH9B4hMVoFA0CsQwk4gOAGf7izm3S1HUCjgqRnDiTQ1jTerdnu4dscBdpjthKpVvDM0jVGhzbtUq6t/5NcdtyBJdiLCxzF06MuoVM27AvPy8vjggw+w2+3o9XqmTJlC//79z+h5XEfMVL2/F0+Zz0pnGBFD2FVpKA3dr0epx+0me9P/+Pnj96krLwNAHxLK8Et/y4CzzyMyqU+3tDwKBALBmSD+hBVQVlbGNddcQ1hYGFFRUSxYsABPo4KsDVx++eWYTKaAH4VCwW233Qb4WoQtWLCApKQkQkNDGTt2LBs3buzox2kzjlTZuP/DXQDcMaEf5/aPajKn3OVmyvY8dpjtRGhUrB3er0VRV1X1Hb/umOsTdRHjWxR1sizz9ddf89Zbb2G324mPj2fevHlnJOpkj0Tt54coe/FXPGV2lCYNkTdkEjFjYLcTdR6Xi+2ff8pr99zK/159nrryMoxh4UyYfQu3Pvsa5067nqjkvkLUCQSCXomw2AmYMWMGiYmJFBcXU1JSwqRJk1i+fDkLFy4MmLd+/fqA/ddff52lS5eydOlSABYvXsx3333HDz/8QEJCAq+//jpXXnklubm59OnTp6Mep01weyXufnc7ZoeHkX3CWHDxgCZzjjpdTPv1AHk2JzFaNe8P789AY/PWt8rKb9i56zYkyUlk5ASGZL2AStXU+ifLMv/973/56aefABg5ciSXX345Gs3piy9XkYXq9/fiLvElEOiHRRM2qR8qY/cSdG6Xk13/+y8/f/IB1uoqwNcFYvTV0xhy0aVotN07e1cgEAjaAiHs2hFZlnE3CuDuKDQaTautFXl5eWzatImioiIMBgNpaWksWbKERYsWNRF2jdm7dy/z58/n888/Jz7elyFqt9t56KGHSE72FXO99dZb+eMf/8gvv/zS7YTd8g372F5QQ3CQmqevHYFGFWjcLrA7mfbrAQ47XCTqNLw/vD9phuaFRWXlZnbu+h2S5CIq6iKGZD2LUtl0riRJrFu3jl9++QWAK664gjFjxpz2M8geibqNRzBvPAKSjNKoJuya/hiGdK/6bG6Hgx3/W8+WTz7wlyoxRUYx9uppZE28RPRlFQgEgkYIYdeOuN1u/va3v3X4ff/0pz+hbeWXXXZ2NhERESQkJPiPZWZmUlBQQE1NDWFhYc2ed8cdd3DjjTcyfvx4/7GXX345YM5XX31FbW1tm9RZ60i+y6vgxc0HAPj7/w0lOSIwW/WAzcG0Xw9Q7HSTotfy/vD+JAc1/35XVGxk5647kGUXUVEX14u6pnMlSeKTTz7h119/BeDqq69mxIgRp/0MrmIL1e/vw33UCoA+K5Kwa/qjMnUfEeRy2Pn183Vs/fTf2OtqAQiJjmHsNdPJvOAi1GdgxRQIBIKeihB2vRyz2YzRGBgTZjD4hIzFYmlW2H377bf8+OOPvP322y1e98cff2TatGksXbqU1NTmy4N0RSosTha89yuyDNeNSea3QwPr1eVa7EzfcYByl4d0g473h/cnTte8wCiv+JJdu+5Elt1ER19G1uCnmhV1Xq+Xjz76iF27dqFQKJg8eTJDhw49rfXLXgnzpkLqvioAr4zSoCbs6v7oh0Z1m5gzp83Gr59/ytZ1H+Ew+1qahcbGMXbydDLHXyhKlQgEAsEJEJ+Q7YhGo+FPf/pTp9y3tRiNRmw2W8Cxhv3g4ObbWr388stMnz69xeK4r776KgsWLOChhx7ivvvua/VaOhtJkvnD+zsoNztJjzHxwJWDA8bzbU6m/JpHldtLlknPu8P6EaVt/p9QefkGdu2+C1l2ExNzBYMz/4lS2fT/i8fj4YMPPiA3NxelUsmUKVMYPHhwM1c8Oe5SK1Vr9uEusgAQlBlJ+OT+qIK7h5XOYbWwff1/+OWzj3BafZbG8PgExk6eQca4CShVqk5eoUAgEHR9hLBrRxQKRatdop1FVlYWlZWVlJaWEhsbC0BOTo4/s/V4PB4PH3/8MR999FGTMa/Xyx133MGHH37IRx99xMUXX9zey29TXv8un017y9GplTx7/Qj02mNCwurxctPufKrcXoYF63lvWD/CNM3/8ykr+5zd2Xcjyx5iY64kM/NJlMqmcz0eD2vWrGHfvn2oVCqmT5/OwIEDT3ndslfG/E0hdRsOg1dGEaQm/Op+6IdHdwsrnd1iZttnn7B9/Sc4bT5BF5GQxNlTrmXgueNRKoWgEwgEgtYihF0vJz09nXHjxrFgwQJWrFhBRUUFy5YtY+7cuc3O37lzJ3a7nXPPPbfJ2L333sv69evZunUrffv2be+ltym7Cmt57L97APjLlZkMijvWMUKWZe7eU8Beq4NYrZpVQ9JaFHWlZZ+Rnb0AWfYSGzuJzIx/NCvq3G437777LgcOHECtVjNjxgzS09NPed3uMhvV7+/DdcQMQNCgCML/rz+qkK6fIWqrq2XbZx+z/b//wWX31dWLTOrD2VOuZcDZ5wlBJxAIOgxJkvG4vHjdEh635HvtkfC4mu775nh9r/1zvGSel0BkF2jFKISdgLVr1zJ//nxSU1NRKpXMnj2bJUuWAGAymXj55ZeZOXMmAAcPHiQiIoKg4/prVlRU8Pzzz6NSqZq4Ehuf3xWxOD3c9a9tuL0ylw2OZdbYwAzeZw6Xsa68Fo1CwWtZqcS2EFNXWvop2Tn3Icte4uKuITPjcRSKpuLE5XLxzjvvcOjQITQaDddddx1paWmntGZZkrF8W0TtF4fAI6PQqQi7qh+GUTFd3kpnq61h66f/5tfP1+F2OgCI7pPC2VOvI330OaJDhEDQy5G8DWLKJ5gaxJa3XmD5Xzez760XXB534Lk+QdZobv21PW4Jr0tCkuQzXndiergQdoKuQWxsLO+//36zYxaLJWB/6tSpTJ06tcm8qKgovF5vu6yvvXngo90cqrSREBrEY1OGBgij/1XW8ff8owA8OiCJs1ooPlxS8gnZOb8HJOLjppCR8Wizos7hcPDOO+9QUFCAVqtl5syZp2zddFfYfVa6w77EAt2AcMKnpKMO7dpWOmtNNVs++YAdG9bjcTkBiEntxzlTrqPfqDFC0AkE3QRZkvG4JdxOL26np34rNXrtxeP04qp/3bDvPu7nmCDzNhJbEnIbiKwzQalWoNaoUGuUqLVKVGolaq1vX6XxvfYdU/rmaFSotEpCY86sf3dbIYSdoFfz4bZCPtxehFIBT183gjDDsZjIgzYnd+QcQgZmJ0QyKyGy2WscPfpvcnIXARIJ8dMZNOgRFIqmIsVut/PWW29RVFSETqdj1qxZ/pp/rUGWZCzfF1P3+SFkt+Sz0v02DcPo2C5rpbPWVFOYu5tDO7az59tNeNwuAOL6pXPO1OtJHXFWl127oHvhsnuoKbNRW2anpsyGw+pGpVKiVClQqpWo1AqUqua29XNUClTqpscDtg1j9ddUKrv2764sy3g99QLMUS+oXN7AfacXz/HHXI0EmOO4/fr5dJD2ahBQKo2yXlgdE1wB+xolKm2j1/WCy3+uVola7RNg6sZjfoHmG1N1g/+vJ0MIO0GvJb/Cyl8+2g3AgosHMDolwj9m8Xi5aVc+dR6J0SFGHk5PbPYaxUfXkpu7GJBJSLiWQQOXNSvqbDYbq1ev5ujRo+j1em644YaA2oEnw1Npp2rtPlz59Va6/mE+K114850uOgtLdRWFObsozN3NkexdVBUXBozHDxjEuVOuo++wkULQCU4Zr1uitsJOTanNJ+JKbdSU+fZtda4OX49CgU80NohHv4gMFIvHtscJy4YxlU80NrdtmIdME4uXz0IWaDnzuCTcjmOWM7mdBZhGp0KtU6Gp/9Eet6/RqdBoVWiCju2rtfXbBouYRtVEjKk1vvdR0c1FVmcghJ2gV+L0eLnrX9uwubyMTY3gzonH+rDKssw9ewrYZ3MQp9XwalYK2mbchMXFa8jd8ydAJjFxJgMHLG1W1FksFlatWkVZWRkGg4HZs2e3WCrmeGRJxvrTUWo/y/dZ6bRKQq9Iwzg2rksII0tVJUdyd1OYs4sjObupPk7IoVAQ3TeV5Mwh9Bs1luTBQ7rEugVdF0mSsVQ5qCmzUVNqbyTgbJgrHScUKvpgDWGxBsJiDOiDtUiSjOSR8HobthKSx2fFkrwyklfC6znxVvLWz/fITeKwZNknNr1ugK4diqLWKP3iqkFYtfSjrhdovn01ap0SjU7ddJ5GCK+uiBB2gl7J4//dy+6iOsIMGp66djiqRh9OTx8uZV15LVqFgteyUppNligq+hd79v4FgKSkGxiQ/tdmBYvZbGblypVUVFRgMpm48cYbiY5uXUsvT5WD6g/24Tzg67qgSwslfOoA1BGdZ6UzV1VQmLObwpzdHMnZRfXRosAJCgUxfdNIHpxFUuZQkgYNJsjU+cHEgq6FLMvYze5jlrfGIq7MjtcjtXiuJkhFWIyhXsDpCYs1EBrje60ztG83ElmSfUKvQSAeJ/wCjjcSlAHneBqd421GZAYI0WNb4KQWMP+x4/bVWlW3dy8KWo8QdoJex8Y9Zbz2bT4A/5g6jPjQYwGvGypqeSy/BPAlS4xqJlmisPBt9u57AIDkpJtIT/9Ls6KutraWlStXUlVVRUhICDfeeCORkc3H6TVGlmWsW0qo/TQf2eVFoVESenkqxrPjO/yvY3NVBYXZuzhS716tPlocMK5QKIlO8VnkkgcPIXGgEHKCYzTEvfmtb6UNIs6Gy9GyhUupVhAafUy4+YScntAYA4YQbadZfRVKBSqlApVGJPoIui5C2Al6FaV1Dn7//g4Abjo3hUsyY/1jB21O7sw97E+WmNlMssSRwtXs27cUgD7Jc+nf//5mv2Sqq6tZuXKlv9/ujTfeSHh4+EnXJ7m81Hy4H9uv5QBo+4YQMW0A6qiOybYyV1ZwJGcXR7J3UZi7i5qSowHjCoWSmNR+JGVmkZw5hMRBmQQZhZDrzXjdErXl9nrxZmu0tWM/UdybAkIig+qtbT7h1mCJM0UECQuTQHCaCGEn6DV4JZl73/uVKquLjPgQFl8+yD/WOFliTGjzyRIlJZ/4RV3fPvPo129Rs6KusrKSlStXUldXR0REBLNnz2625+7xeCrtVK7OxV1iBSWEXpaKaXxiu1rprDXVHN65nSM5vji5mtKmQi42rR9JmUP8Qk5naL7ki6Dn4o97K7UFxr6V2airdJwwQ1Ifoj3O8ubbhkQHodaIItQCQVsjhJ2g1/DS5gN8f6ASvUbFc9ePIKj+S0WSZe7ObZQsMbhpskRN7S/k5P4RgOTkm1sUdeXl5axcuRKLxUJUVBSzZ88mJCSkybzjse+pourdvcgOD0qThsjrB6FLCzvzh24Byetly38+5Ie17+B1u/3HFUolsWn9ScrI8rtWdQZDu61D0HWQZRlbnSsg3q3B8lZbbkPytKzetEGqY7FusY2sbzEGtHrxNSMQdCTiX5ygV/DL4Sr+uWEfAA9ePZh+0cfch08fLuWzCl+yxOtZKcQclyxhtx9h587fIcsuoqIuJr3/4mZFXWlpKStXrsRmsxETE8Ps2bMxnSTeTJZkzF8VUPdlAcig7RNMxMyMdi02XHboIJ+/9DRl+QcAiEnpR9+hw0nOHELCwEwh5HoBTpubyiIrFYUWKossVBRaqC6x4j5B3JtK7SvA2jjercECpw/WiGxngaCLIISdgLKyMubNm8emTZtQq9XMmjWLJ554ArW66a/H008/zVNPPUVlZSUpKSn89a9/ZcqUKZ2w6tZTa3dz979+xSvJTBqWwLRRSf6xLypqebw+WeLvA5IYeVyyhMdjZsfOW3G7qzCZMhmc+c9mO0oUFxezevVq7HY78fHx3HDDDRhOIpAkm5uqNftw7KkCwHh2PGFXpqFQt09gtsfl4scP3+Xnj9ciSxJBpmAmzL6FzPMvFF/KPRRJkqkrtwcIuMpCC+YqR7PzFQoIjgzyu0tDG8W+ibg3gaB7IISdgBkzZpCYmEhxcTElJSVMmjSJ5cuXs3DhwoB569ev529/+xtff/01AwcO5IMPPmD69OkcOHCAlJSUzln8SZBlmT99uIuiGjvJEXoenpzlFzF5Ngd35viSJW5MiOT645IlJMnDrt13YbXuR6uNYdjQFajVzWXJFvLWW2/hcDhITExk1qxZ6PUnTnZwHbVSuToHb5UD1ErCJ/fHOCr2hOecCYV7svni5Wf9deYGnD2OC+fchjHs5Akdgu5Bc1a4qmILHlfzpUNMETqiEk1EJpmISgomIt5IaLReZHwKBN0cIex6OXl5eWzatImioiIMBgNpaWksWbKERYsWNRF2ubm5yLKMJEnIsoxKpUKr1TZr2esqvLvlCOt2HUWtVPDsdSMJCfK5Wc0eL3N25WP2SowNNbKsmWSJ/XkPU1X1DUplEMOGriAoKL7JnMOHD/P222/jcrlITk5m5syZBAWduM6cbXsZ1R/uR3ZLqMJ1RM7KRNtOjaNddhvf/Gslv36+DgBjWDgXzb2d9DHntsv9BO3PqVrh1BolEQlGopIaRJyJiAQTQcb2rfkmEAg6h677jdwD8Ikge4ffV6nUt9q1lp2dTUREREB7q8zMTAoKCvylOhq47rrreOONN8jMzESlUqFQKHjrrbdISkpq5sqdz/5SMw/+JxuAP1w2kOHJYYAvWeKu3MPstzmJ12l4pZlkiSOFqygsXA3A4Mx/EhIypMn1Dx48yL/+9S/cbjcpKSlcd9116HQtx8bJHonaz/KxfO+rBacbEE7EjIGo2ukLNv/XX9jwynOYK3ylU7ImXsoFs24Wdea6EQFWuEIzFUXWU7LCRSYaCY0xCBeqQNCLEMKuHZEkO5s2NxUE7c2EC3ahUrUuAN5sNmM0BroXG2LDLBZLgLBzuVwMHz6c119/nWHDhvH2228zd+5cMjMzGTKk45/zRDjcXua/sx2HW2J8ehTzxqf5x5YfKuW/FXXolL7OEscnS1RWbmbfvmUA9EtbSEzMZU2un5eXx7vvvovH46Ffv35ce+21aDQtCzRvnYvKt3NxHfb1eg2+MJmQi/u2SykTu7mOTateJefrrwAIjYnlknl30XfI8Da/l6BtEFY4gUDQVghh18sxGo3YbLaAYw37wcHBAcfnz5/Peeedx+jRowGYM2cO77zzDm+++SZPPvlkxyy4lTy8Loe9pWaiTFqenD7Mb7H4oqKWfxxqlCwREihqLZa97Np9NyARHz+Vvn1va3LtvXv3smbNGrxeLwMGDGDatGknFHXOQ7VUvp2LZHaj0KmImDEQfebJO1CcKrIss+/H7/jqjZew1daAQsGoKyZx3vQb0JzEPSzoOHxWOAsVhVZhhRMIBG2OEHbtiFKpZ8IFuzrlvq0lKyuLyspKSktLiY31Be/n5OSQlJREaGhowNyCggLOOuusgGMajQatVnvmi25D/rv7KG/9WADAP6cPJybYJ2oakiUA5iRGcV18oLhyuSrYsfNWvF4LYWFjGDRwWROXdk5ODmvXrkWSJDIyMpgyZUqLMYayLGP5vpjadfkgyahjDUTekImmHbpIWKoq+fL1F8nb8iMAkUl9uPS2u0kYMOgkZwrai+ascBWFZixVzmbnCyucQCBoC4Swa0cUCkWrXaKdRXp6OuPGjWPBggWsWLGCiooKli1bxty5c5vMnTRpEs899xxXXXUVw4cP58MPP2Tjxo387W9/64SVN09RjZ1Fa3cCcNv5aZw/IBoITJY4O9TIQ/0DkyW8Xic7d/4Oh6MIvb4vQ4e8gFIZKFhzc3N5//33kWWZrKwsJk+ejErVfOV8yeWl+sP92Otbg+mHRRM+JR2ltm0r7cuyzO6NG9i8+jWcNitKlYqxk6cz5prpqE9gRRS0LcIKJxAIugqnJewcDgfV1dVEREScMFhc0D1Yu3Yt8+fPJzU1FaVSyezZs1myZAkAJpOJl19+mZkzZ/LXv/4VlUrFlClTqKqqIj09nY8++ojhw4d37gPU4/FK3POv7dQ5PAxLCuX3lw4EfMkS8+uTJRJ0Gl7JSkHT6AtUlmVy9/yR2rrtqNUhDBv6KhpNYBmQvLw81q5diyzLDB06lGuuuQalsvmyEJ4KO5Vv5eAusflag12Rhum8hDavFVdTWsKGFc9QsNsnZOP6pXPp7+4huk9Km96nO1FZbKGu3I7c0CRBBtn3H/8x2f+i6Riy7OuO5T8mB15LPrZvqXbUJzYIK5xAIOg6nJKw++677/jjH//Ijz/+6C93cd555/H444/7464E3Y/Y2Fjef//9ZscsFov/tVqtZunSpSxdurSDVnZqPPNVHlsPV2PSqXnmuhFo6wv9/vNQKZ/7kyVSidYGfqnmH3qO0tL/oFCoGZL1PEZjWsD4oUOHePfdd/F6vWRmZnL11Ve3KOp8rcH2IDu87dYaTJK8bF//H759dzUelxO1Vsd5M2Yx8opJKJW9r/em1yNxYHsZuzYWUXKwttPWIaxwAoGgK9BqYffdd99x8cUXM2XKFObPn09UVBRlZWV88sknXHjhhXzzzTddxnIj6H38eLCS577aD8Ajk7PoG+lLivi8opYn6pMlHhuQxIiQQNd4Sel/yM9/CoCBAx8iIiKwvltRURHvvPMOHo+H9PR0/u///q9Z96ssydR9WYD5S19sn7ZPMJEzM1C1cWuwioJDfP7yM5Tk+dqjJQ8eyqXz7iIsrmmNvZ6OpdpJ9jdFZH9bjL3OBYBSqSAq2eTPNvYZSRW+bb2+arCcHjtWP+4/pmg4HHCu4tgFUSggyKQhSljhBAJBF6PVwu6vf/0rf/nLX/jzn/8ccPz666/nwQcf5OGHH2bt2rVtvkCB4GRUW10sePdXJBmmjkri6uG++Ln91mPJEjcnRnHtcckStbXbyc1dBECf5LkkJswIGC8pKWH16tW4XC5SUlKYPn16s4kSks1N1Xt7ceytBtqnNZjX4+anf7/PT/9eg+T1oNUbuOCGmxly4WW9qh2YLMsU76th16ZCDu6oQJZ8flFjqJbB5yeSOS4BYzv22RUIBIKuTquF3bZt2/j3v//d7Ng999xDVlZWmy1KIGgtsiyzcO1OSuocpEUZeXDSYADqPF7m7M7HUp8s8eBxyRJ2eyE7dt6GJLmIirqY/v3/GDBeUVHB6tWrcTgcJCUlcd111zVb0sRVbKHyrdx2bQ12NG8vX7z0DBVHfCK131ljuWju7QRHRLXpfboyLoeHfT+VsGtzEVXFVv/xhPQwhkxIInV4FCqVaIUlEAgErRZ2bre7SV2zBsLCwjCbzW22KIGgtaz+8TD/yy1Fq1LyzHUjMOrUvmSJnMPktZAs4fGY2bHzVtzuSkymTAZn/hOF4ph7tbq6mlWrVmG1WomLi2PmzJnNJglZt5dR046twdwOB9+teYttn32CLEvoQ0K5cM5tDDxnfK+x0lWXWNm1uYi9PxzF5fACoNapGDg2jiEXJBLZTq3YBAKBoLvSamF3si8Sf6aZQNBB5BTX8fC6XAAWXz6IrERf3b0nDpXwRaUvWeL145IlJMnD7ux7sFr3odXGMGzoCtTqY0WK6+rqWLVqFXV1dURFRXHDDTeg1wfWnZM9EjXrDmL94Sjgaw0Wee1AlIa2i7Eq2L2DL1Y8S22pLz4wY/xEJsy+BUNI6EnO7P5IXolDuyrZtamQwj3V/uNhsQayLkhk0Dnx6PSiUpNAIBA0R6s/HWVZ5siRIy0KOCHsBB2JzeXhrn9tw+WRuHBQDHPOSwFgfXkN/zxUCsDjA5IZflyyxP68v1FZuRmlMohhQ18mKOhY0oHVamXVqlVUV1cTHh7O7Nmzm7Rb89Y5qXx7T7u1BnM7HHz9zhv8+vk63/Ujo7n41jtIG9Hzs87tZhc53xWz++sif/kQhQJShkYx5IIkkgaFt0sLNoFAIOhJtFrYWa1WUlJSWhRwvcU1JOgaLPs0hwPlVmKCdfxj6lAUCgX7rA7m5/qyUucmRjEjPiLgnMLCtygsXAnA4MwnCQkZ6h+z2+2sXr2aiooKQkJCmD17NiEhIQHnu8ttlK/YhWR2oQhSETG9bVuDFe3J4b8vLKem1GcJHHbJ5Yy/fg46Q9cucn2mlObXsWtTIft/KUXy+D5fgowaMsclMPj8BEIi275Th0AgEPRUWi3s8vPz/a89Hg8VFRVERUW12E5JIGgv1u08yr9+PoJCActnDCfSpPMlS+zKx+qVOCfMyNLjkiUqK79m3/6HAOiX9gdiYn7jH3M6nbz99tuUlJRgNBqZPXs24eGBBYo9NQ4qXt2NZHahjjEQObvtWoN5XC6+f/9ttvznQ5Bl/r+9+w6Pqsr/OP6+0zOZ9IQkkACBJEAIRUVRBBEUEURFQVFRFNvaRf3p2rA3XF2xrK4FlVV0FXTtCKgUO2KhhB5KICG9zWQy9d7fH5MMGRIgQCCF7+t55pk799xyZgiZT8499xxbXDyjr7uV7v2PaZHjt0U+r5/NK4pZvWQnxdt398/t1C2CfiNSSD+uEwbj0TcmnxBCHKpm30bWrVs3zGYzd999N3379mXIkCH07duXu+66C6PRSLdu3Zp90u+++47BgwcTGRlJUlISN998M7W1tQD8+uuvDB48GJvNRlpaGrNmzQrZd/bs2aSnpxMeHs6gQYP4+eefg2V+v58777yTxMREIiIiOPfcc9m1a1ewvLi4mPHjxxMdHU18fDzTpk3D5/M1u96i9e2scHL3x4GZFq4f3pOT0+NRNY0b124nt9ZNF7OR1/qG3izhcGxk9Zqb0TQ/yUnn063bdcEyr9fL+++/z86dO7FYLFx22WXEx4febep3eCh9Yw3+KjeGhDASru3XYqGuaMtm3r1nGr999hFoGn2Hn8bl/3ipw4a66tJafv7fZmbf/RPfzl5H8XY7eoOOXicmMfHvg7jgnuPpfWKyhDohhDhIzQ52FRUVDB48mB07dvDKK6/w1Vdf8dxzz7Ft2zZOOOEEysvLm3WckpISzjrrLK6//noqKyv5888/WbJkCU899RQVFRWMHTuWKVOmUFlZyaxZs7jttttYvnw5AEuWLOHmm29m9uzZVFZWMnnyZM455xycTicAjz32GAsXLmTFihXk5+cTFhbG1VdfHTz3pEmTsNlsFBQUsHz5cr755huee+65A/m8RCvy+VVu/e9f2F0+BqZGc9uoTADe2FnCorKmZ5bweMpYueoa/H4H0VHH07v3Y8FuAz6fjw8//JBt27ZhMpm49NJLSUpKCjmnWuujdNYafKW16KPNxF/VD70tdA7Zg+H3+fhp7nu8d/8dlO3MwxoVzbn/dz9n3nAblvCOc6en369SUVjD5t+L+fLlVbwz/Wf+WJCHq8aLLdbMieN7cPmTQzj9iiwS0yL3f0AhhBD7pGjNvOvhzjvvZMuWLcybNy+kP52qqpx//vmkp6fzzDPPNOukdrudiIgINE0jJyeH8847j1tvvRWLxcLTTz/Nxo0bg9tef/31OJ1OZs+ezaWXXorVauW1114Llvfp04e77rqLqVOnkpqayowZM7jkkksAKCoqIjk5mc2bN6OqKhkZGeTn59O5c2cAPvjgA+666y62b9/erHpXV1cTFRVFVVVVo/5XLpeLrVu3kpaWhsViadbx2ori4mKuvfZalixZgsFg4NJLL+WZZ55p8jL7888/z8yZMykrK6N79+48+OCDTJgwAQj0U7vtttv45JNPcLvdHHvssTz33HP079+/0XHgwD+zZxdu4MXvNhNhNvDVrcNIjbWyvqaW0Ss24lY1nspM4Youu1vb/H43f/51KVVVfxAW1pVBx32EyRTod6eqKvPmzWPt2rXB99y9e/eQ86keP6Wz1uDZXo3OZiThugEt0lJXumM78//1T4q35gKQOfhkTrv6hnZ9x6un1kdFkZOKwhoqCp1U7KqhsshJVXEtqhr6Kya1TwzZw1Po3j9eptsSQohm2Ff+2FOzO8h9+umnfPHFF41uktDpdDzxxBOce+65zQ529ePhpaamkp+fz7Bhw5g6dSr3338//fr1C9k2KysreDk2JyeHK6+8slH5ypUrqaqqYufOnSH7JyYmEhMTw6pVq1AUhdjY2GCoq983Ly+PyspKoqOjm/tRdDiTJk2iS5cuFBQUUFhYyDnnnMNzzz3HnXfeGbLd/PnzeeKJJ1i2bBm9evXio48+4sILLyQ3N5fu3bvz0EMPsXHjRtauXYvNZuPuu+/mvPPOIzc395Dr+HNuGS8t3gzA4+f3IzXWikdVuWltHm5VY2RsBJd33n0jg6ZprF9/D1VVf2AwRDKg/xshoe6zzz5j7dq16HQ6LrrookahTvOplL27Ds/2ahSLgfirDv3yq6r6+f3LT/nxg3fwe71Ywm2MvOp6eg85pV3cfKRpGs4qz+7wVrg7yNVUuve6n8GsJybRSnJ6FNmndCEmKXyv2wohhDg0zQ52hYWFZGZmNlnWp08fCgsLD/jkmzZtoqKigsmTJzNx4kS6dOnSaHgJq9UanIjebrfvtbx+gOR97d9UGQQmum8q2Lndbtzu3V9Y1dXVB/T+NE3DqaoHtE9LsOp0zQ4KmzdvZsmSJeTn52O1WunRowfTp0/nrrvuahTs1q1bh6ZpqKqKpmno9XpMJlOwZW/dunXBsvpyawvc0Vle42HaB3+iaXDhoBTOGRAI589uK2KNo5ZYo57nencNec/btr1EYdGnKIqBftkvER7eEwj8m8yfP5+//voLRVG44IILSE9PDzmfpmqUf7AB98YKFKOO+Kl9MSUfWhipKCzg65dnUrBhLQBpxwzijGtvxhbbcnfVthS/X6W6pDYkuFUUOqksrAkOEtwUa6SJmCQrMUnhRCdZg8u2aLMMUyKEEEdIs4OdxWKhsLCwUR8kCIS+vc1KsS9hYWGEhYUxY8YMBg8ezC233EJlZWXINk6nM3js8PDwYH+6huXx8fHB0NZUeUREBKqqNlkG7LXuTz75JA8//PABv6/g8VWVnstWH/T+Byv3lH6ENzFRfVNycnKa3ZJ58cUX89Zbb5GVlYVer0dRFN59911SUlIAuOOOO5gwYQLx8fHo9Xri4+NZvHjxIb0XTdO4a94qiqrd9EgI56G6KcOWVzp4cfvu8eoSzbv71RUVfcGWrTMB6JX5MLGxJweP9c033/Dbb78BMH78ePr06dPofBUfb6J2dSnoFeKmZGHudvB9vzRNY+Wi+Sx9dxY+txujJYwRl19D9ohRbaKVrrLISdHWqpAWuKqSWlT/3oY1gsiEMGKSwuuCW12QS7RiCW+5AZqFEEIcnGYHu+HDh/Pyyy/zyCOPNCp75ZVXGD58eLOO89NPP3HllVeyatUqTKZAJ3S3243JZCIrK4uFCxeGbL927drgPLTZ2dnk5OQ0Kh87diwxMTF06dKFnJyc4PaFhYWUl5eTnZ2NqqqUlZVRVFREYmJicN+UlBSiopru23TPPfdw++23B19XV1eTmprarPfZXuytFRQat2R6PB4GDhzIm2++yYABA5gzZw5XXXUVWVlZ9OvXD5/Px4QJE3jggQeIjIzkzjvv5Nxzz2XVqlUH3e8wZMqwi47BajLg8Pm5eV0eKnBBUgzjOu2uY1XVX6xddxcAXVOvokuXi4Jly5Yt48cffwRg3LhxDBgwIORcmqZR9eVWnCuKQIG4i3tjyQgd9uRAVJeWsPDVF9i+6k8AUrP6Mfr6aUR1atm5ZA+Go8LFr59tYf0vhdBEhqu/fBoS3pKsRCdY0RtlTlYhhGirmh3s7rnnHoYNG0ZYWBiXXXYZSUlJbN++nVmzZvHiiy/y008/Nes4/fv3x+l0cvfdd/PUU0+xa9cu/u///o+rrrqKiRMncvfddzNz5kxuvPFGfvjhB+bMmcOnn34KwJVXXsl5553HhRdeyNChQ/nXv/5FUVER5513HgBTp07lscce44QTTggOZzJ8+HB69gxchhs6dCjTpk3jtddeo7S0lEcffZSrrrpqr3U1m81NzhHaXFadjtxT+u1/wxZm1TX/i3dvraDQuCXzpptu4uSTT+b44wOzIEydOpX33nuPt99+m6eeeooLLriAr776ii5dAmPIvfjii0RHR7No0SLOPvvsA34fe5sy7KHNBWx3eehiNvJ4Rkpw+9rafFauuhZVdRMffxrp6X8Plv3888/B1sPRo0czaNCgRuezf7cDxw/5AMRMyCQsO77RNs2haRprl33Hd2+9iqfWicFoYtjkKzhm9DiUA/i3ORw8Lh9/Lszjr0V5+LyBbgLJ6VHEdraFhDi5fCqEEO1Ts4PdscceywcffMA111zD/fffH1yflJTERx991Oimh72x2Wx8/fXXTJs2jcTERKKiorj00kuZPn06ZrOZRYsWceutt/LAAw+QkJDACy+8wIgRIwA47bTTePnll7n++uvZuXMnffv2Zf78+cTGBjrFP/DAA3i9XoYNG4bdbmfEiBF8+OGHwXPPmzePm266ibS0NHQ6HVOmTGH69OnN/QgOmKIozb4k2lqys7Ob3ZKZl5fXKBAZjUZMJhMOh4OKioqQPol6vR6dThdsmT0Qe5sybGFpFe/uKkMBXujTlUhD4PP1+eysWnUNXm8ZNlsf+mY9h6IEyn7//XcWLFgAwKmnnspJJ53U6HyOH/OpXhS4OzpqXA/CBx1cq1pNZQWLXn+J3BW/ApCc3oszb7yN2M4p+9nz8FL9Kut+2sWvn2+lttpTV7cohkxIJymt/d6NK4QQIlSzhzup5/F4+PnnnykoKCA5OZmhQ4ceNbNPdNThToYNG0ZKSkqwJfPss89m4sSJPPTQQyHbTZ8+nX//+98sWLCAgQMH8vHHH3PZZZfx888/M3DgQIYNG4bX6+Wzzz4jMjKS6dOnM2/ePNasWdPoci/s+zO75+NVvL98B50izMy/dRhxNjOlHh+nLl9PqdfHdakJwdklNM3PylXXUla2BJMpgeMHfYzFEugzuGrVKj7++GMAhgwZwqhRjfu21fxeRMXcwBA7kad3JfL05g+23dDGX35g0Rsv47JXo9MbGHLBJRx/zgR0rRjuNU1j+5oyfvo4l4pdNQBEJYRx0vk96TEwoU308xNCCLFvh2W4k3omk6nZ/elE+7Cvlkybzcarr77K5MmTefDBB9Hr9UyYMIHy8nIyMjL45JNPGDhwYPA4d955J/3798fr9XLiiSeyYMGCJkPdvjQ1ZZimady5YQelXh+9wy3cnZYc3H7btpcpK1uCTmdhQP/XgqFu3bp1/O9//wNg0KBBTYa62jWlVMwLhDrbyZ2JOK3rAX9+tQ473735b9b/uBSAhG5pjLnxdhK6pR3wsVpS6U47P87bzM71FQCYww0cf1Ya2ad0QW+QfnJCCNERHXCL3dGso7bYtZamPrOdFU7GPP89dpePG07tyV1n9gbg/V1l3LZ+B0ZF4etBmfS1BcaUq6hYzh9/TgZUsvo8Q3JyoL/l5s2bef/99/H7/QwYMIBzzz0X3R7921ybKih9Owf8GtbjEomZkHHA/cq2/PkbC199kZqKchSdjsHjL+DECRehN7TeHaKOCje/fr6F9T/vAg10BoX+I1IZNKYbZqvcuSqEEO3NYW2xE+Jw2duUYdtr3dy/KXBTw11pScFQ5/GUk7P2NkAlOen8YKjbvn07//3vf/H7/fTp04dzzjmnUahz51VT9s5a8GuEZccRc/6BhTq308nSd95g9XeBu7hjO6dw5o23kZze61A/hoPW1I0RGYM6ceL4nkS20Ny2Qggh2jYJdqLNeP7bTfy+vYIIs4EXLz4Go16HX9O4dV0eNX6VwVHh3NC1ExDoO7Zu3d9xuwuxWnuQmfkQAPn5+cyZMwefz0d6ejoTJkxAv0cfN8+uGkrfzEHzqJgzoom9qDeKvvmhLm/NKhb8eybVJcWgKBw39hxOvmgKRtPB30F9KJq8MaJnFEMmyo0RQghxtJFgJ9qEhlOGPVE3ZRjAK3nF/FJVQ7hexwt9uqKv6yO3Y8dblJZ9h05nIjv7RQyGcAoLC3nnnXfweDx0796dSZMmNbqxx1daS+ms1WguH6ZukcRdloXSzP5mqt/P0nff5I+vAsPvRCYkcuYN00jNOvJD2kAg3ObllPPTx5spL5AbI4QQQkiwE21ApTN0yrCz66YMy3HUMmNrYKq6RzO60C0s0CJWXb2KzblPA5CRfj8Rtt6Ulpbyzjvv4HK5SElJ4eKLL8ZoDO1P5qtyU/LGalSHF2NyOPFX9EVnat4dq36fj69eepaNP38PQP/TzmT4ZVdiCjv0KdMORulOOz99tJkd6xrcGDE2jezhcmOEEEIczSTYiVb3zIKNjaYMc/lVblq7Ha+mMTo+kouTAmMV+nx2Vq+5BU3zkpBwJl26XILdbuc///kPNTU1JCUlMXny5EYDS/sdHkrfWI2/0o0hPoz4K7PRhTXvx9/v8/LlC/9g068/odMbOOvWO8kcfHLLfgjNVFPp5pfP9rgx4tQUjhvTXab0EkIIIcFOtC6H28fPW0pDpgwDmLF1F+tqXMQZDTzTKxVFUQL96tbfi8u1A4slhT69n0TTND7++GOqq6uJi4vj0ksvJSws9EYB1eWj9K0cfCW16KPMxF+djT6ieYMm+31ePn9uBrkrfkFvMHD27ffS87gTWvxz2B+Py8efi+pujPAEboxIH9SJE8/tSVSC3BghhBAiQIKdaDUuj5+qWi8QOmXYTxUO/r2jBIB/9k4lwRRoiSoo+C/FxV+hKAay+z6P0RjJkiVL2Lp1K0ajkYsuugibzRZyDs3rp3R2Dt58B7pwI/FXZ2OIbt5wND6vl8//+QRb/vgNvdHIuf93P2kDj2upt98sqqqx/qdd/PrZFpx1N0Yk9Yji5InpJPWQGyOEEEKEkmAnWoVf1dhV5ULTYHCPuOCUYdU+Pzev244GXJIcy+j4QHhxODawcdOjAPTscQdRUQPZsmULS5YsAWDcuHEkJCSEnEPzqZS9uw7P1moUi574K7MxJjSvT5zP4+HTZx9n21+/YzCaOPeu6XTvf0yLvPfm2p5Txk8f7b4xIjIhjCHn9aTHMXJjhBBCiKZJsBOtYldVLR6/H71O4c4zegWDyv2bdpLv9tLVYuKRuinD/H4nq9fcgqq6iYsbTteuV2O32/noo48AOOaYYxgwYEDI8TVVo/zDDbg2VKAYdcRf0RdTl9DWvL3xul18+szjbF/1JwazmfPueoCu2QP2v2MLqSxy8v0HG8lbWw6A2Vo3Y4TcGCGEEGI/JNiJI67S6aG8JnBZMdZqJCY80N/ty5JKPiysQAe81KcrNkPgjtUNGx/B6dyMydSJrD7/QNPg448/pqamhk6dOjFmzJiQ42uaRuUnm6ldVQp6hbhL+2Du3rzLll6Xi0/+8Qh5a1ZhNFs47+4Hj9hwJj6vnz++3s7vC7aj+jR0eoV+I1IYJDdGCCGEaCb5819QXFzM+PHjiY6OJj4+nmnTpuHz+Zrc9u2336Z3795ERERw0kknsWzZspDyV155hfT0dGw2G/369eOLL74IKff4/ORX1gIQG27CbAyEt2K3lzs37ADgxq6dOCE60LpWWPgZu3bNBXRk930OkymOZcuWBfvVXXDBBZhMoTdCVH29jZrlhaBA7KReWHrFNutz8Lhq+fiphwKhzhLG+fc+fMRC3Y615fz3keX89uU2VJ9G16xYLn5wMEMnZkioE0II0WwS7ASTJk3CZrNRUFDA8uXL+eabb3juuecabffZZ59x3XXX8cwzz1BZWcmdd97JmDFj2LBhAwCzZ8/m4Ycf5r333sNut3PvvfcyYcIECgoKgLoBdctr8asaVpOBOJs5uP629Tso9/rpa7NwZ1oSAE7nVtZvuB+AtO43ERNzYki/urPOOqtRv7rqJTtwLN0JQMz5GVj7h5bvjafWyUdPPMjOdWswhVmZeN8jpPTue4Cf5IGrqXKzcFYOn73wF1UltVijTIy+JptxNw8gulPrjJEnhBCi/VI0TdNauxLtxb4m4W1qQntN06j1+o94PcOM+mZ3rt+8eTMZGRnk5+fTuXNgYOAPPviAu+66i+3bt4dse9FFF2G1WnnzzTeD68aMGUP//v2ZMWMG/fr145ZbbuGaa64Jlv/xxx9kZmZis9korHJRbHehVxQyEm2oPi9bt25lVXg0t+YWYdYpfH1cJn1sYaiqmxW/X4DdnkN09GCOPeYdHA4n//73v6mpqeGYY47h3HPPDamf45cCKj/JBSDqrB5EDOvSrM/A7azhoyceYNemDZjDw5lw7yOHfc5XVdXIWZbPL5/k4nH5URTod2oKg8/pgamZ4+sJIYQ4Ouwrf+xJvkEOo1qvn6wHFhzx8659ZHRwPLj9ycnJITY2NhjqALKyssjLy6OyspLo6Ojger/fT3h4eMj+Op2O9evX43Q6ycnJQa/Xc8opp5CTk0OvXr2YMWMGNpsNh8tHsd0FQJeYMEwGPS6fF5+q8cK2YgDuSUumjy0wJtumzTOw23MwGmPp2/efaJoS7FeXkJDQqF+d889iKj8NhLqIkanNDnWuGgcfPT6dwtxNWMJtTLz/MRJ7pDdr34NVvL2ape9toHi7HYBO3SI4dXJvErpGHNbzCiGE6PjkUuxRzm63NwprVmvgEqDD4QhZP2HCBP7zn/+wdOlSfD4fn376Kd9++y21tbVUVFSgaRrPPPMMr7zyCrt27eKSSy5hzJgxbM7dwo4KJwCxVhPR1kCfOE3TKPf5cGsqJ0fbuDY1cNm0pGQRO3fOBiCrz9NYzEkh/eouvPDCkH51tRvKKZ+7ATSwDelM5KhuzXrvtQ47cx+9LxDqIiK54IEnDmuoc9f6WPbBRuY9tYLi7XZMFj2nXJTJhL8PklAnhBCiRUiL3WEUZtSz9pHRrXLe5goPD8fpdIasq38dEREaNi666CJKSkq45pprqKioYOzYsVx88cU4nc7gFF633347ffsG+qbddNNNvPLKK7z/0aece8lUzAY9ydG7Z0ko8/pwqxrhOh3P9+mKTlFwuQpYu+7vAHRNvYr4+BFs3bp1r/3qPDvslL+7DlSwHtOJqHE9mnUZ2lldxbzHp1OybQthkVFcMP1xErp2b/bndiA0TWPz78X8MHcTzqrA3cAZxydy8sR0wqPM+9lbCCGEaD4JdoeRoijNviTaWrKzsykrK6OoqIjExEQA1q5dS0pKClFRoUOEFBYWcuaZZ3LzzTcH15144olMmDCB+Ph4OnXqhNvtDtnH4/VR6/GhKApdY8PQ6wKhy+n3U+oN3Hl7W/dEUiwmVNXLmpxb8fmqiIwcQM+e/4fD4QgZr27gwIHBY3tLnJS+vQbNq2LOjCFmYgaKrhmhrqqSuY/dT2neNqxR0Vww/XHiU5vXynegqkqcLHt/95h0UZ3CGH5xL1L7NO9OXSGEEOJAyKXYo1xGRgZDhw5l2rRp2O12tm7dyqOPPspVV13VaNulS5dy6qmnsn37dlwuFzNnzmTDhg1cfvnlAFx33XU88sgj/PXXX/h8Pv753EwKCgoYMfoskqMshNWFXFXTyKv1gAZWnS44u8SWrc9TVfUHer2N7L4zAQMff/wxDoejUb86f7WH0jfXoNb4MKbYiJvcB0W//x/nmsoKPnzkXkrzthEeE8uFDz55WEKd36vy25dbef/h5eStLUdnUDh+XBoXTT9BQp0QQojDpm03J4kjYt68edx0002kpaWh0+mYMmUK06dPB8Bms/Hqq68yefJkJk2axPr16znppJNwOBwce+yxfPfdd3Tq1AmABx98kMjISCZNmkR+fj49M3rxr9kf0LN7V+LCd/eJ2+X24lY19IpCTN0dvGXlP7B9+78B6NPnScLCurJ06VK2bNnSqF+d6vJR+tYa/BVuDHEW4q/oi868/8vPjopy5j5yL+UFO7HFxnHB9CeI7dy8mywOxM715Sx9fyOVRYFL2im9Yxh+cS+iE2X4EiGEaO80TUOrrcXvcKA6alAddlSHA3Pv3hhiW/8Pdxnu5AAc6HAnRzOX18/GosBdnxmdbMHWOrvPzxZn4HJtF51GyY48unSJ4q+V4/F6y+jS+WJ6936MrVu38p///AdN0xg/fnzwEqzmUyl9aw3u3Cp0NiOdrh+AIS6syTo0ZC8vZe4j91Kxq4CIuAQufOAJopOSW/Q9O6s9/PjRJjb+WgRAWKSJoRekkzEoUeZ2FUIcNE3TwO9HMUhbzKHQNA3N7UZ1OPDb7YFQVtNg2eFAddgbBDYHfkeDMrsdf01gGX/jocxSXn6ZiJEjDkvdZbgT0eqKqgNDm0SFGYOhzqdq7HAFbh6IMxmwoVKCxubNM/B6y7CF9yIj4/5gvzpN0xg4cODuUFc3/6s7twrFrCd+anazQl11aTFzH7mPyqJdRCZ04sIHniCqU1KLvVdN1cj5oYBfPsnF7fSBAv1O6cLgc3tgtsqsEUIczTRNQ61xBlp17Hb89rrwYLejBpfrQoOjbp29LlzUP9cHCb0exWxGZzajmM0oZhM6s2X3ssmMYrE0XjabUUxmFIu58XLda52liWWzGZ3JFDiOvvk35R0Oal0gC4SywLNa0/h1w5AWEsocDvwOB+xlVqWDoijobDZ0ETb04TYUY9v4fS/BTrS4Wo+PqlovAImRu1sv890evKqGSaeQbDbidbvx+RxUVf+BThdGdvYLKIqJjz/+MNivbuzYsUDgl2PVF1t2z/96WR9MXWz7rUtVcREfPnIv1SVFRHVK5MIHniQyoVOLvdeSHXaWvreBoq3VAMSn2jh1cm8Su+/7LyohRNunqSqq01kXyOy7W20OJJw5HKCqLVMhvx/N6cS/x0gGR4TBsDvk1Qc+cyA8hiybTYHgaK4LiE0sK2YTik63u2XMbg+EMoej7vN04K/Zvaw6HGheb8u9F0VBFx4eCGW2cPS2iLplG/oIG7rwBsu2utcRNvR12+hsgWXFam2TV2Mk2IkWV1QduNQabTVhqRt6pcLro9LrBwW6WkzoFYVanxOfLxCIemU+RHh4eki/uobzwDqW7cTxU2BqstgLM7Gkx+y3HpVFhXz4yD3YS0uITkrmgulPEBnfvCnG9sfj8rH8862s+m4HmgZGi57B5/Sg3/Au6JpxE4cQ4vDSVHV3EAsGMvvuy3B7hLOQQNYgVNBSvZUMhkAwiIioCwkR6CIimlhnQx8Rgc4WEQgWdcuKyYjm8aC53YHLiW4PmttVt+xusN6NVlfW9PIe23vcaK6mlj3QMEz5fKg+H7RGqGxAZ7XWfSZ7hrLQgKazhQc+x/AGy/VlViuKruP+npZgJ1pUjdtHtcuLgkJiRGCMNo+qkl93CTbRZCDcoEdVfbjdhQDEx51GcvKERuPV1d+UUfN7EVXztwEQNa4H1gH7b3GrKCzgw0fuxVFWSkxyFy544HEiYuMP+f1pmsaWP0v4/sNN1FQGAmzPYzsx9IIMbDEyJp0QB6O+M7paUxNoIWv4qHHuZX39ut1lWo0Tv7MGrcaJWlvbcqHMaAwGsCbDWYQN3V5DWWCdYrG0ydadfdH8/t1B0ONBczUIiB43qsvVeNntrnvt3r3srguMnrpA6nKBpgY+s2Aoq/sM65ebCmVWa6tfEm4PJNiJFlXfty7GasRs1KNpgX51fg3C9Do6mYxomobLlY+m+VAUA2lpN1NTU9Nkv7raDeVUfLQRANvwFCKG7v8u1vKCncx95F4cFeXEdknlgumPY4s59DuVah0evpu9jm2rywCIjLdwysW96NY37pCPLUR7se8QVhMIYs0IYfXrWjyE7UExGvcdxJoRzhSzud2Fspag6PUoVis6q9zR355IsGthakv1pWiHHC4vDndgMOJOkYHWq1KvD4dPRam7BKtTFDyeUny+6sAlTGMMer2VuXPnNupX12hWidHd91uHsp07mPvovdRUVhCX0pULpj9OePT+L9vuT0menfn/Xo293IVOr3Ds6G4cd2Y3DCb561Hsm6ZpgT5Wfn+gBcSvghpYRlWDz/j9aHt79vv3eF1/jH08+33N266uLprHu0dYq9ndYuY8MiEM6i61hYcHWmfCA6Ei8AhHF173bLWGPsLry/ZYFxGBziwt6eLoIsGuhZhMJnQ6HQUFBSQkJGAymY6qv/A0TaOg3Inm8xNlNaH6vFS53RS43GgaJJgM4PVQ43LhdBbg82lUV+swGMwsX768Ub+6g5lVojRvG3Mfux9nVSUJXbszcfrjWCOj9rlPc2z4ZReL52zA71WJTAhj7HX9iGvGjRui49B8Pty5ubjWrKF2zRpca3LwlZbuO4zVPbdYx/m2RlFCglQwhIWHh4YxaxPrm9zWGrhc2YH7PglxJEiwayE6nY60tDR27dpFQUFBa1fniHN5/ZQ6PCgK6CMt1JQplHgCAxFbdAomk5FKTcXjKUHVvOgUMzEx3fD5fI361fntBz6rRMn2rcx99D5q7dUkdO/BBfc/RljEod2Z6ver/PTRZlZ9txOArn3jGHVlFpbwtnFLuzg8NL8fz7ZtdSEuB9eaNbjWrQv0CzocdLrAMBbNeTboUXR60Ovqnpuxn34/2+l1oNOjmExNt4g11RpmtaKEhR1Vf7wK0V5IsGtBJpOJrl274vP58DcxeGFHpWkaN8z5g41Fdi44LoWhx/Tgk6IKnikuxKzoeKd/d5LNRjZtfoqKyu8wmxI45pg38PmMvPrqqyH96lSXj9I3D2xWiZ3rc/j0H4/hcthJ7JHOhPseJcwWcUjvyVntYcHrayjYVAnAoLHdOX5cGrpmzEUr2g9N0/Dm5QVb4VyrV+Nauxa1iTv/dDYblr59sWT3JSw7G2NKCuh0geCk06EYDI1CU0i5Xh8IUPo9gpWEIyFEC5Jg18IURcFoNGJsIwMVHgkLcgpZvLkSq0nPZUMzKEdh+vYS7KrCo+md6REdSUHBXEpK3kVR9GT1nYnZHM3cue+G9KvTfCpl767Du6sGnc1I/JXZ6G2mfZ577feLWfjv5/H7fCSn9+L8ex/GEn5ol0mLtlXz9aurcVS4MZr1nH5FFj2OaZlhUkTr0TQNX0FBXSvc6kCYy1mLWl3daFslLAxLVhZh2X2xZGdj6ZuNqXs3uUwohGjzJNiJQ6KqGv9cGLhr9cqT04gNN3H56q3Y/SrHRlq5MiUeR80mNmx8CIAeabcTHXVco/HqjAYj5f9dj3tzJYpp/7NKaKrKT3Pn8MvHHwCQccIQxtx0O0bzoU3ntu6nXSx9bwN+n0p0opUx1/UjNjn8kI4pWoe3qBhXzhpqV68OtMatWYO/oqLRdorJhLl3b8KyswMhLrsv5p49ZVgFIUS7JMFOHJIvVu9iQ5GdCIuBa4b14NPiShaWVWNUFP7ZOxVUF2vW3IKquoiNHUa3btc2Gq8uISHhgGaV8HrcfP3yTDb+/D0AJ5w7kaEXTTmk1hS/T+XHuZtYvTQfgO794zl9ahbmMPkv0tZpmoavqAjX2rW41q7DlRMIcb6SksYbGwyYMzMIy+4XvKRqTk9HMe27ZVgIIdoL+dYSB83nV5m5KNBad+2wHviNCvdtCgSjW7p1ond4GOvW30tNzUZMpgSysp6hpsbZaLw6+9KdOH6sm1XigkwsGXsfnqSmsoJP/vEohZs3otMbGHXNjWSPGHVI76Omys2C19ewa3MVAMePS+P4sd33exeuOPI0VcWzbTuudWtxr1sXCHLr1jXZEodOh7lnz0ArXL/sQIjr1UuGvxBCdGgS7MRB+9+f+WwprSHGamTq0DTu2ZxPmddHptXCLd0SKS1dTEHBB4BC36xnMRpi+eC/of3qav4oomr+VgCizuqBdeDeZ5UoydvG/2Y8jL20BIstgnPuuJfUrH6H9B4Kt1Tx9aurqanyYLLoOf3KvqT1P/QZKsSh0zwe3Js342oQ4Fzr16M1NaWRXo+5Rw8sWX2wZGVh6dcPS+/eMrCqEOKoI8FOHBSPT+X5bzcBcN3wnvzmcDK3sAIFeK53KgbNxYaNDwLQNfVKYmNPZtmyZSH96tStDirmBY5hO6ULEcP2PqvElj9/44uZT+N11RKT3Jnz/v4gMcn7n4ViX9b+UMDS/25A9WnEJAX608UkSX+61qDW1ODasKEuwAUuqbo3bw6dq7KOYjZj7tULS58+gUffLMwZGegsh9a/UgghOgIJduKgfLhiBzsraom3mZlwfCqj/woEtKtT4jkuKpzNm2fgcuVjMXemR49pbNu2jcWLFwOBfnXR7jBK5qwCVQvMKnFm2l7P9cf8z1ky+3U0TSU1qx9n33HvIQ1n4veqfP/hRnK+D1z+TRsQz+lXZGGS/nRHhK+iAtfa+kupgRDn2b69ydkMdJGRuwNcVuDZlJaGYpB/KyGEaIr8dhQHzOX18+J3gSB304iezMwvJt/tJcVi5O60ZByODeTteBOAzF4PUVurMm/evGC/ur4pvSh55S80j4o5I5qYCU3PKqH6/Sye/Rp/LfgSgOwRozj96hvQGw5+KJmaSjdfv7aawi3VoMDgs3tw3JndpD/dYeTZmU/1/K+o/eNPXOvW4SssbHI7Q6dOWPr0wZxVH+SyMHbpIuO8CSHEAZBgJw7YnF/zKKp20znKQq/e8dyzKheAZ3qlYtUr/L7+PjTNR0LCGcTFjuDdd3f3qxt9yumUvlE3q0QXG3GX9kExNL6b1e2s4Yvnn2bbX7+DojDs4ss5/pwJh/Qlv2tzJV+/tgZntQdTmIFRV2bRvZ/0pzscfOXlVM+fT/UXX1L755+Nyo3dumLpkxXoD1fXGmeIi2uFmgohRMciwU4ckBq3j1eWbAbg+pHp/H1zPhpwQVIMp8ZGkp//X6qq/0SvDycz4wF++OGHYL+6ieeeT/W7G/GXu9DHWYif2hedufGPYFVxEf+b8TBlO/MwmMyMvfkOMk4YctB11jSNnO8L+P6Djah+jdjO4Yy5rh/RnaRjfUvyO2pwfPctVV98Qc2PPwXmSQVQFKwnDiZixAgsWVmYe/dGb5O5doUQ4nCQYCcOyOyft1Hq8NA11kp+nJGNOyqINxp4OL0LHk8pm3OfBqBHj9soKfEF+9WNPXMsuq9LcRcEZpVI2MusEgUb1/HpM4/jrKokPCaW8+56gMQe6QddX5/Xz7L/bmTdj7sA6HlsAiOn9MFkkR/9lqB5PDh++JHqL77A/t13IfOpWrKziRx3FpFjxmJM3PvdzkIIIVqOfLuJZqt2eXl16RYALhzajRk7AwPAPp7ZhVijgZycJ/H5qoiw9SUp8SJee20WmqbRr18/um4Mo3ZzSWBWiSv6NjmrxPofl/L1KzPxe70kdO/BeXc9QETcwV8qdVS4mP/qGoq3VaMocOL4nhxzRlfps3WINFXFuWIF1V98SfWCBahVVcEyU7duRJ59NpFnjcWctvcbYoQQQhweEuxEs735w1aqar30TAjnS5MXr1tjdHwk5yREU17+I4VFnwAKvXs/xrJlP1JaWorNZuNkXR9qV5bsnlUiJfSOVk3T+OWj//LT3DkA9Bw0mLE3/x8my96nFNufgk0VfP3aGmrtXsxWA2dc3ZeuWdKH62BpmoZ7/XqqPv+C6q++CrkBwpCQQOTYsUSOG4clu68EZyGEaEUS7ESzVNR4mPV9YCDh/scm8b69lgi9jqcyU1BVD+s3PABASsql2O1x/Pjj/wAYmXYivl/LgKZnlfB5PCx89QXW/bAEgOPGnccpk69Apzu4eTo1TWP1knx+nLsJVdWI62JjzHX9iEo4+JB4NPPk5VH95ZdUffElntzc4HpdRAQRZ4wi6uyzsR5/vMyrKoQQbYQEO9Esr32/BbvbR3qijf8pbtBges/OJJtNbNnyPLW12zCZOtGt6628+eb7aJpGn66ZdPotMDZZ1FlpjWaVcFZX8ek/HqNg4zp0ej2nXXU9/U8786Dr6PP4WfreBtb/EmhNyhjUiRGX9cFoltBxIHwlJVTP/5qqL7/AtXJVcL1iMmEbMYLIcWdhO+UUmZpLCCHaIAl2Yr9K7G7e/nEbALrMKFyaxknR4VzaOY6ami1s2/5vADIz7ufnn/+iuLgYq9XKoIIUAMJPTCZiWErIMct25vG/GQ9TVVyE2RrO2bffQ7d+Aw+6jvZyF/P/vZqSPDuKAkMmpDPgtFS5LNhMfocD+6JvqP7iC2p+/hlUNVCg0xF+4olEjhtHxKjT0Ucc/MDQQgghDj8JdmK/XlmSS63XT2qijVVhGhadjmd7dUUBNmx8AE3zEBd7Cqp6LN9//zoAw2wDMOcpGDpZiT4rtBP9tlV/8vk/n8RT6yQ6MZnxf3+AuC6pB12/oq3VfPnySmrtXizhRs64pi+pvWMP5S0fFdSamsAdrV99hWPxYjSPJ1hm6d+fqHHjiBxzJoaEhFaspRBCiAMhwU7s066qWt79dTsAhd3CQFG4o3sSPaxmdhV+QkXFz+h0ZtLTH+Dddz9FVVUyktJI2RYGeoXYi3qhGHdfCl256Cu+ffPfaKpKl959OeeOe7FGRh10/bbnlPH1q6vxeVTiU22M+Vs/IuOlP93eeIuLcSxZguPb76j5+eeQMGdKSyPy7HFEnXUWpm7dWrGWQgghDpYEO7FPL323GY9PJbqTlcJoI/1sYVyf2gmvt5JNmx4HIK37zfzxxw4KCwsJs1g4oSAVBYWoM7ph6hwYiFZV/Sx9503++OpTALJOGcmoa2/GYDz46cE2/FrId7PXoaoaqX1iOPNv/WR8uj1omoYnNxf7t99h/+7bkD5zAMaUFCJGjSLq7HGY+/SRS9dCCNHONZ7L6QhYuXIlo0aNIjY2lqSkJKZMmUJpaSkAv/76K4MHD8Zms5GWlsasWbNC9p09ezbp6emEh4czaNAgfv7552CZ3+/nzjvvJDExkYiICM4991x27doVLC8uLmb8+PFER0cTHx/PtGnT8Pl8R+ZNt0M7yp188NsOAIq6WdHrFP7ZOxWDTmFz7tN4veWEh2dgsZzD0qVLARhi6kuYx4gpLQpbXb86T62TT//xWDDUDb1oCmfecNshhbq/vsnjm7fWoqoaGccnctaNAyTU1dF8Ppy//UbRUzPIHX0mW8adTclzzwVDnaVfPxKm3UraZ5/Sc9FCEv9+F5asLAl1QgjRARzxYFdbW8uYMWMYMmQIhYWF5OTkUFZWxtSpU6moqGDs2LFMmTKFyspKZs2axW233cby5csBWLJkCTfffDOzZ8+msrKSyZMnc8455+B0OgF47LHHWLhwIStWrCA/P5+wsDCuvvrq4LknTZqEzWajoKCA5cuX88033/Dcc88d6Y+g3Xj+2034VA1DvAUt1sz1qZ3oF2GlsnIFBQUfAJCZ8Qiff/4Vfr+ftNhUuhdHoZj1xF6YiaJTqC4t4b8P3MWWP37DYDQxbtrdDD7vwoMOEZqq8dNHm/lxXmBaswEjUxk1NQt9E/PNHk1Up5PqhQsp+PvdbBo6jO2XTaH87bfx5uWhGI2EnzKMpIceIn3pUtLmfkj8dddhycyUMCeEEB2MommadiRPuGHDBqZNm8YXX3yBvm7sq88++4zLLruMZ599lqeffpqNGzcGt7/++utxOp3Mnj2bSy+9FKvVymuvvRYs79OnD3fddRdTp04lNTWVGTNmcMkllwBQVFREcnIymzdvDvT9ysggPz+fzp07A/DBBx9w1113sX379mbVvbq6mqioKKqqqoiMjGypj6RNyi1xMOqfS1E1cA9OIC05gm+P74VZ8bP8t3OoqdlI5+QLKS8fx6JFizCbzJzvGES4aiF2Ui+sx3SiurSY9+7/P2oqyrFGRTP+rukkp/c66Dr5/SqL31nPhrrhTE467+ieScJXUoJ98eIm+8vpoqKIOHU4thEjCR86FL0tvBVrKoQQ4lAcSP444teuevXqxfz580PWzZs3j+OOO46cnBz69esXUpaVlRW8HJuTk8OVV17ZqHzlypVUVVWxc+fOkP0TExOJiYlh1apVKIpCbGxsMNTV75uXl0dlZSXR0dGN6up2u3G73cHX1dXVB/2+25uZ32xC1cCfYEGLNvFs71TC9Dq2bX+dmpqNGI2xxMRczUcfvQ/ASUovwlULYf3jCRuYgKaqfP3yTGoqyolL6cr59zxEZPzBzxfqdfv5+rU15OWUoegURlzamz5Dklvq7bYL++0vl5pKxMiR2EaOxHrcsSgGuTQthBBHm1b9za9pGtOnT+fzzz9n2bJlPP/884SHh7YsWK1WHA4HAHa7fa/ldrsdYJ/7N1UG4HA4mgx2Tz75JA8//PDBv8F2at2uaj5fWQCALz2CKZ3jOCnaRm3tDrZufQGAnj3/zpdfLsHn89HVlkzP0nj0USZixqejKAorvvyEHTmrMJjNnHvn/YcU6modHr781yqKtlZjMOoYfW023fsd/Byy7Ynm91P7xx/Yv1uM/btv8W7PCym39O9PxMgR2EaOxJyRcdS2XgohhAhotWBXXV3N1KlT+f3331m2bBn9+vUjPDycysrKkO2cTicRdYOihoeHB/vTNSyPj48PhramyiMiIlBVtckyIHj8Pd1zzz3cfvvtIXVOTT348dbai+cWBS6F+xPDSIwP5/6endE0jQ0bH0JVXURHDyZvexd27FiDyWDkpNI0FBRiLshEZzVSkreNH96fDcCIKdcQk9R5X6fbp+qyWj5/YSWVRU7MVgPjbhpAUo+DHx6lPdBUFcfSpdgXLMSxZAn+Bv8nFKMR60knEjHyNGwjRmBMPPjALIQQouNplWCXm5vL2LFj6dq1KytWrCA+PtD6kp2dzcKFC0O2Xbt2LdnZ2cHynJycRuVjx44lJiaGLl26kJOTE9y+sLCQ8vJysrOzUVWVsrIyioqKSExMDO6bkpJCVFTTQcFsNmM+yqZNWrWzkoVri9AItNbN6JVCpEFPcfHXlJUtQVGMJCf9H2+9FbicfoKaQQRh2IZ2wZIeg8/rZf6Lz+D3+ehx7PH0O230QdelLN/B5y/8RU2VB1uMmbNvHkhs547bV0zzeKj6/AvKZs3Cs2VLcL0+KgrbqcOxjTyN8JNPlv5yQggh9uqI30pYUVHByJEjGTJkCAsWLAiGOoDzzz+fwsJCZs6cidfrZfHixcyZMyfYr+7KK69kzpw5LF68GK/Xy8yZMykqKuK8884DYOrUqTz22GNs3boVu93OtGnTGD58OD179iQjI4OhQ4cybdo07HY7W7du5dFHH+Wqq6460h9Bm/bMwkBrndo5jHN6JDA6Pgqfz87GjY8A0LXrtSxcuAqv10sXSwK9nEkYk6xEje4OwE8fvktJ3jbCIiI542+3HPSlwYLNlfzv2T+oqfIQkxzOhLuO67ChTq2poXz2bDafMZpd992HZ8sWdBERxEy5jK6zZ5Px4w90njGDyNFnSKgTQgixT0e8xe6tt94iLy+PDz/8kLlz54aUORwOFi1axK233soDDzxAQkICL7zwAiNGjADgtNNO4+WXX+b6669n586d9O3bl/nz5xMbG5g+6oEHHsDr9TJs2DDsdjsjRozgww8/DB5/3rx53HTTTaSlpaHT6ZgyZQrTp08/cm++jfttWznLNpagKWDNjOaxjC4A5G55DreniLCwbpSXDWbbtkUY9AZOrkpH0euImdQbxahjx9rV/Pb5xwCc8bdbCI+OOah6bF1ZwoI3cvB7VZJ6RHHWjf2xhB/8mHdtla+igop351Dx7rv4q6oAMCQkEHvFFURPuhC9zdbKNRRCCNHeHPHhTtqzjjzciaZpnPvvn1i1vRJfipV/ThzAhUmxVFev5rcV5wMqGekv8+67v+PxeDhJ7UVfTwpRZ6URMSwFt7OG2XfehL20hOwRZzD6ulsOqh5rfyhgyZz1aBp07xfHGddkYzTp979jO+ItKKDs7bepnDsPrbYWAGO3rsRddRVR48ejM5lauYZCCCHakjY93Ilom37YXMqq7ZVoChx/TDIXJMagaX7Wb7gfUElMPIelS4vxeDwkGWLJcnTB3DMK28mBVr3v3noVe2kJUZ0SGXH51fs+WRM0TeP3+dv59bNA37I+Q5I5dXIvdPqOM/CwOzeXsjdmUfX551A344klK4u4a68hYtQoFH3HCrBCCCGOPAl2Ak3TuOfLtQAoXW08f2waiqKwY8c72O1rMBgicNWeTW7uMvQ6PUNrMtFZjMRc0AtFp7Dxlx9Yu+w7FEXHmBvvwBRmPaDzq6rGDx9uYvWSnQAce2Y3Tjy3R4cZuqN25UpKX38dxzffBtdZTzyRuGuuJnzIkA7zPoUQQrQ+CXaCeasL2FnoQNMpTBuZTtcwMy53IblbAtOtdel8M3Pn/grAcZ40orVwYs7riSHajKOinEWv/wuAE8ZPpEvvrAM6t9+r8s3ba9n8ezEoMPSCDAaMbP9DymiaRs0PP1L2+us466bEQ1GIOP104q65mrD+/Vu3gkIIITokCXZHOVVVeWj+OgDiM6K5JTMw5tymjY/h9zuIjBzI8uVm3G43nXTRZPu6Yh2YgHVAJzRNY8G/n8flsNOpe09OmnjxAZ3bU+vjq3+vJn9DBTq9wulXZJFxfGKLv8cjSfP7sS9YQOnrb+BeF/hcMRqJOvts4q6+CnOPHq1bQSGEEB2aBLuj3KM/baGmwo2mV3h5XF/0ikJp6WKKS+ajKHp0yhQ2bvwTvaJjWG0vjFEWos9NB2Dlwq/Y9tfvGIwmxt58B3pD8+9cdVZ7+PzFvyjd4cBo1jPmun6k9ok9XG/zsFPdbqo++ZSyWbPw5gVmh1CsVmIuuIDYKy7HmHx0TX8mhBCidUiwO4qVuL28vTRws8LxAxIZnBCF31/Lho0PAZCYOJnPPwu0Og30dCcGGzEXZqILM1BesJOl774JwLDJVxCX0rXZ560qcfLZCyupLqklLMLIuJsG0Klb+7zL2O9wUPnf/1I2ezb+klIA9NHRxFx2KTGXXIIh5uCGfBFCCCEOhgS7o9i1i9ai2b3ojDr+fVZgto6tW1/E5dqJ2dyZNat74HLlEkcEA/zdsJ2SgqVnNH6fj69efBafx03XfgM5ZvS4Zp+zJM/O5y/+Ra3dS2S8hbNvHkh04oHdbNEW+EpLKf/PO1S8/z5q3TzFhuRk4qZOJXriBHTW9veehBBCtH8S7I5Si0qq+P2PXeiAi07qRny4GYdjA3k7ZgEQFnYl69blokPhFHcfzMkRRJ3RDYBfPv6Aoi2bsITbOPOGaSi65g1JsnN9OV/9ezVel5/4VBvjbhpAeFT7mrLNs3MnZbNmUfXRx2geDwCmnj2Ju/pqos4aiyJj0AkhhGhFEuyOQjU+P9O+XYfO6cds0XPvaZlomsr6DfejaT5iYk7jm0UlAAzwdSdOH0nsRb1QDDoKNq7n1/99AMBpV99ARGz8vk4VtGlFEd+8tRbVr9GlVzRjr+uPKaz9/Pj5SkspffllKj6cu3sMugH9ib/2WmwjRjQ73AohhBCHU/v5ZhUt5tW8YhzrK1GAW0akYzMbyC/4gKqqP9Drw9m65QSczp3EaDYG+roTNS4NY2I4Hlct8//1LJqq0vvk4fQeckqzzrdq8U6+/3AjaNDz2ARGTe2L3tg+gpDfUUP5m29S9vbbaE4nAOEnn0zc367FevzxMgadEEKINkWC3VHG7vPz8vdbUFx+IsONXHlSGh5PKZs3zwAgPPwSlizeiQKc4umDNT0W25DAEChL35lFZeEubHHxnHbV9fs9l6ZpLP98Kyu+2gZAv+FdGDopE52u7YchzeOh4sO5lL78Mv7yciDQQtfpjjsIP+GEVq6dEEII0TQJdkeZFzbtwrupCgW4e3Rvwkx6ctY+ic9XhdXam6VLAi1p/Xzd6GSJJfaCTBSdQu7vy1n1zdcAjLnhNizh+5+gfsVX24KhbvA5aRw3pnubb+HSVJXq+fMpmfk83h07ADB160bC7bcTccaoNl9/IYQQRzcJdkeRKq+PWUtyUXwanROsTBqUSnn5TxQWfgIoFBefgcNRQZRq5VhfGjEXpqOPMuOsrmLhqy8AcNxZ59I1e8B+z7X2hwKWf74VgGGTMug/ou3PJlHz888UP/MsrpwcAPTx8STcdCPREyagGJs/Rp8QQgjRWiTYHUWeWp2HP8+BAjx9bj8UPGzY+AAAtvBxfL+sAoBTvFlEHpuMtX8Cmqax8NUXcVZVEpfSlaEXXb7f82xdWcKSOesBGDS2e5sPda61ayl+9p/U/PgjALrwcOKuvorYKVPQhYe3cu2EEEKI5pNgd5So8Pr47+KtKBr06xnL0PR4tmx9AadzK0ZjAj/91AnwkO1LpXNUJ6LP6QnAmiWLyF3xCzq9gbE3/x+G/QznsSu3igVv5KBp0GdIMiecnXYE3t3B8ezcScnzL1D9+eeBFUYjMRddRPz112GIbb+zYAghhDh6SbA7Stz302a0EhcoMHN8P5zOrWzb9goAdvsYqqo8RKphDPL3JHZSL3QWA5VFhSx++3UATp50KZ2673ue0/JdNXz5r5X4vSrd+8Vx6uRebbJPmq+igtJXXqHi/f+C1wtA5FlnkTDtVkypbbt1UQghhNgXCXZHgaJaD199vx2A047tTI/4cP786zo0zUOYZRDfL1MBhWHePsQM74Y5LQpV9TP/X//E66qlS+++DDr7vH2ew1Hh5vMX/sLt9JGYFskZ12Sj07etIU1Up5Py//yHsjdmoTocAIQPOYmEO+4grG/fVq6dEEIIcegk2B0Fblu0Dhw+dCYd/zyrL8XFX1FR8TM6nZk//+wDQJYvha7JKUSeHphd4rdPP6Jgw1pMYWGMufF2dDr9Xo/vdnr5/MW/cFS4iU60Mu7GARhNe9/+SNN8Pio/+pjSl17CVxIYeNmc1YdOd9yB7eSTW7l2QgghRMuRYNfB5VY5+em3AgAmDeuOzayx5q+nAXC7R1JSAjbNwvFkEHtRbxSDjqItm/lp7hwARk69jqhOiXs9vs/r56tXVlNeUIM1ysTZtwzAYmsbd5BqmoZ90SJKnpuJZ2vgDl1jSgoJ06YROXaMzBYhhBCiw5Fg18Hd8vka8KqYIow8MiKTHTtex+XaiV6fwI8/RAMwzNuHhHEZGDtZ8XrcfPXSs6h+PxknDCHrlJF7Pbaqaix6cy0FmyoxWfScffNAIuPCjtA72zfnihUU/+MZaleuBEAfE0P89dcTfdEkdDKfqxBCiA5Kgl0HtqKgkpycwKXHG0ZnoqoVbNseuGFi27ZjUFUDvXyd6ZHek/CTkgH44b3ZlOfvIDw6htOvuXGvNz9omsb3H2xky58l6AwKY6/vT3zK/gctPtxcGzdS8s/ncCxZAoASFkbsFZcTd9VV6G2tXz8hhBDicJJg14Hd9slq0CA8ycqtx3Vj/Yb78PsdoHVn29ZOWDUzJxl7EzsxE0VR2LbqT/6Y/xkAo6+7FWtk1F6P/fv8baxZmg8KjJraly69Yo7U22qSd9cuSl58iapPPgFVBb2e6AsmEn/DDRg7dWrVugkhhBBHigS7DurL9UXsyKtGU+Desb1x1GygoGAuAKtX9QEUTvJmknhJFvpIE7UOOwtefg6AAaPGknbMoL0ee+0PBfz6Wd2sEhdmkn5c6wUnTdOo/OADip6ageZyARBxxhkkTJuGuUfbHUNPCCGEOBwk2HVAflXj/s/WABDfM4qL0xP5a+VdgEqtsy+VVfGk+GPJ6t+XsOx4NE3j2zdexlFRTkxyZ4ZfeuVej711VWlwVonjzuxG/xEpR+ItNclXVsau++4PXnYNO+44Eu/8P8IGDmy1OgkhhBCtSYJdB/T6z1upKHehGRQeG5NFWfliKip+AoysXp2JTlM4SdeH6LMCAw6v/3EpG37+HkWnY8xNd2C0WJo8buGWKha+vgZNg94nJTH43H0PWHw42ZcsYdd99+MvK0MxGkm443Zip0yRO12FEEIc1STYdTAOt4+Z32wCoEvfeM5ICmf5b08CUFzUD7fbxgB/N7qemYU+wkR1aQnfzgrcUHHi+ReRnN6ryeOW76rhi3+txOdV6ZYdx6mX9m6VWSXU2lqK//EPKt57HwBzRgadn/kHll5N11sIIYQ4mkiw62BmLNqAq9aHatXz1Kje5Be8h9O5FYhg8+YMwjUzg2L7YDupM5qq8vXLz+F21pCUnsng8y5s8piOCjefv/gX7prArBKjr8lG3wqzSrjWriX//+7Es2ULADFTLqPTHXegM5uPeF2EEEKItkiCXQeyo9zJnJ8DU4dlHJvISVEqP619EYDcTdn4/SZO9GbSaXwvFL3C719+yo6cVRjMZsbceAd6Q+MfB7fTyxcv/YWjPDCrxFk39sdoPrKzSmh+P2VvvknJCy+C14shIYHkJ5/ENlRmjRBCCCEakmDXgTzw5VpUv4Y/1sTjJ6ezZetz+HxVeL2JFOzqQRd/LH2yszD3iKY0bxvfvz8bgFMvu4rYzl0aHa9+Vomy/BqskSbOvnkAYbYjO7ivt6CAgr/fjfO33wCIGHU6SY88giGmdYdXEUIIIdoiCXYdxIpt5SzOKUIDBh7fmX6mEn7ND0wLtn5dP3SaniFKH2LG9cDv8/LVS8/i93pJO2YQ/U8f0+h4qqrxTcNZJW4ZQGT8kZ1VourLLyl86GFUux3FaiXp3nuImjChVfr2CSGEEO2BBLsOQFU17v8sBwB/FysPHdudzbm3oWk+qqu6U1mZzAB/V7qO6oM+0sxPc9+jZPtWLBGRjL7u1kZBSdM0fvhgI7l1s0qMub4/8SkRR+z9+O12Ch95lOrPPwfAMqA/XZ5+GlO3bkesDkIIIUR7JMGuA/jkr3zWF1Sj6RVOPL4zaf6/+LP0W0DPxo39AzdMRPfBdnJnynbm8ev/PgTgtKl/Izy68SXN37/ezuq6WSVOvyKLlCM4q4RzxQoK7vo73oIC0OmIv+464q+/DsVoPGJ1EEIIIdorCXbtnNPj44n5gQGDfT0iuK9PZzZtuB2AgoJMamujOM2bScK5vdB0GgtefQHV76PHscfTa8gpjY639scCfv00cNfpsAszyBiUeETeh+b1UvLSvyh7/XVQVYwpKXR++mmsxx5zRM4vhBBCdAQS7Nq515ZtodTuRrPoGXFsMp0cX7LesR5VDWP7tn6BGyb69MaSEcOfX3/Oro3rMVrCOO2qGxpdgt22qpQlczYAcOzobvQfkXpE3oN7y1YK7roL15rAbBlR551H4n33orfZjsj5hRBCiI5Cgl07tquqlleW5gLg7RXJ/6VFk7v6nwBs3dIX1WthCL2JPrsn1aXFfP/+fwAYdsnlRMYnhByrcEsVC15fg6Zq9D4xiRPHH/5ZJQLzvH5I0YwZaLW16KKiSH74YSLPHH3Yzy2EEEJ0RBLs2rF/fL0Bt1dFjTZxRt8kbGVvUeYtw+2KZteuXvT3dyV1ZG/0UWa+mfEyXlctnTP7MHDU2JDjVBTunlWia984Tr3s8M8q4SsvZ9f903F89x0A1pNOpPOTT2JMSjqs5xVCCCE6Mgl27dTKHZV8/Gc+AN7eUdzcWceONW8CsHnzQKxqGMdF9iZiWAobflrG1j9XoDcYOONvN4fMp1pT6eazFwKzSnTqFsGZ1x7+WSUcy5ZRcO99+EtLA/O83nYbsVdcLvO8CiGEEIdIgl07pGkaj36xFgB/5zDOSk/AVPgsquqhsjKZ8vIUTvNmkHBOL1wuB9+9/RoAg8+bRFxK1+Bx3E4vn78YmFUiqlMY424acFhnlVBdLor/8QwVcwLj65kz0un8j39g6d37sJ1TCCGEOJpIsGuHvly9ixXbK9B0Cr6MKK6NK6N43VdomkJu7nF09sfRO7M3Yb1jmf+vf1JbXUVcSldOGD8xeIw9Z5U455aBhEUcvlklXOvWBeZ5zQ30CYy57DI63XE7OovlsJ1TCCGEONpIsGtnXF4/T9UPb5Jm45zUWJSdgeFNCgt74nLEMkTrRczZPdm28g/WLvsOFIUz/nYLekNgLDhN1fjmrcCsEkaLnnE3H75ZJTRVpfyttyie+Tx4vegT4un8xJPYhg09LOcTQgghjmYS7NqZN3/cys6KWjSzDrW7jSkRa6kuXoXfb2T7toFk+7uSOrw3WrjCotf/BcAxZ46jc+buy52/L9hO7h8l6PQKY6/rR0Lq4ZlVwl9Zyc5pt+H85RcAbKefRvKjj8o8r0IIIcRhIsGuHSm2u3h5cd3wJplRnNc5Cm3nzQDk5WVj8kQzKLwXEcNTWPbft6guKSIiPoGhky4LHqNgUyXLPwsMQDz8kl6k9I49LHX1FhWz4+qrcG/ajBIWRuK99xA9caLM8yqEEEIcRhLs2pF/LtyIw+1DjTRCchgXGhfjdhficoWTv7MPI7wZJFyQSXFeLn989RkAo66+EVOYFYBah4eFs3LQNOg1OIk+Q5IPSz09O3aQd+VVeHfswJCQQOqsN7BkZh6WcwkhhBBiNxlfop1YW1DNByt2AIHhTc7rFIZWMBOArVuPJdmXQO+evTD2imLBqy+gaSp9hp5K2jGDgEC/um9nr6Om0k10opVTLs48LK1n7k2b2H7JZLw7dmBMTaXbe3Mk1AkhhBBHiAS7dqB+eBNNA39SGLpYM+PVD1DVWqqqEigv7s4QtRcx5/Tk9y/+R2neNiwRkZx6+TXBY/z17Q62ry5Db9Ax+pq+mCwt31hbu2oV2y+9DF9JCeaMDLrNeRdT6pGZlkwIIYQQEuzahUVri/h5SxmKTsGXGcl5sQq60sD0YFu2DCLb343UoZnYveX8/NH7AIy4/BqskVEAFG6t4pf/BfrmDb0wg/iUlr9ZouaXX8i7Yir+qiosA/rT7Z3/YOzUqcXPI4QQQoi9k2DXxnl8Kk98tQ4Ab7dw9FYDY9wvA1BclIZa3YVBYZnYTk1h4asv4vd66T7gWPoMPRUAV42Xha/noKoa6cd1ou+wzi1eR/u337Lj2r+hOp1YTzqRbm++iT46usXPI4QQQoh9k2DXxv3n521sK3NisOjx9YhgfLQTi/0b/H49W7cdw4neDOLHZbLmh2/IX5+D0Wxh1DU3oSgKmqax+J312MtdRMZbOPXSlp8DturTT9l5y61oHg8Ro04n9dVX0YWHt+g5hBBCCNE8EuzasPIaDy98uwmA2p4RGI06RtX8A4D8nVnEO1Po3S0DXwosm/MWAEMvuozIhMAl0NVL8tnyV2C8utHXZGMOa9l+deXvvEvB3+8Gv5+o8ePp8txz6EyHb/YKIYQQQuxbqwa7kpIS0tPTWbJkSXDdr7/+yuDBg7HZbKSlpTFr1qyQfWbPnk16ejrh4eEMGjSIn3/+OVjm9/u58847SUxMJCIignPPPZddu3YFy4uLixk/fjzR0dHEx8czbdo0fD7fYX+fB2vmNxupdvmwRJvxd7FyTkQRNvcq3O4wduZlc5K/F9Hn9uS7N1/FU+skKT2TgWeOA6Akz86PHwVC4ZDz0+nULbLF6qVpGiUvv0zR448DEDPlMpKfeBzFIKPnCCGEEK2p1YLdjz/+yEknnURu3dyhABUVFYwdO5YpU6ZQWVnJrFmzuO2221i+fDkAS5Ys4eabb2b27NlUVlYyefJkzjnnHJxOJwCPPfYYCxcuZMWKFeTn5xMWFsbVV18dPP6kSZOw2WwUFBSwfPlyvvnmG5577rkj+8abaVORnTm/5gFQnR6BSacw0v4kANu2HUNfb09Sh2SybftKclf8gk6v54y/3YJOp8dT62PB62tQfRppA+LpPzKlxeqlaRrFT82g9IUXAYi/6SYS77kHRSeNv0IIIURra5UmltmzZ/PAAw/w9NNPc9FFFwXXf/TRR8TFxXHjjTcCMHLkSCZPnsy//vUvTjjhBN544w0uuugiTj75ZABuu+02XnvtNT744AOmTp3KG2+8wYwZM0itG2Lj+eefJzk5mS1btqCqKkuWLCE/Px+r1UqPHj2YPn06d911F3feeeeR/xD24/Gv1uFXNSI7h1McZ2acdTPRjh3Y7bE4CvtwnDkD00lxfHfvgwCcMP4CErp2R9M0lsxZT1VJLbZYMyOn9GmxfnWaz8euBx6k6uOPAUi89x5ip0xpkWMLIYQQrUnVVFw+F06fk1pfbejDG3husqyu/IrsK8iKy2rtt9E6wW706NFMnjwZg8EQEuxycnLo169fyLZZWVnBy7E5OTlceeWVjcpXrlxJVVUVO3fuDNk/MTGRmJgYVq1ahaIoxMbG0rlz55B98/LyqKysJLoN3cW5ZEMxSzaUoNcplPSwYVZgpONpIDC8yYneTOLPzeD7ubOpqawgtnMKg8+bBMC6H3exaUUxik5h9NXZWMKNLVIn1eOh4I7/w75oEeh0JD/+ONHnjW+RYwshhBDNUR++mgxZ3t3LBxXOfLWHVLczup9x9Aa7pKSkJtfb7XbC97ij0mq14nA49ltut9sB9rl/U2UADoejyWDndrtxu93B19XV1ft7a4fM51d5/MvA8CbR6VHUhBsYa/qDGFcZpSVdsZX3pldKOmXGXaxZvBCAUX+7GYPRSFm+g2UfbATgxHN7kNQjqkXqpDqd7LzpZmp++gnFaKTzP58lctSoFjm2EEJomobb7979pewN/eLd84u4YXmwbI8vba/qDR5fYfdVi/orGCHrmihvqL68Ydn+jtnU8Zo6Z5Pna2IfBQWdokNRFPSKHkVR0KELrtMpgeVG69hjnwbrgvvUPerPUb+s1+lD1zU4Z1Pr6s/T8FgNz6nT7a6fqqkHF84OMXw1V5ghLORhNVhD1xkbl2fEZByRuu1Pm+rtHh4eTmVlZcg6p9NJREREsLy+P13D8vj4+GBoa6o8IiICVVWbLAOCx9/Tk08+ycMPP3zQ7+dgvL88j03FDmxhBvJTwrAoGqNcL6GqOrZtOY6x/l5EnNWVL579OwADRo0lpXdfvG4/C15fg9+r0rVvLMeM6toi9fFXVbHjb9dR+9dfKFYrqS+9SPiQIS1ybCFE+6FpGl7VG/ql6w398t1nINtLa4nT68Tld6Fqamu/RdHOHEj4alS2j3KLwYJOab/9xttUsMvOzmbhwoUh69auXUt2dnawPCcnp1H52LFjiYmJoUuXLuTk5AS3LywspLy8nOzsbFRVpaysjKKiIhITE4P7pqSkEBXVdMvWPffcw+233x58XV1dHey/dzhU1Xr556JAi5u1VzQYdYzWLSVKrWJnfhbpNVmkDE5nxY+fUVm0C1tsHMMuuQKAZf/dQEWhk/AoE6dfkYWiO/R+db6SEvKuvgb3hg3ooqLo+uq/CRs48JCPK4RoPV6/l+LaYoqdxRTVFFHkDDwqXZVNh7IGgcyv+Q97/cx6c+MvYmPTX85Wo7XxF3vdtkadEQUFDS147ODy7lWh5ZrWeF3dcn3Znpoq39e6kH2b2qeJ+tQva2j4NT+apqFqKirq7uX6xx7rGu1Tty5knz3WaVpgn4brG54zZD9NCzln8FyoofvtUT8F5YDC155l7T18HU5tKtidf/753HXXXcycOZMbb7yRH374gTlz5vDpp58CcOWVV3Leeedx4YUXMnToUP71r39RVFTEeeedB8DUqVN57LHHOOGEE4LDmQwfPpyePXsCMHToUKZNm8Zrr71GaWkpjz76KFddddVe62M2mzGbzYf/jdf54Lc8KpxekuOsbE0wEab4OdP3Nl6PmdLtxzHclIE7U2XFI4GbF0676gbMVivrf9nF+p8LURQYdVVfwiIOfSw5z8588q66Eu/2PPQJ8XR9YxaWXpmHfFwhxOHj9DoDga0urBU7iymsKQy8rgm8LnOVHfJ5jDrj/gPWXr6U65cb7WO0YtFb0Ov0LfBJCHH0alPBLi4ujkWLFnHrrbfywAMPkJCQwAsvvMCIESMAOO2003j55Ze5/vrr2blzJ3379mX+/PnExsYC8MADD+D1ehk2bBh2u50RI0bw4YcfBo8/b948brrpJtLS0tDpdEyZMoXp06e3ynttylVDexAdZuT54jLQKZyhfU0k1WzefgKDXNnEnduTT96egaaqZJ40jPRBg6korGHp+4FWvuPHpdElM+aQ6+HOzSXvyqvwFRVhTEmh65uzMHVtmUu7QogDp2ka1Z7qkIBWH97q1xU5i7B77M06nlFnJNGaSCdrJxLDE0myJhFjidl3SGsQ1Iy6lrkpSwjR8hRtb+3LopHq6mqioqKoqqoiMrLlBvxtaH5JJVPXbCNM8fGcehW6Gj2Fv13GOQnD2dF1K8veewtLuI0r/vkKZmsk82asoCy/hi69Yjjn1oHoDvESbO3qNey45hr8lZWY0nvSddYsjHWXroUQLU/VVMpd5SGXRfcMb8XO4mZ3GrcarCSGJ5JoTQyGt6TwpMDr8MDrGHNMi08vKIQ4fA4kf7SpFrujnapp/GNrIQBnqJ8RgYM1uacx0tcbw7BofnpmDgDDp1xNeHQMS+aspyy/hrAII6OuzDrkUFfz63J23nADak0Nln79SH3tVQwxh94CKMTRyqt6KXWWUuQsotBZGBrY6paLncX4tObNgBNtjg4JaPXhrX5dojURm8l2mN+VEKItk2DXhnxVUsXaGhdWxc1Y7VPKyzuTUnoiXY7rybefv4HP66Fr9gD6Dj+NTSuKyPm+ABQYNbUv4VGH1hfQ/t1i8qdNQ/N4sA4eTMq//oXeFr7/HYU4StX6ahvdgFC/XB/eymrLmuw0vycFhYSwhOCl0T3DW5I1iQRrAhaD5Qi8MyFEeybBrg3pHmZiWISfhOpPCNdq2J47mrMNGRTYtpG3ZhUGk5lR195MdWkti99dD8Bxo7uRmhV7SOet+vxzCu6+B/x+bCNH0uW5f6I7gjeNCNFWuP1uymrLKK0tpay2jDJXWdPPtWXYvc3rz2bQGUJa1vYMb4nWROLC4qTfmhCiRUiwa0P62szc5r2fGjaxa1cGA6qOJ/L0ZL589z4ATr5wMhGxnfjoH7/jdflJTo/ihLPTDumc5e+9R9Gjj4GmEXnO2XR+/HEUo3zBiI6j1lfbZDgrrS2l3FUess7hdRzQscMMYSEBranwFmOJkWEZhBBHjAS7NmTXro+prd2I6jPi2jKcXp168NNf83DX1JDYI51jx57Ljx9tpiTPjiXcyBlX9UWnP7gvDE3TKHv1NUpmzgQgZvJkEu+7F0UnX0Ci/fCqXgocBeRV55Fnz2OHfQdFNUUhIa7GW3NAxzTqjMSFxRFniQs+x4fFN15njSfCGCE3IQgh2hQJdm1IZWUiJSXdsFcncGLtAGqOd7Px7R9QdDrO+NstbFtdzqrvdgJw2hV9sMUcXH8bTdMofuYZyme9CUD8DdcTf/PN8gUl2iS3381O+0522HeEBLi86jx21exq1qC5Jp2JuLC6gFYXzmItsYGQtkd4k7AmhGjPJNi1IeHWbhRtHEuKO4akfl35+NMZABx/9vlYIpL57IXfABh4eird+8Uf1Dk0TaPo8SeoePddADrd/XfirriiReovxMFyep3ssO8IBDZ7HnnVecHlopqifd6AYNFbSI1MpWtEV7pGdCUpPKlRC5vNaJOwJoQ4Kkiwa0Piik2MrzkezDrWVP+Ao6KcmOTOnHDeJD5/IQe300en7pGcOL7nQR0/JNQpCkmPPEzMBRe08LsQoml2jz0Y1nZUhwa4ktqSfe4bbgwPBLfIQHhLjUgNLseHxUtoE0KIOhLs2hBLRgy27ARqw5z88eHnAIy69mZ+n59P0dZqTGEGRl/dF73hwPvB7Rnqkh97lOgJE1r6LYh2wOFxsKlyExvKN7CpYhNVnqrAHI+qPzjXo6qp+DRfyPqGZcFtVF+T6+uX/ao/uM7td++zXtHmaFIjUkNCW/2yDKgrhBDNI8GuDTHEWIi6MJ1P/34LAP1OG42qdubPhSsBGDmlN5HxYQd8XAl1RydVU9lh38HGio1sKN/AxoqNbKzYSL4jv9XqFGeJo2tkXWBr0AKXEpFClDmq1eolhBAdhQS7NubX/31ARcFOwmNiOe6syXzyXA4A/U5NoecxnQ74eBLqjg7Vnmo2VWwKhrhNFZvYVLlpr9NQJVoTyYzJJDMmkwRrAnpFj07R7X7W7X5d/2i4vuG2Bp0hdN8mjqVX9ESZowg3yqDXQghxOEmwa0NKtm9l+afzABh5xd9Y+v5WXA4v8ak2hkw48H51mqZR9NjjVMyZI6Gug/CrfvLsecHWt43lgeeCmoImtzfrzaRHp5MZk0mv2F5kxmSSEZ1BtCX6yFZcCCHEESHBrg0p25mHTm+g53GDqShOZtfmbRjNekZfnY3BqD+gY0moa/+q3FW7A1xdiNtcuRmX39Xk9snhycFWuMzYwHPXiK4YdPLfXAghjhbyG78N6X3ycJLSe1Gc52TRm9sAGHFpb6ITrQd0HAl17YvT6yS3MpfNlZvZXLk5uFzkLGpye4veQkZMxu4QF5NJRkyG9FETQgghwa6tMYXF8sPczaBB1tDOZByfeED7S6hru5xeJ1urtoaEt9zK3L1eRgXoYusSDHG9YgKXUlMjUtHrDqwFVwghxNFBgl0boqkai97MobbaQ2zncIZemHFg+2saRY8+RsV770moa0UunyskwNWHuHxH/l4H2o0Pi6dndE/So9ODz+nR6USYIo5w7YUQQrRnEuzakFWLd7JzfQUGk47RV2djNDW/VaZxqHuM6AnnH8baCo/fw9aqrY0uo+507ETV1Cb3ibXEhgS3+mW5jCqEEKIlSLBrQ3oNTmLn+nJ6HNOJ2M7NHxZCQt2Rsa1qG9/kfUNOaQ6bKzezw75jr/OURpujG7XA9YzuSawl9gjXWgghxNFEgl0bYrEZGXtD/wMaYV9C3eFV4ChgwbYFzN86n3Xl6xqVR5giGoW39Oh04ixxMlOCEEKII06CXRsjoa71lThLWLh9IfO3zmdlycrger2i58TOJzIkeQjpMYFLqQlhCRLghBBCtBkS7NqpQKh7lIr33g+EuscfJ/r881q7Wu1WhauCRdsXsWDbAn4r/C14k4OCwvFJxzO6+2hGdRtFjCWmlWsqhBBC7J0Eu3ZIQl3LsHvsfJf3HfO3zeeXgl9C+ssNSBjAmLQxjOo2ik7WA5/KTQghhGgNEuzaGQl1h8bpdbJ051Lmb53PD/k/4FW9wbI+sX0YkzaG0d1H09nWuRVrKYQQQhwcCXbtiIS6g+P2u/lh5w/M3zafZTuXUeurDZb1iOrBmLQxnNn9TLpHdW+9SgohhBAtQIJdO6FpGoWPPELl+/+VUNcMXtXLLwW/8PW2r/k271tqvDXBstSIVM7sfiZnpp1JRnSG3PwghBCiw5Bg1w40CnVPPEH0eeNbu1ptjl/1s6JoBfO3zuebvG+oclcFyxKtiZzZ/UzGpI0hKy5LwpwQQogOSYJdGyehbjdVU6l0V1JeW065K/Aoc5VRVltGsbOYH/J/oMxVFtw+1hLL6O6jGZM2hgEJA9ApulasvRBCCHH4SbBrw46GUFfrqw2EtNrdQa3cVU5ZbVnI6/LacircFXudqqtepCmSUd1GMSZtDIMSB6HXNX9aNiGEEKK9k2DXRmmqSuGjj7brUOf0Ovl1168U1BQ0GdTKXGUhNzI0V5Q5ilhLLLGWWOIsccHlvvF9OSn5JIx642F4N0IIIUTbJ8GuDWrPoa7YWcySHUtYvGMxv+76NWQ4kb0x6UzEhe0OaA2Xg+EtLPAcbYnGqJPgJoQQQjRFgl0b0yjUPfkE0ePHt3a19krTNDZWbGTJjiUs2bGENWVrQspTI1LJisva3bIWFtrSFhcWh9VglZsZhBBCiBYgwa4NaS+hzqt6+aPoDxbvWMySHUvId+QHyxQU+iX0Y0TqCEakjqBHVA8JbUIIIcQRIsGuDSl/6+02G+rsHjs/5v/I4h2L+T7/e+wee7DMrDdzUvJJnJp6KsNThxMfFt+KNRVCCCGOXhLs2pDoCyZiX7iQ6IsvahOhbpdjF0t2LmFx3mJ+K/oNn+oLlsVaYjkl5RRGpI7gxOQTsRqtrVhTIYQQQoAEuzZFHxlJt/fmoOhbZ4gOTdNYV74u2F9uXfm6kPLukd0Z0TVwibV/fH8ZSkQIIYRoYyTYtTFHOtR5/V5+K/yN73Z8x5IdSyhyFgXLdIqOgQkDOTX1VE5NPZW0qLQjWjchhDiqqX7wucHvBlUFnR50hgYPPUgfZrEHCXZHIZfPxXd53/Hdju/4If+HkHlUwwxhDOk8hFNTT+WUlFOItcS2Yk2FEOIIUdVAgPK5we/Z49kNPs8ez01t5zm0fffcfj8DsgOg6HeHvJBnQ8u8VvQtcMwm1ukNYLQ2eISBqW5Zb5LAeggk2B1FNldsZt6meXyW+1nIzQ/xYfEMTxnOyK4jOSHpBCwGSyvWUghx1NI08LnAWxt4hCzXgtdV99yMcp97H8Gq7tnv2b3coA9xu6L5we8Hf2tXpAUpOjCGB8KeMQxM9csNQqDRWhcEw/YeEI1hez9OBx7IXoJdB1frq2XhtoXM2ziPv0r+Cq5PDk/mrB5nMSJ1BNnx2TKPqhCiMU0LhJ/9hizX7nVe5+5tfXWvQ8r3EdJ8rtZ+x7vpzYGWI4MpsNzoub684fOe2x3KvnucX6cPXJpVfQ0e/kCwa/g6pLypdU29bs42+zmuph7YMXyewL+/x1n3M+CE+gHtNRU89sDjcNEZ9xIEDzAgNtw+OhXMEYevzs0kwa6D2lixkXkb5/FF7hfYvYH/HHpFz6mppzIxcyInJZ8kNz8I0ZZpWt0XoKtBS1Pdss9V19rU8LW7QSvVPsqCrVh7butqHNJ8tc27HHg46IyBL0uDBYyWwJenwdJgXd2XrCEsUG6o28ZoCawzmPcemPYXrPTGtnkpUKcHTK1di8PH7637Q6AWPDW7Q7+3Znf4axgEg4/6gLhnWRPHqf95Vr3grgo8WsoFs6Hv+JY73kGSYNeBOL1OFmxbwLxN81hVsiq4voutCxMyJjA+fTwJ1oRWrKEQLUjTwOMAVzW4q8FtDyz7PaHbhXxBK/tfv899Gqyu79jeKCg1FaL2DGTN3BbtoD6aw0LR7Q5RwZBVF6KCIath8GoQsoyWPUJYE/vsWa6Xr6ejjt4I+iiwRB2e4wdboBsGxAMNjQ2C4p6h0Ww7PPU+QPI/pwNYX76eeRvn8eWWL3F4HQAYFAMjuo5gYuZETkw+US61irZF9QfC2J6hzF0NrqoGZfbQ7YLb15W1VmtSa9AZdrc2hbRG1T8sda1PlkDLU5OvzXsvM5ibCG4NQlpbbcUSorkUZff/l7CY1q7NYSPBrp1yep3M3zqfeRvnhczPmhqRyoSMCZybfq7MAHG0q//rdK9363l3dyD3+wLPqrduvbfB672V+fZY9gReN1z2e+v28wT+6q0PZB5Hy71PnQHMkWCJDDwbzLvf/+4PI/RzaYn1im53IGpWwNpf+GoqrDV4LV0nhBDNIMGunVlbtjbYOuf0OQEw6Ayc1vU0JmZO5ISkE6R1ri1R/bs7j4f0/2jYCb12j7L6Duh73NHn9+6xrmFYa1het66+I3JbZrA0CGURDZajdgc1c8Tu5ZCyuu2NYdKSJIQQdSTYtQM13hq+2voV8zbOY23Z2uD6bpHdmJgxkbN7nk1cWFwr1vAI0zRwVYK9EOy76p4LA2EGrUELyx7L9fs2a5m9b1N/l2CjwFbb4I7AunV79vdqTcFLeXvecWcKXGbTGev6uNQvmwL9nPSmutcNlw9iO5O1QVCLqmtd68AdwYUQohVIsGujNE1jbdla5m6cy1dbv6LWVwuAUWfk9G6nc0HmBQxKHITSkVoqNC1wmS4ksO0CR1Hoa3th2xoWobmC/ZasuzuLBx/WpjuQNzXsgaHurr29DYvQ1DALehPopCVXCCE6Ogl2bYzD4wi2zjWcq7V7ZHcmZk7knJ7nEGNph50+PTWNW9iaWm4wC8Z+hcVARDLYEiEiKTC2EABKg0tzdc+Kso9lmrFNg2W9aS9hrOE66+5O6PUd0DtSCBdCCNEmSbBrQ77a8hUP/fxQsHXOpDNxRvczmJAxgeMSjzu01jm3A8o2QclGKN0YWPY4CVyuVOse2u67DBu+1tQG2+25TmuwXxPH0lSorQh0mm8ucxRE1IW1iOSmn21JgeAkhBBCiCAJdm1Iekw6tb5aekb1ZGJmoO9clPkAxvPRNKgpgZINgfBW/yjZCNU7D1/Fm8sYvkdIayq4NWx5E0IIIcSBkGDXhmTGZPLhuA/pHdt7361zqh8qt+9ufSvdsHvZVbn3/cITID6z7pEBlujAkA2KUvdc1wer0ToldF3I66bWNdxPqbtkmtQmplo5WJqmsavKxbpd1WgaxEeYibeZiLeZsRjb5zAUtR4/5U4PRp1CnM2MXieXioUQor076oJdcXEx1157LUuWLMFgMHDppZfyzDPPYDC0jY+iT1yf3S+8tVC2ObQFrmRjYJ3fvZcjKBDTbXeAS+i1e9kae0TeQ3unqhpby2rIKagmp6CKtQXV5BRUU17T9B2uEWZDMOglRJiJtzV8mIiPMJNQ9zrMdHhCoKZpOD1+yms8lDrclNd4KKvxUF73KHN4KK9x15UH1tV6d88arlMg3mamU6SZThEWEiPNJERY6BRhJjEy8NwpMvAejPqj6yYMVdXwqipev4bXp+L1q7h9KqqmBXocEPj8A8/1ezUsA63uzupgz4W6chrso9H4eLvL9zhe3U4hx9cI2Wdvx6NhWYN9FMCgVzDqdRh0Cga9gkGnC1ln1OvQ15UZ9yjT65SOdTNXM2iahk/V8NT9XHh8gZ8Nr1/FU/fa4wtd9vo1PH5/gzKtQVmDbRvu71NRFIgKMxJlNRIVZiQ6zBR4rntdXxZhNhx1/w4iVNtIM0fQpEmT6NKlCwUFBRQWFnLOOefw3HPPceedd7Z21aBwDax8f3eQq8xjr1MK6c2BVrdggMuE+F4Q1zPQWV80i8ensrHIXhfeqsgpqGbdrmpqPP5G2+p1CukJNsxGHSV2N6UON16/ht3tw+72sbV0/zd+2MyGYEtfvM1MfMTu5fpQmFC33qdqlDsaBjQ3ZcGQVr/eHdzG7TvwWRiMegW/qqFqUGx3U2x3A3vvD6koEBduCoa+YPCLDCwnBEOhGbPh4EOspmm4fSpur4rL58fl9ePyqtR665cDr911ZbUePy6fisvrD35BBr5A1QavVTw+Lbjs9e/+Yg2ua/C6fj+f2oam9WrjDHuEPr1Oh1Efus4QfFYw6OvK67bT169rUKbX7S5vWKbXKSH7GvYIpECDf+PQZ2+j0FX/s+IP/NzUlbmDPxN72c+vho5f3QbodQqRFkNd0KsLf3XBLyQEhhmJtoaGw/Z69aE1qWrgd5XL68dq1h/S772WomhaW/uxPHw2b95MRkYG+fn5dO7cGYAPPviAu+66i+3bt+93/+rqaqKioqiqqiIyMrLlK7jha3h/Uug6S3Roq1v9cnTXfY5E71c17C4vVbVeqmt9VNV6Qx52lxeDTiHcbCDcbMBW9xxu1mOre12/zmrSd4i/AGvcPtbtqg62xOUUVLOxyI7X3/i/gNmgo09yJH07R9K3cxR9O0fSKyki5BefpmlU1/oocQRCXqnDTandTakj0GpWH/5KHR5KHG48BxG8DpTZoCMu3ESczUxsuIm4cBOx4SZibfXLDdbbTESYDagalDkCoa6o2hUIeNVuiu0uiqrdlNgD60rs7gMKOdFWI4kRgdAXCHo6XF41JJjVB7X6X4z1610+f5v7wqxXHyj0SqCFSoFArwMIvK6/gbr+NfU3RAcKlOC2oKAEX1O3fXCbuvLQfULPxx7nqD8eTZU1cTwalKsa+PwqPn+ghdKvaoHlunDr9TdYp7a9QNMW6BQwGXSY9LrQZ4MO457r9Hus30+ZpmlUOb1U1v0Or3R6qa71UlnrCb4+mD/uGjIZdE2EwNDwF201EtkgLNY/DG2oJb8+bNX/ftnzD8LAH4IN/iD01JX5/NR66v6YbLhNE39UNvzdVW/W5YM4rU/iYXlPB5I/jqoWu5ycHGJjY4OhDiArK4u8vDwqKyuJjo4O2d7tduN2777kWV19AHd2HoykfjD4+rrWt0w8MRlU66Kocu0OZtVOL9UbvFTVbtm9bo/gVu3yYnf5WqxaigLhpkDoC4ZAUyD0RVgarDc1HRLDTIG/YixGXcizUX/4Lt2U13iC4a0+yG0trWnyyyjSYgiGt75dAkGuR3z4fn9RKYoSuCxiNZLead+TP2taoGWvYfBrGP5K7LvXlTrcuLyBXxZWkz4YxBqFtXATcbZAWKtfdzAhXK9Ap0gLnSItZHfZ+806qqpR7vQEQ18gADYVBN14/CqVzsCXzYYi+wHVZ086BcKMeix1D7NRh8WgJ8wU+FmyGBqsN+oxN/iSNAYfSug6gw5T3WXE+kew3BBYb2qw3thgW+mLGOBXd4c+f13YaxgEfcHn3WXBdXWXtn3+3cv+4Lr6INlgXfDYdcv1x/dreEPOtTuEalogqOz589CcEGUK+XnY/dq8x3ZGvYJZrw++bu2fDZfXH/weqHR6Gyx76kJg47L6h7/ukvLulvsDYzMbGrQE7hkCTY3KLEZ9XTCqC1NNBLDd6wJByt1gm9oG2+y53ZH4I7op9b+3W9tRFezsdjvh4aF3XFqtVgAcDkejYPfkk0/y8MMPH6nq8WOJmUfWj6XqTy9VtQ5qvSsO+ZhWk55Iy+6/qiLDjESGGYi0GFE1DYfbh8Plo8bjw+H2U+P2UeP24ah7Vuv64Tjq1sGB/4ffG50CZsPuL+qmns3B591f2k09G/U6dpQ7ySmoZm1BFQVVTQ9g3CnCTHaXuhBX1xqXEhN22FskFUUh0mIk0mKkR8K+t9U0jRqPH4NOaVOXRnQ6JXjZOIu9/8WoaRpVtd7dLYDVgS8Kr18NBDGjPhDGTHosdf9+gYcuGODMDbY7nH8AiIOn1ynoZf7aNqX+/1Ji5IENBaXVfReEtgTuGQI9Ia/rt7O7A40I9d8R+ZW1h+OtHTSTXoe5we+WsLrfNZY9Xtc3QISZ9HV/ODb+XRX4Y3Jvx9C3erCvd1QFu/DwcJxOZ8i6+tcREY3v2Lznnnu4/fbbg6+rq6tJTU09bPXzqVqTrRsRlt1/CTUMaVFWY7AvRWRYaHir39ZkOPjmcU3TcHlV7G4vNXWhzxES/ALr7HXrGpbXuP2BZY+PWs/uS20Nm61VDWrr/tKClp/XtFucNeRSat/OUSREmFv8PC1NURRs5vb7X1NRFKKtJqKtJjIT2++d0EIcLRRFIcJiJMJiJOUAx7/3+VWqXb5gy2DDVsCGIbBhOKyq9VLr8TcKV80OW3tu1+CPw7Yato6k9vvtcRCys7MpKyujqKiIxMTAdfC1a9eSkpJCVFTjS1Bmsxmz+cgFgQEpUbx71eAGAc1AhMXYaj+YiqIQZgr8p6KFvp+DneJ9Km5vaOALdIRv4tkb6AfhbqqswXNChJnsuhDXp3MkkRZjy1RaCCFEkwx6XbBrCMgYpG3BUXXzBMCwYcNISUnhtddeo7S0lLPPPpuJEyfy0EMP7Xffw37zhBBCCCHEHg4kf7Sd21iOkHnz5uHz+UhLS2Pw4MGceeaZTJ8+vbWrJYQQQghxyI6qS7EAiYmJzJ07t7WrIYQQQgjR4o66FjshhBBCiI5Kgp0QQgghRAchwU4IIYQQooOQYCeEEEII0UFIsBNCCCGE6CAk2AkhhBBCdBAS7IQQQgghOggJdkIIIYQQHYQEOyGEEEKIDkKCnRBCCCFEByHBTgghhBCig5BgJ4QQQgjRQUiwE0IIIYToIAytXYH2RNM0AKqrq1u5JkIIIYQ4WtTnjvocsi8S7A6A3W4HIDU1tZVrIoQQQoijjd1uJyoqap/bKFpz4p8AQFVVCgoKiIiIQFGU1q6OaKC6uprU1FR27NhBZGRka1dH7EH+fdo2+fdp2+Tfp207Ev8+mqZht9vp3LkzOt2+e9FJi90B0Ol0pKSktHY1xD5ERkbKL742TP592jb592nb5N+nbTvc/z77a6mrJzdPCCGEEEJ0EBLshBBCCCE6CAl2okMwm808+OCDmM3m1q6KaIL8+7Rt8u/Ttsm/T9vW1v595OYJIYQQQogOQlrshBBCCCE6CAl2QgghhBAdhAQ7IYQQQogOQoKdaNdWrlzJqFGjiI2NJSkpiSlTplBaWtra1RJ78Pv9nHrqqVxxxRWtXRWxh/LycqZMmUJcXBwxMTGMHz+eXbt2tXa1RJ0//viDU045hejoaJKTk7n11ltxu92tXa2jXklJCenp6SxZsiS47tdff2Xw4MHYbDbS0tKYNWtWq9RNgp1ot2praxkzZgxDhgyhsLCQnJwcysrKmDp1amtXTezh4Ycf5vvvv2/taogmTJgwAYfDQW5uLnl5eej1eq655prWrpYgMNvRuHHjmDhxIuXl5fz2228sWLCAp59+urWrdlT78ccfOemkk8jNzQ2uq6ioYOzYsUyZMoXKykpmzZrFbbfdxvLly494/STYiXYrLy+PAQMG8MADD2AymYiLi+Nvf/sby5Yta+2qiQa+++47PvroIyZMmNDaVRF7+P333/nll194++23iY6OJiIigtdff50ZM2a0dtUEgbCwa9cuVFUNTv6u0+mwWq2tXLOj1+zZs7nkkkt4/PHHQ9Z/9NFHxMXFceONN2IwGBg5ciSTJ0/mX//61xGvowQ70W716tWL+fPno9frg+vmzZvHcccd14q1Eg0VFxdz1VVX8d5778mXURu0fPlysrKyeP3110lPTyc5OZk77riD5OTk1q6aAOLi4rjtttu44447MJvNpKamkpmZyW233dbaVTtqjR49mtzcXCZNmhSyPicnh379+oWsy8rKYuXKlUeyeoAEO9FBaJrG/fffz+eff87zzz/f2tURBC4jXXrppdx+++0MGDCgtasjmlBeXs6qVavYtGkTf/75J3/99Rf5+flMmTKltasmCPwfCgsL46WXXqKmpoY1a9awdu1aHnzwwdau2lErKSkJg8HQaL3dbic8PDxkndVqxeFwHKmqBUmwE+1edXU1EydO5N1332XZsmWN/moSrePJJ5/EYrFw8803t3ZVxF7Uj5Q/c+ZMIiIiSExM5PHHH+err75qlS8kEep///sfH330Eddffz1ms5m+ffvy4IMP8vLLL7d21cQewsPDcTqdIeucTicRERFHvC6NY6cQ7Uhubi5jx46la9eurFixgvj4+NaukqjzzjvvUFBQQHR0NEDwl94nn3xCZWVl61VMBGVlZaGqKh6PB4vFAgTuYAaQSYlaX15eXqM7YI1GIyaTqZVqJPYmOzubhQsXhqxbu3Yt2dnZR7wu0mIn2q2KigpGjhzJkCFDWLBggYS6Nmb9+vVUV1dTWVlJZWUll1xyCZdccomEujZk1KhR9OjRgyuvvBKHw0FJSQn33Xcf48ePb5WWBhFq9OjR7Nq1iyeeeAK/38+WLVt47LHHuPTSS1u7amIP559/PoWFhcycOROv18vixYuZM2cOV1555RGviwQ70W699dZb5OXl8eGHHxIZGYnNZgs+hBD7ZzQaWbp0KQaDgYyMDDIzM0lJSeHNN99s7aoJAi2qX3zxBZ999hlxcXGMGDGCs88+u9EdmaL1xcXFsWjRIubOnUtcXBxXX301L7zwAiNGjDjidVE0aW8XQgghhOgQpMVOCCGEEKKDkGAnhBBCCNFBSLATQgghhOggJNgJIYQQQnQQEuyEEEIIIToICXZCCCGEEB2EBDshhBBCiA5Cgp0QokPavHlza1ehzauqqqKkpKS1qyGEaEES7IQQHc6dd97JY4891qxtlyxZgqIoh60uiqKwZMmSg9r3oYce4tRTT23R+jSUnp5OTk4OAHPmzKFv376H7VxCiCNDgp0QosORVqjmKS0tDS5Pnjw5GPKEEO2XBDshRJuwl49lkgAABzRJREFUbds2FEXhP//5D926dSM8PJypU6fyww8/MGDAAGw2G6eddhqlpaWoqspTTz1Fz549iYqK4oQTTmDBggUAPProo8yZM4c5c+YwYMCAA67H6tWrGTt2LLGxsaSkpHDDDTdQVVUFgKZpzJgxg379+hEdHU1MTAyTJ0+mtrYWAK/Xy+233058fDwJCQn84x//OKBz//TTTxx//PGEh4dz8skns3Xr1mDZ22+/Tffu3UO2P/XUU3nooYcAuOKKK7jgggvo06cPCQkJ5Obm8tNPPzFy5Eg6d+6MxWJh0KBB/PLLLwD06tULgDFjxvD00083Ov7333/PKaecQnR0NGlpaUyfPh232w0EWhInTpzIpZdeSnR0NCkpKdxzzz0H9F6FEIeJJoQQbcDWrVs1QJs0aZJWU1OjrV69WtPr9dqAAQO0nTt3aiUlJVp6err28MMPaw8++KCWkpKi/f7775rX69U++OADzWw2a8uXL9c0TdMuv/xy7fLLL2/WeRcvXqzV/yosLS3VYmNjtTvuuENzOp3arl27tJEjR2rnnHOOpmma9sEHH2hJSUnaxo0bNU3TtHXr1mmxsbHaG2+8oWmapk2fPl3LyMjQcnNzNYfDoV122WUaoC1evHi/9SgtLdWio6O1p556SvN4PNoPP/ygRUZGasOHD9c0TdPeeustrVu3biH7DB8+XHvwwQeD79lms2mrV6/WKioqNKfTqcXGxmovvfSS5vf7NYfDoV144YXa0KFDg/s3rFvD469fv14zm83azJkzNbfbrW3atEnr37+/dsstt2iapmkPPvigpiiKNnv2bM3n82lffvmlpiiK9vPPPzfrMxdCHD7SYieEaFP+7//+D6vVSnZ2NsnJyVx++eV06dKF+Ph4TjrpJLZt28abb77JPffcw7HHHovBYODCCy/knHPOYdasWYd07k8//RSTycSMGTMICwsjKSmJF198kc8++4zCwkLGjBnDb7/9RkZGBiUlJZSWlhIfH09+fj4A77zzDnfeeSc9evQgPDycF154odn997744gvCw8O56667MBqNnHzyyVx55ZUHVP8TTzyR7OxsoqOjMZlM/PLLL9xwww243W62bdtGXFxcsK77MmfOHPr378+tt96KyWQiPT2dJ598ktdffx1VVQHIzMxkypQp6PV6xo4dS3JyMhs3bjyg+gohWp6htSsghBANxcXFBZf1ej0xMTHB1zqdDlVVKSoqokePHiH7paWlsXLlykM6d1FREd26dUOv14ccFwKXivv06cN9993H559/TqdOnRg4cCButzsYdvLz8+natWtw3+joaGJjY5t17vz8fFJTU0OCYM+ePfnzzz+bXf/OnTsHl/V6PYsXL2bMmDE4HA769u2L0WgM1nVf9vb51tbWUlxcDEBSUlJIeXOPLYQ4vCTYCSHalOa0cHXv3p3c3NyQdbm5uSQnJx/Subt378727dvx+/3BcFd/nuTkZO6++27y8vLYtm0bkZGRAPTr1y+4f2pqKlu2bAm+rqmpobKyslnnTk1NZfv27aiqik4XuJiyc+fOYLler8fj8YTs0/DmBwj97H799VduvvlmfvrpJ4477jgAnn32WdavX7/funTv3p2PP/44ZF1ubi5ms7nZQVUI0TrkUqwQot25+uqreeqpp/jjjz/w+/3MnTuXzz77jCuuuAIAi8USvOHhQIwdOxZFUfj73/9ObW0thYWF3HrrrYwcOZJu3bpRVVWFxWLBYDDgcrl49tlnWbNmTTBwXX311Tz99NOsW7cOl8vFHXfcgd/vb9a5zz77bFRV5aGHHsLj8fD777/z+uuvB8v79OlDYWEhixcvRtM03n33XdatW7fX41VVVaHT6QgLCwPgl19+4fnnnw8Jh2azucnP6eKLL2bt2rXB7XNzc7n33nuZPHkyJpOpWe9HCNE6JNgJIdqd22+/nRtvvJFJkyYRFRXFE088wX//+1+GDx8OwKRJk/jxxx9DLos2R1RUFIsWLWLNmjWkpKSQnZ1N9+7dmTt3LgCPPfYYTqeTTp060b17d3755Rcuu+wyVq9eDcDf//53Lr30UoYPH05ycjJRUVEhl5b3JTo6mgULFvDtt98SExPDVVddxcSJE4PlgwYN4v777+fyyy8nNjaWb7/9NqR8T6NGjeKGG27glFNOISYmhhtuuIFbbrmF4uJiioqKAPjb3/7GxRdfzH333Reyb/fu3VmwYAHz5s2jU6dODB06lFGjRvHSSy8d0OcphDjyFE3TtNauhBBCCCGEOHTSYieEEEII0UHIzRNCiA6ruLi40d2de3I4HEekLvHx8bhcrr2Wr1279oAvHQshxJ7kUqwQQgghRAchl2KFEEIIIToICXZCCCGEEB2EBDshhBBCiA5Cgp0QQgghRAchwU4IIYQQooOQYCeEEEII0UFIsBNCCCGE6CAk2AkhhBBCdBAS7IQQQgghOoj/BzVnMONVNIiLAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"# ax = fig.gca()\n",
"Ncount_mean.plot.errorbar(hue='final_amp')\n",
"# plt.xlabel('MOT AOM Frequency (MHz)')\n",
"# plt.ylabel('MOT Gradient Coil Current (A)')\n",
"plt.tight_layout()\n",
"# plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZp0lEQVR4nO3dd3wUdeL/8dem9w4pJCSBhJqIBUEpIiBSPCnKiQIize8deiigoqiInihiOdFTvJ+KEhWR4nlioSrYQBDpAQRCCaQSIMmGkLrz+yOyEgUMkGSSzfv5eOzDZD4zu+/ZaPJ2ZuczFsMwDERERESk3nMyO4CIiIiIVA8VOxEREREHoWInIiIi4iBU7EREREQchIqdiIiIiINQsRMRERFxECp2IiIiIg5CxU5ERETEQajYiYiIiDgIFTsRMcWRI0fo1q0bHh4eNG7cmC+//BKLxcKaNWuq/bUsFgtPPvlktT9vfZKRkcEdd9xBSEgIfn5+DB48mLS0tD/d7rvvvqNr1674+fnRtGlT7r//fqxWa6V1Dh06xG233Ubjxo0JCQlh4MCBpKSk1NSuiMh5uJgdQEQaplmzZrF27VrmzZtHkyZNSExMZN26dbRp08bsaA6nrKyMvn37UlBQwBtvvEFpaSmPPPIIN954I1u2bMHV1fWs2+3YsYNevXrRpUsXFi5cyJEjR5g8eTL79+/ns88+A6CwsJBevXpRVlbGv//9bzw8PJg6dSrXX38927dvJyAgoBb3VERU7ETEFMeOHSMiIoLbbrvNvuyaa64xMZHjWrRoEVu3bmXHjh20bdsWgMsvv5yEhAQWLFjA8OHDz7rdhx9+iMVi4X//+x8+Pj5ARUkcN24chw4dIjo6mu+//569e/eyatUqevbsCUDLli1p3bo1n376KXfddVft7KSIADoVKyImiImJYe7cuaSmptpPk65Zs6bSqdgnn3ySuLg4vvjiCy677DLc3d1p0aIFSUlJlZ5r27Zt3HLLLTRq1AhXV1eaNGnCfffdx6lTpy4p46lTp5gyZQrx8fG4u7vj5+dHr1692LJli32dkSNH0qdPH9566y2aN2+Op6cnnTt3Zs+ePXz++eckJibi5eVFx44d/7Dd9ddfzzvvvEN0dDQ+Pj706NGDzZs3nzeTxWI55yMmJuac2y1fvpyWLVvaSx1AmzZtaN26NV9++eU5tysuLsbV1RUvLy/7spCQEKCimJ9eB8DPz++c64hI7dEROxGpdZ988gmPP/44mzZt4pNPPiEyMpJ9+/b9Yb2MjAz+8Y9/8PjjjxMdHc0LL7zAyJEj6dixI61atSIjI4OuXbtyzTXXMHfuXNzd3fniiy+YNWsWYWFhPProoxedccSIEXzzzTc899xzNG/enD179jB16lRuv/12du3ahcViAWDdunWkp6fzr3/9i8LCQsaNG0e/fv2wWCz885//xNnZmfvvv59hw4aRnJxsf/4tW7awe/duZsyYQWBgINOmTeP6669n586dNGnS5KyZ1q1bd8687u7u5xzbtWsXLVq0+MPyuLg49uzZc87txowZw9tvv82kSZOYOnUqmZmZPPXUUyQmJtKuXTsAevXqRUJCApMnT2bOnDl4eXkxYcIEfHx8GDhw4DmfW0RqiCEiYoK77rrLiI6Otn+/evVqAzBWr15tGIZhTJs2zQCMVatW2dc5dOiQARgvvviiYRiGsXz5cuO6664z8vLyKj13YmKiceONN9q/B4xp06ZVOVtxcbHRu3dv46OPPqq0/KWXXjIAIz093b4PgLFr1y77On/7298MwPjqq6/sy1588UUDME6cOFFpu2+++ca+Tnp6uuHh4WE8+OCDVc5ZVS1atDCGDRv2h+XDhg0z4uPjz7vt7NmzDScnJwMwACM6OtpITU2ttM7atWuN4OBg+zru7u7GihUrqnUfRKRqdMROROq0a6+91v51ZGQkACdPngTgxhtv5MYbb6S0tJQ9e/awZ88etm3bRnZ2NsHBwRf9mm5ubixbtgyoOGq4d+9edu/ezeeffw5ASUmJfd3AwEBatWpl/z4sLAyo/HnB01lyc3PtFxM0bdqU6667zr5OeHg4nTp14rvvvjtnrrKysnOOWSwWnJ2dzzpms9nsRxjPZBjGObcBmDFjBo8++ij33nsvt9xyC0ePHuXpp5+mZ8+efPfdd4SGhrJmzRr69OlD586dmTRpEs7OzrzxxhsMGjSIpUuX0rVr13M+v4hUPxU7EanTzvx8l5NTxceCbTab/Z+PPvoor7/+OgUFBURFRdGhQwc8PT0xDOOSXnf58uVMmDCB3bt34+vry2WXXYavry9Apec+87Nl58p9NhEREX9Y1rhxYzZt2nTObc519SpAdHQ0Bw8ePOtYQEAA+fn5f1heUFCAv7//WbcpKytj+vTpDBs2jNdee82+/Prrr6d58+a88MILvPjiizz77LM0adKEL7/80n46+MYbb+Taa69l4sSJbNy48ZyZRaT6qdiJSL313HPP8a9//Yv//Oc/3HrrrfaS0qFDh0t63pSUFAYOHMiAAQP4/PPPad68OQCzZ8+2H8m7VGe7sCArK4vGjRufc5uffvrpnGPn+4xdy5Ytz3phxr59+875Xh09epTCwkI6d+5caXloaCitWrWyf17w0KFDtG/fvtLrOzk50bVrV15//fVzZhKRmqGrYkWk3vr+++9p27Yto0ePtpe6tLQ0tm/fbj+qdzF+/vlnioqKmDJlir3UASxduhTgkp77tJSUFHbu3Gn/Pj09nXXr1tmnDDmb9u3bn/ORmJh4zu1uvPFGdu3aVen1du7cya5du7jxxhvPuk3jxo0JCgr6w6nhnJwc9uzZQ2xsLACtWrViw4YN9qtjoeKI5rp16+zriEjtUbETkXqrQ4cObNu2jeeee45vvvmGOXPmcN1111FcXGz/HN7FuPLKK3FxceHhhx9m5cqVfP7559x666188cUXAJf03KcZhsGAAQNYsGABH3/8Mb179yYwMJD77rvvkp/794YMGUKLFi3o27cv8+fPZ/78+fTt25fExET++te/2tfbvHmzvfw5Ozvz1FNPMX/+fP7+97/z1VdfsWDBAm644QacnZ154IEHAJg6dSoZGRn07duXJUuW8OWXX/LXv/6VdevW8fTTT1f7vojI+anYiUi9NWXKFMaNG8crr7xC3759eeGFF7jzzjt58sknSU5O5sSJExf1vHFxccyfP58jR47Qv39//va3vwHY59o73wUOVdW0aVMeeOABJk6cyOjRo2nRogVr164lKCjokp/799zd3Vm5ciVXXXUV//d//8e9997Ltddey7Jly3Bx+e0TOYMGDeKee+6xf/+Pf/yD999/n/Xr19OvXz8mTZpEq1at2Lx5s/1IZvv27fnmm29wcXFh6NChDB8+nGPHjrF69WpuvfXWat8XETk/i3GpnzAWEZELMnLkSNasWXPOix1ERC6WLp4QkQbDZrNV6fNxZx7FEhGpT3QqVkQajNGjR+Pq6vqnDx1JE5H6SqdiRaTBOHjwIDk5OX+63mWXXYabm1stJBIRqV4qdiIiIiIOQqdiRURERByEip2IiIiIg9ClXxfAZrORnp6Or6/vWW+oLSIiIlLdDMPAarUSERFhv2f2uajYXYD09HSioqLMjiEiIiIN0OHDh4mMjDzvOip2F8DX1xeoeGP9/PxMTiMiIiINQX5+PlFRUfYecj4qdhfg9OlXPz8/FTsRERGpVVX5GJgunhARERFxECp2IiIiIg5CxU5ERETEQajYiYiIiDgIFTsRERERB6FiJyIiIuIgVOxEREREHISKnYiIiIiDMKXYHT9+nBEjRhAcHExgYCADBw4kIyMDgPXr19OxY0d8fHyIjY1lzpw5lbZNSkoiLi4Ob29v2rdvz7p16+xj5eXlPPTQQ4SGhuLr68uAAQPszwuQnZ3NwIEDCQgIICQkhAkTJlBWVlY7Oy0iIiJSw0wpdrfeeisFBQWkpKSQmpqKs7Mzd999NydOnKBfv36MGDGC3Nxc5syZw8SJE9mwYQMAa9asYfz48SQlJZGbm8uwYcPo378/hYWFAEyfPp0VK1awceNG0tLS8PT0ZOzYsfbXHTJkCD4+PqSnp7NhwwZWrVrFyy+/bMZbICIiIlLtLIZhGLX5gj///DNdunQhKyvLfluu48ePk5GRwbp163j++efZs2ePff1x48ZRWFhIUlISw4cPx8vLizfffNM+3rp1ayZPnsyoUaOIiopi5syZDB06FICsrCzCw8PZt28fNpuN+Ph40tLSiIiIAGDBggVMnjyZQ4cOVSl7fn4+/v7+5OXl6ZZiIiIiUisupH/U+hG7DRs20KZNG9566y3i4uIIDw/ngQceIDw8nOTkZBITEyut36ZNG7Zu3Qpw3vG8vDyOHDlSaTw0NJTAwEC2bdtGcnIyQUFB9lJ3etvU1FRyc3PPmrW4uJj8/PxKDxEREZG6qtaL3fHjx9m2bRt79+5l8+bNbNmyhbS0NEaMGIHVasXb27vS+l5eXhQUFACcd9xqtQKcd/xsY4D9+X9vxowZ+Pv72x9RUVEXv+MiIiIiNazWi527uzsAs2bNwtfXl9DQUJ555hm+/PJLDMOwf17utMLCQnx9fYGK0nau8dOl7XzjZxsD7M//e1OmTCEvL8/+OHz48EXutYiIiEjNc6ntF2zTpg02m42SkhI8PDyAiqtZAS6//HJmz55daf2dO3eSkJAAQEJCAsnJyX8Y79evH4GBgTRp0oTk5GT7+pmZmRw/fpyEhARsNhvHjh0jKyuL0NBQ+7aRkZH4+/ufNau7u7u9iIqIiMiFySssZd9RK3uzCtibXfHYl2Ulp6AEdxcn3F2dcHdxxt3FCTcXJ9xdK76ueDj/Ov7bOmeu716F9T0qrV8x7ubshJOTxey3psbU+sUTpaWltGnThnbt2jF37lxOnTrF7bffjr+/v/1zd9OmTePee+/l+++/Z8CAAXz66ad0796dr776ikGDBvHpp5/SpUsXXn/9df75z3+yb98+goKCmDp1Kv/73/9YsmQJISEh3H333WRmZrJmzRoAunbtSmRkJG+++SY5OTncfPPNDB48mCeffLJK2XXxhIiISGWGYXDsZAl7swrYd7SiuJ0ucUetxWbHOys3Z6dqL5ZXxwQREeBZI3kvpH/U+hE7V1dXvvnmGyZNmkR8fDxFRUX079+fV155hYCAAFauXMn999/PE088QaNGjXj11Vfp3r07AD179mT27NmMGzeOI0eO0LZtW5YuXUpQUBAATzzxBKWlpXTt2hWr1Ur37t1ZuHCh/bUXL17MP/7xD2JjY3FycmLEiBFMnTq1tt8CERGRescwDLLyi9mbbT2jxBWwN9vKicLSc24X7u9BXGMf4hv7Eh/qQ1xjH8L9PSgrNygus1FcVl7xz9Izvi4r//X7s3z9h3X/fJ2i0nJsZxzGKim3UVJuozp753+GX1ljxe5C1PoRu/pMR+xERMTR2WwGabmn2Jdd8IcSZy0++6T+FgtEBXr9WuAqylt8qC/NG3nj6+Fay3twdmXltioXwYsplpN6teSq6MAayV6nj9iJiIiI+crKbRw+cYq9v546PV3kUrJPcqq0/KzbODtZiA72Iq6RD/GhFUfh4hr70LyRD55uzrW8BxfGxdkJF2cnvB38o/MqdiIiIg6spMzGwWMnK4rbr6dO92UXsP/oSUrKbWfdxtXZQrMQH+JCfSqVuJgQL9xd6naBa+hU7ERERBxAUWk5KUcrjrydWeIOHiuk3Hb2T125uzjZT59WnDqtKHHRQV64OJty11G5RCp2IiIi9UhBcRkp2aenD7Hav049Xsi5PjXv7eZMXKhvRYFrXFHe4hr50iTQE2cHnvqjIVKxExERqYNyC0t+O/r26yMlu4C03FPn3Mbf0/W34tbY134hQ7i/BxaLClxDoGInIiJiEsMwyLYWn1HgrL9+fZKcgnPPxRHi437G1ac+9ulEQnzcVOAaOBU7ERGRGnZ6CpHfiluB/UpUa9HZpxCB3+aAqzQPXCMfAr3dajG91CcqdiIiItWktNzGoTOuQN13tOKf+3MKKCo9+xWoThZoGuRF3K9Th5y+mKF5Yx983PVnWi6M/o0RERG5QKdKKq5ATfm1uO3LrihxB3NOUnaOK1DdnJ2IDfG2l7fTp1Fjgr3xcNUUIlI9VOxERETOIe9UKft+vWih4uiblX1HCzhy4tQ5r0D1cnOuKG6NfpsHLq6xD001hYjUAhU7ERFp0AzDIKegxD51yJmff8s+z81EA7xc7RcwnHkaNdzPAydNISImUbETEZEGwWYzSM87Zb944cwCl3fq3DexD/Vz/+3WWWfcCzXYW1egSt2jYiciIg6l3GbYb6H1+8e57oH6+5vYNz/jn3515Cb2IlWhYiciIvVeUWk5a1NyWLYjk5U7szhRePYjcK7OFmKCvSsVuNM3sdcFDOIIVOxERKReKiguY80v2Szbkcnq3dmcLPntaJyHq9NvFzCc8Rm46GAvXHUBgzgwFTsREak3TpwsYeWuLFYkZ/Lt3hxKyn6bGy7Uz53ebcPo0zaMDrFBugJVGiQVOxERqdMy8k6xIjmL5cmZrD9wnPIz5omLCfaid0JFmWsXGaCrUaXBU7ETEZE650DOSZYnZ7JsRyZbDudWGmsd7keftmH0TgilZaivrkwVOYOKnYiImM4wDHZlWFmWnMnyHZn8kmWtNH5VdCC924bSu20Y0cHeJqUUqftU7ERExBQ2m8HmwydYtiOT5clZpB4vtI85O1m4tlkwvRPCuLFNKKF+HiYmFak/VOxERKTWlJbb+HH/MZYnZ7IiOavSnR3cXZy4rkUj+rQNo2frxgR4uZmYVKR+UrETEZEaVVRazrd7jrIsOZOvdmVXusuDr7sLPVo3pk/bMLq1bISXm/4siVwK/RckIiLVLr+olNW7K+aYW/PL0Up3fAj2duPGXz8vd23zYNxdNDGwSHVRsRMRkWqRU1DMyp0V05L8sC+H0vLfpiVpEuDJjW1D6dM2jPYxQThrWhKRGqFiJyIiFy0t9xTLd2SyLDmTjQePc8YUc8Q19qF321D6tA0noYmfpiURqQUqdiIickH2ZVtZnpzFsh2ZbE/LqzSW2MSfPglh9G4bSlxjX5MSijRcKnYiInJehmGwIy2fZckZLNuRScrRk/YxiwWujgmiT9swbmwbSmSgl4lJRUTFTkRE/qDcZrDx4HGW/TotSVruKfuYq7OFznEh9G4bxg2tQ2nk625iUhE5k4qdiIgAUFxWztqUY6z4tcwdO1liH/N0daZ7q0b0bhtG91aN8fNwNTGpiJyLip2ISANWVFrOml+OsnRHBl/vysZaXGYf8/d0peevc8xd16IRHq6alkSkrlOxExFpYMrKbaxNOcaSreks35FZqcw18nW3X8nasVkQrs5OJiYVkQulYici0gAYhsGm1BMs2ZLOF9szyCn47TRruL8Hf7ksnD4J4VwRFYCT5pgTqbdU7EREHJRhGOzOtLJkazpLtqRXugAi0MuVfonhDLi8Ce2jA1XmRByEip2IiINJPVbIkq1pfLolnb3ZBfbl3m7O9G4bxs2XR9AlLkSnWUUckIqdiIgDyM4v4vNtGXy6NZ2th3Pty92cnejeqhH92zWhR6vGeLrpAggRR6ZiJyJST+UVlrJ0RwZLtqbz4/5j9tt5OVmgc1wIN7eLoHfbMPw9NTWJSEOhYiciUo8UlpSxalc2S7ak882ebErLf7s565VNA+jfLoKbLovQpMEiDZSKnYhIHVdSZuO7vUdZsjWdlTuzKCwpt4+1CvPl5nYR9G8XQVSQbucl0tCp2ImI1EE2m8H6A8dZsjWdpTsyyC0stY9FBXkyoF0T+l8eQYtQXxNTikhdo2InIlJHGIbB9rQ8lmxJ57Nt6WTlF9vHGvm685fLwunfLoLLowKwWDQ9iYj8kYqdiIjJ9mVbWbIlnSVb0zl4rNC+3NfDhX4J4fS/PIJrmgXjrLnmRORPqNiJiJggPfcUn21N59Mt6ezMyLcv93B14obWofRvF0G3lo1wd9H0JCJSdSp2IiK15FhBMV/uyGTJljR+OnjCvtzFycJ1LRrRv10EvdqE4u2uX80icnH020NEpAZZi0pZkZzFkq3pfL8vh/JfJ5uzWKBDTBD9L4+gX0I4gd5uJicVEUegYiciUs2KSstZ80s2S7am89WubIrLbPaxxCb+9G8XwV/ahRPu72liShFxRCp2IiLVoKzcxtqUYyzZms7yHZlYi8vsY80aeTOgXRNubhdOs0Y+JqYUEUenYicicpEMw2BT6gmWbEnni+0Z5BSU2MfC/T3o3y6Cm9tF0DbCT9OTiEitULETEblAKUcLWPzzEZZsSSct95R9eZC3G/0Sw+jfrgntowNx0vQkIlLLVOxERKrIMAze+eEgzy3dZb9Hq7ebM73bhnHz5RF0iQvB1dnJ5JQi0pCp2ImIVEFuYQkPLtrGql1ZAHSND+H2q5vSs3VjPFw115yI1A0qdiIif2LjwePcN38z6XlFuDk7MfUvrRl+TbQ+NycidY6KnYjIOdhsBv/5NoWXVuyh3GYQE+zFa0OvJKGJv9nRRETOSsVOROQscgqKmbhgC9/tzQGgf7sInr0lER/dFUJE6jD9hhIR+Z11Kce4/6PNZFuL8XB14qn+bbmtfZROvYpInadiJyLyq3Kbwb+/3surX+3FZkB8Yx9eG3olLcN8zY4mIlIlKnYiIkBWfhH3f7SZH/cfB+C29pE82b8tXm76NSki9Yd+Y4lIg/fNnqNMWrCFYydL8HJz5plBCQy6ItLsWCIiF0zFTkQarNJyGy+t2MN/vkkBoHW4H68PvUL3cxWRekvFTkQapLTcU4z/cBObUnMBuPOaaB67qbUmGxaRek3FTkQanJU7s3hw0VbyTpXi6+7CzMGX0S8x3OxYIiKXzJSbGi5YsAAXFxd8fHzsjzvvvBOA9evX07FjR3x8fIiNjWXOnDmVtk1KSiIuLg5vb2/at2/PunXr7GPl5eU89NBDhIaG4uvry4ABA8jIyLCPZ2dnM3DgQAICAggJCWHChAmUlZXVzk6LiOlKymz887Od3P3eRvJOldIu0p8v7uuqUiciDsOUYvfTTz9x5513UlBQYH+8//77nDhxgn79+jFixAhyc3OZM2cOEydOZMOGDQCsWbOG8ePHk5SURG5uLsOGDaN///4UFhYCMH36dFasWMHGjRtJS0vD09OTsWPH2l93yJAh+Pj4kJ6ezoYNG1i1ahUvv/yyGW+BiNSyQ8dOMvg/a3nnhwMAjO0Sy6K/d6JpsJfJyUREqo/FMAyjtl+0W7du3Hbbbdx7772Vlr/99ts8//zz7Nmzx75s3LhxFBYWkpSUxPDhw/Hy8uLNN9+0j7du3ZrJkyczatQooqKimDlzJkOHDgUgKyuL8PBw9u3bh81mIz4+nrS0NCIiIoCKI4eTJ0/m0KFDVcqdn5+Pv78/eXl5+Pn5XerbICK15PNt6Uz5eDvW4jICvFx5cXA7bmgTanYsEZEquZD+UetH7Gw2G5s2beKLL74gOjqayMhI/u///o8TJ06QnJxMYmJipfXbtGnD1q1bAc47npeXx5EjRyqNh4aGEhgYyLZt20hOTiYoKMhe6k5vm5qaSm5u7lmzFhcXk5+fX+khIvVHUWk5j32ynX98uBlrcRntowP58r6uKnUi4rBqvdgdPXqUK664gsGDB7Nr1y7Wrl3L3r17GT58OFarFW9v70rre3l5UVBQAHDecavVCnDe8bONAfbn/70ZM2bg7+9vf0RFRV38jotIrdqXXcDA139g3vpULBa4t3tzPvq/a4gI8DQ7mohIjan1q2JDQ0P59ttv7d83bdqU559/no4dOzJq1Cj75+VOKywsxNe34nY+3t7eZx0PCQmxl7ZzbW+z2c46Btif//emTJnCpEmT7N/n5+er3InUA//ddITH/7eDwpJyQnzc+Ndtl3Ndi0ZmxxIRqXG1fsRu27ZtPPLII5z50b7i4mKcnJzo0KEDycnJldbfuXMnCQkJACQkJJxzPDAwkCZNmlQaz8zM5Pjx4yQkJJCQkMCxY8fIysqqtG1kZCT+/v5nzeru7o6fn1+lh4jUXYUlZTy4aCuTFm6lsKScTs2D+fK+rip1ItJg1HqxCwoK4rXXXuOFF16grKyM1NRUHnroIUaOHMngwYPJzMxk1qxZlJaWsnr1aubNm8fo0aMBGD16NPPmzWP16tWUlpYya9YssrKyGDRoEACjRo1i+vTpHDhwAKvVyoQJE+jWrRvNmzcnPj6eLl26MGHCBKxWKwcOHODpp59mzJgxtf0WiEg1K7cZfLL5CH1f+Y7FPx/ByQKTerXg/TEdaeznYXY8EZFaU+vFLjIyki+++IL//e9/BAUF0b59e66++mpee+01goODWblyJYsWLSI4OJixY8fy6quv0r17dwB69uzJ7NmzGTduHIGBgcyfP5+lS5cSFBQEwBNPPMFNN91E165diYyMpKioiIULF9pfe/HixZSVlREbG0vHjh3p06cPU6dOre23QESqSbnN4H+b0+j1r2+YuGArh44VEurnzod3X8N9PeNxdrKYHVFEpFaZMt1JfaXpTkTqhnKbwefb0nnlq73sP3oSgAAvV+7u2oy7OsXg466b6oiI47iQ/qHffiJSb5TbDL7YnsGrX+1lX3bF1ewqdCIiv9FvQRGp82xnFLq9vxY6f09X7u4ay12dYvD1cDU5oYhI3aBiJyJ1ls1m8OWODF5Z9Vuh8/NwqThC1zkGPxU6EZFKVOxEpM6x2QyW7sjkla/2sCerotD5ergwtkszRnVRoRMRORcVOxGpM2w2g2XJmbyyai+/ZFXcTcbXw4UxXWIZ1TkWf08VOhGR81GxExHT2WwGy5MzeeWrvezO/LXQubswuksso7uo0ImIVJWKnYiYxmYzWLEzi1mr9lQqdKO6xDKmcyz+Xip0IiIXQsVORGqdYVQUuldW7WVnRj4APu4ujOocw5gusQR4uZmcUESkflKxE5FaYxgGK3dmMeuMQuft5syozrGM7apCJyJyqVTsRKTGGYbBql3ZzFq1h+T03wrdyM4xjO3SjEBvFToRkeqgYiciNer4yRL+772NbDx0AgAvN2dGdophbNdmBKnQiYhUKxU7EakxOQXFDHtrPb9kWfFyc+auTjHcrUInIlJjVOxEpEZk5xcx9O317MsuoLGvOx/efQ1xjX3MjiUi4tBU7ESk2mXmFTH0rR/Zn3OScH8PPrz7GmJDvM2OJSLi8FTsRKRapeWeYuhbP3LoWCFNAjyZf/c1NA32MjuWiEiDoGInItXm8PFC7njrR46cOEVUUEWpiwxUqRMRqS0qdiJSLQ4dO8kdb/5Iel4RMcFefHj3NUQEeJodS0SkQVGxE5FLtv9oAUPfWk9mfhHNGnnz4dhrCPP3MDuWiEiDo2InIpdkX7aVoW+tJ9taTHxjH+bd3ZHGvip1IiJmULETkYv2S6aVYW//SE5BCa3CfPlgbEdCfNzNjiUi0mCp2InIRdmZns/wOes5frKENuF+fDC2oyYeFhExmYqdiFywHWl5DJ+zntzCUhKb+PP+mA4EeKnUiYiYTcVORC7I1sO53DlnPflFZVweFUDS6A74e7qaHUtERFCxE5EL8POhE4x8ZwPW4jKuig5k7qir8fVQqRMRqStU7ESkSjYcOM6odzdwsqScDrFBvDvyarzd9StERKQu0W9lEflT61KOMXruT5wqLadT82Devqs9Xm769SEiUtfoN7OInNf3e3MY+95PFJXa6Bofwlsj2uPh6mx2LBEROQsVOxE5pzW/ZPN/7/9MSZmN7i0b8cbwq1TqRETqMBU7ETmrr3ZlMe6DTZSU27ihdSivD7sCdxeVOhGRukzFTkT+YHlyJv/4cBOl5QZ92obx6h1X4ObiZHYsERH5Eyp2IlLJl9szuG/+ZspsBjddFs6sIZfj6qxSJyJSH+i3tYjYfboljfG/lrqBl0fwikqdiEi9oiN2IgLAfzcd4cFFW7EZMPiqSGbeehnOThazY4mIyAVQsRMRFv50mIf/uw3DgNuvjuLZQYk4qdSJiNQ7KnYiDdyH61N59JPtAAy/pin/7J+gUiciUk+p2Ik0YO+tO8gTnyYDMLJTDNNuboPFolInIlJfqdiJNFBzvj/A05/vBODurrE82q+1Sp2ISD2nYifSAL317X6e+XIXAH/v1pyH+7RUqRMRcQAqdiINzBtrUpi5bDcA43vEMalXC5U6EREHoWIn0oC89vVeXlyxB4AJN8Qz4YYWJicSEZHqpGIn0kDMWrWHWav2AvBArxaM7xlvciIREaluKnYiDs4wDF5euYdXv94HwOQ+Lbnn+jiTU4mISE1QsRNxYIZh8MLyX5i9JgWAR/u14v+ua25yKhERqSkqdiIOyjAMnlu2m//3zX4Apv6lDWO6xJqcSkREapKKnYgDMgyDZ77YxdvfHwDgqf5tuatTjLmhRESkxqnYiTgYwzB46rOdzF17EICnByZw5zXR5oYSEZFaoWIn4kBsNoNpS5J5/8dDAMy4JZE7OjQ1OZWIiNQWFTsRB2GzGTz+6Q4+XJ+KxQIzb7mM266OMjuWiIjUIhU7EQdgsxlM+e92Fmw8jMUCLw5ux61XRZodS0REapmKnUg9V24zePjjbSz++QhOFvjXbZcz8IomZscSERETqNiJ1GPlNoMHF23lk81pODtZmDXkcm5uF2F2LBERMYmKnUg9VVZuY9LCrSzZmo6Lk4VX77iCfonhZscSERETqdiJ1EOl5TYmfLSFL7Zn4OJk4bWhV9InIczsWCIiYjIVO5F6pqTMxn3zN7MsORNXZwuzh11FrzahZscSEZE6QMVOpB4pKbNx74ebWLkzCzdnJ/5z55X0aKVSJyIiFVTsROqJ4rJy7vlgE1/tzsbNxYk377yK61s2NjuWiIjUISp2IvVAUWk5f//gZ9b8chR3Fyfevqs9XeMbmR1LRETqGBU7kTquqLScu9/byHd7c/BwdeKdu66mU1yI2bFERKQOUrETqcNOlZQz9r2f+GHfMbzcnHln5NVc0yzY7FgiIlJHOZn54uXl5Vx//fWMHDnSvmz9+vV07NgRHx8fYmNjmTNnTqVtkpKSiIuLw9vbm/bt27Nu3bpKz/fQQw8RGhqKr68vAwYMICMjwz6enZ3NwIEDCQgIICQkhAkTJlBWVlbj+ylyMQpLyhg9t6LUebs5M3dUB5U6ERE5L1OL3VNPPcV3331n//7EiRP069ePESNGkJuby5w5c5g4cSIbNmwAYM2aNYwfP56kpCRyc3MZNmwY/fv3p7CwEIDp06ezYsUKNm7cSFpaGp6enowdO9b+/EOGDMHHx4f09HQ2bNjAqlWrePnll2t3p0Wq4GRxGSPf/Yl1+4/h4+7Ce2M60CE2yOxYIiJSx1kMwzDMeOGvv/6a8ePH07ZtW7y8vJg7dy5vv/02zz//PHv27LGvN27cOAoLC0lKSmL48OF4eXnx5ptv2sdbt27N5MmTGTVqFFFRUcycOZOhQ4cCkJWVRXh4OPv27cNmsxEfH09aWhoRERW3XFqwYAGTJ0/m0KFDVcqcn5+Pv78/eXl5+Pn5VeO7IfKbwpIy7npnAz8dPIHvr6XuiqaBZscSERGTXEj/MOWIXXZ2NmPGjOHDDz/Ey8vLvjw5OZnExMRK67Zp04atW7f+6XheXh5HjhypNB4aGkpgYCDbtm0jOTmZoKAge6k7vW1qaiq5ubk1sJciF66s3Mb4Dzfz08ET+Hm48MHYjip1IiJSZbV+8YTNZmP48OFMmjSJdu3aVRqzWq14e3tXWubl5UVBQcGfjlutVoDzbn+2MYCCggICAgL+kLW4uJji4mL79/n5+VXdTZELZhgGUz9N5qvd2bi7OPHuqKtpFxVgdiwREalHav2I3YwZM/Dw8GD8+PF/GPP29rZ/Xu60wsJCfH19/3T8dGk73/jZxgD7858tq7+/v/0RFRV1AXsqcmFe+3of8zek4mSBV++4gqui9Zk6ERG5MLVe7N5//33WrFlDQEAAAQEBfPjhh3z44YcEBASQkJBAcnJypfV37txJQkICwHnHAwMDadKkSaXxzMxMjh8/TkJCAgkJCRw7doysrKxK20ZGRuLv73/WrFOmTCEvL8/+OHz4cHW9DSKVLNp4mJdWVny29Kn+bendNszkRCIiUh/VerHbvXs3+fn55Obmkpuby9ChQxk6dCi5ubnccsstZGZmMmvWLEpLS1m9ejXz5s1j9OjRAIwePZp58+axevVqSktLmTVrFllZWQwaNAiAUaNGMX36dA4cOIDVamXChAl069aN5s2bEx8fT5cuXZgwYQJWq5UDBw7w9NNPM2bMmHNmdXd3x8/Pr9JDpLqt+SWbR/67HYBx1zfnzmtjzA0kIiL1lqnTnfxecHAwK1euZNGiRQQHBzN27FheffVVunfvDkDPnj2ZPXs248aNIzAwkPnz57N06VKCgipOWT3xxBPcdNNNdO3alcjISIqKili4cKH9+RcvXkxZWRmxsbF07NiRPn36MHXqVFP2VQRg+5E87pm3iXKbwaArmjC5d0uzI4mISD1m2nQn9ZGmO5HqdPh4IYNmryWnoJgucSG8M/Jq3Fzq1P9riYhIHVDnpzsRaeiOnyzhrnc2kFNQTJtwP94YfqVKnYiIXDL9JRGpZadKyhmT9BP7c07SJMCTd0ddja+Hq9mxRETEAajYidSicpvBfR9tZnNqLv6eriSNvppQPw+zY4mIiINQsROpJYZhMG3JDlbuzMLNxYm372pPXOOzz6EoIiJyMVTsRGrJ7DUpfPBjKhYLvHr75VwdowmIRUSkeqnYidSCj38+wgvLfwFg2l/a0Cch3OREIiLiiFTsRGrYt3uO8vDH2wD423XNGNk51uREIiLiqFTsRGrQjrQ8xn3wM2U2gwGXR/Bwn1ZmRxIREQemYidSQw4fL2TU3J84WVJOp+bBvDC4HU5OFrNjiYiIA1OxE6kBJ06WcNe7GzhqLaZVmC//ufMqTUAsIiI1Tn9pRKpZUWk5Y9/byP6jJ4nw92DuqA74aQJiERGpBSp2ItWo3GZw/0eb+fnQCfw8XJg7ugNh/pqAWEREaoeKnUg1MQyDpz5LZnlyFm7OTrw1oj0tQjUBsYiI1B4VO5Fq8p9v9vPeukNYLPDykMvp2CzY7EgiItLAqNiJVINPNh9h5rLdADx+UxtuukwTEIuISO1TsRO5RN/vzeGhRRUTEI/tEsuYLpqAWEREzKFiJ3IJktPz+PuvExD/5bJwHu3X2uxIIiLSgKnYiVykIycKGfXuTxQUl3FNsyBeuk0TEIuIiLlU7EQuQm5hCSPf/YlsazEtQ335f3e2x93F2exYIiLSwKnYiVygotJy7n5vI/uyCwjz8+DdUVfj76kJiEVExHwqdiIXoNxmMHHBFn46eAJfDxfmjr6aiABPs2OJiIgAKnYiF+Tpz3eydEcmbs5OvHlne1qF+ZkdSURExE7FTqSKPtuazty1BwF48bZ2XNtcExCLiEjdomInUgXZ+UVM/XQHAON7xNG/XYTJiURERP5IxU7kTxiGwSP/3U5uYSltI/y4r2e82ZFERETOSsVO5E8s2niEr3dn4+bsxL9uuxxXZ/1nIyIidZP+Qomcx+Hjhfzz850APHBjC1qG+ZqcSERE5NwuqtgVFRWRkZFBcXFxdecRqTNsNoPJi7dRUFxG++hAxnZtZnYkERGR87qgYvfDDz/QpUsXfHx8iIyMxNfXl+7du/PTTz/VVD4R0yStO8i6/cfwdHXmxb+2w1m3CxMRkTquysXuhx9+4IYbbiAmJoYPPviA5cuXM3fuXEJDQ+nRowdbtmypwZgitSvlaAHPLd0NwKP9WhET4m1yIhERkT9nMQzDqMqKN9xwA927d+exxx77w9hTTz3F9u3bWbx4cbUHrEvy8/Px9/cnLy8PPz9NTOuoysptDP7POrYczqVrfAjvje6AxaKjdSIiYo4L6R8uVX3STZs28cknn5x17P777ychIeHCUorUUf/v2/1sOZyLr4cLM2+9TKVORETqjSqfii0tLcXX9+xXBAYEBGC1WqstlIhZdqbnM2vVHgCevLmt7gMrIiL1SpWL3Z8dtajiGV2ROqukzMakhVsoLTfo1SaUW65sYnYkERGRC1LlU7GGYXD48OFzFjgVO6nvXvlqD7szrQR5u/HsoESdghURkXqnysXu5MmTxMTEnLPA6Y+g1GebU0/wxpoUAJ4ZmEAjX3eTE4mIiFy4Khe7AwcO2L8uKysjJyeHkJAQXFyq/BQiddKpknIeWLgVmwEDL4+gb2K42ZFEREQuSpU/YxcdHY27uzuPPPIIbdu2pVOnTrRt25bJkyfj6upKdHR0TeYUqTHPL9/N/pyThPq581R/Xd0tIiL1V5UPt504cYKOHTsSFRXFG2+8QUREBPv372fu3Ll06NCBbdu2ERQUVJNZRard2pQc3v3hIAAzb70Mfy9XcwOJiIhcgipPUPzQQw+xf/9+Fi9eXOnzdDabjVtuuYW4uDhefPHFGgtaF2iCYsdiLSqlz6zvSMs9xR0dmjLjlkSzI4mIiPzBhfSPKp+K/fTTT5kxY8YfLpJwcnLi2Wef5dNPP724tCImeeaLXaTlniIqyJPHbmptdhwREZFLVuVil5mZSYsWLc461rp1azIzM6stlEhN+3p3Fh/9dBiLBV4c3A4fd10EJCIi9V+Vi52Hh8c5y1tmZuY570ohUtecOFnCwx9vB2BM51g6Ngs2OZGIiEj1qHKx69atG7Nnzz7r2BtvvEG3bt2qLZRITXpiSTJHrcXENfbhwd4tzY4jIiJSbap8/mnKlCl07doVT09P7rzzTsLCwjh06BBz5szh3//+N2vXrq3JnCLV4vNt6Xy2NR1nJwsv/bUdHq7OZkcSERGpNlUudldeeSULFizg7rvv5vHHH7cvDwsL4+OPPyYxUVcUSt2WbS1i6v92AHDv9c1pFxVgbiAREZFqdkGfGP/LX/7CoUOHWLduHenp6YSHh9OlSxfdfULqPMMwmPLxdk4UltI2wo9/9Ig3O5KIiEi1u+BG5ubmps/TSb2z6OcjfLU7GzdnJ/512+W4uVT546UiIiL1hv66icM7cqKQf362E4BJN7agZZiu4BYREcekYicOzWYzmLx4GwXFZVzZNIC7uzYzO5KIiEiNUbETh/b+j4dYm3IMT1dnXrrtcpydLH++kYiISD2lYicOa//RAmYs3QXAlH6tiA3xNjmRiIhIzVKxE4dUbjN4YNFWikptdI4LZnjHaLMjiYiI1DgVO3FI/+/bFDan5uLr7sLzg9vhpFOwIiLSAKjYicPZnZnPyyv3APDEzW1oEuBpciIREZHaoWInDqWkzMakBVspLTe4oXUog6+KNDuSiIhIrVGxE4fy76/3sjMjn0AvV569JQGLRadgRUSk4VCxE4ex5XAus9ekAPDMoEQa+3qYnEhERKR2qdiJQygqLeeBhVsotxn0bxdBv8RwsyOJiIjUOhU7cQgvLP+FlKMnaezrzj8HtDU7joiIiClMKXZff/01HTt2xM/Pj7CwMMaPH8+pU6cAWL9+PR07dsTHx4fY2FjmzJlTadukpCTi4uLw9vamffv2rFu3zj5WXl7OQw89RGhoKL6+vgwYMICMjAz7eHZ2NgMHDiQgIICQkBAmTJhAWVlZ7ey01JhNqSd454cDAMy89TICvNxMTiQiImKOWi92R48e5aabbmLcuHHk5uayefNm1qxZw3PPPceJEyfo168fI0aMIDc3lzlz5jBx4kQ2bNgAwJo1axg/fjxJSUnk5uYybNgw+vfvT2FhIQDTp09nxYoVbNy4kbS0NDw9PRk7dqz9tYcMGYKPjw/p6els2LCBVatW8fLLL9f2WyDVqNxmMO3TZAwDbr0yku6tGpsdSURExDQWwzCM2n5Rq9WKr68vhmGQnJzMoEGDuP/++/Hw8OD5559nz5499nXHjRtHYWEhSUlJDB8+HC8vL9588037eOvWrZk8eTKjRo0iKiqKmTNnMnToUACysrIIDw9n37592Gw24uPjSUtLIyIiAoAFCxYwefJkDh06VKXc+fn5+Pv7k5eXh5+fXzW+I3Kx5m9IZcp/t+Pr7sLXD15PI193syOJiIhUqwvpH6acivX19QUgKiqKxMREwsPDGTVqFMnJySQmJlZat02bNmzduhXgvON5eXkcOXKk0nhoaCiBgYFs27aN5ORkgoKC7KXu9Lapqank5ubW0J5KTcorLOWF5b8AMKFXC5U6ERFp8Ey9eGLv3r2kpaXh7OzM4MGDsVqteHtXvlG7l5cXBQUFAOcdt1qtAOcdP9sYYH/+3ysuLiY/P7/SQ+qOf638heMnS4hv7MOIa3UvWBEREVOLnaenJxEREcycOZNly5bh7e1t/7zcaYWFhfYjfOcbP13azjd+tjH47Qji782YMQN/f3/7Iyoq6uJ3VqrVrox83v+x4hT6U/3b4uqsC7xFRERq/a/h2rVradWqFSUlJfZlxcXFuLm50aZNG5KTkyutv3PnThISEgBISEg453hgYCBNmjSpNJ6Zmcnx48dJSEggISGBY8eOkZWVVWnbyMhI/P39z5p1ypQp5OXl2R+HDx++5P2XS2cYBtOWJGMzoF9iGJ3iQsyOJCIiUifUerG77LLLKCws5JFHHqGkpIRDhw7x4IMPMmbMGAYPHkxmZiazZs2itLSU1atXM2/ePEaPHg3A6NGjmTdvHqtXr6a0tJRZs2aRlZXFoEGDABg1ahTTp0/nwIEDWK1WJkyYQLdu3WjevDnx8fF06dKFCRMmYLVaOXDgAE8//TRjxow5Z1Z3d3f8/PwqPcR8n23LYMOB43i4OvHYTW3MjiMiIlJn1Hqx8/HxYdmyZezYsYPQ0FC6detGr169ePnllwkODmblypUsWrSI4OBgxo4dy6uvvkr37t0B6NmzJ7Nnz2bcuHEEBgYyf/58li5dSlBQEABPPPEEN910E127diUyMpKioiIWLlxof+3FixdTVlZGbGwsHTt2pE+fPkydOrW23wK5BCeLy3jmi50A3Ht9HE0CPE1OJCIiUneYMt1JfaXpTsw3c9lu3liTQtMgL1ZMvA4PV2ezI4mIiNSoOj/dicjFOJBzkre/2w/A1L+0UakTERH5HRU7qTf++VkypeUG3Vo04obWusOEiIjI76nYSb3w1a4sVv9yFFdnC9NuboPFYjE7koiISJ2jYid1XlFpOf/8vOKCidFdYmnWyMfkRCIiInWTip3UeW9/t59Dxwpp7OvO+B7xZscRERGps1TspE5Lzz3F66tTAHjsptb4uLuYnEhERKTuUrGTOu2ZL3dxqrScDjFB9G8XYXYcERGROk3FTuqstSk5fLEtAycLPNm/rS6YEBER+RMqdlInlZXbeGpJxQUTwzpG0yZCE0KLiIj8GRU7qZPe//EQv2RZCfRy5YEbW5gdR0REpF5QsZM6J6egmH+t3APAg71bEuDlZnIiERGR+kHFTuqc55ftxlpURkITP26/uqnZcUREROoNFTupU7YczmXhxiMAPNW/Lc5OumBCRESkqlTspM6w2QymfboDgFuubMJV0UEmJxIREalfVOykzlj88xG2HsnDx92FR/q2MjuOiIhIvaNiJ3VC3qlSZi7bDcD9PeNp7OthciIREZH6R8VO6oRZq/Zw7GQJzRt5c1enGLPjiIiI1EsqdmK6XzKtvLfuEFBxhwk3F/1rKSIicjH0F1RMZRgG05bsoNxm0LttKF3jG5kdSUREpN5SsRNTfbE9gx/3H8fdxYnHb2pjdhwREZF6TcVOTFNYUsYzX+wC4O/dmhMV5GVyIhERkfpNxU5MM3t1Chl5RUQGejLu+uZmxxEREan3VOzEFIeOneTNb/cD8PhNbfBwdTY5kYiISP2nYiemePrznZSU2+gaH0LvtqFmxxEREXEIKnZS61bvzmbVrmxcnCxMu7ktFovuBysiIlIdVOykVhWXlfPUZ8kAjOocQ1xjH5MTiYiIOA4VO6lVc74/wMFjhTTydee+nvFmxxEREXEoKnZSazLzinjt630APNKnFb4eriYnEhERcSwqdlJrnv1yF4Ul5VzZNIBBVzQxO46IiIjDUbGTWrF+/zGWbE3HYoF/DkjAyUkXTIiIiFQ3FTupcWXlNqYtqbhg4o4OTUlo4m9yIhEREcekYic1bt76VHZnWvH3dOWhG1uaHUdERMRhqdhJjTpWUMxLK34B4MEbWxDo7WZyIhEREcelYic16sUVv5BfVEbrcD+Gdow2O46IiIhDU7GTGrMjLY+PfjoMwFP92+KsCyZERERqlIqd1AjDMJixdBeGATe3i6BDbJDZkURERByeip3UiG/2HOWHfcdwc3Zicm9dMCEiIlIbVOyk2pXbDGZ8uRuAEddGExXkZXIiERGRhkHFTqrdx5uO8EuWFT8PF/7RI87sOCIiIg2Gip1Uq1Ml5fbpTf7RI44AL01vIiIiUltU7KRavfPDAbLyi2kS4MmIa2PMjiMiItKgqNhJtckpKOaNNSkATO7TEg9XZ5MTiYiINCwqdlJtXv1qLwXFZSQ08ePmyyLMjiMiItLgqNhJtdh/tIAP16cC8Gi/1jhpMmIREZFap2In1eL5Zb9QZjPo3rIRnZqHmB1HRESkQVKxk0v286HjLEvOxMkCj/RtbXYcERGRBkvFTi6JYRg888UuAP56VRQtw3xNTiQiItJwqdjJJVmenMmm1Fw8XJ2YdGMLs+OIiIg0aCp2ctFKy23MXFYxGfHdXZsR6udhciIREZGGTcVOLtr8DakcyDlJsLcbf+vW3Ow4IiIiDZ6KnVwUa1Epr6zaC8CEG+LxcXcxOZGIiIio2MlF+X/f7OfYyRKahXhze4emZscRERERVOzkImTmFfH29/sBeLhvK1yd9a+RiIhIXaC/yHLBXlrxC0WlNtpHB3Jjm1Cz44iIiMivVOzkguzOzGfxpiMAPHpTaywW3TpMRESkrlCxkwsy48vdGAb0SwzjyqaBZscRERGRM6jYSZV9vzeHb/YcxcXJwuTercyOIyIiIr+jYidVYrMZzFhaceuw4ddEExPibXIiERER+T0VO6mST7emkZyej6+7C+N7xJkdR0RERM5CxU7+VFFpOS8u3wPA369vTrCPu8mJRERE5GxMKXZbt26lV69eBAUFERYWxogRI8jJyQFg/fr1dOzYER8fH2JjY5kzZ06lbZOSkoiLi8Pb25v27duzbt06+1h5eTkPPfQQoaGh+Pr6MmDAADIyMuzj2dnZDBw4kICAAEJCQpgwYQJlZWW1s9P1WNLag6TlniLc34MxXWLNjiMiIiLnUOvF7tSpU/Tt25dOnTqRmZlJcnIyx44dY9SoUZw4cYJ+/foxYsQIcnNzmTNnDhMnTmTDhg0ArFmzhvHjx5OUlERubi7Dhg2jf//+FBYWAjB9+nRWrFjBxo0bSUtLw9PTk7Fjx9pfe8iQIfj4+JCens6GDRtYtWoVL7/8cm2/BfXKiZMlvLZ6HwCTerXAw9XZ5EQiIiJyTkYt2717t9GnTx+jrKzMvuzTTz81/Pz8jLfeesuIj4+vtP7f//53Y8SIEYZhGMawYcOMu+++u9J4q1atjHfeeccwDMOIjIw05s2bZx/LzMw0LBaLkZKSYuzdu9cAjLS0NPv4Rx99ZDRt2rTK2fPy8gzAyMvLq/oO13P//CzZiH74c6P3y98YZeU2s+OIiIg0OBfSP2r9iF3Lli1ZunQpzs6/HflZvHgxV111FcnJySQmJlZav02bNmzduhXgvON5eXkcOXKk0nhoaCiBgYFs27aN5ORkgoKCiIiIqLRtamoqubm5NbCn9V/qsULeW3cQgCn9WuPspMmIRURE6jJTL54wDIPHH3+czz77jFdeeQWr1Yq3d+VpNLy8vCgoKAA477jVagU47/jZxgD78/9ecXEx+fn5lR4NyfPLd1NabtA1PoRuLRqZHUdERET+hGnFLj8/n8GDB/PBBx/w7bffkpiYiLe3t/3zcqcVFhbi6+sLcN7x06XtfONnGwPsz/97M2bMwN/f3/6Iioq6+B2uZ7YczuXzbRlYLPBIX01GLCIiUh+YUuxSUlK4+uqryc/PZ+PGjfbTpwkJCSQnJ1dad+fOnSQkJPzpeGBgIE2aNKk0npmZyfHjx0lISCAhIYFjx46RlZVVadvIyEj8/f3PmnPKlCnk5eXZH4cPH66W/a/rDMPg2S8rJiMedEUT2kac/f0RERGRuqXWi92JEyfo0aMHnTp1Yvny5YSEhNjHbrnlFjIzM5k1axalpaWsXr2aefPmMXr0aABGjx7NvHnzWL16NaWlpcyaNYusrCwGDRoEwKhRo5g+fToHDhzAarUyYcIEunXrRvPmzYmPj6dLly5MmDABq9XKgQMHePrppxkzZsw5s7q7u+Pn51fp0RB8tSubDQeO4+bixIM3tjQ7joiIiFRRrRe7d999l9TUVBYuXIifnx8+Pj72R3BwMCtXrmTRokUEBwczduxYXn31Vbp37w5Az549mT17NuPGjSMwMJD58+ezdOlSgoKCAHjiiSe46aab6Nq1K5GRkRQVFbFw4UL7ay9evJiysjJiY2Pp2LEjffr0YerUqbX9FtRpZeU2+63DRneOJSLA0+REIiIiUlUWwzAMs0PUF/n5+fj7+5OXl+ewR+8+XJ/Ko59sJ9DLlW8md8fPw9XsSCIiIg3ahfQP3VJM7E4Wl/GvlRW3DhvfI16lTkREpJ5RsRO7t77bT05BMU2DvBh+TbTZcUREROQCqdgJANnWIt78dj8Ak/u0xM1F/2qIiIjUN/rrLQC8vHIvhSXltIsK4KbEcLPjiIiIyEVQsRP2ZVtZ8FMqAI/1a43FoluHiYiI1EcqdsJzS3djM6BXm1A6xAaZHUdEREQukopdA/fj/mOs2pWNs5OFh/vo1mEiIiL1mYpdA2azGcz49dZht18dRVxjH5MTiYiIyKVQsWvAvtiewdYjeXi5OTPhhhZmxxEREZFLpGLXQBWXlfP88t0A/O265jTydTc5kYiIiFwqFbsG6oMfUzl8/BSNfN25+7pYs+OIiIhINVCxa4DyTpXy76/3AjCpVwu83FxMTiQiIiLVQcWuAVrwUyq5haXENfbhr1dFmh1HREREqomKXQNTVm4jae0hAO7uGouLs/4VEBERcRT6q97ArNqVTVruKQK9XBlweROz44iIiEg1UrFrYN794QAAd3Roioers8lpREREpDqp2DUgO9PzWX/gOM5OFu68NtrsOCIiIlLNVOwakLlrK47W9UkII9zf0+Q0IiIiUt1U7BqI4ydL+N+WdABGdYoxN4yIiIjUCBW7BmL+hlRKymwkNvHnquhAs+OIiIhIDVCxawBKy228v65iipORnWKwWCwmJxIREZGaoGLXACxPziQzv4gQHzf+0i7c7DgiIiJSQ1TsGoB3fzgIwNCO0bi7aIoTERERR6Vi5+C2Hcnl50MncHW2MLxjU7PjiIiISA1SsXNwc9ceBOCmxHAa+3mYG0ZERERqlIqdAztqLebzrRkAjOwca3IaERERqWkqdg7sw/WplJTbuKJpAJdHBZgdR0RERGqYip2DKimz8cH636Y4EREREcenYuegvtyewVFrMaF+7vRL1BQnIiIiDYGKnQMyDIN3f6i4L+zwjtG4OuvHLCIi0hDoL74D2nw4l61H8nBzduIOTXEiIiLSYKjYOaC5v05I3P/yCEJ83M0NIyIiIrVGxc7BZOYV8eX2X6c40UUTIiIiDYqKnYOZt/4QZTaDDjFBJDTxNzuOiIiI1CIVOwdSVFrOh+tTARjZOcbcMCIiIlLrVOwcyGdb0zl2soQIfw9ubBNqdhwRERGpZSp2DsIwDPt9Ye+8NgYXTXEiIiLS4Oivv4P46eAJktPz8XB14varo8yOIyIiIiZQsXMQc9dWTEg86IomBHq7mZxGREREzKBi5wDSck+xPDkLgLs0xYmIiEiDpWLnAN5fd4hym0Gn5sG0CvMzO46IiIiYRMWunjtVUs5HP/06xYmO1omIiDRoKnb13P+2pJFbWEpUkCc9W2uKExERkYZMxa4eMwzDfl/Yu66NwdnJYm4gERERMZWKXT22LuUYv2RZ8XJz5q/tNcWJiIhIQ6diV4+9++uExLdeGYm/p6u5YURERMR0Knb1VOqxQlbtOj3FSbTJaURERKQuULGrp95bdxDDgK7xIcQ19jU7joiIiNQBKnb10MniMhZsPAzA6M6xJqcRERGRukLFrh7676YjWIvKiA3xpluLRmbHERERkTpCxa6esdkM5v560cRd10bjpClORERE5FcqdvXMd/tySDl6Eh93F269KtLsOCIiIlKHqNjVM3N/OADAX9tH4uuhKU5ERETkNyp29ciBnJOs/uUoFkvFnSZEREREzqRiV48k/frZuu4tGxMT4m1uGBEREalzVOzqCWtRKYt+neJkVOcYc8OIiIhInaRiV08s2niEkyXlxDX2oUtciNlxREREpA5SsasHbDaDpHUHARjZKQaLRVOciIiIyB+p2NUDq3/J5tCxQvw8XLjlyiZmxxEREZE6SsWuHjg9IfHtHZri5eZibhgRERGps0wtdkePHiUuLo41a9bYl61fv56OHTvi4+NDbGwsc+bMqbRNUlIScXFxeHt70759e9atW2cfKy8v56GHHiI0NBRfX18GDBhARkaGfTw7O5uBAwcSEBBASEgIEyZMoKysrMb381LszbLy3d4cnCxw5zXRZscRERGROsy0YvfDDz9w7bXXkpKSYl924sQJ+vXrx4gRI8jNzWXOnDlMnDiRDRs2ALBmzRrGjx9PUlISubm5DBs2jP79+1NYWAjA9OnTWbFiBRs3biQtLQ1PT0/Gjh1rf/4hQ4bg4+NDeno6GzZsYNWqVbz88su1u+MX6PTRuhtahxIV5GVuGBEREanTTCl2SUlJDB06lGeeeabS8o8//pjg4GDuvfdeXFxc6NGjB8OGDeP1118H4O233+b222+nc+fOuLq6MnHiREJCQliwYIF9/OGHHyYqKgo/Pz9eeeUVli5dyv79+9m3bx9r1qzh+eefx8vLi2bNmjF16lRee+21Wt//qsorLOW/m9IAGNU51uQ0IiIiUteZUux69+5NSkoKQ4YMqbQ8OTmZxMTESsvatGnD1q1b/3Q8Ly+PI0eOVBoPDQ0lMDCQbdu2kZycTFBQEBEREZW2TU1NJTc396w5i4uLyc/Pr/SoTQs2pnKqtJxWYb5c0yyoVl9bRERE6h9Til1YWBguLn+8CMBqteLtXfmOCl5eXhQUFPzpuNVqBTjv+NnGAPvz/96MGTPw9/e3P6Kioi5gLy9Nuc0gae0hoGJCYk1xIiIiIn+mTl0V6+3tbf+83GmFhYX4+vr+6fjp0na+8bONAfbn/70pU6aQl5dnfxw+fPjid+4CrdqVRVruKQK8XBlwuaY4ERERkT9Xp4pdQkICycnJlZbt3LmThISEPx0PDAykSZMmlcYzMzM5fvw4CQkJJCQkcOzYMbKysiptGxkZib+//1nzuLu74+fnV+lRW9794QAAd3Roioerc629roiIiNRfdarY3XLLLWRmZjJr1ixKS0tZvXo18+bNY/To0QCMHj2aefPmsXr1akpLS5k1axZZWVkMGjQIgFGjRjF9+nQOHDiA1WplwoQJdOvWjebNmxMfH0+XLl2YMGECVquVAwcO8PTTTzNmzBgzd/msdmXk8+P+4zg7WTTFiYiIiFRZnSp2wcHBrFy5kkWLFhEcHMzYsWN59dVX6d69OwA9e/Zk9uzZjBs3jsDAQObPn8/SpUsJCqq4sOCJJ57gpptuomvXrkRGRlJUVMTChQvtz7948WLKysqIjY2lY8eO9OnTh6lTp5qyr+cz94eDAPRpG0ZEgKe5YURERKTesBiGYZgdor7Iz8/H39+fvLy8Gjste/xkCdfO+IriMhuL/34t7WN0NayIiEhDdiH9o04dsROYvyGV4jIbCU38uCo60Ow4IiIiUo+o2NUhpeU2Pvjx1ylOOsVqihMRERG5ICp2dciK5Cwy8ooI8XHjL+3CzY4jIiIi9cwfZwkW0zRr5M2AyyNo3sgHdxdNcSIiIiIXRsWuDmkd7scrt19hdgwRERGpp3QqVkRERMRBqNiJiIiIOAgVOxEREREHoWInIiIi4iBU7EREREQchIqdiIiIiINQsRMRERFxECp2IiIiIg5CxU5ERETEQajYiYiIiDgIFTsRERERB6FiJyIiIuIgVOxEREREHISKnYiIiIiDcDE7QH1iGAYA+fn5JicRERGRhuJ07zjdQ85Hxe4CWK1WAKKiokxOIiIiIg2N1WrF39//vOtYjKrUPwHAZrORnp6Or68vFovF7Dhyhvz8fKKiojh8+DB+fn5mx5Hf0c+nbtPPp27Tz6duq42fj2EYWK1WIiIicHI6/6fodMTuAjg5OREZGWl2DDkPPz8//eKrw/Tzqdv086nb9POp22r65/NnR+pO08UTIiIiIg5CxU5ERETEQajYiUNwd3dn2rRpuLu7mx1FzkI/n7pNP5+6TT+fuq2u/Xx08YSIiIiIg9AROxEREREHoWInIiIi4iBU7EREREQchIqd1Gtbt26lV69eBAUFERYWxogRI8jJyTE7lvxOeXk5119/PSNHjjQ7ivzO8ePHGTFiBMHBwQQGBjJw4EAyMjLMjiW/2rRpE9dddx0BAQGEh4dz//33U1xcbHasBu/o0aPExcWxZs0a+7L169fTsWNHfHx8iI2NZc6cOaZkU7GTeuvUqVP07duXTp06kZmZSXJyMseOHWPUqFFmR5Pfeeqpp/juu+/MjiFnceutt1JQUEBKSgqpqak4Oztz9913mx1LqLjb0V/+8hcGDx7M8ePH+emnn1i+fDnPP/+82dEatB9++IFrr72WlJQU+7ITJ07Qr18/RowYQW5uLnPmzGHixIls2LCh1vOp2Em9lZqaSrt27XjiiSdwc3MjODiYv/3tb3z77bdmR5MzfP3113z88cfceuutZkeR3/n555/58ccfmTt3LgEBAfj6+vLWW28xc+ZMs6MJFWUhIyMDm81mv/m7k5MTXl5eJidruJKSkhg6dCjPPPNMpeUff/wxwcHB3Hvvvbi4uNCjRw+GDRvG66+/XusZVeyk3mrZsiVLly7F2dnZvmzx4sVcddVVJqaSM2VnZzNmzBg+/PBD/TGqgzZs2ECbNm146623iIuLIzw8nAceeIDw8HCzowkQHBzMxIkTeeCBB3B3dycqKooWLVowceJEs6M1WL179yYlJYUhQ4ZUWp6cnExiYmKlZW3atGHr1q21GQ9QsRMHYRgGjz/+OJ999hmvvPKK2XGEitNIw4cPZ9KkSbRr187sOHIWx48fZ9u2bezdu5fNmzezZcsW0tLSGDFihNnRhIr/hjw9PXnttdc4efIkO3bsYOfOnUybNs3saA1WWFgYLi4uf1hutVrx9vautMzLy4uCgoLaimanYif1Xn5+PoMHD+aDDz7g22+//cP/NYk5ZsyYgYeHB+PHjzc7ipzD6ZnyZ82aha+vL6GhoTzzzDN8+eWXpvxBkso++eQTPv74Y8aNG4e7uztt27Zl2rRpzJ492+xo8jve3t4UFhZWWlZYWIivr2+tZ/lj7RSpR1JSUujXrx9NmzZl48aNhISEmB1JfvX++++Tnp5OQEAAgP2X3v/+9z9yc3PNCyZ2bdq0wWazUVJSgoeHB1BxBTOAbkpkvtTU1D9cAevq6oqbm5tJieRcEhISWLFiRaVlO3fuJCEhodaz6Iid1FsnTpygR48edOrUieXLl6vU1TG7d+8mPz+f3NxccnNzGTp0KEOHDlWpq0N69epFs2bNGD16NAUFBRw9epTHHnuMgQMHmnKkQSrr3bs3GRkZPPvss5SXl7N//36mT5/O8OHDzY4mv3PLLbeQmZnJrFmzKC0tZfXq1cybN4/Ro0fXehYVO6m33n33XVJTU1m4cCF+fn74+PjYHyLy51xdXfnmm29wcXEhPj6eFi1aEBkZyTvvvGN2NKHiiOrnn3/OkiVLCA4Opnv37tx8881/uCJTzBccHMzKlStZtGgRwcHBjB07lldffZXu3bvXehaLoePtIiIiIg5BR+xEREREHISKnYiIiIiDULETERERcRAqdiIiIiIOQsVORERExEGo2ImIiIg4CBU7EREREQehYiciDmnfvn1mR6jz8vLyOHr0qNkxRKQaqdiJiMN56KGHmD59epXWXbNmDRaLpcayWCwW1qxZc1HbPvnkk1x//fXVmudMcXFxJCcnAzBv3jzatm1bY68lIrVDxU5EHI6OQlVNTk6O/ethw4bZS56I1F8qdiJSJxw8eBCLxcJ7771HdHQ03t7ejBo1iu+//5527drh4+NDz549ycnJwWaz8dxzz9G8eXP8/f3p0KEDy5cvB+Dpp59m3rx5zJs3j3bt2l1wju3bt9OvXz+CgoKIjIzknnvuIS8vDwDDMJg5cyaJiYkEBAQQGBjIsGHDOHXqFAClpaVMmjSJkJAQGjVqxAsvvHBBr7127VquvvpqvL296dy5MwcOHLCPzZ07l5iYmErrX3/99Tz55JMAjBw5kr/+9a+0bt2aRo0akZKSwtq1a+nRowcRERF4eHjQvn17fvzxRwBatmwJQN++fXn++ef/8Pzfffcd1113HQEBAcTGxjJ16lSKi4uBiiOJgwcPZvjw4QQEBBAZGcmUKVMuaF9FpIYYIiJ1wIEDBwzAGDJkiHHy5Elj+/bthrOzs9GuXTvjyJEjxtGjR424uDjjqaeeMqZNm2ZERkYaP//8s1FaWmosWLDAcHd3NzZs2GAYhmHcddddxl133VWl1129erVx+ldhTk6OERQUZDzwwANGYWGhkZGRYfTo0cPo37+/YRiGsWDBAiMsLMzYs2ePYRiGsWvXLiMoKMh4++23DcMwjKlTpxrx8fFGSkqKUVBQYNx5550GYKxevfpPc+Tk5BgBAQHGc889Z5SUlBjff/+94efnZ3Tr1s0wDMN49913jejo6ErbdOvWzZg2bZp9n318fIzt27cbJ06cMAoLC42goCDjtddeM8rLy42CggLjtttuM7p06WLf/sxsZz7/7t27DXd3d2PWrFlGcXGxsXfvXuOyyy4z7rvvPsMwDGPatGmGxWIxkpKSjLKyMuOLL74wLBaLsW7duiq95yJSc3TETkTqlAcffBAvLy8SEhIIDw/nrrvuokmTJoSEhHDttddy8OBB3nnnHaZMmcKVV16Ji4sLt912G/3792fOnDmX9Nqffvopbm5uzJw5E09PT8LCwvj3v//NkiVLyMzMpG/fvvz000/Ex8dz9OhRcnJyCAkJIS0tDYD333+fhx56iGbNmuHt7c2rr75a5c/vff7553h7ezN58mRcXV3p3Lkzo0ePvqD811xzDQkJCQQEBODm5saPP/7IPffcQ3FxMQcPHiQ4ONie9XzmzZvHZZddxv3334+bmxtxcXHMmDGDt956C5vNBkCLFi0YMWIEzs7O9OvXj/DwcPbs2XNBeUWk+rmYHUBE5EzBwcH2r52dnQkMDLR/7+TkhM1mIysri2bNmlXaLjY2lq1bt17Sa2dlZREdHY2zs3Ol54WKU8WtW7fmscce47PPPqNx48ZcfvnlFBcX28tOWloaTZs2tW8bEBBAUFBQlV47LS2NqKioSkWwefPmbN68ucr5IyIi7F87OzuzevVq+vbtS0FBAW3btsXV1dWe9XzO9f6eOnWK7OxsAMLCwiqNV/W5RaRmqdiJSJ1SlSNcMTExpKSkVFqWkpJCeHj4Jb12TEwMhw4dory83F7uTr9OeHg4jzzyCKmpqRw8eBA/Pz8AEhMT7dtHRUWxf/9++/cnT54kNze3Sq8dFRXFoUOHsNlsODlVnEw5cuSIfdzZ2ZmSkpJK25x58QNUfu/Wr1/P+PHjWbt2LVdddRUAL730Ert37/7TLDExMfz3v/+ttCwlJQV3d/cqF1URMYdOxYpIvTN27Fiee+45Nm3aRHl5OYsWLWLJkiWMHDkSAA8PD/sFDxeiX79+WCwWHn74YU6dOkVmZib3338/PXr0IDo6mry8PDw8PHBxcaGoqIiXXnqJHTt22AvX2LFjef7559m1axdFRUU88MADlJeXV+m1b775Zmw2G08++SQlJSX8/PPPvPXWW/bx1q1bk5mZyerVqzEMgw8++IBdu3ad8/ny8vJwcnLC09MTgB9//JFXXnmlUjl0d3c/6/t0xx13sHPnTvv6KSkpPProowwbNgw3N7cq7Y+ImEPFTkTqnUmTJnHvvfcyZMgQ/P39efbZZ/noo4/o1q0bAEOGDOGHH36odFq0Kvz9/Vm5ciU7duwgMjKShIQEYmJiWLRoEQDTp0+nsLCQxo0bExMTw48//sidd97J9u3bAXj44YcZPnw43bp1Izw8HH9//0qnls8nICCA5cuX89VXXxEYGMiYMWMYPHiwfbx9+/Y8/vjj3HXXXQQFBfHVV19VGv+9Xr16cc8993DdddcRGBjIPffcw3333Ud2djZZWVkA/O1vf+OOO+7gscceq7RtTEwMy5cvZ/HixTRu3JguXbrQq1cvXnvttQt6P0Wk9lkMwzDMDiEiIiIil05H7EREREQchC6eEBGHlZ2d/YerO3+voKCgVrKEhIRQVFR0zvGdO3de8KljEZHf06lYEREREQehU7EiIiIiDkLFTkRERMRBqNiJiIiIOAgVOxEREREHoWInIiIi4iBU7EREREQchIqdiIiIiINQsRMRERFxECp2IiIiIg7i/wO9H3AXr6qIiQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data = Ncount_mean.sel(final_amp=0.88)\n",
"data_std = Ncount_std.sel(final_amp=0.88)\n",
"fig = plt.figure()\n",
"# ax = fig.gca()\n",
"data.plot.errorbar()\n",
"# plt.xlabel('MOT AOM Frequency (MHz)')\n",
"# plt.ylabel('MOT Gradient Coil Current (A)')\n",
"plt.tight_layout()\n",
"# plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"def factor_from_Ncounts_to_Natom():\n",
" return 1 / (8.474337362524987e-14 * 0.3725) * 5.86e-6**2 / 0.438**2"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"def mot_loading(x, A, tau):\n",
" return A * (1 - np.exp(-x / tau)) * np.heaviside(x, 0)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"data = data * factor_from_Ncounts_to_Natom()\n",
"data_std = data_std * factor_from_Ncounts_to_Natom()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABk9ElEQVR4nO3de3zO9f/H8ce1IzsZxhw25zNDIZE5NqcOzpRTDpVUSjoXIen8E9909KUkimZ8c8ohFpUix5CwZGwzZnZmx+v3x5Ursw1juz7Xrj3vt9tu2/X+vK/P53XtnTy9P4e3yWw2mxERERGREs/J6AJEREREpGgo2ImIiIg4CAU7EREREQehYCciIiLiIBTsRERERByEgp2IiIiIg1CwExEREXEQCnYiIiIiDkLBTkRERMRBKNiJSJE6deoUnTp1okyZMlSuXJm1a9diMpkIDw8v8mOZTCamTZtW5PstSWJiYrj//vvx8/PDx8eHgQMHEhUVdc33bdu2jeDgYHx8fKhRowZPPvkkycnJufqcOHGCwYMHU7lyZfz8/Ojbty8RERHF9VFEpAi4GF2AiDiW2bNn8/PPP7N48WKqV69OUFAQ27dvp0mTJkaX5nCysrLo1asXKSkpfPTRR2RmZvLCCy/QvXt39u7di6ura77vO3DgACEhIXTo0IFly5Zx6tQpnnvuOf766y9WrVoFQFpaGiEhIWRlZfH+++9TpkwZpkyZQufOnfn999/x9fW14ScVkeulYCciRercuXNUq1aNwYMHW9tuv/12AytyXN988w379u3jwIEDNG3aFICWLVvSrFkzli5dyvDhw/N935IlSzCZTKxcuRIvLy/AEhLHjx/PiRMnqFmzJj/++CNHjx5l06ZNdOvWDYCGDRvSuHFj/ve///HAAw/Y5kOKSKHoVKyIFJlatWrx+eefExkZaT1NGh4enutU7LRp06hXrx5r1qyhefPmuLu706BBAxYuXJhrX/v376d///5UqlQJV1dXqlevzhNPPMGFCxduqsYLFy7w4osvUr9+fdzd3fHx8SEkJIS9e/da+4waNYqePXsyb9486tatS9myZbnjjjs4cuQIq1evJigoCA8PD9q2bZvnfZ07d2bBggXUrFkTLy8vunbtyp49e65ak8lkKvCrVq1aBb5v/fr1NGzY0BrqAJo0aULjxo1Zu3Ztge9LT0/H1dUVDw8Pa5ufnx9gCeaX+gD4+PgU2EdE7I9m7ESkyKxYsYLJkyeze/duVqxYQUBAAMeOHcvTLyYmhscff5zJkydTs2ZN3nnnHUaNGkXbtm1p1KgRMTExBAcHc/vtt/P555/j7u7OmjVrmD17NlWqVOGll1664RpHjhzJDz/8wJtvvkndunU5cuQIU6ZM4b777uOPP/7AZDIBsH37dqKjo5k1axZpaWmMHz+e3r17YzKZePXVV3F2dubJJ59k2LBhHDx40Lr/vXv3cvjwYd544w3Kly/P1KlT6dy5M4cOHaJ69er51rR9+/YC63V3dy9w2x9//EGDBg3ytNerV48jR44U+L6xY8fy3//+l0mTJjFlyhROnz7N9OnTCQoKokWLFgCEhITQrFkznnvuOebPn4+HhwcTJ07Ey8uLvn37FrhvETGYWUSkCD3wwAPmmjVrWl9v2bLFDJi3bNliNpvN5qlTp5oB86ZNm6x9Tpw4YQbM7777rtlsNpvXr19v7tixozkxMTHXvoOCgszdu3e3vgbMU6dOve7a0tPTzT169DB//fXXudr/7//+zwyYo6OjrZ8BMP/xxx/WPuPGjTMD5u+//97a9u6775oB8/nz53O974cffrD2iY6ONpcpU8b8zDPPXHed16tBgwbmYcOG5WkfNmyYuX79+ld974cffmh2cnIyA2bAXLNmTXNkZGSuPj///LO5YsWK1j7u7u7mDRs2FOlnEJGipRk7ETFEu3btrD8HBAQAkJqaCkD37t3p3r07mZmZHDlyhCNHjrB//37OnDlDxYoVb/iYbm5ufPfdd4Bl1vDo0aMcPnyY1atXA5CRkWHtW758eRo1amR9XaVKFSD39YKXaklISLDeTFCjRg06duxo7VO1alXat2/Ptm3bCqwrKyurwG0mkwlnZ+d8t+Xk5FhnGC9nNpsLfA/AG2+8wUsvvcRjjz1G//79OXv2LDNmzKBbt25s27YNf39/wsPD6dmzJ3fccQeTJk3C2dmZjz76iH79+rFu3TqCg4ML3L+IGKfUXWN39uxZ6tWrd92PXsjJyeHll18mICCAcuXKcfvtt/PDDz8Ub5EipcDl13c5OVn+V5STk2P9/sILL1ChQgUaNmzIo48+yu7duylbtixms/mmjrt+/XoaN25MtWrVuPvuu/niiy+spzsv3/fl15YVVHd+qlWrlqetcuXKnD9/vsD3uLq6FvhVt27dAt/n6+tLUlJSnvaUlBTKlSuX73uysrJ47bXXGDZsGHPnzqVr164MGTKE77//nujoaN555x0AXn/9dapXr87atWu566676NmzJytWrKBp06Y89dRTV/0diIhxStWM3U8//cQDDzxQqOcwffLJJ6xcuZJff/2VqlWrMmfOHO666y7i4uIoU6ZMMVYrUnq9+eabzJo1i48//pgBAwZYQ8ptt912U/uNiIigb9++9OnTh9WrV1tD04cffmidybtZ+d1YEBsbS+XKlQt8z86dOwvcdrVr7Bo2bJjvjRnHjh0r8Hd19uxZ0tLSuOOOO3K1+/v706hRI+v1gidOnKB169a5ju/k5ERwcDAffPBBgTWJiLFKzYzdwoULGTp0KDNnzsyzbdOmTdx22234+vrStGlTFi9ebN32xx9/kJOTQ05ODmazGScnp2v+i11Ebs6PP/5I06ZNGTNmjDXURUVF8fvvv1tn9W7Erl27uHjxIi+++GKumbB169YB3NS+L4mIiODQoUPW19HR0Wzfvt36yJD8tG7dusCvoKCgAt/XvXt3/vjjj1zHO3ToEH/88Qfdu3fP9z2VK1emQoUKeU4Nx8XFceTIEWrXrg1Ao0aN2LFjh/XuWLDMaG7fvt3aR0TsT6kJdj169CAiIoIhQ4bkat+3bx/33nsvL7zwAufOnWPevHlMnDiR9evXA/DII4+QlpZGjRo1cHd3Z/LkyYSGhmq2TqQY3Xbbbezfv58333yTH374gfnz59OxY0fS09Ot1+HdiFtvvRUXFxeef/55Nm7cyOrVqxkwYABr1qwBuKl9X2I2m+nTpw9Lly5l+fLl9OjRg/Lly/PEE0/c9L6vNGTIEBo0aECvXr346quv+Oqrr+jVqxdBQUEMGjTI2m/Pnj3W8Ofs7Mz06dP56quveOSRR/j+++9ZunQpd955J87Ozjz99NMATJkyhZiYGHr16sW3337L2rVrGTRoENu3b2fGjBlF/llEpGiUmmBXpUoVXFzynnn+5JNP6NOnD/3798fZ2Zn27dvz0EMPMXfuXMByMXXnzp05fPgwycnJPPfccwwcOJDTp0/b+iOIlBovvvgi48ePZ86cOfTq1Yt33nmHESNGMG3aNA4ePHjV69Wupl69enz11VecOnWKe++9l3HjxgFYn7V3tRscrleNGjV4+umneeqppxgzZgwNGjTg559/pkKFCje97yu5u7uzceNGWrVqxcMPP8xjjz1Gu3bt+O6773L9/65fv348+uij1tePP/44ixYt4tdff6V3795MmjSJRo0asWfPHutMZuvWrfnhhx9wcXFh6NChDB8+nHPnzrFlyxYGDBhQ5J9FRIqGyXyzVyKXQCaTiS1bttC5c2d69+7N5s2bc83AZWdnU7duXfbu3UtQUBAvv/wy9913n3V7/fr1eeKJJ5gwYYIR5YuInRo1ahTh4eH8/fffRpciIqVUqbp5Ij8BAQGMGjWKjz/+2NoWExNjvTsuMjIy1zUmYLmDzc3NzaZ1ikjBLl0Hey35zdqLiDiSUnMqtiBjx45lyZIlbNiwgZycHI4ePUrHjh159913Abj33nt57bXX+Ouvv8jMzGTOnDnExMRw9913G1y5iFwyZsyYqz4y5NKXZtJExNGV+lOxAGvWrGHq1KkcPXoUT09P7r//ft544w3c3NxISUnh5ZdfZvny5aSmptK8eXPeffdd2rRpY+yHEBGrv//+m7i4uGv2a968uWbbRcShlcpgJyIiIuKISv2pWBERERFHoWAnIiIi4iAc/haxnJwcoqOj8fb2znexbBERERF7ZjabSU5Oplq1ata1tQvi8MEuOjqawMBAo8sQERERuSknT54kICDgqn0cPth5e3sDll+Gj49PsRwjMzOTDRs20L17d1xdXYvlGHJjNDb2SeNivzQ29knjYp9sNS5JSUkEBgZaM83VOHywu3T61cfHp1iDnYeHBz4+PvoDZ2c0NvZJ42K/NDb2SeNin2w9LtdzSZlunhARERFxEAp2IiIiIg5CwU5ERETEQSjYiYiIiDgIBTsRERERB2FIsNu8eTNt27bFx8eHKlWqMGHCBC5cuJBv3169elGmTBm8vLysX999952NKxYRERGxfzYPdmfPnuWuu+5i/PjxJCQksGfPHsLDw3nzzTfz7f/bb7+xfv16UlJSrF89e/a0cdUiIiIi9s/mz7GrVKkSZ86cwdvbG7PZzLlz57h48SKVKlXK0/f48ePEx8dz66232rpMERERkRLHkAcUX3pycmBgIFFRUQQHBzN69Og8/Xbu3Im3tzdDhgxh586d+Pv7M2nSJMaMGVPgvtPT00lPT7e+TkpKAiwPEczMzCziT4J135d/F/uhsbFPGhf7pbGxTxoX+2SrcSnM/k1ms9lcjLVc1YULFzh//jzDhg2jTJkyrFu3Ltf2RYsWsWTJEl5//XWaNWvGli1bGDBgAAsWLGDQoEH57nPatGlMnz49T/uSJUvw8PAols8hIiIiUlzS0tIYOnQoiYmJ11xFy9Bgd8mOHTto27Yt8fHxlC9f/qp9H3vsMWJjYwkNDc13e34zdoGBgcTFxRXrkmIbN24kJCRES73YGY2NfdK42C+NjX3SuNgnW41LUlISfn5+1xXsbH4q9ueff2bMmDHs378fNzc3wBLG3Nzc8PT0zNV3wYIFeHt755qdS09Pp2zZsgXu393dHXd39zztrq6uxf6HwRbHkBujsbFPGhf7pbGxTxoX+1Tc41KYfdv8rtjmzZuTlpbGCy+8QEZGBidOnOCZZ55h7Nix1qB3SWJiIo8//jh79uwhJyeHNWvWsGTJEh5++GFbly0iIiJi92w+Y3fpOXQTJ07E39+fcuXKMXz4cKZMmWLd/sknnzBs2DAmTpxIamoq/fr148yZM9SpU4cvvviC4OBgW5ctIiIiYvcMuSu2SZMmbNiwId9tKSkp1p9NJhOTJ09m8uTJtipNREREpMQyJNiJiIhI6ZOaCl5elp9TUuCKS+vtitlsJj07nTIuZaxtn+35jJiUGOLS4jibdpYzKWe4w3QHveltYKW5KdiJiIhIqZBjzuFC5gU83f5NlB/s+ICo5CjOpJ4hNjWW2JRYYlNjOZN6htuq38YPo36w9n1p80ucTjmda5+1A2rbrP7roWAnIiIiNpGd/e/PW7dC9+7g7Hzz+83MzsTV+d87R+f8Moeo5KhcQS02JZazaWdpF9COraO3WvvO3DaTmJSYfPd7JvVMrtcDGg8gNTOVSh6VqORRiQplKpB+LD3f9xpFwU5ERESKXVgYPPHEv69794aAAJgzB/r3v/b7lx9azsmkk0QnR1u/YlJiiE6OpmWVlrlm1t766a0Cw1psamyu18OChnEh6wL+nv74e/lbv1f2rIy/p3+uvnN7z7X+nJQE5cpZfq6xKotevYompN4sBTsREREpVmFhMHAgXLkkwqmMAwx48QQPnzuJX52TnEo+ZQ1tdcrXYdX9q6x9n/juCaKTo/Pd/5Xto1uOzhPWKntWtga2y73T/Z0b+jyXh9R77nEpVEgtTgp2IiIiUqTSMtM4mXiSk0knOXH+JJM+P4n57pNwsTxsfPvfjsN7gE80n0YDV2S29Kzcpzjvqn8XSelJVPOuRjXvalT1qvrvz95Vc/Wd2W1mMX2ygkNqVJSlPTTU2HCnYCciIiLXzWw2c/7ieY6fP87fCX+Tbc5mcNPB1u1BHwVx4MyB3G9q9c/3+Dq5g11sC0itDEmB9OkSSNtGAVT3qU4172oE+gTm2sWn93xaTJ/o+mVnw5NP5g11YGkzmWDiROjTx7jTsgp2IiIikkt6VjruLv8uzzk9fDp7Tu/heIIlzCWlJ1m31fatnSvYebpa7jj1cvOiRrkauKQGsn9bICQFwvk6uQ+0eK31xyH3wP12vv7Atm1w6lTB281mOHnS0q9zZ5uVlYuCnYiISCkUlRTFkXNHOBZ/jGPxx/g78W+Onz/O8YTjlHMvx7Enjln7rju2jl+jfs31fn9Pf2qXr039CvUxm82YTCYAvhn0Dd7u3pRzL4fJZCI8HLo8d+16qla9dh+jxeR/P8YN9ysOCnYiIiJ2LDsbfvjBxNat1fH0NNGly/Wd5ssx53Aq6RRHzx3lWPwxzl88zwsdXrBu77e0Hzujd+b73sSLiWTnZOPsZDnQhNsmMOLiCGqXr01t39rU9K2Jh6tHvu8NLJf7FGpwsOXu16io/E9hmkyW7SVhtdDrDZ9GhlQFOxERETsVFma5puvUKRegNbNm5X5EyOUzZWB5ftvmvzdzLP4YEfERpGf/ewOCq5Mrz7Z/1hrWGldqTMLFBOpXrE/d8nWpU74OtXxrUdu3NrV8a1n7AQxrPuyGP4Ozs6XegQMtIe7ycHep9Nmz7eNRIddSEkKqgp2IiIgdynX3pXMGVDgGfoc55XeYAV/+Qd1jh0l2iiTm6RicTE4AbD+1nW///Na6D1cnV+qUr0O9CvWoX6E+F7Iu4OVmWdPr8z6f5wqFxal/f8vdok88YQlFlwQEWEKd0Y8IuV4lIaQq2ImIiNiJhIsJHI47TOsqbXnySZMlOPR+DFp/Ak7ZufpGXLB8j0yMpJZvLQBGthhJx5odrUEusFwgLk75/1Vvq1B3Sf/+cOed/z7Ud+3aolt5wpbsPaQq2ImIiNhYWmYah84e4sCZA7m+opItSWHZ7ac4daq6pfNFX0uoS/eGuEb/fp1tzOfvNiLAJ8C639717Wcx+vz4+OR/CrOk6d/f8kiTLVuyWLduL716taRLFxe7CKkKdiIiIsUkMzuTI+eOcODMAXrV74WPuw8Ar2x5hf/b/n/5vqe6d3WORscC/wS7HRNg52OQXBXIPcvmlgQuTsX4AaRAzs7QqZOZ1NQoOnVqYRehDhTsREREikT8hXh+i/6NPTF72Be7jwNnDnA47jCZOZkA/DDqBzrW7AhAs8rN8PPwI6hyEM0qN7N+b1q5KT7uPoSHX7bjlCoFHrMkPCJEbEvBTkREHM7lC7QX9bVcOeYcjp8/zp7Te7g94HbrqdCvfv+Kx9c9nqe/l5sXzSo3Izvn32vkRrYYyaiWowo8Rkm4+1Lsk4KdiIg4lCsXaO/dmxteoD0jO4ODZw6y9/Re9pzew97Te9l7ei/JGckAzL93PmNuGQNAq2qtaFCxAS2rtKSlf0uC/C2zcDXK1bDetXrJla+vVBLuvhT7pGAnIiIO42YWaM/OyeaPuD/wdvOmpm9NADYf30yvxb3y9HV3difIP4iyLmWtbbcH3M6fj/9ZZJ/l0t2XlufY/dtuL3dfin1SsBMREYdQmAXanZzMRJyPYGfUTnZGW752x+wmLTONFzu8yOvdXgegdbXWVChbwToL17JKS26pegsNKzbE1dm12D+TPd99KfZJwU5ERBzCVRdod8rCnOPCyZOwYlM0D+9txvmL5/N083LzIiM7w/raz8OPuGfjbP7Mt8vZ692XYp8U7ERExCFYF143ZUPlgxCwHQJ/hsDtEN0ali8BIONcVXLMObg7u9OySkvaVGtD62qtaVO9DQ0rNsy1lBbY/kG+IjdDwU5ERBzCxowZMGIrBPwK7sm5Nzr/OwtXrZqJnT12UtO3Jm7ObjauUqR4KdiJiEiJcjLxJFtPbOVU0ime7/C8tX3fxZVQd7flRboXRLWFk+3gVDs4dXuuR4Q4O9c3pniRYqZgJyIidstsNvPX+b/44cQPbD2xla0ntnI84ThgWeB+QtsJeLh6ADDx9ols25HCvFfaw5lmkPPvKVU9IkRKCwU7ERGxG+Z/bmm9dF3b2G/H8tnez3L1cTI5cWvVW+lYoyMXMi9Yg92IFiMY0QJ6VrTfBdpFipuCnYiIGMZsNnMs/hib/trE98e/54cTP/Drg79Sp3wdAJr7N8fVyZXbqt9Gp5qd6FizI+0C21nXXM3PpUeEbNtmuaGiatVLp19t9alEjKNgJyIiNhWXFsf6Y+v5/vj3bPprEyeTTuba/sPfP1iD3dhbxjKu1TjKupbNb1cFcnaGzp2LqmKRkkPBTkREilVSehJZOVlUKFsBsAS34SuGW7e7ObvRPrA93Wp3o2vtrrSu1tq6zdvd2+b1ipRkCnYiIlKkcsw57Irexbpj6/ju2HfsiNrBlI5TmNp5KgBdanfh1qq30q12N+6scycdanSwXicnIjdHwU5ERADLklw//GBi69bqeHqa6NLl+q9Ly8jO4JuD37Du2DrWR6wnLi0u1/bD5w5bf65QtgK7Ht5VlKWLyD8U7EREhLCwS3eSugCtmTXLcifpnDn530manZPNqaRT1PStCVjuVH1s7WMkpicC4OPuw5117qRXvV6E1Amx9hOR4qVgJyJSyoWFwcCB8M+TRqyioiztoaGWcHf+wnnWHVvH6iOr2RCxAR93HyKeiMBkMuHi5MK4VuMwmUz0qteL9oHtcXV2NeYDiZRiCnYiIqVYdjY8+WTeUAf/tPn+zdh5K3k/6Vu2RW4l25xt3Z6Vk0VsaixVvKoA8FbIWzaqWkQKomAnIlKKbdsGp05d1mDKsXw3O1m+3/EWCW0+JvyE5WWzys24p8E99K7fm9sDbsfFSX+NiNgT/YkUESnFYmIA53SoswkarYSGq2BZKER2sHQ43A/8/mTEbfcy9b57qFuhrpHlisg1KNiJiJRCFzIvsD5iPZ8lLIdnv4UySf9urL/232AX0R0iujNmFNStYEipIlIICnYiIqXMn3F/0urTVqRmploaygBJ1Syzc4f7wIlO1r4mk+Xu2OBgY2oVkcJRsBMRcWBJ6UmsObKGlIwUHmr1EAD1K9bHx92HCmUrMLDJQPzODOTlB27HhFOumyhMJsv32bO1zqpISaFgJyLiYC5mXWTt0bUs+X0Jq4+sJj07HX9Pf8bcMgZnJ2ecTE78+uCvBPgEYPonvTXytNwde/mNFAEBllCX33PsRMQ+KdiJiDiIbSe2sWDvAsL+CCMp/d9r5hpUbMCgJoO4mHURTzdPAALLBeZ6b//+0KcPbNmSxbp1e+nVqyVdurhopk6khHEy4qCbN2+mbdu2+Pj4UKVKFSZMmMCFCxfy7bt27VqCgoLw9PSkcePGrF692sbViojYJ7PZTI45x/r6f3/+j8/3fk5SehKBPoE82/5Z9ozbw+HHDvNa19esoa4gzs7QqZOZjh2j6NTJrFAnUgLZPNidPXuWu+66i/Hjx5OQkMCePXsIDw/nzTffzNP36NGjDBgwgBkzZpCYmMj06dMZPHgwUVFRti5bRMRu/Bn3J5M3T6buf+ry/V/fW9tHNB/BI60eYeuorfw98W/eDnmbllVaWk+3iojjs/mp2EqVKnHmzBm8vb0xm82cO3eOixcvUqlSpTx9Fy5cSHBwMH379gVg8ODBfPbZZ3z66adMnz7dxpWLiBgn4WICSw8s5fN9n/PLqV+s7csOLiOkbggALaq04KO7PzKqRBGxA4ZcY+ft7Q1AYGAgUVFRBAcHM3r06Dz9Dh48SFBQUK62Jk2asG/fPpvUKSJyNamp4OVl+TklBTyvfqbzhiSnJ/Pw6odZ8ccK0rPTAXA2OdOzXk+GNx/OPQ3uKfqDikiJZejNE0ePHuX8+fMMGzaMgQMHsm7dulzbk5OT8bzi/5QeHh6kpKQUuM/09HTS09Otr5OSLBcQZ2ZmkpmZWYTV/+vSfotr/3LjNDb2yVHG5eJFAMtC91u2ZHHnnUVzXdrZ1LNU8rScxXA3ubMrehfp2ek0rdSUkc1Hcn/T+63rs0LR/h4dZWwcjcbFPtlqXAqzf5PZnN/Sz7a1Y8cO2rZtS3x8POXLl7e29+nTh/r16/Puu+9a255++mn++usvVqxYke++pk2blu9p2iVLluDh4VH0xYtIqbR9e1XmzQsiPr6sta1ixQs8+ODvtGsXU+j9peek8+P5H9kYv5HIC5F81uwz3J3cAdibvBdvZ2/qlK2j6+VESqG0tDSGDh1KYmIiPj4+V+1r8xm7n3/+mTFjxrB//37c3NwAyyybm5tbntm5Zs2asXv37lxthw4donXr1gXu/8UXX2TSpEnW10lJSQQGBtK9e/dr/jJuVGZmJhs3biQkJARXV9diOYbcGI2NfSrp47JihYm333bmyn8Wx8eX4e232/D119n063d9/2beF7uPBXsXsOSPJSSmJwKWU60VgyrSsWZHAHrTu0jrv5qSPjaOSuNin2w1LpfOPl4Pmwe75s2bk5aWxgsvvMCbb75JTEwMzzzzDGPHjrUGvUtGjBjBrFmzWLZsGf379ycsLIzw8HDmzJlT4P7d3d1xd3fP0+7q6lrsfxhscQy5MRob+1QSxyU7G55+mjyhDsBsNmEywTPPuDBgwNVXa9gRtYMJ6yawI2qHta1O+To8dOtDjGo5KtepViOUxLEpDTQu9qm4x6Uw+7b54068vLz47rvvOHDgAP7+/nTq1ImQkBDee+896/bFixcD0KhRI1auXMnrr79O+fLlefXVV1m+fDkNGjSwddkiIgBs25Z7dYYrmc1w8qSl35UuZl20/uxbxpcdUTtwcXJhUJNBbByxkaMTjvJChxcMD3UiUnIZcvNEkyZN2LBhQ77brrwxokePHvTo0cMWZYmIXFPMdV4+d6lfZnYmYX+E8f6O96nmXY1lg5YBltUgvuz3JXfWuRN/L/9iqlZEShstKSYiUghVq15fP/eKp5ke/gmf7PqEmBRLyivrUpaEiwn4lvEFYFjzYcVUpYiUVgp2IiKFEBwMAQEQFZX/dXZU24VHt//jvl9DycyxPKKgilcVxrUax8OtHraGOhGR4qBgJyJSCM7OMGcODBwIJlPucGcygbnmVtLqfgU50D6wPY+3eZwBTQbg5uxW8E5FRIqIgp2ISCH17w+hofDYs+c4Xf1jOBMEf95LQADMfGo0W90PMb7NeG6teqvRpYpIKaNgJyJSSBHxEWwu8x5JYz6DrDSIvpU1s+6hRw8Tzs6+jGCe0SWKSCmlYCcicp1+Pvkz7/78LisPr8SM5RxsyyotebrfU/QMMuOkVSFExGAKdiIi12HC2gnM3TnX+rp3/d483e5putTqomW+RMRu2PwBxSIiJUFmdiZpmWnW1yF1Q3BzdmPsLWM5+OhB1gxdQ9faXRXqRMSuKNiJiFzmQuYF5u6YS7336zFr+yxr+90N7iZyYiT/vfe/NKnUxMAKRUQKpmAnIgIkpSfx1o9vUWtOLSasm0BkYiRLDy7F/M/zTJxMTlohQkTsnq6xExGHlJ1tWa81JsayWkRwsOUZdFc6l3aOOb/O4f0d75NwMQGAmuVq8vwdzzP6ltE61SoiJYqCnYg4nLAwePJJOHXq37aAAMuDhfv3z933+U3PM3/PfAAa+TXixQ4vcn+z+3F1drVhxSIiRUPBTkQcSliYZVWIK5f7ioqytH/2dTzde6VT1duy6Osz7Z9hX+w+XrjjBfo17oeTSVeoiEjJpWAnIg4jO9syU5ffGq5m9wRo9x6j973HUOc+fDlgEWCZpdv50E7bFioiUkwU7ETEYWzblvv0KwDuSdB2DrT/PyiTiBnY8fch0rPScXdxN6JMEZFio2AnIg4jJuayF65pcNv7cMfb4BFvaTvTFLZMZ+rkfri76JSriDgeBTsRcRhVq172ou1/4M4XLT+fbQzh0+DQQDA7Ub2aEdWJiBQ/BTsRcQhms5nGrc4REOBHVBSYdz4KjcPg1wnw+1AwO2MyQUCg5dEnIiKOSMFOREq88L/DeX7T8wDMnv0LgwaZMGX4YJ73K2B5Dt2lx9HNnp3/8+xERByBLjIRkRJr3+l99Frciy4Lu7AjagcHzxykScfDhIZC9epwKdSB5Tl2oaF5n2MnIuJINGMnIjaVmgpeXq5AH86fz8TXt/D7iEmOYfLmyXy29zPMmHFxcmFcq3FM6TgFfy9/GveHPn2ub+UJERFHomAnIjaVnf3vzz/+aKJXr8IFrt9jf6fd/HakZqYCMKTpEF7r+hr1KtTL1c/ZGTp3LoKCRURKEJ2KFRGbCQuDJk3+fX3PPS7UqmVpv15NKzelQcUGtK3elp/H/MzXA7/OE+pEREorBTsRsYlLS31FReVuv7TUV0Hh7tdTvzJg2QDSMtMAcDI58d3w7/h57M+0C2xXzFWLiJQsCnYiUuyuutTXP20TJ+Y+TRuVFMWwsGHcPv92wv4IY9b2WdZtlT0ra01XEZF86P+MIlLs8l3q6zJmM5w8aemXkZ3B2z+9TcO5DVny+xJMmBjdcjRjbhlju4JFREoo3TwhIsUu11JfV7Ex4nvGH3ycw3GHAWgX0I73e71Pq2qtirE6ERHHoWAnIsUu11JfV7Ht4gccjjtMJY9KvB3yNiNbjNQpVxGRQlCwE5FiFxxseUBwVNQV19k5Z4DLBUwZ5QgIgM/ve4/3d9Zkauep+JbxNapcEZESS/8UFpFi5+wMc+ZYfr60tBe1tsD45tB7AmBZ6qtOxZq81/M9hToRkRukYCciNtG/v2VJL//a56DPGBjVFfz+xKn+Bj77Ol5LfYmIFAGdihURmzCbzVys/xVZ4ybChbMA9Ko0jkUPvElFT19DaxMRcRQKdiJS7KKToxnzvzGsj1gPQBO/JowsP5JJgybh6upqcHUiIo5Dp2JFpNh5uHqwL3Yf7s7uvNblNXaM3UEjz0ZGlyUi4nA0YycixeJw3GEaVmyIyWTCt4wvXw34imre1WhQsQGZmZlGlyci4pA0YyciRSo9K53JmyfT7MNmLP59sbW9c63ONKjYwMDKREQcn4KdiBSZ3TG7aT2vNTO3zSTbnM32k9uNLklEpFTRqVgRuWkZ2Rm8tvU1Xt/2OtnmbCp5VOLDuz5kYJOBRpcmIlKqKNiJyE3Zd3ofI1eOZH/sfgAGNRnEB70/oJJnJYMrExEpfRTsROSmJFxMYH/sfvw8/Piw94cMajrI6JJEREotBTsRKbTUjFQ83TwB6FSrE5/3+Zxe9XtR2bOywZWJiJRuunlCRK6b2Wzm/V/fp9acWkTER1jbH2j5gEKdiIgdMCTY7du3j5CQECpUqECVKlUYOXIkcXFx+fbt1asXZcqUwcvLy/r13Xff2bhikdIhOxvCw+Grryzfs7P/3RaTHEOvxb144rsniEuL49NdnxpVpoiIFMDmwe7ChQv06tWL9u3bc/r0aQ4ePMi5c+cYPXp0vv1/++031q9fT0pKivWrZ8+eNq5axPGFhUGtWtClCwwdavleq5alfcUfKwj6KIj1Eesp41KGD3p/wJt3vml0ySIicgWbX2MXGRlJixYteOWVV3B2dqZixYqMGzeOESNG5Ol7/Phx4uPjufXWW21dpkipEhYGAweC2Zy7/dTZZAZ8MRFuWQDArVVv5ct+X9K4UmPbFykiItdk82DXsGFD1q1bl6stNDSUVq1a5em7c+dOvL29GTJkCDt37sTf359JkyYxZsyYAvefnp5Oenq69XVSUhIAmZmZxbaM0aX9apkk+6OxubbsbHjiCZd/Qp0p98bb3reEOrOJZ9o9w7ROU3Fzdrvp36fGxX5pbOyTxsU+2WpcCrN/Q++KNZvNTJkyhVWrVrF169Y829PT02nXrh0zZ86kWbNmbNmyhQEDBuDt7c2gQfk/UuGNN95g+vTpedo3bNiAh4dHkX+Gy23cuLFY9y83TmNTsN9/r0hUVIf8N/78DFTZAzsmUM7FiU0XNxXpsTUu9ktjY580LvapuMclLS3tuvuazOYrT77YRlJSEqNHj2bXrl2sWrWKoKCg63rfY489RmxsLKGhofluz2/GLjAwkLi4OHx8fIqk9itlZmayceNGQkJCcHV1LZZjyI3R2Fzb11+bGDnyn3/jecRBu/+DLa9CTu7f1xdfZHHffUXzvwuNi/3S2NgnjYt9stW4JCUl4efnR2Ji4jWzjCEzdhEREfTu3ZsaNWrw22+/4efnl2+/BQsW5JmdS09Pp2zZsgXu293dHXd39zztrq6uxf6HwRbHkBujsSlYYOA/P9TYBgPvB58oMDvD5teu6OdCUf8KNS72S2NjnzQu9qm4x6Uw+7b5XbHnz5+na9eutG/fnvXr1xcY6gASExN5/PHH2bNnDzk5OaxZs4YlS5bw8MMP27BiEcfW/o5sfO6eAaM6W0JdXEM4+O8/pkwmS/gLDjauRhERuT42n7H77LPPiIyMZNmyZXzzzTe5tqWkpODl5cUnn3zCsGHDmDhxIqmpqfTr148zZ85Qp04dvvjiC4L1N4xIkYhNiWVo2FCSWm+2NOx9ANbOhQwvwBLqAGbPBmdnY2oUEZHrZ/NgN2nSJCZNmlTg9pSUFOvPJpOJyZMnM3nyZFuUJlKq/HrqV/ot7UdMSgyerp6M8f+IFf8dwamMf/sEBFhCXf/+hpUpIiKFoLViRUopH3cfktKTaFKpCcsHL6eRXyPeGwXbtkFMDFStajn9qpk6EZGSQ8FOpBTJzsnG2cmS1BpXasz64etpUaUFXm6WU6/OztC5s4EFiojITTFkrVgRsb1DZw/R8pOWbD3x7zMj76hxhzXUiYhIyadgJ1IKfH3ga26bdxsHzhzgmQ3PYNDjK0VEpJgp2Ik4sKycLJ5e/zT3L7+f1MxUutXuxpqhazCZTNd+s4iIlDi6xk7EQcVfiOe+0PvY+JdlqZsXO7zIjC4zrNfYiYiI41GwE3FAZ1LP0H5+eyLOR+Dh6sHCvgsZ2GSg0WWJiEgxU7ATcUCVPCrRulprss3ZrByykhZVWhhdkoiI2ICCnYiDyDHnkJGdQRmXMphMJhb0WUBaZhp+HgUv2yciIo5FwU7EAaRkpDBq5SgAlg1ahpPJCQ9XDzxcPYwtTEREbErBTqSEO5V0inu+uoe9p/fi6uTKvtP7uKXqLUaXJSIiBtDjTkRKsN0xu2n737bsPb2Xyp6VCR8VrlAnIlKKacZOpATIzs67huvqo/9jaNhQ0jLTaFKpCWuGrqGWby2jSxUREQMp2InYubAwePJJOHXq3zbfOz8hscN4zJgJqRPCN4O+oVyZcsYVKSIidkGnYkXsWFgYDByYO9QBJPwZhDnLje4VxrFm6BqFOhERATRjJ2K3srMtM3X/LutqBv5ZCuxke/h4L4fKNsTpUS0PJiIiFpqxE7FT27ZdNlPncwrGdAD//f92iGvEqZMmtm0zpDwREbFDCnYidiom5p8fKh2Ese2gxs9wz8NYZu7y6SciIqWeTsWK2KmqVYEaP8L990DZBIhrCN8sxXo69vJ+IiIiKNiJ2K24SmEwcii4pMPJdrBkFVyoaN1uMkFAgOXRJyIiIqBTsSJ26cOdHzI4dKAl1B2+F77YlCfUAcyeDc7OxtQoIiL2R8FOxM5k52Sz4vAKzJh5+NaHWTZwOQH+udd8DQiA0FDo39+gIkVExC7pVKyInXF2cmb54OV89ftXPNzqYUwmE/375l15QjN1IiJyJQU7ETuQnpXOsoPLGN58OCaTCR93H8a1Hmfd7uwMnTsbV5+IiJQMCnYiBkvJSKHf0n5s+msTUclRvNDhBaNLEhGREkrBTsRA5y+c564ld7H91HY8XT1pU62N0SWJiEgJpmAnYpDYlFi6f9md/bH7KV+mPOuGraNtQFujyxIRkRJMwU7EACcSThCyKISj8Ufx9/Rn44iNBPkHGV2WiIiUcAp2IjaWlplGp887cSLxBDXL1WTTyE3Uq1DP6LJERMQB6Dl2Ijbm4erB83c8TyO/Rvw45keFOhERKTKasROxEbPZjOmfJSPGtxnP6FtGU8aljMFViYiII9GMnYgN7I7ZTbcvuhGXFmdtU6gTEZGipmAnUsx+i/6Nbl90Y8vfW3hhk55RJyIixUfBTqQY/XrqV+784k4SLibQPrA9s3rMMrokERFxYAp2IsXk55M/E7IohMT0RDrU6MB3w77Dx93H6LJERMSBKdiJ3ITUVDCZLF+pqf+2/xj5Iz2+7EFyRjKdanZi3bB1eLt7G1eoiIiUCgp2IjchO/vfn7dutbzOysnioVUPkZKRQtfaXVkzdA1ebl7GFSkiIqWGgp3IDQoLgyZN/n3duzfUqgXfrnRh7dC1jGk5hlX3r8LTzdOwGkVEpHTRc+xEbkBYGAwcCGbzZY0uF4iKKsvAgRAaWpv5/ecbVp+IiJROmrETKaTsbHjyyStCXeUD8ER9zPVXATBxYu7TtCIiIragYCdSSNu2walTlzVU/BNGdgOfKOjwFmZyOHnS0k9ERMSWDAl2+/btIyQkhAoVKlClShVGjhxJXFxcvn3Xrl1LUFAQnp6eNG7cmNWrV9u4WpHcYmIue1E+Ah7oCl5nIKYlLFkFZqe8/URERGzA5sHuwoUL9OrVi/bt23P69GkOHjzIuXPnGD16dJ6+R48eZcCAAcyYMYPExESmT5/O4MGDiYqKsnXZIlZVq/7zQ7kTllDnEw1nmsKiDXCxfN5+IiIiNmLzYBcZGUmLFi145ZVXcHNzo2LFiowbN46tW7fm6btw4UKCg4Pp27cvLi4uDB48mE6dOvHpp5/aumwRq+BgqNogGh7oBr6RENcAvtgEaZUAyzPtAgMt/URERGzJ5sGuYcOGrFu3DmdnZ2tbaGgorVq1ytP34MGDBAUF5Wpr0qQJ+/btK/Y6RQri7AztnpwLFSIgvg4s3AwpVQBLqAOYPdvST0RExJYMfdyJ2WxmypQprFq1Kt8Zu+TkZDw9cz8DzMPDg5SUlAL3mZ6eTnp6uvV1UlISAJmZmWRmZhZR5bld2m9x7V9uXHGNzZIHpzL0UxM/LnmQM8nVre3Vq5v5v//L5p57zOg/h4Lpz4z90tjYJ42LfbLVuBRm/yazOddDG2wmKSmJ0aNHs2vXLlatWpVnZg6gT58+1K9fn3fffdfa9vTTT/PXX3+xYsWKfPc7bdo0pk+fnqd9yZIleHh4FN0HkFIny5yFE044mf6d6E5Lc2bo0LsBmDJlOy1bntFMnYiIFKm0tDSGDh1KYmIiPj5XX3PckBm7iIgIevfuTY0aNfjtt9/w8/PLt1+zZs3YvXt3rrZDhw7RunXrAvf94osvMmnSJOvrpKQkAgMD6d69+zV/GTcqMzOTjRs3EhISgqura7EcQ25MUY1Ndk42I/43AhcnF+bfPR9XZ8u+Ll8fdtKk1nhqkYnroj8z9ktjY580LvbJVuNy6ezj9bB5sDt//jxdu3ala9euzJ8/Hyengi/zGzFiBLNmzWLZsmX079+fsLAwwsPDmTNnToHvcXd3x93dPU+7q6trsf9hsMUx5MbczNiYzWYmrJlA6B+huDq5MqndJNpUbwOAr+/lDyrW2BeW/szYL42NfdK42KfiHpfC7NvmN0989tlnREZGsmzZMnx8fPDy8rJ+AXh5ebF48WIAGjVqxMqVK3n99dcpX748r776KsuXL6dBgwa2LltKsVe2vMInuz7BhInF/RdbQ52IiIi9sfmM3aRJk3KdKr3SlTdG9OjRgx49ehR3WSL5mv3LbF7b9hoAH931EYOaDjK4IhERkYJpSTGRAny5/0ueWv8UADO7zmRc63EGVyQiInJ1RRbsCnNhn4i9i0uL45HVjwDw1O1P8WKHFw2uSERE5NoKHewqVKiQb3uNGjVuuhgRe+Hn4ceq+1cxrtU43u3+LqZLTx4WERGxY9d1jd2xY8cYN24cZrOZpKQkunbtmmt7UlISvr6+xVGfiGG61O5Cl9pdjC5DRETkul1XsKtXrx4DBgzg7Nmz/PTTT3Tq1CnX9jJlynDPPfcUS4EitpJ4MZHhK4bz1p1v0aRSE6PLERERKbTrviv20UcfBaB27dqMHDmy2AoSMUJGdgYDlg3g++Pf89f5v9j/yH6cnbSEhIiIlCyFftzJyJEj2bFjB0eOHCEnJyfPNpGSxmw28+C3D/L98e/xcvPiy35fKtSJiEiJVOhg99JLL/HWW29RtWrVXE9CNplMCnZSIk3ZMoVF+xfhbHImdFAot1S9xeiSREREbkihg92iRYtYvXo1vXr1Ko56RGxq3q55zNw2E4BP7/mUHvX0MGwRESm5Cv24k5SUFHr27FkctYjYVPjf4YxfMx6AqZ2mMuaWMQZXJCIicnMKHezuvvtulixZUhy1iNhUc//mBNcMZnjz4UztNNXockRERG5aoU/FXrx4kQceeICZM2dSpUqVXNs2b95cZIWJFLcKZSuwfvh6zGazHkAsIiIOodDBrlmzZjRr1qw4ahEpdhnZGaw5soZ+jfsB4ObsZnBFIiIiRafQwW7qVJ2ykpLJbDbz6JpHmb9nPi91eImZ3WYaXZKIiEiRKnSwGzOm4AvMFyxYcFPFiBSnWdtnMX/PfJxMTnSo0cHockRERIpcoW+eMJvNub7Onj3L0qVL8fT0LI76RIrEqiOreHbjswDM6j6LXvX1uB4REXE8hZ6x++yzz/K0bdq0iQ8//LBIChIpaicunOCl/72EGTPjWo3jibZPGF2SiIhIsSj0jF1+7rzzTt0RK3YnOxtWbTrPK3+8TWpmKp1rduH9Xu/rDlgREXFYNx3ssrKyWLRoEZUqVSqKekSKRFgY1KoFA57bTKIpGs7X4s/XlrHqf67XfK+IiEhJVehTsU5OTnlmPFxcXJgzZ06RFSVyM8LCYOBAMJuBU/dBhick1uD0GT8GDoTQUOjf3+gqRUREil6hg92WLVtyvXZ2dqZevXp5HlYsYoTsbHjySctNPvDPP0CO3AOAGTCZYOJE6NMHnJ2NqlJERKR4FPpUbKdOnQgODqZs2bLExsZiNpupXLlycdQmUmjbtsGp7N0wpgOUO5Fnu9kMJ09a+omIiDiaQs/YnT59mnvuuYe9e/dSsWJF4uLiaNCgARs2bCAgIKA4ahS5bodPnoH7+kK5k9B1MqxYlG+/mBjb1iUiImILhZ6xe+aZZ2jQoAHnz5/n9OnTnDt3jpYtWzJp0qTiqE/kumVmZ/LxucGWUHeuPqx7v8C+VavasDAREREbKfSM3ebNmzl8+DBeXl4AlCtXjo8++ojatWsXeXEihfH8pufZl/gDpgxvzF//Dy765uljMkFAAAQH274+ERGR4lboGbvs7GycnHK/zWQy4eamxdTFON8c/Ib3fnkPgGfrLcQU15grH1d36fXs2bpxQkREHFOhg12XLl0YP348qampAKSkpPDoo4/SuXPnoq5N5LocjjvMmG8taxg/1/453hrdj9BQqF49d7+AAD3qREREHFuhT8W+/fbb3HnnnZQvXx4/Pz/i4uJo2rQpq1evLo76RK6pjEsZGlZsiLe7NzO7zQQs4a1PH9iyJYt16/bSq1dLunRx0UydiIg4tEIHuxo1anDo0CG2bdtGbGwstWrVok2bNjjrb0wxSC3fWvw45kdSM1Jxcfr3P2lnZ+jUyUxqahSdOrVQqBMREYdXqFOxZrOZiIgIXFxc6NKlC/fddx8nTuR9VpiILZxMPGn9uYxLGSp6VDSwGhEREeNdd7BLTU2lQ4cOPPvss9a2M2fOMGrUKDp37my95k7EFraf3E699+sxZfMUcsw5RpcjIiJiF6472L322mu4ubnx8ccfW9sqV67MiRMnyMzM5I033iiWAkWudCb1DIO+GURGdgZ/nvsTE6Zrv0lERKQUuO5gFxoayrx58/IsH1a5cmU+/vhjli1bVuTFiVwpx5zDiBUjiEqOopFfI+bfOx/Tlc81ERERKaWuO9idOXOGevXq5butZcuWnD59usiKEinI2z+9zYaIDZR1KUvooFC83b2NLklERMRuXHew8/Hx4dy5c/lui4+Px8PDo8iKEsnPT5E/MXnzZADm9p5L08pNDa5IRETEvlx3sOvWrRsffPBBvts+/PBD2rVrV2RFiVwpJSOF+5ffT7Y5m2FBwxjdcrTRJYmIiNid636O3UsvvcStt97K2bNnue+++6hSpQoxMTEsXbqUBQsWsHXr1uKsU0o5LzcvZnSZwZxf5/DRXR/pujoREZF8XHewa9CgARs2bGDcuHF88MEHmEwmzGYzQUFBrFu3jlatWhVnnSI80PIBRrQYgZOp0CvhiYiIlAqFWnmiffv2/P7770RERBAXF0fVqlWpUaNGcdUmwsEzB/H38sfPww9AoU5EROQqCr2kGEDdunWpW7duUdcikkvixUTu+eoeMrIzWDtsLc39mxtdkoiIiF277mBXu3btq17XZDKZiIiIKJKiRMxmM+NWj+N4wnFq+daiRjnNDIuIiFzLdQe7adOm5dv+yy+/8Mknn3DLLbcUVU0iLNq/iKUHl+JscubrAV/jW8bX6JJERETs3nVfsPTAAw/k+YqLi2PBggWMHz+en3/+udAHP3v2LPXq1SM8PLzAPr169aJMmTJ4eXlZv7777rtCH0tKjoj4CB5b+xgA0ztPp21AW4MrEhERKRlu6Bq7hIQEHnjgAbZu3cqXX37JoEGDCr2Pn376iQceeOCap29/++031q9fT6dOnW6kVClhMrMzGb5iOCkZKQTXCOaFDi8YXZKIiEiJUehbDH/55RdatGhBVFQUu3btuqFQt3DhQoYOHcrMmTOv2u/48ePEx8dz6623FvoYUjK998t7/HLqF8q5l+PL/l/i7ORsdEkiIiIlRqFm7N555x2mTJnCuHHjeOedd3Bzc7uhg/bo0YNhw4bh4uLCfffdV2C/nTt34u3tzZAhQ9i5cyf+/v5MmjSJMWPGFPie9PR00tPTra+TkpIAyMzMJDMz84bqvZZL+y2u/Zcmo4JG8VvUb/Rp2IeqHlVv+neqsbFPGhf7pbGxTxoX+2SrcSnM/k1ms9l8PR3vuece1q5dy4QJE+jfv3++fTp27HjdB7YWYDKxZcsWOnfunGfbokWLWLJkCa+//jrNmjVjy5YtDBgwgAULFhQ4Uzht2jSmT5+ep33JkiVaz1ZERERKnLS0NIYOHUpiYiI+Pj5X7Xvdwc7J6epnbU0mE9nZ2ddf5WXvKyjY5eexxx4jNjaW0NDQfLfnN2MXGBhIXFzcNX8ZNyozM5ONGzcSEhKCq6trsRzDkZnNZrb8vYUutboU+VJhGhv7pHGxXxob+6RxsU+2GpekpCT8/PyuK9hd96nYnJycmy6ssBYsWIC3t3eu2bn09HTKli1b4Hvc3d1xd3fP0+7q6lrsfxhscQxH9OX+LxmxYgSDmgxi6cClxbIOrMbGPmlc7JfGxj5pXOxTcY9LYfZt1+szJSYm8vjjj7Nnzx5ycnJYs2YNS5Ys4eGHHza6NCkiJxNPWh9t0qxys2IJdSIiIqXFDT3upDh5eXnxySefMGzYMCZOnEhqair9+vXjzJkz1KlThy+++ILg4GCjy5QikGPOYcy3Y0hKT+L2gNt5Kfglo0sSEREp0QwPdlde4peSkmL92WQyMXnyZCZPnmzrssQGPtr5EZv+2kRZl7Is7LsQFyfD/3MUEREp0ez6VKw4riPnjvDsxmcBeOvOt2hQsYHBFYmIiJR8CnZic2azmdH/G82FrAt0q92Nx257zOiSREREHIKCndhcTo6JQRVep6Z7Sx6u/BnmHP1nKCIiUhR0UZPYVFgYPPkknDrVCdjNEEwEBMCcOVDAc69FRETkOmmqRGxmaWg6Ax6K4NSpSy2WR5tERcHAgZbQJyIiIjdOwU5sIjsbHlo8HR5pDi0/z7Xt0o3REyda+omIiMiNUbATm5i3ZifJzd8CtzRIz7scitkMJ0/Ctm0GFCciIuIgFOyk2GVkZ/D6wTHglAO/3w9/FHwxXUyMDQsTERFxMAp2Uuxe3/Y6JzMOQGolWPefq/atWtVGRYmIiDggBTspVvtj9zNz20wAKvwyF9MFv3z7mUwQGAhaLU5EROTGKdhJscnKyWL0/0aTlZNFv0b9+PTJQYAlxF3u0uvZs8HZ2bY1ioiIOBIFOyk2OeYcetfrTWXPynx414cMGGAiNBSqV8/dLyAAQkP1HDsREZGbpQcUS7Fxc3ZjRtcZPN/hebzcvABLeOvTx3L3a0yM5Zq64GDN1ImIiBQFBTspctk52Zgx4+Jk+c/rUqi7xNkZOnc2oDAREREHp1OxUuT+8+t/aPvftuw7vc/oUkREREoVBTspUsfPH+flzS+zO2Y3O6J2GF2OiIhIqaJgJ0XGbDYzfs14LmRdoHOtzjx464NGlyQiIlKqKNhJkfnqwFesj1iPu7M7n9z9CaYrn2siIiIixUrBTopE/IV4Jn43EYCXg1+mQcUGxhYkIiJSCinYSZF4buNznE07S2O/xjzf4XmjyxERESmVFOzkpl3Musihs4cA+PSeT3FzdjO4IhERkdJJz7GTm1bGpQzbRm9j64mtdKjRwehyRERESi3N2EmRcHZypkvtLkaXISIiUqop2MkNOxx3mOc3Pk9aZprRpYiIiAg6FSs3yGw2M271OLae2Er8hXjm3TvP6JJERERKPc3YyQ1ZuG8hW09sxcPVg5c7vmx0OSIiIoKCndyA8xfO89zG5wCY2mkqtXxrGVuQiIiIAAp2cgMmb55sfWbdxNsnGl2OiIiI/EPBTgplV/QuPvrtIwA+vOtDPbNORETEjijYSaE8t+k5zJgZGjSUzrU6G12OiIiIXEbBTgrl8z6fM6L5CN4NedfoUkREROQKetyJFEpguUC+6PeF0WWIiIhIPjRjJ9flz7g/jS5BRERErkHBTq7pl1O/0PiDxgwLG0Z2TrbR5YiIiEgBFOzkqrJzsnl0zaOYMePu7I6zk7PRJYmIiEgBFOzkqj7d9Sl7Tu/Bt4wvb975ptHliIiIyFUo2EmB4i/EM3nLZABmdJlBZc/KBlckIiIiV6NgJwWaFj6N+AvxNKvcjEdaP2J0OSIiInINCnaSrwNnDvDhzg8BmN1jNi5OejKOiIiIvdPf1pKv2JRY/L38aVu9Ld3qdDO6HBEREbkOCnaSr251uvHn43+SmpFqdCkiIiJynQw9FXv27Fnq1atHeHh4gX3Wrl1LUFAQnp6eNG7cmNWrV9uuwFLOy80Lfy9/o8sQERGR62RYsPvpp59o164dERERBfY5evQoAwYMYMaMGSQmJjJ9+nQGDx5MVFSUDSstPZKSwNTmY0wtv2DN2hyy9SxiERGREsWQYLdw4UKGDh3KzJkzr9kvODiYvn374uLiwuDBg+nUqROffvqpjSotPcLCoGHrKOj+DPR7gLufWkOtWpZ2ERERKRkMCXY9evQgIiKCIUOGXLXfwYMHCQoKytXWpEkT9u3bV5zllTphYTBwIJxu9iK4pcLJdnDkbqKiLO0KdyIiIiWDITdPVKlS5br6JScn4+npmavNw8ODlJSUAt+Tnp5Oenq69XVSUhIAmZmZZGZm3kC113Zpv8W1/+KUnQ1PPOGCufov0GKRpXHdfwATZjOYTGaefBJ6987CuQSuJlaSx8aRaVzsl8bGPmlc7JOtxqUw+7fru2I9PT1JS0vL1ZaWloa3t3eB73njjTeYPn16nvYNGzbg4eFR5DVebuPGjcW6/+Lw++8ViYq6A8ZOsjTsGQ3Rra3bzWYTp07Bu+/+SlDQOYOqvHklcWxKA42L/dLY2CeNi30q7nG5MgtdjV0Hu2bNmrF79+5cbYcOHaJ169YFvANefPFFJk2aZH2dlJREYGAg3bt3x8fHp1jqzMzMZOPGjYSEhODq6losxyguSUkmaPoNBP4CGR7wff7XPdaseTu9e5ttXN3NK8lj48g0LvZLY2OfNC72yVbjcuns4/Ww62A3YsQIZs2axbJly+jfvz9hYWGEh4czZ86cAt/j7u6Ou7t7nnZXV9di/8Ngi2MUtWoBWdDtRcuLn56DlKr59gsMdKGEfbRcSuLYlAYaF/ulsbFPGhf7VNzjUph9292SYl5eXixevBiARo0asXLlSl5//XXKly/Pq6++yvLly2nQoIHBVTqOzh1dqPTTF3D4Xvj5mTzbTSYIDITgYAOKExERkUIxfMbObM59eu/KGyN69OhBjx49bFlSqeLsDB+/dAcDB/4PgMtHw2SyfJ89mxJ544SIiEhpY3czdmI7KRmWEN2/P4SGQrVqubcHBFja+/c3oDgREREpNAW7UupY/DECZgUwefNksnOy6d8fTpyALVtgyRLL9+PHFepERERKEsNPxYoxnt/0PInpieyO2Y2zk+U8q7MzdO5sbF0iIiJy4zRjVwr9GPkjYX+E4WRy4p2Qd4wuR0RERIqIgl0pk2PO4ekNTwPw4C0P0rRyU4MrEhERkaKiYFfKLD2wlB1RO/B09WR6l7wrdIiIiEjJpWBXimRkZ/Dy5pcBeP6O56nidX1r9oqIiEjJoGBXiuyM2kl0cjRVvKowqd2ka79BREREShTdFVuK3FHjDo5MOMKx+GN4unkaXY6IiIgUMQW7UqZGuRrUKFfD6DJERESkGOhUbCkQlxbHr6d+NboMERERKWYKdqXAzK0zuX3+7bz8/ctGlyIiIiLFSMHOwZ1IOMGHv30IQOdanY0tRkRERIqVgp2DeyX8FTKyM+hWuxshdUOMLkdERESKkYKdA/s99ncW7VsEwBvd3jC4GhERESluCnYO7OXNL2PGzMAmA2lTvY3R5YiIiEgxU7BzUD9G/siqI6twNjkzs+tMo8sRERERG9Bz7BxUwsUEqnlX4+76d9OgYgOjyxEREREbULBzUHc3uJujE46SnpVudCkiIiJiIwp2DszD1QMPVw+jyxAREREb0TV2Dmbz8c18uf9LsnOyjS5FREREbEwzdg4kx5zDpPWT2Be7j+jkaJ674zmjSxIREREb0oydAwn7I4x9sfvwdvNm7C1jjS5HREREbEzBzkFk52QzNXwqAE/d/hQVPSoaXJGIiIjYmoKdg1h6cCmHzh7Ct4wvT7V7yuhyRERExAAKdg4gKyeLaeHTAHim3TP4lvE1tB4RERExhoKdA1i0bxFH44/i5+HHE22fMLocERERMYjuinUADSo2oH1ge/o16oe3u7fR5YiIiIhBFOwcwB017uDH0T+Sbdaz60REREozBTsHYTKZcDFpOEVEREozXWNXgn2x7wte2fIK8RfijS5FRERE7ICmeEqojOwMpmyZQmRiJJU8KjGh7QSjSxIRERGDacauhPpi3xdEJkZSxasKD976oNHliIiIiB1QsCuBMrMzeX3b6wA81/45yrqWNbgiERERsQcKdiXQ4t8XczzhOJU9KzOu9TijyxERERE7oWBXwmTlZDFz20zAssqEh6uHwRWJiIiIvVCwK2G+PvA1x+KPUbFsRca3GW90OSIiImJHdFdsCdM+sD0P3vIgDf0a4uXmZXQ5IiIiYkcU7EqYOuXrMO/eeUaXISIiInZIp2JFREREHISCXQkR9kcYQ0KH8Hvs70aXIiIiInZKp2JLALPZzKs/vMq+2H1kxTRiQlAQwcHg7Gx0ZSIiImJPDJmxO3PmDH379sXX1xc/Pz8mTpxIVlZWvn179epFmTJl8PLysn599913Nq7YWC8tXM2+2H2Q7k3Y80/SpQvUqgVhYUZXJiIiIvbEkGA3ZMgQvLy8iI6OZseOHWzatIn33nsv376//fYb69evJyUlxfrVs2dPG1dsnOXLzbz54xuWFzsfhQsVAIiKgoEDFe5ERETkXzYPdseOHSM8PJy3334bDw8P6tSpw5QpU5g7d26evsePHyc+Pp5bb73V1mXahexsGP/mVgjcDlnu8MtE6zaz2fJ94kRLPxERERGbX2N38OBBKlSoQLVq1axtTZo0ITIykoSEBHx9fa3tO3fuxNvbmyFDhrBz5078/f2ZNGkSY8aMKXD/6enppKenW18nJSUBkJmZSWZmZtF/oH/2ffn3ovLDDybONvpntm7PaEipkmu72QwnT8KWLVl06mQu0mM7iuIaG7k5Ghf7pbGxTxoX+2SrcSnM/m0e7JKTk/H09MzV5uFhWRYrJSUlV7BLT0+nXbt2zJw5k2bNmrFlyxYGDBiAt7c3gwYNynf/b7zxBtOnT8/TvmHDButxisvGjRuLdH/f/JgM9dZDjhP8/GyB/dat20tqalSRHtvRFPXYSNHQuNgvjY190rjYp+Iel7S0tOvuazKbzTad6lmxYgUPPfQQcXFx1rbff/+d5s2bk5CQQLly5a76/scee4zY2FhCQ0Pz3Z7fjF1gYCBxcXH4+PgUzYe4QmZmJhs3biQkJARXV9ci2++671PoM+O/4B0N6/O/BhFg40bN2BWkuMZGbo7GxX5pbOyTxsU+2WpckpKS8PPzIzEx8ZpZxuYzds2aNePcuXPExsbi7+8PwKFDhwgICMgT6hYsWJBndi49PZ2yZcsWuH93d3fc3d3ztLu6uhb7H4aiPsZdIeUJeOhZoqIgv9hmMkFAAHTp4qJHn1yDLcZfCk/jYr80NvZJ42KfintcCrNvm988Ub9+fTp06MDEiRNJTk7m+PHjzJgxg7Fjx+bpm5iYyOOPP86ePXvIyclhzZo1LFmyhIcfftjWZRvC2RnmzLH8bDLl3nbp9ezZep6diIiIWBjyuJPQ0FCysrKoXbs2bdu2pWfPnkyZMgUALy8vFi9eDMDEiROZMGEC/fr1w8vLi+eff54vvviC4OBgI8q2maikKNrNb8eyg8vo189MaChUr567T0AAhIZC//7G1CgiIiL2x5CVJ/z9/fnmm2/y3ZaSkmL92WQyMXnyZCZPnmyr0uzCrO2z+OXUL8zdMZfBTQfTvz/06QPbtkFMDFStilaeEBERkTy0pJidib8Qzye7PgHgxQ4vWtudnaFzZ4OKEhERkRLBkFOxUrC5O+aSmplKyyot6Vmv9KywISIiIjdPwc6OpGak8p9f/wPAC3e8gOnKOyZERERErkLBzo4s2LOAcxfOUbd8XQY2GWh0OSIiIlLCKNjZiaycLN77xfIQ4mfaP4Ozk+6MEBERkcJRsLMTTiYn3uvxHnc3uJuRLUYaXY6IiIiUQLor1k44mZzo06gPfRr1MboUERERKaE0YyciIiLiIBTs7MCD3z7Ia1tf4/yF80aXIiIiIiWYTsUa7HDcYebvmY8JE4OaDKJ82fJGlyQiIiIllGbsDDZr+ywA7m14Lw39GhpcjYiIiJRkCnYGik2J5Yt9XwCWR5yIiIiI3AwFOwN9sPMD0rPTaVu9LXcE3mF0OSIiIlLCKdgZJC0zjQ92fgBYZuu0fJiIiIjcLAU7g3y+93PiL8RT27c2/Rr1M7ocERERcQC6K9YgXWp1YXTL0bSt3lbLh4mIiEiRULAzSONKjVnQZ4HRZYiIiIgD0alYEREREQehYGdje2L2MPp/o9l7eq/RpYiIiIiD0alYG5vz6xwW7ltIelY6SwYsMbocERERcSCasbOh2JRYvjrwFQBPtn3S4GpERETE0SjY2dDHv31MRnYGtwfcTtuAtkaXIyIiIg5Gwc5G0rPS+ei3jwDN1omIiEjxULCzkaUHlxKbGkt17+oMaDzA6HJERETEASnY2YDZbGbOr3MAeKzNY7g6uxpckYiIiDgi3RVrA1k5WfRr1I/Ei4k83Opho8sRERERB6UZOxtwdXZlcsfJHJ1wlIoeFY0uR0RERByUgp0NmUwmo0sQERERB6ZgV8zm7ZpH2B9hZOdkG12KiIiIODgFu2KUmpHKc5ueY8CyAayPWG90OSIiIuLgFOyK0aL9i0i4mEDd8nXpWa+n0eWIiIiIg1OwKyZms5m5O+YCMOG2CTiZ9KsWERGR4qW0UUy2ntjKwbMH8XT1ZFTLUUaXIyIiIqWAgl0x+WDnBwAMbz6ccmXKGVyNiIiIlAYKdsUgOjmaFYdXAJaVJkRERERsQStPFIMzqWdoVbUVbs5uBPkHGV2OiIiIlBIKdsWgZZWW/PLgLySnJxtdioiIiJQiOhVbjLzdvY0uQUREREoRBbsi9tXvX3H+wnmjyxAREZFSSMGuCP1+5neGhg2l1pxaOg0rIiIiNqdgV4Q+2fUJACF1QnQaVkRERGzOkGB35swZ+vbti6+vL35+fkycOJGsrKx8+65du5agoCA8PT1p3Lgxq1evtnG11yc1O5XFBxYDesSJiIiIGMOQYDdkyBC8vLyIjo5mx44dbNq0iffeey9Pv6NHjzJgwABmzJhBYmIi06dPZ/DgwURFRRlQ9dWFx4eTmplKY7/GdK7V2ehyREREpBSyebA7duwY4eHhvP3223h4eFCnTh2mTJnC3Llz8/RduHAhwcHB9O3bFxcXFwYPHkynTp349NNPbV32VZnNZtbFrQPg0TaPYjKZDK5IRERESiObB7uDBw9SoUIFqlWrZm1r0qQJkZGRJCQk5OkbFJT7Ab9NmjRh3759tij1uoWfCOdU+ik8XT0Z2WKk0eWIiIhIKWXzBxQnJyfj6emZq83DwwOAlJQUfH19r9k3JSWlwP2np6eTnp5ufZ2UlARAZmYmmZmZN1t+vvbE7MEZZ+5vcj9lncoW23Gk8C6NhcbEvmhc7JfGxj5pXOyTrcalMPu3ebDz9PQkLS0tV9ul197e3tfV98p+l3vjjTeYPn16nvYNGzZYA2RRa0Qj5jWdhznTzNq1a4vlGHJzNm7caHQJkg+Ni/3S2NgnjYt9Ku5xuTILXY3Ng12zZs04d+4csbGx+Pv7A3Do0CECAgIoV65cnr67d+/O1Xbo0CFat25d4P5ffPFFJk2aZH2dlJREYGAg3bt3x8fHpwg/yb8yMzPZuHEjISEhuLq6Fssx5MZobOyTxsV+aWzsk8bFPtlqXC6dfbweNg929evXp0OHDkycOJFPP/2UuLg4ZsyYwdixY/P0HTFiBLNmzWLZsmX079+fsLAwwsPDmTNnToH7d3d3x93dPU+7q6trsf9hsMUx5MZobOyTxsV+aWzsk8bFPhX3uBRm34Y87iQ0NJSsrCxq165N27Zt6dmzJ1OmTAHAy8uLxYstz4Nr1KgRK1eu5PXXX6d8+fK8+uqrLF++nAYNGhhRtoiIiIhds/mMHYC/vz/ffPNNvtuuvDGiR48e9OjRwxZliYiIiJRoWlJMRERExEEo2ImIiIg4CAU7EREREQehYCciIiLiIBTsRERERByEgp2IiIiIg1CwExEREXEQCnYiIiIiDkLBTkRERMRBKNiJiIiIOAgFOxEREREHoWAnIiIi4iBcjC6guJnNZgCSkpKK7RiZmZmkpaWRlJSEq6trsR1HCk9jY580LvZLY2OfNC72yVbjcinDXMo0V+PwwS45ORmAwMBAgysRERERuXHJycmUK1fuqn1M5uuJfyVYTk4O0dHReHt7YzKZiuUYSUlJBAYGcvLkSXx8fIrlGHJjNDb2SeNivzQ29knjYp9sNS5ms5nk5GSqVauGk9PVr6Jz+Bk7JycnAgICbHIsHx8f/YGzUxob+6RxsV8aG/ukcbFPthiXa83UXaKbJ0REREQchIKdiIiIiINQsCsC7u7uTJ06FXd3d6NLkStobOyTxsV+aWzsk8bFPtnjuDj8zRMiIiIipYVm7EREREQchIKdiIiIiINQsLtJZ86coW/fvvj6+uLn58fEiRPJysoyuqxSb9++fYSEhFChQgWqVKnCyJEjiYuLM7os+Ud2djadO3dm1KhRRpci/4iPj2fkyJFUrFiR8uXL07dvX2JiYowuS4Ddu3fTsWNHfH19qVq1Kk8++STp6elGl1VqnT17lnr16hEeHm5t+/XXX2nbti1eXl7Url2b+fPnG1afgt1NGjJkCF5eXkRHR7Njxw42bdrEe++9Z3RZpdqFCxfo1asX7du35/Tp0xw8eJBz584xevRoo0uTf0yfPp1t27YZXYZcZsCAAaSkpBAREUFkZCTOzs489NBDRpdV6uXk5HD33XczcOBA4uPj2blzJ+vXr+ftt982urRS6aeffqJdu3ZERERY286fP0/v3r0ZOXIkCQkJzJ8/n6eeeoodO3YYUqOC3U04duwY4eHhvP3223h4eFCnTh2mTJnC3LlzjS6tVIuMjKRFixa88soruLm5UbFiRcaNG8fWrVuNLk2AzZs3s3z5cgYMGGB0KfKPXbt28csvv/D555/j6+uLt7c38+bN46233jK6tFLv/PnzxMTEkJOTY10n1MnJCQ8PD4MrK30WLlzI0KFDmTlzZq725cuXU7FiRR577DFcXFzo2rUrw4YN44MPPjCkTgW7m3Dw4EEqVKhAtWrVrG1NmjQhMjKShIQE4wor5Ro2bMi6detwdna2toWGhtKqVSsDqxKwXLowduxYlixZor+Y7MiOHTto0qQJ8+bNo169elStWpWnn36aqlWrGl1aqVexYkWeeuopnn76adzd3QkMDKRBgwY89dRTRpdW6vTo0YOIiAiGDBmSq/3gwYMEBQXlamvSpAn79u2zZXlWCnY3ITk5GU9Pz1xtl/6ySklJMaIkuYLZbGby5MmsWrWKOXPmGF1OqZaTk8Pw4cOZNGkSLVq0MLocuUx8fDz79+/n6NGj7Nmzh7179xIVFcXIkSONLq3Uy8nJoWzZssydO5fU1FQOHDjAoUOHmDp1qtGllTpVqlTBxSXvSqwFZQGjcoCC3U3w9PQkLS0tV9ul197e3kaUJJdJSkpi4MCBfPnll2zdujXPv6jEtt544w3KlCnDhAkTjC5FrnDp4aqzZ8/G29sbf39/Zs6cydq1a/WPVIOtWLGC5cuXM378eNzd3WnatClTp07lww8/NLo0+UdBWcCoHJA3esp1a9asGefOnSM2NhZ/f38ADh06REBAwHUv1ivFIyIigt69e1OjRg1+++03/Pz8jC6p1Fu0aBHR0dH4+voC//4jaOXKlbp0wWBNmjQhJyeHjIwMypQpA1juXAbQM+yNFRkZmecOWFdXV9zc3AyqSK7UrFkzNmzYkKvt0KFDNGvWzJB6NGN3E+rXr0+HDh2YOHEiycnJHD9+nBkzZjB27FijSyvVzp8/T9euXWnfvj3r169XqLMThw8fJikpiYSEBBISEhg6dChDhw5VqLMDISEh1KlThzFjxpCSksLZs2d5+eWX6du3r84+GKxHjx7ExMTw+uuvk52dzV9//cVrr73G8OHDjS5N/tG/f39Onz7N7NmzyczMZMuWLSxevJgxY8YYUo+C3U0KDQ0lKyuL2rVr07ZtW3r27MmUKVOMLqtU++yzz4iMjGTZsmX4+Pjg5eVl/RKRvFxdXfnhhx9wcXGhfv36NGjQgICAABYsWGB0aaVekyZNWL16Nd9++y0VK1akS5cu3HPPPXnuzBTjVKxYkY0bN/LNN99QsWJFHnzwQf7zn//QpUsXQ+rRWrEiIiIiDkIzdiIiIiIOQsFORERExEEo2ImIiIg4CAU7EREREQehYCciIiLiIBTsRERERByEgp2IiIiIg1CwExEREXEQCnYiUii1atWiTJkyeHl54e3tjaenJ9WqVePZZ58lJyfnpvb9999/YzKZ+Pvvvwv1vmeffRaTycSKFSvy3X7s2DEeeOABqlWrhqenJzVq1GDcuHFERkbmOXbZsmVJTEzMs48nnngCk8nE559/nu8xRo0ahaura66VTi59XVp31Rb+7//+jzfeeAOAzp07YzKZ+OSTT/L027NnDyaTic6dOwNX/92PGjWKUaNGXfPYP/30E3379r2J6kXkZinYiUihffzxx6SkpJCcnExqairr169n4cKFTJ8+3ea1XLhwgQULFvDII4/w7rvv5tn+22+/ceutt1KmTBl++uknUlJS2LZtGyaTiRYtWvD777/n6u/l5cXXX3+dqy0jI4Ovv/4aT0/Pq9YybNgwUlJS8nw5Ozvf/Ae9Dn/88Qfz5s3j6aeftrb5+fnlG0bnz5+Pj49PkR7/jjvuwMvLS0uRiRhIwU5EblpQUBAdO3Zk9+7dgGWmaNq0adbtV84GffTRR9StWxdfX1+aN2/Of//731z7W7x4MY0bN8bT05M777yTqKioAo+9ZMkSqlevzhtvvMHevXv55Zdfcm1/6KGHGDx4MJ988gm1a9fGZDJRs2ZNPv74Y3r27MmDDz6Yq/+wYcNYuHBhrraVK1dyyy234OfnV9hfjdW0adPo3r07bdq0oUKFCmzdupXk5GQef/xxAgMDqVy5Mvfddx+xsbHW9/z000+0adMGT09P2rZty4svvmidYcvPK6+8wujRo3Fzc7O2DR48mF27dnHkyBFrW3p6OkuXLmXQoEGF/hz33HNPrtlId3d3TCYTERERAEyYMIGpU6eSkZFR6H2LyM1TsBORm5KZmUl4eDibN2+me/fu1+z/119/8dRTT7F27VoSEhJ45513mDBhAjExMdY+u3bt4pdffuHUqVPEx8fz6quvFri/uXPn8thjj+Hr68uIESNyzdr9/fff7N27l5EjR+b73oceeogdO3bkOiU7bNgwfvvtt1xBaMGCBYwdO/aan+1avv/+e9566y0iIyNp3749Y8aM4ejRo+zatYu//voLHx8f+vXrh9lsJi4ujrvvvpsBAwaQkJDAW2+9xYcffljgvmNjYwkLC2Po0KG52itVqkTv3r1zzdqtWLGCNm3aEBAQkGc/zZs3x9fXN9fXkiVLrNtXrVplnYk8efIkdevW5ZlnnqFu3boAtG3bFjc3N7799tub/G2JyI1QsBORQnv00Uetf+lXqlSJxx9/nKeffprHH3/8mu91cXHBbDbz8ccf89NPP9GtWzdSU1OpWrWqtc/LL79MuXLlKF++PD179rTOBl3pxx9/JDIykhEjRgDw5JNPsnLlSv766y8AoqOjAahSpUq+769WrVqufmAJQnfddZc1CJ08eZLdu3fTp0+fa362JUuW5AlF69evt26vU6cOXbt2xcvLi/j4eEJDQ/nPf/5D5cqV8fLyYvbs2ezcuZPdu3ezatUqPD09ef7553F1daVz586MGTOmwGOHh4dTrVo1AgMD82wbPXo0ixYtsl4DOX/+/AL3tX//fhISEnJ9XRkWAS5evMi9995L06ZNefvtt3Nta9euHd9///01f18iUvQU7ESk0D788MNcf/EfOHCAl19+GZPJdM331qhRg/DwcP7++2/uvvtuKlSowFNPPcXFixetfSpWrGj92c3NjaysrHz39f7775OcnEyNGjXw8/MjODiYnJwc3nvvPQBrWDxx4kS+7z9+/HiufpdcHoQ+//xz7r//ftzd3a/52YYOHZonFPXo0cO6/VKQBKynpdu2bWsNgdWqVcPFxYXjx49z5swZAgMDc/1OGzZsWOCxIyMjqV69er7b7rrrLjIyMvj++++JjIxk//793Hvvvdf8PAXJyclh+PDhZGdns2jRojzjHhAQwMmTJ294/yJy41yMLkBEHI+zs3Oua6zi4uKsP585c4bs7GxWrFhBTk4OP//8MwMGDKBBgwbcdddd132M6OhoVqxYwbp163IFnnXr1vHUU0/x6quvUrt2bVq1asX8+fMJCQnJs4///ve/tGrVipo1a+a6G7R3797WIPT5558XeLdtYV0egC6dBj18+HCuGcVDhw5Rp04dVq1axYkTJ8jJycHJyfJv8FOnThW4bycnpwLvSnZxcbFeO9igQQOGDRuW6zq8wpo4cSJ79+5l+/btlClTJs/2rKwsm90wIiK5acZORIpc48aN+e6770hISCAxMZG33nrLui0yMpKQkBA2b96Mk5OTdRarsDcmfPzxxzRp0oRu3boREBBg/XrggQcoW7YsH330EWA57fjdd9/xyCOP8Pfff5OTk8Px48d56KGH2LhxY54bN8AShIYPH86kSZOoUKECzZs3v4nfRv6qVavGXXfdxZNPPsm5c+fIzMxk5syZtGnThoSEBO666y7c3d2tNyLs3r0738eWXFKzZs2r3mQyevRoVq5cyWeffXbVU7rX8vbbb7N06VLWrVtHpUqV8u0THR1NjRo1bvgYInLjFOxEpMi99NJL+Pv7U7t2bVq2bJnrtF/r1q354IMPeOSRR/Dy8qJjx448+uijDB48+Lr3n5mZybx58/J9tpqbmxujRo3i/fffJyMjgxYtWrBnzx4yMzMJDg62HhMs15O1bNky32OMHj2aAwcO3FQIupZFixbh6+tLy5Yt8fPzY82aNaxfv54qVarg4eHBhg0b+PXXX/H392f8+PF07dq1wH117dqVM2fOWE8vXykoKIhGjRpRuXJlmjVrdsM1v/DCC6SmptK2bVu8vb2td8cuXrzY2uenn36iZ8+eN3wMEblxJrPZbDa6CBERubZp06YRHh5OeHh4vtsHDhxImzZteP75521b2GW2b9/OkCFDOHbs2E2d7hWRG6MZOxERBzFjxgzmzZtHenq6YTW89957TJ8+XaFOxCAKdiIiDqJx48Y8/PDD+a7AYQvbtm3jwoULjB492pDji4hOxYqIiIg4DM3YiYiIiDgIBTsRERERB6FgJyIiIuIgFOxEREREHISCnYiIiIiDULATERERcRAKdiIiIiIOQsFORERExEEo2ImIiIg4iP8HN07+VJYxaW8AAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fitModel = NewFitModel(mot_loading)\n",
"fitAnalyser = FitAnalyser(fitModel, fitDim=1)\n",
"\n",
"params = fitAnalyser.fitModel.make_params()\n",
"params.add(name=\"A\", value=1e8, max=np.inf, min=-np.inf, vary=True)\n",
"params.add(name=\"tau\", value=1, max=np.inf, min=-np.inf, vary=True)\n",
"\n",
"fitResult = fitAnalyser.fit(data, params, x='mot_load_duration').load()\n",
"freqdata = np.linspace(0, 10, 500)\n",
"fitCurve = fitAnalyser.eval(fitResult, x=freqdata, dask=\"parallelized\").load()\n",
"fitCurve = fitCurve.assign_coords({'x':np.array(freqdata)})\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"data.plot.errorbar(ax=ax, yerr = data_std, fmt='ob')\n",
"fitCurve.plot.errorbar(ax=ax, fmt='--g')\n",
"plt.xlabel('Push AOM Freq (MHz)')\n",
"plt.ylabel('NCount')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: ()\n",
"Coordinates:\n",
" final_amp float64 0.88\n",
"Data variables:\n",
" A float64 3.548e+08\n",
" tau float64 2.918</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-306565fe-c794-4807-9d12-42b0a94b6e46' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-306565fe-c794-4807-9d12-42b0a94b6e46' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-df5adb4c-20c8-4566-8e8d-a86a1f0f8f23' class='xr-section-summary-in' type='checkbox' checked><label for='section-df5adb4c-20c8-4566-8e8d-a86a1f0f8f23' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>final_amp</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.88</div><input id='attrs-46e0a84f-98ec-4515-8ae3-f47284f3bb80' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-46e0a84f-98ec-4515-8ae3-f47284f3bb80' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-728f29aa-4c6d-4813-bfb4-f25e88ee19b1' class='xr-var-data-in' type='checkbox'><label for='data-728f29aa-4c6d-4813-bfb4-f25e88ee19b1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.88)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-bcc4a974-46bb-4072-8c23-89fa6a78d769' class='xr-section-summary-in' type='checkbox' checked><label for='section-bcc4a974-46bb-4072-8c23-89fa6a78d769' class='xr-section-summary' >Data variables: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>A</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>3.548e+08</div><input id='attrs-e952e42d-4ebd-4c1a-8370-88315a4e1039' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e952e42d-4ebd-4c1a-8370-88315a4e1039' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ae3e1a27-1db7-44c3-8223-74f1032c0006' class='xr-var-data-in' type='checkbox'><label for='data-ae3e1a27-1db7-44c3-8223-74f1032c0006' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(3.54756438e+08)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tau</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>2.918</div><input id='attrs-173f8442-39e3-4477-b976-54be113fe968' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-173f8442-39e3-4477-b976-54be113fe968' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-16a309d6-1e1c-4753-8138-a305ff297155' class='xr-var-data-in' type='checkbox'><label for='data-16a309d6-1e1c-4753-8138-a305ff297155' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(2.91809259)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-0a1d5298-df4e-4299-8163-fbaa9fb327b6' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-0a1d5298-df4e-4299-8163-fbaa9fb327b6' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-5d1f8b9a-d597-4d37-8d23-c0d374053b2a' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-5d1f8b9a-d597-4d37-8d23-c0d374053b2a' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: ()\n",
"Coordinates:\n",
" final_amp float64 0.88\n",
"Data variables:\n",
" A float64 3.548e+08\n",
" tau float64 2.918"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"val = fitAnalyser.get_fit_value(fitResult)\n",
"val"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: ()\n",
"Coordinates:\n",
" final_amp float64 0.88\n",
"Data variables:\n",
" A float64 2.776e+06\n",
" tau float64 0.05867</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-11c5cd5b-f73f-4855-a7a6-c2f7d26b992b' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-11c5cd5b-f73f-4855-a7a6-c2f7d26b992b' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-9070dfd9-5691-4d56-afbe-ea45a13da857' class='xr-section-summary-in' type='checkbox' checked><label for='section-9070dfd9-5691-4d56-afbe-ea45a13da857' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>final_amp</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.88</div><input id='attrs-5e6f08c9-a13b-414c-8f0e-f69366ce99ab' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5e6f08c9-a13b-414c-8f0e-f69366ce99ab' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a61baea4-47a3-4bb0-abae-0f21c5b981e7' class='xr-var-data-in' type='checkbox'><label for='data-a61baea4-47a3-4bb0-abae-0f21c5b981e7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.88)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-29c4a383-1ce7-4a2e-a4a8-445563d27ef6' class='xr-section-summary-in' type='checkbox' checked><label for='section-29c4a383-1ce7-4a2e-a4a8-445563d27ef6' class='xr-section-summary' >Data variables: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>A</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>2.776e+06</div><input id='attrs-667a112d-177c-4a07-ad4d-8ff370431006' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-667a112d-177c-4a07-ad4d-8ff370431006' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-77ad3d5f-cffb-47d3-97fc-ae92496f9a2f' class='xr-var-data-in' type='checkbox'><label for='data-77ad3d5f-cffb-47d3-97fc-ae92496f9a2f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(2776453.58029856)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tau</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.05867</div><input id='attrs-7eddaa69-a7ac-4e0e-9dcc-bc1faf26f824' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-7eddaa69-a7ac-4e0e-9dcc-bc1faf26f824' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b3f9db1e-7125-465b-b8b5-3864b935dc4a' class='xr-var-data-in' type='checkbox'><label for='data-b3f9db1e-7125-465b-b8b5-3864b935dc4a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.05867137)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-bdb7c108-f4fe-4ec3-afb5-1b3ba4661daa' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-bdb7c108-f4fe-4ec3-afb5-1b3ba4661daa' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-32fc181f-3e6c-47c5-afac-ebe7f3cb8933' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-32fc181f-3e6c-47c5-afac-ebe7f3cb8933' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: ()\n",
"Coordinates:\n",
" final_amp float64 0.88\n",
"Data variables:\n",
" A float64 2.776e+06\n",
" tau float64 0.05867"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"std = fitAnalyser.get_fit_std(fitResult)\n",
"std"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.DataArray ()&gt;\n",
"array(1.2157134383410748+/-0.02622973148346536, dtype=object)\n",
"Coordinates:\n",
" final_amp float64 0.88</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'></div></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-5f93dfa3-52ec-495e-92cf-d730bb50a676' class='xr-array-in' type='checkbox' checked><label for='section-5f93dfa3-52ec-495e-92cf-d730bb50a676' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>1.216+/-0.026</span></div><div class='xr-array-data'><pre>array(1.2157134383410748+/-0.02622973148346536, dtype=object)</pre></div></div></li><li class='xr-section-item'><input id='section-fa458166-a05a-4e93-858d-3935c8899d5f' class='xr-section-summary-in' type='checkbox' checked><label for='section-fa458166-a05a-4e93-858d-3935c8899d5f' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>final_amp</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.88</div><input id='attrs-3a363972-1acf-477b-87b0-7dd33ed4bbcb' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3a363972-1acf-477b-87b0-7dd33ed4bbcb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f6589cbf-4c1c-40d0-9976-2b9ae8db4d3b' class='xr-var-data-in' type='checkbox'><label for='data-f6589cbf-4c1c-40d0-9976-2b9ae8db4d3b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.88)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-41ec6a75-61b8-47c6-80f4-7d80b3e49d40' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-41ec6a75-61b8-47c6-80f4-7d80b3e49d40' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-c2222dfd-faf3-4012-ae97-78b5ac9ee3da' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-c2222dfd-faf3-4012-ae97-78b5ac9ee3da' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.DataArray ()>\n",
"array(1.2157134383410748+/-0.02622973148346536, dtype=object)\n",
"Coordinates:\n",
" final_amp float64 0.88"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res = fitAnalyser.get_fit_full_result(fitResult)\n",
"res.A / res.tau / 1e8"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Without push"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The detected scaning axes and values are: \n",
"\n",
"{'mot_load_duration': array([ 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5,\n",
" 6. , 6.5, 7. , 8. , 9. , 10. , 11. , 12. , 13. , 14. , 15. ,\n",
" 16. ]), 'runs': array([0., 1.])}\n"
]
}
],
"source": [
"folderPath = img_dir + SequenceName + '2022/10/11'# get_date()\n",
"\n",
"shotNum = \"0018\"\n",
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
"\n",
"dataSetDict = {\n",
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
" for i in [0]\n",
"}\n",
"\n",
"dataSet = dataSetDict[\"camera_0\"]\n",
"\n",
"print_scanAxis(dataSet)\n",
"\n",
"scanAxis = get_scanAxis(dataSet)\n",
"\n",
"dataSet = auto_rechunk(dataSet)\n",
"\n",
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
"\n",
"imageAnalyser.center = (600, 1125)\n",
"imageAnalyser.span = (1100, 1200)\n",
"imageAnalyser.fraction = (0.1, 0.1)\n",
"\n",
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
"\n",
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
"Ncount_mean = calculate_mean(Ncount)\n",
"Ncount_std = calculate_std(Ncount)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbiklEQVR4nO3deXhU5eH28W92sk42CCEJa9hCEJRNFGTTqmhBKi0qmyAuaFHQHyqvBTeUQm0Ba21dUFBQQbQuKAXFIFVRQBQw7GHJAtkImUzIOjPn/QMYSVlMMMmZTO7Pdc0FOc+Zyf0gTm7OmfMcL8MwDERERESkwfM2O4CIiIiI1A4VOxEREREPoWInIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ/iaHaAhcTqdHDlyhNDQULy8vMyOIyIiIo2AYRjYbDZatGiBt/eFj8mp2NXAkSNHSEhIMDuGiIiINEIZGRnEx8dfcB8VuxoIDQ0FTv7BhoWFmZxGREREGoOioiISEhJcPeRCVOxq4PTp17CwMBU7ERERqVfV+RiYLp4QERER8RAqdiIiIiIeQsVORERExEOo2ImIiIh4CBU7EREREQ+hYiciIiLiIVTsRERERDyEip2IiIiIh1CxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiIiIeAgVOxEREREPoWInIiIi4iFMKXbbtm3jmmuuITIykubNmzNu3Djy8/MB+O677+jTpw8hISG0adOGRYsWVXnukiVLSExMJDg4mJ49e7Jx40bXmMPhYPr06cTExBAaGsrw4cM5evSoazw3N5ebbrqJ8PBwoqOjmTp1Kna7vX4mLSIi4kEMwyDXVsbGtGN88EMWOzKtVNidZsdq9Hzr+xuWlpZy/fXXc+edd/LJJ59gs9kYN24cEyZM4I033mDo0KE89dRT3H333WzYsIGbbrqJrl270rt3b9avX8+UKVNYvXo1vXv35oUXXmDYsGEcPnyYoKAgZs+ezdq1a9myZQsWi4W77rqLSZMm8cknnwAwatQo4uLiOHLkCNnZ2QwbNoz58+czffr0+v5jEBERaRDsDifpBSWk5Z1gf24xaXknH/tzi7GVVT044u/jTefYUC6JD+eSeAuXxIeT2CwEH28vk9I3Pl6GYRj1+Q337NnD1KlTWbVqFT4+PgB89NFHjB07lr/+9a/MmzePvXv3uvafPHkyJSUlLFmyhDFjxhAUFMTLL7/sGu/cuTMPP/wwEyZMICEhgblz53LbbbcBkJOTQ2xsLPv378fpdNK+fXuysrJo0aIFAMuXL+fhhx/m8OHD1cpeVFSExWLBarUSFhZWW38kIiIipisut3PgjNKWlnuCtLxiDh07QaXj3FXB2wsSIoOICW3Cnhwb1tLKs/YJ8vchuYWFrvEWLom30C0+nFZRQXh5qexVV036R70fsevYsSOrV6+usm3lypX06NGD1NRUunbtWmUsKSnJdTo2NTWViRMnnjW+bds2rFYrmZmZVZ4fExNDREQE27dvx8vLi8jISFepO/3c9PR0CgsLCQ8PPytreXk55eXlrq+Lioouet4iIiJmO3n6tJy03DMKXN7JAnfUWnbe5wX6+dC2aTCJzUJo1/TkI7FZCK2igmji5+N67YyCUrZlFrI9s5BtmVZ+yrJSUuFg06ECNh0qcL1eWBPfKkf1uiVYaB7WRGWvFtR7sTuTYRjMnDmTjz/+mA0bNrBw4UKCg4Or7BMUFERxcTEANpvtvOM2mw3ggs8/1xhAcXHxOYvdnDlzePLJJy9+giIiIiaodDg5fKykymnTtLwTHMgtxlZ+/s+WR4cE0O7MAtfsZIGLDWuC9y+cTvXy8qJlVBAto4L4bbeTB1EcToMDecVsy7SyPbOQ7ZlWdh4toqjMzlf78/lqf36V793tVNG75NTRvaiQgNr5A2lETCt2RUVFTJgwge+//54NGzbQtWtXgoODKSwsrLJfSUkJoaGhwMliVlJSctZ4dHS0q7Sdazw0NBSn03nOMcD1+v9rxowZPPjgg1UyJyQk1HyyIiIidSSnqIxv0vLZl1Ps+gzc4WMl2J3nP33aKiqYdk2DaXfmEbimIViC/Go1m4+3F+1jQmkfE8rIHvEAVNid7M2xsf1U2duWaWVvjo384nLW7c5l3e5c1/PjwgPplmCha1w43eItJMdbCGtSuxk9jSnFLi0tjaFDh9KyZUu2bNlCdHQ0AMnJyaxdu7bKvjt37iQ5Odk1npqaetb40KFDiYiIIC4ujtTUVNf+2dnZFBQUkJycjNPp5NixY+Tk5BATE+N6bnx8PBaL5Zw5AwICCAjQvxZERMR9OJ0G2zILSTlVglKPnPtjQkH+PqdKW9UjcK2iggjw9ann1D/z9/UmOc5CcpyF2/q0BKCs0kHqkSLXUb3tmYUcyD9BVmEpWYWlfLoj2/X8tk2DuSTu51O4SbEWAv3Nm4+7qfeLJ44fP0737t0ZPHgwixYtwtv75xVXjh07RmJiIo8//jj33XcfX331FcOHD+fDDz9k0KBBrFu3jhEjRvDhhx/Sr18//vGPf/DUU0+xf/9+IiMjmTlzJh988AEfffQR0dHR3HnnnWRnZ7N+/XoA+vfvT3x8PC+//DL5+fn89re/ZeTIkTzxxBPVyq6LJ0RExAzW0kr+uy+PL3bn8uWePI6dqHCNeXnBJXEnL044/dm3dk1DiLU07M+s2coq2ZFlZUemle2ZVrZlFpJ5vPSs/Xy8vWgdFUSgvw9+Pt74eXvj6+N18vc+Xvie+trf5+Svvj7e+HmfHPc9Yx8/X69feO6pMe9TY2fs4+/rRXNLICEBdXO8rCb9o96L3d/+9jceeughgoLOviKmuLiYLVu28MADD7Bjxw6aNm3KzJkzuf322137LF26lNmzZ5OZmUmXLl14/vnn6dOnDwCVlZXMnDmTpUuXYrPZGDRoEC+//DLNmjUDTl4l+8c//pGUlBS8vb0ZN24cc+fOdV2d+0tU7EREpD4YhkFaXjFf7M7li925bDl0vMqp1dAAX67q0JRBnZoxsGNTohvJZ9GOFZezI8ta5TRunq38l59YD/415jKuS46tk9d262LXkKnYiYhIXSmrdPDtgWOk7M7liz25ZBRUPTrVrmkwQzrHMKhjM3q2jsDPRzePMgyDnKJyDuQVU+5wYncYVDqcVJ76vd3ppMJhYD895nRSaT+5vfLUvnaHk0rnyX1+3nbqdZw/P7fC4cTuPOP3p1630nly3/mjujOoY7M6madbL3ciIiIiJx21lpKyO48vdufw9f5jlFY6XGP+Pt5c3i6KwR2bMrhTDC2jgkxM6p68vLxobmlCc0sTs6O4DRU7ERGReuJwGvyYcfzUKdY8dh2teuFD87AmDOrUjMGdmnFlYhRB/voxLTWjvzEiIiJ1qLCkgi/35pGyO5cv9+ZxvOTnuzN4ecGlCeEM7tSMQZ2akRQb1qAveBDzqdiJiIjUIsMw2Jtz8sKHlN25bDlcwJlLyoU1OXnhw5DOzRjQoRmRwf7mhRWPo2InIiLyK5VVOvgmLf9Umcsjq7DqhQ8dYkJOnmLt2IwerSLw1YUPUkdU7ERERGrAVlbJ7mwbO48UsfNIEalHrezNLqbC4XTtE+DrTd92UQzp1IyBHZuREKkLH6R+qNiJiIicw+mlNHYetZKaVcTOoycfh4+VnHP/FpafL3y4ol207oYgplCxExGRRs/ucHIg/8TJo3BHi1y/Fpxxh4czxVqakBQbRlKLMLq0CKNzbBgtI89eeF+kvqnYiYhIo3Ki3M7u7KIqJW53to1yu/OsfX28vWjXNJguLSyuItc5NkwXPIjbUrETERGPZBgGebZyUs84ArfrSBEHj53gXPdcCvb3ofOp8na6xHWICaWJn06pSsOhYiciIg2ew2lwMP+E6whc6hEru44WkV987lOpMWEBrvKWFGshqUUYrSKD8PbWqVRp2FTsRETErZRVOigsqeR4SQXHSyqwllRy/NTX1tJKjp+o4HhJJYUlFRSWnvq1pBK78+zDcN5e0LZpyFmfh4sOCTBhZiJ1T8VORETqhN3hPFnESn4uX8dP/VpY+nM5O36i0lXQjpdUUFZ59mfdqiPQz4dOsaF0OeMoXMeYUF2dKo2Kip2IiPwqJRV2Fq7bx66jNqwlFa6ja7Yy+0W/pq+3F+FBfoQH+RMeePLXiCA/IoL9sQT6EXHq6/Agf8KDTn7dNDQAH51KlUZOxU5ERC5ablEZdyzZwo4s63n3CWviS0Rw1YJ2ZiE7XeAizvg6JMBXS4eIXAQVOxERuSh7sm1MXLyZrMJSIoP9eeg3HYgJbUJE8M9H2iyBfrp9lkg9UrETEZEa27A3j/uWbcVWbqdt02Bev70XraKCzY4l0uip2ImISI28symdxz74CYfToE+bSF4a24PwIC3YK+IOVOxERKRanE6Dv6zdwz/XpwHwu0vjmHNzVwJ8ddWpiLtQsRMRkV9UVungoXe38cn2owBMvbo9DwxprwscRNyMip2IiFzQseJy7nxjC1vTC/Hz8WLuzZfwu8vizY4lIuegYiciIueVllfMhNc3k15QQlgTX14a25O+7aLMjiUi56FiJyIi5/TtgWPc/eb3WEsraRkZxGu39yKxWYjZsUTkAlTsRETkLP/+IZOHV26n0mFwactwXh3XkyjdX1XE7anYiYiIi2EYLFy3jwWf7wPghq6x/PUP3WjipytfRRoCFTsREQGgwu7k0fe38/7WLADuGdCOh6/tiLfuvyrSYKjYiYgI1pJK7l66hW8PFODj7cXTw5O5rU9Ls2OJSA2p2ImINHLpx0qYsHgTaXknCAnw5R+jL2NAh6ZmxxKRi6BiJyLSiG1NP86dS7Zw7EQFsZYmvHZ7LzrHhpkdS0QukoqdiEgj9emOo0xb/iPldiddWoTx2u29iAlrYnYsEfkVVOxERBoZwzB4ecMB5qzeDcDVnZux8JZLCQ7QjwSRhk7/F4uINCJ2h5NZH6Xy1nfpANx+RWtm3piEj658FfEIKnYiIo2ErayS+976gQ178/Dyglk3JjHhyjZmxxKRWqRiJyLSCBwpLGXi4s3szrYR6OfD87deyjVJMWbHEpFapmInIuLhfsqyMnHxZnJt5TQNDeC18b3oGm8xO5aI1AEVOxERD7ZuVw5T3v6BkgoHHWJCeH1Cb+LCA82OJSJ1RMVORMRDLf76IE+t2onTgP7to/nH6MsIa+JndiwRqUMqdiIiHsbhNJj9yU5e//oQALf0SuDpm5Lx8/E2N5iI1DkVOxERD1JSYef+t3/k8105ADx8XUcmD2iHl5eWMxFpDFTsRERqQaXDydHCMgL8vAnw9SbA1wd/X+96XR8u11bGHYu3sCPLir+vN3/7QzduvKRFvX1/ETGfqcUuLy+Pvn378uqrrzJw4EDuueceli5dWmWf0tJSrr76atasWQNA586dOXz4MN7eP59S2Lx5M507d8bhcPDoo4/yxhtvUFJSwuDBg/nXv/5FbGwsALm5udx1112sX78eX19fxowZw3PPPYevr/qtiFy8zOMl3PrKt2QUlJ415ufj5Sp5Ab4/l74zC2CAr/epr31+3sfv59/7n3e/n1+nuNzO9He3k1VYSmSwP6+M60GPVpEm/GmIiJm8DMMwzPjGX3/9NePHjyctLY2UlBQGDhx41j5r167l1ltvZcOGDXTp0oWioiLCw8M5ePAgrVq1Omv/J598kvfff59Vq1ZhsVi46667sNlsfPLJJwAMGjSIuLg4Xn75ZbKzsxk2bBjjx49n+vTp1cpcVFSExWLBarUSFqabZIsIFJyoYOS/vuFA3gl8vb1wGgZOU95VT2obHczrE3rRKirYvBAiUqtq0j9MOVS1ZMkSZs2axbx587jlllvOuU9+fj6jR4/m+eefp0uXLgB8//33REVFnbPUAbz66qvMnTuXhIQEABYuXEhsbCwHDhzA6XSyfv16srKyCAoKom3btsycOZOHH3642sVORORMJ8rtTFi8mQN5J2hhacJ7915BrCUQu8NJhcNJeaWTcruTcrvj5K+VZ/ze7jhrvMJ+6uvK0/uce78zX6fijP0uaxnBvJGXEB7kb/YfjYiYxJRid+211zJ69Gh8fX3PW+weeeQRevbsyejRo13bNm/eTFBQEAMGDCA1NZXWrVvzxBNPcOONN2K1WsnMzKRr166u/WNiYoiIiGD79u14eXkRGRlJixY/f94kKSmJ9PR0CgsLCQ8Pr7P5iojnqbA7mbxsK9syCgkP8uONO/oQazm5Ppyvjze+Pt6oX4lIfTOl2DVv3vyC4wcPHuTNN99k06ZNVbZ7eXnRq1cv5syZQ6tWrXj33Xe5+eab+fLLL4mPjwcgOLjq6YegoCCKi4vPOwZQXFx8zmJXXl5OeXm56+uioqLqTVBEPJrTafDwym1s2JtHoJ8Pr9/ei8RmIWbHEhHBLRc1eu2117jyyivp3r17le3Tp09n5cqVtG/fHn9/f0aPHs3VV1/NypUrXaWtpKSkynNKSkoIDQ0lODj4nGMAoaGh58wxZ84cLBaL63H6FK+INF6GYfDMp7v44Mcj+Hp78c8xl3FpywizY4mIAG5a7N577z3Gjh171vbnnnuOdevWVdlWXl5OYGAgERERxMXFkZqa6hrLzs6moKCA5ORkkpOTOXbsGDk5Oa7xnTt3Eh8fj8Vy7nsmzpgxA6vV6npkZGTU0gxFpKF6acMBFn11EIB5Iy9hYMdmJicSEfmZ2xW7Y8eOsWvXLq666qqzxjIyMrjvvvs4cOAAdrud1157jW+++Ybx48cDMGHCBGbPns3Bgwex2WxMnTqVAQMG0K5dO9q3b0+/fv2YOnUqNpuNgwcP8vTTT3PHHXecN0tAQABhYWFVHiLSeL27JYM/r94NwGNDO/O7y+JNTiQiUpXbLeB28ODJfwnHxcWdNTZv3jy8vb3p378/hYWFdOnShU8//ZTExEQAZs2aRWVlJf3798dmszFo0CBWrFjhev7KlSv54x//SJs2bfD29mbcuHHMnDmzfiYmIg3aul05PPr+DgDuvqotd17V1uREIiJnM20du4ZI69iJNE7fHy5g9KvfUVbp5HeXxfHcyG541+MdJUSkcatJ/3C7U7EiIu5kX46NiYu3UFbpZFDHpsy9+RKVOhFxWyp2IiLncaSwlHGvbcJaWsmlLcP5x+jL8PPR26aIuC+9Q4mInMPxExWMe20TR61ltGsazGvjexHk73YfSxYRqULFTkTkf5RU2Jm4ZDP7c4uJtTThjTv6EBGs20iIiPtTsRMROUOlw8l9y7byQ3ohlkA/lkzsTVx4oNmxRESqRcVOROQUwzB45L3tpOzJo4mfN6/d3pMOMee+M42IiDtSsRMROeXPq3fz/tYsfLy9+Mdtl9GjVaTZkUREakTFTkQEeGXDAV7acACAP/+uK0M6x5icSESk5lTsRKTR+/cPmTzz6S4AHrmuE7/vmWByIhGRi6NiJyKNWsqeXKa/ux2AO/q14Z4BulWYiDRcKnYi0mj9kH6ce5duxe40GN69BY8N7YyXl+4qISINl4qdiDRK+3OLmbh4M6WVDq7q0JS/6P6vIuIBVOxEpNE5ai1l/GubOF5SSbd4C/8cfRn+vno7FJGGT+9kItKoWEsqGf/aJrIKS2kbHcxrt/ciOEC3ChMRz6BiJyKNRmmFgzuWbGZvTjExYQG8cUdvokICzI4lIlJrVOxEpFGwO5xMeXsrWw4fJ7SJL0sm9iY+IsjsWCIitUrFTkQ8nmEY/L9/7+DzXbkE+HqzaHwvOjUPMzuWiEitU7ETEY/3lzV7WLElE28v+Putl9K7jW4VJiKeScVORDzaa18d5MX1aQA8O6Irv+nS3OREIiJ1R8VORDzWR9uO8NSqnQD83286cEvvliYnEhGpWyp2IuKR/rsvj4dW/AjA7Ve05r5BieYGEhGpByp2IuIWHE6DCruzVl5rW0Yhd7/5PZUOgxsviWXWjUm6VZiINApalVNE6o2trJL0ghIyCkpIdz1KySwoIfN4KQ7DoF3TYLq0sNClRRhdWlhIahGGJdCv2t/jQF4xExZvpqTCQb/EaP76B90qTEQaDxU7Eak1doeTo9ayM0rbyUfmqV+Pl1T+4mvszSlmb04x//4hy7UtITKQLrGnyl7cycLXLDTgrKNwOUVljF20iYITFXSNs/CvsT0I8PWp9XmKiLgrFTsRqRXzP9vLP1L2Y3caF9wvMtifhMggWkYG0TIykJaRQSREBpEQEYSvjxc7jxSReqSI1CNWfsoqIquwlIyCk4//pGa7Xic6xJ8k15G9MNo1DWHa8h/JKiyldVQQr0/oRYhuFSYijYyXYRgXfhcWl6KiIiwWC1arlbAwLW4qctr3hwu4+Z8bAfD39SYhIvCM8hbk+n1CZFCNy1ZhSUWVspd6pIi0vGLO1x+bhgbw/uQrSIjUXSVExDPUpH/on7Mi8qs4nAaPf5QKwO97xDP35ktq9TNt4UH+XJEYzRWJ0a5tpRUOdmefLntF7DxiZVe2jWB/HxZP6KVSJyKNloqdiPwqyzdn8FNWEaFNfHnk+k71cqFCoL8Pl7aM4NKWEa5tdocTp3HyiKGISGOlYiciF81aUslf1uwGYNrVHYgOCTAti6+PCp2IiN4JReSizf98L8dLKmnfLISxfVuZHUdEpNFTsRORi7I7u4g3vz0MwBPDuuCnI2YiIqbTO7GI1JhhGDzxUSoOp8H1yc258owLG0RExDwqdiJSY5/sOMq3BwoI8PXm/w3tbHYcERE5RcVORGqkpMLOs5/sAmDywHZaWkRExI2o2IlIjfxrfRpHrGXEhQdyz4B2ZscREZEzqNiJSLWlHyvhXxsOADDzxs408dN9WEVE3ImKnYhU2+xPdlJhd3JlYhTXdmludhwREfkfKnYiUi0b9uaxdmcOPt5ePP7bLnh51f0dJkREpGZU7ETkF1XYnTzx8cn7wY7v25oOMaEmJxIRkXNRsRORX/TGxkMcyDtBVLA/D1zd3uw4IiJyHip2InJBubYyFny+D4BHruuEJdDP5EQiInI+pha7vLw8EhMTWb9+vWvb5MmTCQgIICQkxPV4+eWXXeNLliwhMTGR4OBgevbsycaNG11jDoeD6dOnExMTQ2hoKMOHD+fo0aOu8dzcXG666SbCw8OJjo5m6tSp2O32epmrSEM17z97KC63c0m8hZE94s2OIyIiF2Basfv666/p27cvaWlpVbZv3ryZl19+meLiYtfjrrvuAmD9+vVMmTKFJUuWUFhYyOjRoxk2bBglJSUAzJ49m7Vr17JlyxaysrIIDAxk0qRJrtceNWoUISEhHDlyhE2bNvH5558zf/78+pu0SAOzNf04K7/PBODJYV3w9tYFEyIi7syUYrdkyRJuu+02nnnmmSrby8vL2bFjBz179jzn81599VVuueUWrrzySvz8/Jg2bRrR0dEsX77cNf7II4+QkJBAWFgYCxcuZPXq1Rw4cID9+/ezfv165s2bR1BQEG3btmXmzJm88MILdT5fkYbI6Tx5P1iAkT3iubRlhMmJRETkl5hS7K699lrS0tIYNWpUle3btm2jsrKSWbNmERMTQ4cOHZg7dy5OpxOA1NRUunbtWuU5SUlJbNu2DavVSmZmZpXxmJgYIiIi2L59O6mpqURGRtKiRYsqz01PT6ewsLDuJivSQK38PpPtmVZCAnx5+LqOZscREZFq8DXjmzZvfu6FTa1WKwMHDuT+++/nnXfe4YcffmDEiBF4e3szffp0bDYbwcHBVZ4TFBREcXExNpsN4Lzj5xsDKC4uJjw8/Kw85eXllJeXu74uKiqq2URFGihraSVz/7MbgKlXt6dZaBOTE4mISHW41VWx11xzDV988QUDBgzAz8+P3r17M3XqVNep1uDgYNfn6U4rKSkhNDTUVdouNH6uMYDQ0HOvyTVnzhwsFovrkZCQUCvzFHF3Cz/fx7ETFbRrGsy4vq3NjiMiItXkVsXugw8+4KWXXqqyrby8nMDAQACSk5NJTU2tMr5z506Sk5OJiIggLi6uynh2djYFBQUkJyeTnJzMsWPHyMnJqfLc+Ph4LBbLOfPMmDEDq9XqemRkZNTWVEXc1t4cG0s2HgLgiWFd8Pd1q7cJERG5ALd6xzYMg2nTprFu3ToMw2Djxo0sXLiQu+++G4CJEyeybNkyUlJSqKysZMGCBeTk5DBixAgAJkyYwOzZszl48CA2m42pU6cyYMAA2rVrR/v27enXrx9Tp07FZrNx8OBBnn76ae64447z5gkICCAsLKzKQ8STGYbBkx+n4nAa/CYphv7tm5odSUREasCUz9idz4gRI5g/fz733nsvmZmZNG/enCeffJIxY8YAMGTIEF588UUmT55MZmYmXbp0YfXq1URGRgIwa9YsKisr6d+/PzabjUGDBrFixQrX669cuZI//vGPtGnTBm9vb8aNG8fMmTNNmauIO1qTms3X+4/h7+vNn25IMjuOiIjUkJdhGIbZIRqKoqIiLBYLVqtVR+/E45RWOLj6b1+SVVjK/YMTefA3uhJWRMQd1KR/uNWpWBExzz/X7yersJQWliZMHphodhwREbkIKnYiwtf783khZT8Aj92QRKC/j8mJRETkYqjYiTRyRwpLmfL2DzgN+EPPeIZ2Pfc6kyIi4v5U7EQasXK7g8nLtlJwooLkuDCeGp6Ml5fuBysi0lCp2Ik0Yk99vJNtGYWEB/nxz9E9aOKnU7AiIg2Zip1II/XulgyWfZeOlxcsGNWdhMggsyOJiMivpGIn0gj9lGXlsQ9+AmDa1R0Y2LGZyYlERKQ2qNiJNDKFJRXcs/R7KuxOBndqxh8HaWkTERFPoWIn0og4nQYPvPMjmcdLaRkZxPw/dMfbWxdLiIh4ChU7kUZk4bp9fLk3jwBfb/41pgeWID+zI4mISC1SsRNpJL7YncPCdfsAeHZEV5Ja6LZ4IiKeRsVOpBFIP1bC1Hd+BGDs5a24uUe8uYFERKROqNiJuAmH0+BIYSmGYdTq65ZWOLh76fcUldm5tGU4M29MqtXXFxER96FiJ+ImZn+ykyv+/AU3//MbUvbk1krBMwyDxz7Ywa6jRUQF+/Pi6Mvw99X/9iIinkrv8CJu4PiJCt76Lh2AremFTHh9M8P/8TWf7cz5VQVv2XfpvL81C28v+PttlxJrCaytyCIi4oZU7ETcwIotGZTbnXRqHsqd/dsQ6OfD9kwrd76xhRue/4rVO47idNas4P2QfpwnP04F4JHrOnFFu+i6iC4iIm5ExU7EZA6nwdLvDgMw4crWPHZDEv99ZBD3DGhHsL8PO48WMXnZVq5buIGPth3BUY2Cl19czr3LtlLpMLiuS3PuuqptXU9DRETcgIqdiMk27M0jo6AUS6Afw7rFARAdEsCj13fiq0cGM2VwIqEBvuzNKeb+t3/gmvlf8u8fMrE7nOd8PbvDyZS3fuCotYy2TYP5y+8vwctLixCLiDQGKnYiJntj4yEAft8jnkB/nypjEcH+PPSbjnz16GCmXd2BsCa+HMg7wbTl27j6b1+yYksGlf9T8J5bu5eNB44R5O/DS2N6ENpEixCLiDQWKnYiJko/VsL6vXkAjL681Xn3swT68cDV7fn60cFMv7YjEUF+HDpWwsMrtzPoufW89V06FXYn//npKP/6Mg2AeSMvoX1MaL3MQ0RE3IOv2QFEGrOl3x3GMOCqDk1pEx38i/uHNvHjvkGJ3H5Fa5Z9d5iXNxwg83gp/+/fO3jhi30UldkBmNSvDTde0qKu44uIiJvRETsRk5RVOlixJQOAcRc4WncuwQG+3HVVO/778GBm3phEs9AAjljLKC6307tNJI9c36kuIouIiJvTETsRk3y07QiFJZXEhQcyqFOzi3qNQH8f7ujXhtF9WvLulgx2HrXx0G864Oejf7OJiDRGKnYiJjAMgzc3nlziZMzlrfDx/nVXrTbx82Fs39a1kExERBoy/bNexATbMq3syLLi7+vNqF4JZscREREPoWInYoLTS5zceEkskcH+5oYRERGPoWInUs8KTlSwavtRAMbp9KmIiNQiFTuRerZ8cwYVdidd4yx0i7eYHUdERDyIip1IPXI4DZZ+e/KiibF9W+lWXyIiUqtU7ETqUcruXLIKSwkP8mNYNy0gLCIitUvFTqQevXHqaN0feibQxM/nF/YWERGpGRU7kXpyKP8EG/bm4eUFY/rU7E4TIiIi1aFiJ1JPTn+2bmCHprSMCjI5jYiIeCIVO5F6UFpxxn1htcSJiIjUERU7kXrw0bYsisrsJEQGMqBDU7PjiIiIh1KxE6ljhmHwxun7wvZphfevvC+siIjI+ajYidSxremFpB4pIsDXmz/01H1hRUSk7qjYidSxN0/dF/a33VoQofvCiohIHVKxE6lD+cXlfLojG4BxfbXEiYiI1C0VO5E6tHxzBhUOJ90SwrkkPtzsOCIi4uFU7ETqiMNp8NZ36QCMu1xH60REpO6ZWuzy8vJITExk/fr1rm3vvfce3bt3JywsjNatW/Pkk0/idDpd4507dyYoKIiQkBDXY9euXQA4HA6mT59OTEwMoaGhDB8+nKNHj7qem5uby0033UR4eDjR0dFMnToVu91eb/OVxmXdrhyyCkuJDPbnhktizY4jIiKNgGnF7uuvv6Zv376kpaW5tn3//feMHTuW2bNnU1hYyOrVq1m8eDHz588HoKioiD179rBr1y6Ki4tdj86dOwMwe/Zs1q5dy5YtW8jKyiIwMJBJkya5Xn/UqFGEhIRw5MgRNm3axOeff+56bZHa9qbuCysiIvXMlGK3ZMkSbrvtNp555pkq2w8dOsQ999zDjTfeiLe3N507d2bEiBFs2LABOFn8oqKiaNXq3Ke1Xn31VR555BESEhIICwtj4cKFrF69mgMHDrB//37Wr1/PvHnzCAoKom3btsycOZMXXnihzucrjc+BvGL+uy8fLy8Y3ael2XFERKSRMKXYXXvttaSlpTFq1Kgq22+++Wb+9re/ub4uLS3lk08+oUePHgBs3ryZoKAgBgwYQHR0ND179mTVqlUAWK1WMjMz6dq1q+v5MTExREREsH37dlJTU4mMjKRFixau8aSkJNLT0yksLKzD2UpjdPpo3eCOzUiI1H1hRUSkfvia8U2bN2/+i/vYbDZGjhxJYGAg06ZNA8DLy4tevXoxZ84cWrVqxbvvvsvNN9/Ml19+SXx8PADBwcFVXicoKIji4uLzjgEUFxcTHh5+Voby8nLKy8tdXxcVFVV/ktJolVTYWfl9JgBjtcSJiIjUI7e8KnbPnj307dsXu91OSkoKoaGhAEyfPp2VK1fSvn17/P39GT16NFdffTUrV650lbaSkpIqr1VSUkJoaCjBwcHnHANcr/+/5syZg8VicT0SEnTXAPllH/54BFuZndZRQVzVXveFFRGR+uN2xe7TTz+ld+/eXHfddaxZs4aIiAjX2HPPPce6deuq7F9eXk5gYCARERHExcWRmprqGsvOzqagoIDk5GSSk5M5duwYOTk5rvGdO3cSHx+PxWI5Z5YZM2ZgtVpdj4yMjFqerXiaKveFvVz3hRURkfrlVsXu22+/ZcSIEcyfP5/nnnsOX9+qZ4ozMjK47777OHDgAHa7nddee41vvvmG8ePHAzBhwgRmz57NwYMHsdlsTJ06lQEDBtCuXTvat29Pv379mDp1KjabjYMHD/L0009zxx13nDdPQEAAYWFhVR4iF/L94ePsOlpEEz9vft9DR3hFRKR+uVWxe/bZZ6msrOT++++vsk7d9ddfD8C8efO4/vrr6d+/PxaLhX/96198+umnJCYmAjBr1ixuuOEG+vfvT3x8PGVlZaxYscL1+itXrsRut9OmTRv69OnDddddx8yZM02Zq3im00frhneLwxLkZ3IaERFpbLwMwzDMDtFQFBUVYbFYsFqtOnonZ8mzlXPFn9dR6TBYNaUfyXHnPsUvIiJSEzXpH251xE6kIVu+OZ1Kh8GlLcNV6kRExBQqdiK1wOE0eHvTyYtrxuq+sCIiYhIVO5Fa8OXeXLIKSwkP8mNoV90XVkREzKFiJ1IL3vouHYCRl8XrvrAiImIaFTuRX+lIYSlf7M4F4FbdF1ZEREykYifyK72zOQOnAX3bRtGuaYjZcUREpBFTsRP5FewOJ8s3nzwNe5uO1omIiMlU7ER+hXW7c8kpKicq2J9ruzQ3O46IiDRyKnYiv8KyUxdN/L5nAv6++t9JRETMpZ9EIhcpo6CE/+7LA+C23joNKyIi5lOxE7lIb29KxzCgf/toWkYFmR1HRERExU7kYlTYnazYcvJOE6P76E4TIiLiHlTsRC7CZztzyC+uoFloAEM6NzM7joiICKBiJ3JRln13GIBRvRLw89H/RiIi4h70E0mkhg7kFfNN2jG8veAWXTQhIiJuRMVOpIbe3nRyiZOBHZsRFx5ochoREZGfqdiJ1EBZpYOV32cCMFp3mhARETejYidSA2tSszleUkkLSxMGdtRFEyIi4l4uqtiVlZVx9OhRysvLazuPiFtb9u3J07C39G6Jj7eXyWlERESqqlGx+/rrr+nXrx8hISHEx8cTGhrKoEGD2Lx5c13lE3Eb+3JsbDpUgI+3F6N6JZgdR0RE5CzVLnZff/01V199Na1bt2bp0qWsWbOGxYsXExMTw+DBg/nxxx/rMKaI+U7fF3ZIp2bEhDUxOY2IiMjZvAzDMKqz49VXX82gQYN47LHHzhp78skn2bFjBytXrqz1gO6kqKgIi8WC1WolLCzM7DhSj0orHPR59nOKyuwsmdibAR2amh1JREQaiZr0D9/qvujWrVv597//fc6xBx54gOTk5JqlFGlAVm0/QlGZnYTIQPonRpsdR0RE5JyqfSq2srKS0NDQc46Fh4djs9lqLZSIu3nr1Np1t/ZuibcumhARETdV7WLn5XXhH2bVPKMr0uDsPFLED+mF+Hp78fseumhCRETcV7VPxRqGQUZGxnkLnIqdeKq3Np28L+y1yc1pGhpgchoREZHzq3axO3HiBK1btz5vgfulI3oiDdGJcjsf/HAEgNG6L6yIiLi5ahe7gwcPun5vt9vJz88nOjoaX99qv4RIg/PRtiMUl9tpEx1M33ZRZscRERG5oGp/xq5Vq1YEBATw6KOP0qVLF6644gq6dOnCww8/jJ+fH61atarLnCKmeOvU2nW39W6po9IiIuL2qn247fjx4/Tp04eEhAT++c9/0qJFCw4cOMDixYvp3bs327dvJzIysi6zitSr7ZmF7Miy4u/jzc094s2OIyIi8ouqXeyeffZZevbsycqVK6scubj77rv53e9+x7PPPstzzz1XJyFFzHD6aN3Qrs2JDPY3OY2IiMgvq/ap2A8//JA5c+acdTrK29ubZ599lg8//LDWw4mYpaiskg9/PHnRxG199DEDERFpGKpd7LKzs+nQocM5xzp37kx2dnathRIx24c/ZFFa6aB9sxB6tY4wO46IiEi1VLvYNWnS5LzlLTs7+7x3pRBpaAzDYNnpiyb66KIJERFpOKpd7AYMGMCLL754zrF//vOfDBgwoNZCiZhpa3ohu7NtBPh687tLddGEiIg0HNW+eGLGjBn079+fwMBAxo4dS/PmzTl8+DCLFi3i73//O998801d5hSpN6cvmvhttxZYgvxMTiMiIlJ91S52l112GcuXL+fOO+/kT3/6k2t78+bNee+99+jatWudBBSpT9aSSlZtP33RhO40ISIiDUuNbhtx4403cvjwYTZu3MiRI0eIjY2lX79+uvuEeIz3tmZSbnfSOTaMSxPCzY4jIiJSIzVuZP7+/vo8nXikkxdNHAZ00YSIiDRM1b54QsTTfXuggLS8EwT5+3BT9xZmxxEREakxFTsRIGVPLpOXfQ/A8O4tCG2iiyZERKThMbXY5eXlkZiYyPr1613bvvvuO/r06UNISAht2rRh0aJFVZ6zZMkSEhMTCQ4OpmfPnmzcuNE15nA4mD59OjExMYSGhjJ8+HCOHj3qGs/NzeWmm24iPDyc6Ohopk6dit1ur/N5ivtyOA2eW7OHCa9vprCkkm7xFh68pqPZsURERC6KacXu66+/pm/fvqSlpbm2HT9+nKFDhzJu3DgKCwtZtGgR06ZNY9OmTQCsX7+eKVOmsGTJEgoLCxk9ejTDhg2jpKQEgNmzZ7N27Vq2bNlCVlYWgYGBTJo0yfX6o0aNIiQkhCNHjrBp0yY+//xz5s+fX78TF7eRZytn7KLveCFlPwDj+rZixT19aRoaYHIyERGRi2SYYPHixUbLli2Nd955xwCMlJQUwzAM45VXXjHat29fZd977rnHGDdunGEYhjF69GjjzjvvrDLeqVMn47XXXjMMwzDi4+ONZcuWucays7MNLy8vIy0tzdi3b58BGFlZWa7xd955x2jZsmW1c1utVgMwrFZrjeYr7ue7A8eMXrM/M1o9ssroPHO18cEPmWZHEhEROaea9A9Tjthde+21pKWlMWrUqCrbU1NTz1oPLykpiW3btv3iuNVqJTMzs8p4TEwMERERbN++ndTUVCIjI2nRokWV56anp1NYWHjOnOXl5RQVFVV5SMNmGAYvb0jj1le+JddWTvtmIXz0xysZ3j3O7GgiIiK/minFrnnz5udc+85msxEcHFxlW1BQEMXFxb84brPZAC44fq4xwPX6/2vOnDlYLBbXIyEhoQazFHdjLa3k7je/59lPd+NwGtzUvQUf/vFKEpvpPsciIuIZ3Oqq2ODgYNfn5U4rKSkhNDT0F8dPl7YLjZ9rDHC9/v+aMWMGVqvV9cjIyLj4yYmpfsqy8tu/f8XanTn4+3jzzIhk5o/qTpC/FtcWERHP4VY/1ZKTk1m7dm2VbTt37iQ5Odk1npqaetb40KFDiYiIIC4ujtTUVNf+2dnZFBQUkJycjNPp5NixY+Tk5BATE+N6bnx8PBaL5Zx5AgICCAjQB+kbMsMweGdzBo9/lEqF3Ul8RCD/HN2DrvHn/m8uIiLSkLnVEbvf/e53ZGdns2DBAiorK0lJSWHZsmVMnDgRgIkTJ7Js2TJSUlKorKxkwYIF5OTkMGLECAAmTJjA7NmzOXjwIDabjalTpzJgwADatWtH+/bt6devH1OnTsVms3Hw4EGefvpp7rjjDjOnLHWopMLOQ+9uY8b7O6iwO7m6czM+mdJfpU5ERDyWWxW7qKgoPvvsM959912ioqKYNGkSzz//PIMGDQJgyJAhvPjii0yePJmIiAjefvttVq9eTWRkJACzZs3ihhtuoH///sTHx1NWVsaKFStcr79y5Ursdjtt2rShT58+XHfddcycOdOUuUrdSssr5qZ/fM37W7Pw9oJHr+/Ey2N7YgnSwsMiIuK5vAzDMMwO0VAUFRVhsViwWq2EhYWZHUfOY9X2IzyycjsnKhw0DQ3g77deyuVto8yOJSIiclFq0j/c6jN2Ir9Ghd3Js5/uYvE3hwC4vG0kz996Kc1Cm5gbTEREpJ6o2InH+OvaPa5Sd+/Adjx4TQd8fdzq0wYiIiJ1SsVOPELm8RJe//oQAAtGdeemS7XgsIiIND46nCEeYf5n+6hwOOnbNorh3Vv88hNEREQ8kIqdNHi7s4t4/4dM4OTVr15eXiYnEhERMYeKnTR4c1fvxjDghq6xdEsINzuOiIiIaVTspEHbmHaMlD15+Hp78X/XdjQ7joiIiKlU7KTBMgyDP/9nNwC39m5Jm+hgkxOJiIiYS8VOGqz//JTNtoxCgvx9mDIk0ew4IiIiplOxkwap0uHkL2v2ADCpf1stQiwiIoKKnTRQyzdncCD/BFHB/tx1VVuz44iIiLgFFTtpcE6U21nw+T4A7h/SnpAArbMtIiICKnbSAL321UHyi8tpGRnErb1bmh1HRETEbajYSYNyrLiclzYcAOD/ru2Iv6/+CouIiJymn4rSoLyQsp/icjvJcWHc2DXW7DgiIiJuRcVOGoz0YyUs/fYwAI9e1xlvb906TERE5EwqdtJg/PWzPVQ6DPq3j6Zf+2iz44iIiLgdFTtpEH7KsvLhj0cAeOS6TianERERcU8qdtIgzD1167Dh3VuQHGcxOY2IiIh7UrETt/fVvnz+uy8fPx8vHrqmo9lxRERE3JaKnbg1p9Pgz//ZBcDoPq1oGRVkciIRERH3pWInbm3VjqP8lFVESIAvUwYnmh1HRETEranYiduqsDt5bs0eAO6+qi1RIQEmJxIREXFvKnbitt7elE56QQnRIQHc0b+N2XFERETcnoqduCVbWSXPr9sHwNSr2xPk72tyIhEREfenYidu6ZX/HuTYiQraRgczqleC2XFEREQaBBU7cTu5tjJe/e8BAKZf2xE/H/01FRERqQ79xBS38/d1+ympcNAtIZzrkpubHUdERKTBULETt3Iw/wRvb0oHYMb1nfDy8jI5kYiISMOhYidu5bk1e7A7DQZ1bMrlbaPMjiMiItKgqNiJ2/gh/Tif7DiKlxc8fF0ns+OIiIg0OCp24hZOlNt5aMU2AH53aTydY8NMTiQiItLwqNiJW5j1YSoH8k8Qa2nCn27obHYcERGRBknFTkz3wQ9ZvLc1E28vWHjLpUQE+5sdSUREpEFSsRNTHco/wWP/3gHA/UPa07tNpMmJREREGi4VOzFNhd3JlLd/4ESFgz5tIpkyuL3ZkURERBo0FTsxzbz/7GZHlpXwID8W3NIdH2+tWSciIvJrqNiJKVJ25/LqVwcB+MvIbsRaAk1OJCIi0vCp2Em9yykq46F3Ty5tcvsVrbkmKcbkRCIiIp5BxU7qlcNpMG35jxScqCApNowZQ7UQsYiISG1RsZN69c/1+/km7RhB/j78/bZLCfD1MTuSiIiIx3C7Yrds2TJCQkKqPPz9/QkICABg8uTJBAQEVBl/+eWXXc9fsmQJiYmJBAcH07NnTzZu3OgaczgcTJ8+nZiYGEJDQxk+fDhHjx6t9zk2Vt8fLmD+5/sAeGp4Mu2ahpicSERExLO4XbEbPXo0xcXFrseePXuIjo5m0aJFAGzevJmXX365yj533XUXAOvXr2fKlCksWbKEwsJCRo8ezbBhwygpKQFg9uzZrF27li1btpCVlUVgYCCTJk0yba6NibWkkvvf/hGH0+Cm7i24+bI4syOJiIh4HC/DMAyzQ5yPYRgMGTKEdu3a8corr1BeXk5YWBhbt26lS5cuZ+0/ZswYgoKCqhzB69y5Mw8//DATJkwgISGBuXPncttttwGQk5NDbGws+/fvp23btr+Yp6ioCIvFgtVqJSxM9zKtLsMwmLx0K/9JzaZVVBCf3N+fkABfs2OJiIg0CDXpH253xO5MS5cuJTU1lb/97W8AbNu2jcrKSmbNmkVMTAwdOnRg7ty5OJ1OAFJTU+natWuV10hKSmLbtm1YrVYyMzOrjMfExBAREcH27dvP+f3Ly8spKiqq8pCaW/ZdOv9JzcbPx4u/33qpSp2IiEgdcdti53Q6efrpp3nssccIDQ0FwGq1MnDgQO6//34yMzNZunQpzz//PH/9618BsNlsBAcHV3mdoKAgiouLsdlsAOcdP5c5c+ZgsVhcj4SEhNqepsfbnV3E06t2AvDIdZ24JD7c3EAiIiIezG2LXUpKCkePHuWOO+5wbbvmmmv44osvGDBgAH5+fvTu3ZupU6eyfPly4GRpO/15utNKSkoIDQ11FbrzjZ/LjBkzsFqtrkdGRkZtTtHjlVY4+ONbP1BudzKwY1MmXtnG7EgiIiIezW2L3XvvvceIESOqHGH74IMPeOmll6rsV15eTmDgybsWJCcnk5qaWmV8586dJCcnExERQVxcXJXx7OxsCgoKSE5OPmeGgIAAwsLCqjyk+p5alcr+3GKahQbw3O+74a1bhomIiNQpty12X331FVdddVWVbYZhMG3aNNatW4dhGGzcuJGFCxdy9913AzBx4kSWLVtGSkoKlZWVLFiwgJycHEaMGAHAhAkTmD17NgcPHsRmszF16lQGDBhAu3bt6n1+nm7V9iO8vSkDLy9YMKo70SEBZkcSERHxeG77KfYDBw4QF1d1SYwRI0Ywf/587r33XjIzM2nevDlPPvkkY8aMAWDIkCG8+OKLTJ48mczMTLp06cLq1auJjIwEYNasWVRWVtK/f39sNhuDBg1ixYoV9T43T5dRUMKM93YAcN/ARK5IjDY5kYiISOPg1suduBstd/LLKh1Ofv+vjfyYUUiPVhEsv+tyfH3c9sCwiIiI2/OY5U6k4fnbZ3v5MaOQsCa+LLylu0qdiIhIPdJPXak136Tl88/1aQDMvfkS4iOCTE4kIiLSuKjYSa0otzv4079/AuDW3i25vmusyYlEREQaHxU7qRUvf3mAA/knaBoawIyhncyOIyIi0iip2Mmvln6shBdS9gPwpxs6E9bEz+REIiIijZOKnfwqhmHw+Ec/UW53cmViFMO6tTA7koiISKOlYie/yprUHFL25OHv481Tw5Px8tLdJURERMyiYicX7US5nSc/PnmLtrsHtKVd0xCTE4mIiDRuKnZy0Rau28dRaxkJkYHcNyjR7DgiIiKNnoqdXJQ92TYWfXUQgKeGJdPEz8fkRCIiIqJiJzXmdBr86YMdOJwG13aJYVCnZmZHEhEREVTs5CK8tzWTzYeOE+Tvw+O/7WJ2HBERETlFxU5q5PiJCuas3g3AA0Pa0yI80OREIiIicpqKndTIvDW7KThRQYeYECb2a2N2HBERETmDip1U29b047y9KQOA2Td1xc9Hf31ERETciX4yS7XYHU4e+/dPAIzsEU/vNpEmJxIREZH/pWIn1fLGxsPsOlqEJdCPGdd3MjuOiIiInIOKnfyinKIy/vbZXgAeua4TUSEBJicSERGRc1Gxk1/01KqdFJfb6Z4Qzi29EsyOIyIiIuehYicXtGFvHp9sP4q3F8y+KRlvby+zI4mIiMh5qNjJeZVVOpj14ckLJsZf0ZrkOIvJiURERORCVOzkvF768gCHjpXQLDSAB6/pYHYcERER+QUqdnJOh/JP8I/1+wGYeWMSoU38TE4kIiIiv0TFTs5iGAazPkqlwu6kX2I0N14Sa3YkERERqQYVOznL6p+y2bA3D38fb54a3gUvL10wISIi0hCo2EkVxeV2nvp4JwD3DGhL26YhJicSERGR6lKxkyoWfLaX7KIyWkYGce+gRLPjiIiISA2o2InL3hwbr39zCIAnh3ehiZ+PuYFERESkRlTsxOWt79JxOA2u7hzDoI7NzI4jIiIiNaRiJwDYHU5WbT8CwOg+LU1OIyIiIhdDxU4A+CbtGPnFFUQE+dGvfbTZcUREROQiqNgJAB/+ePJo3Q2XxOLno78WIiIiDZF+ggtllQ7WpGYDMLx7nMlpRERE5GKp2Alf7M6luNxOXHggPVpGmB1HRERELpKKnfDBD1kADOveAm9v3WVCRESkoVKxa+SsJZWs35MHwPDuLUxOIyIiIr+Gil0j95/Uo1Q4nHSMCaVT8zCz44iIiMivoGLXyJ2+GnaYjtaJiIg0eCp2jVhOURkbDxwDYFg3FTsREZGGTsWuEft42xEMA3q2iiAhMsjsOCIiIvIruWWxW758Ob6+voSEhLgeY8eOBeC7776jT58+hISE0KZNGxYtWlTluUuWLCExMZHg4GB69uzJxo0bXWMOh4Pp06cTExNDaGgow4cP5+jRo/U6N3dy+jSsLpoQERHxDG5Z7DZv3szYsWMpLi52Pd58802OHz/O0KFDGTduHIWFhSxatIhp06axadMmANavX8+UKVNYsmQJhYWFjB49mmHDhlFSUgLA7NmzWbt2LVu2bCErK4vAwEAmTZpk5lRNk5ZXzI4sKz7eXgztGmt2HBEREakFblvsevbsedb29957j6ioKO677z58fX0ZPHgwo0eP5h//+AcAr776KrfccgtXXnklfn5+TJs2jejoaJYvX+4af+SRR0hISCAsLIyFCxeyevVqDhw4UK/zcwcfnTpa1799NFEhASanERERkdrgdsXO6XSydetWPvnkE1q1akV8fDx33XUXx48fJzU1la5du1bZPykpiW3btgFccNxqtZKZmVllPCYmhoiICLZv3173E3MjhmHw0baTxe4m3UJMRETEY7hdscvLy+PSSy9l5MiR7Nq1i2+++YZ9+/YxZswYbDYbwcHBVfYPCgqiuLgY4ILjNpsN4ILP/1/l5eUUFRVVeXiCHVlWDuafoImfN9ckxZgdR0RERGqJ2xW7mJgYNmzYwMSJEwkKCqJly5bMmzeP1atXYxiG6/Nyp5WUlBAaGgqcLG3nGz9d6C70/P81Z84cLBaL65GQkFBb0zTVBz+cPFp3TVJzggN8TU4jIiIitcXtit327dt59NFHMQzDta28vBxvb2969+5Nampqlf137txJcnIyAMnJyecdj4iIIC4ursp4dnY2BQUFruf/rxkzZmC1Wl2PjIyM2pqmaRxOg4+3n7oaVmvXiYiIeBS3K3aRkZG88MIL/OUvf8Fut5Oens706dO5/fbbGTlyJNnZ2SxYsIDKykpSUlJYtmwZEydOBGDixIksW7aMlJQUKisrWbBgATk5OYwYMQKACRMmMHv2bA4ePIjNZmPq1KkMGDCAdu3anTNLQEAAYWFhVR4N3bcHjpFnKyc8yI+rOjQ1O46IiIjUIrcrdvHx8XzyySd88MEHREZG0rNnT3r16sULL7xAVFQUn332Ge+++y5RUVFMmjSJ559/nkGDBgEwZMgQXnzxRSZPnkxERARvv/02q1evJjIyEoBZs2Zxww030L9/f+Lj4ykrK2PFihVmTrfeffhjFgBDu8bi7+t2//lFRETkV/AyzjznKRdUVFSExWLBarU2yKN3ZZUOej3zObYyO8vvupw+baPMjiQiIiK/oCb9Q4dsGpH1e3KxldmJtTShV+tIs+OIiIhILVOxa0RO30JsWLcWeHt7mZxGREREapuKXSNRVFbJut25AAzTvWFFREQ8kopdI7Hmp2wq7E7aNwshKbbhfT5QREREfpmKXSNx+hZiw7u3wMtLp2FFREQ8kYpdI5BrK+Pr/fkADOume8OKiIh4KhW7RmDVtqM4Dbi0ZTgto4LMjiMiIiJ1RMWuEfhwm24hJiIi0hio2Hm4Q/kn2JZRiI+3FzdcomInIiLiyVTsPNzpiyauTIymaWiAyWlERESkLqnYeTDDMPjg1L1hdRpWRETE86nYebDUI0UcyDtBgK83v+kSY3YcERERqWMqdh7sw1NH667uHENoEz+T04iIiEhdU7HzUA6nUWVRYhEREfF8KnYeatPBAnKKyglr4suAjk3NjiMiIiL1QMXOQ3207eRp2KFdYwnw9TE5jYiIiNQHFTsPVG538OmObACG6TSsiIhIo6Fi54G+3JOHtbSSmLAA+rSJMjuOiIiI1BMVOw90+hZiw7q1wMfby+Q0IiIiUl9U7DxMcbmdz3fmADC8e5zJaURERKQ+qdh5mLWp2ZTbnbRtGkyXFmFmxxEREZF6pGLnYT788dTadd3i8PLSaVgREZHGRMXOg+QXl/PV/nxAixKLiIg0Rip2HuT9rZk4nAbd4i20jg42O46IiIjUMxU7D+FwGryx8TAAo/u0MjmNiIiImEHFzkOs25VD5vFSIoL8tCixiIhII6Vi5yEWf3MIgFt6t6SJn24hJiIi0hip2HmAPdk2vkk7ho+3F2Mu12lYERGRxkrFzgMs2XgIgN8kxRAXHmhuGBERETGNil0DZy2p5P2tmQDcfkVrc8OIiIiIqVTsGrjlW9Ipq3TSOTaM3m0izY4jIiIiJlKxa8DOXOLk9ita6U4TIiIijZyKXQN2eomT8CA/hnePMzuOiIiImEzFrgE7fdHELb20xImIiIio2DVYe3NsfL3/GN5eMLavljgRERERFbsG6/SCxNd2aa4lTkRERARQsWuQrCWV/HtrFgDjtcSJiIiInKJi1wCt2JJBaaWDTs1D6aMlTkREROQUFbsGxuE0XBdN3H5Fay1xIiIiIi4qdg3MF7tztcSJiIiInJOKXQOz+JuDwMklTgL9tcSJiIiI/Mwti922bdu45ppriIyMpHnz5owbN478/HwAJk+eTEBAACEhIa7Hyy+/7HrukiVLSExMJDg4mJ49e7Jx40bXmMPhYPr06cTExBAaGsrw4cM5evRovc/vYu07Y4mTMZe3NDuOiIiIuBm3K3alpaVcf/31XHHFFWRnZ5OamsqxY8eYMGECAJs3b+bll1+muLjY9bjrrrsAWL9+PVOmTGHJkiUUFhYyevRohg0bRklJCQCzZ89m7dq1bNmyhaysLAIDA5k0aZJpc62p00uc/CapOfERQeaGEREREbfjdsUuPT2dbt26MWvWLPz9/YmKiuLuu+9mw4YNlJeXs2PHDnr27HnO57766qvccsstXHnllfj5+TFt2jSio6NZvny5a/yRRx4hISGBsLAwFi5cyOrVqzlw4EB9TvGiWEsqef/UEie3X9na3DAiIiLiltyu2HXs2JHVq1fj4/Pz58dWrlxJjx492LZtG5WVlcyaNYuYmBg6dOjA3LlzcTqdAKSmptK1a9cqr5eUlMS2bduwWq1kZmZWGY+JiSEiIoLt27fXz+R+hXe/1xInIiIicmG+Zge4EMMwmDlzJh9//DEbNmwgOzubgQMHcv/99/POO+/www8/MGLECLy9vZk+fTo2m43g4OAqrxEUFERxcTE2mw3gvOPnUl5eTnl5uevroqKiWp5h9WiJExEREakOtztid1pRUREjR45k6dKlbNiwga5du3LNNdfwxRdfMGDAAPz8/OjduzdTp051nWoNDg52fZ7utJKSEkJDQ12F7nzj5zJnzhwsFovrkZCQUAcz/WVf7M4lo6AUS6CWOBEREZHzc8til5aWRq9evSgqKmLLli2u06cffPABL730UpV9y8vLCQw8ea/U5ORkUlNTq4zv3LmT5ORkIiIiiIuLqzKenZ1NQUEBycnJ58wxY8YMrFar65GRkVGb06y2Jacumrild4KWOBEREZHzcrtid/z4cQYPHswVV1zBmjVriI6Odo0ZhsG0adNYt24dhmGwceNGFi5cyN133w3AxIkTWbZsGSkpKVRWVrJgwQJycnIYMWIEABMmTGD27NkcPHgQm83G1KlTGTBgAO3atTtnloCAAMLCwqo86tu+HBtf7c/H2wvGXt6q3r+/iIiINBxu9xm7119/nfT0dFasWMG7775bZay4uJj58+dz7733kpmZSfPmzXnyyScZM2YMAEOGDOHFF19k8uTJZGZm0qVLF1avXk1k5MmLDWbNmkVlZSX9+/fHZrMxaNAgVqxYUe9zrInTn627JilGS5yIiIjIBXkZhmGYHaKhKCoqwmKxYLVa6+XonbW0ksufXUdppYO377ycvu2i6vx7ioiIiHupSf9wu1Ox8rN3t5xc4qRjTCiXt9USJyIiInJhKnZuyuE0eGPjYeDkgsRa4kRERER+iYqdm0rZnUt6QQmWQD9u0hInIiIiUg0qdm7q9H1hb+mlJU5ERESkelTs3NCZS5yM0RInIiIiUk0qdm7ozCVOEiK1xImIiIhUj4qdm7GWVvL+1iwAxl/R2twwIiIi0qCo2LmZd7dkUFJxcomTvm21bp2IiIhUn4qdGzlziZPxV2iJExEREakZFTs3sn7PGUucXNrC7DgiIiLSwLjdvWIbs4hgf67q0JTOsaEE+es/jYiIiNSM2oMbuaxlBG9M7I3Tqdv3ioiISM3pVKwb8vbWZ+tERESk5lTsRERERDyEip2IiIiIh1CxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiIiIeAgVOxEREREPoWInIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ6jYiYiIiHgIX7MDNCSGYQBQVFRkchIRERFpLE73jtM95EJU7GrAZrMBkJCQYHISERERaWxsNhsWi+WC+3gZ1al/AoDT6eTIkSOEhobi5eV1zn2KiopISEggIyODsLCwek5ovsY8/8Y8d9D8NX/Nv7HOvzHPHepn/oZhYLPZaNGiBd7eF/4UnY7Y1YC3tzfx8fHV2jcsLKxR/gU/rTHPvzHPHTR/zV/zb6zzb8xzh7qf/y8dqTtNF0+IiIiIeAgVOxEREREPoWJXywICAnj88ccJCAgwO4opGvP8G/PcQfPX/DX/xjr/xjx3cL/56+IJEREREQ+hI3YiIiIiHkLFTkRERMRDqNiJiIiIeAgVu1qUm5vLTTfdRHh4ONHR0UydOhW73W52rHqxbds2rrnmGiIjI2nevDnjxo0jPz/f7Fj1zuFwMHDgQG6//Xazo9SrgoICxo0bR1RUFBEREdx0000cPXrU7Fj1ZuvWrVx11VWEh4cTGxvLAw88QHl5udmx6lxeXh6JiYmsX7/ete27776jT58+hISE0KZNGxYtWmRewDp0rrm/9957dO/enbCwMFq3bs2TTz6J0+k0L2QdOtf8Tzt69CgxMTEsXry43nPVl3PNf/v27QwZMoTQ0FBiYmJ48MEHTekAKna1aNSoUYSEhHDkyBE2bdrE559/zvz5882OVedKS0u5/vrrueKKK8jOziY1NZVjx44xYcIEs6PVuyeffJL//ve/ZseodzfffDPFxcWkpaWRnp6Oj48Pd955p9mx6oXT6eTGG29k5MiRFBQUsHnzZtasWcO8efPMjlanvv76a/r27UtaWppr2/Hjxxk6dCjjxo2jsLCQRYsWMW3aNDZt2mRi0tp3rrl///33jB07ltmzZ1NYWMjq1atZvHixR/4MONf8T3M6nYwePdqj/2F/rvnn5+czZMgQrr76agoKCvjuu+9YtWoVCxYsqP+AhtSKffv2GYCRlZXl2vbOO+8YLVu2NDFV/di9e7dx3XXXGXa73bXtww8/NMLCwkxMVf/WrVtnJCUlGb///e+N8ePHmx2n3mzZssVo0qSJYbVaXduOHTtm/PTTTyamqj/5+fkGYMyfP9+w2+1GRkaG0blzZ+O5554zO1qdWbx4sdGyZUvjnXfeMQAjJSXFMAzDeOWVV4z27dtX2feee+4xxo0bZ0LKunG+ua9cudKYNm1alX2nTZtmDBs2zISUded88z/t8ccfN8aOHWu0atXKeP31103JWJfON//nnnvOuOKKK6rse+jQIePw4cP1nlFH7GpJamoqkZGRtGjRwrUtKSmJ9PR0CgsLzQtWDzp27Mjq1avx8fFxbVu5ciU9evQwMVX9ys3N5Y477uCtt94iKCjI7Dj1atOmTSQlJfHKK6+QmJhIbGwsDz30ELGxsWZHqxdRUVFMmzaNhx56iICAABISEujQoQPTpk0zO1qdufbaa0lLS2PUqFFVtqemptK1a9cq25KSkti2bVt9xqtT55v7zTffzN/+9jfX16WlpXzyySce9z54vvkDpKSk8M477/Diiy+akKx+nG/+mzZtIjk5mXvuuYfmzZvTrl07li5dWu3bkNYmFbtaYrPZCA4OrrLt9A/44uJiMyKZwjAM/vSnP/Hxxx+zcOFCs+PUC6fTyZgxY3jwwQfp1q2b2XHqXUFBAdu3b2ffvn388MMP/Pjjj2RlZTFu3Dizo9ULp9NJYGAgL7zwAidOnOCnn35i586dPP7442ZHqzPNmzfH1/fsW42f733Qk94Dzzf3M9lsNm666SYCAwM9ruCfb/65ublMmDCBZcuWERISYkKy+nG++RcUFPD666/Tu3dvMjIyeP/993nppZeqlP36omJXS4KDgykpKamy7fTXoaGhZkSqd0VFRYwcOZKlS5eyYcOGs/7l7qnmzJlDkyZNmDJlitlRTHF6tfUFCxa4PjT8zDPP8Omnn3rUD/Tz+fe//817773H5MmTCQgIoEuXLjz++OMefdTifM73PthY3gMB9uzZQ9++fbHb7aSkpDSKuRuGwdixY7n//vs97ghldQUEBNC7d28mTpyIn58f3bp1Y8qUKaxYsaLes6jY1ZLk5GSOHTtGTk6Oa9vOnTuJj4/HYrGYmKx+pKWl0atXL4qKitiyZUujKXUAb775JuvXryc8PJzw8HDeeust3nrrLcLDw82OVi+SkpJwOp1UVFS4tjkcDuDkG76nS09PP+sKWD8/P/z9/U1KZJ7k5GRSU1OrbNu5cyfJyckmJapfn376Kb179+a6665jzZo1REREmB2pXmRkZPDll1/y1FNPud4H09PTuffee7nxxhvNjlcvkpKSznofcDgc5rwH1vun+jxYv379jFtuucUoKioyDhw4YHTp0sV4/PHHzY5V5woKCoyWLVsat99+u+FwOMyOY7rx48c3qosnKioqjMTEROPmm282bDabkZubawwePNgYMWKE2dHqRWpqqhEQEGA888wzht1uN9LS0oyuXbsa//d//2d2tHrBGR8gz8/PN8LDw4358+cbFRUVxhdffGGEhoYaX3zxhbkh68iZc9+4caPh7+9vLFq0yNxQ9YhzXDxxmqdePHGmM+e/a9cuIyAgwJg7d65ht9uN7du3G3FxccbChQvrPZeO2NWilStXYrfbadOmDX369OG6665j5syZZseqc6+//jrp6emsWLGCsLAwQkJCXA/xfH5+fnz55Zf4+vrSvn17OnToQHx8PK+99prZ0epFUlISq1at4qOPPiIqKopBgwbx29/+lmeeecbsaPUuKiqKzz77jHfffZeoqCgmTZrE888/z6BBg8yOVueeffZZKisruf/++6u8B15//fVmR5N60KlTJ7788ktWrVpFdHQ01113Hffcc48pH9HxOtU6RURERKSB0xE7EREREQ+hYiciIiLiIVTsRERERDyEip2IiIiIh1CxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiEfav3+/2RHcntVqJS8vz+wYIlKLVOxExONMnz6d2bNnV2vf9evX4+XlVWdZvLy8WL9+/UU994knnmDgwIG1mudMiYmJrnu7Llu2jC5dutTZ9xKR+qFiJyIeR0ehqic/P9/1+9GjR7tKnog0XCp2IuIWDh06hJeXF2+88QatWrUiODiYCRMm8NVXX9GtWzdCQkIYMmQI+fn5OJ1O/vznP9OuXTssFgu9e/dmzZo1ADz99NMsW7aMZcuW0a1btxrn2LFjB0OHDiUyMpL4+HjuvfderFYrAIZhMHfuXLp27Up4eDgRERGMHj2a0tJSACorK3nwwQeJjo6madOm/OUvf6nR9/7mm2/o1asXwcHBXHnllRw8eNA1tnjxYlq3bl1l/4EDB/LEE08AcPvtt/P73/+ezp0707RpU9LS0vjmm28YPHgwLVq0oEmTJvTs2ZNvv/0WgI4dOwJw/fXXM2/evLNe/7///S9XXXUV4eHhtGnThpkzZ1JeXg6cPJI4cuRIxowZQ3h4OPHx8cyYMaNGcxWROmKIiLiBgwcPGoAxatQo48SJE8aOHTsMHx8fo1u3bkZmZqaRl5dnJCYmGk8++aTx+OOPG/Hx8cb3339vVFZWGsuXLzcCAgKMTZs2GYZhGOPHjzfGjx9fre+bkpJinH4rzM/PNyIjI42HHnrIKCkpMY4ePWoMHjzYGDZsmGEYhrF8+XKjefPmxt69ew3DMIxdu3YZkZGRxquvvmoYhmHMnDnTaN++vZGWlmYUFxcbY8eONQAjJSXlF3Pk5+cb4eHhxp///GejoqLC+Oqrr4ywsDBjwIABhmEYxuuvv260atWqynMGDBhgPP744645h4SEGDt27DCOHz9ulJSUGJGRkcYLL7xgOBwOo7i42PjDH/5g9OvXz/X8M7Od+fq7d+82AgICjAULFhjl5eXGvn37jEsuucS4//77DcMwjMcff9zw8vIylixZYtjtduOTTz4xvLy8jI0bN1brz1xE6o6O2ImIW/m///s/goKCSE5OJjY2lvHjxxMXF0d0dDR9+/bl0KFDvPbaa8yYMYPLLrsMX19f/vCHPzBs2DAWLVr0q773hx9+iL+/P3PnziUwMJDmzZvz97//nY8++ojs7Gyuv/56Nm/eTPv27cnLyyM/P5/o6GiysrIAePPNN5k+fTpt27YlODiY559/vtqf31u1ahXBwcE8/PDD+Pn5ceWVVzJx4sQa5b/88stJTk4mPDwcf39/vv32W+69917Ky8s5dOgQUVFRrqwXsmzZMi655BIeeOAB/P39SUxMZM6cObzyyis4nU4AOnTowLhx4/Dx8WHo0KHExsayd+/eGuUVkdrna3YAEZEzRUVFuX7v4+NDRESE62tvb2+cTic5OTm0bdu2yvPatGnDtm3bftX3zsnJoVWrVvj4+FR5XTh5qrhz58489thjfPzxxzRr1ozu3btTXl7uKjtZWVm0bNnS9dzw8HAiIyOr9b2zsrJISEioUgTbtWvHDz/8UO38LVq0cP3ex8eHlJQUrr/+eoqLi+nSpQt+fn6urBdyvj/f0tJScnNzAWjevHmV8eq+tojULRU7EXEr1TnC1bp1a9LS0qpsS0tLIzY29ld979atW3P48GEcDoer3J3+PrGxsTz66KOkp6dz6NAhwsLCAOjatavr+QkJCRw4cMD19YkTJygsLKzW905ISODw4cM4nU68vU+eTMnMzHSN+/j4UFFRUeU5Z178AFX/7L777jumTJnCN998Q48ePQD461//yu7du38xS+vWrXn//ferbEtLSyMgIKDaRVVEzKFTsSLS4EyaNIk///nPbN26FYfDwbvvvstHH33E7bffDkCTJk1cFzzUxNChQ/Hy8uKRRx6htLSU7OxsHnjgAQYPHkyrVq2wWq00adIEX19fysrK+Otf/8pPP/3kKlyTJk1i3rx57Nq1i7KyMh566CEcDke1vvdvf/tbnE4nTzzxBBUVFXz//fe88sorrvHOnTuTnZ1NSkoKhmGwdOlSdu3add7Xs1qteHt7ExgYCMC3337LwoULq5TDgICAc/453XrrrezcudO1f1paGv/v//0/Ro8ejb+/f7XmIyLmULETkQbnwQcf5L777mPUqFFYLBaeffZZ3nnnHQYMGADAqFGj+Prrr6ucFq0Oi8XCZ599xk8//UR8fDzJycm0bt2ad999F4DZs2dTUlJCs2bNaN26Nd9++y1jx45lx44dADzyyCOMGTOGAQMGEBsbi8ViqXJq+ULCw8NZs2YN69atIyIigjvuuIORI0e6xnv27Mmf/vQnxo8fT2RkJOvWrasy/r+uueYa7r33Xq666ioiIiK49957uf/++8nNzSUnJweAu+++m1tvvZXHHnusynNbt27NmjVrWLlyJc2aNaNfv35cc801vPDCCzX68xSR+udlGIZhdggRERER+fV0xE5ERETEQ+jiCRHxWLm5uWdd3fm/iouL6yVLdHQ0ZWVl5x3fuXNnjU8di4j8L52KFREREfEQOhUrIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ6jYiYiIiHgIFTsRERERD6FiJyIiIuIh/j9FBTOXhjHtYAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"# ax = fig.gca()\n",
"Ncount_mean.plot.errorbar()\n",
"# plt.xlabel('MOT AOM Frequency (MHz)')\n",
"# plt.ylabel('MOT Gradient Coil Current (A)')\n",
"plt.tight_layout()\n",
"# plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbiklEQVR4nO3deXhU5eH28W92sk42CCEJa9hCEJRNFGTTqmhBKi0qmyAuaFHQHyqvBTeUQm0Ba21dUFBQQbQuKAXFIFVRQBQw7GHJAtkImUzIOjPn/QMYSVlMMMmZTO7Pdc0FOc+Zyf0gTm7OmfMcL8MwDERERESkwfM2O4CIiIiI1A4VOxEREREPoWInIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ/iaHaAhcTqdHDlyhNDQULy8vMyOIyIiIo2AYRjYbDZatGiBt/eFj8mp2NXAkSNHSEhIMDuGiIiINEIZGRnEx8dfcB8VuxoIDQ0FTv7BhoWFmZxGREREGoOioiISEhJcPeRCVOxq4PTp17CwMBU7ERERqVfV+RiYLp4QERER8RAqdiIiIiIeQsVORERExEOo2ImIiIh4CBU7EREREQ+hYiciIiLiIVTsRERERDyEip2IiIiIh1CxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiIiIeAgVOxEREREPoWInIiIi4iFMKXbbtm3jmmuuITIykubNmzNu3Djy8/MB+O677+jTpw8hISG0adOGRYsWVXnukiVLSExMJDg4mJ49e7Jx40bXmMPhYPr06cTExBAaGsrw4cM5evSoazw3N5ebbrqJ8PBwoqOjmTp1Kna7vX4mLSIi4kEMwyDXVsbGtGN88EMWOzKtVNidZsdq9Hzr+xuWlpZy/fXXc+edd/LJJ59gs9kYN24cEyZM4I033mDo0KE89dRT3H333WzYsIGbbrqJrl270rt3b9avX8+UKVNYvXo1vXv35oUXXmDYsGEcPnyYoKAgZs+ezdq1a9myZQsWi4W77rqLSZMm8cknnwAwatQo4uLiOHLkCNnZ2QwbNoz58+czffr0+v5jEBERaRDsDifpBSWk5Z1gf24xaXknH/tzi7GVVT044u/jTefYUC6JD+eSeAuXxIeT2CwEH28vk9I3Pl6GYRj1+Q337NnD1KlTWbVqFT4+PgB89NFHjB07lr/+9a/MmzePvXv3uvafPHkyJSUlLFmyhDFjxhAUFMTLL7/sGu/cuTMPP/wwEyZMICEhgblz53LbbbcBkJOTQ2xsLPv378fpdNK+fXuysrJo0aIFAMuXL+fhhx/m8OHD1cpeVFSExWLBarUSFhZWW38kIiIipisut3PgjNKWlnuCtLxiDh07QaXj3FXB2wsSIoOICW3Cnhwb1tLKs/YJ8vchuYWFrvEWLom30C0+nFZRQXh5qexVV036R70fsevYsSOrV6+usm3lypX06NGD1NRUunbtWmUsKSnJdTo2NTWViRMnnjW+bds2rFYrmZmZVZ4fExNDREQE27dvx8vLi8jISFepO/3c9PR0CgsLCQ8PPytreXk55eXlrq+Lioouet4iIiJmO3n6tJy03DMKXN7JAnfUWnbe5wX6+dC2aTCJzUJo1/TkI7FZCK2igmji5+N67YyCUrZlFrI9s5BtmVZ+yrJSUuFg06ECNh0qcL1eWBPfKkf1uiVYaB7WRGWvFtR7sTuTYRjMnDmTjz/+mA0bNrBw4UKCg4Or7BMUFERxcTEANpvtvOM2mw3ggs8/1xhAcXHxOYvdnDlzePLJJy9+giIiIiaodDg5fKykymnTtLwTHMgtxlZ+/s+WR4cE0O7MAtfsZIGLDWuC9y+cTvXy8qJlVBAto4L4bbeTB1EcToMDecVsy7SyPbOQ7ZlWdh4toqjMzlf78/lqf36V793tVNG75NTRvaiQgNr5A2lETCt2RUVFTJgwge+//54NGzbQtWtXgoODKSwsrLJfSUkJoaGhwMliVlJSctZ4dHS0q7Sdazw0NBSn03nOMcD1+v9rxowZPPjgg1UyJyQk1HyyIiIidSSnqIxv0vLZl1Ps+gzc4WMl2J3nP33aKiqYdk2DaXfmEbimIViC/Go1m4+3F+1jQmkfE8rIHvEAVNid7M2xsf1U2duWaWVvjo384nLW7c5l3e5c1/PjwgPplmCha1w43eItJMdbCGtSuxk9jSnFLi0tjaFDh9KyZUu2bNlCdHQ0AMnJyaxdu7bKvjt37iQ5Odk1npqaetb40KFDiYiIIC4ujtTUVNf+2dnZFBQUkJycjNPp5NixY+Tk5BATE+N6bnx8PBaL5Zw5AwICCAjQvxZERMR9OJ0G2zILSTlVglKPnPtjQkH+PqdKW9UjcK2iggjw9ann1D/z9/UmOc5CcpyF2/q0BKCs0kHqkSLXUb3tmYUcyD9BVmEpWYWlfLoj2/X8tk2DuSTu51O4SbEWAv3Nm4+7qfeLJ44fP0737t0ZPHgwixYtwtv75xVXjh07RmJiIo8//jj33XcfX331FcOHD+fDDz9k0KBBrFu3jhEjRvDhhx/Sr18//vGPf/DUU0+xf/9+IiMjmTlzJh988AEfffQR0dHR3HnnnWRnZ7N+/XoA+vfvT3x8PC+//DL5+fn89re/ZeTIkTzxxBPVyq6LJ0RExAzW0kr+uy+PL3bn8uWePI6dqHCNeXnBJXEnL044/dm3dk1DiLU07M+s2coq2ZFlZUemle2ZVrZlFpJ5vPSs/Xy8vWgdFUSgvw9+Pt74eXvj6+N18vc+Xvie+trf5+Svvj7e+HmfHPc9Yx8/X69feO6pMe9TY2fs4+/rRXNLICEBdXO8rCb9o96L3d/+9jceeughgoLOviKmuLiYLVu28MADD7Bjxw6aNm3KzJkzuf322137LF26lNmzZ5OZmUmXLl14/vnn6dOnDwCVlZXMnDmTpUuXYrPZGDRoEC+//DLNmjUDTl4l+8c//pGUlBS8vb0ZN24cc+fOdV2d+0tU7EREpD4YhkFaXjFf7M7li925bDl0vMqp1dAAX67q0JRBnZoxsGNTohvJZ9GOFZezI8ta5TRunq38l59YD/415jKuS46tk9d262LXkKnYiYhIXSmrdPDtgWOk7M7liz25ZBRUPTrVrmkwQzrHMKhjM3q2jsDPRzePMgyDnKJyDuQVU+5wYncYVDqcVJ76vd3ppMJhYD895nRSaT+5vfLUvnaHk0rnyX1+3nbqdZw/P7fC4cTuPOP3p1630nly3/mjujOoY7M6madbL3ciIiIiJx21lpKyO48vdufw9f5jlFY6XGP+Pt5c3i6KwR2bMrhTDC2jgkxM6p68vLxobmlCc0sTs6O4DRU7ERGReuJwGvyYcfzUKdY8dh2teuFD87AmDOrUjMGdmnFlYhRB/voxLTWjvzEiIiJ1qLCkgi/35pGyO5cv9+ZxvOTnuzN4ecGlCeEM7tSMQZ2akRQb1qAveBDzqdiJiIjUIsMw2Jtz8sKHlN25bDlcwJlLyoU1OXnhw5DOzRjQoRmRwf7mhRWPo2InIiLyK5VVOvgmLf9Umcsjq7DqhQ8dYkJOnmLt2IwerSLw1YUPUkdU7ERERGrAVlbJ7mwbO48UsfNIEalHrezNLqbC4XTtE+DrTd92UQzp1IyBHZuREKkLH6R+qNiJiIicw+mlNHYetZKaVcTOoycfh4+VnHP/FpafL3y4ol207oYgplCxExGRRs/ucHIg/8TJo3BHi1y/Fpxxh4czxVqakBQbRlKLMLq0CKNzbBgtI89eeF+kvqnYiYhIo3Ki3M7u7KIqJW53to1yu/OsfX28vWjXNJguLSyuItc5NkwXPIjbUrETERGPZBgGebZyUs84ArfrSBEHj53gXPdcCvb3ofOp8na6xHWICaWJn06pSsOhYiciIg2ew2lwMP+E6whc6hEru44WkV987lOpMWEBrvKWFGshqUUYrSKD8PbWqVRp2FTsRETErZRVOigsqeR4SQXHSyqwllRy/NTX1tJKjp+o4HhJJYUlFRSWnvq1pBK78+zDcN5e0LZpyFmfh4sOCTBhZiJ1T8VORETqhN3hPFnESn4uX8dP/VpY+nM5O36i0lXQjpdUUFZ59mfdqiPQz4dOsaF0OeMoXMeYUF2dKo2Kip2IiPwqJRV2Fq7bx66jNqwlFa6ja7Yy+0W/pq+3F+FBfoQH+RMeePLXiCA/IoL9sQT6EXHq6/Agf8KDTn7dNDQAH51KlUZOxU5ERC5ablEZdyzZwo4s63n3CWviS0Rw1YJ2ZiE7XeAizvg6JMBXS4eIXAQVOxERuSh7sm1MXLyZrMJSIoP9eeg3HYgJbUJE8M9H2iyBfrp9lkg9UrETEZEa27A3j/uWbcVWbqdt02Bev70XraKCzY4l0uip2ImISI28symdxz74CYfToE+bSF4a24PwIC3YK+IOVOxERKRanE6Dv6zdwz/XpwHwu0vjmHNzVwJ8ddWpiLtQsRMRkV9UVungoXe38cn2owBMvbo9DwxprwscRNyMip2IiFzQseJy7nxjC1vTC/Hz8WLuzZfwu8vizY4lIuegYiciIueVllfMhNc3k15QQlgTX14a25O+7aLMjiUi56FiJyIi5/TtgWPc/eb3WEsraRkZxGu39yKxWYjZsUTkAlTsRETkLP/+IZOHV26n0mFwactwXh3XkyjdX1XE7anYiYiIi2EYLFy3jwWf7wPghq6x/PUP3WjipytfRRoCFTsREQGgwu7k0fe38/7WLADuGdCOh6/tiLfuvyrSYKjYiYgI1pJK7l66hW8PFODj7cXTw5O5rU9Ls2OJSA2p2ImINHLpx0qYsHgTaXknCAnw5R+jL2NAh6ZmxxKRi6BiJyLSiG1NP86dS7Zw7EQFsZYmvHZ7LzrHhpkdS0QukoqdiEgj9emOo0xb/iPldiddWoTx2u29iAlrYnYsEfkVVOxERBoZwzB4ecMB5qzeDcDVnZux8JZLCQ7QjwSRhk7/F4uINCJ2h5NZH6Xy1nfpANx+RWtm3piEj658FfEIKnYiIo2ErayS+976gQ178/Dyglk3JjHhyjZmxxKRWqRiJyLSCBwpLGXi4s3szrYR6OfD87deyjVJMWbHEpFapmInIuLhfsqyMnHxZnJt5TQNDeC18b3oGm8xO5aI1AEVOxERD7ZuVw5T3v6BkgoHHWJCeH1Cb+LCA82OJSJ1RMVORMRDLf76IE+t2onTgP7to/nH6MsIa+JndiwRqUMqdiIiHsbhNJj9yU5e//oQALf0SuDpm5Lx8/E2N5iI1DkVOxERD1JSYef+t3/k8105ADx8XUcmD2iHl5eWMxFpDFTsRERqQaXDydHCMgL8vAnw9SbA1wd/X+96XR8u11bGHYu3sCPLir+vN3/7QzduvKRFvX1/ETGfqcUuLy+Pvn378uqrrzJw4EDuueceli5dWmWf0tJSrr76atasWQNA586dOXz4MN7eP59S2Lx5M507d8bhcPDoo4/yxhtvUFJSwuDBg/nXv/5FbGwsALm5udx1112sX78eX19fxowZw3PPPYevr/qtiFy8zOMl3PrKt2QUlJ415ufj5Sp5Ab4/l74zC2CAr/epr31+3sfv59/7n3e/n1+nuNzO9He3k1VYSmSwP6+M60GPVpEm/GmIiJm8DMMwzPjGX3/9NePHjyctLY2UlBQGDhx41j5r167l1ltvZcOGDXTp0oWioiLCw8M5ePAgrVq1Omv/J598kvfff59Vq1ZhsVi46667sNlsfPLJJwAMGjSIuLg4Xn75ZbKzsxk2bBjjx49n+vTp1cpcVFSExWLBarUSFqabZIsIFJyoYOS/vuFA3gl8vb1wGgZOU95VT2obHczrE3rRKirYvBAiUqtq0j9MOVS1ZMkSZs2axbx587jlllvOuU9+fj6jR4/m+eefp0uXLgB8//33REVFnbPUAbz66qvMnTuXhIQEABYuXEhsbCwHDhzA6XSyfv16srKyCAoKom3btsycOZOHH3642sVORORMJ8rtTFi8mQN5J2hhacJ7915BrCUQu8NJhcNJeaWTcruTcrvj5K+VZ/ze7jhrvMJ+6uvK0/uce78zX6fijP0uaxnBvJGXEB7kb/YfjYiYxJRid+211zJ69Gh8fX3PW+weeeQRevbsyejRo13bNm/eTFBQEAMGDCA1NZXWrVvzxBNPcOONN2K1WsnMzKRr166u/WNiYoiIiGD79u14eXkRGRlJixY/f94kKSmJ9PR0CgsLCQ8Pr7P5iojnqbA7mbxsK9syCgkP8uONO/oQazm5Ppyvjze+Pt6oX4lIfTOl2DVv3vyC4wcPHuTNN99k06ZNVbZ7eXnRq1cv5syZQ6tWrXj33Xe5+eab+fLLL4mPjwcgOLjq6YegoCCKi4vPOwZQXFx8zmJXXl5OeXm56+uioqLqTVBEPJrTafDwym1s2JtHoJ8Pr9/ei8RmIWbHEhHBLRc1eu2117jyyivp3r17le3Tp09n5cqVtG/fHn9/f0aPHs3VV1/NypUrXaWtpKSkynNKSkoIDQ0lODj4nGMAoaGh58wxZ84cLBaL63H6FK+INF6GYfDMp7v44Mcj+Hp78c8xl3FpywizY4mIAG5a7N577z3Gjh171vbnnnuOdevWVdlWXl5OYGAgERERxMXFkZqa6hrLzs6moKCA5ORkkpOTOXbsGDk5Oa7xnTt3Eh8fj8Vy7nsmzpgxA6vV6npkZGTU0gxFpKF6acMBFn11EIB5Iy9hYMdmJicSEfmZ2xW7Y8eOsWvXLq666qqzxjIyMrjvvvs4cOAAdrud1157jW+++Ybx48cDMGHCBGbPns3Bgwex2WxMnTqVAQMG0K5dO9q3b0+/fv2YOnUqNpuNgwcP8vTTT3PHHXecN0tAQABhYWFVHiLSeL27JYM/r94NwGNDO/O7y+JNTiQiUpXbLeB28ODJfwnHxcWdNTZv3jy8vb3p378/hYWFdOnShU8//ZTExEQAZs2aRWVlJf3798dmszFo0CBWrFjhev7KlSv54x//SJs2bfD29mbcuHHMnDmzfiYmIg3aul05PPr+DgDuvqotd17V1uREIiJnM20du4ZI69iJNE7fHy5g9KvfUVbp5HeXxfHcyG541+MdJUSkcatJ/3C7U7EiIu5kX46NiYu3UFbpZFDHpsy9+RKVOhFxWyp2IiLncaSwlHGvbcJaWsmlLcP5x+jL8PPR26aIuC+9Q4mInMPxExWMe20TR61ltGsazGvjexHk73YfSxYRqULFTkTkf5RU2Jm4ZDP7c4uJtTThjTv6EBGs20iIiPtTsRMROUOlw8l9y7byQ3ohlkA/lkzsTVx4oNmxRESqRcVOROQUwzB45L3tpOzJo4mfN6/d3pMOMee+M42IiDtSsRMROeXPq3fz/tYsfLy9+Mdtl9GjVaTZkUREakTFTkQEeGXDAV7acACAP/+uK0M6x5icSESk5lTsRKTR+/cPmTzz6S4AHrmuE7/vmWByIhGRi6NiJyKNWsqeXKa/ux2AO/q14Z4BulWYiDRcKnYi0mj9kH6ce5duxe40GN69BY8N7YyXl+4qISINl4qdiDRK+3OLmbh4M6WVDq7q0JS/6P6vIuIBVOxEpNE5ai1l/GubOF5SSbd4C/8cfRn+vno7FJGGT+9kItKoWEsqGf/aJrIKS2kbHcxrt/ciOEC3ChMRz6BiJyKNRmmFgzuWbGZvTjExYQG8cUdvokICzI4lIlJrVOxEpFGwO5xMeXsrWw4fJ7SJL0sm9iY+IsjsWCIitUrFTkQ8nmEY/L9/7+DzXbkE+HqzaHwvOjUPMzuWiEitU7ETEY/3lzV7WLElE28v+Putl9K7jW4VJiKeScVORDzaa18d5MX1aQA8O6Irv+nS3OREIiJ1R8VORDzWR9uO8NSqnQD83286cEvvliYnEhGpWyp2IuKR/rsvj4dW/AjA7Ve05r5BieYGEhGpByp2IuIWHE6DCruzVl5rW0Yhd7/5PZUOgxsviWXWjUm6VZiINApalVNE6o2trJL0ghIyCkpIdz1KySwoIfN4KQ7DoF3TYLq0sNClRRhdWlhIahGGJdCv2t/jQF4xExZvpqTCQb/EaP76B90qTEQaDxU7Eak1doeTo9ayM0rbyUfmqV+Pl1T+4mvszSlmb04x//4hy7UtITKQLrGnyl7cycLXLDTgrKNwOUVljF20iYITFXSNs/CvsT0I8PWp9XmKiLgrFTsRqRXzP9vLP1L2Y3caF9wvMtifhMggWkYG0TIykJaRQSREBpEQEYSvjxc7jxSReqSI1CNWfsoqIquwlIyCk4//pGa7Xic6xJ8k15G9MNo1DWHa8h/JKiyldVQQr0/oRYhuFSYijYyXYRgXfhcWl6KiIiwWC1arlbAwLW4qctr3hwu4+Z8bAfD39SYhIvCM8hbk+n1CZFCNy1ZhSUWVspd6pIi0vGLO1x+bhgbw/uQrSIjUXSVExDPUpH/on7Mi8qs4nAaPf5QKwO97xDP35ktq9TNt4UH+XJEYzRWJ0a5tpRUOdmefLntF7DxiZVe2jWB/HxZP6KVSJyKNloqdiPwqyzdn8FNWEaFNfHnk+k71cqFCoL8Pl7aM4NKWEa5tdocTp3HyiKGISGOlYiciF81aUslf1uwGYNrVHYgOCTAti6+PCp2IiN4JReSizf98L8dLKmnfLISxfVuZHUdEpNFTsRORi7I7u4g3vz0MwBPDuuCnI2YiIqbTO7GI1JhhGDzxUSoOp8H1yc258owLG0RExDwqdiJSY5/sOMq3BwoI8PXm/w3tbHYcERE5RcVORGqkpMLOs5/sAmDywHZaWkRExI2o2IlIjfxrfRpHrGXEhQdyz4B2ZscREZEzqNiJSLWlHyvhXxsOADDzxs408dN9WEVE3ImKnYhU2+xPdlJhd3JlYhTXdmludhwREfkfKnYiUi0b9uaxdmcOPt5ePP7bLnh51f0dJkREpGZU7ETkF1XYnTzx8cn7wY7v25oOMaEmJxIRkXNRsRORX/TGxkMcyDtBVLA/D1zd3uw4IiJyHip2InJBubYyFny+D4BHruuEJdDP5EQiInI+pha7vLw8EhMTWb9+vWvb5MmTCQgIICQkxPV4+eWXXeNLliwhMTGR4OBgevbsycaNG11jDoeD6dOnExMTQ2hoKMOHD+fo0aOu8dzcXG666SbCw8OJjo5m6tSp2O32epmrSEM17z97KC63c0m8hZE94s2OIyIiF2Basfv666/p27cvaWlpVbZv3ryZl19+meLiYtfjrrvuAmD9+vVMmTKFJUuWUFhYyOjRoxk2bBglJSUAzJ49m7Vr17JlyxaysrIIDAxk0qRJrtceNWoUISEhHDlyhE2bNvH5558zf/78+pu0SAOzNf04K7/PBODJYV3w9tYFEyIi7syUYrdkyRJuu+02nnnmmSrby8vL2bFjBz179jzn81599VVuueUWrrzySvz8/Jg2bRrR0dEsX77cNf7II4+QkJBAWFgYCxcuZPXq1Rw4cID9+/ezfv165s2bR1BQEG3btmXmzJm88MILdT5fkYbI6Tx5P1iAkT3iubRlhMmJRETkl5hS7K699lrS0tIYNWpUle3btm2jsrKSWbNmERMTQ4cOHZg7dy5OpxOA1NRUunbtWuU5SUlJbNu2DavVSmZmZpXxmJgYIiIi2L59O6mpqURGRtKiRYsqz01PT6ewsLDuJivSQK38PpPtmVZCAnx5+LqOZscREZFq8DXjmzZvfu6FTa1WKwMHDuT+++/nnXfe4YcffmDEiBF4e3szffp0bDYbwcHBVZ4TFBREcXExNpsN4Lzj5xsDKC4uJjw8/Kw85eXllJeXu74uKiqq2URFGihraSVz/7MbgKlXt6dZaBOTE4mISHW41VWx11xzDV988QUDBgzAz8+P3r17M3XqVNep1uDgYNfn6U4rKSkhNDTUVdouNH6uMYDQ0HOvyTVnzhwsFovrkZCQUCvzFHF3Cz/fx7ETFbRrGsy4vq3NjiMiItXkVsXugw8+4KWXXqqyrby8nMDAQACSk5NJTU2tMr5z506Sk5OJiIggLi6uynh2djYFBQUkJyeTnJzMsWPHyMnJqfLc+Ph4LBbLOfPMmDEDq9XqemRkZNTWVEXc1t4cG0s2HgLgiWFd8Pd1q7cJERG5ALd6xzYMg2nTprFu3ToMw2Djxo0sXLiQu+++G4CJEyeybNkyUlJSqKysZMGCBeTk5DBixAgAJkyYwOzZszl48CA2m42pU6cyYMAA2rVrR/v27enXrx9Tp07FZrNx8OBBnn76ae64447z5gkICCAsLKzKQ8STGYbBkx+n4nAa/CYphv7tm5odSUREasCUz9idz4gRI5g/fz733nsvmZmZNG/enCeffJIxY8YAMGTIEF588UUmT55MZmYmXbp0YfXq1URGRgIwa9YsKisr6d+/PzabjUGDBrFixQrX669cuZI//vGPtGnTBm9vb8aNG8fMmTNNmauIO1qTms3X+4/h7+vNn25IMjuOiIjUkJdhGIbZIRqKoqIiLBYLVqtVR+/E45RWOLj6b1+SVVjK/YMTefA3uhJWRMQd1KR/uNWpWBExzz/X7yersJQWliZMHphodhwREbkIKnYiwtf783khZT8Aj92QRKC/j8mJRETkYqjYiTRyRwpLmfL2DzgN+EPPeIZ2Pfc6kyIi4v5U7EQasXK7g8nLtlJwooLkuDCeGp6Ml5fuBysi0lCp2Ik0Yk99vJNtGYWEB/nxz9E9aOKnU7AiIg2Zip1II/XulgyWfZeOlxcsGNWdhMggsyOJiMivpGIn0gj9lGXlsQ9+AmDa1R0Y2LGZyYlERKQ2qNiJNDKFJRXcs/R7KuxOBndqxh8HaWkTERFPoWIn0og4nQYPvPMjmcdLaRkZxPw/dMfbWxdLiIh4ChU7kUZk4bp9fLk3jwBfb/41pgeWID+zI4mISC1SsRNpJL7YncPCdfsAeHZEV5Ja6LZ4IiKeRsVOpBFIP1bC1Hd+BGDs5a24uUe8uYFERKROqNiJuAmH0+BIYSmGYdTq65ZWOLh76fcUldm5tGU4M29MqtXXFxER96FiJ+ImZn+ykyv+/AU3//MbUvbk1krBMwyDxz7Ywa6jRUQF+/Pi6Mvw99X/9iIinkrv8CJu4PiJCt76Lh2AremFTHh9M8P/8TWf7cz5VQVv2XfpvL81C28v+PttlxJrCaytyCIi4oZU7ETcwIotGZTbnXRqHsqd/dsQ6OfD9kwrd76xhRue/4rVO47idNas4P2QfpwnP04F4JHrOnFFu+i6iC4iIm5ExU7EZA6nwdLvDgMw4crWPHZDEv99ZBD3DGhHsL8PO48WMXnZVq5buIGPth3BUY2Cl19czr3LtlLpMLiuS3PuuqptXU9DRETcgIqdiMk27M0jo6AUS6Afw7rFARAdEsCj13fiq0cGM2VwIqEBvuzNKeb+t3/gmvlf8u8fMrE7nOd8PbvDyZS3fuCotYy2TYP5y+8vwctLixCLiDQGKnYiJntj4yEAft8jnkB/nypjEcH+PPSbjnz16GCmXd2BsCa+HMg7wbTl27j6b1+yYksGlf9T8J5bu5eNB44R5O/DS2N6ENpEixCLiDQWKnYiJko/VsL6vXkAjL681Xn3swT68cDV7fn60cFMv7YjEUF+HDpWwsMrtzPoufW89V06FXYn//npKP/6Mg2AeSMvoX1MaL3MQ0RE3IOv2QFEGrOl3x3GMOCqDk1pEx38i/uHNvHjvkGJ3H5Fa5Z9d5iXNxwg83gp/+/fO3jhi30UldkBmNSvDTde0qKu44uIiJvRETsRk5RVOlixJQOAcRc4WncuwQG+3HVVO/778GBm3phEs9AAjljLKC6307tNJI9c36kuIouIiJvTETsRk3y07QiFJZXEhQcyqFOzi3qNQH8f7ujXhtF9WvLulgx2HrXx0G864Oejf7OJiDRGKnYiJjAMgzc3nlziZMzlrfDx/nVXrTbx82Fs39a1kExERBoy/bNexATbMq3syLLi7+vNqF4JZscREREPoWInYoLTS5zceEkskcH+5oYRERGPoWInUs8KTlSwavtRAMbp9KmIiNQiFTuRerZ8cwYVdidd4yx0i7eYHUdERDyIip1IPXI4DZZ+e/KiibF9W+lWXyIiUqtU7ETqUcruXLIKSwkP8mNYNy0gLCIitUvFTqQevXHqaN0feibQxM/nF/YWERGpGRU7kXpyKP8EG/bm4eUFY/rU7E4TIiIi1aFiJ1JPTn+2bmCHprSMCjI5jYiIeCIVO5F6UFpxxn1htcSJiIjUERU7kXrw0bYsisrsJEQGMqBDU7PjiIiIh1KxE6ljhmHwxun7wvZphfevvC+siIjI+ajYidSxremFpB4pIsDXmz/01H1hRUSk7qjYidSxN0/dF/a33VoQofvCiohIHVKxE6lD+cXlfLojG4BxfbXEiYiI1C0VO5E6tHxzBhUOJ90SwrkkPtzsOCIi4uFU7ETqiMNp8NZ36QCMu1xH60REpO6ZWuzy8vJITExk/fr1rm3vvfce3bt3JywsjNatW/Pkk0/idDpd4507dyYoKIiQkBDXY9euXQA4HA6mT59OTEwMoaGhDB8+nKNHj7qem5uby0033UR4eDjR0dFMnToVu91eb/OVxmXdrhyyCkuJDPbnhktizY4jIiKNgGnF7uuvv6Zv376kpaW5tn3//feMHTuW2bNnU1hYyOrVq1m8eDHz588HoKioiD179rBr1y6Ki4tdj86dOwMwe/Zs1q5dy5YtW8jKyiIwMJBJkya5Xn/UqFGEhIRw5MgRNm3axOeff+56bZHa9qbuCysiIvXMlGK3ZMkSbrvtNp555pkq2w8dOsQ999zDjTfeiLe3N507d2bEiBFs2LABOFn8oqKiaNXq3Ke1Xn31VR555BESEhIICwtj4cKFrF69mgMHDrB//37Wr1/PvHnzCAoKom3btsycOZMXXnihzucrjc+BvGL+uy8fLy8Y3ael2XFERKSRMKXYXXvttaSlpTFq1Kgq22+++Wb+9re/ub4uLS3lk08+oUePHgBs3ryZoKAgBgwYQHR0ND179mTVqlUAWK1WMjMz6dq1q+v5MTExREREsH37dlJTU4mMjKRFixau8aSkJNLT0yksLKzD2UpjdPpo3eCOzUiI1H1hRUSkfvia8U2bN2/+i/vYbDZGjhxJYGAg06ZNA8DLy4tevXoxZ84cWrVqxbvvvsvNN9/Ml19+SXx8PADBwcFVXicoKIji4uLzjgEUFxcTHh5+Voby8nLKy8tdXxcVFVV/ktJolVTYWfl9JgBjtcSJiIjUI7e8KnbPnj307dsXu91OSkoKoaGhAEyfPp2VK1fSvn17/P39GT16NFdffTUrV650lbaSkpIqr1VSUkJoaCjBwcHnHANcr/+/5syZg8VicT0SEnTXAPllH/54BFuZndZRQVzVXveFFRGR+uN2xe7TTz+ld+/eXHfddaxZs4aIiAjX2HPPPce6deuq7F9eXk5gYCARERHExcWRmprqGsvOzqagoIDk5GSSk5M5duwYOTk5rvGdO3cSHx+PxWI5Z5YZM2ZgtVpdj4yMjFqerXiaKveFvVz3hRURkfrlVsXu22+/ZcSIEcyfP5/nnnsOX9+qZ4ozMjK47777OHDgAHa7nddee41vvvmG8ePHAzBhwgRmz57NwYMHsdlsTJ06lQEDBtCuXTvat29Pv379mDp1KjabjYMHD/L0009zxx13nDdPQEAAYWFhVR4iF/L94ePsOlpEEz9vft9DR3hFRKR+uVWxe/bZZ6msrOT++++vsk7d9ddfD8C8efO4/vrr6d+/PxaLhX/96198+umnJCYmAjBr1ixuuOEG+vfvT3x8PGVlZaxYscL1+itXrsRut9OmTRv69OnDddddx8yZM02Zq3im00frhneLwxLkZ3IaERFpbLwMwzDMDtFQFBUVYbFYsFqtOnonZ8mzlXPFn9dR6TBYNaUfyXHnPsUvIiJSEzXpH251xE6kIVu+OZ1Kh8GlLcNV6kRExBQqdiK1wOE0eHvTyYtrxuq+sCIiYhIVO5Fa8OXeXLIKSwkP8mNoV90XVkREzKFiJ1IL3vouHYCRl8XrvrAiImIaFTuRX+lIYSlf7M4F4FbdF1ZEREykYifyK72zOQOnAX3bRtGuaYjZcUREpBFTsRP5FewOJ8s3nzwNe5uO1omIiMlU7ER+hXW7c8kpKicq2J9ruzQ3O46IiDRyKnYiv8KyUxdN/L5nAv6++t9JRETMpZ9EIhcpo6CE/+7LA+C23joNKyIi5lOxE7lIb29KxzCgf/toWkYFmR1HRERExU7kYlTYnazYcvJOE6P76E4TIiLiHlTsRC7CZztzyC+uoFloAEM6NzM7joiICKBiJ3JRln13GIBRvRLw89H/RiIi4h70E0mkhg7kFfNN2jG8veAWXTQhIiJuRMVOpIbe3nRyiZOBHZsRFx5ochoREZGfqdiJ1EBZpYOV32cCMFp3mhARETejYidSA2tSszleUkkLSxMGdtRFEyIi4l4uqtiVlZVx9OhRysvLazuPiFtb9u3J07C39G6Jj7eXyWlERESqqlGx+/rrr+nXrx8hISHEx8cTGhrKoEGD2Lx5c13lE3Eb+3JsbDpUgI+3F6N6JZgdR0RE5CzVLnZff/01V199Na1bt2bp0qWsWbOGxYsXExMTw+DBg/nxxx/rMKaI+U7fF3ZIp2bEhDUxOY2IiMjZvAzDMKqz49VXX82gQYN47LHHzhp78skn2bFjBytXrqz1gO6kqKgIi8WC1WolLCzM7DhSj0orHPR59nOKyuwsmdibAR2amh1JREQaiZr0D9/qvujWrVv597//fc6xBx54gOTk5JqlFGlAVm0/QlGZnYTIQPonRpsdR0RE5JyqfSq2srKS0NDQc46Fh4djs9lqLZSIu3nr1Np1t/ZuibcumhARETdV7WLn5XXhH2bVPKMr0uDsPFLED+mF+Hp78fseumhCRETcV7VPxRqGQUZGxnkLnIqdeKq3Np28L+y1yc1pGhpgchoREZHzq3axO3HiBK1btz5vgfulI3oiDdGJcjsf/HAEgNG6L6yIiLi5ahe7gwcPun5vt9vJz88nOjoaX99qv4RIg/PRtiMUl9tpEx1M33ZRZscRERG5oGp/xq5Vq1YEBATw6KOP0qVLF6644gq6dOnCww8/jJ+fH61atarLnCKmeOvU2nW39W6po9IiIuL2qn247fjx4/Tp04eEhAT++c9/0qJFCw4cOMDixYvp3bs327dvJzIysi6zitSr7ZmF7Miy4u/jzc094s2OIyIi8ouqXeyeffZZevbsycqVK6scubj77rv53e9+x7PPPstzzz1XJyFFzHD6aN3Qrs2JDPY3OY2IiMgvq/ap2A8//JA5c+acdTrK29ubZ599lg8//LDWw4mYpaiskg9/PHnRxG199DEDERFpGKpd7LKzs+nQocM5xzp37kx2dnathRIx24c/ZFFa6aB9sxB6tY4wO46IiEi1VLvYNWnS5LzlLTs7+7x3pRBpaAzDYNnpiyb66KIJERFpOKpd7AYMGMCLL754zrF//vOfDBgwoNZCiZhpa3ohu7NtBPh687tLddGEiIg0HNW+eGLGjBn079+fwMBAxo4dS/PmzTl8+DCLFi3i73//O998801d5hSpN6cvmvhttxZYgvxMTiMiIlJ91S52l112GcuXL+fOO+/kT3/6k2t78+bNee+99+jatWudBBSpT9aSSlZtP33RhO40ISIiDUuNbhtx4403cvjwYTZu3MiRI0eIjY2lX79+uvuEeIz3tmZSbnfSOTaMSxPCzY4jIiJSIzVuZP7+/vo8nXikkxdNHAZ00YSIiDRM1b54QsTTfXuggLS8EwT5+3BT9xZmxxEREakxFTsRIGVPLpOXfQ/A8O4tCG2iiyZERKThMbXY5eXlkZiYyPr1613bvvvuO/r06UNISAht2rRh0aJFVZ6zZMkSEhMTCQ4OpmfPnmzcuNE15nA4mD59OjExMYSGhjJ8+HCOHj3qGs/NzeWmm24iPDyc6Ohopk6dit1ur/N5ivtyOA2eW7OHCa9vprCkkm7xFh68pqPZsURERC6KacXu66+/pm/fvqSlpbm2HT9+nKFDhzJu3DgKCwtZtGgR06ZNY9OmTQCsX7+eKVOmsGTJEgoLCxk9ejTDhg2jpKQEgNmzZ7N27Vq2bNlCVlYWgYGBTJo0yfX6o0aNIiQkhCNHjrBp0yY+//xz5s+fX78TF7eRZytn7KLveCFlPwDj+rZixT19aRoaYHIyERGRi2SYYPHixUbLli2Nd955xwCMlJQUwzAM45VXXjHat29fZd977rnHGDdunGEYhjF69GjjzjvvrDLeqVMn47XXXjMMwzDi4+ONZcuWucays7MNLy8vIy0tzdi3b58BGFlZWa7xd955x2jZsmW1c1utVgMwrFZrjeYr7ue7A8eMXrM/M1o9ssroPHO18cEPmWZHEhEROaea9A9Tjthde+21pKWlMWrUqCrbU1NTz1oPLykpiW3btv3iuNVqJTMzs8p4TEwMERERbN++ndTUVCIjI2nRokWV56anp1NYWHjOnOXl5RQVFVV5SMNmGAYvb0jj1le+JddWTvtmIXz0xysZ3j3O7GgiIiK/minFrnnz5udc+85msxEcHFxlW1BQEMXFxb84brPZAC44fq4xwPX6/2vOnDlYLBbXIyEhoQazFHdjLa3k7je/59lPd+NwGtzUvQUf/vFKEpvpPsciIuIZ3Oqq2ODgYNfn5U4rKSkhNDT0F8dPl7YLjZ9rDHC9/v+aMWMGVqvV9cjIyLj4yYmpfsqy8tu/f8XanTn4+3jzzIhk5o/qTpC/FtcWERHP4VY/1ZKTk1m7dm2VbTt37iQ5Odk1npqaetb40KFDiYiIIC4ujtTUVNf+2dnZFBQUkJycjNPp5NixY+Tk5BATE+N6bnx8PBaL5Zx5AgICCAjQB+kbMsMweGdzBo9/lEqF3Ul8RCD/HN2DrvHn/m8uIiLSkLnVEbvf/e53ZGdns2DBAiorK0lJSWHZsmVMnDgRgIkTJ7Js2TJSUlKorKxkwYIF5OTkMGLECAAmTJjA7NmzOXjwIDabjalTpzJgwADatWtH+/bt6devH1OnTsVms3Hw4EGefvpp7rjjDjOnLHWopMLOQ+9uY8b7O6iwO7m6czM+mdJfpU5ERDyWWxW7qKgoPvvsM959912ioqKYNGkSzz//PIMGDQJgyJAhvPjii0yePJmIiAjefvttVq9eTWRkJACzZs3ihhtuoH///sTHx1NWVsaKFStcr79y5Ursdjtt2rShT58+XHfddcycOdOUuUrdSssr5qZ/fM37W7Pw9oJHr+/Ey2N7YgnSwsMiIuK5vAzDMMwO0VAUFRVhsViwWq2EhYWZHUfOY9X2IzyycjsnKhw0DQ3g77deyuVto8yOJSIiclFq0j/c6jN2Ir9Ghd3Js5/uYvE3hwC4vG0kz996Kc1Cm5gbTEREpJ6o2InH+OvaPa5Sd+/Adjx4TQd8fdzq0wYiIiJ1SsVOPELm8RJe//oQAAtGdeemS7XgsIiIND46nCEeYf5n+6hwOOnbNorh3Vv88hNEREQ8kIqdNHi7s4t4/4dM4OTVr15eXiYnEhERMYeKnTR4c1fvxjDghq6xdEsINzuOiIiIaVTspEHbmHaMlD15+Hp78X/XdjQ7joiIiKlU7KTBMgyDP/9nNwC39m5Jm+hgkxOJiIiYS8VOGqz//JTNtoxCgvx9mDIk0ew4IiIiplOxkwap0uHkL2v2ADCpf1stQiwiIoKKnTRQyzdncCD/BFHB/tx1VVuz44iIiLgFFTtpcE6U21nw+T4A7h/SnpAArbMtIiICKnbSAL321UHyi8tpGRnErb1bmh1HRETEbajYSYNyrLiclzYcAOD/ru2Iv6/+CouIiJymn4rSoLyQsp/icjvJcWHc2DXW7DgiIiJuRcVOGoz0YyUs/fYwAI9e1xlvb906TERE5EwqdtJg/PWzPVQ6DPq3j6Zf+2iz44iIiLgdFTtpEH7KsvLhj0cAeOS6TianERERcU8qdtIgzD1167Dh3VuQHGcxOY2IiIh7UrETt/fVvnz+uy8fPx8vHrqmo9lxRERE3JaKnbg1p9Pgz//ZBcDoPq1oGRVkciIRERH3pWInbm3VjqP8lFVESIAvUwYnmh1HRETEranYiduqsDt5bs0eAO6+qi1RIQEmJxIREXFvKnbitt7elE56QQnRIQHc0b+N2XFERETcnoqduCVbWSXPr9sHwNSr2xPk72tyIhEREfenYidu6ZX/HuTYiQraRgczqleC2XFEREQaBBU7cTu5tjJe/e8BAKZf2xE/H/01FRERqQ79xBS38/d1+ympcNAtIZzrkpubHUdERKTBULETt3Iw/wRvb0oHYMb1nfDy8jI5kYiISMOhYidu5bk1e7A7DQZ1bMrlbaPMjiMiItKgqNiJ2/gh/Tif7DiKlxc8fF0ns+OIiIg0OCp24hZOlNt5aMU2AH53aTydY8NMTiQiItLwqNiJW5j1YSoH8k8Qa2nCn27obHYcERGRBknFTkz3wQ9ZvLc1E28vWHjLpUQE+5sdSUREpEFSsRNTHco/wWP/3gHA/UPa07tNpMmJREREGi4VOzFNhd3JlLd/4ESFgz5tIpkyuL3ZkURERBo0FTsxzbz/7GZHlpXwID8W3NIdH2+tWSciIvJrqNiJKVJ25/LqVwcB+MvIbsRaAk1OJCIi0vCp2Em9yykq46F3Ty5tcvsVrbkmKcbkRCIiIp5BxU7qlcNpMG35jxScqCApNowZQ7UQsYiISG1RsZN69c/1+/km7RhB/j78/bZLCfD1MTuSiIiIx3C7Yrds2TJCQkKqPPz9/QkICABg8uTJBAQEVBl/+eWXXc9fsmQJiYmJBAcH07NnTzZu3OgaczgcTJ8+nZiYGEJDQxk+fDhHjx6t9zk2Vt8fLmD+5/sAeGp4Mu2ahpicSERExLO4XbEbPXo0xcXFrseePXuIjo5m0aJFAGzevJmXX365yj533XUXAOvXr2fKlCksWbKEwsJCRo8ezbBhwygpKQFg9uzZrF27li1btpCVlUVgYCCTJk0yba6NibWkkvvf/hGH0+Cm7i24+bI4syOJiIh4HC/DMAyzQ5yPYRgMGTKEdu3a8corr1BeXk5YWBhbt26lS5cuZ+0/ZswYgoKCqhzB69y5Mw8//DATJkwgISGBuXPncttttwGQk5NDbGws+/fvp23btr+Yp6ioCIvFgtVqJSxM9zKtLsMwmLx0K/9JzaZVVBCf3N+fkABfs2OJiIg0CDXpH253xO5MS5cuJTU1lb/97W8AbNu2jcrKSmbNmkVMTAwdOnRg7ty5OJ1OAFJTU+natWuV10hKSmLbtm1YrVYyMzOrjMfExBAREcH27dvP+f3Ly8spKiqq8pCaW/ZdOv9JzcbPx4u/33qpSp2IiEgdcdti53Q6efrpp3nssccIDQ0FwGq1MnDgQO6//34yMzNZunQpzz//PH/9618BsNlsBAcHV3mdoKAgiouLsdlsAOcdP5c5c+ZgsVhcj4SEhNqepsfbnV3E06t2AvDIdZ24JD7c3EAiIiIezG2LXUpKCkePHuWOO+5wbbvmmmv44osvGDBgAH5+fvTu3ZupU6eyfPly4GRpO/15utNKSkoIDQ11FbrzjZ/LjBkzsFqtrkdGRkZtTtHjlVY4+ONbP1BudzKwY1MmXtnG7EgiIiIezW2L3XvvvceIESOqHGH74IMPeOmll6rsV15eTmDgybsWJCcnk5qaWmV8586dJCcnExERQVxcXJXx7OxsCgoKSE5OPmeGgIAAwsLCqjyk+p5alcr+3GKahQbw3O+74a1bhomIiNQpty12X331FVdddVWVbYZhMG3aNNatW4dhGGzcuJGFCxdy9913AzBx4kSWLVtGSkoKlZWVLFiwgJycHEaMGAHAhAkTmD17NgcPHsRmszF16lQGDBhAu3bt6n1+nm7V9iO8vSkDLy9YMKo70SEBZkcSERHxeG77KfYDBw4QF1d1SYwRI0Ywf/587r33XjIzM2nevDlPPvkkY8aMAWDIkCG8+OKLTJ48mczMTLp06cLq1auJjIwEYNasWVRWVtK/f39sNhuDBg1ixYoV9T43T5dRUMKM93YAcN/ARK5IjDY5kYiISOPg1suduBstd/LLKh1Ofv+vjfyYUUiPVhEsv+tyfH3c9sCwiIiI2/OY5U6k4fnbZ3v5MaOQsCa+LLylu0qdiIhIPdJPXak136Tl88/1aQDMvfkS4iOCTE4kIiLSuKjYSa0otzv4079/AuDW3i25vmusyYlEREQaHxU7qRUvf3mAA/knaBoawIyhncyOIyIi0iip2Mmvln6shBdS9gPwpxs6E9bEz+REIiIijZOKnfwqhmHw+Ec/UW53cmViFMO6tTA7koiISKOlYie/yprUHFL25OHv481Tw5Px8tLdJURERMyiYicX7US5nSc/PnmLtrsHtKVd0xCTE4mIiDRuKnZy0Rau28dRaxkJkYHcNyjR7DgiIiKNnoqdXJQ92TYWfXUQgKeGJdPEz8fkRCIiIqJiJzXmdBr86YMdOJwG13aJYVCnZmZHEhEREVTs5CK8tzWTzYeOE+Tvw+O/7WJ2HBERETlFxU5q5PiJCuas3g3AA0Pa0yI80OREIiIicpqKndTIvDW7KThRQYeYECb2a2N2HBERETmDip1U29b047y9KQOA2Td1xc9Hf31ERETciX4yS7XYHU4e+/dPAIzsEU/vNpEmJxIREZH/pWIn1fLGxsPsOlqEJdCPGdd3MjuOiIiInIOKnfyinKIy/vbZXgAeua4TUSEBJicSERGRc1Gxk1/01KqdFJfb6Z4Qzi29EsyOIyIiIuehYicXtGFvHp9sP4q3F8y+KRlvby+zI4mIiMh5qNjJeZVVOpj14ckLJsZf0ZrkOIvJiURERORCVOzkvF768gCHjpXQLDSAB6/pYHYcERER+QUqdnJOh/JP8I/1+wGYeWMSoU38TE4kIiIiv0TFTs5iGAazPkqlwu6kX2I0N14Sa3YkERERqQYVOznL6p+y2bA3D38fb54a3gUvL10wISIi0hCo2EkVxeV2nvp4JwD3DGhL26YhJicSERGR6lKxkyoWfLaX7KIyWkYGce+gRLPjiIiISA2o2InL3hwbr39zCIAnh3ehiZ+PuYFERESkRlTsxOWt79JxOA2u7hzDoI7NzI4jIiIiNaRiJwDYHU5WbT8CwOg+LU1OIyIiIhdDxU4A+CbtGPnFFUQE+dGvfbTZcUREROQiqNgJAB/+ePJo3Q2XxOLno78WIiIiDZF+ggtllQ7WpGYDMLx7nMlpRERE5GKp2Alf7M6luNxOXHggPVpGmB1HRERELpKKnfDBD1kADOveAm9v3WVCRESkoVKxa+SsJZWs35MHwPDuLUxOIyIiIr+Gil0j95/Uo1Q4nHSMCaVT8zCz44iIiMivoGLXyJ2+GnaYjtaJiIg0eCp2jVhOURkbDxwDYFg3FTsREZGGTsWuEft42xEMA3q2iiAhMsjsOCIiIvIruWWxW758Ob6+voSEhLgeY8eOBeC7776jT58+hISE0KZNGxYtWlTluUuWLCExMZHg4GB69uzJxo0bXWMOh4Pp06cTExNDaGgow4cP5+jRo/U6N3dy+jSsLpoQERHxDG5Z7DZv3szYsWMpLi52Pd58802OHz/O0KFDGTduHIWFhSxatIhp06axadMmANavX8+UKVNYsmQJhYWFjB49mmHDhlFSUgLA7NmzWbt2LVu2bCErK4vAwEAmTZpk5lRNk5ZXzI4sKz7eXgztGmt2HBEREakFblvsevbsedb29957j6ioKO677z58fX0ZPHgwo0eP5h//+AcAr776KrfccgtXXnklfn5+TJs2jejoaJYvX+4af+SRR0hISCAsLIyFCxeyevVqDhw4UK/zcwcfnTpa1799NFEhASanERERkdrgdsXO6XSydetWPvnkE1q1akV8fDx33XUXx48fJzU1la5du1bZPykpiW3btgFccNxqtZKZmVllPCYmhoiICLZv3173E3MjhmHw0baTxe4m3UJMRETEY7hdscvLy+PSSy9l5MiR7Nq1i2+++YZ9+/YxZswYbDYbwcHBVfYPCgqiuLgY4ILjNpsN4ILP/1/l5eUUFRVVeXiCHVlWDuafoImfN9ckxZgdR0RERGqJ2xW7mJgYNmzYwMSJEwkKCqJly5bMmzeP1atXYxiG6/Nyp5WUlBAaGgqcLG3nGz9d6C70/P81Z84cLBaL65GQkFBb0zTVBz+cPFp3TVJzggN8TU4jIiIitcXtit327dt59NFHMQzDta28vBxvb2969+5Nampqlf137txJcnIyAMnJyecdj4iIIC4ursp4dnY2BQUFruf/rxkzZmC1Wl2PjIyM2pqmaRxOg4+3n7oaVmvXiYiIeBS3K3aRkZG88MIL/OUvf8Fut5Oens706dO5/fbbGTlyJNnZ2SxYsIDKykpSUlJYtmwZEydOBGDixIksW7aMlJQUKisrWbBgATk5OYwYMQKACRMmMHv2bA4ePIjNZmPq1KkMGDCAdu3anTNLQEAAYWFhVR4N3bcHjpFnKyc8yI+rOjQ1O46IiIjUIrcrdvHx8XzyySd88MEHREZG0rNnT3r16sULL7xAVFQUn332Ge+++y5RUVFMmjSJ559/nkGDBgEwZMgQXnzxRSZPnkxERARvv/02q1evJjIyEoBZs2Zxww030L9/f+Lj4ykrK2PFihVmTrfeffhjFgBDu8bi7+t2//lFRETkV/AyzjznKRdUVFSExWLBarU2yKN3ZZUOej3zObYyO8vvupw+baPMjiQiIiK/oCb9Q4dsGpH1e3KxldmJtTShV+tIs+OIiIhILVOxa0RO30JsWLcWeHt7mZxGREREapuKXSNRVFbJut25AAzTvWFFREQ8kopdI7Hmp2wq7E7aNwshKbbhfT5QREREfpmKXSNx+hZiw7u3wMtLp2FFREQ8kYpdI5BrK+Pr/fkADOume8OKiIh4KhW7RmDVtqM4Dbi0ZTgto4LMjiMiIiJ1RMWuEfhwm24hJiIi0hio2Hm4Q/kn2JZRiI+3FzdcomInIiLiyVTsPNzpiyauTIymaWiAyWlERESkLqnYeTDDMPjg1L1hdRpWRETE86nYebDUI0UcyDtBgK83v+kSY3YcERERqWMqdh7sw1NH667uHENoEz+T04iIiEhdU7HzUA6nUWVRYhEREfF8KnYeatPBAnKKyglr4suAjk3NjiMiIiL1QMXOQ3207eRp2KFdYwnw9TE5jYiIiNQHFTsPVG538OmObACG6TSsiIhIo6Fi54G+3JOHtbSSmLAA+rSJMjuOiIiI1BMVOw90+hZiw7q1wMfby+Q0IiIiUl9U7DxMcbmdz3fmADC8e5zJaURERKQ+qdh5mLWp2ZTbnbRtGkyXFmFmxxEREZF6pGLnYT788dTadd3i8PLSaVgREZHGRMXOg+QXl/PV/nxAixKLiIg0Rip2HuT9rZk4nAbd4i20jg42O46IiIjUMxU7D+FwGryx8TAAo/u0MjmNiIiImEHFzkOs25VD5vFSIoL8tCixiIhII6Vi5yEWf3MIgFt6t6SJn24hJiIi0hip2HmAPdk2vkk7ho+3F2Mu12lYERGRxkrFzgMs2XgIgN8kxRAXHmhuGBERETGNil0DZy2p5P2tmQDcfkVrc8OIiIiIqVTsGrjlW9Ipq3TSOTaM3m0izY4jIiIiJlKxa8DOXOLk9ita6U4TIiIijZyKXQN2eomT8CA/hnePMzuOiIiImEzFrgE7fdHELb20xImIiIio2DVYe3NsfL3/GN5eMLavljgRERERFbsG6/SCxNd2aa4lTkRERARQsWuQrCWV/HtrFgDjtcSJiIiInKJi1wCt2JJBaaWDTs1D6aMlTkREROQUFbsGxuE0XBdN3H5Fay1xIiIiIi4qdg3MF7tztcSJiIiInJOKXQOz+JuDwMklTgL9tcSJiIiI/Mwti922bdu45ppriIyMpHnz5owbN478/HwAJk+eTEBAACEhIa7Hyy+/7HrukiVLSExMJDg4mJ49e7Jx40bXmMPhYPr06cTExBAaGsrw4cM5evRovc/vYu07Y4mTMZe3NDuOiIiIuBm3K3alpaVcf/31XHHFFWRnZ5OamsqxY8eYMGECAJs3b+bll1+muLjY9bjrrrsAWL9+PVOmTGHJkiUUFhYyevRohg0bRklJCQCzZ89m7dq1bNmyhaysLAIDA5k0aZJpc62p00uc/CapOfERQeaGEREREbfjdsUuPT2dbt26MWvWLPz9/YmKiuLuu+9mw4YNlJeXs2PHDnr27HnO57766qvccsstXHnllfj5+TFt2jSio6NZvny5a/yRRx4hISGBsLAwFi5cyOrVqzlw4EB9TvGiWEsqef/UEie3X9na3DAiIiLiltyu2HXs2JHVq1fj4/Pz58dWrlxJjx492LZtG5WVlcyaNYuYmBg6dOjA3LlzcTqdAKSmptK1a9cqr5eUlMS2bduwWq1kZmZWGY+JiSEiIoLt27fXz+R+hXe/1xInIiIicmG+Zge4EMMwmDlzJh9//DEbNmwgOzubgQMHcv/99/POO+/www8/MGLECLy9vZk+fTo2m43g4OAqrxEUFERxcTE2mw3gvOPnUl5eTnl5uevroqKiWp5h9WiJExEREakOtztid1pRUREjR45k6dKlbNiwga5du3LNNdfwxRdfMGDAAPz8/OjduzdTp051nWoNDg52fZ7utJKSEkJDQ12F7nzj5zJnzhwsFovrkZCQUAcz/WVf7M4lo6AUS6CWOBEREZHzc8til5aWRq9evSgqKmLLli2u06cffPABL730UpV9y8vLCQw8ea/U5ORkUlNTq4zv3LmT5ORkIiIiiIuLqzKenZ1NQUEBycnJ58wxY8YMrFar65GRkVGb06y2Jacumrild4KWOBEREZHzcrtid/z4cQYPHswVV1zBmjVriI6Odo0ZhsG0adNYt24dhmGwceNGFi5cyN133w3AxIkTWbZsGSkpKVRWVrJgwQJycnIYMWIEABMmTGD27NkcPHgQm83G1KlTGTBgAO3atTtnloCAAMLCwqo86tu+HBtf7c/H2wvGXt6q3r+/iIiINBxu9xm7119/nfT0dFasWMG7775bZay4uJj58+dz7733kpmZSfPmzXnyyScZM2YMAEOGDOHFF19k8uTJZGZm0qVLF1avXk1k5MmLDWbNmkVlZSX9+/fHZrMxaNAgVqxYUe9zrInTn627JilGS5yIiIjIBXkZhmGYHaKhKCoqwmKxYLVa6+XonbW0ksufXUdppYO377ycvu2i6vx7ioiIiHupSf9wu1Ox8rN3t5xc4qRjTCiXt9USJyIiInJhKnZuyuE0eGPjYeDkgsRa4kRERER+iYqdm0rZnUt6QQmWQD9u0hInIiIiUg0qdm7q9H1hb+mlJU5ERESkelTs3NCZS5yM0RInIiIiUk0qdm7ozCVOEiK1xImIiIhUj4qdm7GWVvL+1iwAxl/R2twwIiIi0qCo2LmZd7dkUFJxcomTvm21bp2IiIhUn4qdGzlziZPxV2iJExEREakZFTs3sn7PGUucXNrC7DgiIiLSwLjdvWIbs4hgf67q0JTOsaEE+es/jYiIiNSM2oMbuaxlBG9M7I3Tqdv3ioiISM3pVKwb8vbWZ+tERESk5lTsRERERDyEip2IiIiIh1CxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiIiIeAgVOxEREREPoWInIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ6jYiYiIiHgIX7MDNCSGYQBQVFRkchIRERFpLE73jtM95EJU7GrAZrMBkJCQYHISERERaWxsNhsWi+WC+3gZ1al/AoDT6eTIkSOEhobi5eV1zn2KiopISEggIyODsLCwek5ovsY8/8Y8d9D8NX/Nv7HOvzHPHepn/oZhYLPZaNGiBd7eF/4UnY7Y1YC3tzfx8fHV2jcsLKxR/gU/rTHPvzHPHTR/zV/zb6zzb8xzh7qf/y8dqTtNF0+IiIiIeAgVOxEREREPoWJXywICAnj88ccJCAgwO4opGvP8G/PcQfPX/DX/xjr/xjx3cL/56+IJEREREQ+hI3YiIiIiHkLFTkRERMRDqNiJiIiIeAgVu1qUm5vLTTfdRHh4ONHR0UydOhW73W52rHqxbds2rrnmGiIjI2nevDnjxo0jPz/f7Fj1zuFwMHDgQG6//Xazo9SrgoICxo0bR1RUFBEREdx0000cPXrU7Fj1ZuvWrVx11VWEh4cTGxvLAw88QHl5udmx6lxeXh6JiYmsX7/ete27776jT58+hISE0KZNGxYtWmRewDp0rrm/9957dO/enbCwMFq3bs2TTz6J0+k0L2QdOtf8Tzt69CgxMTEsXry43nPVl3PNf/v27QwZMoTQ0FBiYmJ48MEHTekAKna1aNSoUYSEhHDkyBE2bdrE559/zvz5882OVedKS0u5/vrrueKKK8jOziY1NZVjx44xYcIEs6PVuyeffJL//ve/ZseodzfffDPFxcWkpaWRnp6Oj48Pd955p9mx6oXT6eTGG29k5MiRFBQUsHnzZtasWcO8efPMjlanvv76a/r27UtaWppr2/Hjxxk6dCjjxo2jsLCQRYsWMW3aNDZt2mRi0tp3rrl///33jB07ltmzZ1NYWMjq1atZvHixR/4MONf8T3M6nYwePdqj/2F/rvnn5+czZMgQrr76agoKCvjuu+9YtWoVCxYsqP+AhtSKffv2GYCRlZXl2vbOO+8YLVu2NDFV/di9e7dx3XXXGXa73bXtww8/NMLCwkxMVf/WrVtnJCUlGb///e+N8ePHmx2n3mzZssVo0qSJYbVaXduOHTtm/PTTTyamqj/5+fkGYMyfP9+w2+1GRkaG0blzZ+O5554zO1qdWbx4sdGyZUvjnXfeMQAjJSXFMAzDeOWVV4z27dtX2feee+4xxo0bZ0LKunG+ua9cudKYNm1alX2nTZtmDBs2zISUded88z/t8ccfN8aOHWu0atXKeP31103JWJfON//nnnvOuOKKK6rse+jQIePw4cP1nlFH7GpJamoqkZGRtGjRwrUtKSmJ9PR0CgsLzQtWDzp27Mjq1avx8fFxbVu5ciU9evQwMVX9ys3N5Y477uCtt94iKCjI7Dj1atOmTSQlJfHKK6+QmJhIbGwsDz30ELGxsWZHqxdRUVFMmzaNhx56iICAABISEujQoQPTpk0zO1qdufbaa0lLS2PUqFFVtqemptK1a9cq25KSkti2bVt9xqtT55v7zTffzN/+9jfX16WlpXzyySce9z54vvkDpKSk8M477/Diiy+akKx+nG/+mzZtIjk5mXvuuYfmzZvTrl07li5dWu3bkNYmFbtaYrPZCA4OrrLt9A/44uJiMyKZwjAM/vSnP/Hxxx+zcOFCs+PUC6fTyZgxY3jwwQfp1q2b2XHqXUFBAdu3b2ffvn388MMP/Pjjj2RlZTFu3Dizo9ULp9NJYGAgL7zwAidOnOCnn35i586dPP7442ZHqzPNmzfH1/fsW42f733Qk94Dzzf3M9lsNm666SYCAwM9ruCfb/65ublMmDCBZcuWERISYkKy+nG++RcUFPD666/Tu3dvMjIyeP/993nppZeqlP36omJXS4KDgykpKamy7fTXoaGhZkSqd0VFRYwcOZKlS5eyYcOGs/7l7qnmzJlDkyZNmDJlitlRTHF6tfUFCxa4PjT8zDPP8Omnn3rUD/Tz+fe//817773H5MmTCQgIoEuXLjz++OMefdTifM73PthY3gMB9uzZQ9++fbHb7aSkpDSKuRuGwdixY7n//vs97ghldQUEBNC7d28mTpyIn58f3bp1Y8qUKaxYsaLes6jY1ZLk5GSOHTtGTk6Oa9vOnTuJj4/HYrGYmKx+pKWl0atXL4qKitiyZUujKXUAb775JuvXryc8PJzw8HDeeust3nrrLcLDw82OVi+SkpJwOp1UVFS4tjkcDuDkG76nS09PP+sKWD8/P/z9/U1KZJ7k5GRSU1OrbNu5cyfJyckmJapfn376Kb179+a6665jzZo1REREmB2pXmRkZPDll1/y1FNPud4H09PTuffee7nxxhvNjlcvkpKSznofcDgc5rwH1vun+jxYv379jFtuucUoKioyDhw4YHTp0sV4/PHHzY5V5woKCoyWLVsat99+u+FwOMyOY7rx48c3qosnKioqjMTEROPmm282bDabkZubawwePNgYMWKE2dHqRWpqqhEQEGA888wzht1uN9LS0oyuXbsa//d//2d2tHrBGR8gz8/PN8LDw4358+cbFRUVxhdffGGEhoYaX3zxhbkh68iZc9+4caPh7+9vLFq0yNxQ9YhzXDxxmqdePHGmM+e/a9cuIyAgwJg7d65ht9uN7du3G3FxccbChQvrPZeO2NWilStXYrfbadOmDX369OG6665j5syZZseqc6+//jrp6emsWLGCsLAwQkJCXA/xfH5+fnz55Zf4+vrSvn17OnToQHx8PK+99prZ0epFUlISq1at4qOPPiIqKopBgwbx29/+lmeeecbsaPUuKiqKzz77jHfffZeoqCgmTZrE888/z6BBg8yOVueeffZZKisruf/++6u8B15//fVmR5N60KlTJ7788ktWrVpFdHQ01113Hffcc48pH9HxOtU6RURERKSB0xE7EREREQ+hYiciIiLiIVTsRERERDyEip2IiIiIh1CxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiEfav3+/2RHcntVqJS8vz+wYIlKLVOxExONMnz6d2bNnV2vf9evX4+XlVWdZvLy8WL9+/UU994knnmDgwIG1mudMiYmJrnu7Llu2jC5dutTZ9xKR+qFiJyIeR0ehqic/P9/1+9GjR7tKnog0XCp2IuIWDh06hJeXF2+88QatWrUiODiYCRMm8NVXX9GtWzdCQkIYMmQI+fn5OJ1O/vznP9OuXTssFgu9e/dmzZo1ADz99NMsW7aMZcuW0a1btxrn2LFjB0OHDiUyMpL4+HjuvfderFYrAIZhMHfuXLp27Up4eDgRERGMHj2a0tJSACorK3nwwQeJjo6madOm/OUvf6nR9/7mm2/o1asXwcHBXHnllRw8eNA1tnjxYlq3bl1l/4EDB/LEE08AcPvtt/P73/+ezp0707RpU9LS0vjmm28YPHgwLVq0oEmTJvTs2ZNvv/0WgI4dOwJw/fXXM2/evLNe/7///S9XXXUV4eHhtGnThpkzZ1JeXg6cPJI4cuRIxowZQ3h4OPHx8cyYMaNGcxWROmKIiLiBgwcPGoAxatQo48SJE8aOHTsMHx8fo1u3bkZmZqaRl5dnJCYmGk8++aTx+OOPG/Hx8cb3339vVFZWGsuXLzcCAgKMTZs2GYZhGOPHjzfGjx9fre+bkpJinH4rzM/PNyIjI42HHnrIKCkpMY4ePWoMHjzYGDZsmGEYhrF8+XKjefPmxt69ew3DMIxdu3YZkZGRxquvvmoYhmHMnDnTaN++vZGWlmYUFxcbY8eONQAjJSXlF3Pk5+cb4eHhxp///GejoqLC+Oqrr4ywsDBjwIABhmEYxuuvv260atWqynMGDBhgPP744645h4SEGDt27DCOHz9ulJSUGJGRkcYLL7xgOBwOo7i42PjDH/5g9OvXz/X8M7Od+fq7d+82AgICjAULFhjl5eXGvn37jEsuucS4//77DcMwjMcff9zw8vIylixZYtjtduOTTz4xvLy8jI0bN1brz1xE6o6O2ImIW/m///s/goKCSE5OJjY2lvHjxxMXF0d0dDR9+/bl0KFDvPbaa8yYMYPLLrsMX19f/vCHPzBs2DAWLVr0q773hx9+iL+/P3PnziUwMJDmzZvz97//nY8++ojs7Gyuv/56Nm/eTPv27cnLyyM/P5/o6GiysrIAePPNN5k+fTpt27YlODiY559/vtqf31u1ahXBwcE8/PDD+Pn5ceWVVzJx4sQa5b/88stJTk4mPDwcf39/vv32W+69917Ky8s5dOgQUVFRrqwXsmzZMi655BIeeOAB/P39SUxMZM6cObzyyis4nU4AOnTowLhx4/Dx8WHo0KHExsayd+/eGuUVkdrna3YAEZEzRUVFuX7v4+NDRESE62tvb2+cTic5OTm0bdu2yvPatGnDtm3bftX3zsnJoVWrVvj4+FR5XTh5qrhz58489thjfPzxxzRr1ozu3btTXl7uKjtZWVm0bNnS9dzw8HAiIyOr9b2zsrJISEioUgTbtWvHDz/8UO38LVq0cP3ex8eHlJQUrr/+eoqLi+nSpQt+fn6urBdyvj/f0tJScnNzAWjevHmV8eq+tojULRU7EXEr1TnC1bp1a9LS0qpsS0tLIzY29ld979atW3P48GEcDoer3J3+PrGxsTz66KOkp6dz6NAhwsLCAOjatavr+QkJCRw4cMD19YkTJygsLKzW905ISODw4cM4nU68vU+eTMnMzHSN+/j4UFFRUeU5Z178AFX/7L777jumTJnCN998Q48ePQD461//yu7du38xS+vWrXn//ferbEtLSyMgIKDaRVVEzKFTsSLS4EyaNIk///nPbN26FYfDwbvvvstHH33E7bffDkCTJk1cFzzUxNChQ/Hy8uKRRx6htLSU7OxsHnjgAQYPHkyrVq2wWq00adIEX19fysrK+Otf/8pPP/3kKlyTJk1i3rx57Nq1i7KyMh566CEcDke1vvdvf/tbnE4nTzzxBBUVFXz//fe88sorrvHOnTuTnZ1NSkoKhmGwdOlSdu3add7Xs1qteHt7ExgYCMC3337LwoULq5TDgICAc/453XrrrezcudO1f1paGv/v//0/Ro8ejb+/f7XmIyLmULETkQbnwQcf5L777mPUqFFYLBaeffZZ3nnnHQYMGADAqFGj+Prrr6ucFq0Oi8XCZ599xk8//UR8fDzJycm0bt2ad999F4DZs2dTUlJCs2bNaN26Nd9++y1jx45lx44dADzyyCOMGTOGAQMGEBsbi8ViqXJq+ULCw8NZs2YN69atIyIigjvuuIORI0e6xnv27Mmf/vQnxo8fT2RkJOvWrasy/r+uueYa7r33Xq666ioiIiK49957uf/++8nNzSUnJweAu+++m1tvvZXHHnusynNbt27NmjVrWLlyJc2aNaNfv35cc801vPDCCzX68xSR+udlGIZhdggRERER+fV0xE5ERETEQ+jiCRHxWLm5uWdd3fm/iouL6yVLdHQ0ZWVl5x3fuXNnjU8di4j8L52KFREREfEQOhUrIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ6jYiYiIiHgIFTsRERERD6FiJyIiIuIh/j9FBTOXhjHtYAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data = Ncount_mean\n",
"data_std = Ncount_std\n",
"fig = plt.figure()\n",
"# ax = fig.gca()\n",
"data.plot.errorbar()\n",
"# plt.xlabel('MOT AOM Frequency (MHz)')\n",
"# plt.ylabel('MOT Gradient Coil Current (A)')\n",
"plt.tight_layout()\n",
"# plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"data = data * factor_from_Ncounts_to_Natom()\n",
"data_std = data_std * factor_from_Ncounts_to_Natom()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZC0lEQVR4nO3deVxU9f7H8dewiLKJiikIbrkkri1mlrjlvmVoWlpqeb1p3RKt7s26XjVbbt5SKTOtm9Y1zRLRW6alpahZZpvlkjc1FcQVFdkUh+H8/pgfkwgoKDMHZt7Px4MHzHe+c87nAwbvvmfOORbDMAxEREREpMLzMrsAERERESkbCnYiIiIibkLBTkRERMRNKNiJiIiIuAkFOxERERE3oWAnIiIi4iYU7ERERETchIKdiIiIiJtQsBMRERFxEx4X7E6ePEmjRo1ITEws0fy8vDyeffZZIiIiqFq1KrfddhsbN250bpEiIiIiV8Gjgt2WLVto3749+/fvL/Fr5s+fz8qVK/n22285c+YMQ4cOpW/fvpw/f96JlYqIiIiUnscEu/fee49hw4bxwgsvFHruiy++4NZbbyUkJITmzZuzePFix3O//voreXl55OXlYRgGXl5e+Pv7u7J0ERERkRKxGIZhmF2EKxw7dozQ0FB8fHywWCxs2LCBzp078/PPP9O+fXvef/997rrrLr799lvuuusu3n//fXr27Mnu3bvp3bs3SUlJeHt7U6VKFT799FM6duxodksiIiIiBXjMil3t2rXx8fEpND5//nzuuusuYmJi8Pb25vbbb2fMmDHMmTMHgAsXLtC5c2f27NlDRkYGf/3rXxk8eDDHjh1zdQsiIiIil+Uxwa44Bw8eZMWKFYSEhDg+Xn/9dZKTkwF44IEH6N27N02bNqVKlSpMnjyZqlWrsmzZMpMrFxERESmo8BKWh4mIiGDUqFHMmzfPMXb06FHyj1AnJSWRk5NT4DW+vr5UqlTJpXWKiIiIXInHr9iNHj2aJUuWsHbtWvLy8ti7dy8dO3bklVdeAWDAgAE8//zz/P7771itVuLi4jh69Cj9+vUzuXIRERGRgjw+2LVr144PPviAZ555hmrVqtGpUycGDBjAP//5TwDefPNN+vTpQ8eOHbnuuutISEhg7dq11KlTx+TKRURERArymLNiRURERNydx6/YiYiIiLgLBTsRERERN+H2Z8Xm5eVx5MgRgoKCsFgsZpcjIiIiUiqGYZCRkUF4eDheXpdfk3P7YHfkyBEiIyPNLkNERETkmiQnJxMREXHZOW4f7IKCggD7NyM4ONgp+7Baraxdu5YePXrg6+vrlH2UZ+pf/at/9a/+1b/6d17/6enpREZGOjLN5bh9sMs//BocHOzUYOfv709wcLDH/sNW/+pf/at/9a/+PY2r+y/JW8p08oSIiIiIm1CwExEREXETCnYiIiIibkLBTkRERMRNKNiJiIiIuAlTg93Jkydp1KgRiYmJxc6ZN28eTZs2JSgoiCZNmjB37lzXFSgiIiJSgZh2uZMtW7YwcuRI9u/fX+yclStXMmnSJNasWUO7du3YunUrffr0oVatWgwaNMiF1YqIiIiUf6as2L333nsMGzaMF1544bLzjhw5wtNPP81tt92GxWKhffv2dOnShU2bNrmoUhEREZGKw5QVu549ezJ8+HB8fHy49957i533yCOPFHh84sQJNm3axMyZM4t9TU5ODjk5OY7H6enpgP0iglar9RorL1r+dp21/fJO/av/iz97GvWv/i/+7GnUv2v6L832LYZhGE6s5coFWCxs2LCBzp07X3besWPH6Nu3L6GhoXz66af4+BSdSadOncq0adMKjS9ZsgR/f/+yKFlERETEZbKzsxk2bBhnz5694l20KkSw27p1K/fccw/R0dEsXLgQPz+/YucWtWIXGRlJamqqU28ptm7dOrp37+6xt1RR/+pf/at/9a/+PY2r+k9PTyc0NLREwa7c3yt2wYIFPPbYYzz33HM88cQTV5zv5+dXZPDz9fV1+j86V+yjPFP/6l/9q39Ppf7VvzP7L822y3WwW758OePGjePjjz+mZ8+eZpcjIiIiUq6VuwsUBwYGsnjxYgCmTZtGbm4ugwYNIjAw0PExduxYk6sUERERKX9MX7G79C1+mZmZjq9/+eUXV5cjIiIiUmGVuxU7ERERubKsLLBY7B9ZWWZXI+WFgp2IiIiIm1CwExEREXETCnYiIiIibkLBTkRERMRNKNiJiIiIuAnTL3ciIiIiFU9WFgQG+gJ3ceaMlZAQsytyrfLav1bsREREpNRstj++/uorS4HHYh4FOxERESmVhASIivrjcf/+PtSvbx8XcynYiYiISIklJMDgwZCSUnA8JcU+rnBnLgU7ERERKRGbDcaPh0vuBgr8MRYbiw7LmkjBTkREREpk82Y4fLj45w0DkpPt88QcCnYiIiIV0MWrYps2uWaV7OjRsp13LXSv3KIp2ImIiFQwl5680KcPLjl5ISysbOddCzOCbXH7L09nBSvYiYiIVCBmnrwQHQ0REfZVsqJYLBAZaZ/nTGYF2+L2X57OClawExERqSDMPnnB2xvi4uxfXxru8h/Pnm2f5yxmn5Vr9v6vRMFORESkgigPJy/ExEB8PISHFxyPiLCPx8Q4b99mB1uz918SCnYiIiJXISsLKlXyZeDAu1z25v3ycvJCTAzs3v3H408+yeXAAeeGOjA/2Jq9/5JQsBMREakgytPJCxcfbu3QwXDq4dd8Zgdbs/dfEgp2IiIiFUR5OXkBICAALlywsnLlfwkIcP7+wPxga/b+S0LBTkRE5CqYcbmL8nDygpnMDrZm778kFOxERERKyczLXZh58oLZzA62Zu+/JBTsRERESqE8XO7i0pMXVq/GJScvlAdmB1uz938lCnYiIiIlVJ4ud3HxqlDHju57+LUoZgdbs84KLgkfswsQERGpKEpzuYvOnV1WlkcKDi46YLuKGWcFl4SCnYiIVEg2mz1AHT1qPwsxOtr5q1YV4XIX4tkU7EREpMJJSLAfEr149Swiwv7GdmceDqsIl7sQz6b32ImIyFWx2WDjRgubNtVh40bXXO4D/jh54dJDoq44eaEiXO5CPJuCnYiIlFpCAtSvD927+zBz5i107+6ay32YffJCRbjchXg2BTsRESkVM1fMysO9Osv75S7EsynYiYhIiZm9YlZeTl4oz5e7EM+mYCciIiVm9opZeTp5obxe7kJcw4x75ZaEgp2IiJSY2Stm5enkhfL6h108m4KdiIiUmNkrZjp54Q8BAfYVUsNAwVIcFOxERKTEysOKWf7JC3XqFBzXyQsiukCxiIiUQv6K2eDB9hB38UkUrlwxi4mBu+5y/Z0nRMo7BTsRESmV/BWzou78MHu261bMvL11P1aRSynYiYhIqeWvmG3YkMuaNdvp3bsNXbr4aMVMxGQKdiIiUmp5Rh47Tv5Cp07NycpKoVOn1gp1IuWAgp2IiJRI5oVM1u1fxye/fcKnez/lRNYJfv/L72aXJSIXUbATEZFiHc04SsKvCazau4r1B9ZzwXbB8VywXzB7Tu0xsToRuZSCnYiIOOQZeeTk5lDFtwoAGw9t5C9r/uJ4/vpq19O/SX/6N+1PdN1oyIPVv642q1wRuYSCnYiIh7ParGw8tJGEXxNYsWcFf2n7F57t+CwAvRr1olO9TvRp3If+TfpzQ+gNWC66iJ01z2pW2SJSBAU7EREPdD73POv2ryNhTwIf/+9jTp877Xhu/cH1jmAXUjmExFGJJlUpIqWlYCci4mFseTYaxjXkaOYfN3QN9Q9lYNOBDIoaRNcGXU2sTkSuhYKdiIgby7qQxarfVrE5aTNz+swBwNvLmw51O/B18tfENIthULNB3FH3Dny89CdBpKLTf8UiIm4mJzeHz/d/zgc7P+Dj/31MtjUbgEfbPkqzms0AeKv/WwT7BeNl0S3DRdyJgp2IyFXKyoLAQF/gLs6csRISYm49Px/7mbhv40j4NYGzOWcd4w2rNeTe5vcS7BfsGAupHGJChSLibAp2IiIVVJ6Rx/nc8/j7+gOQnJ7Mwu0LAQgPCmdo86Hc2+Je2oa3LXAmq4i4LwU7EZGrZLP98fVXX1no3RuX3FZr3+l9LPp5Ef/5eREHP7kP1r9AZib0uL4Hj9/6OIOiBtGhbgcdZhXxQPqvXkTkKiQkQFTUH4/79/ehfn37uDOknU/jrR/e4o4Fd9D49cY8t+k5Dp49AI3tFwfetAm8qURc7zg61uuoUCfioUz9L//kyZM0atSIxMTEYuesXr2ali1bEhAQQLNmzVi1apXrChQRKUJCAgweDCkpBcdTUuzjZR3uHv7kYWq/UpuHVz3M18lf42Xxok1gT6qtXwILtgDQpw9ODZYiUjGYFuy2bNlC+/bt2b9/f7Fz9u7dy6BBg5g+fTpnz55l2rRpDBkyhJRLf5uKiLiIzQbjx4NhFH4ufyw2tuBh2tLad3ofxiU7yLHl0Lxmc2Z0m8H8psn8/NRnnNl0H1j9HXOcFSxFpOIwJdi99957DBs2jBdeeOGK86Kjoxk4cCA+Pj4MGTKETp068dZbb7moUhGRgjZvhsOHi3/eMCA52T6vNLKt2by3/T2iF0bT+PXGbEvZ5njuyduf5Ic//8COcTuYeNtTTHsy3KnBUkQqLlNOnujZsyfDhw/Hx8eHe++9t9h5u3btomXLlgXGoqKi+Pnnn51doohIkY4evfKc0sz76ehP/PvHf7N4x2LHJUq8Ld58d+Q72kW0A6BxjcaO+aUJlp07l6wGEXEfpgS72rVrl2heRkYGAQEBBcb8/f3JzMws9jU5OTnk5OQ4HqenpwNgtVqxWp1zs+r87Tpr++Wd+lf/F392dzVrWijJr86aNXOxWotYVvt/KRkpDFo2iB+P/egYaxDSgAdbP8iIViMIDwov8nuanFyy/ScnX37/ZcXTfv6XUv/q/+LPzt5PSZTry50EBASQnZ1dYCw7O5ugoKBiX/PSSy8xbdq0QuNr167F39+/iFeUnXXr1jl1++Wd+lf/nsBmgxo1enDqVGWgqGvDGYSGniM9fR2rVxd8Jj03nWAf+0WCbYaN5FPJ+Fh8uK3qbXSv0Z2WgS3xOuvF9s3b2c72Ivd/6FANoMMV6zx0aCurV58qVW/XwlN+/sVR/+rfmS7NQpdTroNdixYt+PHHHwuM7d69m1tuuaXY10yaNImJEyc6HqenpxMZGUmPHj0IDg4u9nXXwmq1sm7dOrp3746vr69T9lGeqX/172n9z51rwf4uEgPD+CPcWSz2FbI33qhE//59ALhgu8DyPcuZ98M8DqYdZN+j+/D1tn+frmtzHddXu55Q/9AS77tnT5g3z+DIEQrs++Ia6tSBJ59s55Jr6nniz/9i6l/9u6L//KOPJVGug90DDzzAzJkz+eijj4iJiSEhIYHExETi4uKKfY2fnx9+fn6Fxn19fZ3+j84V+yjP1L/695T+hwwBHx94/PGClzyJiLAwezbExPhwOP0w87+fz9s/vs3xrOMA+Hj5sP3kdm6PvB2ADvWvvPJ2KV9feO01+9mvFkvBs3PtN5ewEBcHlSu79mfhST//oqh/9e/M/kuz7XJ3BcvAwEAWL14MwA033MDKlSt58cUXqVatGs899xzLly+nSZMmJlcpIp4uJgZ27/7j8Sef5HLgADTtsItBHw2i/uz6PL/5eY5nHSc8KJxpnaeRFJvkCHXXuu/4eAgPLzgeEWEfj4m55l2ISAVl+ordpddquvTEiJ49e9KzZ09XliQiUiIXH+rs0MHA2xty83JJ+NV+IblO9TrxaNtHGXjDQMfh17ISEwPdukHVqvbHq1dDjx6uuaWZiJRfpgc7EZGKKpuT/OPLOez63y4CAj4AoHXt1szoNoPejXvT4roWTt3/xSGuY0eFOhFRsBMRKbXdJ3cze+ts/vPzf8ix5eBr8eV45nEiqkUA8NQdT7mkjoCAou+AISKeS8FORKQEDMPgywNfMvObmazZt8YxfnPYzXSu1JnqVaqbWJ2IiJ2CnYhICbz27WvEfh4LgAULA28YyMT2E7m19q2sWbOmzN9DJyJyNcrdWbEiIuVBTm4OyWeTHY+HtRxGTf+aPHbrY+x9bC8JQxPoULcDFktRFykWETGHVuxERC6SkZPB/B/mM/ObmTQNbcqGkRsAqBlQk+QJyfj5FL5OpohIeaFgJyICnMw6yevbXmfOtjmcOX8GAG8vb1KzUx13hlCoE5HyTsFORDzascxj/GvLv3jz+zc5l3sOgCY1mvC3O/7G/a3up5J3JZMrFBEpOQU7EfFon+37jJlbZwL2M1wndZjEwBsG4u2li8KJSMWjYCciHuV45nF+P/M77SPbA3B/q/tZs28ND7Z5kJ7X99TJECJSoSnYiYhHOJ55nH99/S/mfjeXmgE12fvYXip5V8LHy4cPB39odnkiImVCwU5E3Nqp7FP886t/8sZ3bzjeQxcWGMaxzGPUrVrX5OpERMqWgp2IuKXMC5nM+mYWr3zzCuk56QC0q9OOqZ2n6pCriLgtBTsRcUs/H/uZfyT+A4A2tdvwQtcX6N2otwKdiLg1BTsRcQu2PBs/H/+Zm8JuAuCOunfwaNtH6VC3A0OaD8HLohvtiIj7U7ATkQrNMAz++7//8uz6Zzlw5gD7H99PWFAYAHP6zDG5OhER11KwExHT2GyweTMcPQphYRAdDd6luHzcpn3f0enFJ6DeZgCqVa7GzhM7HcFORMTTKNiJiCkSEmD8eDh8+I+xiAiIi4OYmMu/NulsEpO+nMSSHUugHmCtwpMdJvBs56cIqRzizLJFRMo1BTsRuWo2G2zcaGHTpjoEBFjo0qVkK24JCTB4MBhGwfGUFPt4fHzx4S4jJ4NWb7bibM5ZLFgwto+A9c/T9Y4IgnyvvScRkYpM7yYWkauSkAD16kH37j7MnHkL3bv7UL++ffxybDb7St2loQ7+GIuNtc/Ll2fkOb4O8gvizzf/meYBnQlN+B5WvgvpEfTpQ4n2LyLizhTsRKTU8lfcUlIKjuevuF0uXG3eXPDw66UMA5KT7fMA1u5fS6s3W7EtZZtjzi3pL7Drr+s5+ctNpd6/iIg7U7ATkVK5mhW3ix09WrL9/Jx0gLs/vJue7/dk18ldPL/pecf+n4j1BaPw9ehKsn8REXemYCcipVLaFbdLhV3phFWfc9B5Kn89FMXKPSvxtngT2y6W/9z9nzLZv4iIO9PJEyJSKiVdcStuXnS0/ezXlJQiVv0afwp9H4WQQ1zIg64NuvJar9dofl3zMtu/iIg704qdiJTKFVfcrjDP29t+SROAQnf3Ck6BkEOE+kay7J5lfPHAFwVCXVnsX0TEnSnYiUip5K+4FXfLVYsFIiPt84oTE2O/pElYvSy4bqdjPOLkaEaHvcbBJ39lcNTgIu/rWhb7FxFxVzoUKyKlkr/iNniwPURdfDg1P2zNnn3l69n5tfgU3/GPUus8vBS5iwZ1AoiO9sbb+zGX7F9ExB1pxU5ESi1/xa1OnYLjERGXv7gwwJGMI9yz7B76fdCPQ2cP4VfZoG33A3TuXPIwlr//8PDS719ExJ1pxU5ErkpMDNx1F2zYkMuaNdvp3bsNXbr4FBvObHk23vz+TZ758hkyLmTgbfFmYvuJTOk0hYBKAVe1/27doGpV++PVq6FHD63UiYhnU7ATkavm7Q2dOhlkZaXQqVPrYkNVRk4Gd/7nTr478h0A7eq0Y36/+bSu3fqa95+vY0eFOhERHYoVEacL8gsiIjiCqn5VmdtnLlse2nLNoU5ERArTip2IOMWWpC00qdGEmgE1AXijzxsAhAWV3XVIAgKKvgOGiIin0oqdiJSprAtZjF8znuiF0Yz/bLxjPCworExDnYiIFKYVOxEPlpUFgYH2rzMz7Stg12L9gfX86eM/cSDtAABVfKqQm5eLj5d+1YiIuIJ+24rINcu2ZfPomkd5+6e3AahbtS5v93+bHtf3MLkyERHPomAnItdk+/HtPL7ncVKtqQCMu2UcL3d7mSC/IJMrExHxPAp2InJN6gXXw8CgYUhD3rnrHTrX72x2SSIiHksnT4hIqf0v9X8Y/386arUq1fhHw3/ww59+UKgTETGZgp2IlJjVZmVa4jSaz23Ou9vfdYzXq1Lvqu4eISIiZUvBTkRK5H+p/+OOBXcwdeNUbIaNr5O/NrskERG5hN5jJyKXZRgGc7+by1PrnuJc7jlCKocwt89c7mt5n9mliYjIJRTsRDyYzfbH15s2QY8eBe+3eir7FA99/BAf/+9jALo37M6CuxYQERzh4kpFRKQkdChWxEMlJEBU1B+P+/SB+vXt4/l2ntjJJ//7hErelZjdczaf3f+ZQp2ISDmmFTsRD5SQAIMHF77PakqKfTw+HmJioFP9Trze+3XuqHsHbWq3MaVWEREpOa3YiXgYmw3Gjy8c6gCM4EMYw3vx6D/2Og7TPnrrowp1IiIVhIKdiIfZvBkOHy7iiah4GNcaGn3OsZvHsnmzy0sTEZFrpGAn4mGOHr1kwOc89B0HQ+6BymfhcDv4+N+F54mISLmn99iJeJiwsIsehByEIYMh/AcwLPDV32DDc5DnW3CeiIhUCAp2Ih4mOhoiIuCw9RcY1RmqnIHs6pCwGPb1wmKBiEj7PBERqVh0KFbEw3h7Q1wckHoDnGpiP/Q6/ydHqAOYPbvg9exERKRiULAT8SAns06Sm5dLTAws/6gStTd8DAs3wdm6gH0lL/9SJyIiUvGYEuxOnDjBwIEDCQkJITQ0lNjYWHJzc4ucGxcXR4MGDQgODqZVq1YsX77cxdWKOE9WFlgs9o+sLOfua9OhTbSe15q/r/87YA9v//vxOrBVAmD1ajhwQKFORKQiMyXYDR06lMDAQI4cOcK2bdv44osvmDVrVqF5a9as4cUXX+Szzz4jPT2dKVOmMGTIEA4ePOj6okWc4NJbel38uKwYhsHsrbPp+l5XjmYeZdVvqzhnPQcUPNzasaMOv4qIVHQuD3b79u0jMTGRGTNm4O/vT8OGDZk8eTJz5swpNPfXX3/FMAzy8vIwDANvb28qVaqEj4/O+ZCKryS39LpW56znGLlyJBM+n4DNsDG85XC+/dO3VPGtUnY7ERGRcsPlwW7Xrl1Ur16d8PBwx1hUVBRJSUmkpaUVmHvfffdRq1YtoqKi8PX15Z577uHdd98lIkL3qpSKLf+WXikpBcfzb+lVFuEu+WwyHd/tyKJfFuFt8WZ2z9ksunsRAZUCrn3jIiJSLrl86SsjI4OAgIJ/WPz9/QHIzMwkJCTEMX7hwgXatGnDggULaN26NYsXL2b06NFERUXRsmXLIrefk5NDTk6O43F6ejoAVqsVq9Vaxt3g2PbFnz2N+i9d/zYbPP64z//f0stS4DnDAIvFYPx46NMn96oPjV6wXaDTu504kHaAGlVqsOTuJXSp36XQe1ntJfs66r+aH6F+/ur/4s+eRv2r/4s/O3s/JWExjKLuGOk8K1asYMyYMaSmpjrGduzYQatWrUhLS6Nq1aqO8f79+3PHHXfw9NNPO8a6d+9Oq1atePXVV4vc/tSpU5k2bVqh8SVLljgCpIiZduyoweTJHa44b/r0r2jZ8tRV7+erM1+x/MRynq7/NLX8ahU55/x5b+69tx8AS5euonJlJ7zJT0RErkl2djbDhg3j7NmzBAcHX3auy1fsWrRowalTpzh+/Di1atn/2OzevZuIiIgCoQ4gKSmJW265pcCYr68vlSpVKnb7kyZNYuLEiY7H6enpREZG0qNHjyt+M66W1Wpl3bp1dO/eHV9fX6fsozxT/6XrPz3dcsU5APXq3UafPpf//66sLKhWzb7PYyczSc09RJMaTQDoQx+ey3sOH6/i/zO/+Ezcnj17EnAVR2n181f/6l/9q3/n9p9/9LEkXB7sGjduTIcOHYiNjeWtt94iNTWV6dOnM3r06EJzBwwYwJw5c+jfvz9t2rQhISGBDRs28OKLLxa7fT8/P/z8/AqN+/r6Ov0fnSv2UZ6p/5L1HxlZsu1FRvpwpc155b9L1j+VO/8Tw2ljHz/8+QfCguz3A/Pl8hsICYE/1uyv7Wenn7/6V//q31M5u//SbNuUy53Ex8eTm5tLgwYNaNeuHb169WLy5MkABAYGsnjxYgCmTJnCo48+yqBBg6hWrRr//Oc/WblyJW3atDGjbJEykX9LL0sxC3cWiz38XemWXo6zakN/hT+1Y1fGZo6dzuKdlfvKvGYREakYTLluSK1atVi2bFmRz2VmZjq+9vHxYerUqUydOtVFlYk4X/4tvQYPtoe4i9/lWtJbeuWfVWs0WAcP3AOVz8KZBhhLVvGP1CiiAnShYRERT6RbiomYICbGfuuui676A5Tsll42G4wfD8bN8+D+3vZQl3QHvP0tnLRfGC821jkXOxYRkfJNV/oVMUlMDNx1F2zeDEePQliY/fDrlS5xsnkzHK75DvQbZx/4+QH4+G2w2d9bahiQnGyf17mzc3sQEZHyRcFOxETe3qUPX0ePAruGQLvXYNdQ2DyJS6+H55gnIiIeRcFOpII4e/4swX7BhIVZ4EIQvL3NsUpXlLAwFxYnIiLlgt5jJ1IB/HryV1rPa80rX7/yx1m1eUWHupKeVSsiIu5HwU6knPsq6SvuWHAHh84e4p2f3uFC3jni4uzPXXrJlJKeVSsiIu5JwU6kHFu+eznd/tONM+fP0D6iPV899BVVfKtc01m1IiLivhTsRMqpuK1x3LPsHnJsOQy8YSBfjPiCUP9Qx/MxMbB79x/zV6+GAwcU6kREPJlOnhAph/667q/86+t/AfDILY/wWu/X8PYqfGw1OLjgBY5FRMSzacVOpByqV7UeAC/d+RJz+swpMtSJiIhcSit2IuXQo7c+yu2Rt3Nj2I1mlyIiIhWIVuxEyoGz588y5uMxnD532jGmUCciIqWlFTsRkx3PPE6vxb3Yfmw7hzMOs2b4GrNLEhGRCkrBTsREh9IO0X1Rd/ae3st1Adfxzzv/aXZJIiJSgSnYiZhk98nd9FjUg5SMFOpVrce6B9bRuEZjs8sSEZEKTMFOxATfH/meXu/34tS5U0TVjGLt/WupE1zH7LJERKSCU7ATcbE8I49RK0dx6twp2oa3Zc3wNdTwr2F2WSIi4gZ0VqyIi3lZvFgxdAVDmg/hyxFfKtSJiEiZUbATcZG082mOrxvXaMyHgz8kyC/IvIJERMTtKNiJuMBn+z6j/uz6fLbvM7NLERERN6ZgJ+Jkn/zvE+5aehdnc86ycPtCs8sRERE3pmAn4kTLdy8n5qMYLtguMKjZIBbdvcjskkRExI0p2Ik4yYc7P2Ro/FBy83K5r8V9LB28lErelcwuS0RE3JiCncg1sNlg40YLmzbVYeNGCzabfXzZrmUMTxiOzbAxsvVIFt29CB8vXV1IREScS39pRK5SQgKMHw+HD/sAtzBzJkREQFwcfOr1KTbDxqg2o3hnwDt4WfT/UCIi4nwKdiJXISEBBg8Gwyg4npJiH/9w2Tvc0e8OHrrxIYU6ERFxGQU7kVKy2ewrdZeGOmr9jHGiBRa8eWKCNwcOjMFbmU5ERFxIf3ZESmnzZjh8+JLBhl/AmHYw8EEMbCQn2+eJiIi4koKdSCkdPXrJQP1EuG8A+OSAXzpY8oqeJyIi4mQKdiKlFBZ20YO6X8GwvuB7Dn7rC8s+hDzfwvNERERcQMFOpJSio+1nvxL+AwzvA5WyYV9P+CgebH5YLBAZaZ8nIiLiSgp2IqXk7Q1PvfwrDO8FfhlwoDMsXQG5lbFY7HNmz7bPExERcSUFO5Gr0PCW/fgEpuN78hb44GPIrQLYV/Li4yEmxuQCRUTEI+lyJyJXoV+Tfnw5ch1Nq0exY2AV1qz5nt6929Cli49W6kRExDQKdiIldObcGdJz0qkXUg+AjvU6AlC9k5WsrBQ6dWqtUCciIqbSoViREsi6kEXfJX25Y8Ed/HryV7PLERERKZKCncgV5OTmcPeHd/PN4W/ItmaTm5drdkkiIiJFKrNgl56eXlabEik3bHk27l9xP+t+X0eAbwBrhq+hZa2WZpclIiJSpFIHu+rVqxc5Xrdu3WsuRqQ8MQyD2M9iid8dTyXvSqy8dyXtItqZXZaIiEixSnTyxL59+3j44YcxDIP09HS6du1a4Pn09HRCQkKcUZ+IaV7e8jJzvpsDwH8G/oduDbuZXJGIiMjllSjYNWrUiEGDBnHy5Em2bNlCp06dCjxfuXJl+vfv75QCRcyQk5vD0p1LAZjVcxZDWww1uSIREZErK/HlTh555BEAGjRowIgRI5xWkEh54Ofjx8ZRG/lo10eMuXmM2eWIiIiUSKmvYzdixAi2bdvGb7/9Rl5eXqHnRCqys+fPUrVyVQCqVq6qUCciIhVKqYPdM888w8svv0xYWBi+vr6OcYvFomAnFdr+0/vpsLADT7Z/kiduf8LsckREREqt1GfFLlq0iFWrVnH48GEOHDjg+Pj999+dUZ+IS6Rmp9JrcS+OZR7j/R3vcz73vNkliYiIlFqpg11mZia9evVyRi0ipjife56BSwey7/Q+6lWtx+phq6nsU9nsskREREqt1MGuX79+LFmyxBm1iLicYRg89N+H2JK8hap+VVkzfA1hQWFmlyUiInJVSv0eu/PnzzNy5EheeOEFateuXeC59evXl1lhIq4wJXEKH+z8AB8vH5YPWU6zms3MLklEROSqlTrYtWjRghYtWjijFhGX+i7lO6Zvmg7A/H7zubPhnSZXJCIicm1KHeymTJnijDpEXK5tnba83vt1jmUe46EbHzK7HBERkWtW6mD30EPF/wFcsGDBNRUj4moPNv8LgYHwApCZCQEBZlckIiJy9Up98oRhGAU+Tp48yYcffkhAKf4injhxgoEDBxISEkJoaCixsbHk5uYWOXfjxo20a9eOwMBAIiMjeemll0pbsohDanYqD/33Ic6cO2N2KSIiImWu1Ct2CxcuLDT2xRdfMHfu3BJvY+jQodSpU4cjR45w7NgxBgwYwKxZs3jqqacKzNuzZw99+vRh7ty5jBgxgh07dtC1a1caN27M4MGDS1u6eLgLtgsM+mgQmw5t4mjmUdYMX2N2SSIiImWq1Ct2RenWrVuJz4jdt28fiYmJzJgxA39/fxo2bMjkyZOZM2dOoblvvPEGAwcOZOTIkVgsFlq1asXXX39Nhw4dyqJs8TCPr3mcTYc2EVQpiFe6v2J2OSIiImXumoNdbm4uixYtombNmiWav2vXLqpXr054eLhjLCoqiqSkJNLS0grM3bZtG/Xr1+e+++4jNDSUZs2akZiYWOgyKyJX8uZ3bzL/h/lYsLBk0BKaX9fc7JJERETKXKkPxXp5eWGxWApuxMeHuLi4Er0+IyOj0Pvx/P39AftdLUJCQhzjp0+f5rXXXmPp0qUsWrSIr7/+mn79+lG9evViD8Xm5OSQk5PjeJyeng6A1WrFarWWqMbSyt+us7Zf3pX3/hMPJvL4Z48D8HyX5+nZoOdFNQP4/v/XVq6mhfLev7Opf/V/8WdPo/7V/8Wfnb2fkrAYhmGUZuMbN24s8Njb25tGjRqVeBVtxYoVjBkzhtTUVMfYjh07aNWqFWlpaVStWtUx3qJFC9q0acP777/vGHv00Uc5efIkH330UZHbnzp1KtOmTSs0vmTJEkeAFM9xLOcYT/32FBm2DDpV60Rs3dgC/2Ny/rw3997bD4ClS1dRubLNrFJFRESKlJ2dzbBhwzh79izBwcGXnVvqFbtOnTqRl5fH999/z8GDBwkLC+O6664r8etbtGjBqVOnOH78OLVq1QJg9+7dREREFAh1YD9Ee/HqG4DNZuNyWXTSpElMnDjR8Tg9PZ3IyEh69OhxxW/G1bJaraxbt47u3bvj6+vrlH2UZ+W5/10nd1H9SHWa+jfl4/s/popvlQLP//+CLgABAb3o1s3A27t0+yjP/buC+lf/6l/9q3/n9p9+8R+rKyh1sDt27Bj9+/dn+/bt1KhRg9TUVJo0acLatWuJiIi44usbN25Mhw4diI2N5a233iI1NZXp06czevToQnPHjh1Lz549ef/99xk+fDibN29m8eLFLF68uNjt+/n54efnV2jc19fX6f/oXLGP8qw89t8mvA3fjfkOa56VYP+CwT4hAR5//I/H/fv7EBEBcXEQE1P6fZXH/l1J/at/9a/+PZWz+y/Ntkt98sSTTz5JkyZNOHPmDMeOHePUqVO0adOmwCrZlcTHx5Obm0uDBg1o164dvXr1YvLkyQAEBgY6glvXrl35+OOPiYuLo2rVqjz44IO88sorDBgwoLRli4c5nH7Y8XXNgJqEB4UXeD4hAQYPhpSUgq9LSbGPJyS4okoREZGyVeoVu/Xr17Nnzx4CAwMBqFq1Km+++SYNGjQo8TZq1arFsmXLinwuMzOzwOPevXvTu3fv0pYpHmzFryu4b/l9zO07t8hbhdlsMH48FHVE3zDAYoHYWLjrLkp9WFZERMRMpV6xs9lseHkVfJnFYqFSpUplVpRISWVl2YOYxWL/ek/qHkauHEmOLYcdx3cU+ZrNm+Hw4SKfAuzhLjnZPk9ERKQiKXWw69KlC+PGjSMrKwuwr7A98sgjdO7cuaxrEymVjAsZxHwYQ8aFDDrW68iM7jOKnHf0aMm2V9J5IiIi5UWpD8XOmDGDbt26Ua1aNUJDQ0lNTaV58+asWrXKGfWJlJDBuM8e4tfUXwkPCuejwR/h6130m03Dwkq2xZLOExERKS9KHezq1q3L7t272bx5M8ePH6d+/fq0bdsWb70ZScx0+6us/C0eXy9f4u+Jp1ZgrWKnRkdDRIT9RImi3mdnsdifj452Yr0iIiJOUKpDsYZhsH//fnx8fOjSpQv33nsvhw4dclZtIiVT+yfo9jcAZveaTfvI9ped7u1tv6QJ2EPcxfIfz56tEydERKTiKXGwy8rKokOHDjz11FOOsRMnTjBq1Cg6d+7seM+diMsdbw2J03igxYOMu2VciV4SEwPx8RBe8CooRETYx6/mOnYiIiJmK3Gwe/7556lUqRLz5s1zjF133XUcOnQIq9XKSy+95JQCRS7HZgMML9j0d+6t8g55eZYrviZfTAzs3v3H49Wr4cABhToREam4Shzs4uPjefvttwvdPuy6665j3rx5xd67VcRZJiz4gGYtzzke9+1roX790l1c+OLDrR076vCriIhUbCUOdidOnKBRo0ZFPtemTRuOHTtWZkWJXMkTCz5kdvIwjvRpDz7nHeO6c4SIiHiyEge74OBgTp06VeRzp0+fxt/fv8yKErmcPSf3Mmv/GPuD3/pCbmXHc/lnucbG/v9hWhEREQ9S4mB355138sYbbxT53Ny5c2nf/vJnIoqUhXPWc/R77x6MShlwsCMkTis0R3eOEBERT1Xi69g988wz3HTTTZw8eZJ7772X2rVrc/ToUT788EMWLFjApk2bnFmnCAATPp/A/qyfIasmLP8A8or/J6w7R4iIiKcpcbBr0qQJa9eu5eGHH+aNN97AYrFgGAYtW7ZkzZo13Hzzzc6sU4QPdnzA/B/mY8GCsXwxZIRfdr7uHCEiIp6mVHeeuP3229mxYwf79+8nNTWVsLAw6tat66zaRBysNivPrH8GgGc6/J33/t2dFMu13zkiIKDobYiIiFREpb6lGMD111/P9ddfX9a1iBTL19uXTaM2MWvrLKZ1mcJNcfazXy2XhDvdOUJERDxZiYNdgwYNsFx6/6WLWCwW9u/fXyZFiRQlsmokM3vOBP64c8Tjj9svcZIvIsIe6nSRYRER8UQlDnZTp04tcnzr1q3Mnz+fG2+8saxqEnH4757/4mXxon/T/oWei4mBbt2galX749WroUcPrdSJiIjnKnGwGzlyZKGxV199lQULFjBu3DhmzpxZpoWJJJ1NYtR/R5F2Po3/3vtfBjQdUGiO7hwhIiLyh6t6j11aWhojR45k06ZNvP/++9xzzz1lXZd4uNy8XIYnDCftfBrt6rSjd6PeZpckIiJS7pU62G3dupWhQ4dSs2ZNfvjhBxo2bOiMusTDvbj5Rb5K+oqgSkEsGbQEX29fs0sSEREp90p85wmAf/3rX3Tu3JmBAwfy9ddfK9SJU2xJ2sK0jfY7SsztO5eG1fTvTEREpCRKvGLXv39/Vq9ezWOPPUZMTAxbt24tNKdjx45lWpx4nrTzaQxLGEaekcf9re7n/lb3m12SiIhIhVHiYPfpp58C8Nprr/Haa68Vet5isWDTXdflGi3fvZyks0k0rNaQN/oUfW9iERERKVqJg11eXp4z6xABYPRNowmpHEJEcATBfsFXnK87R4iIiPzhqs6KFXGmQVGDzC5BRESkQirVyRMizpCbl8vf1v2NoxlHzS5FRESkQlOwE9O9/NXLzPh6BtELo8nNyzW7HBERkQpLwU5M9ePRH5m6cSoAUzpNwcdL7w4QERG5Wgp2Yprzued5YMUD5OblMqjZIF3aRERE5Bop2IlpnvnyGXaf3A2ZtVj+4Dyysy1mlyQiIlKhKdiJKTYc2MCsrbPsD/77DmSHmluQiIiIG1CwE1O8+NWLAIxqNQb29jW5GhEREfegYCemWDl0JX+P/jsvRM90jG3aBLp5iYiIyNVTsBNTBFQK4Ma06dzaJtAx1qcP1K8PCQnm1SUiIlKRKdiJy6RmpzL/+/nkGXkkJMDgwZCSUnBOSop9XOFORESk9BTsxGUeW/MYYz8dy9hPxjF+fNH3eM0fi43VYVkREZHSUrATl1i5ZyVLdy7Fy+LFTfyJw4eLn2sYkJwMmze7rj4RERF3oGAnTnf63GnGrhoLwF9v/ytVs9qW6HVHdetYERGRUlGwE6cb/9l4jmcdp1loM6Z0nkJYWMleV9J5IiIiYqdgJ0616rdVvP/L+3hZvFhw1wIq+1QmOhoiIsBSzI0mLBaIjIToaNfWKiIiUtEp2InTWG1WHl39KAATb5vIbRG3AeDtDXFx9jmXhrv8x7Nn2+eJiIhIySnYidP4evuSMCSBQc0G8VyX5wo8FxMD8fEQHl7wNRER9vGYGBcWKiIi4iZ8zC5A3NvN4TcTPyS+yOdiYqBbN6ha1f549Wro0UMrdSIiIldLK3ZS5tJz0tl5YmeJ5l4c4jp2VKgTERG5Fgp2Uuae+fIZbpp/E/O+n3fFuQEB9uvWGYb9axEREbl6OhQrZeqb5G+Y+91cDAwaV29sdjkiIiIeRSt2UmYu2C7w51V/xsBgZOuR3NnwTrNLEhER8SgKdlJmXt36KjtP7CTUP5RXe7xqdjkiIiIeR4dipUyknE/hxR0vAjC752xq+NcwuSIRERHPoxU7uWaGYfDm4TfJseXQ4/oeDGs5zOySREREPJKCnVwTmw02bDSontqVqj6hzOn1Jpbi7hUmIiIiTqVgJ1ctIQHq14dePfzY9M84zk47RNcbG5KQYHZlIiIinsmUYHfixAkGDhxISEgIoaGhxMbGkpube9nX7Ny5E39/fxITE11TpFxWQgIMHgyHj1z0c7P6k5JiH1e4ExERcT1Tgt3QoUMJDAzkyJEjbNu2jS+++IJZs2YVOz87O5v77ruPc+fOubBKKY7NBuPHg3H9ZzCuJdTb5HjOMOyfY2Pt80RERMR1XB7s9u3bR2JiIjNmzMDf35+GDRsyefJk5syZU+xrHnnkEe6++24XVimXs3kzHD52Dvo8CjX3wA0rCjxvGJCcbJ8nIiIiruPyy53s2rWL6tWrEx4e7hiLiooiKSmJtLQ0QkJCCsz/z3/+w759+3jnnXeYPn36Fbefk5NDTk6O43F6ejoAVqsVq9VaNk1cIn+7ztp+eZOcbIEO/4Tqv0N6HdjwXDHzcrFaDRdX53qe9vO/lPpX/xd/9jTqX/1f/NnZ+ykJlwe7jIwMAi65Kai/vz8AmZmZBYLdnj17ePbZZ9myZQveJbw7/EsvvcS0adMKja9du9axH2dZt26dU7dfXvx4MBs6vGx/8NksuBBU5LxDh7ayevUpF1ZmLk/5+RdH/at/T6b+1b8zZWdnl3iuy4NdQEBAoQLzHwcF/REQzp8/z9ChQ5k9ezZ169Yt8fYnTZrExIkTHY/T09OJjIykR48eBAcHX2P1RbNaraxbt47u3bvj6+vrlH2UF4Zh8MbZ/nAgB/b1gN2DC82xWAzq1IEnn2xHCfN4heZJP/+iqH/1r/7Vv/p3bv/5Rx9LwuXBrkWLFpw6dYrjx49Tq1YtAHbv3k1ERARVq1Z1zPvuu+/47bffGD16NKNHj3aM9+vXjxEjRjB37twit+/n54efn1+hcV9fX6f/o3PFPsy2fPdy1h1Yi4+lErlr5mCxWBwnTADYL2FnIS4OKld27+/FpTzh53856l/9q3/176mc3X9ptu3ykycaN25Mhw4diI2NJSMjgwMHDjB9+vQC4Q0gOjqac+fOkZaW5vgAWLVqVbGhTpzv498+BmBS9N9Y/lZj6tQp+HxEBMTHQ0yMCcWJiIh4OFMudxIfH09ubi4NGjSgXbt29OrVi8mTJwMQGBjI4sWLzShLSuDdu94l/p54JnWYREwMHDwI69blMnHi96xbl8uBAwp1IiIiZnH5oViAWrVqsWzZsiKfy8zMLPZ1huH+Z1iWdxaLhUFRgxyPvb2hUyeDrKwUOnVq7RHvqRMRESmvdEsxuSLDMJj1zSzOnDtjdikiIiJyGQp2ckWLdyxm4tqJ3PTWTVywXTC7HBERESmGgp1cVnpOOk+ufRKAP9/0Zyp5VzK5IhERESmOgp1c1vSN0zmedZwmNZrwxO1PmF2OiIiIXIaCnRTrt1O/EfdtHACzes7Sap2IiEg5p2AnxZrw+QSseVb6NO5Dn8Z9zC5HRERErkDBToq0eu9qVu9dja+XL7N6zjK7HBERESkBU65jJ+XfzWE3M/rG0dSoUoMmNZqYXY6IiIiUgIKdFKlWYC3+PeDfuii0iIhIBaJDsVKA1WYt8NhisZhUiYiIiJSWgp0U8PCqhxnwwQD2n95vdikiIiJSSjoU6+FsNti8GY4ehbMB37Fw+0IAnol+huurX29ydSIiIlIaCnYeLCEBxo+Hw4cBDBg9HiKhU8gD3BZxm9nliYiISCnpUKyHSkiAwYPzQx3Q8gOI/AYuBLBx8j9JSDC1PBEREbkKCnYeyGazr9Q5Tnj1OQfdnrZ/vfkZLJnhxMba54mIiEjFoWDngTZvvmilDuC2OKiaDGcj4ZsJGAYkJ9vniYiISMWhYOeBjh696IElD1p8YP/6yxcht0rR80RERKTc08kTHigs7KIHhhf8+1touRh2DCt+noiIiJR7WrHzQNHREBEBjmsP51aGn0bbQx728chI+zwRERGpOBTsPJC3N8TFgdFoNXjlFnguP+zNnm2fJyIiIhWHgp2HqnbjBhjeF99H2oLXH7cRi4iA+HiIiTGxOBEREbkqeo+dB8oz8nhi7RMAPNw7mkGDfDl61P6euuhordSJiIhUVAp2HmjRz4v46dhPVPWrypTO/yDU3+yKREREpCzoUKyHybZm8+z6ZwF4NvpZQv1DTa5IREREyoqCnYd59etXSclIoV7VejzW7jGzyxEREZEypGDnQU5mnWTG1zMAeOnOl6jsU9nkikRERKQs6T12HiTtfBo3hd1E5oVMhrYYanY5IiIiUsYU7DxI4xqNSRyZyJnzZ/CyaLFWRETE3eivu4exWCxUr1Ld7DJERETECRTsPMCO4zv427q/cfrcabNLERERESfSoVgP8Oz6Z/nkt084lnWM9wa+Z3Y5IiIi4iRasXNzXyV9xSe/fYK3xZtnOjxjdjkiIiLiRAp2bswwDJ7+4mkAHrrxIZqGNjW5IhEREXEmBTs39uneT9mSvIXKPpWZ0mmK2eWIiIiIkynYuSlbno1JX04C4PFbH6dOcB2TKxIRERFnU7BzU0t2LGHniZ2EVA7h6Q5Pm12OiIiIuIDOinVTXRt0ZcxNY2hSownVqlQzuxwRERFxAQU7N1UnuA5v9X/L7DJERETEhXQo1s0YhmF2CSIiImISBTs3E/dtHHd/eDc7T+w0uxQRERFxMQU7N5J1IYuXvnqJlXtWsvXwVrPLERERERdTsHMjc7bN4UTWCRpWa8jI1iPNLkdERERcTMHOTaTnpDPj6xkATOk0BV9vX5MrEhEREVdTsHMTcVvjOH3uNE1rNGV4y+FmlyMiIiImULBzA2fOneHVb14FYGrnqXh7eZtckYiIiJhBwc4NvPn9m5zNOUvzms0Z0nyI2eWIiIiISXSBYjcw4bYJVPGpQpMaTfCyKKuLiIh4KgU7N1DFtwoT2k8wuwwRERExmZZ3KrBsaza2PJvZZYiIiEg5oRW7Cmzy+sl8vv9zHgp7jbDzXQkLg+ho8Na5EyIiIh5Jwa6COpF1gjnfvskF4xxPzMqBffbxiAiIi4OYGHPrExEREdcz5VDsiRMnGDhwICEhIYSGhhIbG0tubm6Rc+fNm0fTpk0JCgqiSZMmzJ0718XVlk8Pv/sqF4xzkNIW9vVyjKekwODBkJBgYnEiIiJiClOC3dChQwkMDOTIkSNs27aNL774glmzZhWat3LlSiZNmsR7771Heno67733Hs8++yzLly83oery43hGKv89+ob9wcZ/ABbHc4Zh/xwbCza9/U5ERMSjuDzY7du3j8TERGbMmIG/vz8NGzZk8uTJzJkzp9DcI0eO8PTTT3PbbbdhsVho3749Xbp0YdOmTa4uu1x5Mn42hm8WHL0Rfutb6HnDgORk2LzZhOJERETENC5/j92uXbuoXr064eHhjrGoqCiSkpJIS0sjJCTEMf7II48UeO2JEyfYtGkTM2fOLHb7OTk55OTkOB6np6cDYLVasVqtZdRFQfnbddb2L3bm3BmWJ79uf7BxMhev1l0qOTkXq9Vwek2u7L88Uv/q/+LPnkb9q/+LP3saV/Vfmu1bDMNw/l/+i7z//vs888wzJCUlOcb2799Po0aNSE5OJiIiosjXHTt2jL59+xIaGsqnn36Kj0/RmXTq1KlMmzat0PiSJUvw9/cvmyZMtCZ1DfMPz4fjLWDez2AUv+g6ffpXtGx5yoXViYiISFnLzs5m2LBhnD17luDg4MvOdXmwW7FiBWPGjCE1NdUxtmPHDlq1akVaWhpVq1Yt9JqtW7dyzz33EB0dzcKFC/Hz8yt2+0Wt2EVGRpKamnrFb8bVslqtrFu3ju7du+Pr6+uUfeQzDIPP9q3loVGVOf39nRhG4RU7i8WgTh3YuzfXJZc+cWX/5ZH6V//qX/2rf/XvzP7T09MJDQ0tUbBz+aHYFi1acOrUKY4fP06tWrUA2L17NxEREUWGugULFvDYY4/x3HPP8cQTT1xx+35+fkUGP19fX6f/o3PFPgAGRPXjraftZ79aLH+cMAH2x2AhLg4qV3btf2Su6r+8Uv/qX/2rf0+l/p3bf2m27fKTJxo3bkyHDh2IjY0lIyODAwcOMH36dEaPHl1o7vLlyxk3bhwJCQklCnXuLNuaTXpOuuNxTAzEx0OdOgXnRUTYx3UdOxEREc9jyuVO4uPjyc3NpUGDBrRr145evXoxefJkAAIDA1m8eDEA06ZNIzc3l0GDBhEYGOj4GDt2rBllm2rud3OpN7se876f5xiLiYGDB2HDBliyxP75wAGFOhEREU9lyp0natWqxbJly4p8LjMz0/H1L7/84qqSyrVsazavfP0KaefT8PMueJjZ2xs6dzanLhERESlfTFmxk9J5+4e3OZ51nPoh9bm/1f1mlyMiIiLllIJdOZeTm8OMr2cA8PQdT+Pr7blvThUREZHLU7Ar5xb9sogjGUeoE1SHUW1GmV2OiIiIlGMKduWYLc/GjC321bon2j+Bn0/x1+8TERERUbArx7albGP/mf1Uq1yNMTePMbscERERKedMOStWSqZ9ZHv2PLqHPal7CKwUaHY5IiIiUs4p2JVzjWs0pnGNxmaXISIiIhWADsWWU4fTD5tdgoiIiFQwCnbl0LaUbdSbXY/hCcMxLr4RrIiIiMhlKNiVQy9veZk8Iw9fL18sFovZ5YiIiEgFoWBXzuxJ3cOKX1cA8Nc7/mpyNSIiIlKRKNiVM//a8i8MDO5qehdRNaPMLkdEREQqEAW7cuRw+mEW/bIIgKc7PG1yNSIiIlLRKNiVI7O+mYU1z0rn+p25LeI2s8sRERGRCkbBrpzIzctl2e5lADx9h1brREREpPR0geJywsfLh12P7GLZ7mX0uL6H2eWIiIhIBaRgV44E+QXx0I0PmV2GiIiIVFA6FGuyrCywBB7HYjHIyjK7GhEREanIFOxMlmfkwagu8PBN/Jq62+xyREREpALToViTrTvwGdT8Fc4HUycowuxyREREpALTip3JZn/3iv2LH8ew/dtgbDZz6xEREZGKS8HORK8s/onNyRvA5gNbx9OnD9SvDwkJZlcmIiIiFZGCnUkSEuCphFftD3YNgfRIAFJSYPBghTsREREpPQU7E9hs8OgzydBiqX3gmycczxmG/XNsLDosKyIiIqWiYGeCzZvhWM33wcsGBzrD0ZsKPG8YkJxsnyciIiJSUjor1gRHjwJb/gbHW8H5apefJyIiIlJCCnYmCAsDDC/Y2/fK80RERERKSIdiXSw3L5dbbjtHRARYLEXPsVggMhKio11bm4iIiFRsCnYutnz3chq8Xpfuk2cDhcNd/uPZs8Hb26WliYiISAWnYOdicd/GkZqdSmTjM8THQ3h4wecjIiA+HmJizKlPREREKi69x86Fvkv5jm8Of4Ovly/j2o6jdiB06wZVq9qfX70aevTQSp2IiIhcHa3YuVDct3EADG0xlNqBtYGCIa5jR4U6ERERuXoKdi5yNOMoH+36CIDx7cabXI2IiIi4Ix2KdZF538/Dmmfl9sjbuSX8Fsd4QMAfd5sQERERuRZasXOB3Lxc5v8wH9BqnYiIiDiPVuxcwMfLh/Uj1/Pu9ne5+4a7zS5HRERE3JSCnYtE1YxiRvcZZpchIiIibkyHYp3M0BvoRERExEUU7JxsWMIwhicM57dTv5ldioiIiLg5BTsnOpR2iI92fcSSHUu4YLtgdjkiIiLi5hTsnOiN794gz8jjzgZ30uK6FmaXIyIiIm5Owc5Jsq3Z/PvHfwO6xImIiIi4hoKdkyzZsYQz58/QIKQBfRr3MbscERER8QAKdk5gGAZvfPcGAONuGYe3l24AKyIiIs6nYOcEWw9vZfux7VT2qcxDNz5kdjkiIiLiIXSBYidoGtqUGd1mcDbnLDX8a5hdjoiIiHgIBTsnqF6lOk/d8ZTZZYiIiIiH0aFYERERETehYFeGbHk27ll2D0t2LMFqs5pdjoiIiHgYBbsy9Om+T4nfHc/jax7HZtjMLkdEREQ8jIJdGZr/w3wARt84mso+lU2uRkRERDyNKcHuxIkTDBw4kJCQEEJDQ4mNjSU3N7fIuatXr6Zly5YEBATQrFkzVq1a5eJqSyblfArrDqzDgoWxt4w1uxwRERHxQKYEu6FDhxIYGMiRI0fYtm0bX3zxBbNmzSo0b+/evQwaNIjp06dz9uxZpk2bxpAhQ0hJSTGh6sv77NRnAPRp3IcG1RqYXI2IiIh4IpcHu3379pGYmMiMGTPw9/enYcOGTJ48mTlz5hSa+9577xEdHc3AgQPx8fFhyJAhdOrUibfeesvVZV9W1oUsvjz1JQCPtn3U5GpERETEU7k82O3atYvq1asTHh7uGIuKiiIpKYm0tLRCc1u2bFlgLCoqip9//tkVpZbY0l1Lyc7LpmFIQ3o26ml2OSIiIuKhXH6B4oyMDAICAgqM+fv7A5CZmUlISMgV52ZmZha7/ZycHHJychyP09PTAbBarVitzrkESURgBM0DmjO8zXBsuTZseNYZsfnfV2d9f8s79a/+L/7sadS/+r/4s6dxVf+l2b7Lg11AQADZ2dkFxvIfBwUFlWjupfMu9tJLLzFt2rRC42vXrnUESGd4ofELGGcMVq9e7bR9lHfr1q0zuwRTqX/178nUv/r3ZM7u/9IsdDkuD3YtWrTg1KlTHD9+nFq1agGwe/duIiIiqFq1aqG5P/74Y4Gx3bt3c8sttxS7/UmTJjFx4kTH4/T0dCIjI+nRowfBwcFl2MkfrFYr69ato0ePHvj6+jplH+VZfv/du3dX/+rf7HJcTv2rf/Wv/p3df/7Rx5JwebBr3LgxHTp0IDY2lrfeeovU1FSmT5/O6NGjC8194IEHmDlzJh999BExMTEkJCSQmJhIXFxcsdv38/PDz8+v0Livr6/T/9G5Yh/lmfpX/+pf/Xsq9a/+ndl/abZtyuVO4uPjyc3NpUGDBrRr145evXoxefJkAAIDA1m8eDEAN9xwAytXruTFF1+kWrVqPPfccyxfvpwmTZqYUbaIiIhIuebyFTuAWrVqsWzZsiKfu/TEiJ49e9Kzp840FREREbkS3VJMRERExE0o2ImIiIi4CQU7ERERETehYCciIiLiJhTsRERERNyEgp2IiIiIm1CwExEREXETCnYiIiIibkLBTkRERMRNKNiJiIiIuAkFOxERERE3oWAnIiIi4iZ8zC7A2QzDACA9Pd1p+7BarWRnZ5Oeno6vr6/T9lNeqX/1r/7Vv/pX/+rfef3nZ5j8THM5bh/sMjIyAIiMjDS5EhEREZGrl5GRQdWqVS87x2KUJP5VYHl5eRw5coSgoCAsFotT9pGenk5kZCTJyckEBwc7ZR/lmfpX/+pf/at/9a/+nde/YRhkZGQQHh6Ol9fl30Xn9it2Xl5eREREuGRfwcHBHvkPO5/6V//qX/17KvWv/p3d/5VW6vLp5AkRERERN6FgJyIiIuImFOzKgJ+fH1OmTMHPz8/sUkyh/tW/+lf/6l/9e6Ly2L/bnzwhIiIi4im0YiciIiLiJhTsRERERNyEgt01OnHiBAMHDiQkJITQ0FBiY2PJzc01uyyX+fnnn+nevTvVq1endu3ajBgxgtTUVLPLcjmbzUbnzp0ZNWqU2aW41OnTpxkxYgQ1atSgWrVqDBw4kKNHj5pdlsv8+OOPdOzYkZCQEMLCwhg/fjw5OTlml+V0J0+epFGjRiQmJjrGvv32W9q1a0dgYCANGjTgnXfeMa9AJyuq/+XLl9OmTRuCg4OpX78+06ZNIy8vz7winaio/vMdPXqUWrVq8e6777q8Llcpqv9ffvmFO++8k6CgIGrVqsXEiRNNywIKdtdo6NChBAYGcuTIEbZt28YXX3zBrFmzzC7LJc6dO0fv3r25/fbbOXbsGLt27eLUqVM8+OCDZpfmctOmTWPz5s1ml+FygwYNIjMzk/3795OUlIS3tzdjxowxuyyXyMvLo1+/fgwePJjTp0/z3Xff8fnnnzNjxgyzS3OqLVu20L59e/bv3+8YO3PmDH369GHEiBGkpaXxzjvvMGHCBLZt22Zipc5RVP8//PADDzzwAM8//zxpaWmsWbOGd9991y3/FhTVf768vDyGDx/u1v9zX1T/qamp3HnnnXTr1o3Tp0/z7bffsmrVKmbPnm1OkYZctb179xqAkZKS4hhbunSpUbduXROrcp09e/YYvXr1MnJzcx1j//3vf43g4GATq3K9L7/80oiKijLuueceY+TIkWaX4zLff/+9UblyZePs2bOOsVOnThk7d+40sSrXSU1NNQBj1qxZRm5urpGcnGw0a9bMeOWVV8wuzWneffddo27dusbSpUsNwNiwYYNhGIbx9ttvG40bNy4wd+zYscaIESNMqNJ5ius/Pj7emDBhQoG5EyZMMAYMGGBClc5TXP/5pkyZYjzwwANGvXr1jIULF5pSozMV1/8rr7xi3H777QXmHjx40Dh06JAJVRqGVuyuwa5du6hevTrh4eGOsaioKJKSkkhLSzOvMBdp2rQpa9aswdvb2zEWHx/PzTffbGJVrnXixAlGjx7NkiVL8Pf3N7scl9q2bRtRUVG8/fbbNGrUiLCwMJ544gnCwsLMLs0latSowYQJE3jiiSfw8/MjMjKSJk2aMGHCBLNLc5qePXuyf/9+hg4dWmB8165dtGzZssBYVFQUP//8syvLc7ri+h80aBAzZ850PD537hyffvqp2/0uLK5/gA0bNrB06VLmzp1rQmWuUVz/27Zto0WLFowdO5batWtz/fXX8/7777vsrleXUrC7BhkZGQQEBBQYy//jnpmZaUZJpjEMg7///e988sknxMXFmV2OS+Tl5XH//fczceJEWrdubXY5Lnf69Gl++eUX9u7dy08//cT27dtJSUlhxIgRZpfmEnl5eVSpUoU5c+aQlZXFzp072b17N1OmTDG7NKepXbs2Pj6F70RZ3O9Cd/s9WFz/F8vIyGDgwIFUqVLF7UJ+cf2fOHGCBx98kMWLFxMYGGhCZa5RXP+nT59m4cKF3HrrrSQnJ5OQkMD8+fMLhH1XUrC7BgEBAWRnZxcYy38cFBRkRkmmSE9PZ/Dgwbz//vts2rSp0P+5u6uXXnqJypUr89hjj5ldiinyL8g5e/ZsxxuGX3jhBVavXu12f9CLsmLFCpYvX864cePw8/OjefPmTJkyxa1XLIpT3O9CT/o9CPC///2P9u3bk5uby4YNGzyif8MweOCBB3j88cfdboWypPz8/Lj11lt56KGH8PX1pXXr1jz22GN89NFHptSjYHcNWrRowalTpzh+/LhjbPfu3URERJT4Zr0V3f79+2nbti3p6el8//33HhPqABYtWkRiYiIhISGEhISwZMkSlixZQkhIiNmluURUVBR5eXlcuHDBMWaz2QD7L3t3l5SUVOgMWF9fXypVqmRSReZp0aIFu3btKjC2e/duWrRoYVJFrrd69WpuvfVWevXqxeeff061atXMLsklkpOT2bhxI88995zjd2FSUhKPPPII/fr1M7s8l4iKiir0u8Bms5n3e9CUd/a5kQ4dOhj33nuvkZ6ebvz+++9G8+bNjSlTpphdlkucPn3aqFu3rjFq1CjDZrOZXY7pRo4c6VEnT1y4cMFo1KiRMWjQICMjI8M4ceKE0bVrV+Puu+82uzSX2LVrl+Hn52e88MILRm5urrF//36jZcuWxpNPPml2aS7BRW8eT01NNUJCQoxZs2YZFy5cMNavX28EBQUZ69evN7dIJ7q4/2+++caoVKmS8c4775hblAtRxMkT+dz15ImLXdz/r7/+avj5+Rkvv/yykZuba/zyyy9GnTp1jLi4OFNq04rdNYqPjyc3N5cGDRrQrl07evXqxeTJk80uyyUWLlxIUlISH330EcHBwQQGBjo+xP35+vqyceNGfHx8aNy4MU2aNCEiIoIFCxaYXZpLREVFsWrVKj7++GNq1KhBly5d6N+/Py+88ILZpblcjRo1WLduHcuWLaNGjRr86U9/4rXXXqNLly5ml+YSL774Ilarlccff7zA78HevXubXZq4wA033MDGjRtZtWoVoaGh9OrVi7Fjx5r2Nh3dK1ZERETETWjFTkRERMRNKNiJiIiIuAkFOxERERE3oWAnIiIi4iYU7ERERETchIKdiIiIiJtQsBMRERFxEwp2IiIiIm5CwU5ESqV+/fpUrlyZwMBAgoKCCAgIIDw8nKeeeoq8vLxr2vbBgwexWCwcPHiwVK976qmnsFgsrFixosjn9+3bx8iRIwkPDycgIIC6devy8MMPk5SUVGjfVapU4ezZs4W28fjjj2OxWHj33XeL3MeoUaPw9fUtcOeB/I/8e+i6wquvvspLL70EQOfOnbFYLMyfP7/QvJ9++gmLxULnzp2By3/vR40axahRo6647y1btjBw4MBrqF5ErpWCnYiU2rx588jMzCQjI4OsrCw+//xz3nvvPaZNm+byWs6dO8eCBQsYO3Ysr7zySqHnv//+e2666SYqV67Mli1byMzMZPPmzVgsFlq3bs2OHTsKzA8MDGTp0qUFxi5cuMDSpUsJCAi4bC3Dhw8nMzOz0Ie3t/e1N1oCv/76K2+//TZPPPGEYyw0NLTIMPrOO+8QHBxcpvu/4447CAwM9JjbyomURwp2InLNWrZsSceOHfnxxx8B+0rR1KlTHc9fuhr05ptvcv311xMSEkKrVq3497//XWB7ixcvplmzZgQEBNCtWzdSUlKK3feSJUuoU6cOL730Etu3b2fr1q0Fnh8zZgxDhgxh/vz5NGjQAIvFQr169Zg3bx69evXiT3/6U4H5w4cP57333iswtnLlSm688UZCQ0NL+61xmDp1Kj169KBt27ZUr16dTZs2kZGRwV/+8hciIyO57rrruPfeezl+/LjjNVu2bKFt27YEBATQrl07Jk2a5FhhK8o//vEPHnzwQSpVquQYGzJkCD/88AO//fabYywnJ4cPP/yQe+65p9R99O/fv8BqpJ+fHxaLhf379wPw2GOPMWXKFC5cuFDqbYvItVOwE5FrYrVaSUxMZP369fTo0eOK83///XcmTJjA6tWrSUtL41//+hePPfYYR48edcz54Ycf2Lp1K4cPH+b06dM899xzxW5vzpw5PProo4SEhPDAAw8UWLU7ePAg27dvZ8SIEUW+dsyYMWzbtq3AIdnhw4fz/fffFwhCCxYsYPTo0Vfs7Uq+/PJLXn75ZZKSkrj99tt56KGH2Lt3Lz/88AO///47wcHB3H333RiGQWpqKv369WPQoEGkpaXx8ssvM3fu3GK3ffz4cRISEhg2bFiB8Zo1a9KnT58Cq3YrVqygbdu2REREFNpOq1atCAkJKfCxZMkSx/OffPKJYyUyOTmZ66+/nieffJLrr78egHbt2lGpUiU+/vjja/xuicjVULATkVJ75JFHHH/0a9asyV/+8heeeOIJ/vKXv1zxtT4+PhiGwbx589iyZQt33nknWVlZhIWFOeY8++yzVK1alWrVqtGrVy/HatClvvrqK5KSknjggQcAGD9+PCtXruT3338H4MiRIwDUrl27yNeHh4cXmAf2INS3b19HEEpOTubHH3/krrvuumJvS5YsKRSKPv/8c8fzDRs2pGvXrgQGBnL69Gni4+N57bXXuO666wgMDGT27Nl89913/Pjjj3zyyScEBATwt7/9DV9fXzp37sxDDz1U7L4TExMJDw8nMjKy0HMPPvggixYtcrwH8p133il2W7/88gtpaWkFPi4NiwDnz59nwIABNG/enBkzZhR4rn379nz55ZdX/H6JSNlTsBORUps7d26BP/w7d+7k2WefxWKxXPG1devWJTExkYMHD9KvXz+qV6/OhAkTOH/+vGNOjRo1HF9XqlSJ3NzcIrf1+uuvk5GRQd26dQkNDSU6Opq8vDxmzZoF4AiLhw4dKvL1Bw4cKDAv38VB6N133+W+++7Dz8/vir0NGzasUCjq2bOn4/n8IAk4Dku3a9fOEQLDw8Px8fHhwIEDnDhxgsjIyALf06ZNmxa776SkJOrUqVPkc3379uXChQt8+eWXJCUl8csvvzBgwIAr9lOcvLw87r//fmw2G4sWLSr0c4+IiCA5Ofmqty8iV8/H7AJExP14e3sXeI9Vamqq4+sTJ05gs9lYsWIFeXl5fP311wwaNIgmTZrQt2/fEu/jyJEjrFixgjVr1hQIPGvWrGHChAk899xzNGjQgJtvvpl33nmH7t27F9rGv//9b26++Wbq1atX4GzQPn36OILQu+++W+zZtqV1cQDKPwy6Z8+eAiuKu3fvpmHDhnzyySccOnSIvLw8vLzs/w9++PDhYrft5eVV7FnJPj4+jvcONmnShOHDhxd4H15pxcbGsn37dr755hsqV65c6Pnc3FyXnTAiIgVpxU5EylyzZs347LPPSEtL4+zZs7z88suO55KSkujevTvr16/Hy8vLsYpV2hMT5s2bR1RUFHfeeScRERGOj5EjR1KlShXefPNNwH7Y8bPPPmPs2LEcPHiQvLw8Dhw4wJgxY1i3bl2hEzfAHoTuv/9+Jk6cSPXq1WnVqtU1fDeKFh4eTt++fRk/fjynTp3CarXywgsv0LZtW9LS0ujbty9+fn6OExF+/PHHIi9bkq9evXqXPcnkwQcfZOXKlSxcuPCyh3SvZMaMGXz44YesWbOGmjVrFjnnyJEj1K1b96r3ISJXT8FORMrcM888Q61atWjQoAFt2rQpcNjvlltu4Y033mDs2LEEBgbSsWNHHnnkEYYMGVLi7VutVt5+++0ir61WqVIlRo0axeuvv86FCxdo3bo1P/30E1arlejoaMc+wf5+sjZt2hS5jwcffJCdO3deUwi6kkWLFhESEkKbNm0IDQ3l008/5fPPP6d27dr4+/uzdu1avv32W2rVqsW4cePo2rVrsdvq2rUrJ06ccBxevlTLli254YYbuO6662jRosVV1/z000+TlZVFu3btCAoKcpwdu3jxYsecLVu20KtXr6veh4hcPYthGIbZRYiIyJVNnTqVxMREEhMTi3x+8ODBtG3blr/97W+uLewi33zzDUOHDmXfvn3XdLhXRK6OVuxERNzE9OnTefvtt8nJyTGthlmzZjFt2jSFOhGTKNiJiLiJZs2a8ec//7nIO3C4wubNmzl37hwPPvigKfsXER2KFREREXEbWrETERERcRMKdiIiIiJuQsFORERExE0o2ImIiIi4CQU7ERERETehYCciIiLiJhTsRERERNyEgp2IiIiIm1CwExEREXET/wefDsHQT1aCvwAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fitModel = NewFitModel(mot_loading)\n",
"fitAnalyser = FitAnalyser(fitModel, fitDim=1)\n",
"\n",
"params = fitAnalyser.fitModel.make_params()\n",
"params.add(name=\"A\", value=1e8, max=np.inf, min=-np.inf, vary=True)\n",
"params.add(name=\"tau\", value=1, max=np.inf, min=-np.inf, vary=True)\n",
"\n",
"fitResult = fitAnalyser.fit(data, params, x='mot_load_duration').load()\n",
"freqdata = np.linspace(0, 10, 500)\n",
"fitCurve = fitAnalyser.eval(fitResult, x=freqdata, dask=\"parallelized\").load()\n",
"fitCurve = fitCurve.assign_coords({'x':np.array(freqdata)})\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"data.plot.errorbar(ax=ax, yerr = data_std, fmt='ob')\n",
"fitCurve.plot.errorbar(ax=ax, fmt='--g')\n",
"plt.xlabel('Push AOM Freq (MHz)')\n",
"plt.ylabel('NCount')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: ()\n",
"Data variables:\n",
" A float64 1.193e+08\n",
" tau float64 4.666</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-3e8b8706-d701-41ad-8200-e1caf324ff4f' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-3e8b8706-d701-41ad-8200-e1caf324ff4f' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-48c4bb83-68b0-49be-94ac-b96b366e2a21' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-48c4bb83-68b0-49be-94ac-b96b366e2a21' class='xr-section-summary' title='Expand/collapse section'>Coordinates: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-c2d074f7-2a4c-4728-8200-18cb7daecd27' class='xr-section-summary-in' type='checkbox' checked><label for='section-c2d074f7-2a4c-4728-8200-18cb7daecd27' class='xr-section-summary' >Data variables: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>A</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1.193e+08</div><input id='attrs-d11e30e4-f834-4f05-9d5f-d03a106fad86' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d11e30e4-f834-4f05-9d5f-d03a106fad86' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bdb6f408-a6e6-4edb-8486-2c3ccaaed511' class='xr-var-data-in' type='checkbox'><label for='data-bdb6f408-a6e6-4edb-8486-2c3ccaaed511' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(1.19289449e+08)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tau</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>4.666</div><input id='attrs-8730b129-dbfe-44dc-87d2-e8279113e974' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8730b129-dbfe-44dc-87d2-e8279113e974' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6e38aadd-38e6-4f9d-a670-31f988ae90aa' class='xr-var-data-in' type='checkbox'><label for='data-6e38aadd-38e6-4f9d-a670-31f988ae90aa' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(4.66646868)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-0e6a306c-69c4-4e2d-a06e-f91190fd01d3' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-0e6a306c-69c4-4e2d-a06e-f91190fd01d3' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-7c126d51-7bce-44d7-a8e5-f8285ece4e46' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-7c126d51-7bce-44d7-a8e5-f8285ece4e46' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: ()\n",
"Data variables:\n",
" A float64 1.193e+08\n",
" tau float64 4.666"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"val = fitAnalyser.get_fit_value(fitResult)\n",
"val"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: ()\n",
"Data variables:\n",
" A float64 1.591e+06\n",
" tau float64 0.1586</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-38c68664-9f21-47e9-ae7b-e2791ad41bc4' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-38c68664-9f21-47e9-ae7b-e2791ad41bc4' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-15885cae-358f-44e6-b2c7-152bbe3484eb' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-15885cae-358f-44e6-b2c7-152bbe3484eb' class='xr-section-summary' title='Expand/collapse section'>Coordinates: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-8e6f4849-f4ef-4966-8549-1e26327a3a91' class='xr-section-summary-in' type='checkbox' checked><label for='section-8e6f4849-f4ef-4966-8549-1e26327a3a91' class='xr-section-summary' >Data variables: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>A</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1.591e+06</div><input id='attrs-f987e1c1-8bbd-4837-aea6-81f1f3631bb5' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f987e1c1-8bbd-4837-aea6-81f1f3631bb5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2cea5ed4-cd11-4731-92f1-a9f83e88f20a' class='xr-var-data-in' type='checkbox'><label for='data-2cea5ed4-cd11-4731-92f1-a9f83e88f20a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(1591103.66003124)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tau</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.1586</div><input id='attrs-e050af12-da09-4017-b33d-295dda743e20' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e050af12-da09-4017-b33d-295dda743e20' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-413af6b2-77de-4114-ab8c-180f8e3f6dad' class='xr-var-data-in' type='checkbox'><label for='data-413af6b2-77de-4114-ab8c-180f8e3f6dad' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.15857749)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-636e37ff-da1b-49df-af26-ab46778e7ee3' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-636e37ff-da1b-49df-af26-ab46778e7ee3' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-84a633aa-a33c-4e99-ba4d-8c38d3dadea4' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-84a633aa-a33c-4e99-ba4d-8c38d3dadea4' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: ()\n",
"Data variables:\n",
" A float64 1.591e+06\n",
" tau float64 0.1586"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"std = fitAnalyser.get_fit_std(fitResult)\n",
"std"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.DataArray ()&gt;\n",
"array(0.2556310933363963+/-0.009332131323758952, dtype=object)</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'></div></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-0f74fa61-81d9-43b3-8dfa-efeee1be9233' class='xr-array-in' type='checkbox' checked><label for='section-0f74fa61-81d9-43b3-8dfa-efeee1be9233' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>0.256+/-0.009</span></div><div class='xr-array-data'><pre>array(0.2556310933363963+/-0.009332131323758952, dtype=object)</pre></div></div></li><li class='xr-section-item'><input id='section-c5825fc5-54fe-44a0-94bf-b6406a837c7f' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-c5825fc5-54fe-44a0-94bf-b6406a837c7f' class='xr-section-summary' title='Expand/collapse section'>Coordinates: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-596126cf-96e8-460c-b70b-6f0af94bbaef' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-596126cf-96e8-460c-b70b-6f0af94bbaef' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-8562ca1f-db6a-4c04-acc5-429ba0b0bb3a' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-8562ca1f-db6a-4c04-acc5-429ba0b0bb3a' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.DataArray ()>\n",
"array(0.2556310933363963+/-0.009332131323758952, dtype=object)"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res = fitAnalyser.get_fit_full_result(fitResult)\n",
"res.A / res.tau / 1e8"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Loading rate"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"img_dir = '//DyLabNAS/Data/'\n",
"SequenceName = \"Repetition_scan\" + \"/\""
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2492.803132748206"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Ncount_to_atoms()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"powers = [150, 200, 250, 300, 350, 400]\n",
"ncounts_withpush = np.array([5072.7, 9171.8, 16721.7, 23160.8, 27965.0, 32395.8]) * Ncount_to_atoms()\n",
"ncount_withpush_errors = np.array([80.7, 146.9, 142.1, 514.9, 433.6, 631.2]) * Ncount_to_atoms()\n",
"\n",
"ncounts_withoutpush = np.array([629.0, 1567.6, 3063.7, 4426.5, 4755.4, 4920.9]) * Ncount_to_atoms()\n",
"ncount_withoutpush_errors = np.array([22.9, 53.8, 79.9, 63.7, 191.5, 190.9]) * Ncount_to_atoms()\n",
"\n",
"sat_ncount_withpush = np.array([23921.7, 39196.8, 60078.6, 75443.0, 84752.0, 91294.0]) * Ncount_to_atoms()\n",
"sat_ncount_withpush_errors = np.array([88.3, 138.8, 89.0, 278.0, 210.1, 355.1]) * Ncount_to_atoms()\n",
"\n",
"sat_ncount_withoutpush = np.array([4224.1, 9672.3, 17949.6, 24080.9, 25218.2, 26968.5]) * Ncount_to_atoms()\n",
"sat_ncount_withoutpush_errors = np.array([37.5, 77.2, 105.9, 75.3, 217.6, 265.0]) * Ncount_to_atoms()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1.50000000e+02, 2.00000000e+02, 2.50000000e+02, 3.00000000e+02,\n",
" 3.50000000e+02, 4.00000000e+02],\n",
" [1.26452425e+07, 2.28634918e+07, 4.16839061e+07, 5.77353148e+07,\n",
" 6.97112396e+07, 8.07563517e+07],\n",
" [1.26452425e+07, 2.28634918e+07, 4.16839061e+07, 5.77353148e+07,\n",
" 6.97112396e+07, 8.07563517e+07]])"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.array([powers, ncounts_withpush, ncounts_withpush])"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('loading_rate_withpush.txt', \n",
" np.array([powers, ncounts_withpush, ncount_withpush_errors]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('loading_rate_withoutpush.txt', \n",
" np.array([powers, ncounts_withoutpush, ncount_withoutpush_errors]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('sat_ncount_withpush.txt', \n",
" np.array([powers, sat_ncount_withpush, sat_ncount_withpush_errors]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('sat_ncount_withoutpush.txt', \n",
" np.array([powers, sat_ncount_withoutpush, sat_ncount_withoutpush_errors]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('old_loading_rate_withpush.txt', \n",
" np.array([[430], [1.2157134383410748e8], [0.02622973148346536e8]]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('old_loading_rate_withoutpush.txt', \n",
" np.array([[430], [0.2556310933363963e8], [0.009332131323758952e8]]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('old_sat_ncount_withpush.txt', \n",
" np.array([[430], [3.54756438e8], [2776453.58029856]]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('old_sat_ncount_withoutpush.txt', \n",
" np.array([[430], [1.19289449e8], [1591103.66003124]]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_axes.errorbar([430], [1.2157134383410748e8], yerr=[0.02622973148346536e8], color=plot_red, marker='^', **plot_kwarg)\n",
"plot_axes.errorbar([430], [0.2556310933363963e8], yerr=[0.009332131323758952e8], color='k', marker='*', markersize=15)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_axes.errorbar([430], [3.54756438], yerr=[2776453.58029856/1e8], color=plot_red, marker='^', **plot_kwarg)\n",
"plot_axes.errorbar([430], [1.19289449], yerr=[1591103.66003124/1e8], color=\"k\", marker='*', markersize=15)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## V1"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAvsAAAVeCAYAAADv9/SdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAABJ0AAASdAHeZh94AAEAAElEQVR4nOzdd1RU1/c28OfSERyKBVARRMXeKxJFsQH2bmxBU0xMTL6aGI0lGo0xJrElMUWjYhJN7BXFWLCLFbuIIiooohQpIv2+f/ByfzMytHE6z2ct1roz95x79oDCnjPn7iOIoiiCiIiIiIiMjomuAyAiIiIiIs1gsk9EREREZKSY7BMRERERGSkm+0RERERERorJPhERERGRkWKyT0RERERkpJjsExEREREZKSb7RERERERGisk+EREREZGRYrJPRERERGSkmOwTERERERkptSb7kydPhiAI+PDDD9V5WUl6ejpq1KgBMzMzhIWFaWQMIiIiIiJjIYiiKKrjQgcOHIC/vz/s7e1x584dVKlSRR2XLWL9+vUIDAxE3bp1cfnyZdja2mpkHCIiIiIiQ6eWmf0XL17gnXfegSiKmDVrlsYSfQAYO3YsWrVqhaioKMycOVNj4xARERERGTq1zOx//vnn+P7771GrVi3cvXsXlpaW6oitWCEhIfD394epqSkuXLiAli1banQ8IiIiIiJD9Noz+/fv38fy5csBANOnT9d4og8Afn5+aN++PfLy8vDpp59qfDwiIiIiIkP02sn+ggULkJOTAxsbG7z11lvqiKlMJk2aBAA4cuQIjh07prVxiYiIiIgMxWsl+3Fxcfjrr78AACNGjEDlypVL7XPkyBFMnjwZrVq1gpOTEywsLGBnZwcPDw8MHz4c//zzD/Ly8kq9zrBhw2BnZwcA+Pbbb1/nZRARERERGaXXWrO/YMECfPnllwCAgwcPokePHsW2jYuLw/Dhw3Hy5MlSr9umTRsEBwfDycmpxHZvvfUW/vzzTwiCgLt378LDw6N8L4CIiIiIyIi9VrJfr149REVFwcbGBomJicWu13/x4gVatGiBqKgoAICDgwP69OmD+vXrw8LCAnFxcTh48CBu3bol9enTpw/27t1b4vgbN27E6NGjAQDz5s3D3LlzVX0pRERERERGR+Vk/8aNG2jatCmAghtm9+/fX2zbuXPnYv78+QCAdu3a4cCBA3BwcCjS7vvvv8fnn38uPY6JiUGtWrWKve7Tp0+l2f9WrVrh0qVLqrwUIiIiIiKjpPKa/dDQUOm4RYsWJbZdv369dLxmzRqliT4ATJs2DY0bN5YeX7x4scTrVq9eHS4uLgCAy5cvIzk5udS4iYiIiIgqCjNVO547d046btasWbHtsrOzMXfuXERHRyMrK6vEtgDQvHlz3Lx5EwCQkpJSahzNmjVDXFwcRFHE+fPn0atXrzK+AiIiIiIi46Zysn/79m3puGHDhsW2s7CwwPjx48t0zfj4eCQkJEiPc3JySu3TqFEj/PfffwCAyMhIJvtERERERP+fysn+w4cPpWNHR8dy9X369CkiIyMRFRWFqKgo3Lx5E5cvX5Zu4C1UltsJ5MeWj4mIiIiIqKJTOdmXX2JTWO++JGlpaVi+fDmCgoJw7969YtuZmpqWqc6+srHLsuyHiIiIiKiiUDnZz8rKko5tbW1LbBsREQE/Pz88ePBAcXAzM9StWxfNmjVD+/bt0aNHD6xYsULhht7SyI8tHxMRERERUUWncrJvbW2NFy9eAChIsi0sLJS2y87OxuDBg6VEv27dupgyZQq6dOmChg0bwtzcXKF9RkZGueLIzMxUiImIiIiIiAqonOzLZDIp2U9LS0PlypWVttuxY4e0WVatWrVw/vz5YktvAsCzZ8+k47Ks2U9PT1eIiYiIiIiICqhcZ9/d3V06jo2NLbZdWFiYdDxs2LASE/2XL1/i7Nmz0uP8/PxS44iJiZGO69SpU2p7IiIiIqKKQuVkv0GDBtJxdHR0se3k19HLl9VUZtasWXj58qX0uCylN+XHlo+JiIiIiKiiUznZ79ixo3QcHh5ebDv53XW3bNmiMNNf6MWLF/j444+xbNkyhefLsn7/0qVLAApu9m3btm2p7YmIiIiIKgqV1+x369ZNOpZfevOqkSNH4ssvv8TTp0+RmZmJN954A/3790eTJk0gCALu3r2LvXv3Ii0tDQBgbm4uzegnJiaWGENMTAyePHkCAGjbtm2x9w0QEREREVVEKif7np6eaNy4MW7evInTp0/jxYsXsLGxKdLOzs4OO3bsQL9+/ZCUlIS8vDzs2LEDO3bsKNJ20KBBGDduHAYNGgQAuHjxYokxFO6cCwCDBw9W9aUQERERERkllZfxAMCYMWMAFJTXlE+8X9WpUydcv34d06dPR/PmzWFrawszMzM4ODigZcuWeOedd3Ds2DFs374d/v7+sLe3BwAcO3asxJt/g4ODC16EiQlGjRr1Oi+FiIiIiMjoCGJZ6lsWIz4+Hm5ubsjKysKwYcOwefNmdcZWopSUFDg5OSErKwsDBw5U+kkBEREREVFF9loz+05OTtLs/p49e0pdY69OGzdulCr9fPbZZ1obl4iIiIjIULxWsg8UlMu0sLBAZmYmVq9erY6YyuTnn38GAPTs2RPe3t5aG5eIiIiIyFC8drJfp04dvP/++wCAH3/8EZmZma8dVGn27t2LmzdvQhAELFq0SOPjEREREREZotdO9gFg/vz5cHZ2RlxcHH799Vd1XLJYoihi7ty5AICJEyeiTZs2Gh2PiIiIiMhQvdYNuvK2b9+OIUOGoGrVqoiMjISDg4M6LlvExo0bMXr0aLi6uuLatWuws7PTyDhERERERIZOLTP7QEGd+/fffx8JCQmYM2eOui6r4MWLF/j8889hamqKDRs2MNEnlURERGDMmDFwcXGBhYUFatWqhQkTJiA6OlrXoRERERGpldpm9okMwenTp9G7d2+kp6ejcuXK8PDwwL1795CWlgZ7e3scOnSIS8OIiIjIaKhtZp9I3+Xl5WHcuHFIT0/HqFGj8OTJE1y+fBmPHz/G0KFD8fz5c4wePRr5+fm6DpWIiIhILTizTxXG6dOn4e3tDQcHBzx69AjW1tbSufT0dNSsWROpqakICwtDhw4ddBgpERERkXpwZp8qjEePHgEA6tatq5DoA4CtrS3q168PAIiJidF6bERERESawGSfKoxatWoBAO7evYuXL18qnMvMzMS9e/cU2hEREREZOib7VGF06NABTZo0wfPnzzFx4kRkZGQAKEj0P/jgAyQnJ6NVq1ZcwkNERERGg2v2qUJ58OABhg8fjnPnzkEmk8HDwwPR0dFISUlBjx498Oeff8LFxUXXYRIRERGpBWf2qUKxtraGl5cXTE1NkZqaisuXLyMlJQWCIHD5DhERERkdJvtUYTx79gydO3fGihUrMHToUERERCArKwtXr15F3759ERQUhG7duiExMVHXoRIRERGpBZN9qjC+/fZbREZGokuXLvj333/RoEEDWFhYoFmzZti5cyfatWuH27dv44cfftB1qERERERqwWSfKoxdu3YBAD7//PMi50xMTDBz5kwAwLZt27QaFxEREZGmMNmnCiM2NhYA4OnpqfR8w4YNAbDOPhERERkPJvtUYchkMgDAkydPlJ4vfL5y5cpai4mIiIhIk5jsU4XRpUsXAMD69euVnt+wYYNCOyIiIiJDx2SfKozPP/8cpqamWLt2LRYvXozs7GwAQH5+Pr777jusWbMGpqammD59uo4jJSIiIlIPbqpFFcqqVaswadIk5OXlwdHREe7u7rh79y5SU1NhamqKX375Be+9956uwyQiIiJSC87sk9aJoghvb28IgoCgoKBy9Y2NjcX06dPRvHlz2NrawsbGBp6ennj//fcRHh5eav/33nsPp0+fxtChQ2FmZoarV6/C2toaQ4cOxenTp5noExERkVHhzD5p3cKFCzF79mwAwLp16xAYGFimftu3b0dgYCDS0tKUnjc1NcWsWbPw1VdfqStUIiIiIoNmpusAqGJZt24d5syZU+5+hw4dwvDhw5GXlwcAaNWqFfz9/WFmZoYTJ04gNDQUeXl5mD9/PiwtLaWa+UREREQVGZP9CuzFixewsbFRqW96ejpsbW3L3F4URSxcuBBffvklyvthUkZGBgIDA6VEf8GCBZg1axYEQZDabN26FaNGjUJOTg7mzJmDgQMHonHjxuUah4iIiMjYcM1+BXXq1CnUqVMHx48fL3ff4OBg1K1bF5cuXSpT+/j4ePTp0wdz5swpd6IPAKtXr8ajR48AAH379sXs2bMVEn0AGDp0KBYvXgygoLoOl/IQERERMdmvkG7duoWAgAA8e/YMffr0wcmTJ8vc98CBAxgyZAiePn2KXr16ITo6uti2L1++xNdff4169eph//79AAo2rPLx8SlXvPI38X7xxRfFtps0aRKqVasGANi1axdSU1PLNQ4RERGRsWGyXwHVq1dP2jgqPT0dAQEBOHPmTKn9Dh48iIEDByIrKwsA0L17d9SuXbvY9ps2bcKcOXOQnp4OAGjdujXOnDmDrl27ljnW+Ph4XL58GQDg4OCAjh07FtvW0tIS3bt3BwBkZWVJbzCIiIiIKiom+xWQubk5tm7dit69ewMA0tLS4Ofnh3PnzhXb58iRIxgwYAAyMzMBAIMHD8aGDRtgampa6niOjo5YunQpzp49iyZNmpQrVvmlQu3bt4eJScn/ZOXfDJw9e7ZcYxEREREZGyb7FZSlpSV27twpzYSnpqaid+/euHjxYpG2x48fR79+/fDy5UsAQL9+/fDvv//CzKzk+7udnJywaNEiREVFYcqUKaW2V+bOnTvScZ06dUptL/9JQ2RkZLnHIyIiIjImTPYrMCsrK+zevVta0vP8+XP07NlTYXOqU6dOoU+fPsjIyAAA+Pv7Y+vWrTA3Ny/1+v7+/pgxYwbs7e1VjjEuLk46rlWrVqnta9asKR3Hx8erPC4RERGRMWCyX8FVqlQJwcHB6NSpEwAgOTkZPXv2xNWrV3HmzBn4+/tLa+579uyJ7du3w8LCQmvxpaSkKMRaGmtra6V9iYiIiCoiJvsEW1tb7N+/H+3atQMAJCYmonv37vDz85N2q+3WrRt27doFKysrrcZWeDMwoJjIF0e+jXxfIiIiooqIyT4BAGQyGf777z+0atUKAJCQkCCVrnzjjTewZ8+eMiXb6iZ/A/CrtfWVka/jX9rNvERERETGjtkQSezt7bFkyRKF5wRBwIoVK1Teafd1ye/SW1gJqCTybSwtLTUSExEREZGhYLJPkhs3bmD48OEKz4miiAEDBiAqKkonMckn+4U3CZeksGIQANjZ2WkkJiIiIiJDwWSfABTsquvr64uEhAQABfXqmzdvDgCIjY2Fr68v7t+/r/W4XFxcpOPHjx+X2v7Ro0fSsbOzs0ZiIiIiIjIUTPYJkZGR6N69O54+fQqgYPOqAwcO4NChQ9ImWA8fPkS3bt3w8OFDrcYmvwlXWd5sPHjwQDr29PTUREhEREREBoPJfgUXFRUFX19fqZ59mzZtcODAAchkMlSrVg1HjhxBo0aNABQk2926dUNsbKzW4mvWrJl0Y+758+dLbR8WFiYdt27dWmNxERERERkCJvsVWHR0NLp16yYtfWnZsiUOHjyosAlW9erVceTIETRo0AAAcO/ePXTr1q1MS2rUwcHBAd7e3gAKNslStsNvoczMTBw+fBhAQSWewt2BiYiIiCoqJvsVVOGynJiYGABA8+bNcejQITg4OBRp6+zsjCNHjqBevXoAgLt378LX1xdPnjzRSqwjR46UjufNm1dsu59//lm65yAgIADVq1fXdGhEREREeo3JfgUUGxuLbt26SevbmzRpgkOHDqFKlSrF9qlRowZCQ0Ph4eEBALh9+zZ8fX2ldf6aNGHCBNSpUwcAsHfvXnz22WfIy8tTaLN161bMnDkTQEG50Llz52o8LiIiIiJ9Z6brAEj7rK2tpbr5jRo1wpEjR1CtWrVS+9WqVQuhoaHw8fHB/fv3YWtrq5Udda2trfH7778jICAAubm5WLJkCYKDgzFgwABYWVnh5MmT0vIdAJg5cybatm2r8biIiIiI9B2T/QqoSpUqOHjwIN59912sWrWqXMtdateujdDQUHzyyScICgqCTCbTYKT/p2fPnvj3338xfvx4pKWlISIiAhEREQptBEHAtGnTsGDBAq3ERERERKTvmOxXUE5OTti9e7dKfd3d3bFr1y41R1S6IUOGwMvLCz/99BOCg4Nx//59ZGVlwcXFBV26dMGHH36IDh06aD0uIiIiIn0liKIo6joIIiIiIiJSP96gS0RERERkpJjsExEREREZKa7ZN1KFu84SERERkfEqbUU+Z/aJiIiIiIwUk30iIiIiIiPFZJ+IiIiIyEgx2SciIiIiMlK8QbcC4ZYKRERERIZLlQIsnNknIiIiIjJSTPaJiIiIiIwUk30iIiIiIiPFZJ+IiIiIyEgx2SciIiIiMlJM9omIiIiIjBSTfSIiIiIiI8Vkn4iIiIjISDHZJyIiIiIyUkz2iYiIiIiMFJN9IiIiIiIjxWSfiIiIiMhIMdknIiIiIjJSTPaJiIiIiIwUk30iIiIiIiPFZJ+IiIiIyEgx2SciIiIiMlJM9omIiIiIjBSTfSIiIiIiI8Vkn4iIiIhIRVFL/tB1CCUy03UARERERESGJnL+T3j58DFi129HesQ9WLu6wPPLyboOqwhBFEVR10GQ+gmCUOQ5/qiJiIiI1CPYvEGR5/rk3NbomKrkd1zGQ0RERERkpJjsExEREREZKSb7KhBFEd7e3hAEAUFBQWq99rlz5zBx4kQ0adIEdnZ2sLCwgLOzM3r06IHly5cjPT1dreMRERERUfkknbyg/PlTF7UcSemY7Kvgm2++wenTp9V6zRcvXmDs2LHo0KEDVq1ahZs3byI1NRU5OTmIj4/H4cOHMWXKFNSrVw+hoaFqHZuIiIiIyu7O1yvL9bwusRpPOa1btw5z5sxR6zXz8vIwZMgQHDhwQHquW7du6NSpEypVqoR79+5h586dSExMRHx8PPz8/HDo0CF07txZrXEQERERUcmSTl5AwmHlk74Jh04h6dRFOHq30XJUxWOyX0aiKGLhwoX48ssv1V7VZtWqVVKi7+joiO3bt8PHx0ehzfLly/HWW29h+/btyM7OxtixY3H79m1YWlqqNRYiIiIiKl5ps/d3vl6JDvvXaima0jHZL4P4+HiMHz8e+/fv18j1lyxZIh0HBQUVSfQBwNbWFv/88w/atGmD69ev48GDB9iyZQvGjBmjkZh0LS8vDzExMbh79y4ePXqEzMxM5OXl6TosIiKVmZqawtbWFvXr10ejRo1QuXJlXYdEROVU0qx+IX2b3eea/RK8fPkSX3/9NerVqycl+pUrV1aajKvqxo0biIqKAgB4enqiX79+xba1sLDAxIkTpcdHjhxRWxz65OHDh1i2bBnWr1+PU6dO4fHjx8jKytJ1WEREryUzMxPR0dHYv38/li5dimPHjuk6JCIqp7Kuydentfuc2S/Bpk2bFNbnt27dGn/++Se2bNmitl/S169fl47btWtXansPDw/p+PHjx2qJQZ/cuHEDO3bsgImJCXx8fFC/fn3UqFFD6SYSRESGJjs7G3fu3MGJEydw9OhRAFDrBBIRaU5ZZvUL6dPsPmf2y8DR0RFLly7F2bNn0aRJE7Vee8iQIXj48CHCwsIwffr0UtvLJ/i2trZqjUXXcnJysGfPHlhbW2PChAno2rUratasyUSfiIyGhYUFmjRpgrfeegtOTk44evQo0tLSdB0WEZVBeWfr9WV2n8l+CZycnLBo0SJERUVhypQpMDNT/wchZmZmcHV1RYcOHdCsWbNS2+/YsUM6VvcbD127desWsrKy8MYbb8DZ2VnX4RARaYy1tTXeeOMNAAW/+4hIv5VnVr9Q4ey+rjHZL4G/vz9mzJgBe3t7XYcCADh58iT27dsnPR48eLAOo1G/GzduwMTEBM2bN9d1KEREGufp6QlTU1PcuXNH16EQUSlUnaXXh9l9JvsGIiEhAePGjZMe9+/fHy1atCjXNQRBUOlr3rx5an41yqWlpUEmk8Ha2lor4xER6ZKFhQUqV66MFy9e6DoUIiqBKrP6hfRhdp/JvgFIS0tDv379EB0dDQCwt7fH8uXLdRuUBuTm5sLc3FzXYRARaY2ZmRlyc3N1HQYRleB1Z+d1PbvPZF/PPX/+HH5+fggLCwMAmJiY4K+//kKdOnV0HBkREb0uFiAg0m+vM6tfSNez+yy9qcceP34MPz8/XLt2DUBBov/HH3+gb9++Oo6MiIiIyPg93rIfto3rKT2XfvNukeeKa/t48z6dleFksq+nwsPD0a9fPzx69AhAwUe9a9euxdixY3UcGb0qcv5PRZ7z/HKyDiIhIiIidWq6Yk6x54LNGxR5zudKsCbDUQmTfT20e/dujBo1Srppq1KlSti0adNrz+iLoqiO8OgVdxb8XOQ5JvtERESkD5js65mff/4Zn3zyCfLz8wEA1apVw549e9ChQwcdR0ZEREREherP+UjXIZQJk3098s0332DWrFnSY09PT+zbtw9169bVYVRERERE9CpD+RSf1Xj0xI8//qiQ6Hfs2BGnT59mok9UDnl5eboOgYiISK8w2dcDp06dwtSpU6XHPXr0wOHDh1GlShUdRkWkHwIDA6UN3o4ePaq0TUREBLp27YqYmBil5wv7u7u7ay5QA1KW72lFdP/+fen70rVrV12HQ0SkFkz2dSw7OxtjxoyRZiQbNmyIHTt2oFKlSjqOjMgwLFu2DC1atMCxY8d0HQoREZHe4Zp9LZDfNGXdunUIDAxUeHz//n3psbe3N3777bcyXdfV1RUjRoxQV5hEBmnXrl3Izs7WdRhERER6icm+jgUFBSk8XrNmTZn7+vj4MNknoxcUFFTk/wkRERGVDZfx6Fjh7rhEREREROrGmX0VzJs3D/PmzStz+5I2s0pPT1dDRKQL+bm5iN9zROm5uB3/wamfL0zM+F+MiIiIdIcz+0QqSI+IwqkOQ3BpuPIau5eGT8apDkOQfvueliPTns6dO0uVS0JDQ4ttN2nSJKndoEGDim137do1qZ388rTiKse4u7tDEASFG3Pr1KkjtZW/F+ZVCQkJmDNnDlq0aAGZTIbKlSujcePG+Oyzz3Dv3uv9zIKCgqQYwsLCkJiYiPHjx8PR0RF2dnZo3bo1Fi5cWKSfKIrYunUrhg8fDjc3N1hbW8Pe3h7NmjXDlClTEBERUeYY9u3bh8GDB8PFxQUWFhaoWbMmhg8fjtOnT7/Wa5NX+P0vrFoTFxeHadOmoUGDBqhUqRJkMhnat2+Pb7/9FqmpqcVeR/77VdokytGjR6W28vc+ycvPz8eWLVswbNgwuLm5wcrKCpUrV4aHhwdGjhyJf/75p1wlWh88eIApU6agUaNGsLGxgYODA1q2bImvvvoK8fHxZb4OEZGucNqRqJzSI6JwpttoZCckl9gu9WoEznQdBa/QDbBtaHz7JfTt2xcnT54EABw6dAjdunVT2u7Ikf/79OP48eMQRVHhpvVC+/fvl4779eun5mgVxxk9ejSSkxV/frdu3cKtW7fw22+/ISgoCEOHDn3tsbKzs+Hn54cLFy5Iz4WHh8PDw0Oh3YMHDzBs2DCcP39e4fnMzEykpKTg+vXr+Omnn/D5559j4cKFSr9/AJCVlYWxY8diy5YtCs8/fvwYW7ZswdatWzFnzpzXfl2vOn/+PPr161ck+T1//jzOnz+PH3/8Efv27UPLli3VPra8hIQE9OvXD2FhYQrPZ2VlIT09HdHR0di0aRMWLFiA4OBg1KlTp8TrrV27Fh999BFevnwpPZeRkYHnz5/jypUrWLlyJbZu3YouXbpo5PUQEakDk32icsjPzUX46KmlJvqFshOSET7mU3iHbTW6JT19+vTBjBkzABQk+8pmqx89eoTbt29Lj5OSknD9+nU0a9asSNvCZN/U1BT+/v6ljj9r1iykpKTg119/lWbjZ86cCQcHBwCAo6NjkT7x8fEYMGAAcnJy4OTkhEGDBsHV1RWPHj3Cli1b8OzZM7x48QLjxo1D8+bN4enpWYbvRPEWLVqkkOgXGjZsmHQcHR2NTp064cmTJ1Lc/fv3R7169fDy5UucPXsWhw8fRl5eHhYtWoQnT55g7dq1Ra6Zn5+PgIAA6c2ViYkJ+vTpg7Zt2yIzMxMHDhzApUuXMH/+fLXu4REfH4/+/fsjPj4elStXxtChQ1G3bl08ePAAW7duRXJyMuLi4tC1a1ccO3YMLVq0UNvYrxo5cqSU6FetWhX9+/eHh4cHsrOzERkZie3btyM7Oxu3bt1C7969cePGDZibmyu91sWLF6VPjerUqYO+ffvC2dkZ9+7dw+bNm5GWloZnz55h2LBhuHHjBqpWraqx10VE9FpEMkoAinzpu5UrV4orV67UdRglerz9gLjXzLPcX3E7/tN16Brh5uYmAhBNTU3F5OTkIufXr19f5N/hTz/9VKRdamqqaG5uLgIQO3furHDurbfekvqGhoYW6evj4yOdj46OVhrnqzFMnjxZzMzMVGiTlJQktmrVSmrz/vvvl/n7IG/dunUKY9na2orr168XU1JSxNjYWHHJkiVienq6KIqimJubK7Zr105qO3r0aDEtLa3INcPCwsQaNWpI7YKCgoq0+f3336XzVapUEU+fPl2kzW+//SaamJgoxKfse1oWhT/7wq+2bduKsbGxCm2ePn0qdu7cWWrj7e1d4vdr7ty5JY4ZGhoqtX3rrbcUzp06dUo616hRIzExMbFI/7t374ouLi5Suw0bNiicj46OVnhNJiYm4qJFi8S8vDyFdg8fPhRr164ttfv2229LjLskhvB7j4j0hyr5HdfsE5VDbNA2lfrFqNhP3/Xp0wcAkJeXp3Qn1sOHDwMA3NzcpI3ilLU7dOgQcnJyAGh2CQ8ADBgwAD/++CMsLS0VnndwcMCyZcukx6dOnVLLeKtWrcK4ceMgk8lQs2ZNTJ06FTY2NgCAbdu2SUt3evXqhT///BO2trZFrtGhQwds3bpVWr7z1VdfKaw7z8/Px5dffik9/vvvv+Hl5VXkOhMnTsTcuXPV8rrkOTs748CBA6hZs6bC89WqVcOePXtQq1YtAAXf0+DgYLWPD0Bh6c57772n9JOdunXr4uuvvwZQsP+Jsk9d5E2ePBkzZsyAiYnin0pXV1fMnz9feqyufytERJrAZJ+oHJLDLqvW70y4egPRE4XJPlCQsL+qcElJjx490KZNGwAF6/Zfpa31+gDw6aefFnvO29tbehPw8OHD1x6rSpUqJe6F8ccff0jHs2bNKpJUyvPy8kL37t0BFCz9kU8ww8LCpPXybdq0gZ+fX7HXmTZtGmQyWZlfQ1nMmTNHaXINAHZ2dgrf8+3bt6t17EJmcsvkzpw5U2y7ESNG4MaNG8jIyMDSpUtLvGZJ/1YKfxaAev6tEBFpCpN9onLIeV58VRFN9NN3vr6+0oz9q8n+7du3ERsbCwDo1q0b2rdvDwB49uwZbt68qdA2JCQEAFCvXj00bNhQY/GampqiQ4cOxZ43MzOT1l6npaW99ngdOnQoNoHPzc1VqI5T+GaoJN7e3tJx4c3RAHDw4EHpuLT7HaytrdGrV69SxyqP0jb369+/v3R84MABtY5dyMfHRzrevHkzevXqhS1btuD58+cK7WxsbNC4cWNYWVmVeD1XV1e4uroWe97Z2Vk6Vse/FSIiTdGrOwafP3+OEydO4OzZs4iMjMTDhw+RkpKCrKwsWFtbQyaToU6dOmjQoAG8vLzwxhtvSIkGkTaY28uQk/RcpX7GyMrKCr6+vti7d6+U3Bcu2ZCvwtO1a1dUqlQJS5YsAQAcO3YMjRs3BgBcv34dMTExADQ/q29nZwcLC4sS2xTOEOfn57/2eCVVe3nw4AFevHghPVa2fKckDx48UHrcqFGjUvs2a9YMW7duLdd4xXF3dy/1hl8PDw9YW1vj5cuXePz4MXJzcxVm4tWhRYsWGDt2LP766y8ABW+ADh48CFNTU7Rr1w5+fn4ICAhA27Zti61mJK9atWolnpePvzylPImItE3nyX5WVhY2bdqE9evX48SJE6X+0jx37px0bGZmhl69emHs2LEYNGhQsVUViNTFoWNLPN13tPz9vFqpPxg90adPH+zduxdAwRr9t956SzoGgPr166NmzZrw8fGBIAgQRRFHjx7FBx98AEC7S3gqV66s0eu/yt7evthzSUlJr3Vt+dKh8iUvSxqzkDorx1SvXr1M7ezt7fHy5UuIooinT5+iRo0aaouh0OrVq1G9enWsWLECubm5AAoS8bCwMISFhWHevHmoVasWxowZg2nTphW79AjQ/r8VIiJN0Vmyn5aWhuXLl2PFihXSHy2xhJ1mlcnJycG+ffuwb98+ODs7Y/Lkyfjoo4/KPUNGVFa1AoeolOy7Bg5RfzB64tV1+2+99Rby8/OljbYK6+87OjqiRYsWuHz5ssJGWIXJvp2dHTp37qzFyDWvpNnrwmQUAGrUqIEpU6aU69r169eXjssyUy2vtE83yqOskyzyEzmqjl/a3whLS0v88MMPmDp1KjZt2oRdu3bh9OnT0s3fABAbG4tvv/0Wq1evxqFDhzRe+5+ISNe0nuyLoohffvkFc+fORXJyssIv70aNGqFly5Zo1qwZGjVqJO04aWtri8zMTKSnpyMmJgbR0dG4dOkSzp07J9XXjouLw6xZs7B06VLMnj0bH330UYk3uxGpwqmfL2TNGyL1atl3M5W1aITqfZVvOGUMXF1d0bx5c1y9elWazb9y5Yo0c124wypQkPhfvnwZ8fHxiIiIQK1ataS1535+fmpf2qHPCvcDAAp+L3722WcqX0t+/XhZPjFISUlReSxVrpWfny+1Mzc3L3bZT2nJfGZmZpliKnzzNGXKFLx48QInTpzAoUOHsGfPHkRGRgIAEhMTMWzYMNy+fZt/K4jIqGn1L+u1a9cwfvx4hIeHS7to9ujRA6NGjULv3r3h4uJS6jUKb/IrFB0djb1792Ljxo04e/YsEhISMGXKFKxbtw6rV69G27ZtNfVyqAIyMTNDq43LcKbrqDJtrGVR1QGtNiw1ug21XtWnTx9cvXoVcXFxuHHjhsLM/avJfmF5y6NHj8LZ2VlrJTf1Te3atWFmZobc3FzExcUp3O9QnLS0NFhYWBQpG+ru7i4dX716tdSxb926pVLMyty5c6fUNfiRkZHIysoCULB+X/6TCPlEu7BNceLi4sodn42NDfz8/ODn54cffvgBW7ZswejRo5GTk4O7d+8iLCwMnTp1Kvd1iYgMhdamM5YsWYL27dvj0qVLsLGxweeff4579+7hv//+Q2BgYJkSfWXq1KmDyZMn48yZM7h58yYmTpwIa2trXLlyBd7e3vjuu+/U/EqoorNt4AGv0A2QtSj5RkhZi0bwOroRtg08tBSZ7sgv5Tl48CBOnDgBAGjYsKHC/20fHx+YmpoCAEJDQ6UqPGXdNVeZ8i5h0ReVKlVSqMCzcePGUvuMHTsW1tbWqFWrlsIuuvLf/507d5Z4jfz8fPz333/lD7gYWVlZ0pKt4uzatUs6HjBggMI5+SILz549K/E6hXsSKDN16lR4eXnBwcEBjx49KrbdsGHDpKVlAKSKUURExkpryf60adOQn5+PTz75BPfu3cO3334LNzc3tY7RsGFD/Prrr7h37x4++eQTCIKAL774Qq1jEAGAbcO68A7bijZbflZ6vs2Wn+EdtrVCJPpAQQ34wqUZhw4dkpbmyCdVACCTydC6dWsABTP7hev1vb29S7xZsiSFbx4Aw6uKUngzMwB89913JSapp0+fxu7duyGKIh4/fqzwKWerVq3g6ekJoGCmfc2aNcVeZ82aNVL1I3X5+uuvi12Ck5SUpLBZ2atlOuVv1D18+HCxVZBiY2Px999/FxvDvXv3EBYWhufPn5f6xunp06fS8asbgRERGRutJft9+/bFjRs3sGzZMrVWglCmevXqWLZsGW7evFnhlgaQ9piYmcF5YE+l55wH9jT6pTvyTExMpI2cQkJCpGRKfglPocI3AE+fPpU2I3qd/6fyG0Tdv39f5evoQmBgIOrWrQugYA15jx49lC6xuXDhAoYNGyYl1EOHDkXTpk0V2sgn1B9++CG2bNlS5Drbt2/Hxx9/rM6XAKBgo7R33nmnyJr6uLg4BAQESNWCxo0bJ73ZK9SuXTvpZ/jgwQPMnj27yPXv3r0Lf39/pKenFxvDhAkTpOM5c+YoVHmSt2zZMly+fBlAwf0mry4NJSIyNlrLRnbv3q2toSQeHh6lfqRNROrRp08fbNiwQWF2XVmy7+vrW2R53esk+/K17CdMmIC3334b+fn5mDhxosrLA7XF2toaW7ZsgY+PD9LS0hAREYHmzZsjICAArVu3RlZWFsLDw3HgwAEp0Xd3d8cvv/xS5FoBAQF47733sGrVKmRlZWH48OHo3Lmz9Obq2LFj0r0Unp6e0o2q6mBubo61a9fi4MGDGDx4MKpXr447d+5g27Zt0oZT9erVk/ZZeLXv5MmTsXDhQgDAokWLEBISgl69esHS0hJXrlxBcHAwcnNz0adPH4SGhiIjI6PIdfr37w8/Pz+EhIQgKysLAQEB6NSpE9q2bQtnZ2ckJyfj2LFjUvlmQRCwdOlSlmwmIqNXcaYeiUij/Pz8YGpqKiX7TZo0UVqD/Y033oC5ubl0Y279+vXRoEEDlccdP348fv75Z2RnZ+Phw4eYO3cugIJNlgYNGqTydbWlVatWOH36NIYPH45bt24hNzcXu3fvVjpB4uXlhc2bNxf76ehvv/0GR0dHfPvttwCAEydOSPdPFHrnnXfQpEmTcpf6LMmmTZswZswYxMTEYMWKFUXO+/j4YNu2bcVW4Zk7dy7u3LmDzZs3AwDCw8MRHh6u0KZ///7YuHEjnJycio1j8+bNGDZsmLRL7+nTpxV2KS4kk8mwYsUKDB06tMyvkYjIUBlUvbGwsDBs3boVZ86cMbi1uUTGzsHBQaGqibJZfaCgOkq7du2kx3379n2tcZs2bYrQ0FD07t0bjo6OsLS0hJubG54/f/5a19Wmpk2b4tq1a9i4cSOGDh0KNzc3WFtbw9LSErVr18aQIUOwbds2nDx5ssSKPYIgYNGiRTh37hzGjRuH2rVrw9zcHFWrVkWPHj2wbds2rF69Wu3xDxo0CFevXsXEiRPh5uYGCwsLVK1aFQEBAdi8eTNCQ0NL3GXX3NwcmzZtwr59+zB06FDUqFEDFhYWcHFxQZ8+fbBt2zbs2rULNjY2JcZRuXJlhISEIDg4GKNHj4anpydsbGxgZmYGZ2dnvPHGG1i0aBEiIyMRGBio5u8CEZF+EsTy7mSlIXl5ediyZQsuXLiAH374QeHc1atXMWzYMNy9e1d6ztXVFcuWLTOImTtdUFahRE9+1MUqXJowadIkHUdSPsHmRWel++Tc1kEkRNrj7u6OBw8eAND/3y36zFB/7xGRbqiS3+nFzP79+/fRpEkTjB49GsuXL0d2drZ0Ljk5Gd27d8fdu3chiqL09fDhQwwbNgx//fWXDiMnIiIiItJfOk/28/Pz0adPH0RGRkqJfOGuuADw/fffIzExEUDBR729evWStjfPz8/Hxx9/XGptZiIiIiKiikjnyf7mzZtx69YtCIIAFxcX/PHHHwr19+XrKm/YsAEhISG4dOmSVNUhNTUVQUFB2g6biIiIiEjv6bwaT+HOihYWFjh58qRCGb0LFy4gNjYWgiDA09NToXLClClTsGnTJpw7dw579+7FtGnTtB47EQDUn/ORrkMgIiIiUkrnyf65c+cgCAIGDx6skOgDwL59+6RjZXW4fXx8cO7cOYUbd4m0zfPLyboOgYiIiEgpnS/jKVxvX7jVu7yQkBDpuEePHkXOOzg4AAASEhI0FB0RERERkeHS+cx+4cY6FhYWCs+npKTg/PnzAApuzO3cuXORvk+ePAEAWFpaajhKIiKSd//+fV2HQEREZaDzmf3C3RDlK/AAwMGDB5GXlwdBENCpUydYW1sX6XvhwgUAQM2aNTUfKBERERGRgdF5st++fXuIoojdu3cjJSVFel5+l8cBAwYU6RcSEoLTp09DEASF3TiJiIiIiKiAzpP9YcOGAShYd+/t7Y0ff/wRb775Jg4ePAgAMDMzw4gRI6T2cXFxWLJkCQYPHiw9N2rUKO0GTURERERkAHS+Zn/o0KHo0KEDzp49i1u3bmHKlCkA/m874E8++QTOzs5S+yZNmiAlJUXaGrh3797w8/PTfuBERERERHpO5zP7giBg79698PX1lXbQLfwaM2YMFi5cqNC+YcOGUqLv5+eHzZs36yJsIiIiIiK9p/OZfQCoUqUKDh06hDNnziAsLAxmZmbw8fFB8+bNi7T18vKCk5MTJkyYoLT2PhERERERFdBash8TEwNXV9cS23h5ecHLy6vENkuWLFFnWERERERERktry3jc3d3RvHlzTJ8+HceOHUNeXp62hiYiIiIiqpC0luyLoojr16/jhx9+gK+vL6pUqYKhQ4di7dq1ePz4sbbCICIiIiKqMLS2jOf06dPYt28f9u3bh/DwcKSmpmL79u3YsWMHAKB58+YICAiAv78/OnXqBBMTnd87TERERERk0LSWUXfs2BHz58/HhQsX8PjxY6xduxZDhw6FTCaDKIq4cuUKvv32W/j4+KBq1aoYOXIk1q9fj6dPn2orRCIiIiIio6KTajxOTk4IDAxEYGAg8vLyFGb9r127hufPn2Pz5s3YsmULBEFAq1at4O/vj4CAAHTo0EGqwU+kD+bNm1em54iIiIi0TRALi9briUePHmHfvn3Yv38/Dh8+jLS0NAD/t8mWo6MjevXqhYCAAPj5+aFKlSq6DFdvKXtDpGc/6iJ++eUXAMCkSZN0HEn5GOL3moj0g6H+3iMi3VAl59C7hfE1a9bEu+++i+3btyMxMRGHDh3C1KlT0aBBA4iiiMTERPz7778YN24cnJyc0LFjRyxYsEDXYRMRERER6R29S/blmZmZwdfXFz/88ANu3ryJ6OhorFy5EgEBAbC2tkZ+fj7OnTvHJRNEBAAVvqRvbm6urkMgIiI9o9fJ/qvc3NzwwQcfYM+ePUhMTMT+/fvx0UcfoW7duroOjYg0JDAwEIIgQBAEHD16VGmbiIgIdO3aFTExMUrPF/Z3d3fXXKA6FhYWhrZt2+o6DL1z//596efftWtXXYdDRKR1OrlBVx0sLS3Ru3dv9O7dW9ehEJEOLVu2DDNmzEB2drauQ9GZzz77DMuWLUN+fr6uQyEiIj1jUMl+WFgYYmNjUbNmTbRv3x6mpqa6DomIdGzXrl0VOtEHgK1btzLRJyIipfRmGU9eXh7+/fdffPbZZ0XOXb16FQ0aNIC3tzdGjBiBN954A3Xr1pU25CIi4xUUFARRFCGKIpdhEBERlZNeJPv3799HkyZNMHr0aCxfvlxhli45ORndu3fH3bt3pT/4oiji4cOHGDZsGP766y8dRk5EREREpL90vownPz8fffr0QWRkpPTcvXv30LBhQwDA999/j8TERAiCAHNzc3Tr1g1Pnz7F5cuXkZ+fj48//hh+fn6oVq2arl4CVSD9+/dHVFRUqe2aNGmi8Lhu3brYvXu3psIiIiIiUkrnM/ubN2/GrVu3IAgCXFxc8Mcff8DNzU06//fff0vHGzZsQEhICC5duoQlS5YAAFJTUxEUFKTtsKmCioqKws2bNxW+lHm1TVneIBiazp07S1VOQkNDi203adIkqd2gQYOKbXft2jWp3YgRI6Tni6vG4+7uDkEQcOzYMem5OnXqSG3v379f7FgJCQmYM2cOWrRoAZlMhsqVK6Nx48b47LPPcO/evTK9/mfPnmHhwoXo3LkzqlWrBgsLCzg5OeGNN97AwoULkZiYWGL/8lQIKnytr26mUvjcgwcPijynyk7jheMULpeKi4vDtGnT0KBBA1SqVAkymQzt27fHt99+i9TU1GKvExQUJMVQWmnko0ePSm0DAwOVtsnPz8eWLVswbNgwuLm5wcrKCpUrV4aHhwdGjhyJf/75p1xlVx88eIApU6agUaNGsLGxgYODA1q2bImvvvoK8fHxZb4OEZFBEHVs5MiRoiAIopWVlXjv3j2Fc+fPnxcFQRBNTEzEhg0bFunboUMHURAEsUuXLtoK12AAKPKl71auXCmuXLlS12GUqHHjxkq/t6V9NW7cWNehq923334rvb6ZM2cW265BgwZSO0dHRzE/P19pu8WLF0vt/vrrL+n5t956S3o+NDRUet7Nza3E73l0dLTUtvA5Nzc3cd++faKDg0Ox/WxsbMQtW7aU+Np/+eUXsVKlSiWOL5PJxKCgoGKvIR9TaeRfq7JrFPdVXoXj+Pj4iOfOnROdnJyKvbaLi4sYHh6u9Drr1q2T2s2dO7fEMUNDQ6W2b731VpHzz549Ezt27Fjqa23UqFGRvyGiKIrR0dFSGx8fH3HNmjWitbV1sdepVq2aeOzYsXJ/71RlCL/3iEh/qPK7XufLeM6dOwdBEDB48GDUqVNH4dy+ffuk4379+hXp6+Pjg3PnzuHu3bsaj5OIFPXp0wczZswAABw6dAgLFy4s0ubRo0e4ffu29DgpKQnXr19Hs2bNirTdv38/AMDU1BT+/v6ljj9r1iykpKTg119/lWbjZ86cCQcHBwCAo6NjkT7x8fEYMGAAcnJy4OTkhEGDBsHV1RWPHj3Cli1b8OzZM7x48QLjxo1D8+bN4enpWeQaX3/9NebMmSM9rlOnDvr27QtnZ2fExcVh7969uH//PlJTUxEYGIhnz54pLTygDt9//z0A4JtvvkFycrLCc68jPj4e/fv3R3x8PCpXroyhQ4eibt26ePDgAbZu3Yrk5GTExcWha9euOHbsGFq0aPHaYxZn5MiRCAsLAwBUrVoV/fv3h4eHB7KzsxEZGYnt27cjOzsbt27dQu/evXHjxg2Ym5srvdbFixelT4Lkf2737t3D5s2bkZaWhmfPnmHYsGG4ceMGqlatqrHXRUSkNVp4E1KiypUriyYmJuK8efOKnPPy8pJm9g8cOFDk/KJFi0RBEEQLCwtthGpQwJl9jeDMvqLCmWBTU1MxOTm5yPn169cX+V789NNPRdqlpqaK5ubmIgCxc+fOCueKm9kv5OPjo3Q2X96rMUyePFnMzMxUaJOUlCS2atVKavP+++8Xuc6hQ4cUrjN37lwxJydHoU12drb4xRdfSG1MTEyUzhQXnn+dmf2yni+rVz8tadu2rRgbG6vQ5unTp2Lnzp2lNt7e3kWuo66Z/VOnTinM3CcmJhbpf/fuXdHFxUVqt2HDBoXz8jP7hT+PRYsWiXl5eQrtHj58KNauXVtq9+2335YYt7oYwu89ItIfquR3Ol+zn5OTAwCwsLBQeD4lJQXnz58HAJibm6Nz585F+j558gRAwQZbRKR9ffr0AVBQOlfZ7raHDx8GULD7daVKlQBAabtDhw5JvwuUfYqnTgMGDMCPP/5Y5PeGg4MDli1bJj0+depUkb6zZ8+WjqdOnYp58+bBzEzxA1Jzc3N88803+OijjwAUrDefOXOmOl+CVjg7O+PAgQOoWbOmwvPVqlXDnj17UKtWLQAF36fg4GCNxFA4ow8A7733ntJPa+rWrYuvv/4aQMH9ChcuXCjxmpMnT8aMGTNgYqL458/V1RXz58+XHiv7+RMRGSKdJ/tOTk4AUOSmuIMHDyIvLw+CIKBTp06wtrYu0rfwl/qrf4w0TRRFeHt7QxAEtd8cHBsbi+nTp6N58+awtbWFjY0NPD098f777yM8PFytYxG9rsJkHyhI2F915MgRAECPHj3Qpk0bAMDx48eLtCtcwgNoPtn/9NNPiz3n7e0tvQl4+PChwrno6Ggp+bS1tS31xtOFCxfCxsYGQEHiKF9xzBDMmTNHaXINAHZ2dgrfx+3bt2skBvk3UmfOnCm23YgRI3Djxg1kZGRg6dKlJV6zpJ9/9+7dpeNXf/5ERIZK58l++/btIYoidu/ejZSUFOn51atXS8cDBgwo0i8kJASnT5+GIAho166dVmIt9M033+D06dNqv+727dvRuHFjfPfdd7h27RpevHiBjIwM3LlzB7///jvatWuHuXPnqn1cIlX5+vpKM/avJvu3b99GbGwsAKBbt25o3749gIIqNq9WMQoJCQEA1KtXTyq7qwmmpqbo0KFDsefNzMykddppaWkK5wrfuABAr169ULly5RLHkslk6N27t/RYvmqQIZCviKRM//79peMDBw5oJAYfHx/pePPmzejVqxe2bNmC58+fK7SzsbFB48aNYWVlVeL1XF1d4erqWux5Z2dn6fjVnz8RkaHSebI/bNgwAAWl8Ly9vfHjjz/izTffxMGDBwEU/PGV/6MTFxeHJUuWYPDgwdJzo0aN0lq869atU7g5T10OHTqE4cOHS39gWrVqhZkzZ+LLL79Et27dABQslZg/fz6++eYbtY9PpAorKyv4+voCUEzuAcXkuGvXrvD29pYeyye+169fR0xMDADNz+rb2dkVWTL4qsLZ5Pz8fIXno6OjpeOWLVuWaTz5dmUt6akP3N3dUaVKlRLbeHh4SJ+4Pn78GLm5uWqPo0WLFhg7dqz0+ODBgxg+fDiqVq0KLy8vfPXVVzh//jwKlrGWrrT9WOQ/SShPKU8iIn2m82R/6NCh6NChA0RRxK1btzBlyhRs3rxZqrv8ySefKMy2NGnSBJ9//jkyMzMBAL1794afn5/G4xRFEV9//TXefvvtMv9hKauMjAwEBgZKf1wWLFiAixcvYuHChfjqq69w5MgRbNmyRaowMWfOnGLruxNpm/xSnsI1+vLH9evXR82aNeHj4yPVfpdft6/NJTylzcaXRL5ufnHLW14lnzAnJSWpPLa2Va9evUzt7O3tART8fnz69KlGYlm9ejU+/fTTIol4WFgY5s2bh/bt26N27dr44osvSv0ev87Pn4jIUOk82RcEAXv37oWvry9EUVT4GjNmTJFyfg0bNpSSbT8/P2zevFnjMcbHx6NPnz6YM2eO2hN9oOCP2aNHjwAAffv2xezZs4tsiDN06FAsXrwYQMGM41dffaX2OIhUoWzdfn5+vrTRVuEnU46OjlKJRvmZ/cJk387OTumN+PpC/v9+WTeskp8dfvWGUFXH1obiSle+Sv71lfaJSXFKe22Wlpb44Ycf8ODBAyxduhQ+Pj5F4ouNjcW3334LT09PXL58WaU4iIiMlc6TfaBg9uvQoUM4deoUlixZghUrVuDy5ctYv359kV/qXl5eGDBgAHbt2oV9+/bB1tZWY3G9fPkSX3/9NerVqyclJJUrV1ZYR6oO8jf5fvHFF8W2mzRpkvQx9K5du0rcwZJIW1xdXdG8eXMA/zebf+XKFWmWtXA3VuD/Ev/4+HhEREQgPT0dJ0+eBFDw5v3Vyjb6RH42PyEhoUx95NsVzoK/qiyJfOEnmdoif/9UcfLz86V25ubmxS77Ke31lfW11ahRA1OmTMHRo0eRnJyM/fv349NPP1XYCyExMRHDhg0rsgSLiKgi04tkv5CXlxemTJmCyZMnS8nDq5YsWYIdO3Zo/ON+ANi0aRPmzJmD9PR0AEDr1q1x5swZheTldcXHx0szUQ4ODujYsWOxbS0tLaVqEVlZWQrLH4h0qXB2Py4uDjdu3FCYuVeW7AMFS3m0WXLzddWrV086vnLlSpn6yM8ye3h4KJwr/HQgKyurxGvk5OQoLCHShjt37pS6Bj8yMlKK3cPDQ+HTDvlPMUp7fXFxceWOz8bGBn5+fvjhhx9w+/ZtbN68WZoYunv3rkLJTiKiik6vkn195ejoiKVLl+Ls2bNo0qSJWq996dIl6bh9+/alftQv/2bg7Nmzao2FSFXyS3kOHjyIEydOAChYdufi4iKd8/HxgampKQAgNDRUqsJT1l1zlSnrkprXJb/E6L///iu1WktKSopChSL5G5QBSFWMkpKSSpyJvnTpUqk3i6r7e5CVlSUtwyrOrl27pONXK6YVvjagoPpSSQr3U1Fm6tSp8PLygoODg7TUUZlhw4YpvJGUv1GciKiiY7JfAicnJyxatAhRUVGYMmWKRpYY3LlzRzquU6dOqe1r164tHRta3W5jULduXTRu3FjhS5lX29StW1fLkWqXl5eXtIzj0KFD0tIc+QQMKChH2bp1awAFM/uFn055e3uX+abXVxW+eQA0W0Glfv368PLyAgCkp6eXWmf/yy+/REZGBgCgefPmRf6t1KhRA0DBzL2yjcYKLVq0qNTYNPE9+Prrr4tdgpOUlKSwAdmrZToLXxtQsLSruDczsbGx+Pvvv4uN4d69ewgLC8Pz58+xcePGEuOVv0FY23uvEBHpM71ZIJubm4v9+/fjwoULePbsWbnWqAqCgDVr1qg9Jn9/f5VnG8tK/iPswh0pSyL/Ryw+Pr5cY6k6+zd37txSE5uKYvfu3UWeU/Z9vXHjhjbC0RsmJibw8/PDhg0bEBISIiWcypa8devWDefPn1dIzl5nCY9MJpOO79+/r9E3VvPmzYOfnx9EUcTSpUshk8kwa9YshYmA3NxcLFiwAD/++COAgu/N8uXLi1yrR48e0pv9Tz75BEePHlVY956dnY3PP/9cYQa9OJr4Hhw/fhzvvPMOVq5cqVC/Pi4uDoMGDZJ+/4wbN056A1eoXbt2kMlkSE1NxYMHDzB79uwiJYPv3r2LQYMGScsklZkwYYL0+ufMmYOmTZsq/Z28bNkyacmUq6urtKcDERHpSbJ/9OhRjB07Fo8fP1b5GppI9rVB/kY4+Y++iyO/k3BZbqIj0pY+ffpgw4YNCjPLypJ9X19ffPfddwrPvU6yL/+J2IQJE/D2228jPz8fEydOVFhCpA69evXCrFmz8PXXXwMoSP7Xr1+Pvn37wtnZGfHx8dizZ49CTf558+YV+YQDAD7++GOsXr0aubm5uH79OurXr4/hw4ejVq1aiI2Nxc6dOxEfHw8HBwe0adNG6Q7FherUqSPtsD1w4EC8+eabePnyJWbPni3tCFxe5ubmWLt2LQ4ePIjBgwejevXquHPnDrZt2yYtYapXrx6WLFmitO/kyZOlamqLFi1CSEgIevXqBUtLS1y5cgXBwcHIzc1Fnz59EBoaKn0KIq9///7w8/NDSEgIsrKyEBAQgE6dOqFt27ZwdnZGcnIyjh07hnPnzgEoeOO9dOnSMlcTIiKqEEQdi4iIEG1sbERBEFT+MjEx0WrMc+fOFQGIAMR169a91rUmTJggXevXX38ttf2dO3ek9rVr1y62XWEbdXzNnTv3tV5jWa1cuVJcuXKlVsZSJ2Xfs4ooKSlJNDU1lb4HTZo0UdouPT1dNDc3l9rVr1+/xOu+9dZbUtvQ0NAi569duyZaWFgU+Rls375dalP4nJubW6mvw83NrdSf448//ihWqlSpxP83lStXFjdu3FjiWP/8849obW1d7DVq1aolnjlzRvzwww9LjCkkJEQUBKFI/0uXLpX6eot77du3by/xNfr4+IgJCQnFXis7O1scPnx4id+j/v37i+np6aKNjY0IQHzrrbeKXCc1NVXs3bt3qb+nZDKZ0t/H0dHRCjGXpjz/VtTBUH/vEZFuqJJz6Hxm/9tvv0VGRgYEQUD16tXx0UcfoVmzZqhcufJr1aU2FPJrbcuyzEaUW0NbEb4/ZDgcHBzQqVMn6ebc4qpW2djYoF27djh9+jSAgr0lXkfTpk0RGhqK+fPn4/z583jx4gWcnZ3x/Pnz17puSSZPnoxhw4bh999/x4EDB3Dnzh08f/4ctra2aNKkCfr06YN33nmn1B1bR44ciU6dOuHHH3/Evn378ODBA5ibm6Nu3boYPHgwJk2aBAcHhxLXtQMFmwvu3r0bixcvxrVr15CVlYUaNWq81kZXgwYNwtWrV/H9998jJCQEcXFxkMlkaN++PQIDAzF06NASf2eZm5tj06ZNCAwMxNq1a3H69GkkJCSgSpUqaN26NSZMmKCwE3pxKleujJCQEOzbtw8bN27E+fPn8ejRI2RlZaFq1aqoV68e+vTpg/Hjx8PJyUnl10tEZKwEUdTybi2vcHd3x8OHD2Fvb48rV67A1dVVl+GUybx586RNrdatW4fAwECVrzV16lTpRrfly5fjk08+KbH9tWvXpLKkDRo0QEREhNJ26qzOoa01+7/88guAgv0EDImy77WO/1sRqcTd3R0PHjwAwH/D2mKov/eISDdUyTl0PrP/5MkTCIKAN9980yASfXWT3xRM2ZrVV718+VI6trOzK9dY/ONNREREVLHofB1IYbm9ipjoA1C4gbAsNyjL15p2dnbWSExEREREZBx0nuy3aNECABAVFaXjSHRDfpOu+/fvl9q+8CN2AArbxBMRERERvUrnyf4777wDURSxbds2JCUl6TocrWvWrJm0/qqknSQLyW8D/2ptayIiIiIieTpfsz9kyBAMHDgQO3fuxIABA7B9+/ZSK1gYEwcHB3h7e+PkyZOIj4/HxYsX0aZNG6VtMzMzcfjwYQAFlXi6d++uzVCpGHPnztV1CERERERK6TzZB4ANGzZgzJgx2LFjBzw8PDBgwAC0bt0aDg4OCqUpSzJu3DgNR6k5I0eOxMmTJwEUVPrZs2eP0nY///wzEhISAAABAQGoXr261mKk4nF3YSIiItJXepHsJyUlSUtZXrx4gX/++Qf//PNPmfsLgmDQyf6ECROwZMkSREdHY+/evfjss8+wePFihTc6W7duxcyZMwEUvF7OJhORupXlviEiIjIsOk/2k5KS0K1bN0RFRUEQBIiiaHQlIuVroiqry29tbY3ff/8dAQEByM3NxZIlSxAcHIwBAwbAysoKJ0+elJbvAMDMmTPRtm1bbYVPRERERAZK58n+jz/+iLt370qJfvv27dGiRQs4OTmVeQmPMejZsyf+/fdfjB8/HmlpaYiIiCiyYZYgCJg2bRoWLFigoyiJiIiIyJDoPNnftm0bAMDS0hJ79+6Fr6+vjiPSnSFDhsDLyws//fQTgoODcf/+fWRlZcHFxQVdunTBhx9+iA4dOug6TCIiIiIyEIKo4zUzdnZ2SE9Px/jx4/HHH3/oMhSjosp2yrrGbeOJqKLh7z0iKg9V8jud19kvXKpTt25dHUdCRERERGRcdJ7s169fHwAQGxur40iIiIi0S98/cSUiw6fzZP/NN9+UdtDNzMzUdTikQ2ZmZsjJydF1GEREWpObmwszM53fPkdERkznyf7EiRPh6emJZ8+eYcyYMcjOztZ1SKQjlStXRmpqKl6+fKnrUIiINC47OxtpaWmwsbHRdShEZMR0Pp1gbW2NXbt2wc/PDzt27ICnpyfef/99tGvXDjVq1EClSpWU3ozwqtq1a2shWtKkJk2aIDIyElevXmXVISIyepGRkcjLy5OWsxIRaYLOk/3mzZsDAPLy8iCKIh4+fIhZs2aV6xqCICA3N1cT4ZEWNWrUCPv27cPJkydRu3ZtuLi46DokIiKNePnyJU6ePAkAaNy4sY6jISJjpvPSmyYmJtLMvaqhCIKAvLw8dYZl8Ayx9CYA3LhxAzt27ICJiQk6deqE+vXro0aNGmX6dIeISN9lZ2cjMjISJ0+eRHx8PLp27QofHx9dh0VEBkKV/E7nyX7Xrl3VksiFhoaqIRrjYajJPgDExMRg06ZNePHiBQDAwsIClSpVgpmZGZN+IjJIoigiNzcXaWlp0uQUE30iKi+DTPZJMww52QcKlnXFxsbizp07ePToETIzM/npDREZNDMzM9jY2KB+/fpo1KgRKleurOuQiMjAMNkniaEn+0RERESkSJX8Tuc36BYnKioK9+7dQ1JSEkxMTGBvbw8PDw/utEtEREREVEZ6lewnJydj2bJlWLt2LeLi4pS2qVatGkaNGoWZM2eiatWqWo6QiIiIiMhw6M0ynpMnT2LEiBF48uQJgJI/khAEAU5OTtiwYQO6deumrRANCpfxEBERERkXg12zf/HiRXTp0gWZmZlSwFWqVEGLFi1QpUoV5OXlISEhAVevXsXz58+lflZWVjh79iyaNWumo8j1F5N9IiIiIuNikMl+bm4uGjZsiHv37gEAWrduje+++w6+vr5K2x88eBAzZ87ExYsXAQANGjTAtWvXYGamVyuSdI7JPhEREZFxUSW/M9FUMGX1559/4t69exAEAQEBAThz5kyxiT4A9OzZE2fOnEGfPn0AFGw3vnHjRm2FS0RERERkMHSe7O/cuRMAYGdnhz///BPm5ual9jEzM8Off/4Je3t7AMCWLVs0GCERERERkWHSebIfHh4OQRAwYMAAODo6lrmfg4MDBgwYAFEUpSU9RERERET0f3Se7CckJAAA6tevX+6+hX0SExPVGhMRERERkTHQebJvZWUFAEhPTy9338I+NjY2ao2JiIiIiMgY6DzZd3NzgyiKCA0NLXffwj6urq7qDouIiIiIyODpPNnv2rUrAODcuXPYs2dPmfvt3r0bZ8+ehSAI3FiLiIiIiEgJnSf7EydOlGqGjhkzBsHBwaX22bt3L8aOHQugoN7ohAkTNBojEREREZEh0vmmWgAwadIk/Pbbb1LS7+PjgyFDhqBly5ZwdHSEIAhISEjAlStXsHXrVhw/fhyiKEIQBLz99ttYtWqVjl+B/uGmWkRERETGxSB30AWAzMxMDBo0CAcOHFD6Il5VGLKvry/2799fptr8FQ2TfSIiIiLjYpA76AIFFXn27t2L2bNnw8bGBqIolvhlY2ODWbNm4cCBA0z0iYiIiIiKoRcz+/ISExOxZ88eHDlyBNHR0UhMTIQoinB0dES9evXQuXNnDB06VNo9l5TjzD4RERGRcTHYZTykfkz2iYiIiIyLwS7jISIiIiIi9dN5sj9hwgRMmDAB//33X7n7/v3332jVqhXat2+vgciIiIiIiAybma4DCAoKgiAIaNq0KXr16lWuvo8ePcKVK1fg6OiooeiIiIiIiAyXzmf2X8eNGzcAAC9fvtRxJERERERE+kcrM/t5eXmYMmUK0tPTi22zadMmXL9+vczXu3//Pk6ePAlBEFCrVi11hUpEREREZDS0kuybmpqiTp06+PTTT4u9i/jChQu4cOFCua5buIvuyJEj1RUqEREREZHR0Frpzfz8fLRp0wZXrlxR2zULE/2goCBurvUKlt4kIiIiMi56X2f/8ePHuHPnjvRYFEX4+vpCEAS8//77GD58eKnXEAQBpqamkMlkcHNzg0wm02TIBovJPhEREZFxUSW/02o1nho1aqBGjRpKz9WtWxc+Pj7aDIeIiIiIyKjpvPTmunXrAADt2rXTcSRERERERMZFq8t4NCUzMxNWVla6DkOvcBkPERERkXHR+2U8pcnOzsbt27eRkpKCnJycIsGLooj8/Hzk5OQgIyMDiYmJuHjxInbt2oX4+HgdRU1EREREpJ/0ItnPyMjAjBkzsH79+hJr8RMRERERUdnpRbI/dOhQHDhwQOVlJqampmqOiIiIiIjI8JnoOoB9+/YhJCREemxvb4+OHTuiadOmAAAzMzP4+PigXbt2cHd3V+hrYWGBVatW4eHDh9oMmYiIiIjIIOg82d+0aZN0/PHHHyM+Ph6nT5/G7t27AQB5eXlYtWoVzp49i3v37uHevXsYOHAgACAnJweXLl2Ci4uLLkInIiIiItJrOk/2w8LCAABubm5YunSptBOuu7s7XF1dAQAHDx6U2ru7u2P79u0YNmwYRFHEqlWrcPXqVe0HTkRERESk53Se7D979gyCIMDf3x8mJorhtGrVCgBw5syZIv1+/fVXWFpaQhRFrF27ViuxEhEREREZEp0n+4XVdwpn8eU1btwYoigqnbl3dHREQEAARFHE2bNnNR4nEREREZGh0Xmyb2dnBwDIz88vcq5evXoAgDt37iit1NOwYUMAQFRUlAYjJCIiIiIyTDpP9p2dnQEADx48KHKubt26AICsrCzcvXu3yHlLS0sAQGpqqgYjJCIiIiIyTDpP9r28vCCKIoKDg5Gdna1wrn79+tLx6dOni/SNjIwEUFCek4iIiIiIFOk82e/bty8AIC4uDsOHD0dCQoJ0rkaNGlJZzZ9++gk5OTnSuaioKGzbtg2CIMDNzU27QRMRERERGQCdJ/v9+/dH48aNAQB79uyBm5sbvv/+e+n8m2++CVEUER4ejk6dOuHnn3/GvHnz0KlTJ2RlZQEAunfvrtEYY2NjMX36dDRv3hy2trawsbGBp6cn3n//fYSHh6t1rMjISHzyySdo2rQpZDIZLC0tUaNGDfTt2xd//vmnwhseIiIiIqKSCKKyO1+1LCIiAm+88QaSkpIgCAJmzJiBhQsXAigozdmoUSMkJycr9CkMu1KlSrh69So8PDw0Etv27dsRGBiItLQ0pedNTU0xa9YsfPXVV6891pIlSzBjxgzk5uYW26Zly5bYunWrdD9DcQRBKPKcHvyoiYiIiEhFquR3erHYvWHDhrh69Sq++OILbN26VSFxr1atGnbt2oUhQ4bg6dOnCv2srKzw999/ayzRP3ToEIYPH468vDwABXX//f39YWZmhhMnTiA0NBR5eXmYP38+LC0tMXPmTJXH+umnn/DZZ59Jj5s3b46uXbvCwcEBN2/exM6dO5GTk4PLly/D19cXFy5cQLVq1V77NRIRERGpKj83F/F7jiA2aBuSwy4j53kqzO1lcOjYErUCh8Cpny9MeG+lTunFzL68ly9fIjs7WyrJWSgpKQl//PEHwsLCkJWVhRYtWuC9996Du7u7RuLIyMiAp6cnHj16BABYsGABZs2apfCOauvWrRg1ahRycnJgYmKCa9euSUuSyiM+Ph5169bFixcvIAgCfvzxR3z44YcKY92+fRsDBw5EREQEAOC9997D77//Xuw1ObNPREREmpQeEYXw0VORejWi2Day5g3RauMy2DbQzMRsRaNKfqd3yb6+WLFiBf73v/8BKLiJeM+ePUrbLVu2DFOnTgUADB8+HJs2bSr3WCtXrsRHH30EABg1ahQ2bNigtN2FCxfQrl07AIBMJkNycnKRXYcLMdknIiIiTUmPiMKZbqORnZBcaluLqg7wCt0A24YlL0Gm0qmS3+n8Bl19FRQUJB1/8cUXxbabNGmStJxm165dKtX8v379unTs4+NTbLu2bdvC0dERQMHeAvKVi4iIiIi0IT83F+Gjp5Yp0QeA7IRkhI/5FPkl3JNImqO1ZH/y5MlFbrLVtJSUFHz88cfl7hcfH4/Lly8DABwcHNCxY8di21paWkrVgLKysrB///5yj2dqaiodP378uNh2mZmZePHihdTH3t6+3GMRERERvY74PUdKXLqjTOqVW3i6N1RDEVFJtJbsr1y5Ep6enli+fLnGy0dmZ2djxYoV8PT0xMqVK8vd/9KlS9Jx+/bti10qU0j+zcDZs2fLPV6jRo2k49WrVxc7Y79s2TKp3Kivry8sLCzKPRYRERHR64gN2qZSvxgV+9Hr0Vqy/+GHHyIpKQmffvop6tWrh19//VWapVaX5ORkfPfdd/Dw8MDUqVPx7NkzTJw4sdzXuXPnjnRcp06dUtvXrl1bOi7c1bc8Ro8eLd2Q/PjxY7Rp0wZ//fUXYmJi8OLFC1y+fBkTJkzArFmzAACOjo5YunRpucchIiIiel3JYZdV63dGvXsTUdloLdn/6aefsG/fPtSoUQMxMTH46KOP4OLigvfeew9HjhxRebb/5cuX2LVrF0aOHIlatWrhiy++wOPHj+Hk5IRt27bhl19+Kfc14+LipONatWqV2r5mzZrScXx8fLnHs7e3x9atW1GpUiUAwMOHDzFu3DjUrl0btra2aNWqFdatWwdRFNGzZ0+cPHkSTZs2Lfc4RERERK8r53n57098nX70erRa+LR37964ffs25s2bhxUrViA9PR1r1qzBmjVrYGNjg86dO6NFixZo1qwZGjZsCEdHR9jZ2cHW1hZZWVlIS0tDbGwsoqOjER4ejrNnz+L06dPIzs4GUHA3soWFBd5//33Mnz8fMplMpThTUlKk48IEvCTW1tZK+5ZHjx49cPXqVcycORObN29W2sbBwQE9evQo06cNyii7g7ss5s6di3nz5qnUl4iIiIyLub0MOUnPVepH2qf1XQ4qVaqE7777Dh9++CHmz5+Pv//+Gzk5OUhPT0dISAhCQkLKdb3CckOWlpYYM2YMZs2a9dq19wvXxQOKiXxx5NvI9y2P1NRUrF69GkeOHAEAdO7cGZ07d4a1tTUiIiKwe/duJCcnY/r06Vi7di2Cg4NL3UWXiIiISN0cOrbE031Hy9/Pq5X6g6FS6WxLMzc3N6xZswYLFy7E6tWr8eeffyIqKqrc12ncuDHGjBmDCRMmoHr16mqJTb46Tllmw+Xrm5Z2M68ycXFx8Pf3x5UrV2BnZ4f9+/fDz89Poc2zZ88wZswY/Pfff7h9+zb8/Pxw+fJl2NjYlHs8IiIiIlXVChyiUrLvGjhE/cFQqXS+f7GzszPmzJmDOXPm4ObNmwgNDcW5c+dw+/ZtPHz4ECkpKcjKyoK1tTVkMhnc3d3RoEEDdOzYEd26dUP9+vXVHpOtra10nJmZWWp7+TaWlpblHm/YsGG4cuUKAOCff/4pkugDQLVq1bBr1y506tQJ4eHhuHv3LpYtW4bZs2eXezwiIiIiVTn184WsecNyld+UtWiE6n27aTAqKo7Ok315jRs3RuPGjfHhhx/qNA75ZD8jI6PU9i9fvpSOC6vqlNWJEydw6tQpAAUbavn7+xfb1srKCgsXLkRAQAAA4K+//mKyT0RERFplYmaGVhuX4UzXUWXeQbfVhqUwMdOrtLPC4HddCRcXF+m4pE2uCj169Eg6dnZ2LtdYhw8flo579uxZavvu3bvD3NwcOTk5iIyMRHp6usKbk5KUtp0yERERUVnYNvCAV+gGhI/5FKlXbhXbTtaiEVptWArbBh5ajI7kMdlXokmTJtLx/fv3S23/4MED6djT07NcY8m/mXBwcCi1vYWFBRwcHPD06VMABTf2ljXZJyIiIlIX24Z14R22FU/3hiImaBuSz4Qj53kqzO1lcPBqBdfAIajetxtn9HWM330lmjVrBkEQIIoizp8/X2r7sLAw6bh169blGku+tKf8JwTFycvLUyjv6ejoWK7xiIiIiNTFxMwMzgN7wnlg6asTSDe0tqmWIXFwcIC3tzeAgk2yLl68WGzbzMxMaSmOiYkJunfvXq6x5D8J2LdvX6ntT5w4IZX39PT0hJWVVbnGIyIiIqKKg8l+MUaOHCkdl7Sh1M8//4yEhAQAQEBAQLnLf/br108q9Xn58mVs2bKl2LZ5eXmYM2eO9HjYsGHlGouIiIiIKhYm+8WYMGGCtFPt3r178dlnnyEvL0+hzdatWzFz5kwABfX4586dW+5xXF1d8e677yqMqyzhT0tLw+jRo3Hy5EkAQJUqVTB16tRyj0dEREREFYcgskRLsQ4ePIiAgADk5uYCABo2bIgBAwbAysoKJ0+eVKikM2vWLHz99ddKryO/Mde6desQGBiocD4jIwNdu3ZVuD+gRYsW6N69O6pUqYJ79+5h165d0icIFhYWCAkJQbduxderVbYZGH/URERERIZLlfyOyX4ptm3bhvHjxyMtLU3peUEQMG3aNHz77bfF7rZbWrIPFMzcv/POO9i8eXOJ8dSqVQv//vuvdE9BcZjsExERERkXJvsa8vjxY/z0008IDg7G/fv3kZWVBRcXF3Tp0gUffvghOnToUGL/siT7hc6ePYt169bh+PHjiI2NRVZWFqpUqYIWLVqgf//+GD9+fJluymWyT0RERGRcmOyThMk+ERERkXFRJb/jDbpEREREREaKyT4RERERkZFisk9EREREZKTMdB1AecTExCAsLAzx8fFIS0uDTCaDk5MTvLy8ULNmTV2HR0RERESkVwwi2d+5cyfmz5+PK1euFNumdevWmDNnDvr376/FyIiIiIiI9JfeV+OZOnUqVqxYId1pLAgCZDIZbG1tkZaWhtTUVKmtIAiYMmUKfvjhB12FqzdYjYeIiIjIuBhdNZ7ff/8dy5cvhyiK6N69O3bt2oXExEQkJycjJiYGz58/R2JiInbu3Ilu3bpBFEUsW7YMq1ev1nXoREREREQ6p7cz+y9fvoSLiwvS0tLwzTffYPr06aX2WbRoEWbNmgV7e3s8fvy4TJtPGSvO7BMREREZF6Oa2d+yZQtSU1PRv3//MiX6APDFF1+gX79+SElJwZYtWzQcIRERERGRftPbZD80NBSCIODTTz8tV7/PPvsMoijiyJEjGoqMiIiIiMgw6O0ynpYtW+LOnTtITU2Fqalpmfvl5eVBJpPB09MT4eHhGoxQv3EZDxEREZFxMaplPE+ePIG7u3u5En0AMDU1hbu7O+Li4jQUGRERERGRYdDbZD8lJQV2dnYq9bWzs0NKSoqaIyIiIiIiMix6m+xnZWXBzEy1Pb9MTU2RnZ2t5oiIiIiIiAyL3ib7RERERET0elSbOteShw8fYv78+Sr1IyIiIiKq6PS2Go+JiYnSO47LQhRFCIKAvLw8NUdlOFiNh4iIiMi4qJLf6e3MfpcuXVRO9omIiIiISI9n9un1cGafiIiIyLgY1cw+EREREQDk5+Yifs8RxAZtQ3LYZeQ8T4W5vQwOHVuiVuAQOPXzhYmKFfyIjJ3ez+w/evQIwcHBePHiBdq1a4c33nhDOhcTE4OFCxfiwoULyMvLQ6tWrfDJJ5+gRYsWOoxYP3Bmn4iIjEF6RBTCR09F6tWIYtvImjdEq43LYNvAQ4uREWmfKvmdXif7//77L95++21kZmZKz40aNQp//fUXbt++jY4dOyI1NVXhRZqZmWHjxo0YOnSoLkLWG0z2iYjI0KVHROFMt9HITkguta1FVQd4hW6AbcO6WoiMSDeMKtm/ffs2mjdvjpycHNjb28PDwwO3bt1CZmYmfvvtN/zzzz84evQoevXqhX79+iE3Nxfbtm3DyZMnYWtri4iICNSoUUPXL0NnmOwTEZEhy8/NxakOQ0qc0X+VrEUjeIdt5ZIeMlqq5Hd6u6nWihUrkJOTg8GDB+PJkye4cOECoqOj0bx5cyxevBjHjx/H22+/jZCQEHz44Yf45JNPcPz4cYwcORIvXrzAqlWrdP0SiIiISEXxe46UK9EHgNQrt/B0b6iGIiIyTHo7s9+oUSPcu3cP9+/fh4uLi/T8vn370LdvX5iZmSEmJgZOTk4K/WJiYuDu7o6OHTvi1KlT2g5bb3Bmn4iIDNn5ARPxdN/Rcver3qcb2u38Tf0BEekBo5rZj4mJgZubm0KiDwAdOnQAANSqVatIog8Arq6ucHd3R2RkpFbiJCIiIvVLDrusWr8z4eoNhMjA6W2yn5eXBwcHhyLPV6lSBQBKXI9fvXp1pKamaiw2IiIi0qyc56r9HVe1H5Gx0ttkv2rVqoiPjy/2vIlJ8aFnZ2fDxsZGE2ERERGRFpjby7Taj8hY6e3t6q6urrh48SKysrJgaWmpcG7Hjh3SDL8yDx8+VLrEh4iIiAyDQ8eWKq3Zd/Bqpf5giAyY3s7st2nTBrm5uTh58mSRcwMGDFDYXEteZGQkEhMT0axZM02HSERERBpSK3CISv1cVexHZKz0Ntn39/eHr68vnjx5Uq5+f/31FwCga9euGoiKiIiItMGpny9kzRuWq4+sRSNU79tNQxERGSa9Lb2pqosXLyI9PR0tWrSAvb29rsPRGZbeJCIiQ5d++x7OdB1V9h10j26EbQMPLURGpBtGtYMuvR4m+0REZAzSI6IQPuZTpF65VWwbWYtGaLVhKRN9MnpM9knCZJ+IiIxFfm4unu4NRUzQNiSfCUfO81SY28vg4NUKroFDUL1vN5iY6W3NESK1YbJPEib7RERERMZFlfxOr94GX79+HY8fP0ZSUhIcHBxQo0YNVtUhIiIiIlKRzpP9x48fY8GCBdixYweePXtW5HzVqlUxcOBAzJ49G66urjqIkIiIiIjIMOl0Gc+qVavw6aefIiMjQ+EjCEEQijy2srLC4sWL8dFHH+kiVIPDZTxERERExkWV/E5ndfa/+eYbfPDBB3jx4kWRc8qCfvnyJT755BPMmzdPC9ERERERERk+nczsBwcHo1+/ftK7E1EU0bdvXwwaNAhNmzaFg4MDkpOTcfPmTezcuRO7d++W2gmCgK1bt2LQoEHaDtugcGafiIiIyLgYRDWe7OxseHh44PHjxxAEAc7OztiyZQs6depUbJ9z585h2LBhiI2NhSiKqF69OqKjo2Ftba3FyA0Lk30iIiIi42IQy3jWrFkjJfoODg44depUiYk+ALRv3x4nT55E1apVAQDPnj3DqlWrtBEuEREREZHB0nqy/88//0jH33//Pdzd3cvUz9XVFcuXL5ceb9iwQc2REREREREZF60u40lLS4ODg4O0FOfRo0cwMSn7+w1RFOHu7o6YmBgIgoCnT5+iSpUqGozYcHEZDxEREZFx0ftlPDdv3kR+fj4AwM/Pr1yJPlDwAgMCAqTHN27cUGt8RERERETGRCsz+76+vgCAhIQEXL9+HYIgwN3dHW5ubuW+VkxMDKKioiAIAho1aoTq1atDEAQcPnxY3WEbNM7sExERERkXva3GY2JiohBcYQlNVRWGXLj5liAIyMvLe+04jQmTfSIiIiLjokp+Z6apYF71aiDqSDyZvBIRERERFU8ryf7cuXMBAJGRkfjnn38gCALeeOMNaXlPeRw/fhyhoaEQBAHDhg1Do0aN1B0uEREREZFR0Go1nmvXrqFFixYQBAH9+/fHjh07yn2NN998E5s2bYIgCLhw4QJatWqlgUgNH5fxEBERERkXvV2zXyg7OxsODg54+fIlrK2tERcXB5lMVub+L168QI0aNZCWlgYrKyskJSXByspKgxEbLib7RERERMZF70tvWlhYoGfPngCAzMxMfPPNN+Xq/9133yEtLQ2CIMDX15eJPhERERFRCbS+g+6ECRMAFLwLWbJkCXbt2lWmfvv27VN4c/D2229rJD5lYmNjMX36dDRv3hy2trawsbGBp6cn3n//fYSHh6t1LFEUsW3bNgwfPhx16tSBtbU1ZDIZWrZsiWnTpuHBgwdqHY+IiIiIjJdWl/EUat++PS5evAhRFGFmZoZ58+bh008/haWlZZG22dnZWLFiBWbPno2cnBwIgoCWLVvi4sWLWol1+/btCAwMRFpamtLzpqammDVrFr766qvXHismJgZvvvkmTp06VWybSpUq4ddff8W4ceNKvBaX8RAREREZF71fs1/o9u3baNu2LTIyMqQ6+VWrVkVAQACaNm0Ke3t7pKSk4MaNG9i3bx+ePn0qvZBKlSrh3LlzaNy4scbjPHToEPz8/KQa/q1atYK/vz/MzMxw4sQJhIaGSm0XLlyImTNnqjzWo0eP0LlzZ0RHRwMAZDIZhgwZAg8PDyQkJGDXrl24f/8+gIIf9I4dOzBgwIBir8dkn4iIiMi4GEyyDwCHDx/GoEGD8OLFCwDFb7RV+LwoiqhUqRK2bt0KPz8/jceXkZEBT09PPHr0CACwYMECzJo1SyHGrVu3YtSoUcjJyYGJiQmuXbum8puQvn37Ijg4GADQvXt3bNmyBQ4ODtL5nJwcTJo0CX/88QcAwMXFBQ8ePIC5ubnS6zHZJyIiIjIuen+Drrzu3bvj6NGjaNGiRalBiqKIpk2b4siRI1pJ9AFg9erVUqLft29fzJ49u8g3eOjQoVi8eDEAID8/X+WlPHv37pUS/Y4dOyI4OFgh0QcAc3NzrFy5Ep6engCAuLg47N+/X6XxiIiIiKhi0FmyDwCtW7fGxYsX8c8//2DIkCGwt7eHKIrSl0wmw8CBA/HXX3/h8uXLaN++vdZiCwoKko6/+OKLYttNmjQJ1apVAwDs2rULqamp5R5rzZo1AArW///6669K710ACqoZffDBB2jSpAm6dOmC9PT0co9FRERERBWHzpbxFCczMxPJyclwcHDQWWnN+Ph4ODs7AwAcHByQkJAAE5Pi3xe9+eab+PfffwEA//77L0aMGFHmsVJTU1GtWjVkZ2fDz89PbbP1XMZDREREZFwMahlPcaysrODi4qLTGvqXLl2Sjtu3b19iog8ULL0pdPbs2XKNdfHiRWRnZwOAtAcBEREREZE66F2yrw/u3LkjHdepU6fU9rVr15aOIyMjyzXWtWvXpOMmTZoAAKKjozFz5kw0b94cMpkMdnZ2aNOmDRYsWICUlJRyXZ+IiIiIKi4m+0rExcVJx7Vq1Sq1fc2aNaXj+Pj4co0VEREhHbu4uODXX39F06ZNsWjRIly7dg1paWlITU3FpUuX8OWXX8LT0xMnT54s1xiFBEFQ6WvevHkqjUdEREREumWm6wD0kfzseaVKlUptb21trbRvWTx//lw63rBhA7777jsAQKNGjeDv7w9HR0dERUVh586dSE5OxtOnT9GjRw8cO3YMHTp0KNdYRERERFSxMNlXIisrSzqWT+SLI99Gvm9ZyFfU+e6772BiYoLvv/8e//vf/xTuFfjhhx8wYsQIHDp0CFlZWRgxYgRu375dbOUeIiIiIiIu41HC1NRUOlZ21/Or5O+CLu1m3ldlZGQoPJ4zZw6mTp1a5DqOjo7YuXMn6tatCwB48OCBQnlQIiIiIqJXMdlXwtbWVjrOzMwstb18m/LOtMtXHXJ0dMT06dOLbWtjY4Np06ZJj3ft2lWusYiIqHj5ubmI2/Efzg+YiP+cOiDYshH+c+qA8wMmIm7Hf8jPzdV1iERE5cZlPErIJ/uvzrwr8/LlS+nYzs6uXGNVrlxZOu7SpUupy4Z69OghHcuXCC0L1tknIlIuPSIK4aOnIvVqhMLzOUnP8XTfUTzddxSy5g3RauMy2Dbw0FGURETlx5l9JVxcXKTjx48fl9r+0aNH0nHhZlxlVaVKFem4Ro0apbaXrw6UkJBQrrGIiKio9IgonOk2ukii/6rUqxE403UU0iOitBQZEdHrY7KvRGG9ewC4f/9+qe0fPHggHXt6epZrrMaNG0vH8pV5ipMr9zGy/KcCRERUfvm5uQgfPRXZCcllap+dkIzwMZ9ySQ8RGQwm+0o0a9ZMujH3/PnzpbYPCwuTjlu3bl2usVq2bCkdy2+wVZzo6Gjp2NXVtVxjERGRovg9R0qd0X9V6pVbeLo3VEMRERGpl94m+/n5+YiPj0dERAQSExMVntc0BwcHeHt7AyjYJOvixYvFts3MzMThw4cBFFTi6d69e7nGat++PapXrw6gINm/ceNGie2Dg4Ol4y5dupRrLCIiUhQbtE2lfjEq9iMi0ja9SvZzc3Oxfv169OjRAzKZDDVq1ECTJk2wfv16qY2XlxfefPNNXL9+XaOxjBw5UjouaQfZn3/+WVo7HxAQICXuZWVmZobRo0dLj//3v/8VeyNtQkICli1bJj0eM2ZMucYiIiJFyWGXVet3Jly9gRARaYjeJPs3btxAs2bNMGHCBISGhiIjI0Np0nvz5k1s3rwZbdq0wfLlyzUWz4QJE1CnTh0AwN69e/HZZ58hLy9Poc3WrVsxc+ZMAAX1+OfOnavSWDNnzpTeJBw6dAjjxo0rUgXoyZMn6Nu3L+Lj4wEAffv2RceOHVUaj4iICuQ8T9VqPyIibRNEPajHePPmTXh7eyM1NVVK8C0sLJCdnQ1BEPD9999j6tSpSEpKQtWqVSEIAkRRhCAI+OmnnzBp0iSNxHXw4EEEBARIN8U2bNgQAwYMgJWVFU6ePCkt3wGAWbNm4euvv1Z6HfmNudatW4fAwMAibQ4cOIABAwZIO/BWrVoVgwcPRu3atREdHY0tW7YgNbXgj4uTkxPCw8MVqgaVNGYhPfhRExHplf+cOiAn6Xm5+5k72qNX/Fn1B0REVAJV8judz+zn5eVh8ODBSElJgSiK6N27N06ePImUlJQibR0dHXHp0iX06tULQMGL+/zzzxEbG6uR2Hr27Il///1XqnoTERGBxYsX46uvvpISfUEQ8Pnnn2PBggWvNVbv3r0REhKC2rVrAyhYsrNq1SrMnj0ba9askRL95s2b4+zZsyUm+kREVDYOHVuq1s+rlXoDISLSEJ0n+3/++SciIyMhCAImT56M/fv3o1OnTsXuRNuyZUvs378fkydPBlCwodXq1as1Ft+QIUMQERGBGTNmoFmzZqhcuTIsLCzg5uaGsWPH4syZM1i8eLHSd1rl1bVrV0REROCnn36Cr68vnJycYGZmBgcHB3Tr1g2///47zp8/Dzc3NzW8MiIiqhU4RKV+rir2IyLSNp0v4+nXrx+Cg4NRo0YN3Lt3DxYWFtI5ExMThWU88rKyslC3bl3ExcWhffv2OHPmjLZD12tcxkNEVLr83Fyc6jCkXOU3ZS0awTtsK0zMuAk9EWmXQS7jCQ8PhyAI6Nevn0KiXxpLS0v069cPoigiMjJSgxESEZGxMjEzQ6uNy2BR1aFM7S2qOqDVhqVM9InIYOg82S8sW6nK0pTCTaXS09PVGhMREVUctg084BW6AbIWjUpsJ2vRCF5HN8K2gYeWIiMien06n5qoXLkykpKSkJaWVu6+T58+BQDY2dmpOywiIqpAbBvWhXfYVjzdG4qYoG1IPhOOnOepMLeXwcGrFVwDh6B6326c0Scig6Pz31p16tRBYmIijh8/Xq5+eXl52Lt3LwRBkOrhExERqcrEzAzOA3vCeWBPXYdCRKQ2Ol/G07t3bwDA6dOnERoaWuZ+ixYtwr179wAAPXr00EhsRERERESGTOfJ/sSJE2FlZQUAGDFiBE6fPl1i+8zMTMycOVPardbc3BzvvvuuxuMkIiIiIjI0Ol/GU6tWLSxYsADTpk1DYmIiunTpgq5du6JNmzZSmxs3buCPP/7AuXPnsHPnTiQmJko76E6bNg3u7u66ewFERERERHpK53X2C02fPh3ff/89AOU1RAvJhzt27FisX79e47EZItbZJyIiIjIuBllnv9DixYuxc+dONGnSBKIoFvsFFHwa8PvvvzPRJyIiIiIqgd7M7Ms7c+YMjh07hps3byIpKQm5ublwcHCAh4cHunTpgu7du8OM5c9KxJl9IiIiIuOiSn6nl8k+vT4m+0RERETGxSCX8UyYMAETJkzAf//9V+6+f//9N1q1aoX27dtrIDIiIiIiIsOm87UwQUFBEAQBTZs2Ra9evcrV99GjR7hy5QocHR01FB0RERERkeHS+cz+67hx4wYA4OXLlzqOhIiIiIhI/2hlZj8vLw9TpkxBenp6sW02bdqE69evl/l69+/fx8mTJyEIAmrVqqWuUImIiIiIjIZWkn1TU1PUqVMHn376abE3Fly4cAEXLlwo13ULN9YaOXKkukIlIiIiIjIaWqvGk5+fjzZt2uDKlStqu2Zhoh8UFARzc3O1XdcYsBoPERERkXHR+9Kbjx8/xp07d6THoijC19cXgiDg/fffx/Dhw0u9hiAIMDU1hUwmg5ubG2QymSZDNlhM9omIiIiMiyr5nVar8dSoUQM1atRQeq5u3brw8fHRZjhEREREREZN56U3161bBwBo166djiMhIiIiIjIuRrGDbmZmJqysrHQdhl7hMh4iIiIi46L3y3hKk52djdu3byMlJQU5OTlFghdFEfn5+cjJyUFGRgYSExNx8eJF7Nq1C/Hx8TqKmoiIiIhIP+lFsp+RkYEZM2Zg/fr1JdbiJyIiIiKistOLZH/o0KE4cOCAystMTE1N1RwREREREZHhM9F1APv27UNISIj02N7eHh07dkTTpk0BAGZmZvDx8UG7du3g7u6u0NfCwgKrVq3Cw4cPtRkyEREREZFB0Hmyv2nTJun4448/Rnx8PE6fPo3du3cDAPLy8rBq1SqcPXsW9+7dw7179zBw4EAAQE5ODi5dugQXFxddhE5EREREpNd0nuyHhYUBANzc3LB06VJpJ1x3d3e4uroCAA4ePCi1d3d3x/bt2zFs2DCIoohVq1bh6tWr2g+ciIiIiEjP6TzZf/bsGQRBgL+/P0xMFMNp1aoVAODMmTNF+v3666+wtLSEKIpYu3atVmIlIiIiIjIkOk/2C6vvFM7iy2vcuDFEUVQ6c+/o6IiAgACIooizZ89qPE4iIiIiIkOj82Tfzs4OAJCfn1/kXL169QAAd+7cUVqpp2HDhgCAqKgoDUZIRERERGSYdJ7sOzs7AwAePHhQ5FzdunUBAFlZWbh7926R85aWlgCA1NRUDUZIRERERGSYdJ7se3l5QRRFBAcHIzs7W+Fc/fr1pePTp08X6RsZGQmgoDwnEREREREp0nmy37dvXwBAXFwchg8fjoSEBOlcjRo1pLKaP/30E3JycqRzUVFR2LZtGwRBgJubm3aDJiIiIiIyADpP9vv374/GjRsDAPbs2QM3Nzd8//330vk333wToigiPDwcnTp1ws8//4x58+ahU6dOyMrKAgB0795dJ7ETEREREekzQVR256uWRURE4I033kBSUhIEQcCMGTOwcOFCAAWlORs1aoTk5GSFPoVhV6pUCVevXoWHh4fW49ZngiAUeU4PftREREREpCJV8judz+wDBVV1rl69irFjx8LKykohca9WrRp27dqFatWqQRRF6QsArKys8PfffzPRJyIiIiJSQi9m9uW9fPkS2dnZUknOQklJSfjjjz8QFhaGrKwstGjRAu+99x7c3d11E6ie48w+ERERkXFRJb/Tu2Sf1IPJPhEREZFxMchlPNeuXcPNmzd1HQYRERERkdHRebI/f/58NGvWDE2bNsXOnTt1HQ4RERERkdHQebJ/9uxZiKKIW7duoWrVqroOh4iIiIjIaOh8zX6lSpWQmZkJQRCQnp4Oa2trXYZjNLhmn4iIiMi4GOSafU9PT+k4JiZGh5EQERERERkXnSf7c+bMkd6lTJs2DXl5eTqOiIiIiIjIOOh8GQ8AbN++HRMnTkRSUhKaNm2Kd999F15eXqhTpw7s7e1hYqLz9yQGh8t4iIiIiIyLQdbZDwgIAAAkJibi/PnzSl9EaQRBQG5urrpDM2hM9omIiIiMi0Em+yYmJkUCL29IgiBw+c8rmOwTERERGRdV8jszTQVTVrVr11ZpNp+IiIiIiEqm85l90gzO7BMREREZF4Oc2Sciqmjyc3MRv+cIYoO2ITnsMnKep8LcXgaHji1RK3AInPr5wsSMv56JiOj1cWbfSHFmn0g/pUdEIXz0VKRejSi2jax5Q7TauAy2DTy0GBkREek7g9xUyxDExsZi+vTpaN68OWxtbWFjYwNPT0+8//77CA8P1/j49+/fh52dHQRBQGBgoMbHIyLNSI+Iwpluo0tM9AEg9WoEznQdhfSIKC1FRkRExorJfim2b9+Oxo0b47vvvsO1a9fw4sULZGRk4M6dO/j999/Rrl07zJ07V2Pj5+fnY9y4cUhNTdXYGESkefm5uQgfPRXZCcllap+dkIzwMZ8in2WFiYjoNXBRaAkOHTqE4cOHS2U9W7VqBX9/f5iZmeHEiRMIDQ1FXl4e5s+fD0tLS8ycOVPtMSxevBgnTpxQ+3WJSLvi9xwpdUb/ValXbuHp3lA4D+ypoaiIiMjYMdkvRkZGBgIDA6VEf8GCBZg1a5bCWqmtW7di1KhRyMnJwZw5czBw4EA0btxYbTFcunRJo58aEJH2xAZtU6lfTNA2JvtERKQyLuMpxurVq/Ho0SMAQN++fTF79uwiN0UMHToUixcvBlCw3Oarr75S2/gvX77EmDFjkJOTAwsLC7Vdl4h0Iznssmr9zmj+viAiIjJeTPaLERQUJB1/8cUXxbabNGkSqlWrBgDYtWuX2tbWT5s2Dbdu3YKJiQm+/PJLtVyTiHQn57lqvxtU7UdERAQw2VcqPj4ely9fBgA4ODigY8eOxba1tLRE9+7dAQBZWVnYv3//a48fEhKClStXAgCmT58Ob2/v174mEemWub1Mq/2IiIgAJvtKXbp0STpu3749TExK/jbJvxk4e/bsa42dmJiI8ePHAwBatmyJefPmvdb1iEg/OHRsqVo/r1bqDYSIiCoUJvtK3LlzRzquU6dOqe1r164tHUdGRr7W2O+++y6ePHkCS0tL/PXXX1yvT2QkagUOUamfq4r9iIiIAD2oxvPnn3+q3NfExASWlpawsbGBs7MzPD09YWtr+9oxxcXFSce1atUqtX3NmjWl4/j4eJXHXbt2LXbs2AEAWLhwIZo2barytYhIvzj184WsecNyld+UtWiE6n27aTAqIiIydjpP9gMDA5Vu/asKQRDQokUL/O9//8PYsWNVvk5KSop0XKlSpVLbW1tbK+1bHvfu3cP//vc/AICPjw+mTp2q0nVKour3ee7cuVxORPSaTMzM0GrjMpzpOqpMG2tZVHVAqw1LYWKm81/TRERkwPRiGY8oimr5ys/Px+XLlxEYGIjBgwcjV8WdJ7OysqRj+US+OPJt5PuWVV5eHsaOHYu0tDTIZDKsX79ebW+AiEh/2DbwgFfoBshaNCqxnaxFI3gd3QjbBh5aioyIiIyVzqeM/vnnH+Tl5WHWrFl4+PAhRFGETCaDv78/mjdvjipVqkAURTx//hw3btzAgQMH8OzZMwiCgEqVKmHQoEHIyclBSkoKbt68iYcPHwIoKIP56aefYsWKFeWOydTUVDouS9ItiqJ0XNrNvMp88803OH36NADgxx9/hJubW7mvQUSGwbZhXXiHbcXTvaGICdqG5DPhyHmeCnN7GRy8WsE1cAiq9+3GGX0iIlILnf81GTFiBCZMmIAHDx5AEAR88cUXmD17drEz6rm5ufj5558xffp0ZGRkoHr16vjhhx+k8zt37sTbb7+N5ORk/Pzzz5g4cWK5d7WVX/efmZlZanv5NpaWluUa6/z585g/fz4AYNCgQXjrrbfK1Z+IDI+JmRmcB/bkzrhERKRxOl/GExISgqCgIAiCgCVLlmDhwoUlLp0xMzPD//73P6xZswaiKGLZsmU4ceKEdH7gwIHYvXu39HjdunXljkk+2c/IyCi1/cuXL6VjOzu7Mo+TkZGBMWPGIDc3F05OTli1alX5AiUiIiIiKoHOZ/Z///13AECzZs2kG1TLYsyYMfjll18QFhaGFStWoHPnztI5b29vdOnSBcePH8exY8fKHZOLi4t0/Pjx41LbP3r0SDp2dnYu8zgLFy6USnW2a9dOYddeeVFRUdLxjRs3pE8y7Ozs8O6775Z5PPnlRkRERERk/HSe7J89exaCICAgIKDcfbt3746wsDBpvbu81q1b4/jx4wqJeFk1adJEOr5//36p7R88eCAde3p6lnkc+dj27t2LvXv3ltrnwoULuHDhAgDAzc2tXMk+EREREVUsOl/Gk5iYCACwsbEpd9/C9fHJyUXL2FWtWhUAkJCQUO7rNmvWTLox9/z586W2DwsLk45bt25d7vGIiIiIiDRB58m+o6MjAEiz1eVx6dIlAECVKlWKnCvc3EqVTbYcHBzg7e0tXefixYvFts3MzMThw4cBFFTi6d69e5nHCQoKKlNJ0dDQUKnPW2+9JT1flk8diIiIiKji0nmy365dO4iiiODg4BKT6ldduXIFe/fuhSAISmfTT548CQCoW7euSnGNHDlSOi5pQ6mff/5Z+vQgICAA1atXV2k8IiIiIiJ103myHxgYCKBgY6m+ffsqLIkpzqVLl9CvXz9p06xXd8vduHEjwsPDIQgCunVTbav5CRMmoE6dOgAK1tN/9tlnyMvLU2izdetWzJw5E0BBPf65c+eqNBYRERERkSbo/AbdwYMHw9/fH/v378fTp0/RuXNn+Pv7Y8CAAWjatCns7e2Rn5+P5ORk3LhxA8HBwdi3b5+UeHft2hXDhg0DUFA55+2338bBgwcBFJTpfOedd1SKy9raGr///jsCAgKQm5uLJUuWIDg4GAMGDICVlRVOnjwpLd8BgJkzZ6Jt27ZKryW/Mde6deukNzhERERERJqk82QfALZt24bevXvjxIkTyMvLQ3BwMIKDg4ttX1hC0svLCzt27JCev3jxIg4cOCAl1zNnzkT9+vVVjqtnz574999/MX78eKSlpSEiIgIREREKbQRBwLRp07BgwQKVxyEiIiIi0gSdL+MBACsrKxw5cgTLly+Hg4NDqTesymQyLFy4EMeOHYNMJpOuU1izXiaT4fvvv1fLspohQ4YgIiICM2bMQLNmzVC5cmVYWFjAzc0NY8eOxZkzZ7B48WKF2XsiIiIiIn0giHq201JmZiYOHTqEffv24e7du4iPj0dWVhYcHR3RuHFjdO3aFYMHD0alSpWK9L116xZSUlLQpk0bmJub6yB6/aHszYee/aiJiIiIqBxUye/0Ltkn9WCyT0RERGRcVMnv9GIZDxERERERqR+TfSIiIiIiI6UX1XjkPXr0CE+ePEFmZiby8/PLvPSkS5cuGo6MiIiIiMiw6E2yv3r1aixZsgR37twpd19BEKQNtoiIiIiIqIBeJPsffvghfvvtNwC8iZSIiIiISF10nuwfPXoUv/76KwRBgCiKsLW1Rdu2bVGtWjWl5TWJiIiIiKhsdJ7s//HHH9LxuHHjsHLlStjY2OgwIiIiIiIi46DzOvtubm6IjY1FvXr1cOvWLZiYsECQOrDOPhEREZFxMcg6+0+fPgUADBgwgIk+EREREZEa6Ty7trOzAwA4ODjoOBIiIiIiIuOi82S/YcOGAIC7d+/qOBIiIiIiIuOi82R/+PDhEEURO3fuRGpqqq7DISIiIiIyGjpP9t999100bdoUycnJGD9+PLKzs3UdEhERERGRUdB5NR4AuH//Pvz8/HDnzh3Uq1cPEyZMQIcOHeDs7FzmWvu1a9fWcJSGhdV4iIiIiIyLKvmdzpP9xo0bAwDS09MRGxtbEJSSF1ISQRCQm5ur9tgMGZN9IiIiIuNikMm+iYmJtHuuqgRBQF5enhqjMnxM9omIiIiMiyr5nc530O3SpUu5Z/KJiIiIiKh0Op/ZJ83gzD4RERGRcTHIHXSJiIiIiEgzmOwTERERERkpra3Zf/jwoXQsXyZT/vnXwdKbRERERESKtLZmv7DqzqtlMguffx0svVkU1+wTERERGRe9r8ZTXDBMQomIiIiI1E9ryX5xJTZZepOIiIiISDNYetNIcRkPERERkXFh6U0iIiIiIpIw2SciIiIiMlJM9omIiIiIjJRO6uxrAuvsExEREZE2HTt2DADg4+Oj40iKp/U6+5rAOvtF8QZdIiIiIs2Ji4tDrVq1IAgCYmJi4OLiovEx9f4GXVEUNfZFRERERKQtf//9N/Lz85GXl4cNGzboOpxiaW1mv2vXriXO7F+9ehXPnz+HKIowMTFB69at0axZM1StWhUWFhZISUnBrVu3cObMGWRkZEAQBNSvXx/+/v4AgGXLlmnjZRgMzuwTERERaYYoimjSpAkiIiIAAI0aNcL169c1vneUKvmdXtTZX716NT744APk5+dj/PjxmD9/PmrWrKm0bWpqKhYvXozFixdDFEXMnz8fs2bN0nLE+o/JPhEREZFmnD9/Hu3bty/yXNu2bTU6rt4v41Hmxo0bmDx5MkRRxJdffok1a9YUm+gDgEwmw8KFC7FixQqIooi5c+fi+PHjWoyYiIiIiCqy9evXl+k5faDzmf133nkHa9euRcOGDXHjxo1yffzRtm1bXLp0CQMHDsT27ds1GKXh4cw+ERERkfplZWXB2dkZz58/V3jewcEBcXFxsLS01NjYBjmzf+jQIQiCgL59+5Z7nZOfnx8A4OzZs5oIjYiIiIhIwZ49e4ok+gCQnJyMvXv3aj+gUmitzn5xnjx5AgCwt7cvd9/Cd06JiYnqDImIiIiIKqCYmBhpMrk4hbmrMu+99x6+/PLLEvuHhITA1dVVpfhUofNkXyaTITExEdevXy9337CwMABA1apV1R0WEREREVUwp06dws2bN1Xun5SUhKSkpBLbnD59GiNGjFB5jPLS+TKeNm3aQBRF7Ny5E3fv3i1zv+PHjyMkJASCIMDb21uDERIRERFRRTBixAisWbMGlSpVUvu1K1WqhLVr12L48OFqv3ZJdJ7sjxs3DkDBzQ7+/v5lejd15MgRDB48WLoh4b333tNojERERERk/ARBwIQJE3D58mW1ltFs27YtLl++jPHjx2u8Fv+rdF6NRxRFdO3aFSdOnIAgCDA3N0f//v3h7++PRo0aSWv5k5KScPXqVezYsQOHDx9Gfn4+BEHAuHHjsG7dOl2+BL3EajxEREREqsvOzsbcuXOxePFiAOXPowpzsRkzZuCrr76Cubn5a8dksJtqPX/+HG+88YY0q1/aO57CkAMCArBr1y6YmppqPEZDw2SfiIiI6PWFhoZizJgxePz4cbn61axZE3///Te6du2qtlgMNtkHgIyMDHz99ddYtmwZsrKySmxrZ2eHhQsX4oMPPtD6RyGGgsk+ERERkXo8e/YMTk5OZc6lBEFAfHw8qlWrptY4DDrZL5ScnIyQkBAcPHgQDx48QHx8PARBgLOzM9zd3dGnTx/4+fnByspK16HqNSb7REREROoRHh6O1q1bl7tPy5Yt1RqHKvmdzktvvsrBwQFvvvkm3nzzTV2HQmTQ8nNzEb/nCGKDtiE57DJynqfC3F4Gh44tUStwCJz6+cLETO9+BRAREemdM2fOqNRH3cm+KnRejUcdMjMzdR0CkV5Jj4jCqQ5DcGn4ZPw/9u47Pqoq///4e0JIh5BQAkIIUmKoIShdOi6IUhQEVBDEVbG79gVdWOyuIir+VBYpih0EAUEUCCpVgUBooSR0IRASSgjp9/cH39zNkDYZJplk5vV8PPLwzsw5935mksH3nDn33FPL1igr+ayUm6us5LM6tWyNtg5/TOs6DlXq3gRnlwoAQIWXd22nsu5TFirUNJ7MzEzt3btX586dU1ZWVoGvJQzDUG5urrKyspSWlqYzZ85oy5Yt+uGHH5SYmOikqismpvG4r9S4eG3odbcyk1JKbOtVK0ido79QQESTcqgMAIDKqWnTpoqPj7e6z2KxmNkq/3be7SZNmmj//v0OraPSztlPS0vTCy+8oLlz5yo1NdWufeTk5Di4qsqNsO+ecrOzta7jUJ2PjbO5T/XI5uq6cT5TegAAKMTp06dVp06dAvf7+flp+vTpMgxDjz32mNLS0grtW6tWLYfVYk++qxDTeIYNG6YPP/xQFy5ckGEYpf7x8KgQTwNwusQlq0sV9CXp/PY9OrU0uowqAgCgcitsOk7+i2QVdxGuijCVx+kpedmyZfrpp5/M2zVq1FCnTp3UqlUrSZKnp6d69Oih9u3bq1GjRlZ9vby8NGPGDB05cqQ8SwYqrGNzFtjV76id/QAAcHX5T861WCz65z//qfXr16tZs2bm/c2aNdP69ev1z3/+02r03Z4Tex3N6WH/m2++Mbcff/xxJSYmav369Vq8eLGky9NzZsyYoU2bNikhIUEJCQkaMmSIJCkrK0tbt25VvXr1nFE6UOGkbNxmX78NMY4tBAAAFxETc/n/kfXr19fq1av12muvFXo13KpVq+q1117T6tWrdc0110iStm7dWq61FsbpYT/v642wsDBNnTrVfPEaNWqk0NBQSdIvv/xitm/UqJG+//573XHHHTIMQzNmzFBsbGyZ1njs2DE9//zzatOmjQICAuTv76/w8HCNHz/e/ANwlD/++EMPPvigWrZsqcDAQHl5ealu3brq27evpk2bZvc5DXAPWWfPl2s/AABc3axZs/TSSy8pNjbWpqvh9uzZUzt27NBLL72kWbNmlX2BJXD6CbrBwcE6d+6cxo8frw8//NDqsSFDhmjJkiW666679Pnnn1s9lpycrPr16yszM1OPPfaYpk2bVib1ff/99xo7dqwuXLhQ6ONVqlTRxIkT9e9///uqjnPx4kWNHz9e8+bNK7ZdSEiIvvrqK/Xq1avYdpyg655+Dul4eZnNUqoaXEN/S9zk+IIAAIDDVMqLauWNVOeN4ufXokULLV68uNCR++DgYA0YMEALFy7Upk1lE1JWrlyp4cOHmyv9REVF6eabb5anp6d+//13RUdHKycnR1OmTJG3t7cmTJhg13FycnI0dOhQrVixwryvV69e6tKli/z8/JSQkKBFixbpzJkzSkxMVP/+/bVy5Up169bNIc8TriOoU1udWram9P06Rzm+GAAA4HROD/uBgYFKTk5Wbm5ugceaNm0qSdq/f78MwyjwaSYiIkKSCqx76ghpaWkaO3asGfRffvllTZw40aqG+fPn66677lJWVpZeeuklDRkyRC1atCj1sWbMmGEG/eDgYH3//ffq0aOHVZtp06ZpzJgx+v7775WZmanRo0dr79698vb2vopnCVfTYOxQu8J+6Nihji8GAAA4ndPn7NetW1eSdPjw4QKPNWly+UI/GRkZOnDgQIHH84Lu+fOOn2/83//+V8ePH5ck3XrrrXrxxRcLfNgYNmyY3nzzTUlSbm6u3VN53nnnHXN7zpw5BYK+JAUEBOirr74yVyk6fPiwvvvuO7uOB9cVMrC3qreJKFWf6pHNVefW4qeFAQCAysnpYb9z584yDEM//vijMjMzrR7Lv6TR+vXrC/Tdt2+fpMvLczranDlzzO1//vOfRbZ7+OGHVbt2bUnSDz/8UOoPHrt27TK/mQgPD9fAgQOLbOvl5aUHH3zQvL169epSHQuuz8PTU1FfviuvWkE2tfeqFaSoL6ZyQS0AAFyU08P+rbfeKkk6ceKEhg8frqSkJPOxa665xlxW84MPPlBWVpb5WHx8vBYsWCCLxaKwsDCH1pSYmKht27ZJkoKCgtSpU6ci23p7e6tPnz6SLn8DsXz58lIda+fOneZ2+/btS2zfuHFjc/uvv/4q1bHgHgKua6zO0V+oemTzYttVj2yuzmu+VMB1jYttBwAAKi+nh/1BgwaZ89yXLFmisLAw/ec//zEfv/POO2UYhmJiYtSlSxdNnz5dkydPVpcuXZSRkSFJZth2lPxronbo0KHEK/Tm/zBQ2pOFhw4dqiNHjmjjxo16/vnnS2yfP+AHBASU6lhwHwERTdR143xd/9101bmll6oG15A8PFQ1uIbq3NJL1383XV03zifoAwDg4irEd/fz58/XjTfeqOTkZKWnp+vs2bPmY88//7zmzJmjlJQUbd261QziecsM+fr66sknn3RoPfv37ze3r7322hLbN2zY0NzOm1pkK09PT4WGhha6GlFhFi5caG63bNmyVMeCe/Hw9FTdITep7pCbnF0KAABwEqeP7EuXV9WJjY3V6NGj5ePjYzVVpXbt2vrhhx9Uu3ZtGYZh/kiSj4+P5s2bZ9XeEU6cOGFuN2jQoMT29evXN7cTExMdWkt+a9eu1bJly8zbt99+e6n6WywWu34mT57s4GcCAACA8lAhRvaly/Pz586dq48//rjAibpdu3bV7t27NXPmTG3cuFEZGRmKjIzUAw88oEaNGjm8lnPnzpnbfn5+Jbb39fUttK8jJSUl6Z577jFvDxo0SJGRkWVyLAAAALiGChP28/j6+lqF5zzBwcF67rnnyqWGvHMB8uopSf42+fs6yoULFzRw4EAdPHhQklSjRo0yu2IwAAAAXEeFmMZT0VSpUsXcLuyyxFfKf5nikk7mLa2zZ8+qf//+2rhxo7n/zz//3KZzCQAAAODeKtzIfp74+HglJCQoOTlZHh4eqlGjhho3bmxeaKss5V/lJj09vcT2+ds48oq2f/31l/r3768dO3ZIuhz0Z86caS5XCgAAABSnQoX9lJQUvfvuu5o1a5bVSbL51a5dW3fddZcmTJigWrVqlUkd+cN+Wlpaie0vXbpkbgcGBjqkhpiYGA0cONC8iq+np6dmzZql0aNH273P/N9AAAAAwPVVmGk8a9euVatWrfTqq6/qxIkTVivv5P85deqU3nvvPbVp00bR0dFlUkvehbwk2y5clRfIJalu3bpXffzFixerW7du5n79/Py0cOHCqwr6AAAAcD8VYmR/y5Yt6tevn9LT083R55o1ayoyMlI1a9ZUTk6OkpKSFBsbq7Nnz8owDJ08eVK33HKLNm3apNatWzu0nvzr1x86dKjE9ocPHza3w8PDr+rY06dP1xNPPKHc3FxJl7/JWLJkiTp27HhV+wUAAID7cXrYz87O1ogRI8ypMO3atdNbb72l3r17F9r+l19+0YQJE7Rlyxalp6dr+PDh2rFjhzw9HfdUWrduLYvFIsMw9Oeff5bYPu/k2bz67fXaa69p4sSJ5u3w8HAtW7asXM5TAAAAgOtx+jSezz77TAkJCbJYLBowYIA2bNhQZNCXpJtuukkbNmzQLbfcIunyFWu//PJLh9YUFBSkrl27Srp8kawtW7YU2TY9PV2rVq2SdPkE2j59+th1zPfff98q6Hfq1Enr168n6AMAAMBuTg/7ixYtknT5xNbPPvtMVatWLbGPp6enPvvsM9WoUUOS9N133zm8rpEjR5rbxV1Bdvr06UpKSpIkDRgwQHXq1Cn1sdatW6ennnrKvN23b1+tWrVKNWvWLPW+AAAAgDxOD/sxMTGyWCwaPHiwgoODbe4XFBSkwYMHyzCMYkfe7TVu3DhzLfulS5fqmWeeUU5OjlWb+fPna8KECZIur8c/adKkUh8nMzNTo0aNMvcdERGhhQsX2nTlXgAAAKA4Tp+znzcq3qxZs1L3zetz5swZh9YkXb4q7ieffKIBAwYoOztb77zzjn788UcNHjxYPj4+Wrt2rTl9R5ImTJigG264odB95b8w1+zZszV27Fir2/lPAu7atas+/vhjm2oMDQ3ViBEjSvfEAAAA4DacHvZ9fHyUmZmp1NTUUvfN6+Pv7+/osiRdPj/g66+/1r333qsLFy4oLi5OcXFxVm0sFoueffZZvfzyy3YdY86cOVa3P/30U5v79ujRg7APAACAIjl9Gk9YWJgMw7Brzfy8PqGhoY4uyzR06FDFxcXphRdeUOvWrVWtWjV5eXkpLCxMo0eP1oYNG/Tmm29ajd6XRt7VcQEAAABHsxhOvqzqk08+qffff18Wi0WLFi3SwIEDbeq3ePFiDRkyRBaLRY899pimTZtWtoVWMoV9+OAKugAAAJWXPfnO6SP7Dz74oFn4qFGj9OOPP5bYZ+nSpebVZC0Wi8aNG1emNQIAAACVkdNH9iXp4Ycf1scff2yG/h49emjo0KFq27atgoODZbFYlJSUpO3bt2v+/Pn67bffZBiGLBaL7rvvPs2YMcPJz6DiYWQfAADAtdiT7ypE2E9PT9dtt92mFStW2DT3Pa/k3r17a/ny5Tatze9uCPsAAACupVJO45Eur8izdOlSvfjii/L395dhGMX++Pv7a+LEiVqxYgVBHwAAAChChRjZz+/MmTNasmSJVq9erYMHD+rMmTMyDEPBwcFq2rSpunXrpmHDhplXz0XhGNkHAABwLZV2Gg8cj7APAADgWuzJd06/qNbVmDNnjs6fPy9Jevzxx51cDQAAAFCxVOqR/WuvvVZHjhyRJOXk5Di5moqFkX0AAADX4nYj+5LMJTjhHLnZ2UpcslrH5ixQysZtyjp7XlVrVFdQp7ZqMHaoQgb2lodnpf8zAwAAqJQq/cj+4cOHZbFYGNm/QnmM7KfGxSvm7qd0PjauyDbV20Qo6st3FXBdY4ceGwAAOMegQYMUHx9f6n5NmjTR4sWLy6Ai9+GWI/twjtS4eG3odbcyk1KKbXc+Nk4bet6lztFfKCCiSTlVBwAAykp8fLx2797t7DJgI8I+Si03O1sxdz9VYtDPk5mUophRT6vrxvlM6QEA2ITRY8AxSF4otcQlq4udulOY89v36NTSaNUdclMZVQUAcCWMHgOOUSGuoIvK5dicBXb1O2pnPwAAANiHkX2UWsrGbfb12xDj2EIA4CoxVQSAqyPso9Syzp4v134AUFaYKgLA1TGNB6VWtUb1cu0HAAAA+xD2UWpBndra169zlGMLAQAAQLHKbRrPuHHjHL7PpKQkh+8TJWswdqhOLVtT6n6hY4c6vhgAAAAUqdzC/pw5cwq96hcqn5CBvVW9TUSplt+sHtlcdW7tVYZVAQAA4ErlOo3HMAyH/6D8eXh6KurLd+VVK8im9l61ghT1xVQuqAUAAFDOyi19TZo0qbwOhXIQcF1jdY7+QjGjntb57XuKbFc9srmivpiqgOsal2N1AAAAkAj7uAoBEU3UdeN8nVoaraNzFihlQ4yyzp5X1RrVFdQ5SqFjh6rOrb0Y0QcAAHASUhiuioenp+oOuUl1h9zk7FIAAEA5aNKkSbn2w9Uh7AMAAMBmXD26ciHsAwCACofRY8AxCPsAAKDCYfQYcAzCPgCUg0GDBik+Pr7U/Zo0aULoAQDYjbAPAOUgPj5eu3fvdnYZuAJTRQC4OsI+AMBt8a0JAFdXrlfQBQAAAFB+CPsAAACAiyLsAwAAAC6KsA8AAAC4KMI+AAAA4KII+wAAAICLIuwDAAAALoqwDwAAALgowj4AAADgogj7AAAAgIsi7AMAAAAuytPZBQBwnEGDBik+Pr7U/Zo0aaLFixeXQUXI06RJk3LtBwCARNgHXEp8fLx2797t7DJQCD5MAQCcgWk8AAAAgIsi7AMAAAAuirAPAAAAuCjCPgAAAOCiCPsAAACAiyLsAwAAAC6KsA8AAAC4KNbZR6lx4SYAAIDKgbBvg2PHjumDDz7Q8uXLlZCQIMMwVL9+ffXu3VsPPvigoqKiKuWx7MWFmwAAACoHwn4Jvv/+e40dO1YXLlywun///v3av3+/Zs6cqYkTJ+rf//53pToWAAAAXB9hvxgrV67U8OHDlZOTI0mKiorSzTffLE9PT/3++++Kjo5WTk6OpkyZIm9vb02YMKFSHAsAAADuwWIYhuHsIiqitLQ0hYeH6/jx45Kkl19+WRMnTpTFYjHbzJ8/X3fddZeysrLk4eGhHTt2qEWLFhXiWPn75nHUr7ply5Z2TeNp0aKFdu3a5ZAaUDh+NwAAuC578h0j+0X473//a4bvW2+9VS+++GKBNsOGDdPRo0f11FNPKTc3V//+97/1zTffVOhjwbU1adKkXPsBAICKjZH9IkRFRWnbtm2SpHXr1qlLly6FtsvIyFBoaKhOnz4tb29vnTp1StWrV3f6sRjZBwAAcC325DvW2S9EYmKiGb6DgoLUqVOnItt6e3urT58+ki6H8eXLl1fYYwEAAMC9EPYLsXXrVnO7Q4cO8vAo/mXKH9A3bdpUYY8FAAAA90LYL8T+/fvN7WuvvbbE9g0bNjS39+3bV2GPBQAAAPdC2C/EiRMnzO0GDRqU2L5+/frmdmJiYoU9FgAAANwLYb8Q586dM7f9/PxKbO/r61to34p2LIvFYtfP5MmTS3UcAAAAVAyE/UJkZGSY2/nDdVHyt8nft6IdCwAAAO6FsF+IKlWqmNuFLXF0pfxLHpV0gq0zjwUAAAD3wkW1ChEQEGBup6enl9g+fxtvb+8KeyxH4cJNlUth07CYmgUUjfcMUHq8byouwn4h8gfwtLS0EttfunTJ3A4MDKywx3KUxYsXO+W4sM+///3vAvfxDzBQNN4zQOnxvqm4CPuFqFevnrn9119/ldj++PHj5nbdunUr7LG4WDIAAIB7YdJ3IVq2bGluHzp0qMT2hw8fNrfDw8Mr7LEAAADgXgj7hWjdurV5suyff/5ZYvuNGzea2+3atauwxwIAAIB7IewXIigoSF27dpV0+cJVW7ZsKbJtenq6Vq1aJeny6jh9+vSpsMcCAACAeyHsF2HkyJHmdnEnmEyfPl1JSUmSpAEDBqhOnToV+lgAAABwHxaDszYLdenSJbVs2VIHDx6UJD399NN68803rdbFnz9/vu666y5lZWXJYrHojz/+0A033FAhjlXYmv38qt0TfwtA6fCeAUqP9035sOd1JuwX45dfftGAAQOUnZ0tSYqIiNDgwYPl4+OjtWvXmlNqJGnixIl65ZVXCt1P/l/M7NmzNXbs2DI7VmHHzMOv2j3xtwCUDu8ZoPR435QPwn4ZWLBgge69915duHCh0MctFoueffZZvfHGG0VeAdeWsO+oYxV2zDz8qt0TfwtA6fCeAUqP9035IOyXkb/++ksffPCBfvzxRx06dEgZGRmqV6+eunfvrkceeUQdO3Ystr+tYd8RxyrsmHn4Vbsn/haA0uE9A5Qe75vyQdiHiTcd8vC3AJQO7xmg9HjflA97XmdW4wEAAABcFGEfAAAAcFGEfQAAAMBFMWffRZW0Wg8AAAAqP+bsAwAAAG6KsA8AAAC4KMI+AAAA4KII+wAAAICL8nR2ASgbnHcNAAAARvYBAAAAF0XYBwAAAFwUYR+oYP744w89+OCDatmypQIDA+Xl5aW6deuqb9++mjZtmlJTU23az7Fjx/T888+rTZs2CggIkL+/v8LDwzV+/HjFxMSUqiZH7gtwtOjoaI0aNUrXXnutfHx8FBQUpDZt2ui5557T7t27bd4P7xm4u0OHDikwMFAWi0Vjx461qQ/vm0rAAFAhpKamGqNGjTIkFfsTEhJirF69uth9LViwwKhWrVqR+6hSpYrxr3/9y6a6HLkvwJHS0tKMkSNHFvt+qVKlivH8888b2dnZxe6L9wzcXU5OjtGtWzfz73TMmDEl9uF9UzlwBV2gAsjJydEtt9yiFStWmPf16tVLXbp0kZ+fnxISErRo0SKdOXNGkuTl5aWVK1eqW7duBfa1cuVK9e/fXzk5OZKkqKgo3XzzzfL09NTvv/+u6Ohos+2rr76qCRMmFFmXI/cFOJJhGBowYIB++ukn875+/fopKipKOTk52rx5s9Xf58MPP6wPP/yw0H3xngGk119/3ervccyYMZozZ06R7XnfVCJO/rABwDCM//f//p85ehEcHGysWbOmQJsLFy4Yt99+u9kuLCzMSE9Pt2pz8eJFo379+mabl19+2cjNzbVq89133xlVq1Y1JBkeHh7Grl27Cq3JkfsCHO2TTz4x/zYDAwONtWvXFmizfPlyIyAgwGz366+/FmjDewYwjC1btph/l3k/xY3s876pXAj7QAXQpEkT8x+6xYsXF9kuIyPDaNWqldn2888/t3p82rRp5mO33nprkfuZOnWq2W748OGFtnHkvgBHa9asmfl39/XXXxfZ7p133jHbjRw5ssDjvGfg7tLS0ozmzZsbkgwvLy+bwj7vm8qFsA842c6dO81/wMLDw0ts/8EHH5jt7733XqvH2rZtaz62bt26IveRnp5u1K5d25BkeHt7G+fOnSvQxpH7AhzpwIED5t9mrVq1ip2Pv2vXLrNtq1atCjzOewbu7pFHHjFHzF955RWbwj7vm8qF1XgAJ9u5c6e53b59+xLbN27c2Nz+66+/zO3ExERt27ZNkhQUFKROnToVuQ9vb2/16dNHkpSRkaHly5dbPe7IfQGO1qRJE50/f14bN27Ut99+qypVqhTZ9tKlS+Z21apVrR7jPQN399NPP5nnsjz//PPq2rVriX1431Q+hH3AyYYOHaojR45o48aNev7550tsnz/gBwQEmNtbt241tzt06CAPj+Lf3vn/Ud20aZPVY47cF1AWqlWrpo4dO6pXr17Ftvvmm2/M7SuDBO8ZuLMzZ87o3nvvlSS1bdtWkydPtqkf75vKx9PZBQDuztPTU6GhoQoNDbWp/cKFC83tli1bmtv79+83t6+99toS99OwYUNze9++fVaPOXJfgDOkpaXpgw8+0NSpUyVJ/v7+euaZZ6za8J6BO7v//vt18uRJeXt76/PPP5eXl5dN/XjfVD6EfaASWbt2rZYtW2bevv32283tEydOmNsNGjQocV/169c3txMTE60ec+S+gPKybt06/fTTT0pISNCyZct09uxZSVJgYKDmz59vNQVO4j0D9zVr1ixz4OjVV19Vq1atbO7L+6byIewDlURSUpLuuece8/agQYMUGRlp3j537py57efnV+L+fH19C+3r6H0B5eWrr74qsJZ+zZo1tWjRIt14440F2vOegTtKSEjQk08+KUnq0aOHnnrqqVL1531T+TBnH6gELly4oIEDB+rgwYOSpBo1amjatGlWbTIyMszt/P8gFiV/m/x9Hb0voLwcPXq0wH1nzpxR9+7ddffddxcIB7xn4G5ycnI0evRoXbhwQdWrV9fcuXNlsVhKtQ/eN5UPYR+o4M6ePav+/ftr48aNkiQPDw99/vnnBeY35l+RxJZ/vI18F8++8qQoR+4LKC9TpkzR6dOnlZGRob1792ry5Mny9fWVYRj68ssv9be//U2ZmZlme94zcDevvfaa1q9fL0l6//33FRYWVup98L6pfHilgArsr7/+Uvfu3c1/nD08PDRz5kzdeuutBdrmX5knPT29xH3nb+Pt7V1m+wLKS2RkpGrVqiUvLy+Fh4dr0qRJio6ONqcH/PHHH3r33XfN9rxn4E7+/PNPTZkyRZJ02223acyYMXbth/dN5UPYByqomJgYdejQQTt27JB0edWeOXPmmEulXSn/P5ppaWkl7j//+uOBgYFlti/AmTp27KgJEyaYt2fNmmVu856Bu0hLS9OoUaOUnZ2tkJAQzZgxw+598b6pfDhBF6iAFi9erLvuuksXL16UdPnEpW+++abQEf089erVM7fzr8VflOPHj5vbdevWLbN9Ac42cuRIvfjii5IuL9eXmpqqgIAA3jNwG6+++qq5VGX79u01Z86cQtvFx8eb27t27dLbb78t6XKwvv/++yXx/5rKiLAPVDDTp0/XE088odzcXElS7dq1tWTJEnXs2LHYfvnX3D906FCJxzl8+LC5HR4eXmb7AspKTk6OsrKy5OPjU2y7K69hcf78eQUEBPCegdvIH5KXLl2qpUuXlthn8+bN2rx5syQpLCzMDPu8byofpvEAFchrr72mxx57zAz64eHh2rBhQ4lBX5Jat25tnuD0559/ltg+74RfSWrXrl2Z7QtwtDlz5qhp06by9fXVK6+8UmL75ORkq9s1a9aUxHsGsAfvm0rIAFAhvPfee4Yk86dTp05GUlJSqfZx4403mv03b95cZLtLly4ZtWrVMiQZHh4eRmJiYpnuC3Ckb7/91vzbjIiIKLH97NmzzfatW7e2eoz3DPA/0dHR5t/wmDFjimzH+6ZyYWQfqADWrVtndWGTvn37atWqVeYIpK1Gjhxpbk+ePLnIdtOnT1dSUpIkacCAAapTp06Z7gtwpJtvvln+/v6SpLi4OH3zzTdFtk1JSTFXIJGkUaNGWT3OewYoPd43lYyzP20A7i4jI8No1KiR1UjlhQsX7NpXWlqace2115r7evrpp43s7GyrNt99951RtWpVQ5JhsViMP//8s8z3BTjaSy+9ZP5tVq9e3Vi9enWBNocOHTLat29vtmvcuLGRlpZm1Yb3DPA/to7s876pXCyGke8KBQDK3SeffKLx48ebt++77z5FRETY1Dc0NFQjRoywuu+XX37RgAEDlJ2dLUmKiIjQ4MGD5ePjo7Vr12rVqlVm24kTJxY759mR+wIcKSMjQ/369dOvv/4q6fIFefr06aOuXbuqSpUqio2N1ZIlS8yrbAYHB2vt2rVq3rx5gX3xngEuW7NmjXr16iVJGjNmTJGr9ki8byoVZ3/aANxdp06drObql+anR48ehe5z/vz5RrVq1YrsZ7FYjOeee87Izc0tsT5H7gtwpAsXLhh33nlnie+T66+/3oiPjy92X7xnANtH9vPwvqkcCPuAk/n7+zs87BuGYRw/ftx44YUXjNatWxvVqlUzvLy8jLCwMGP06NHGxo0bS1WjI/cFONq6deuMe++912jatKnh6+tr+Pr6GmFhYcbIkSON77//3uZwwHsG7q60Yd8weN9UBkzjAQAAAFwUq/EAAAAALoqwDwAAALgowj4AAADgogj7AAAAgIsi7AMAAAAuirAPAAAAuCjCPgAAAOCiCPsAAACAiyLsAwAAAC6KsA8AAAC4KMI+AAAA4KII+wAAAICLIuwDAAAALoqwDwAAALgowj4AAADgogj7AABUMK+//rosFkuRP15eXgoJCVHv3r01depUnTt3ztklA6igCPuAG/jjjz/04IMPqmXLlgoMDJSXl5fq1q2rvn37atq0aUpNTS2y75w5c4oNHRaLRZ6envL391doaKi6deumF198Ubt27XL485g8eXKBY8+aNavU+zlw4ECB/axZs8bm/rt379abb76pvn37qkmTJqpWrZp8fHxUt25d9erVSy+++KJ27NhR4n7WrFlT4mtr68/YsWNL/Tqg4tq2bVuxj2dlZenUqVOKjo7W008/rZYtW+qPP/4on+LKyWOPPSaLxaJHHnnEKcd/8803zfdXjx49bOqzdu1aq/dl8+bNbeq3efNms0+NGjWUk5MjSRo4cKAsFov+85//2P08ABkAXFZqaqoxatQoQ1KxPyEhIcbq1asL3cfs2bNL7F/Uz9ChQ42TJ0867PlMmjSpwDH69+9f6v28/PLLBfYTHR1dYr+9e/caw4YNMywWi03Pv1+/fsaOHTuK3F90dLTdr+2VP2PGjCn164CKKzw83Pzd9u3b13jkkUesfkaOHGnUrVvX6m+gVq1aDn2/OdNPP/1kWCwWIygoyEhKSnJKDZs3bzZfW19fXyMzM7PEPhMnTizw3jx48GCJ/d555x2z/ZAhQ8z79+3bZ1StWtXw8vIytm3bdjVPB27M82o+KACouHJycjR06FCtWLHCvK9Xr17q0qWL/Pz8lJCQoEWLFunMmTNKTExU//79tXLlSnXr1q3IfTZu3FgPPfRQgfuzsrJ04cIFHTt2TBs3btT+/fslSQsWLNCGDRu0fv16hYWFOf5JSlq1apWSk5MVHBxsc5+vv/661MdZtGiRRo0apYsXL5r3NWrUSL169VKDBg3k4+Oj48ePa926ddq+fbskacWKFYqOjta7776rhx9+uMA+mzRpUuyI3ebNm/XNN99IKvq1z9OqVatSPydUTBcvXtSBAwfM2//6178KfV9mZmbq8ccf1yeffCJJSkpK0jvvvKO33nqr3GotCxcvXtTf//53GYahiRMnqmbNmk6pIyoqSsHBwUpOTtalS5e0detWdezYsdg+P/30U6H3jR8/vth+v/32m7n9t7/9zdxu1qyZHn74Yb333nu699579eeff6pKlSqlfCZwe87+tAGgbPy///f/zJGi4OBgY82aNQXaXLhwwbj99tvNdmFhYUZ6erpVm/wj+z169LDp2IsXLzbq1Klj9ouIiDDOnDlz1c8p/8i+j4+Puf3pp5/avI+dO3cWOjJe3Mj+559/bjWa365dO+OXX34psv3WrVuNHj16WO3/9ddfL81TNQzDvtceld+6deus/nZSUlKKbJudnW1ERESYbVu0aFF+hZaRZ5991pBkNGjQoMC/R+Vt6NCh5mv79ttvF9v21KlT5r8Tt956q9lv8ODBxfbLzc01atasabY/cOBAgf0GBAQYkoz333//ap8S3BBz9gEX9c4775jbc+bMKXTOaUBAgL766itzVPjw4cP67rvvrvrYAwcO1Nq1a1WrVi1JUlxcnF566aWr3m9+/fv3N7e//fZbm/t99dVXkiRvb2+1bt26xPbbt2/XAw88IMMwJEn333+/NmzYoL59+xbZJyoqSitXrtT9999v3jdhwgQtX77c5jrhvmJiYszthg0bqkaNGkW2rVKligYOHGjejo+PL8vSytyhQ4c0bdo0SdLzzz8vb29vp9bTp08fc3vdunXFtl2xYoX578To0aPVpEkTSdLq1auVlZVVZL+dO3fqzJkzki5/g5fXL0/t2rXNbwYnTZrEydgoNcI+4IJ27dpl/k8/PDzcKgxcycvLSw8++KB5e/Xq1Q6poVmzZvrvf/9r3p45c6YOHz7skH1LUsuWLdWyZUtJ/5vKY4u8aTEDBgxQ9erVS2x///3369KlS5KkQYMG6ZNPPpGXl1eJ/Tw9PTVjxgzdfvvtkiTDMPTwww8rPT3dpjrhvvKfnNumTZsS29epU8fczszMVG5ublmUVS5efvllZWVlyd/fX2PGjHF2OVYf6ksK+3lTeCwWi3r27GlOx7lw4UKxfYuawpPfQw89JIvFopSUFPPDEGArwj7ggnbu3Glut2/fvsT2jRs3Nrf/+usvh9UxZMgQc45rZmamZsyY4bB9S9KIESMkSdnZ2Vq0aFGJ7Tdv3mzOhb7zzjtLbL9y5Ur9+eefkiQfHx/NnDlTFoulVDV+8MEHCgwMlHR51PLzzz8vVf+y1LNnT1ksFjVq1EiSdP78eU2ZMkWtW7dWQECA/P391bZtW02cOFGJiYk27XP37t164oknFBkZqRo1asjHx0cNGjTQwIED9emnnxY5wtmtWzdzNZLo6Ogi9//www+b7W677bYi2+3YscNsl/d3cqWjR4/qxRdfVPv27VWrVi15e3urfv36uvXWWzVr1ixlZ2cXuf9GjRrJYrGY3zAtWLBAkZGR8vX1VWhoqIYNG2aeu1Fa+Uf2bQn7+Ud6g4KC5OFROf/XfuLECfP9MWLECFWrVq3Qdnl/t3nfSKalpWnatGnq0KGDgoKCVL16dbVq1UqTJk0yR8zzLFiwQP3791e9evXk7e2tsLAwjR07VnFxcYUeq1mzZmrYsKEk6dSpU+b5SFcyDEO//PKLJCkyMlJ16tSxCu6FzeXPY0vYb9Sokfktw3vvvWcOQAA2ce4sIgBlISsryzhy5IixceNGIzY2tsT2//3vf61W0MnvaueNf/DBB2b/Dh06lLp/fvnn7E+cONHYu3ev1co3JXn66acNSUZAQICRlpZmdO3atdg5+8OHDzcfHzdunN11P/bYY+Z+OnbsaHO/sp6zn3deQVhYmHHgwAGjadOmRa72U7169WLPU0hLSzMeeuihElcqaty4sfHnn38W6P/GG2+YbSZMmFDkca677jqrc1Fyc3MLbffmm2+a7T7//PMCj7/99ttW530U9hMeHm7s3Lmz0P2HhYWZf3fz588v9HkXtxJTUbKysqzq+uqrr0rsM3DgQLv+viqaKVOmmM+juL+1vL/bli1bGnv27LH6m7jyp2nTpsaRI0eMixcvGrfddluR7fz8/IxVq1YVerx7773XbDd79uxC2+Rfuef55583DMMwzp07Z3h6ehqSjDZt2hT5fPJWVapSpYpx9uzZItvNmjWrxDqAwlTOj/8AiuXp6anQ0FB17NjRpnnpCxcuNLfzpsY4Ss+ePc3tLVu2OHS+aXh4uCIjIyWVPJXHMAxzbv/gwYPl6+tb4v5//fVXc3vAgAF215l/BPqPP/7Q6dOn7d5XWbh06ZIGDhyoAwcOyNvbWyNHjtTLL7+sRx99VNdcc42ky6P+t9xyi37++ecC/bOzs3X77bfro48+Mucsd+jQQc8//7xefvll3XPPPea3GwkJCerevbvVaKYk3XLLLeb2ypUrC63z+PHj2rt3r3k7OTnZ6lus/PLOj6hSpYpuvvlmq8eef/55PfPMM+aUqi5duuiFF17Qq6++qgceeED16tWTJO3bt09dunQp9poJycnJevDBB83nnSciIsKuFZL27NljNdWrpJH9M2fOaNWqVebtokaGK4O5c+dKkvz9/YtdFSzP2bNn1b9/f+3du1e1a9fW+PHj9corr+jee+815/ofOHBATz75pEaNGqWFCxcqMDBQ48aN06uvvqrx48ebf5dpaWkaPXq0MjMzCxzHlnn7+Ufu+/XrJ0mqXr26OnXqJEmKjY3ViRMnCvTbt2+fTp48KenyeyavnsLk7Vf632sF2MTJHzYAONnvv/9uNcJ15VrOVzu6nJ6ebnh4eJj7iImJsbvWK0f2DcMwXnvtNfO+mTNnFtl37dq1ZrslS5YYhmEUO7K/f/9+q9fl2LFjdtednZ1tVK1a1dzXzz//bFO/8hrZz/tp3LixsWfPHqs2qampxrBhw6zaXLlCyksvvWQ+HhAQYCxcuLDAsU6fPm3cfPPNZru6desWWD89b7S8SpUqha5AM3fu3AIjsh988EGBdufPnzdf727dulk99sMPP5h9a9asWegI8qVLl4xHH33UaoQ/IyOj0Frzfm655RZj9+7dRmpqqvHrr78aCxYsKLBfW3z22WfmPr29vY2srKxi2+e/joa3t7dx+PBhu47rbPlXySrp2hlX/t0OGTLEuHjxolWblStXFvhb6dy5s3Hq1CmrdocOHTJCQkLMNosWLSpwvJMnT5qPN2/evNCabrzxRkOS4e/vb/W3kv/bilmzZhXol/9b1UmTJhX7vA3DMJo3b26+RxyxwhncAyP7gBtLSkrSPffcY94eNGiQOVLuKN7e3lajVUlJSQ7d//Dhw83t4lYSyltbPzg42GqErCj5z13w9PRU/fr17a6xSpUqVidRVsQVU/z8/LRixQpFRERY3e/v76+vvvpKUVFRki6PzM+cOdN8PCkpSe+++655+4svvtCQIUMK7L9WrVpatGiR2rVrJ0k6efKkVT/pf6P7OTk5hV7ROG8EOywsTH5+fpJUaLuVK1ea5wbkPzndMAxNmDBB0uWTKBcuXFjoqko+Pj764IMPzL+Tffv26YsvvijQLk+rVq20cOFCNW/eXP7+/urevbt5YnZp5Z+v36JFC3l6Fn45nOPHj2vkyJGaN2+eed/EiRPN+eWVTf7zNErzb1BoaKi++uor8+8hT58+fdShQwfztp+fn77//nvVrl3bql1YWJgeffRR8/bmzZsLHCMkJMT8xjMuLq7AeQDnzp3Txo0bJV2+lkn+E/hLmref/9tDW76Vadu2raTL75Hff/+9xPaAxAm6gNu6cOGCBg4cqIMHD0qSatSoUWarPPj7+5vbjg77TZo00fXXXy+p6Kk8ubm5mj9/viRp6NChqlq1aon7zf8/9OK+WrdV3bp1ze2zZ89e9f4c7ZFHHlHTpk0LfczT01P/+te/zNvff/+9ub1kyRKlpqZKknr06KFBgwYVeQwvLy+rCz7NmjXL6vGSpvLkrRTVt29f83d+5XQgSVZLnOYP+xs2bNCuXbskXZ5eVtJUkfzLxRZ3YvX9999v09+ULfKvxHPu3Dk9+uijVj9jx45V165dde2115orS0nS3//+d4cvb1ue/vjjD3PblqmHecaPHy8fH59CH8v/oWHw4MFW78H88h+vqCl2eR8KDcPQ+vXrrR5buXKleTL3lQMJ7du3Ny/498svvygnJ8fq8by/38DAwBIv2HVlrZs2bSqxPSAR9gG3lDfXNW80ysPDQ59//rmuvfbaMjleRkaGuV0WK4XkX5Un//kHeaKjo815sSNHjrRpn/mvlFtUmCiN/CO0xhXzuyuCkl6Xm2++2Qy0v/32m7kaSP6lWocOHVricfr06WNeEfXEiRNWq5v07t3bHKG9Muzv3btXx44dk3R59DRv1Pb06dPavXu3Vdu8EdSmTZtafVORfxQ178NCcW644QZzlHbjxo1Frs7TuXPnEvdlq/xhPyEhQR9++KHVz9y5c7V+/Xrzm4s6dero008/tVrmNs/evXs1depU9evXT/Xq1ZOXl5cCAwPVvn17TZkyRSkpKUXWkbfiTf4fHx8fhYSEKDIyUmPHjtXcuXOVlpbmkOed/1yMK79dKk5xq42FhISY23nfKBUm/6o/RS2NW9y8/fxXKb9ydN7Dw8Psm5KSoi1btpiPHT58WEeOHJF0+W/flivjNm/e3Nzet29fie0BibAPuJ2//vpL3bt3N0enPDw8NHPmTN16661ldsz8J+UWd4Ege5U0lSdvCk/dunWtThguTv4A4IiR+PzByhHfFDhS1apVSzwR1Nvb27zYT3Z2tjnNKe+bIel/UwxKkn/ENSEhwdz28fFR7969JVmHe8n6Q0XPnj3VtWtX83b+EL9z504dPXpUkgpcXyL/h4K33367QJgtLNzmnbB56dKlIkd9HfUh+fDhw8UGcE9PT9WsWVMtW7bU2LFjNW/ePB05ckTjxo0r0DY+Pl4RERF6+umn9fPPP8vDw0ORkZGqVq2aNm/erEmTJqlly5bFnnwsXZ4m07VrV3Xt2lVt27ZVcHCw9u3bp7lz52rs2LGqV6+ePv7446t+7nmhV5I5Em6LvBPIC5M/PAcFBRXZzpYBiJ49e5of2NeuXWv1WF7Yb9SokcLDwwv0zT/an3+6Uv6/25tuuqnEGiTr1yb/awYUp/DJgABcUkxMjAYOHKjjx49LuhweZs2apdGjR5fZMc+dO2e1wkX+0ba33367xP7PPPNMiW3CwsLUsWNHbdq0SatWrdKZM2fM0eOsrCxz2snw4cNt/mYh/1UsL168qHPnztkd0nNycszX/Mp9VwRBQUFFzg2/sl2exMRENWnSxGq6k60hLe93I6nAtKtbbrlFS5culXR5WlbehZXy5us3a9ZM9evXV48ePWSxWGQYhtasWaOHHnpIUtFTeAo7VmmlpKSYK/Xk56gPsPnn63t6eio1NdXuK8gahqE6dero0Ucf1d133211LY1169bp7rvv1uHDhzVkyBDt3r27yOOMGzdOkydPtrovKytLGzZs0DvvvKPFixfroYceUlxc3FVNA8w/IFCa99mVc/WLYsuoeXGqVaum9u3ba8OGDdq8ebMyMjLk7e2t3bt3m6G7qHOB8o/2R0dH6/nnn5dk2/r6V8r/2nAlXdiKsA+4icWLF+uuu+4yp6f4+fnpm2++KdMRfUlWX1v7+PioRYsW5u1nn322xP62hH3p8lSeTZs2mRfYuu+++yRJP//8sxnybLmQVp6IiAhVq1ZNFy5ckHQ5INm7/Oa2bdvM191isdg8Al5ebJ1vnn++cd70lvxTkmy94Fj+/Vz54evKeftjxoxRbm6uOSLaq1cvSZc/WERGRmrbtm1WI6R5YT8wMLDAnPz803DGjh1b6mVmrzy5M48tH5RskX8KT/Pmze0O+pLUoEEDJSQkWJ0vk6dr16768ssv1bVrVyUkJGjFihXFnmtxpapVq6p79+7q3r27Xn/9dU2YMEHvvffeVZ2YnH+qX0BAgM39SnuRu6vRt29fbdiwQRkZGdqyZYu6dOlS6JKbVwoNDVVERITi4uK0bt06ZWdny9PT0zzBtnHjxjYPAOR/bfK/ZkBxCPuAG5g+fbqeeOIJ5ebmSrocWpYsWWLTCWFXa8OGDeZ2u3btHHYi45XuuOMOPf300+Z6+nlhP+8kxkaNGplrXtvC09NT/fr1M0/sXbhwod1hP/8Jrddff73VtxsVga0jhPlHxvNGuPOP5tt68nX+dleOioeGhqpNmzaKjY01R/O3b99uHjv/NKxevXpp27ZtSkxMVFxcnBo0aGBOsejfv3+BEJ7/m4nOnTvrgQcesKne8pJ/ZD9v9SN7lXSeSZcuXRQYGKhz585pz549pQr7+f3zn//UqlWrtGrVKk2ZMsXusO/r62t+IM7IyLBa0aai6NOnj15++WVJl08o7tKli3nVXE9PT3MKWmH69eunuLg4paamasuWLWrUqJE5574010bIf06BLdcKASTm7AMu77XXXtNjjz1mBv3w8HBt2LChXIK+YRiaM2eOeXvYsGEFHi/px1YNGjRQly5dJF2e352cnKyMjAz98MMPkmw/MTe/+++/39z+/PPPrZbjtFVqaqo++eQT83Zh86udLTU11Wp+fGHS0tLM+fUBAQHmB5b8K/hs3769xGMZhqHY2Fjzdv7pJXnyRvdPnDihXbt2WY3cXxn286xZs6bIJTcLO1b+1V+Kc+Uyi2Up/8j+1Yb9kuTk5JivVWGj/6Xx+OOPS7r8+z98+LBd+6hevbq5nfdtWkXTuXNnc9rQ5s2blZOTY56s26lTp2KnH+UP9DExMVbLZpYm7OetfCVZv2ZAcQj7gAt7//33NXHiRPN2p06dtH79+nKbM/7tt9/qwIEDki6f4Hn33XeX6fHyr8qzePFirVixQufPn5dUuik8ef72t7+ZHyAyMjJ0zz33mB+abPXwww+bgbF+/frmHPSKJv9c98IsWbLEfO4DBgwwR83zT5XJ+xakOCtXrjRPeK5du3ahy33mn8rzyy+/mMEoIiLCas58jx49zLnY0dHR5pSKwq6aK0ndu3c3txctWlTiSjLbtm1TrVq1FBAQoPbt2xe5Go8jpKSkWJ1wWdZhf+HChebz79Gjx1Xtq1u3buZ0mrwVvkqrUaNG5nZJHzydxcvLy/x737x5s7Zu3Wp+MCkpsPfs2dOclrV9+3bzQ0KVKlWK/UbgSnknn0uOOzEcro+wD7iodevW6amnnjJv9+3bV6tWrbI6ObIsHTp0yDxpUpKeeuopqwtLlYVhw4aZc8AXLFhghs/mzZuXuNpMUT766CPz6/JVq1Zp9OjRViccF8UwDD333HNW67NPnz7d5hMKy9t//vMfcznNK2VmZuqVV14xb+d9qJIuv+Z5I8O//fabFi9eXOQxsrKy9M9//tO8feeddxY657pz587m3+nKlSvNqTn5R/KlyyObeUsqrlmzxvzA0rVr10JPFu7Tp48aNGgg6fKI/ZQpU4qsVZJZ68WLF3Xttdc6bG5+YfJP4ZFsX9nIHikpKXr66aclXf4GpDTr2hcmKCjIHGVOTEy0ax/XXXeduZ1/haeKJm+9/X379pknkktFz9fP4+fnZ64gtX37dnON/A4dOpTqhOT8r03+1wwoDmEfcEGZmZkaNWqUeSJkRESEFi5cWC5BMzc3V9999506duxoLiPYpk0bq28Yykq9evXMkbeVK1dqyZIlkuwb1c/Tpk0bzZ492xxB/vLLL9W5c+dCr9yaZ9u2bbrpppv0n//8x7zvX//6V6FXlq0o9u/fr2HDhhVYZvTcuXMaOnSodu7cKenyKPBtt91mPh4UFKQnn3zSvH333XebU6fyS05O1u23326esB0SElLk34SHh4f69+8v6fKa+adOnZKkQpdNzfsAcOrUKXNkvLApPNLlE0vzX3jqzTff1JQpUwqM2Kenp+uJJ54wvynw9PTUiy++WOg+HSV/2L/22mvLbHnWrKwsjRgxQkeOHFHt2rUdsmym9L8TR+2dgpP/fJorP/hUJHlr5huGYU7PCw4O1g033FBi37zR/x07dpjPsTRTeCRp69at5rYjr+8A18YJuoALmj17tg4dOmTe7tq1q83/Uw8NDbUauc3v6NGjhS6XmZOTo3PnzunQoUP67bffrJaZDA8P19KlS696XrCtRowYoV9//VXp6enmyWz2zNe/cp/e3t4aM2aMzp8/r61bt6pXr15q0qSJevXqpfr168vDw0MnT57U77//bgZj6fLX9K+//rpNKw85U9WqVbVs2TI1a9ZMw4YNU2hoqI4ePar58+ebJ9TWqVNHM2bMKDAaP3nyZK1fv17R0dFKTU3VkCFD1LFjR/Xq1UsBAQHav3+/fvjhB/ODhLe3t+bNm1fsNz233HKLvvjiC6uVewoL+71797a6Kq9UdNiXpAceeEC///675s2bJ0maNGmS5s6dq1tvvVV16tTR0aNHtWTJEqvzM9544w27vxmyVXnM18/NzdXo0aP1yy+/qFq1alqyZEmx69SXRl7It3ceef5vbSrylWHbtm2rWrVqKSkpyfwW46abbrJpSd9+/frphRdesJp3X9qwn3euiaenp2688cZS9YUbMwC4nE6dOhmS7Prp0aOH1b5mz55t1348PDyMe++910hJSXHY85o0aZK5/4kTJxbaJjEx0ahSpYrZ7vrrry9yf127djXbRUdHl3j8Q4cOGXfccYdhsVhseg169+5txMTE2PlsrV/7K38vjtCjRw9z/1988YVRs2bNIp9Lq1atjIMHDxa5r/T0dOO+++4r8bVp1qyZTa9JcnKy1e+xZcuWhbZLTU01qlatarX/kuTk5BgTJkyw6lfYj6+vr/H+++8Xuo+wsDCznSO0bNnS3N/LL7/skH3ml5OTY4wZM8aQZPj7+xu//fZbse3z/jYmTZpU4r7PnDlj1v7NN9/YXWOLFi0MSYaXl5eRmppaYm2Siv2bzP/vxezZs4tsFx0dbbYbM2ZMiXXecccdVn8ns2bNKrGPYRhGbm6uERISYvYLDAw0srOzbeprGIYRHx9v9h0wYIDN/QCm8QAuqKSrYjpalSpVFBgYqKZNm2rQoEF66623FB8fr1mzZpXJFXOLU6dOHatRwqsd1c8vLCxM3377rfbt26dXXnlFN910k6655hp5e3vLy8tLISEh6tGjh1566SVt375dq1atqnBr6helS5cu2rVrl5555hk1bdpU3t7eqlGjhnr16qWZM2dq69atVidRXsnb29ts99hjj6lVq1YKDAyUp6enQkJCNGDAAM2aNUs7d+606TUJCgoyT46WCh/Vly6vJNO+fXvzti3XjfDw8NCrr76quLg4vfDCC7rhhhtUs2ZNeXp6qkaNGurQoYMmTpyouLg4PfbYYyXu72qlp6dr79695m1H/80YhqEHH3xQc+fOlZ+fn5YuXVrgGgRXI//KMlcztWTUqFGSLk9D/Pnnn6+6rrKSN28/j62j8xaLxepKub179y7Vxb7ynyOQ91oBtrAYRinWtgMAuIyePXuay1oePHiw2DCPyuvhhx82TzRfsmSJOe+8OHl/G5MmTSpwBd0r9enTR6tXr1ZUVJTVnPLSSkxMVFhYmDIyMnTHHXfo22+/tXtfrqhTp07atGmT6tatq0OHDl3VRdfgXhjZBwDART3++OP66KOP5OPjox9++MGmoF8ar7/+ulavXi1JVic/2yMkJMQcsV6yZEm5XuOgotuzZ495LsOjjz5K0EepEPYBAHBBzz33nD744AMz6OefQnI1srOz9fvvv2vw4MGaMGGCJOnJJ5+0WqXJXhMnTpSXl5fS09P13//+96r35yref/99SVLNmjXLZWoZXAvTeADATTGNx3Vt2LDBPOehTp06atasWZFtx40bV+DKznl/G6GhoWrYsKEk61W38q7JEBgYqDfeeEPjx493WO1PPPGE3n//fdWrV08JCQny8fFx2L4ro8TERDVu3FhpaWmaOnWq/vGPfzi7JFQyLL0JAICLycjIMLdPnTplXqugMFeecJrf0aNHzau2enl5KTAwUM2aNVPbtm3Vu3dv3XHHHQ6/fseUKVP07bff6sSJE/roo4/cPty+8cYbSktLU+vWrRnVh10Y2QcAN8XIPiqq77//XkOHDlWtWrW0b98+BQUFObskp0hISFCLFi2Uk5OjtWvXqmPHjs4uCZUQc/YBAECFcvvtt2v8+PFKSkq66hN/K7N//OMfysjI0JQpUwj6sBsj+wAAAICLYmQfAAAAcFGEfQAAAMBFEfYBAAAAF0XYBwAAAFwUYR8AAABwUYR9AAAAwEUR9gEAAAAXRdgHAAAAXBRhHwAAAHBRhH0AAADARRH2AQAAABdF2AcAAABclEPD/mOPPSaLxaJHHnnE6v6ePXvKYrHIYrHo0KFDdu//6NGj8vf3V/Xq1ZWQkHCV1QIAAACuzWFhf8WKFfrwww8VFBSkKVOmOGq3VkJDQ/Xcc8/pwoULGj16tHJycsrkOAAAAIArcEjYv3jxov7+97/LMAxNnDhRNWvWdMRuC/XMM8/ommuu0fr16/Xee++V2XEAAACAys4hYf/f//63jh07pgYNGujRRx91xC6L5O/vr5deekmSNHnyZP31119lejwAAACgsrrqsH/o0CFNmzZNkvT888/L29v7andZovvuu08NGjTQhQsXzOAPAAAAwNpVh/2XX35ZWVlZ8vf315gxYxxRU4mqVq2qv//975Kkzz77TPHx8eVyXAAAAKAyuaqwf+LECX3++eeSpBEjRqhatWo29bt48aJeeeUVRUZGKiAgQEFBQbrhhhs0ZcoUnT592qZ9jBs3Th4eHsrOztbbb79t93MAAAAAXNVVhf2ZM2cqKytLknTnnXfa1Cc+Pl6tW7fWSy+9pNjYWF28eFFnz57Vli1bNGnSJIWHh2v+/Pkl7ic0NFQ33nijJGnevHm6cOGC/U8EAAAAcEFXFfbnzp0r6fJJs926dbOpzx133KGDBw/Kz89Pd999t15++WU9+uijuuaaayRJZ8+e1ciRI7V06dIS99WvXz9JUmpqqr7//ns7nwUAAADgmuwO+7t27TLnynfr1s3mE3NTUlLUqlUr7dq1S/PmzdOLL76oDz74QPv27dOIESMkSTk5OXrggQdKHK3v27evuf3DDz/Y+UwAAAAA12R32I+Ojja3IyMjbe4XFBSkFStWqFGjRlb3+/v7a968eWrXrp2ky+cDfPbZZ8Xuq3Xr1vLwuPwU1qxZI8MwbK4DAAAAcHV2h/0//vjD3G7durXN/f7xj3+YU3au5OnpqYkTJ5q3v/jii2L35evrq6ZNm0q6/I3B/v37ba4DAAAAcHV2h/29e/ea2xERETb3Gzp0aLGP33zzzapSpYokafPmzbp06VKx7Zs3b25u79u3z+Y6AAAAAFdnd9g/cuSIuR0cHGxTHy8vrxI/GPj6+ppTfLKysnT48OFi2+c/dv6aAAAAAHdnd9g/d+6cuR0YGGhTnxo1aphz7IsTFBRkbqekpBTbNv+x89cEAAAAuDu7w35GRoa5HRAQ4JBi8uQ/0bakVX7yHzt/TQAAAIC7szvs+/r6mtu2huzz58/b1C45Odnczj/KX5j09PRCawIAAADcnd1hv3r16ua2rVevTU9P17Fjx4ptc/78eR06dEiSVK1aNYWFhRXbPjU1tdCaAAAAAHdnd9jPv05+SQE+v5UrVxb7+KJFi8xpPF26dClxjv/Ro0fN7WuvvdbmOgAAAABXZ3fYv+6668ztgwcP2tzvjTfe0MWLFwt9LC0tTVOmTDFv//3vfy9xf/mPnb8mAAAAwN3ZHfY7depkbsfExNjcb+/evbrjjjsKzN9PSkrSwIEDFR8fL0lq166dbrvttmL3lZaWZq73HxISwsg+AAAAkI+nvR179eplbm/atMmmPn5+fqpRo4aWL1+uxo0ba9iwYQoNDdXhw4c1f/58c5nNWrVq6euvvzYvrlWULVu2KCcnp0A9AAAAAK4i7IeHh6tFixbavXu31q9fr4sXL8rf37/YPr6+vlqyZIluueUWnTx5Up988kmBNtddd51++OEHNWvWrMQafv75Z3P79ttvL/2TAAAAAFyY3dN4JGnUqFGSpMzMTKvgXZx27dopNjZWzz77rMLDw+Xj46Pg4GB169ZNH374oWJjY22ee//jjz9KunxhrYEDB9r3JAAAAAAXZTHyX8GqlBITExUWFqaMjAzdcccd+vbbbx1ZW7Hi4uLUvHlzSdKTTz6pd999t9yODQAAAFQGVzWyHxISYo7uL1myRGfOnHFIUbaYPXu2JMnT01NPPvlkuR0XAAAAqCyuKuxL0sSJE+Xl5aX09HT997//dURNJbp06ZJmzpwpSbr33ntLvPAWAAAA4I6uOuxfe+21Gj9+vCTp/fffV3p6+lUXVZJPP/1UycnJ8vPz06RJk8r8eAAAAEBldNVhX5KmTJmiunXr6sSJE/roo48cscsipaen67XXXpMk/etf/1L9+vXL9HgAAABAZeWQsB8YGKgPP/xQkvTaa6+Z6+WXhalTp+rEiRNq166dnn766TI7DgAAAFDZXdVqPFd66KGH9PHHH+uRRx7R9OnTHbVb07FjxxQRESGLxaItW7YoPDzc4ccAAAAAXIVDwz4AAACAisMh03gAAAAAVDyEfQAAAMBFEfYBAAAAF0XYBwAAAFwUYR8AAABwUYR9AAAAwEUR9gEAAAAXRdgHAAAAXBRhHwAAAHBRhH0AAADARRH2AQAAABdF2AcAAABcFGEfAAAAcFGEfQAAAMBFEfYBAAAAF0XYBwAAAFwUYR8AAABwUYR9AAAAwEUR9gEAAAAXRdgHAAAAXBRhHwAAAHBRhH0AAADARRH2AQAAABdF2AcAAABcFGEfAAAAcFGEfQAAAMBFEfYriUOHDikwMFAWi0Vjx451djkAAACoBAj7lUBubq7uuecenT9/3tmlAAAAoBIh7FcCb775pn7//XdnlwEAAIBKhrBfwW3dulWTJk1ydhkAAACohAj7FdilS5c0atQoZWVlycvLy9nlAAAAoJIh7Fdgzz77rPbs2SMPDw/961//cnY5AAAAqGQI+xXUTz/9pA8//FCS9Pzzz6tr165OrggAAACVDWG/Ajpz5ozuvfdeSVLbtm01efJk5xYEAACASomwXwHdf//9OnnypLy9vfX5558zXx8AAAB2IexXMLNmzdLChQslSa+++qpatWrl5IoAAABQWXk6uwD8T0JCgp588klJUo8ePfTUU0/ZvS+LxeKgqgAAAFBRGYZR7OOM7FcQOTk5Gj16tC5cuKDq1atr7ty5BHYAAABcFcJ+BfHaa69p/fr1kqT3339fYWFhTq4IAAAAlR1hvwL4888/NWXKFEnSbbfdpjFjxji5IgAAALgCwr6TpaWladSoUcrOzlZISIhmzJjh7JIAAADgIjhB18leffVV7du3T5LUvn17zZkzp9B28fHx5vauXbv09ttvS5ICAwN1//3323Sskk7gAAAAQMVlz/mcFoME6FRjx47V3Llz7e4fFhamQ4cOFbi/sD8GftUAAACVlz35jmk8AAAAgIsi7DvZnDlzZBhGiT/R0dFmnzFjxpj3FzaqDwAAAEiEfQAAAMBlEfYBAAAAF0XYBwAAAFwUYR8AAABwUYR9AAAAwEWxzr6LYp19AAAA18I6+wAAAABMhH0AAADARRH2AQAAABdF2AcAAABcFGEfAAAAcFGEfQAAAMBFEfYBAAAAF0XYBwAAAFwUYR8AAABwUYR9AAAAwEUR9gEAAAAXRdgHAAAAXBRhHwAAAHBRhH0AAADARRH2AQAAABdF2AcAAABcFGEfAAAAcFGEfQAAAMBFEfYBAAAAF0XYBwAAAFwUYR8AAABwUYR9AAAAwEUR9gEAAAAXRdgHAAAAXBRhHwAAAHBRhH0AAADARRH2AQAAABdF2AcAAABcFGEfAAAAcFGEfQAAAMBFEfYBAAAAF0XYBwAAAFwUYR8AAABwUYR9AAAAwEUR9gEAAAA7xb8z09klFIuwDwAAANghee1mxb3wHyWv2+LsUopE2AcAAADssP+VD63+WxER9gEAAIBSSl67WUmr1kuSklauq7Cj+4R9AAAAoJSuHM2vqKP7hH0AAACgFPKP6uepqKP7hH0AAACgFIoaxa+Io/uEfQAAAMBGhY3q56mIo/uEfQAAAMBGJY3eV7TRfcI+AAAAYIPiRvXzVLTRfcI+AAAAYANbR+0r0ug+YR8AAAAogS2j+nkq0ug+YR8AAAAoQWlH6yvK6D5hHwAAAChGaUb181SU0X23D/uGYej06dM6dOiQDh06pNOnT8swDGeXBQAAgArC3lH6ijC67+nsAsrb9u3b9fPPP2vTpk3atm2bjh49quzsbKs2np6eCg0NVdu2bdWxY0f97W9/U2RkpJMqBgAAgLPYM6qfJ290P7jr9Q6uynYWww2Gsfft26fZs2friy++0PHjx60eK+rpWywWq9v169fX3XffrbFjx+q6664rs1od5cr6paKfKwAAAAq3qf+9dod9SarVt6s6Lp/lkFrsyXcuHfZ//fVXvfnmm/r555/NF8Lep5v/xe3Xr5+ef/559ejRwyF1lgXCPgAAwNVJXrtZG3rdfdX76bzmS4eM7hP2/09MTIyee+45rV69WtL/XgQPDw+1bt1a3bp1U5s2bdS8eXPVr19ftWrVkq+vryTp0qVLOn36tI4fP664uDjFxsbq999/144dO5Sbmyvpfy9079699dZbbykqKsoJz7J4hH0AAICrs/OJl3Vmzcar3k/Nnp3U6r2Xrno/hH1J48eP16effqrc3FwZhiEPDw/ddNNNGj58uAYPHqzg4GC79pucnKwffvhB3333nX7++Wfl5ubKYrHIw8ND9913nz7++GMHP5OrQ9gHAABwLYR9XR69l6TAwEA99NBDeuihhxQaGurQYxw9elQfffSRPv74Y509e1YWi0U5OTkOPcbVIuwDAAC4FsK+Lof85557To8//riqVatWpsdKTU3VtGnT9Pbbb+vs2bNleqzSIuwDAAC4FsK+pKSkJNWqVatcj3nmzBnVrFmzXI9ZEsI+AACAayHsw0TYBwAAcC325Du3v4IuAAAA4KoI+wAAAICL8nR2AeUlKytL+/fvV3p6upo1a1bmJ+8CAAAAzuYSI/sZGRl6+eWX1aFDB0VFRenhhx/WX3/9ZT7+0UcfqV69emrdurXat2+vmjVr6s4779SZM2ecWDUAAABQtir9Cbq5ubnq06ePfvvtN6sTFMLCwvTHH39o8eLFeuCBBwqcvGCxWNSqVSv9+eef8vLyKu+yyxwn6AIAALgWtzxB99NPP9Wvv/4qb29vvfDCC5o1a5bGjBmjw4cP6/XXX9e//vUvBQUFae7cuUpMTFRiYqJmz56toKAg7dy5s8Jd+RYAAABwlEo/st+rVy/99ttvWrBggYYMGWLe/9xzz+ndd99Vbm6ulixZogEDBlj1+/HHHzVw4EB169ZNv/76azlXXfYY2QcAAHAtbrnOfq1ateTl5WU1R1+SEhIS1LRpU4WEhOjEiROF9q1bt66ys7OVlJRUHqWWK8I+AACAa3HLaTznz59XgwYNCtyfd19hj+Vvc/78+TKrDQAAAHCmSh/2/f39dfLkyQL359137NixIvseO3ZM/v7+ZVYbAAAA4EyVPuy3aNFCx48fLzDvft68ebJYLDp16pSWL19eoN+yZct06tQpNWvWrLxKBQAAAMpVpb+o1rBhw7RhwwbdfvvtmjRpkpo2barff/9d77zzjvr376+TJ0/qnnvu0bRp09SvXz9J0k8//aR//OMfslgsuvXWW538DAAAAICyUelP0M3IyFCHDh20Y8cOq5MWvL299dtvvykhIUEjR44scEKDYRiqV6+edu7cqaCgoPIuu8xxgi4AAIBrccsTdL29vRUdHa377rtPtWrVkp+fn2688Ub9/PPPuuGGGzR8+HC988478vX1lWEY5k9kZKRWrlzpkkEfAAAAkFxgZN9WSUlJ2rx5s86fP6/rrrtOkZGRzi6pTDGyDwAA4Frccp19FI6wDwAA4FrcchoPAAAAgMIR9gEAAAAXRdgHAAAAXFSlX2ffVrm5ufrtt9+0evVq7dmzR3FxcUpOTlZqaqouXbokX19fBQQEKDg4WBEREWrevLl69+6t7t27y8ODz0QAAACofFz+BN3z58/rrbfe0ieffKLk5GSrxwp76lee+BAUFKTx48frueeeU/Xq1cu0VkfiBF0AAADXwmo8V4iOjtbw4cOVnJx8VUHXYrGoZs2a+vbbb9WzZ0/HFViGCPsAAACuhbCfz/Lly3XbbbcpKyvLfBGqVaumTp06qV27dmrYsKHq1q0rX19feXt7KyMjQ5cuXdLJkyd15MgRbd26VRs3btSFCxfMfVatWlU//PCD+vfv76ynZTPCPgAAgGsh7P+fM2fOqGXLljp16pQkqXHjxpoyZYqGDRsmLy8vm/eTmZmpBQsWaNKkSTpw4IAkqU6dOtq9e7eCg4PLpHZHIewDAAC4FtbZ/z9z5szRqVOnZLFY1LdvX8XGxuquu+4qVdCXJC8vL915553avn27+vbtK0k6ffq0Zs+eXRZlAwAAAA7lkiP7Xbt21YYNG+Tn56cjR444ZBT+zJkzCgsL06VLl9SpUyetW7fOAZWWHUb2AQAAXAsj+//n4MGD5qi+o6bb1KxZU3379pVhGEpISHDIPgEAAICy5JJhPyUlRdLl+fWOVLt2bUnS2bNnHbpfAAAAoCy4ZNgPCQmRJPOkWkfJG9HP2z8AAABQkblk2G/ZsqUMw9Bvv/2mXbt2OWSfO3fu1K+//iqLxaKWLVs6ZJ8AAABAWXLJsD9y5EhJl09YGDhwoHbv3n1V+9uzZ48GDx6s3NxcSdKdd9551TUCAAAAZc0lV+PJyspSx44dtX37dhmGIW9vb40dO1Zjx45V+/bt5eFR8mec3Nxcbd68WXPmzNHs2bOVmZkpSWrbtq02bdokT0/Psn4aV4XVeAAAAFwLF9XKJy4uTn369NGJEyck/e/F8ff3V+vWrRUWFqaQkBD5+vrKy8tLmZmZunTpkhITE3X48GHt2LFDFy9elPS/F7FevXqKjo5WeHi4c55UKRD2AQAAXAth/wrHjx/XXXfdpd9//93q/sJeqCtd+bJ069ZNX375perXr+/QGssKYR8AAMC1sM7+FerXr69ff/1VS5cu1YABA+Tt7S3p8otS0o8keXt7a8CAAVq6dKl+/fXXShP0AQAAAMnFR/avdPHiRa1fv1579uzR3r17debMGaWmpio9PV0+Pj4KCAhQzZo1dd1116l58+bq0qWL/P39nV22XRjZBwAAcC1M44GJsA8AAOBamMYDAAAAwETYBwAAAFwUYR8AAABwURX7ylAVzMmTJ82LazVs2NDJ1QAAAADF4wTdUoiKilJsbKwsFouys7OdXU6xOEEXAADAtdiT7xjZLyUCMwAAACoL5uwDAAAALoqwDwAAALgowj4AAADgolxyzn7v3r3LZL8HDhwok/1eKTo6Wp9++qnWrVunEydOyNfXV6Ghoerfv7/Gjh2rFi1alEsdAAAAqNxccjUeDw+PQs9WdgTDMGSxWJSTk+PwfV+6dEnjxo3T119/XWSbKlWq6JlnntGrr76qKlWqFNmO1XgAAABciz35zqXDflk9tbII+4ZhaMCAAfrpp5/M+/r166eoqCjl5ORo8+bNio6ONh97+OGH9eGHHxZbY2HHAAAAQOVE2P8/3t7e5jr4jz/+uGrUqOGQ/X788cdKTEwsk7A/Y8YMPfjgg5KkwMBA/fjjj+ratatVm59++kl33HGHUlNTJUm//vqrunfvXuj+CPsAAACuhbD/f9q3b68tW7bIYrFo2bJl6tevn0P2GxUVpe3bt5dJ2A8PD9f+/fslSV9//bVGjBhRaLupU6fq6aefliSNHDlSX331VaHtCPsAAACuxZ5855Kr8bRv397c/vPPP51YiW3i4+PNoF+rVi0NGzasyLb9+/c3t3fu3FnmtQEAAKDycsnVeG644QZzuzKE/SZNmuj8+fPavXu30tLSij3x9tKlS+Z21apVy6M8AAAAVFIuGfYr28i+JFWrVk0dO3Yssd0333xjbnfq1KksSwIAAEAl55Jhv2XLlvLz81NaWpoSExN17NgxNWjQ4Kr3W69ePZ09e/bqC7RDWlqaPvjgA02dOlWS5O/vr2eeecYptQAAAKBycMmw7+HhoS+++MIM5l5eXg7Z77JlyxyyH1utW7dOP/30kxISErRs2TLz+QQGBmr+/Plq3LhxudYDAACAysUlV+NxFY8++miBtfRr1qypRYsW6cYbbyy2ryMvKjZp0iRNnjzZYfsDAABA6bEaj4s5evRogfvOnDmj7t276+6779a5c+ecUBUAAAAqC8J+BTZlyhSdPn1aGRkZ2rt3ryZPnixfX18ZhqEvv/xSf/vb35SZmensMgEAAFBBEfYrsMjISNWqVUteXl4KDw/XpEmTFB0dLT8/P0nSH3/8oXfffdfJVQIAAKCiIuxXMh07dtSECRPM27NmzXJiNQAAAKjIXO4E3cTERIWEhLj0MePj49W0aVPz9oULFxQQEGDVxp4TOAAAAFBxcYKupKZNm2rSpEnlcvLq2bNn9eKLL6pZs2YO2V9OTo7S09NLbBcaGmp1+/z58w45PgAAAFyLy4X9ixcv6pVXXlHDhg317LPPKiEhweHHiI+P19NPP62GDRvq9ddf18WLF69qf3PmzFHTpk3l6+urV155pcT2ycnJVrdr1qx5VccHAACAa3K5sP/www/Lw8NDFy5c0NSpUxUeHq4+ffpoxowZSkxMtHu/iYmJ+uSTT9S7d2+Fh4dr2rRpSk1NlYeHhx555JGrqtnf31/x8fHKysrSggULSmz/008/mdutW7eWt7f3VR0fAAAArsnl5uxLUmxsrJ599ln98ssvkqznNzVv3lw33nij2rRpo4iICDVo0EA1a9aUr6+vLBaL0tLSlJSUpGPHjmnv3r3avn271q5dq7i4OHMfeS9Zv3799NZbb6l169ZXVW9qaqrq1q1rfkPw9ddfa8SIEYW2TUlJ0fXXX6+DBw9Kkt58800999xzBdoxZx8AAMC12JPvXDLs51m7dq3eeOMNLV++3Hwh7L2ybP7+t9xyi1544QV16dLFYbX+61//0ssvvyxJql69uhYtWqRevXpZtTl8+LDuuOMO/fnnn5Kkxo0ba+fOnfL19S2wP8I+AACAayHsF2H//v2aNWuWvvrqKx05csSufTRs2FB333237r33XquVcBwlIyND/fr106+//irp8i+zT58+6tq1q6pUqaLY2FgtWbJEGRkZkqTg4GCtXbtWzZs3L3R/hH0AAADXQti3wY4dO/TLL79o06ZNio2N1eHDhwusgOPj46OwsDBFRkaqQ4cOuummm656qo4tUlNT9cADD+irr74qtt3111+vb7/9Vo0bNy6yDWEfAADAtRD27XTu3Dlzvry/v78CAwOdWs/69es1c+ZM/f777zp+/LgkqU6dOurcubOGDx+uIUOGlDgdibAPAADgWgj7MBH2AQAAXAsX1QIAAABgIuwDAAAALoqwDwAAALgowj4AAADgogj7AAAAgIsi7AMAAAAuirAPAAAAuCjCPgAAAOCiCPsAAACAiyLsAwAAAC6KsA8AAAC4KMI+AAAA4KII+8UYN26c3njjDZvavvnmmxo3blwZVwQAAADYzmIYhuHsIioqDw8P3Xjjjfrtt99KbNurVy/99ttvysnJKYfKSmaxWArcx68aAACg8rIn3zGy7yC5ubmF/gIAAAAAZyHsO8jx48cVEBDg7DIAAAAAk6ezC6hIjhw5okOHDlndd+7cuWKn8Vy6dEmrV69WQkKCOnXqVMYVAgAAALYj7Ocze/ZsTZkyxeq+nTt3qlevXjb1f/DBB8uiLAAAAMAuhP18atSooYYNG5q3jxw5Ii8vL9WtW7fQ9haLRX5+fmratKnuuece3X777eVVKgAAAFAiVuMpRmlW46loWI0HAADAtdiT7xjZL8bs2bMVEhLi7DIAAAAAuzCy76IY2QcAAHAtjOyXsYyMDCUnJysrK6vINvnn/AMAAADORNgvQU5OjqZNm6bZs2crLi6u2E9PFotF2dnZ5VgdAAAAUDTCfjGys7N18803a/Xq1TZNgWGaDAAAACoSrqBbjI8//lirVq1Sp06dtH//fnXt2lUWi0U5OTk6deqUFi1apK5du8rX11eff/65cnNznV0yAAAAYCLsF+Prr7+WxWLR7Nmz1aRJE/N+i8WiWrVqadCgQfr99981fPhwjR07VmvXrnVitQAAAIA1wn4xdu3apbCwMIWHh0v63xnQV47gf/DBB/L29tZ//vOfcq8RAAAAKAphvxjp6emqU6eOedvHx0eSdO7cOat2AQEBat68uTZt2lSu9QEAAADFIewXIyQkRCkpKVa3JSkuLq5A2zNnzujs2bPlVRoAAABQIsJ+MRo3bqyTJ0+atzt06CDDMPTBBx9YtVuyZIkOHTqkBg0alHeJAAAAQJEI+8X429/+ptTUVG3evFmSNHLkSAUEBOibb75Rly5d9Oyzz+ruu+/WsGHDZLFYNGLECCdXDAAAAPyPxWBx+CLt379fEyZM0D333KOBAwdKkubPn6/Ro0crIyNDFovFXFu/Z8+eWrZsmTmv39nsuZwyAAAAKi578h1h3w6HDx/W119/rYMHD8rPz089evTQoEGDCv0FOAthHwAAwLUQ9mEi7AMAALgWe/Idc/avUmpqqrNLAAAAAApF2C9GQkKCZs2aVWD9/JycHL3wwguqUaOGAgMD1aJFC61bt85JVQIAAACFI+wX4+OPP9b999+vY8eOWd3/1ltv6a233tL58+dlGIbi4uJ0880368iRI06qFAAAACiIsF+M3377TVWrVjVX4pEuj+q/++67slgseu+99xQTE6M77rhDqampmjp1qhOrBQAAAKxxgm4xGjRoIC8vLyUkJJj3rVu3Tt26ddNNN92kFStWSJLOnTununXr6tprr9Xu3budVa4VTtAFAABwLZyg62BJSUmqU6eO1X0bNmyQxWLRLbfcYt4XGBiopk2bMo0HAAAAFQphvxheXl5KSUmxui/vRNxu3bpZ3e/v76+cnJxyqw0AAAAoCdN4itGuXTvFxsbq4MGDCg0N1YULF3TNNdeoSpUqSklJsfoqpVGjRjIMQ4cPH3Zixf/DNB4AAADXwjQeBxsyZIhyc3M1aNAgffDBBxoyZIjS0tI0ZMgQqxf71KlTOnLkiBo1auS8YgEAAIAreDq7gIrsqaee0nfffaft27frySeflGEYqlmzpiZNmmTV7vvvv5ck9ezZ0wlVAgAAAIUj7BcjICBAGzdu1Keffqo9e/aoYcOGGjdunEJCQqzaHTlyRIMHD9aQIUOcUygAAABQCObsuyjm7AMAALgW5uwDAAAAMLnkNJ4aNWooMjJSUVFRatu2raKiotSyZUt5errk0wUAAAAK5ZLTeDw8PAp8zVG1alW1aNHCDP9t27ZV27ZtVa1aNSdVWbaYxgMAAOBa7Ml3Lhv2C1PYC3TttddafQPQtm1bXXPNNWVdYpkj7AMAALgWwv7/WblypbZt26aYmBht27ZN+/btK/LqtoW9aLVq1bIK/1FRUQoPDy+0bUVF2AcAAHAthP0ipKenKzY21gz/MTEx2rlzp9LS0orsc+WL6evrqzZt2pjTfx544IGyLvuqEPYBAABcC2G/FHJzc7V3716rbwC2bdumpKSkIvtYLBYZhiGLxVLkNwUVBWEfAADAtRD2HeD48eNW3wBs27ZNBw8eNF9cwj4AAACcgbBfBvbu3au5c+dq+vTpunjxImEfAAAATmFPvmPh+UL88ccfWrRokRYtWqS9e/c6uxwAAADALoR9SdnZ2Vq9erUWLVqkxYsX68SJE+Zj+T8thYSEaODAgRo8eLAzygQAAABKxW3DfmpqqpYtW6ZFixZp+fLlOn/+vPlY/oB/3XXXafDgwRo8eLA6depUqZbfBAAAgHtzq7CfmJioH374QYsWLVJ0dLQyMzMlWYd7i8WiTp06afDgwRoyZIiuu+46Z5ULAAAAXBWXD/v79u0z59//8ccfZrDPH/C9vb3Vp08fDR48WIMGDVJISIizygUAAAAcxiXD/p9//qmFCxcWOME2f8APCgrSLbfcosGDB6t///7y9/d3RqkAAABAmXHJpTc9PDzMC2DlFxYWpkGDBmnIkCHq3r27qlSp4qQKyx5LbwIAALgWlt4sRO3atfXQQw/p9ttvV5s2bZxdDgAAAFBuXHpkP4+fn59at26ttm3bKioqSm3btlXr1q3l4+PjxCrLFiP7AAAAroUr6P6fK8N+UW3Cw8PN8J/3U6tWrXKqsmwR9gEAAFwLYf//vP7669q+fbu2bdumAwcOKDc3t9B2hb1g9erVK/ABoEmTJmVdssMR9gEAAFwLYb8QaWlp2r59u2JiYrRt2zbFxMRo165dSk9PL7LPlS9ktWrV1KZNG6sPAO3atSvr0q8KYR8AAMC1EPZtlJOToz179pjhf9u2bdq2bZtSUlKK7JP/xbVYLMrOzi6PUu1G2AcAAHAthP2rdOTIEatvALZt26YjR44UaGexWJSTk+OECm1H2AcAAHAthP0ycPbsWcXExFh9CNi7d68yMzOdXVqxCPsAAACuhbBfTjIyMuTt7e3sMopF2AcAAHAthH2YCPsAAACuxZ5851FWxQAAAABwLk9nFwAAAIDKKTc7W4lLVuvYnAVK2bhNWWfPq2qN6grq1FYNxg5VyMDe8vAkbjoT03hcFNN4AABAWUqNi1fM3U/pfGxckW2qt4lQ1JfvKuC6xuVYmetizj5MhH0AAFBWUuPitaHX3cpMKvoaRXm8agWpc/QXCohoUg6VuTbm7AMAAKBM5WZnK+bup2wK+pKUmZSimFFPK7eCX5DUVRH2AQAAYLPEJauLnbpTmPPb9+jU0ugyqgjFIewDAADAZsfmLLCr31E7++HqEPYBAABgs5SN2+zrtyHGsYXAJoR9AAAA2Czr7Ply7YerQ9gHAACAzarWqF6u/XB13PYqB9nZ2Vq+fLk2b96s06dPKz093ea+FotFn376aRlWBwAAUDEFdWqrU8vWlL5f5yjHF4MSueU6+2vWrNHo0aP1119/2b2PnJwcB1bkeKyzDwAAysKJhT9r6/DHSt3v+u+mq+6Qm8qgIvfBRbVssHfvXl1//fVKS0uzex8Wi4WwDwAA3FJudrbWdRxaquU3q0c2V9eN8+Xh6baTShzCnnzndq/4G2+8obS0NFksFtWpU0ePPvqoWrdurWrVqsnDg1MYAAAAiuPh6amoL9/Vhp532XwF3agvphL0ncTtRvYbNWqkI0eOqEaNGtq+fbtCQ0OdXVKZYGQfAACUpdS4eMWMelrnt+8psk31yOaK+mKqAq5rXI6VuS6m8djAx8dHWVlZGj9+vD788ENnl1NmCPsAAKCs5WZn69TSaB2ds0ApG2KUdfa8qtaorqDOUQodO1R1bu3FiL4DMY3HBsHBwUpMTHTZEX0AAIDy4uHpqbpDbuLE2wrM7SapR0ZGSpLi4+OdXAkAAABQttwu7P/973+XYRhasGCBkpOTnV0OAAAAUGbcLuwPHTpUQ4YM0dmzZzV48GCdPn3a2SUBAAAAZcLtTtCVpEuXLmnUqFFauHCh/P39NXjwYLVr105BQUGqUqWKTfu45557yrjKq8MJugAAAK6F1XhsdPz4cT3xxBP6/vvvJRX+whXHYrEoOzu7LEpzGMI+AACAayHs2yA5OVmdOnUyT9C15+lzBV0AAMpPbna2Epes1rE5C5Sycdv/lnfs1FYNxg5VyMDeLO8It8DSmzZ4//33deDAAVksFhmGoQ4dOigyMlIhISE2T+EBAADlIzUuXjF3P6XzsXFW92cln9WpZWt0atkaVW8Toagv3+XCTUAh3G5kv3Xr1tq1a5d8fHy0dOlS9e7d29kllQlG9gEAlV1qXLw29LpbmUkpJbb1qhWkztFfKCCiSTlUBjiHPfnO7VbjOXLkiCwWi+666y6XDfoAAFR2udnZirn7KZuCviRlJqUoZtTTyq3g59QB5c3twn7eVJ0mTfjkDwBARZW4ZHWBqTslOb99j04tjS6jioDKye3CfrNmzSRJx44dc3IlAACgKMfmLLCr31E7+wGuyu3C/p133mleQTc9Pd3Z5QAAgEKkbNxmX78NMY4tBKjk3C7sP/jggwoPD9fp06c1atQoZWZmOrskAABwhayz58u1H+Cq3G41Hknau3ev+vfvryNHjig0NFTjx49X+/btdc0118jPz8+mi2w1bNiwHCq1H6vxAAAqs59DOior+Wyp+1UNrqG/JW5yfEFABcA6+zZo06aNJCknJ0eGYejIkSOaOHFiqfZRGa6gCwBAZRbUqa1OLVtT+n6doxxfDFCJud00np07d2rXrl06fvy4eZ9hGKX+KUt//PGHHnzwQbVs2VKBgYHy8vJS3bp11bdvX02bNk2pqallenwAAJytwdihdvULtbMf4KrcbhpPz549bZqmU5LoaMcv7XXx4kWNHz9e8+bNK7ZdSEiIvvrqK/Xq1avINkzjAQBUZrnZ2VrXcWiplt+sHtlcXTfOl4en201cgJuwJ9+5XdivqHJycnTLLbdoxYoV5n29evVSly5d5Ofnp4SEBC1atEhnzpyRJHl5eWnlypXq1q1bofsj7AMAKrvUvQna0PMu26+gu+ZLBVzXuBwqA5yDsF+JffTRR3r44YclScHBwfr+++/Vo0cPqzapqakaM2aMvv/+e0lSWFiY9u7dK29v7wL7I+wDAFxBaly8YkY9rfPb9xTZpnpkc0V9MZWgD5dH2L8K8fHxSkhIUHJysjw8PFSjRg01bty43K6027RpU8XHx0uSFi9erIEDBxbaLjMzU9dff7127twpSfr88881atSoAu0I+wAAV5Gbna1TS6N1dM4CpWyIUdbZ86pao7qCOkcpdOxQ1bm1F1N34BYI+6WUkpKid999V7NmzdKJEycKbVO7dm3dddddmjBhgmrVqlUmdezatUutWrWSJIWHh2vv3r3Ftp8+fboee+wxSdK9996rWbNmFWhD2AcAAHAt9uQ7t1uNJ8/atWvVqlUrvfrqqzpx4kSRq+6cOnVK7733ntq0aVMmJ+VKMkfpJal9+/Yltm/c+H9fU/71119lUhMAAAAqP7f8zmvLli3q16+f0tPTzU9DNWvWVGRkpGrWrKmcnBwlJSUpNjZWZ8+elWEYOnnypG655RZt2rRJrVu3dmg9Q4cO1ZEjR/TXX3/Jz8+vxPb5A35AQIBDawEAAIDrcLuwn52drREjRujSpUuSpHbt2umtt95S7969C23/yy+/aMKECdqyZYvS09M1fPhw7dixQ54OnBvo6emp0NBQhYaG2tR+4cKF5nbLli0dVgcAAABci9tN4/nss8+UkJAgi8WiAQMGaMOGDUUGfUm66aabtGHDBt1yyy2SpH379unLL78sr3ILWLt2rZYtW2bevv32223ua7FY7PqZPHlyGTwTAAAAlDW3C/uLFi2SJAUGBuqzzz5T1apVS+zj6empzz77TDVq1JAkfffdd2VYYdGSkpJ0zz33mLcHDRqkyMhIp9QCAACAis/twn5MTIwsFosGDx6s4OBgm/sFBQVp8ODBMgxDW7ZsKcMKC3fhwgUNHDhQBw8elCTVqFFD06ZNK/c6AAAAUHm4XdhPSkqSJDVr1qzUffP65F3FtrycPXtW/fv318aNGyVJHh4e+vzzz3XttdeWax0AAACoXNwu7Pv4+Ei6fDXa0srr4+/v79CaivPXX3+pe/fuWr9+vaTLQX/mzJm69dZby60GAAAAVE5utxpPWFiYYmNj7VozP6+PravmXK2YmBgNHDhQx48fl3T53IFZs2Zp9OjRdu2Pi2oBAAC4F7cb2e/Zs6ck6Y8//tCSJUts7rd48WJt2rRJFotFvXr1KqPqrI/XrVs3M+j7+flp4cKFdgd9AAAAuB+3C/sPPvigeanhUaNG6ccffyyxz9KlS82QbbFYNG7cuDKtcfr06brtttt08eJFSVLt2rW1evVqpu4AAACgVCyGG87tePjhh/Xxxx+bob9Hjx4aOnSo2rZtq+DgYFksFiUlJWn79u2aP3++fvvtNxmGIYvFovvuu08zZswos9pee+01TZw40bwdHh6uZcuWqUmTJqXaT95zy88Nf9UAAAAuw55855ZhPz09XbfddptWrFhR6It2pbyXqHfv3lq+fLlNa/Pb4/3339cTTzxh3u7UqZOWLl2qmjVrlnpfhH0AAADXYk++c7tpPNLlFXmWLl2qF198Uf7+/jIMo9gff39/TZw4UStWrCizoL9u3To99dRT5u2+fftq1apVdgV9AAAAQHLTkf38zpw5oyVLlmj16tU6ePCgzpw5I8MwFBwcrKZNm6pbt24aNmyYefXcspCZmanrrrtOhw4dkiRFRETozz//VEBAgN37ZGQfAEonNztbiUtW69icBUrZuE1ZZ8+rao3qCurUVg3GDlXIwN7y8HS7RewAVCBM46mkPvnkE40fP968fd999ykiIsKmvqGhoRoxYkSB+wn7AGC71Lh4xdz9lM7HxhXZpnqbCEV9+a4CrmtcjpUBwP8Q9iupzp07m1fHLa0ePXpozZo1Be4n7AOAbVLj4rWh193KTEopsa1XrSB1jv5CARGlWzQBAByBOfs2GDdunMaNG6eff/651H3nzZunqKgodejQwaE17dixw6H7AwDYJjc7WzF3P2VT0JekzKQUxYx6WrnZ2WVcGQA4httNPpwzZ44sFotatWqlv/3tb6Xqe/z4cW3fvl3BwcEOrSk1NdWh+wMA2CZxyepip+4U5vz2PTq1NFp1h9xURlUBgOO43cj+1di1a5ck6dKlS06uBADgCMfmLLCr31E7+wFAeXPJkf2cnBz94x//KHbE/JtvvtHOnTtt3t+hQ4e0du1aWSwWNWjQwFGlAgCcKGXjNvv6bYhxbCEAUEZcMuxXqVJF1157rZ5++ukiT2TYvHmzNm/eXKr95l1Fd+TIkY4qFQDgRFlnz5drPwAoby47jeeJJ55QZGRkgQtk5SnpQlqF/eQF/RdffNGJzwwA4ChVa1Qv134AUN5ccmRfkjw8PPTjjz9q//795n2GYah3796yWCwaP368hg8fXuJ+LBaLqlSpourVqyssLEzVq/MPPAC4iqBObXVq2ZrS9+sc5fhiAKAMuGzYl6RrrrlG11xzTaGPNWnSRD169CjnigAAFUmDsUPtCvuhY4c6vhgAKAMuHfYLM3v2bElS+/btnVwJAMDZQgb2VvU2EaVafrN6ZHPVubVXGVYFAI7DFXTtkJ6eLh8fH2eXUSyuoAsAtkndm6ANPe+y/Qq6a75UwHWNy6EyALBmT75z67CfmZmpvXv36ty5c8rKyirwYhmGodzcXGVlZSktLU1nzpzRli1b9MMPPygxMdFJVduGsA8AtkuNi1fMqKd1fvueIttUj2yuqC+mEvQBOA1h30ZpaWl64YUXNHfuXLuvXpuTk+PgqhyLsA8ApZObna1TS6N1dM4CpWyIUdbZ86pao7qCOkcpdOxQ1bm1lzw83W72K4AKhLBvowEDBmjFihV2h98qVaooKyvLwVU5FmEfAADAtdiT71x2nf2iLFu2TD/99JN5u0aNGurUqZNatWolSfL09FSPHj3Uvn17NWrUyKqvl5eXZsyYoSNHjpRnyQAAAIBd3C7sf/PNN+b2448/rsTERK1fv16LFy+WdHl6zowZM7Rp0yYlJCQoISFBQ4YMkSRlZWVp69atqlevnjNKBwAAAErF7cL+xo0bJUlhYWGaOnWqqlatKklq1KiRQkNDJUm//PKL2b5Ro0b6/vvvdccdd8gwDM2YMUOxsbHlXzgAAABQSm4X9k+fPi2LxaKbb75ZHh7WTz8q6vIVETds2FCg30cffSRvb28ZhqFZs2aVS60AAADA1XC7sJ+3+k7eKH5+LVq0kGEYhY7cBwcHa8CAATIMQ5s2bSrzOgEAAICr5XZhPzAwUJKUm5tb4LGmTZtKkvbv31/omc0RERGSpPj4+DKsEAAAAHAMtwv7devWlSQdPny4wGNNmjSRJGVkZOjAgQMFHvf29pYknT9/vgwrBAAAABzD7cJ+586dZRiGfvzxR2VmZlo91qxZM3N7/fr1Bfru27dP0uXlOQEAAICKzu3C/q233ipJOnHihIYPH66kpCTzsWuuucZcVvODDz6wunBWfHy8FixYIIvForCwsPItGgAAALCD24X9QYMGqUWLFpKkJUuWKCwsTP/5z3/Mx++8804ZhqGYmBh16dJF06dP1+TJk9WlSxdlZGRIkvr06eOU2gEAAIDSsBglXWPXBcXFxenGG29UcnKyLBaLXnjhBb366quSLi/N2bx5c6WkpFj1yXuZ/Pz8FBsbq8aNG5d73aVhz+WUAQAAUHHZk+/cbmRfuryqTmxsrEaPHi0fHx+r4F67dm398MMPql27tgzDMH8kycfHR/PmzavwQR8AAACQ3HRkP79Lly4pMzPTXJIzT3JysmbOnKmNGzcqIyNDkZGReuCBB9SoUSPnFFpKjOwDAAC4FnvynduHfVdFRgwn+AAATGpJREFU2AcAAHAtTOMBAAAAYCLsAwAAAC6KsA8AAAC4KMI+AAAA4KII+wAAAICLIuwDAAAALoqwDwAAALgowj4AAADgogj7AAAAgIsi7AMAAAAuirAPAAAAuChPZxfgbMePH9fJkyeVnp6u3NxcGYZhU7/u3buXcWUAAADA1XHbsP/f//5X77zzjvbv31/qvhaLRdnZ2WVQFQAAAOA4bhn2H3nkEX388ceSZPNIPgAAAFDZuF3YX7NmjT766CNZLBYZhqGAgADdcMMNql27tvz8/JxdHgAAAOAwbhf2Z86caW7fc889+vDDD+Xv7+/EigAAAICyYTHcbB5LWFiYjh07pqZNm2rPnj3y8HDNBYksFkuB+9zsVw0AAOBS7Ml3rpl0i3Hq1ClJ0uDBg1026AMAAACSG4b9wMBASVJQUJCTKwEAAADKltvN2Y+IiNDp06d14MABZ5cCwE3lZmcrcclqHZuzQCkbtynr7HlVrVFdQZ3aqsHYoQoZ2Fsenm73zzMAoAy43Zz9//f//p8effRRBQUF6eDBg6pevbqzSyoTzNkHKqbUuHjF3P2UzsfGFdmmepsIRX35rgKua1yOlQEAKjp78p3bhf2srCxdf/312rlzp2677TZ99dVX8vLycnZZDkfYByqe1Lh4beh1tzKTUkps61UrSJ2jv1BARJNyqAwAUBkQ9m106NAh9e/fX/v371fTpk01btw4dezYUXXr1rV5rf2GDRuWcZVXh7APVCy52dla13FosSP6V6oe2VxdN85nSg8AQBJh3yYtWrSQJKWmpurYsWOSCn/himOxWJSdne3w2hyJsA9ULCcW/qytwx8rdb/rv5uuukNuKoOKAACVjT35zu2Gi+Li4syr5+YhBAMoa8fmLLCr39E5Cwj7AAC7uV3Y7969e6lH8gHgaqVs3GZfvw0xji0EAOBW3C7sr1mzxtklAHBDWWfPl2s/AAAkN7yoFgA4Q9Ua9i3za28/AAAkwj4AlIugTm3t69c5yrGFAADcittN4ylKfHy8EhISlJycLA8PD9WoUUONGzdWkyascQ3g6jUYO1Snlq0pdb/QsUMdXwwAwG24ddhPSUnRu+++q1mzZunEiROFtqldu7buuusuTZgwQbVq1SrnCgG4ipCBvVW9TUSp19mvc2uvMqwKAODq3G6d/Txr167ViBEjdPLkSUnFL79psVgUEhKiL774Qr16VY7/8bLOPlDxpO5N0Iaed9l+Bd01XyrgusblUBkAoDLgolo22rJli7p376709HTzBapZs6YiIyNVs2ZN5eTkKCkpSbGxsTp79qzZz8fHR5s2bVLr1q2dVLntCPtAxZQaF6+YUU/r/PY9RbapHtlcUV9MJegDAKwQ9m2QnZ2tiIgIJSQkSJLatWunt956S7179y60/S+//KIJEyZoy5YtkqTrrrtOO3bskGcFv3w9YR+ouHKzs3VqabSOzlmglA0xyjp7XlVrVFdQ5yiFjh2qOrf2kkcF/zcGAFD+CPs2mDVrlv7+97/LYrHo5ptv1sKFC1W1atVi+2RnZ+u2227Tjz/+KIvFotmzZ+uee+4pp4rtQ9gHAABwLfbkO7dbenPRokWSpMDAQH322WclBn1J8vT01GeffaYaNWpIkr777rsyrBAAAABwDLcL+zExMbJYLBo8eLCCg4Nt7hcUFKTBgwfLMAxzSg8AAABQkbld2E9KSpIkNWvWrNR98/qcOXPGoTUBAAAAZcHtwr6Pj48kKTU1tdR98/r4+/s7tCYAAACgLLhd2A8LC5NhGIqOji5137w+oaGhji4LAAAAcDi3C/s9e/aUJP3xxx9asmSJzf0WL16sTZs2yWKxVJoLawEAAMC9uV3Yf/DBB81li0aNGqUff/yxxD5Lly7V6NGjJV1e8mjcuHFlWiMAAADgCG63zr4kPfzww/r444/N0N+jRw8NHTpUbdu2VXBwsCwWi5KSkrR9+3bNnz9fv/32mwzDkMVi0X333acZM2Y4+RmUjHX2AQAAXAsX1bJRenq6brvtNq1YsaLQF+1KeS9R7969tXz5cpvW5nc2wj4AAIBr4aJaNvLx8dHSpUv14osvyt/fX4ZhFPvj7++viRMnasWKFZUi6AMAAACSm47s53fmzBktWbJEq1ev1sGDB3XmzBkZhqHg4GA1bdpU3bp107Bhw8yr51YWjOwDAAC4FqbxwETYBwAAcC1M4wEAAABg8nR2AWXlyJEj5nbDhg0Lvf9q5N8nAAAAUBG57DQeDw8PWSwWWSwWZWdnF7j/aly5z4qIaTwAAACuxZ5857Ij+1LRT57QCwAAAHfgsmG/e/fuhX76Kep+AAAAwNW47DQed8c0HgAAgLL166+/SpJ69OhRLsdj6U2YCPsAAABl58SJE2rQoIEsFouOHj2qevXqlfkxWXrTBuPGjdO4ceP0888/l7rvvHnzFBUVpQ4dOpRBZQAAAKgs5s2bp9zcXOXk5OiLL75wdjlFcruwP2fOHM2dO1c7d+4sdd/jx49r+/btSkhIKIPKAAAAUBkYhqHZs2ebKz/Onj27ws6gcLuwfzV27dolSbp06ZKTKwEAAICzbN68WXv27JFhGDIMQ7t379aWLVucXVahXHI1npycHP3jH/9QampqkW2++eYbm0f3c3JydOjQIa1du1YWi0UNGjRwVKkAAACoZObOnVvofTfccIMTqimey56g++677+rpp58ucCJD3tO1Z/lNwzBksVj04osv6t///rdD6iwrnKALAADgeBkZGapbt67Onj1rdX9QUJBOnDghb2/vMjs2J+jm88QTTygyMtL8eiXvJ8+V99vyY7FYNHLkSL344otOfGYAAABwliVLlhQI+pKUkpKipUuXln9BJXDZkX1J+uuvv7R//37ztmEY6t27tywWi8aPH6/hw4eXuA+LxaIqVaqoevXqCgsLU/Xq1cuyZIdhZB8AAKB0jh49qv79+xfb5uTJk0pOTi70seDgYNWtW7fY/j/99JNCQ0Ptqs+efOeSc/bzXHPNNbrmmmsKfaxJkybldgEEAAAAVHzr1q3T7t277e6fnJxc5AeBPOvXr9eIESPsPkZpuXTYL8zs2bMlSe3bt3dyJQAAAKhIRowYobS0ND322GNKS0tz6L79/Pw0ffp0m2aWOJJLT+NxZ0zjAQAAsM/+/ft11113afPmzQ7Z3w033KAvv/xSzZo1u6r9cIJuOUlPT3d2CQAAACgjzZo107p16/TCCy+YF84qrbx+//znP7V+/fqrDvr2cuuR/czMTO3du1fnzp1TVlZWgU9GhmEoNzdXWVlZSktL05kzZ7Rlyxb98MMPSkxMdFLVtmFkHwAA4OpFR0dr1KhR+uuvv0rVr379+po3b5569uzpsFrsyXduGfbT0tL0wgsvaO7cucVeeKs4OTk5Dq7KsQj7AAAAjnH69GmFhITYnKUsFosSExNVu3Zth9bBajw2GjZsmFasWGF3+K1SpYqDKwIAAEBFdezYsVLlRsMwdPz4cYeHfXu43Zz9ZcuW6aeffjJv16hRQ506dVKrVq0kSZ6enurRo4fat2+vRo0aWfX18vLSjBkzdOTIkfIsGQAAAE60YcOGculTFtwu7H/zzTfm9uOPP67ExEStX79eixcvlnR5es6MGTO0adMmJSQkKCEhQUOGDJEkZWVlaevWrapXr54zSgcAAIATbNy4sVz6lAW3C/t5L3xYWJimTp2qqlWrSpIaNWpkXs3sl19+Mds3atRI33//ve644w4ZhqEZM2YoNja2/AsHAACAU6xfv77Affnnz185l95isRTaxxncLuyfPn1aFotFN998szw8rJ9+VFSUpMK/dvnoo4/k7e0twzA0a9ascqkVAAAAznX69GnFx8cXuN/X11ezZs3Sp59+Kl9fX6vHDMPQgQMHlJSUVF5lFsntwn7e6jt5o/j5tWjRQoZhFDpyHxwcrAEDBsgwDG3atKnM6wQAAIDzFTYd54YbbtC2bdt07733aty4cdq2bZtuuOEGm/qWN7cL+4GBgZKk3NzcAo81bdpU0uWrphV2xnVERIQkFfrpDgAAAK4n/4yPoi6S1axZM61fv17//Oc/rab0VISTdN0u7NetW1eSdPjw4QKPNWnSRJKUkZGhAwcOFHjc29tbknT+/PkyrBAAAAAVRUxMjKTLF8lavXq1XnvtNfOcz/yqVq2q1157TatXr9Y111wjSdq6dWu51loYtwv7nTt3lmEY+vHHH5WZmWn1WP5PaIWdVLFv3z5Jl5fnBAAAgOubNWuWXnrpJcXGxtp0NdyePXtqx44deumllyrEeZ5udwXdxYsXa8iQIbJYLBo4cKBmzpypWrVqmY/Xr19fJ0+eVFRUlDZs2GB+couPj1erVq2UmZmpiIgI7dq1y1lPwSZcQRcAAMC12JPv3G5kf9CgQWrRooUkacmSJQoLC9N//vMf8/E777xThmEoJiZGXbp00fTp0zV58mR16dJFGRkZkqQ+ffo4pXYAAACgNNxuZF+S4uLidOONNyo5OVkWi0UvvPCCXn31VUmXl1dq3ry5UlJSrPrkvUx+fn6KjY1V48aNy73u0mBkHwAAwLUwsm+jiIgIxcbGavTo0fLx8bEK7rVr19YPP/yg2rVryzAM80eSfHx8NG/ePKcHfcMw1LVrV1ksFs2ZM8eptQAAAKDicsuR/fwuXbqkzMxMc0nOPMnJyZo5c6Y2btyojIwMRUZG6oEHHlCjRo2cU2g+r776ql588UVJ0uzZszV27NgCbRjZBwAAcC325Du3W1Zmx44dqlKlijlv39fXt8BVz6TLF9F67rnnyru8Es2ePVsvvfSSs8sAAABAJeB203imTJmi1q1bq1WrVlq0aJGzy7GZYRh65ZVXdN999zFCDwAAAJu43cj+pk2bZBiG9uzZY7XkZkWWmJioe++9V8uXL3d2KQAAAKhE3G5kPykpydy+/vrrnVhJyS5duqRXXnlFTZs2NYN+tWrV1KNHDydXBgAAgMrA7cJ+eHi4uX306FEnVlKyb775Ri+99JJSU1MlSe3atdOGDRtsunobAAAA4HZh/6WXXjLPZH722WeVk5Pj5IpKFhwcrKlTp2rTpk1q2bKls8tBJZGbna0TC3/Wn4Mf1M8hHfWjd3P9HNJRfw5+UCcW/qzc7GxnlwgAAMqY24X9oUOH6rvvvlNwcLCWLl2qdu3aafr06dqyZYuSk5OVm5vr7BJNISEhev311xUfH69//OMf8vR0u1MsYKfUuHit6zhUW4c/plPL1igr+ayUm6us5LM6tWyNtg5/TOs6DlXq3gRnlwoAAMqQ26XHAQMGSJIaN26sM2fOaOfOnXriiSdKtQ+LxaLschgVvfnmm3XzzTc7bH+Frc1qi0mTJmny5MkOqwNlKzUuXht63a3MpJRi252PjdOGnnepc/QXCohoUk7VAQCA8uR2Yf+nn34yQ2/ef1nKEq4iNztbMXc/VWLQz5OZlKKYUU+r68b58uCbIwAAXI7b/d+9YcOGdo9wAxVd4pLVOh8bV6o+57fv0aml0ao75KYyqgoAADiL24X9Q4cOObsEoMwcm7PArn5H5ywg7AMA4ILc7gRdwJX9//buPCyq6v8D+HvYEQRBBVwIFCUU1wo3VEQt9yWxtNRQyzLTNitLLX1csr6Zmdq3r2aKPy2/mjt+ywXFcoGM3BJyg3BLcQEXRPbz+4NnTjPMDsN25/16nnmeO3PPOXNmvBc/c+7nnJuVeKJs9RKOW7cjREREVC3Y3Mi+LePcBOUruHOvUusRERFR9WZzwf6lS5es0s4jjzxilXaIrMmxjkfJMptlqEdERETKY3PBfmBgYLkn6FbW0ptElvLq1A43fjxgeb3O7a3fGSIiIqpyNpmzL4Qo94OoOmo8NqpM9fzLWI+IiIiqN5sb2e/evbvJkX0hBHJzc3Ht2jVcvnwZQMlo/uDBg9G1a9fK6CZRmfgO6gmPNiEWLb/p0bYFfAZGVmCviIiIqKrYXLB/4MABi8pnZGRgwYIFWLZsGXbv3o2XXnoJAwYMqJjOEZWTnYMD2n//BRJ6PG/WjbWc6nmh/XeLeEMtIiIihbLJNB5L+Pr6YvHixfj444+Rm5uLsWPH4tq1a1XdLSKD3B9tis7x38GjbQuj5TzatkDnA9/D/dGmldQzIiIiqmwM9s307rvvokmTJsjMzMRXX31V1d0hMso9JAjhiZvw+A/L4DMgEo7edQA7Ozh614HPgEg8/sMyhCduYqBPRESkcLx2byaVSoWBAwdi6dKl2LFjB+bNm1fVXSIyys7BAX5Dn+SdcYmIiGwYR/Yt4OPjAwC4ePFiFfeEiIiIiMg0leA6kmYbN24c1qxZAw8PD9y5c6equ2OUvhWH+E9NREREVHOVJb7jyL6Z0tPTsXHjRqhUKgQFBVV1d4iIiIiITGKwb0R+fj6uXr2KmJgYdOvWDQ8fPgQADB48uIp7RkRERERkms2l8djb25e5rhAC3t7eOH/+PLy8vKzYK+tjGg8RERGRspQlvrO51XjKE/B6enpiy5Yt1T7QJyIiIiICbDDYf+SRR/T+KtLHzs4OtWrVQsOGDdG7d2+MHz8edevWreAeEhERERFZh82l8dgKpvEQERERKQtX4yEiIiIiIonBPhERERGRQtlcsD9+/HiMHz8ee/bssbjuunXr0L59e3To0KECekZEREREZF02N0E3JiYGKpUKrVq1wlNPPWVR3atXr+LkyZPw9vauoN4REREREVmPzY3sl0dycjIAyJtrERERERFVZ4oc2S8qKsJbb72F7Oxsg2U2bNiA06dPm91eeno6Dh06BJVKhcaNG1urq0REREREFUaRwb69vT2aNGmCqVOnGlyiKCkpCUlJSRa1K4SASqXCyJEjrdVVIiIiIqIKo9h19ouLi/H444/j5MmTVmtTHejHxMTA0dHRau1WBK6zT0RERKQsZYnvFBvsA8Dff/+N8+fPy+dCCPTs2RMqlQoTJ07Es88+a7INlUoFe3t7eHh4ICAgAB4eHhXZZathsE9ERESkLGWJ7xSZxqPWsGFDNGzYUO++oKAgREREVHKPiIiIiIgqj6KDfX1Wr14NAAgLC6vinhARERERVSxFp/FUlNzcXLi4uFR1N4xiGg8RERGRsjCNx0L5+fk4e/Ys7t69i4KCAp0vSwiB4uJiFBQUICcnB7dv38bvv/+O7du3IyMjo4p6TURERERkHpsM9nNycvD+++9jzZo1RtfiJyIiIiKqyWwy2B8+fDh2795d5rQWe3t7K/eIiIiIiMj67Kq6A5Xtxx9/xK5du+TzOnXqoFOnTmjVqhUAwMHBAREREQgLC0NgYKBWXScnJ6xYsQKXLl2qzC4TEREREZWJzY3sb9iwQW6//vrr+Oyzz+Do6Ij09HQ0bdoURUVFWLFiBZo3bw4ASE9Px9tvv41t27ahoKAAx44dw0svvVRV3SciIiKqUoMHD0ZqaqrF9YKCgrBjx44K6BEZY3Or8Tz66KM4f/48AgMDceHCBdjZ/XNxIyAgAFeuXMHSpUsxadIkrXojRozADz/8ADs7Oxw7dgxt2rSp7K5bhKvxEBERUUUIDQ1FSkqKxfVatmyJ5OTkCuiR7ShLfGdzaTw3b96ESqVCv379tAJ9AGjfvj0AICEhQafe119/DWdnZwghsGrVqkrpKxERERFRedhcsK9efcff319nX8uWLSGEwKlTp3T2eXt7o3///hBC4Ndff63wfhIRERERlZfNBfuenp4AgOLiYp19zZo1AwCcP39e7yWRkJAQAChTnhoRERERUWWzuQm6fn5+yMzMxMWLF3X2BQUFAQDy8vJw4cIFOUlXzdnZGQBw7969iu8oERGRDeMkUCLrsLlgv3PnzkhOTsb//vc/5Ofnw8nJSe7TDO6PHDmiE+yfO3cOQMnynERERFRxUlNTyzQJlIi02Vwaz8CBAwEA165dw7PPPotbt27JfQ0bNkSDBg0AAEuXLkVBQYHcl5qais2bN0OlUiEgIKByO01EREREVAY2F+wPHjwYLVu2BADExsYiICAAn332mdz/3HPPQQiB48ePo0uXLli2bBlmz56NLl26IC8vDwDQq1evKuk7EREREZElbDIfZdOmTejatSsyMzORm5uLO3fuyH3Tpk1DTEwMsrKycOzYMRw7dgzAP2uYurq64s0336yCXldPxYWFyIjdjysxm5GVeAIFd+7BsY4HvDq1Q+OxUfAd1BN2THsiomqKeeFEpHQ2GYWFhITg1KlT+OCDD7Bp0yY0bdpU7qtfvz62b9+OqKgo3LhxQ6uei4sL1q1bp1XelmWfScXxUW/j3qkzWq8XZN7BjR8P4MaPB+DRJgTtv/8C7o/yOyOi6od54USkdDYZ7AMl+flr1qzBf/7zH+Tn52vtCw8PR0pKClauXInExETk5eWhbdu2ePnllxEYGFg1Ha5mss+kIiFyFPJvZRktd+/UGST0eB6d47+De0hQJfWOiIiIiAAbDvbVXF1d4erqqvO6t7c33nvvvSroUfVXXFiI46PeNhnoq+XfysLx0VMRnriJKT1ERERElcjmJuhS+WXE7tdJ3THl3sk/cWNnfAX1iIiIiIj04TBrKYWFhdi3bx/OnTuH/Px8tGrVCr169eLa+hquxGwuU73LMZvhN/RJK/eGiIiIKpP6JqSVVY/Kx2Yi2P/973/YuXMniouLsXz5cr1l1q5dixkzZuDq1atar/v6+mLhwoV4/vnnK6Or1V5W4omy1Us4bt2OEBERUaXjSlQ1i+KD/Zs3b2Lo0KFITEwEUBK46wv2Fy1ahHfffVcusanp+vXrGDNmDNLS0jBz5swK73N1V3DnXqXWIyIiIqKyUXTO/o0bN9C9e3cZ6AshkJmZqVPu+PHjmDZtGgBApVIBKLlx1ltvvYVBgwbBzs4OQgjMmjUL27dvr7wPUE051vGo1HpEREREVDaKHtn/4IMPcPbsWahUKri4uCA6OhpPPqmbMz5jxgwUFRUBAOzs7LBu3To899xzcv/Ro0fRt29f3LlzB2+88Qb69esHJyenSvsc1Y1Xp3a48eMBy+t1bm/9zhARERGRQYoN9s+fP481a9ZApVIhICAAe/bsQbNmzXTKXblyBbt375Yj+tHR0VqBPgB06NABX3zxBcaNG4fLly/jp59+wpAhQyrlc1RHjcdGlSnY9x8bZf3OEBGRInESKJF1KDbY3759O4qLi6FSqbBu3Tq9gT4AxMbGyjx9lUqFqVOn6i03ZswYTJs2DTdv3sTWrVttOtj3HdQTHm1CLFp+06NtC/gMjKzAXhERkZJwEiiRdSg2Z3/Pnj0AgHbt2qFLly4Gy+3du1duBwUFoWXLlnrL2dnZoWfPnhBC4Phx215Vxs7BAe2//wJO9bzMKu9Uzwvtv1vEG2oRERERVTLFBvvp6elQqVRGA30A+Pnnn6FSqaBSqdCrVy+jZZs0aQIAuHbtmtX6WVO5P9oUneO/g0fbFkbLebRtgc4Hvof7o00rqWdEREREpKbYodYbN24AAPz8/AyWSUlJQVZWlszXj4w0nmZSu3ZtAMCdO3es08kazj0kCOGJm3BjZzwux2xGVsJxFNy5B8c6HvDq3B7+Y6PgMzCSI/pEVG0xL5yIlE6xUVh+fj4AGL3z7cGDBwGULMmpUqnQvXt3o22ql+205ZV4SrNzcIDf0Cd5Z1wiqpGYF05ESqfYNJ769esDgN519dUOHDggt5s3b270KgAApKWlAQB8fHzK30EiIiIiogqm2GDf398fAJCcnKx3f1FREfbs2SPz9fWtv6+psLAQcXFxUKlUBlf2ISIiIiKqThQb7Pfu3RtCCMTHx+P27ds6+3/66SdkZWXJZTcHDRpktL3vv/8e9+7dAwB06tTJ+h0mIiIiIrIyxQb7Q4cOBQDk5uZi4sSJKC4ulvtycnIwa9Ys+dzPzw+9e/c22Nb169fxwQcfyOfDhg2zfoeJiIiIiKxMsRN027Vrh6ioKGzevBlbtmxBWFgYRo0ahZycHKxbtw7nz58HUHIjrZkzZ8LOTv/vniNHjmDcuHG4du0aVCoVBg4ciHbt2lXiJyEiJRg8eDBSU1MtrhcUFMRJpEREVGYqoc5jUaArV66ga9euuHTpklxeU5MQAj179kRcXJzOvnfeeQf79+/HyZMnZdlatWrh5MmTNWLJNUOfl4iqRmhoKFJSUiyu17JlS4Nzj4iIyLaUJb5TbBoPADRu3BhHjhxBx44dIYTQeURFRSE2NlZv3U2bNmkF+h4eHvjpp59qRKBPRERERAQoOI1HrWHDhkhISEB8fDzi4uJw+/ZtNG7cGP3798djjz1msJ6vry8uXboEAIiIiMDSpUvRqlWryuo2EREREVG5KT7YV4uMjDR5h1xNb7/9Nh48eICuXbsiODi4AntGRERERFQxbCbYt9SIESOqugtEREREROWi6Jx9IiIiIiJbxmCfiIiIiEihGOwTERERESkUg30iIiIiIoVisE9EREREpFAM9omIiIiIFIrBPhERERGRQjHYJyIiIiJSKN5Ui4ioEgQFBVVqPSIiIgBQCSFEVXeCrE+lUum8xn9qIiIiopqrLPEd03iIiIiIiBSKwT4RERERkUIx2CciIiIiUigG+0RERERECsVgn4iIiIhIoRjsExEREREpFIN9IiIiIiKFYrBPRERERKRQDPaJiIiIiBSKwT4RERERkUI5VHUHiMh6Bg8ejNTUVIvrBQUFYceOHRXQIyIiIqpKDPaJFCQ1NRUpKSlV3Q0iIiKqJpjGQ0RERESkUAz2iYiIiIgUisE+EREREZFCMdgnIiIiIlIoBvtERERERArFYJ+IiIiISKEY7BMRERERKRSDfSIiIiIihWKwT0RERESkUAz2iYiIiIgUisE+EREREZFCMdgnIiIiIlIoh6ruABFZT1BQUKXWIyIioupNJYQQVd0Jsj6VSqXzGv+piYiIiGqussR3TOMhIiIiIlIoBvtERERERArFnH2y2ODBg5GammpxvaCgIOzYsaMCekRERERE+jDYJ4ulpqYiJSWlqrtBRERERCYwjYeIiIiISKEY7BMRERERKRTTeIgUbvbs2Wa9RkQleM4QWY7nTfXFdfYVqiLX2Q8NDS1Tzn7Lli2RnJxslT6Q+XjPBSLL8JwhshzPm8rBdfaJiIiIiEhisE9EREREpFAM9omIiIiIFIrBPhERERGRQjHYJyIiIiJSKAb7REREREQKxWCfiIiIiEihGOwTERERESkU76BLFgsKCqrUekRERERUNryDrkLxTnakxmOByDI8Z4gsx/OmcvAOukREREREJDHYJyIiIiJSKAb7REREREQKxZx9hdKX00VEREREysKcfSIiIiIiG8Vgn4iIiIhIoRjsExEREREpFIN9IiIiIiKF4h10FYrzromIiIiII/tERERERArFYJ+IiIiISKEY7BNVM0ePHsUrr7yC0NBQeHp6wsnJCX5+fujduzcWL16M7Oxss9q5cuUKpk2bhjZt2sDd3R1ubm4IDg7GxIkTcfz4cYv6ZM22iKwtPj4eo0ePRpMmTeDi4gIvLy+0adMG7733HlJSUsxuh+cM2br09HR4enpCpVJh7NixZtXheVMDCCKqFrKzs8Xo0aMFAKMPX19fsX//fqNtbd68WdSuXdtgG/b29uKjjz4yq1/WbIvImnJycsTIkSONni/29vZi2rRporCw0GhbPGfI1hUVFYlu3brJ4zQ6OtpkHZ43NQPvoEtUDRQVFWHAgAHYvXu3fC0yMhJdunRBrVq1kJaWhm3btuH27dsAACcnJ8TFxaFbt246bcXFxaFv374oKioCALRv3x79+vWDg4MDDh48iPj4eFl2/vz5mD59usF+WbMtImsSQqB///7YtWuXfK1Pnz5o3749ioqKkJSUpHV8Tpo0CV999ZXetnjOEAELFizQOh6jo6MRExNjsDzPmxqkin9sEJEQ4t///rccvfD29hYHDhzQKXP//n0xbNgwWS4gIEDk5uZqlXnw4IFo1KiRLDN37lxRXFysVeaHH34Qjo6OAoCws7MTycnJevtkzbaIrG358uXy2PT09BSHDh3SKfPTTz8Jd3d3We7nn3/WKcNzhkiI33//XR6X6oexkX2eNzULg32iaiAoKEj+oduxY4fBcnl5eaJVq1ay7Nq1a7X2L168WO4bOHCgwXYWLVokyz377LN6y1izLSJra968uTzu/vvf/xos9/nnn8tyI0eO1NnPc4ZsXU5OjmjRooUAIJycnMwK9nne1CwM9omq2OnTp+UfsODgYJPlly5dKsuPGzdOa1+7du3kvsOHDxtsIzc3V9SvX18AEM7OzuLu3bs6ZazZFpE1XbhwQR6b9erVM5qPn5ycLMu2atVKZz/PGbJ1r732mhwxnzdvnlnBPs+bmoWr8RBVsdOnT8vtsLAwk+WbNm0qt//++2+5nZGRgRMnTgAAvLy80KlTJ4NtODs7o1evXgCAvLw8/PTTT1r7rdkWkbUFBQXh3r17SExMxMaNG2Fvb2+w7MOHD+W2o6Oj1j6eM2Trdu3aJeeyTJs2DeHh4Sbr8LypeRjsE1WxqKgoXLp0CYmJiZg2bZrJ8poBvru7u9w+duyY3O7QoQPs7Iyf3pp/VH/99VetfdZsi6gi1K5dGx07dkRkZKTRchs2bJDbpQMJnjNky27fvo1x48YBANq1a4fZs2ebVY/nTc3jUNUdILJ1Dg4O8Pf3h7+/v1nlt27dKrdDQ0Pl9vnz5+V2kyZNTLbzyCOPyO1z585p7bNmW0RVIScnB0uXLsWiRYsAAG5ubnjnnXe0yvCcIVs2YcIEXL9+Hc7Ozli7di2cnJzMqsfzpuZhsE9Ugxw6dAg//vijfD5s2DC5fe3aNbnduHFjk201atRIbmdkZGjts2ZbRJXl8OHD2LVrF9LS0vDjjz/izp07AABPT09s2rRJKwUO4DlDtmvVqlVy4Gj+/Plo1aqV2XV53tQ8DPaJaohbt27hhRdekM8HDx6Mtm3byud3796V27Vq1TLZnqurq9661m6LqLKsX79eZy39unXrYtu2bejatatOeZ4zZIvS0tLw5ptvAgAiIiLw9ttvW1Sf503Nw5x9ohrg/v37GDRoEP766y8AQJ06dbB48WKtMnl5eXJb8w+iIZplNOtauy2iynL58mWd127fvo3u3btj1KhROsEBzxmyNUVFRRgzZgzu378PDw8PrFmzBiqVyqI2eN7UPAz2iaq5O3fuoG/fvkhMTAQA2NnZYe3atTr5jZorkpjzx1to3Dy79KQoa7ZFVFnmzJmDmzdvIi8vD2fPnsXs2bPh6uoKIQS+//57PPXUU8jPz5flec6Qrfn4449x5MgRAMCSJUsQEBBgcRs8b2oeflNE1djff/+N7t27yz/OdnZ2WLlyJQYOHKhTVnNlntzcXJNta5ZxdnausLaIKkvbtm1Rr149ODk5ITg4GLNmzUJ8fLxMDzh69Ci++OILWZ7nDNmS3377DXPmzAEAPP3004iOji5TOzxvah4G+0TV1PHjx9GhQwf88ccfAEpW7YmJiZFLpZWm+UczJyfHZPua6497enpWWFtEValjx46YPn26fL5q1Sq5zXOGbEVOTg5Gjx6NwsJC+Pr6YsWKFWVui+dNzcMJukTV0I4dO/D888/jwYMHAEomLm3YsEHviL5agwYN5LbmWvyGXL16VW77+flVWFtEVW3kyJGYOXMmgJLl+rKzs+Hu7s5zhmzG/Pnz5VKVYWFhiImJ0VsuNTVVbicnJ2PhwoUASgLrCRMmAOD/NTURg32iambZsmV44403UFxcDACoX78+YmNj0bFjR6P1NNfcT09PN/k+Fy9elNvBwcEV1hZRRSkqKkJBQQFcXFyMlit9D4t79+7B3d2d5wzZDM0geefOndi5c6fJOklJSUhKSgIABAQEyGCf503NwzQeomrk448/xpQpU2SgHxwcjISEBJOBPgC0bt1aTnD67bffTJZXT/gFgMcee6zC2iKytpiYGDRr1gyurq6YN2+eyfKZmZlaz+vWrQuA5wxRWfC8qYEEEVULX375pQAgH506dRK3bt2yqI2uXbvK+klJSQbLPXz4UNSrV08AEHZ2diIjI6NC2yKypo0bN8pjMyQkxGT51atXy/KtW7fW2sdzhugf8fHx8hiOjo42WI7nTc3CkX2iauDw4cNaNzbp3bs39u3bJ0cgzTVy5Ei5PXv2bIPlli1bhlu3bgEA+vfvDx8fnwpti8ia+vXrBzc3NwDAmTNnsGHDBoNls7Ky5AokADB69Git/TxniCzH86aGqepfG0S2Li8vTwQGBmqNVN6/f79MbeXk5IgmTZrItqZOnSoKCwu1yvzwww/C0dFRABAqlUr89ttvFd4WkbV9+OGH8tj08PAQ+/fv1ymTnp4uwsLCZLmmTZuKnJwcrTI8Z4j+Ye7IPs+bmkUlhMYdCoio0i1fvhwTJ06Uz1988UWEhISYVdff3x8jRozQem3v3r3o378/CgsLAQAhISEYMmQIXFxccOjQIezbt0+WnTFjhtGcZ2u2RWRNeXl56NOnD37++WcAJTfk6dWrF8LDw2Fvb49Tp04hNjZW3mXT29sbhw4dQosWLXTa4jlDVOLAgQOIjIwEAERHRxtctQfgeVOjVPWvDSJb16lTJ61cfUseERERetvctGmTqF27tsF6KpVKvPfee6K4uNhk/6zZFpE13b9/Xzz33HMmz5PHH39cpKamGm2L5wyR+SP7ajxvagYG+0RVzM3NzerBvhBCXL16Vbz//vuidevWonbt2sLJyUkEBASIMWPGiMTERIv6aM22iKzt8OHDYty4caJZs2bC1dVVuLq6ioCAADFy5EixZcsWs4MDnjNk6ywN9oXgeVMTMI2HiIiIiEihuBoPEREREZFCMdgnIiIiIlIoBvtERERERArFYJ+IiIiISKEY7BMRERERKRSDfSIiIiIihWKwT0RERESkUAz2iYiIiIgUisE+EREREZFCMdgnIiIiIlIoBvtERERERArFYJ+IiIiISKEY7BMRERERKRSDfSIiIiIihWKwT0REVM0sWLAAKpXK4MPJyQm+vr7o2bMnFi1ahLt371Z1l4mommKwT2QDjh49ildeeQWhoaHw9PSEk5MT/Pz80Lt3byxevBjZ2dkG68bExBgNOlQqFRwcHODm5gZ/f39069YNM2fORHJystU/x+zZs3Xee9WqVRa3c+HCBZ12Dhw4YHb9lJQUfPrpp+jduzeCgoJQu3ZtuLi4wM/PD5GRkZg5cyb++OMPk+0cOHDA5Hdr7mPs2LEWfw9UfZ04ccLo/oKCAty4cQPx8fGYOnUqQkNDcfTo0crpXCWZMmUKVCoVXnvttSp5/08//VSeXxEREWbVOXTokNZ52aJFC7PqJSUlyTp16tRBUVERAGDQoEFQqVT47LPPyvw5iCCISLGys7PF6NGjBQCjD19fX7F//369baxevdpkfUOPqKgocf36dat9nlmzZum8R9++fS1uZ+7cuTrtxMfHm6x39uxZMXz4cKFSqcz6/H369BF//PGHwfbi4+PL/N2WfkRHR1v8PVD1FRwcLP9te/fuLV577TWtx8iRI4Wfn5/WMVCvXj2rnm9VadeuXUKlUgkvLy9x69atKulDUlKS/G5dXV1Ffn6+yTozZszQOTf/+usvk/U+//xzWX7o0KHy9XPnzglHR0fh5OQkTpw4UZ6PQzbMoTw/FIio+ioqKkJUVBR2794tX4uMjESXLl1Qq1YtpKWlYdu2bbh9+zYyMjLQt29fxMXFoVu3bgbbbNq0KV599VWd1wsKCnD//n1cuXIFiYmJOH/+PABg8+bNSEhIwJEjRxAQEGD9Dwlg3759yMzMhLe3t9l1/vvf/1r8Ptu2bcPo0aPx4MED+VpgYCAiIyPRuHFjuLi44OrVqzh8+DBOnjwJANi9ezfi4+PxxRdfYNKkSTptBgUFGR2xS0pKwoYNGwAY/u7VWrVqZfFnourpwYMHuHDhgnz+0Ucf6T0v8/Pz8frrr2P58uUAgFu3buHzzz/Hv/71r0rra0V48OABXnrpJQghMGPGDNStW7dK+tG+fXt4e3sjMzMTDx8+xLFjx9CxY0ejdXbt2qX3tYkTJxqt98svv8jtp556Sm43b94ckyZNwpdffolx48bht99+g729vYWfhGxeVf/aIKKK8e9//1uOFHl7e4sDBw7olLl//74YNmyYLBcQECByc3O1ymiO7EdERJj13jt27BA+Pj6yXkhIiLh9+3a5P5PmyL6Li4vc/vbbb81u4/Tp03pHxo2N7K9du1ZrNP+xxx4Te/fuNVj+2LFjIiIiQqv9BQsWWPJRhRBl++6p5jt8+LDWsZOVlWWwbGFhoQgJCZFlW7ZsWXkdrSDvvvuuACAaN26s8/eoskVFRcnvduHChUbL3rhxQ/6dGDhwoKw3ZMgQo/WKi4tF3bp1ZfkLFy7otOvu7i4AiCVLlpT3I5ENYs4+kUJ9/vnncjsmJkZvzqm7uzvWr18vR4UvXryIH374odzvPWjQIBw6dAj16tUDAJw5cwYffvhhudvV1LdvX7m9ceNGs+utX78eAODs7IzWrVubLH/y5Em8/PLLEEIAACZMmICEhAT07t3bYJ327dsjLi4OEyZMkK9Nnz4dP/30k9n9JNt1/Phxuf3II4+gTp06Bsva29tj0KBB8nlqampFdq3CpaenY/HixQCAadOmwdnZuUr706tXL7l9+PBho2V3794t/06MGTMGQUFBAID9+/ejoKDAYL3Tp0/j9u3bAEqu4KnrqdWvX19eGZw1axYnY5PFGOwTKVBycrL8Tz84OFgrGCjNyckJr7zyiny+f/9+q/ShefPm+Oabb+TzlStX4uLFi1ZpGwBCQ0MRGhoK4J9UHnOo02L69+8PDw8Pk+UnTJiAhw8fAgAGDx6M5cuXw8nJyWQ9BwcHrFixAsOGDQMACCEwadIk5ObmmtVPsl2ak3PbtGljsryPj4/czs/PR3FxcUV0q1LMnTsXBQUFcHNzQ3R0dFV3R+tHvalgX53Co1Kp0KNHD5mOc//+faN1DaXwaHr11VehUqmQlZUlfwwRmYvBPpECnT59Wm6HhYWZLN+0aVO5/ffff1utH0OHDpU5rvn5+VixYoXV2gaAESNGAAAKCwuxbds2k+WTkpJkLvRzzz1nsnxcXBx+++03AICLiwtWrlwJlUplUR+XLl0KT09PACWjlmvXrrWofkXq0aMHVCoVAgMDAQD37t3DnDlz0Lp1a7i7u8PNzQ3t2rXDjBkzkJGRYVabKSkpeOONN9C2bVvUqVMHLi4uaNy4MQYNGoRvv/3W4Ahnt27d5Gok8fHxBtufNGmSLPf0008bLPfHH3/IcurjpLTLly9j5syZCAsLQ7169eDs7IxGjRph4MCBWLVqFQoLCw22HxgYCJVKJa8wbd68GW3btoWrqyv8/f0xfPhwOXfDUpoj++YE+5ojvV5eXrCzq5n/tV+7dk2eHyNGjEDt2rX1llMft+orkjk5OVi8eDE6dOgALy8veHh4oFWrVpg1a5YcMVfbvHkz+vbtiwYNGsDZ2RkBAQEYO3Yszpw5o/e9mjdvjkceeQQAcOPGDTkfqTQhBPbu3QsAaNu2LXx8fLQCd325/GrmBPuBgYHyKsOXX34pByCIzFK1WUREVBEKCgrEpUuXRGJiojh16pTJ8t98843WCjqayps3vnTpUlm/Q4cOFtfXpJmzP2PGDHH27FmtlW9MmTp1qgAg3N3dRU5OjggPDzeas//ss8/K/ePHjy9zv6dMmSLb6dixo9n1KjpnXz2vICAgQFy4cEE0a9bM4Go/Hh4eRucp5OTkiFdffdXkSkVNmzYVv/32m079Tz75RJaZPn26wfd59NFHteaiFBcX6y336aefynJr167V2b9w4UKteR/6HsHBweL06dN62w8ICJDH3aZNm/R+bmMrMRlSUFCg1a/169ebrDNo0KAyHV/VzZw5c+TnMHasqY/b0NBQ8eeff2odE6UfzZo1E5cuXRIPHjwQTz/9tMFytWrVEvv27dP7fuPGjZPlVq9erbeM5so906ZNE0IIcffuXeHg4CAAiDZt2hj8POpVlezt7cWdO3cMllu1apXJfhDpUzN//hORUQ4ODvD390fHjh3NykvfunWr3FanxlhLjx495Pbvv/9u1XzT4OBgtG3bFoDpVB4hhMztHzJkCFxdXU22//PPP8vt/v37l7mfmiPQR48exc2bN8vcVkV4+PAhBg0ahAsXLsDZ2RkjR47E3LlzMXnyZDRs2BBAyaj/gAEDsGfPHp36hYWFGDZsGL7++muZs9yhQwdMmzYNc+fOxQsvvCCvbqSlpaF79+5ao5kAMGDAALkdFxent59Xr17F2bNn5fPMzEytq1ia1PMj7O3t0a9fP61906ZNwzvvvCNTqrp06YL3338f8+fPx8svv4wGDRoAAM6dO4cuXboYvWdCZmYmXnnlFfm51UJCQsq0QtKff/6pleplamT/9u3b2Ldvn3xuaGS4JlizZg0AwM3NzeiqYGp37txB3759cfbsWdSvXx8TJ07EvHnzMG7cOJnrf+HCBbz55psYPXo0tm7dCk9PT4wfPx7z58/HxIkT5XGZk5ODMWPGID8/X+d9zMnb1xy579OnDwDAw8MDnTp1AgCcOnUK165d06l37tw5XL9+HUDJOaPujz7qdoF/visis1Txjw0iqmIHDx7UGuEqvZZzeUeXc3NzhZ2dnWzj+PHjZe5r6ZF9IYT4+OOP5WsrV640WPfQoUOyXGxsrBBCGB3ZP3/+vNb3cuXKlTL3u7CwUDg6Osq29uzZY1a9yhrZVz+aNm0q/vzzT60y2dnZYvjw4VplSq+Q8uGHH8r97u7uYuvWrTrvdfPmTdGvXz9Zzs/PT2f9dPVoub29vd4VaNasWaMzIrt06VKdcvfu3ZPfd7du3bT2bd++XdatW7eu3hHkhw8fismTJ2uN8Ofl5entq/oxYMAAkZKSIrKzs8XPP/8sNm/erNOuOf7v//5Ptuns7CwKCgqMlte8j4azs7O4ePFimd63qmmukmXq3hmlj9uhQ4eKBw8eaJWJi4vTOVY6d+4sbty4oVUuPT1d+Pr6yjLbtm3Teb/r16/L/S1atNDbp65duwoAws3NTetY0bxasWrVKp16mldVZ82aZfRzCyFEixYt5DlijRXOyDZwZJ/Iht26dQsvvPCCfD548GA5Um4tzs7OWqNVt27dsmr7zz77rNw2tpKQem19b29vrREyQzTnLjg4OKBRo0Zl7qO9vb3WJMrquGJKrVq1sHv3boSEhGi97ubmhvXr16N9+/YASkbmV65cKfffunULX3zxhXz+3XffYejQoTrt16tXD9u2bcNjjz0GALh+/bpWPeCf0f2ioiK9dzRWj2AHBASgVq1aAKC3XFxcnJwboDk5XQiB6dOnAyiZRLl161a9qyq5uLhg6dKl8jg5d+4cvvvuO51yaq1atcLWrVvRokULuLm5oXv37nJitqU08/VbtmwJBwf9t8O5evUqRo4ciXXr1snXZsyYIfPLaxrNeRqW/A3y9/fH+vXr5fGg1qtXL3To0EE+r1WrFrZs2YL69etrlQsICMDkyZPl86SkJJ338PX1lVc8z5w5ozMP4O7du0hMTARQci8TzQn8pvL2Na8emnNVpl27dgBKzpGDBw+aLE8EcIIukc26f/8+Bg0ahL/++gsAUKdOnQpb5cHNzU1uWzvYDwoKwuOPPw7AcCpPcXExNm3aBACIioqCo6OjyXY1/0M3dmndXH5+fnL7zp075W7P2l577TU0a9ZM7z4HBwd89NFH8vmWLVvkdmxsLLKzswEAERERGDx4sMH3cHJy0rrh06pVq7T2m0rlUa8U1bt3b/lvXjodCIDWEqeawX5CQgKSk5MBlKSXmUoV0Vwu1tjE6gkTJph1TJlDcyWeu3fvYvLkyVqPsWPHIjw8HE2aNJErSwHASy+9ZPXlbSvT0aNH5bY5qYdqEydOhIuLi959mj8ahgwZonUOatJ8P0MpduofhUIIHDlyRGtfXFycnMxdeiAhLCxM3vBv7969KCoq0tqvPn49PT1N3rCrdF9//fVXk+WJAAb7RDZJneuqHo2ys7PD2rVr0aRJkwp5v7y8PLldESuFaK7Kozn/QC0+Pl7mxY4cOdKsNjXvlGsomLCE5gitKJXfXR2Y+l769esnA9pffvlFrgaiuVRrVFSUyffp1auXvCPqtWvXtFY36dmzpxyhLR3snz17FleuXAFQMnqqHrW9efMmUlJStMqqR1CbNWumdaVCcxRV/WPBmCeeeEKO0iYmJhpcnadz584m2zKXZrCflpaGr776SuuxZs0aHDlyRF658PHxwbfffqu1zK3a2bNnsWjRIvTp0wcNGjSAk5MTPD09ERYWhjlz5iArK8tgP9Qr3mg+XFxc4Ovri7Zt22Ls2LFYs2YNcnJyrPK5NedilL66ZIyx1cZ8fX3ltvqKkj6aq/4YWhrXWN6+5l3KS4/O29nZybpZWVn4/fff5b6LFy/i0qVLAEqOfXPujNuiRQu5fe7cOZPliQAG+0Q25++//0b37t3l6JSdnR1WrlyJgQMHVth7ak7KNXaDoLIylcqjTuHx8/PTmjBsjGYAYI2ReM3AyhpXCqzJ0dHR5ERQZ2dnebOfwsJCmeakvjIE/JNiYIrmiGtaWprcdnFxQc+ePQFoB/eA9o+KHj16IDw8XD7XDOJPnz6Ny5cvA4DO/SU0fxQsXLhQJ5jVF9yqJ2w+fPjQ4KivtX4kX7x40WgA7uDggLp16yI0NBRjx47FunXrcOnSJYwfP16nbGpqKkJCQjB16lTs2bMHdnZ2aNu2LWrXro2kpCTMmjULoaGhRicfAyVpMuHh4QgPD0e7du3g7e2Nc+fOYc2aNRg7diwaNGiA//znP+X+7OqgF4AcCTeHegK5PprBs5eXl8Fy5gxA9OjRQ/5gP3TokNY+dbAfGBiI4OBgnbqao/2a6Uqax+2TTz5psg+A9nej+Z0RGaM/GZCIFOn48eMYNGgQrl69CqAkeFi1ahXGjBlTYe959+5drRUuNEfbFi5caLL+O++8Y7JMQEAAOnbsiF9//RX79u3D7du35ehxQUGBTDt59tlnzb6yoHkXywcPHuDu3btlDtKLiorkd1667erAy8vLYG546XJqGRkZCAoK0kp3MjdIU//bANBJuxowYAB27twJoCQtS31jJXW+fvPmzdGoUSNERERApVJBCIEDBw7g1VdfBWA4hUffe1kqKytLrtSjyVo/YDXz9R0cHJCdnV3mO8gKIeDj44PJkydj1KhRWvfSOHz4MEaNGoWLFy9i6NChSElJMfg+48ePx+zZs7VeKygoQEJCAj7//HPs2LEDr776Ks6cOVOuNEDNAQFLzrPSufqGmDNqbkzt2rURFhaGhIQEJCUlIS8vD87OzkhJSZFBt6G5QJqj/fHx8Zg2bRoA89bXL03zu+GddMlcDPaJbMSOHTvw/PPPy/SUWrVqYcOGDRU6og9A67K1i4sLWrZsKZ+/++67JuubE+wDJak8v/76q7zB1osvvggA2LNnjwzyzLmRllpISAhq166N+/fvAygJkMq6/OaJEyfk965SqcweAa8s5uaba+Ybq9NbNFOSzL3hmGY7pX98lc7bj46ORnFxsRwRjYyMBFDyw6Jt27Y4ceKE1gipOtj39PTUycnXTMMZO3asxcvMlp7cqWbODyVzaKbwtGjRosyBPgA0btwYaWlpWvNl1MLDw/H9998jPDwcaWlp2L17t9G5FqU5Ojqie/fu6N69OxYsWIDp06fjyy+/LNfEZM1UP3d3d7PrWXqTu/Lo3bs3EhISkJeXh99//x1dunTRu+Rmaf7+/ggJCcGZM2dw+PBhFBYWwsHBQU6wbdq0qdkDAJrfjeZ3RmQMg30iG7Bs2TK88cYbKC4uBlAStMTGxpo1Iay8EhIS5PZjjz1mtYmMpT3zzDOYOnWqXE9fHeyrJzEGBgbKNa/N4eDggD59+siJvVu3bi1zsK85ofXxxx/XurpRHZg7Qqg5Mq4e4dYczTd38rVmudKj4v7+/mjTpg1OnTolR/NPnjwp31szDSsyMhInTpxARkYGzpw5g8aNG8sUi759++oE4ZpXJjp37oyXX37ZrP5WFs2RffXqR2Vlap5Jly5d4Onpibt37+LPP/+0KNjX9MEHH2Dfvn3Yt28f5syZU+Zg39XVVf4gzsvL01rRprro1asX5s6dC6BkQnGXLl3kXXMdHBxkCpo+ffr0wZkzZ5CdnY3ff/8dgYGBMufeknsjaM4pMOdeIUQAc/aJFO/jjz/GlClTZKAfHByMhISESgn0hRCIiYmRz4cPH66z39TDXI0bN0aXLl0AlOR3Z2ZmIi8vD9u3bwdg/sRcTRMmTJDba9eu1VqO01zZ2dlYvny5fK4vv7qqZWdna+XH65OTkyPz693d3eUPFs0VfE6ePGnyvYQQOHXqlHyumV6iph7dv3btGpKTk7VG7ksH+2oHDhwwuOSmvvfSXP3FmNLLLFYkzZH98gb7phQVFcnvSt/ovyVef/11ACX//hcvXixTGx4eHnJbfTWtuuncubNMG0pKSkJRUZGcrNupUyej6UeaAf3x48e1ls20JNhXr3wFaH9nRMYw2CdSsCVLlmDGjBnyeadOnXDkyJFKyxnfuHEjLly4AKBkgueoUaMq9P00V+XZsWMHdu/ejXv37gGwLIVH7amnnpI/IPLy8vDCCy/IH03mmjRpkgwYGzVqJHPQqxvNXHd9YmNj5Wfv37+/HDXXTJVRXwUxJi4uTk54rl+/vt7lPjVTefbu3SsDo5CQEK2c+YiICJmLHR8fL1Mq9N01FwC6d+8ut7dt22ZyJZkTJ06gXr16cHd3R1hYmMHVeKwhKytLa8JlRQf7W7dulZ8/IiKiXG1169ZNptOoV/iyVGBgoNw29cOzqjg5OcnjPSkpCceOHZM/TEwF7D169JBpWSdPnpQ/Euzt7Y1eEShNPfkcsN7EcFI+BvtECnX48GG8/fbb8nnv3r2xb98+rcmRFSk9PV1OmgSAt99+W+vGUhVh+PDhMgd88+bNMvhs0aKFydVmDPn666/l5fJ9+/ZhzJgxWhOODRFC4L333tNan33ZsmVmTyisbJ999plcTrO0/Px8zJs3Tz5X/6gCSr5z9cjwL7/8gh07dhh8j4KCAnzwwQfy+XPPPac357pz587yOI2Li5OpOZoj+UDJyKZ6ScUDBw7IHyzh4eF6Jwv36tULjRs3BlAyYj9nzhyDfQUg+/rgwQM0adLEarn5+mim8ADmr2xUFllZWZg6dSqAkisglqxrr4+Xl5ccZc7IyChTG48++qjc1lzhqbpRr7d/7tw5OZEcMJyvr1arVi25gtTJkyflGvkdOnSwaEKy5nej+Z0RGcNgn0iB8vPzMXr0aDkRMiQkBFu3bq2UQLO4uBg//PADOnbsKJcRbNOmjdYVhorSoEEDOfIWFxeH2NhYAGUb1Vdr06YNVq9eLUeQv//+e3Tu3FnvnVvVTpw4gSeffBKfffaZfO2jjz7Se2fZ6uL8+fMYPny4zjKjd+/eRVRUFE6fPg2gZBT46aeflvu9vLzw5ptvyuejRo2SqVOaMjMzMWzYMDlh29fX1+AxYWdnh759+wIoWTP/xo0bAKB32VT1D4AbN27IkXF9KTxAycRSzRtPffrpp5gzZ47OiH1ubi7eeOMNeaXAwcEBM2fO1NumtWgG+02aNKmw5VkLCgowYsQIXLp0CfXr17fKspnAPxNHy5qCozmfpvQPn+pEvWa+EEKm53l7e+OJJ54wWVc9+v/HH3/Iz2hJCg8AHDt2TG5b8/4OpGycoEukQKtXr0Z6erp8Hh4ebvZ/6v7+/lojt5ouX76sd7nMoqIi3L17F+np6fjll1+0lpkMDg7Gzp07y50XbK4RI0bg559/Rm5urpzMVpZ8/dJtOjs7Izo6Gvfu3cOxY8cQGRmJoKAgREZGolGjRrCzs8P169dx8OBBGRgDJZfpFyxYYNbKQ1XJ0dERP/74I5o3b47hw4fD398fly9fxqZNm+SEWh8fH6xYsUJnNH727Nk4cuQI4uPjkZ2djaFDh6Jjx46IjIyEu7s7zp8/j+3bt8sfEs7Ozli3bp3RKz0DBgzAd999p7Vyj75gv2fPnlp35QUMB/sA8PLLL+PgwYNYt24dAGDWrFlYs2YNBg4cCB8fH1y+fBmxsbFa8zM++eSTMl8ZMldl5OsXFxdjzJgx2Lt3L2rXro3Y2Fij69RbQh3klzWPXPOqTXW+M2y7du1Qr1493Lp1S17FePLJJ81a0rdPnz54//33tfLuLQ321XNNHBwc0LVrV4vqkg0TRKQ4nTp1EgDK9IiIiNBqa/Xq1WVqx87OTowbN05kZWVZ7XPNmjVLtj9jxgy9ZTIyMoS9vb0s9/jjjxtsLzw8XJaLj483+f7p6enimWeeESqVyqzvoGfPnuL48eNl/LTa333pfxdriIiIkO1/9913om7dugY/S6tWrcRff/1lsK3c3Fzx4osvmvxumjdvbtZ3kpmZqfXvGBoaqrdcdna2cHR01GrflKKiIjF9+nStevoerq6uYsmSJXrbCAgIkOWsITQ0VLY3d+5cq7SpqaioSERHRwsAws3NTfzyyy9Gy6uPjVmzZpls+/bt27LvGzZsKHMfW7ZsKQAIJycnkZ2dbbJvAIwek5p/L1avXm2wXHx8vCwXHR1tsp/PPPOM1nGyatUqk3WEEKK4uFj4+vrKep6enqKwsNCsukIIkZqaKuv279/f7HpETOMhUiBTd8W0Nnt7e3h6eqJZs2YYPHgw/vWvfyE1NRWrVq2qkDvmGuPj46M1SljeUX1NAQEB2LhxI86dO4d58+bhySefRMOGDeHs7AwnJyf4+voiIiICH374IU6ePIl9+/ZVuzX1DenSpQuSk5PxzjvvoFmzZnB2dkadOnUQGRmJlStX4tixY1qTKEtzdnaW5aZMmYJWrVrB09MTDg4O8PX1Rf/+/bFq1SqcPn3arO/Ey8tLTo4G9I/qAyUryYSFhcnn5tw3ws7ODvPnz8eZM2fw/vvv44knnkDdunXh4OCAOnXqoEOHDpgxYwbOnDmDKVOmmGyvvHJzc3H27Fn53NrHjBACr7zyCtasWYNatWph586dOvcgKA/NlWXKk1oyevRoACVpiHv27Cl3vyqKOm9fzdzReZVKpXWn3J49e1p0sy/NOQLq74rIHCohLFjbjoiIFKNHjx5yWcu//vrLaDBPNdekSZPkRPPY2FiZd26M+tiYNWuWzh10S+vVqxf279+P9u3ba+WUWyojIwMBAQHIy8vDM888g40bN5a5LSXq1KkTfv31V/j5+SE9Pb1cN10j28KRfSIiIoV6/fXX8fXXX8PFxQXbt283K9C3xIIFC7B//34A0Jr8XBa+vr5yxDo2NrZS73FQ3f35559yLsPkyZMZ6JNFGOwTEREp0HvvvYelS5fKQF8zhaQ8CgsLcfDgQQwZMgTTp08HALz55ptaqzSV1YwZM+Dk5ITc3Fx888035W5PKZYsWQIAqFu3bqWklpGyMI2HiMhGMY1HuRISEuScBx8fHzRv3txg2fHjx+vc2Vl9bPj7++ORRx4BoL3qlvqeDJ6envjkk08wceJEq/X9jTfewJIlS9CgQQOkpaXBxcXFam3XRBkZGWjatClycnKwaNEivPXWW1XdJaphuPQmERGRwuTl5cntGzduyHsV6FN6wqmmy5cvy7u2Ojk5wdPTE82bN0e7du3Qs2dPPPPMM1a/f8ecOXOwceNGXLt2DV9//bXNB7effPIJcnJy0Lp1a47qU5lwZJ+IyEZxZJ+qqy1btiAqKgr16tXDuXPn4OXlVdVdqhJpaWlo2bIlioqKcOjQIXTs2LGqu0Q1EHP2iYiIqFoZNmwYJk6ciFu3bpV74m9N9tZbbyEvLw9z5sxhoE9lxpF9IiIiIiKF4sg+EREREZFCMdgnIiIiIlIoBvtERERERArFYJ+IiIiISKEY7BMRERERKRSDfSIiIiIihWKwT0RERESkUAz2iYiIiIgUisE+EREREZFCMdgnIiIiIlIoBvtERERERArFYJ+IiIiISKEY7BMRERERKdT/A6enGNrT5BEeAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 816x1615.68 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure(figsize=(6.8, 6.8/4*3*2*(1 + 16/50)), dpi=120)\n",
"grid = fig.add_gridspec(4, 1, height_ratios=[2, 50, 10, 50], wspace=0.4, hspace=0.1)\n",
"\n",
"######################\n",
"# fig.a\n",
"######################\n",
"\n",
"plot_axes = plt.subplot(grid[1, 0])\n",
"\n",
"plot_kwarg = {\n",
" # 'fmt': 'o',\n",
" \n",
" # Style of line\n",
" 'linestyle': 'None',\n",
" 'linewidth': 2,\n",
" \n",
" # Style of markder\n",
" # 'marker': '.',\n",
" 'markersize': 5,\n",
" # 'markerfacecolor': plot_blue,\n",
" # 'markeredgecolor': plot_blue,\n",
" 'markeredgewidth': 4,\n",
" \n",
" # Style of errorbar\n",
" 'capsize': 0,\n",
" # 'ecolor': plot_blue, # color of errorbar line\n",
" 'capthick': 1.5,\n",
" 'elinewidth': 3,\n",
" \n",
" # text for legend\n",
" 'label': 'Experiment',\n",
" }\n",
"\n",
"\n",
"# 1.2157134383410748+/-0.02622973148346536\n",
"# 0.2556310933363963+/-0.009332131323758952\n",
"\n",
"plot_axes.errorbar(powers, ncounts_withpush, yerr=ncount_withpush_errors, color=plot_red, marker='o', **plot_kwarg)\n",
"plot_axes.errorbar(powers, ncounts_withoutpush, yerr=ncount_withoutpush_errors, color=\"k\", marker='s', **plot_kwarg)\n",
"plot_axes.errorbar([430], [1.2157134383410748e8], yerr=[0.02622973148346536e8], color=plot_red, marker='^', **plot_kwarg)\n",
"plot_axes.errorbar([430], [0.2556310933363963e8], yerr=[0.009332131323758952e8], color='k', marker='*', markersize=15)\n",
"\n",
"plot_axes.set_xlabel(\"2D-MOT power $P_\\mathrm{2D}$ (mW)\", fontsize=20)\n",
"plot_axes.set_ylabel(\"Loading rate $\\Phi_\\mathrm{3D}$ (atoms/s)\", fontsize=20)\n",
"\n",
"plot_axes.tick_params(axis='both', which='major', labelsize=20)\n",
"plot_axes.tick_params(axis='both', which='minor', labelsize=16)\n",
"plot_axes.xaxis.offsetText.set_fontsize(20)\n",
"plot_axes.yaxis.offsetText.set_fontsize(20)\n",
"\n",
"plt.setp(plot_axes.spines.values(), linewidth=3)\n",
"plot_axes.xaxis.set_tick_params(width=3)\n",
"plot_axes.yaxis.set_tick_params(width=3)\n",
"plot_axes.tick_params(direction='in', length=10)\n",
"\n",
"if np.max(plot_axes.get_xticks()) < 1000:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='x', style='plain', useMathText=True)\n",
"else:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='x', style='sci', useMathText=True)\n",
"if np.max(plot_axes.get_yticks()) < 1000:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='y', style='plain', useMathText=True)\n",
"else:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='y', style='sci', useMathText=True)\n",
"\n",
"# plot_axes.set_ylim([-0.1e8, 9e7])\n",
"\n",
"######################\n",
"\n",
"plot_axes.legend( [\"with red push\", \"without push\"],\n",
" fontsize=20, loc = 'lower right', bbox_to_anchor=(0.1, 0.7, 0.5, 0.5), shadow=False, \n",
" facecolor='white', framealpha=1, edgecolor='gray')\n",
"\n",
"######################\n",
"\n",
"######################\n",
"# fig.b\n",
"######################\n",
"\n",
"plot_axes = plt.subplot(grid[3, 0])\n",
"\n",
"plot_kwarg = {\n",
" # 'fmt': 'o',\n",
" \n",
" # Style of line\n",
" 'linestyle': 'None',\n",
" 'linewidth': 2,\n",
" \n",
" # Style of markder\n",
" # 'marker': '.',\n",
" 'markersize': 5,\n",
" # 'markerfacecolor': plot_blue,\n",
" # 'markeredgecolor': plot_blue,\n",
" 'markeredgewidth': 4,\n",
" \n",
" # Style of errorbar\n",
" 'capsize': 0,\n",
" # 'ecolor': plot_blue, # color of errorbar line\n",
" 'capthick': 1.5,\n",
" 'elinewidth': 3,\n",
" \n",
" # text for legend\n",
" # 'label': 'Experiment',\n",
" }\n",
"\n",
"plot_axes.errorbar([430], [3.54756438], yerr=[2776453.58029856/1e8], color=plot_red, marker='^', **plot_kwarg)\n",
"plot_axes.errorbar([430], [1.19289449], yerr=[1591103.66003124/1e8], color=\"k\", marker='*', markersize=15)\n",
"\n",
"plot_axes.errorbar(powers, sat_ncount_withpush / 1e8, yerr=sat_ncount_withpush_errors / 1e8, color=plot_red, marker='o', **plot_kwarg)\n",
"plot_axes.errorbar(powers, sat_ncount_withoutpush / 1e8, yerr=sat_ncount_withoutpush_errors / 1e8, color=\"k\", marker='s', **plot_kwarg)\n",
"\n",
"plot_axes.set_xlabel(\"2D-MOT power $P_\\mathrm{2D}$ (mW)\", fontsize=20)\n",
"plot_axes.set_ylabel(\"Saturation atom $N_\\mathrm{sat}$ $(10^8)$\", fontsize=20)\n",
"\n",
"plot_axes.tick_params(axis='both', which='major', labelsize=20)\n",
"plot_axes.tick_params(axis='both', which='minor', labelsize=16)\n",
"plot_axes.xaxis.offsetText.set_fontsize(20)\n",
"plot_axes.yaxis.offsetText.set_fontsize(20)\n",
"\n",
"plt.setp(plot_axes.spines.values(), linewidth=3)\n",
"plot_axes.xaxis.set_tick_params(width=3)\n",
"plot_axes.yaxis.set_tick_params(width=3)\n",
"plot_axes.tick_params(direction='in', length=10)\n",
"\n",
"if np.max(plot_axes.get_xticks()) < 1000:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='x', style='plain', useMathText=True)\n",
"else:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='x', style='sci', useMathText=True)\n",
"if np.max(plot_axes.get_yticks()) < 1000:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='y', style='plain', useMathText=True)\n",
"else:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='y', style='sci', useMathText=True)\n",
"\n",
"plot_axes.set_ylim([0, 4])\n",
"\n",
"plt.setp(plot_axes.get_yticklabels()[0], visible=False)\n",
"\n",
"######################################\n",
"\n",
"plot_axes = plt.subplot(grid[0, 0])\n",
"plot_axes.text(-0.17, 0.8, '(a)', va='bottom', fontsize=20)\n",
"plot_axes.set_axis_off()\n",
"\n",
"plot_axes = plt.subplot(grid[2, 0])\n",
"plot_axes.text(-0.17, 0.1, '(b)', va='bottom', fontsize=20)\n",
"plot_axes.set_axis_off()\n",
"\n",
"fig.savefig('figS1_v2.pdf', bbox_inches = \"tight\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## V2"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"def curve(A, P0, Psat, x):\n",
" return A*(1-np.exp(-(x-P0)/Psat))"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1oAAAKdCAYAAAA6OBgmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAABJ0AAASdAHeZh94AAEAAElEQVR4nOzdd3hUVbfH8e+kd1KA0CH03iFAqIIKCKKiYAFFRRH1tSNKESwgggW7qAhWFJCmgIooIIQWKdJrQgsEQoA00ibn/pGbkUhC2kkm5fd5njz3zDl7n7My3pfMmr332hbDMAxERERERETENA72DkBERERERKSsUaIlIiIiIiJiMiVaIiIiIiIiJlOiJSIiIiIiYjIlWiIiIiIiIiZToiUiIiIiImIyJVoiIiIiIiImU6IlIiIiIiJiMiVaIiIiIiIiJlOiJSIiIiIiYjIlWiIiIiIiIiYrd4mWYRiEhIRgsViYO3eu6ff+8ccfGTJkCEFBQbi7u+Pj40Pr1q0ZM2YMx44dM/V5IiIiIiJSMjnZO4DiNnXqVEJDQ02/74kTJ7jrrrvYsGFDlvNJSUns3LmTnTt38tFHH/Hxxx9z7733mv58EREREREpOcpVojVnzhwmTpxo+n1PnTpFjx49CA8PB8DHx4fBgwdTt25doqOjWbp0KRERESQmJjJixAgqVKjAoEGDTI9DRERERERKBothGIa9gyhqhmEwZcoUXnrpJa78defMmcOIESMKff8BAwawfPlyAHr37s2CBQvw8/OzXU9NTeXRRx/l888/B6Bq1aocO3YMZ2fnQj9bRERERERKnjK/RisqKoqbbrqJiRMnUhQ55c8//2xLsjp16sTy5cuzJFkAzs7OfPjhhzRs2BCA06dPs3LlStNjERERERGRkqHMJlqXL1/mtddeo379+rakxtvbmx49epj6nNmzZwPg6OjIxx9/jKura7btXFxcGD16NM2aNaN79+7Ex8ebGoeIiIiIiJQcZTbR+uGHH5g4caItoWnbti0bN26kZ8+epj0jNjaWFStWAHD99dfTunXra7Z/6qmn2L17N2vXruXuu+82LQ4RERERESlZymyilcnf35+3336bzZs306xZM1Pv/ffff5OSkgJkJFoiIiIiIiJQhhOtwMBAXn/9dY4cOcLTTz+Nk5P5BRZ37dplO85M4sLDwxk3bhwtW7bEx8eHChUq0K5dO1599VUuXbpkegwiIiIiIlLylNny7v369aNfv35F+oz9+/fbjqtWrcrHH3/Mc889R2JiYpZ227ZtY9u2bXzwwQf8+OOPdO3a9Zr3tVgsRRKviIiIiIiYI7dCe2U20SoOFy9etB1/++23TJ8+HYAmTZrQr18//P39OXLkCEuWLOHChQucPXuWPn36sHbtWoKDg+0UtYiIiIiIFDUlWoVwZeXA6dOn4+DgwIwZM3jqqadwcPh3Vuabb77J0KFD+f3330lOTmbo0KEcOHAgxwqFIiIiIiJSupXZNVrF4b9TBCdOnMgzzzyTJcmCjIIcS5YsoV69egAcO3aMuXPnFleYIiIiIiJSzJRoFYKbm5vt2N/fn7Fjx+bY1tPTkzFjxtheL126tEhjExERERER+9HUwULw9va2HXfv3h13d/drtu/Tp4/teNu2bfl6Vm6L7UREREREpGgUpFidRrQKISAgwHZcrVq1XNvXqFHDdhwdHV0kMYmIiIiIiP0p0SqEpk2b2o6vrECYk7S0NNvxlaNhIiIiIiJStijRKoTWrVvbjq/cvDgn4eHhtuOaNWsWRUgiIiIiIlICKNEqhI4dO1K5cmUgI9Has2fPNdsvX77cdty9e/cijU1EREREROxHiVYhODk5cc8999heP/XUUzkWrYiOjuadd96xvR42bFiRxyciIiIiIvahRKuQxo0bZxvV+v3337n33nuv2l/rzJkzDBgwgKioKAAGDBhAp06dij1WEREREREpHkq0cmGxWGw/2W0yXLFiRb766itcXV0B+Oabb6hduzajRo1iypQpjBw5kkaNGrF582YAAgMD+fTTT4vzVxARERERkWKmfbRMcOONN/LLL79w3333cfz4caKjo7NNplq2bMmyZcuoWrWqHaIUEREREZHiohEtk/Ts2ZP9+/fz/vvvc9111xEYGIiTkxN+fn706tWLWbNmsXXrVmrXrm3vUEVEREREpIhZjJyqN4jdZLfztP4ziYiIiIjYR0E+n2tES0RERERExGRKtEREREREREymREtERERERMRkqjooBRYXF8e+ffs4dOgQ8fHxWK1We4ckIsXE0dERNzc3qlevToMGDahRowaOjo72DktERKTEUDGMEqg0FMNYu3Yta9asATI+cHl7e+Ps7GzfoESk2KSlpZGQkEBKSgoAnp6eDB06lJo1a9o5MhEREfMV5PO5Eq0SqKQnWplJVmBgIN26daNBgwa4uLjYOywRKWaGYRAZGcmhQ4cIDQ0lPT2dW2+9lWbNmtk7NBEREVMp0SojSnKiFRcXx9tvv01gYCD33Xcf7u7u9g5JREqA06dP891335Gamsqzzz6rEW4RESlTVN5dity+ffsA6Natm5IsEbGpWrUqXbt2JTk52fbvhIiISHmmREvy5dChQzg6OtKgQQN7hyIiJUzLli1xcHBg79699g5FRETE7pRoSb7Ex8fj7e2tNVkichV3d3e8vb2JjY21dygiIiJ2p0RL8sVqtWrthYjkyNnZmbS0NHuHISIiYndKtERExDTZLRYWEREpj5RoiYiIiIiImEyJloiIiIiIiMmUaImIiIiIiJhMiZaIiIiIiIjJlGiJiIiIiIiYTImWiIiIiIiIyZRoiYiIiIiImEyJloiInZw4cQIfHx8sFgsWi4WIiIgc227cuJHBgwcTGBiIm5sbQUFBPProo5w6dSrX5xSmr4iIiBSMEi0RETt5+OGHiYuLy7Xd559/TteuXVm0aBHp6ek0b96cmJgYPv74Y1q0aMHOnTuLpK+IiIgUnBItERE7mDNnDr/88gu33XbbNdvt2rWLRx55hPT0dMaOHUtkZCRhYWGcPn2ae+65hwsXLnDrrbeSnJxsal8REREpHCVaUuYdfOX9q35E7On06dM888wz1KlTh1deeeWabV9++WWsVitdunRh2rRpODs7A+Dh4cHs2bMJCgoiPDycOXPmmNpXRERECkeJlpR5h1794KofEXsaPXo0Fy9eZNasWXh6eubYLiEhgeXLl9v6/JerqysjRowA4Pvvvzetr4iIiBSeEi0RAWDy5Mm2ogw9e/a0dzimu/XWW7FYLDg6OnL27Nk89zP7fZk3bx5Lly5l2LBh3HDDDddsu337dpKSkgDo3r17tm169OgBwObNm0lPTzelr4iIiBSeEi0RKfOSk5NZtWoVAB07dqRy5cp2iePcuXM88cQTVKxYkXfeeSfX9gcPHgTAxcWFmjVrZtumXr16ACQlJXHs2DFT+oqIiEjhKdESKeeSk5P5559/bB/MAaKjo9m0aROxsbF2jMw8q1evJiEhAYCBAwfmqU9RvC+PP/440dHRzJw5k4oVK+baPiYmBgA/Pz8sFku2bfz9/W3HFy5cMKWviIiIFJ4SLZFyatmyZQwaNAg/Pz9atWrFvHnzbNf27NlD586d8fPzo1u3bnz00UelujLdTz/9ZDu++eabr9m2qN6XJUuWMH/+fG688UbuueeePPW5fPkykDEqlRM3NzfbcWJioil9RUREpPCUaImUMwcOHKBjx44MGjSIZcuW2T6QZyc9PZ3169fz2GOPUbduXX7++edijNQ8mXEHBQXRvHnzbNsU5fty4cIFRo8ejaenJ5988kme43Z3dwcgJSUlxzaZ67Ago5qgGX1FRESk8JRoiZQjq1evpl27dmzdutV2zs3NjZtvvpmuXbvaztWpU4d77703y1qmyMhIBg4cyJQpU4o15sLatm0bJ0+eBHKeNljU78uYMWM4c+YMr732GnXq1Mlz7H5+fkBGomYYRrZtMqcIXtm+sH1FRESk8JRoiZQT27Zt45ZbbrGtVXJwcOC5557j9OnTLF26lN69e9va1q5dmy+//JJTp07x+eefZ/kQPmHChHyNytjbsmXLbMfZJVrF8b6EhYUBMHXqVKpUqZLlp0OHDrZ2HTp0oEqVKrz00ksANGrUCMgYlTp+/Hi29z5y5AiQkRjWrl3bdr4wfUVERKTwlGiJlAPp6emMHDmS+Ph4ABwdHVmwYAEzZszA19c3x35OTk48+OCDhIWFUbVqVdv5Z5991jZKVNJlrs/y8fGxlTPPVNzvy7lz54iKisryEx0dbbseHR1NVFSUrdhGmzZtbOuo1q1bl+09165dC2RUU3Rw+Pef9ML0FRERkcLTX1Yp02LWh2V/fsPfxRyJfc2fP5/t27fbXk+aNInbbrstz/3r1q3LggULbK8TExN59dVXTY2xKJw6dYpt27YB0LdvX5ydnbNcL673ZceOHRiGke1PeHi4rV14eDiGYTBz5kwAPD096d+/PwCzZs266r7JycnMnTsXgKFDh2a5Vpi+IiIiUnhKtKRMO/Tah/k6X1YtXLjQdlyxYkWee+65fN8jJCSEAQMG2F4vXry4xG9ye2W1weymDZaG9+Wll17C0dGRDRs28MILL5CamgpkJHUjR44kPDyc2rVr8+CDD5raV0RERApHiZaUWTHrw4heHZrttejfN5SrUa0//vjDdty/f39bRbr8uvXWW23H586dY/fu3YWOrShlJlqOjo620Z0rlYb3pVWrVnz44Yc4ODjwxhtvUK1aNdq3b0/VqlX55ptv8PX1ZfHixbi6upraV0RERApHiZaUWbmNWpWXUa3Lly9n2Yw2p/LmefHfvpGRkQW+V1FLSEiwJVIhISFZNueF0vW+jBo1ir/++otbbrkFi8XCrl278PX15ZFHHmHXrl20adOmSPqKiIhIwTnZOwCRonCt0axMmaNa/iHtiikq+7gymQCuWeQhN/8tAX5lefCSZtWqVbZ9orLbpLikvC916tTJsfz6lbp06cLixYvzHVth+4qIiEjBaERLyqS8jlaVh1Gt/yYBly5dKvC9/puclOS9l3Ir615e3xcREREpHkq0pMzJy2hWpvKwVsvd3Z0KFSrYXu/Zs6fA99q7d2+W19WqVcvyevny5Tz++ON07tyZGjVq4ObmhqenJ40bN2b06NHs378/2/v27NkTi8WS5cfNzY3AwEBatWrFiBEj+PLLL0lMTMxTnOnp6SxfvhzI2E+qYcOGV7UpzvdFREREyh8lWlLm5HeUqjyMavXq1ct2vGLFCtuUuvxasmSJ7bhixYq0aNEiy/V33nmHDz/8kLCwMBwcHGjRogVVq1blyJEjfPLJJ7Rs2ZLvvvsux/vXrFmTkJAQQkJCaN26Nf7+/hw8eJAvv/ySESNGULVq1TxtlrxlyxbOnj0LZD+alam43hcREREpf5RoSZmSn9GsTOVhVGvw4MG247Nnz/Luu+/m+x5btmzJMh1v0KBBV21ye9999/Hbb78RGxvL8ePH2bp1K4cPHyYiIoJbb72V1NRUHnzwQU6cOJHtMx544AHWr1/P+vXr2bRpE/v27SM2Npa1a9dy8803Exsby+jRo3nqqaeuGWtu0wYzFdf7IiIiIuWPPg1ImVLQ0amyPqp11113ZamMN2HCBNvUurw4ceIEt99+u61og5ubGxMnTryq3fDhw7n++uuvKpNevXp15s2bh6+vL0lJSfl6trOzM927d2fp0qVMnToVgHfffZdFixbl2CezrLu/vz8hISE5tiuu90VERERKL6OA+2Mq0ZIyoyCjWZnK+qiWo6Mjn3/+OR4eHgCkpaUxaNAgXnrpJeLj43Psl56ezrx582jXrl2WUahp06ZRu3btfMXg6upK3bp1gYzS6wXx4osv0rt3bwBeeeWVbNuEh4fb9rHq378/jo6OOd6vON+XgqxfM3vtmoiIiOTPpW17CO06tEB9lWhJmVHYUamyPqoVHBzMwoULbaNNVquVV199lWrVqnHnnXeybt06W9sTJ07wyCOPUKdOHe6++27OnTtnuzZhwgSefPLJfD//7Nmz7Nu3D4AOHToU+Pd44oknANi5cyfHjh276nrmaBZkX9b9v4rrfSnM+jWz1q6JiIhI3sXtPcz6zrdzces/Bepf7hItwzAICQnBYrEwd+7cIn9eREQEFSpUwGKxMGLEiCJ/XnlVmNGsTGV9VAugX79+bNmyhdatW9vOxcXF8cMPP/Dnn3/azh09epRZs2ZlGa2pVKkSCxYs4NVXX83XM6Ojo1mxYgU33HADly9f5q677qJ79+4F/h26deuGxWIBYNOmTVddz1wv5ezszI033pinexbH+1KY9WtmrV0TERGRvPNuWp/AgddhcSrY1sPlLtGaOnUqoaGF+0CeV+np6dx7773ExsYWy/PKs8gFK/FqWj/bn+zk1DZy/opijrz4NW/enG3btrFw4UL69euHq6vrNdu3a9eOt956i/DwcG6//fY8PWPJkiW2qW6VKlXipptuIjY2lk8++YRvv/22UPH7+fnh4+MDQFRUVJZrsbGxthGonj172trlRVG/L2avXyvI2jURERHJWfzBcC79vTvLuWbvTKDb30sLdL+CpWel1Jw5c4p1ofobb7zBX3/9VWzPK8+av5vzf9flzo2uOtdjZ94LHpRFFouFwYMHM3jwYBITE9m3bx/Tp09n/vz5ADRp0oQPP/yQ5s2bU6lSpXzfPyAggJCQENLT04mMjOTkyZNEREQwb948evToQePGjQsVv5eXF5cuXSIuLi7L+V9++YXU1FTg2tUGc1LU70tOMtevbdu2rUDr11588UVWr17N6tWreeWVV7jttttMi01ERKSss15O4vAbszg64zM86tem29bFOLi4AOBes2qB71suRrQMw+C1117jwQcftFUHK2rbtm1j0qRJxfIskcLw8PCgXbt2NGnSxHaucuXK9OrVq8DJRLdu3Vi/fj2hoaFERERw4sQJ7r//ftauXUtwcHC2a6vyIzPB+u+IVV7LuudFUbwvOTFj/Vpua9dERETkamd/Wcu61gM4POUj0lNSid93hPNrNpty7zKfaEVFRXHTTTcxceLEYkuyLl++zLBhw0hNTcXl/7NhkfKsatWqzJ49mxtuuIHY2FimTJlS4HvFxMTYpuMGBgbazlutVlauXAlAixYtqFOnTqFiLg5mrl/Lbe2aiIiI/OvyidP8PeR/bB34MIlHM9ZH+7RpRsj6+VS6oZspzyizidbly5d57bXXqF+/vu3Dl7e3Nz169CjyZ48ZM4Z9+/bh4ODASy+9VOTPEzHD5MmTMQwDwzBYs2ZNkTwjc5QpLCyswPe4cjpu586dbcfr168nJiYmy3PMYPb7UlTr1661dk1EREQypKemcuTt2axt0Z8zi38DwMnHi2YzJ9J14wJ8O7Y07VllNtH64YcfmDhxom0vnLZt27Jx40Z69uxZpM/95Zdf+PDDjDLhY8eOveZmqSLlTVpaGpAx+lRQ7733HgBt2rShZs2atvP5LetuL5nr1zp37kzt2rVxdHS0rV87cOBAoe7t5eUFcNXaNREREckQ/u5c9o+djjUhYw/KancOoMfuldR5bBiWa+y9WRBlNtHK5O/vz9tvv83mzZtp1qxZkT7r/Pnz3H///QC0bt2ayZMnF+nzREoTwzD48ccfgYwkqSBef/11/vjjD4CrCttkJlqBgYF07NixEJEWraJcv5bT2jURERHJUPuRu3GrUQXPhnUI/nUubb5+C7eqlYvkWWU20QoMDOT111/nyJEjPP300zgVsP59fjz00EOcOXMGV1dXvv76a63PknIlLCyMCRMmZDsqc/z4ce655x7Wr1+Po6NjvjY8TktL46+//mLQoEGMGzcOgKeeeopbb701S7sDBw5gGAZnzpyxrVUqDcxav5bT2jUREZHyykhP58SchaScv2A75+TlSccVX9Bt209UvK7zNXoXXpkt796vXz/69etXbM/74osvWLx4MQBTpkyhefPmpt6/oB8cJ02apJE1KRbx8fFMmTKFKVOmEBAQQK1atXBxceHs2bNERERgGAaenp7Mnj07xxGtL774gt9//x3ImF546dIlIiIiuHz5MgAVKlRg2rRpPPLII8X2exWXgQMH8ttvvxV4/VpOa9dERETKo9id+9n1+GQubtpOzc07afnJq7Zr3k3qFUsMZTbRKk5Hjx7lqaeeAqBHjx4888wz9g1IxA5atWrF+++/z5o1a9i1axdHjx4lISEBHx8fgoOD6dOnD6NGjaJGjRo53uPEiROcOJFR+cfFxYUKFSrQoEEDWrduzXXXXccdd9yBh4dHcf1Kxaqw69dyWrsmIiJSnqTFxXNw8nuEf/A1pKcDEL1qPWlx8Th5exVrLEq0CslqtTJ8+HDi4uLw8fHhyy+/LFXTlsqDBhMft3cI5YKfnx+PP/44jz+e//e7qKoclhaFXb92rbVrIiIi5YFhGJxZ9Ct7nplCcuRZACxOTgQ9eR8NJjyGk5dnscekRKuQpk6dSmhoKJDxjXLt2rXtHJH8V8OX/mfvEKScCwsLY8mSJQwfPpxGjRpluXb8+HFeeOGFfK9fS0tLY+PGjbz55pu2jZqzW7smIiJS1iVGnGT3E69wbuVa2zm/kHa0+GAy3s0b2i0uJVqFsHXrVl555RUAbr31Vu677z47RyQiJVFh16+V57VrIiIiudn54IvErNsCgHOAL02mPU+N+26z+ywzJVoFlJiYyLBhw0hLSyMwMJBPP/20SJ9nGEaR3l9Eik5h16+V57VrIiIiuWk64wU2dLmD6sMG0WTaGFwq+ts7JECJVoFNmTKFgwcPAtChQwfmzp2bbbsjR47Yjvfs2cObb74JZHwD/dBDDxV5nCJifwVdv1be166JiIj8V+rFWE5+uYg6T9xnG7Gq0LYZPff9ikdQySoGpUSrgE6dOmU7/vnnn/n5559z7RMWFmYr3Vy7dm0lWiIiIiIieWAYBpE/LGffc6+THBWNSyV/qt99s+16SUuyoAxvWCwiIiIiIqVfwpHjbOn/IDuGP0tyVDQAZ68ofFFSKdEqoLlz52IYRq4/f/75p63PfffdZzsfERFhv+BFREREREq49JQUDr3+MetaDyD69w0AuFQOoPVXb9L6qzftHF3uNHVQRERERERKlPN/bWX3Y5OI3/dvvYNaI4fSeOqzOPtVsGNkeadES0RERERESozUS3GEDRpFWlwCAN7NGtL8o5fx79LWzpHlj6YO5sJisdh+cqosKCIiIiIi5nCu4E3DyU/i4O5G46nP0nXrolKXZIFGtERERERExI7iDxzl0va9VL9zgO1cnceGUeWW63GvVc2OkRWOEi0RERERESl21qRkDk/7hKMzPgOLBd/2LfCsXxsAi6NjqU6yoBwmWpMnT2by5Ml5bm8YRqGe17Nnz0LfQ0RERESkLIn+YyO7H59MwqGIjBMWC9GrQ22JVllQ7hItERERERGxj+Sz59n73OtEzvvJds6nVRNafPQKvh1b2jEy8ynREhERERGRImUYBie+WMi+F6aTdjEWAEdPDxpOfpI6jw/DwanspSVl7zcSEREREZESJWbdFnY9MsH2OnBQH5q9MwH3mlXtGFXRUqIlIiIiIiJFKqBHMIG3XM+lrf/Q7N2XqDKoj71DKnJKtERERERExFQxodtwcHLKsu6qxUev4ODqgrOPlx0jKz5KtERERERExBSpl+LYP/4tjs+ah1eTenTdugRHVxcAXCv52zm64uVg7wBERERERKR0MwyD04t/Y22LfhyfNQ+AxPCTXArbZefI7EcjWiIiIiIiUmCXT55hz5OvELVste1cwHWdafHhy2VqX6z8UqIlIiIiIiL5ZlitHPtkHgcmvk1aXAIAzgG+NJ3xItWHDcJisdg5QvtSoiUiIiIiIvkW/t5X7Ht+mu119XsG0WTGC+VuLVZOtEZLRERERETyrdbIO3CrWRX3oBp0XDGb1nOnK8m6ghItEZES4MSJE/j4+GCxWLBYLEREROTYduPGjQwePJjAwEDc3NwICgri0Ucf5dSpU7k+pzB9RUSkfIv+cyMpMRdtr528vei47FN67PiZStd3tV9gJZQSLRGREuDhhx8mLi4u13aff/45Xbt2ZdGiRaSnp9O8eXNiYmL4+OOPadGiBTt37iySviIiUn6lRMew84EX2HzDCPa/+GaWa97NG+Lo4W6nyEo2JVoiInY2Z84cfvnlF2677bZrttu1axePPPII6enpjB07lsjISMLCwjh9+jT33HMPFy5c4NZbbyU5OdnUviIiUj4ZhsHJb5eytkV/Tn69GIDI+ctJjoq2c2SlgxItKfNmfxdx1Y9ISXH69GmeeeYZ6tSpwyuvvHLNti+//DJWq5UuXbowbdo0nJ2dAfDw8GD27NkEBQURHh7OnDlzTO0rIiLlT+LRE2y5aSQ7RzxPSvQFACr370mPnctxDaxo5+hKByVaUubNmXfsqh+RkmL06NFcvHiRWbNm4enpmWO7hIQEli9fbuvzX66urowYMQKA77//3rS+IiJSvqSnpnLkzc9Y23oA0avWA+AaWJE2371D+yWf4F6rmp0jLD2UaImUM6+//rqt4ELmz+bNm/PUd9WqVbY+Pj4+GIZRxNGa79Zbb8ViseDo6MjZs2evul6c78+8efNYunQpw4YN44Ybbrhm2+3bt5OUlARA9+7ds23To0cPADZv3kx6eropfUVEpHz55+EJ7H/xTdIvZ/zdqPngEHrsWkG1O/qX+32x8kuJlkg5s2PHjqvOLV68ON99W7VqVer+wU1OTmbVqlUAdOzYkcqVK1/Vprjen3PnzvHEE09QsWJF3nnnnVzvffDgQQBcXFyoWbNmtm3q1asHQFJSEseOHTOlr4iIlC9B/7sXi6Mjno2C6PTHN7T85FWc/SrYO6xSSYmWSDmTXSKxZMmSPPXdvn277bhNmzYmRVR8Vq9eTUJCxs71AwcOzLZNcb0/jz/+ONHR0cycOZOKFXOf6x4TEwOAn59fjgmcv/+/e5dcuHDBlL4iIlK2Xdq2J8sMjAptm9Fh2Sy6hS0loFsHO0ZW+inREilHEhISOHz4sO115gf8AwcOsH///lz7X5mEtG7d2uzwitxPP/1kO7755puvul5c78+SJUuYP38+N954I/fcc08eIofLly8DGaNSOXFzc7MdJyYmmtJXRETKptQLl/jn4fGsD76NyHk/ZblW6YZuOLq52imyskOJlkg5snPnTtv6Gw8PjyyFEXIbtbl8+bJtChqUzhGtn3/+GYCgoCCaN29+1fXieH8uXLjA6NGj8fT05JNPPslz7O7uGXuUpKSk5Ngmcx0WZMRvRl8RESl7Ti/6lbUtb+LEnIUAHHhpJulpaXaOquxRoiVSjlw5ta1FixZZ9m3KLZH4559/sFqtADg7O9OsWbMiibGobNu2jZMnTwI5TxssjvdnzJgxnDlzhtdee406derkOX4/Pz8gI1HLqchG5hTBK9sXtq+IiJQdSafPEnbH42wb+gTJZ84BUPH6rnT6/SscnJzsHF3Zo0RLpBz579S21q1bU7t2bQC2bNnC6dOnc+x7ZRLStGnTa05DK4mWLVtmO87L+qyien/CwsIAmDp1KlWqVMny06HDv3PhO3ToQJUqVXjppZcAaNSoEZAxKnX8+PFs733kyBEgYxpgZtyF7SsiIqWfYRgcn72AtS36E7UkoyiUs78vrb54g47LP8ejTg07R1g2KdGSMivNarA29Fy219aGniPNWvpKkxdWdsUaMtcqGYbB0qVLc+xbVtZn+fj42EqZ/1dxvj/nzp0jKioqy090dLTtenR0NFFRUcTGxtriyVxHtW7dumzvuXbtWiCjoqKDw7//vBemr4iIlG6GYRB222h2PTKBtEtxAFQd0p8e/yynxvBbSl0F4dJEf02lTDp2IpGRT//N+Nf3Znt9/Ot7Gfn03xw/WX4W/aelpbFnzx7b68xk4JZbbrGdu9b0uNJccfDUqVNs27YNgL59++Ls7HxVm+J6f3bs2IFhGNn+hIeH29qFh4djGAYzZ84EwNPTk/79+wMwa9asq+6bnJzM3LlzARg6dGiWa4XpKyIipZvFYqFir84AuFUPpP3ij2n77Tu4BuZe8VYKR4mWlDnHTiTy2As7OByecM12h8MTeHTsDo6dKB/J1r59+2wFDxwcHGjRogWQsYFt5pqcP//80zaCciWr1cru3bttr0vbiNaV1QZzmjZYGt6fl156CUdHRzZs2MALL7xAamoqkFElcOTIkYSHh1O7dm0efPBBU/uKiEjpknrhUpbXdR4bRuPXn6P7PysIHHCdnaIqf5RoSZmSZjWYNGMvF2NT89T+Ymwqk9/cVy6mEV45ta1hw4a2ynJOTk7cdNNNQMYanhUrVlzV98CBA1lKfpfWRMvR0dE2svNfpeH9adWqFR9++CEODg688cYbVKtWjfbt21O1alW++eYbfH19Wbx4Ma6uV5fkLUxfEREpHaxJyeyf8DZ/1OtFwuF/N5+3ODpS77mHcPbxsmN05Y8SLSlTNmyOznUk678OHY1nw5bzRRRRyXGtqW2DBg2yHWc3Pe7KJCQoKIgKFUrPDvEJCQn88ccfAISEhGTZmPdKpeX9GTVqFH/99Re33JIxr37Xrl34+vryyCOPsGvXrmtOWyxMXxERKdnO/7WVv9rdzJE3ZpEWl8Du/71s75DKPdVxlDJl+aozBex3mh6dy/Zc5WsVa+jbty+urq4kJyezcuVKUlJSslTNK83rs1atWmWbEpjdJsWZSsL7U6dOnRzLr1+pS5cuLF68uEDPKExfEREpeVIvxbF/3Jsc//R727kKbZvRZNrzdoxKQCNaUsbsPnD1+pk89dtfsH6lybUSCS8vL3r37g1AbGysbQQoL31LuryUdYfy+/6IiEjpFfXTata1usmWZDm4u9H4jefpsmE+Pq0a2zk6UaIlZUp8QsF2NS9ov9Li2LFjXLhwwfY6u2TgWtPjrkwk7D2iNXPmTCZPnkxERESubdPT01m+fDmQsZdUw4YNs21Xlt4fEREp+6zJKWy7+ynCbnuUpFNRAAT06kT37T9R75kHtflwCaFES8oUL8+C/cNS0H6lxZVT26pWrUrlypWvanPzzTfb9tJYtmyZbQrbyZMns+zvZO8Rm5kzZ/Lyyy/nKdHasmULZ8+eBa49mlWW3h8RESn7HFycSU/JKPzl5OtDy0+nEPzrXDzr1bJzZHIlJVpSpjRv5FOwfo0L1q+0yMuIS5UqVQgODgbg9OnTbN68GciahFSsWJEaNUrP7vEFmTZYnt4fEREpPa5cw2uxWGj+3ktUH3YLPf5ZTs37b9fGwyWQEi0pU266vkoB+1U1OZKS5cpk4FojLtlNjyvN648yy7r7+/sTEhKSY7vy+v6IiEjJZ6Snc2zWPDb2vJv0lBTbebdqgbSe8wZuVa+ehSElgxItKVNCgitSP8gzX30a1PUipGNAEUVUMuQ1Gbjllltsx5mJRF4q6sXFxfHKK6/Qpk0bvL29cXV1pXr16gQHBzNmzBgOHz58VZ+DBw8ybdo0evXqRe3atXFzc8PX15eQkBDef/9924a6mebOnYvFYuHYsYx9QXr16oXFYrH9jBgxIkv78PBw2ybC/fv3x9HRMcffu6jfn+KWn3VsIiJSciUcOc6mG+5j9+OTuRC6jcNvfGrvkCQfyvbCFCl3nBwtvPJ8Ux4duyNPmxb7+jjz8pgmODmW3eH2CxcucPz4cdvrayUSjRs3plGjRhw4cIADBw6wf//+XJOQ+Ph4unTpwu7du7FYLNSrVw8/Pz/Onj3L9u3b2bJlC40aNaJ+/fpZ+o0bN44ff/wRLy8vqlSpQsuWLTl79iyhoaGEhoayZMkSfvnlF5ydnQEIDAwkJCSEsLAwkpOTad68eZb9qv5b6CJzNAuuXda9qN8fe5g5cybHjh2jZ8+e1KlTx97hiIhIPhlWKxEffM3+ie+QfjljixK3mlXxC25l58gkPzSiJWVOrRoefDitNQ3qXnv38wZ1vfjojdbUquFRTJHZx5UjLt7e3lclPP915fS4L7/8kvDwcNvr7EZsZs+eze7du2nRogVHjx7l0KFDbNmyhYiICGJjY5k/fz7NmjW7qt/w4cPZvHkzsbGxWfrs27ePTp068ccffzBz5kxb+379+rF+/XqqVMmYHvr++++zfv1628+4ceOy3D9zfZazszM33nij3d4fERGR/Ijbd4TQnvew97nXbUlWrVF30X3Hz1S6oZudo5P8UKIlZVLtmh589nZbpoy7+gM+wJRxzfjs7bZlPsmCrIlEy5Ytc10se2Ui8cEHH9iO3d3dsy2Pvm/fPgAefPDBq0ZP3NzcuOOOO+jcuXO2z+nYseNV8TRu3Jivv/4agDlz5lwz1pzExsaybt06AHr27ImPT87FTor6/REREcmL9LQ0Dr8xi/XtB3FxU8bfJo96tei0+mtafDAZZ59rf4EsJY8SLSmznBwt9OhcMdtrPTpXLNPTBa+U36ltnTp1IjAwEMiYFpipZcuW2a5zqlUro5TskiVLiI3N38bPZ8+e5b333mPYsGFcf/31dOvWja5du9rWW+3fv5/Lly/n654Av/zyi22N17WqDULRvz+Z8ruOLb9r2CD/69hERKTksCYmceyT7zLKtlssBD11P923LSOge0d7hyYFVCRrtAzDYMOGDaxfv962Eeg999xj+8Azd+5cOnbsSNOmTYvi8SJyhbxW1Mvk4ODAwIED+fzzz7Ocz6nvAw88wNtvv82aNWuoVq0affr0ISQkhM6dO9OpUyecctg0ceHChdx///1ZkpX/MgyDmJgYqlevnmvcV8prWXco+vcHCraOLb9r2CD/69hERKTkcPbxosXHr7Dv+Tdo+elU/Dq1tndIUkimj2h9/fXXNGjQgB49ejB+/Hg+/fRTFixYwKFDh2xtJk6cSMuWLbnrrruIiYkxOwQR+X9JSUkcOHDA9jqvxRqunB6XW98qVaqwefNmhg8fjoODA0uXLuX555+nW7duVK1alalTp5KWlpalT0REBMOGDSM+Pp4hQ4awfv16oqOjSU1NxTAMrFarrW12IzfXYrVaWblyJQAtWrS4ZjGI4nh/oGDr2PK7hg3yv45NRETs5+KWfzgyI2sVwcp9e9Bt2zIlWWWEqSNaI0eOtK2p+O+maplSUlKIjIwEYP78+WzdupV169ZRrVo1M0MRETLWSOU3UQEYMGBAlv8N56ZevXp89dVXWK1WduzYwV9//cXy5cv5/fffGT9+PBcvXmT69Om29t9//z3JyckEBwczb948HByyfudz/vz5fMecaf369bYvcHIbzSqu9ycv69j+K7tkDv5dw9agQQPmzJnDmDFj8h64iIjYnfVyEgdffo+j78yB9HR8O7YioEew7bpDDjNBpPQxbURr/PjxfPHFF7YPH3369GHSpElXtUtJScny4efo0aMMHTrUrDBExI4cHR1p164dTz31FKtWreLdd98F4JNPPsmSmGRW6gsJCbkqyQIIDQ3N8Rm5FavIa1n34lTQdWxFtYZNRETsI2Z9GH+1G8TRt2ZDejoWZ2fiD4Tn3lFKJVNS5gMHDjB9+nQsFgvVqlVjwYIFdOrUCYCXX345S1svLy+WLFlCaGgoQ4YMITIyktDQUJYuXZrjN7giUjp1794dyCgEERcXZ6v+5+GRUe0xc3T7SoZh8Oabb+Z4z8y+OSUYmYlWYGAgHTuWjAXEBVnHVpRr2EREpHilxSdwYMI7RHz0Dfz/F48V2reg1WdT8W6u9bNllSkjWrNmzcJqtWKxWFi0aJEtybqWLl26sGTJEtu3099++60ZoYhIMXvxxRf5+OOPiYqKynL+4sWLvP7660BGEYYrS6z36NEDyEgmrixcERcXxwMPPEBYWFiOz8ssGPHHH39ke/3AgQMYhsGZM2dyHf0qLvldx1aUa9hERKR4Ra8OZV2bgUR8+DUYBg5urjR+43m6/PW9kqwyzpRE6/fff8disdC7d286dOiQ537t27fnxhtvxDAMtm7dakYouTIMg5CQECwWC3PnzjX13lu2bGHUqFE0a9aMChUq4OLiQpUqVejTpw8zZ8685jfTIqXVvn37ePTRR6lSpQq1a9cmODiY5s2bU6VKFebPn4+npyefffZZlj4333wzPXv2JC0tjUGDBhEUFET79u2pUqUKX331FZ9++mkOT4N7770XgDfffJN69erRvXt3evbsybRp04r09yyszHVsFy5cICwsjHfeeYc+ffoQHR3N+PHjsxSq+O8atpCQEAICAmwjX4VZwyYiIsUnMeIkW24ayeWIUwD4d21P923LqPfMg1qLVQ6YkmidOHECgODg4FxaXq1NmzYAV30bXlSmTp16zfUfBZGQkMDw4cMJDg7m008/Ze/evcTGxpKamkpUVBSrV6/m6aefpn79+vz555+mPlvE3iZOnMiECRPo2rUr6enp7Nixg6NHj1KnTh0ef/xxdu/ebZtCmMnBwYHly5fzwgsvEBQUxKlTpzh+/Di9evXijz/+YPjw4Tk+b/DgwXzxxRcEBwdz7tw51q9fz9q1a9m/f39R/6qmyMs6tsKsYYPc17GJiEjx8KhTg6CnRuDo6UGzd1+i0+qv8WxQx95hSTExJZVOTk4GwN3dPd99XV1dAbL9MGG2OXPmMHHiRFPvabVaGTx4ML/++qvtXK9evejSpQseHh4cPXqUJUuWcP78eaKioujbty+///473bp1MzUOydn9d9W2dwhlWrt27WjXrl2++3l4ePD666/bphf+17Wq+t1///3cf//9+X5mSZTdOrbCrGGD3NexiYhI0UiJuUjCwYgs5dkbTnqC2o/cjUedGvYLTOzClESrcuXKnDhxgsOHD+e777Zt22z3KCqGYTBlyhReeumlfJVkzotPP/3UlmT5+/uzaNEi2/qTTDNnzuS+++5j0aJFpKSkMHz4cA4cOGBLMqVoPXh3HXuHIOXciy++SK1atbjtttsIDAy0nc9pHVuPHj2YOXMmCxcu5K677rJVT4yLi+OJJ5645ho2yFjHtnfvXv744w/69etXRL+ViIhcKeqn1ex6dBKG1UqPf5bjUtEfAEd3NyVZ5ZQpw0jBwcEYhsGyZctITEzMc7/9+/ezYsUKLBZLvtZ25UdUVBQ33XQTEydOND3JAnjrrbdsx3Pnzr0qyYKMSovz5s2jefPmABw7dowFCxaYHouIlEz5XcdWmDVsUHrXsYmIlEYpMRfZcd8Ywm57lOQz50g5F8OJLxfZOywpAUxJtIYMGQJATEwMo0ePzlOf06dPc9ttt9kqbd12221mhGJz+fJlXnvtNerXr8/KlSsB8Pb2zjYRKqg9e/Zw5MgRIOPb6Gttjuri4sKoUaNsr3OqmCYiZU9+17EVZg0blP51bCIipUXUT6tZ12oAp77LqKDrVMGbVrOnUfeZB+0cmZQEpkwdHDx4MO3btycsLIxvvvmGc+fOMX78eNq2bXtV28jISL777jumT5/O+fPnsVgsNGnSxJasmeWHH37Ish6rbdu2fPXVVyxYsIC1a9ea8ozdu3fbjvMyIle3bl3bcXZrL0SkbCrIOrbCrGGDsrWOTUSkpEmJucjep6fYEiyAyv170uKjV3CrHniNnlIaXbiYUqB+ptWVzNykOCoqil9//TVLcQiAd955h7fffpvTp08D/35I8PHxYf78+UVWJcvf358JEybwv//9DycnJ1On7A0ePJjjx48TGRlpW3x+LVcmV15eXqbFISIiIiLFI+FQBBuvG0bymXNAxihWs7fHU334Lar6WgYkp6Rz6Ggcew/EsedgLHv3x3H6bFKB7mVaolW7dm1CQ0MZOnRoloXamf8Pl5lkXPktbL169ViwYAFNmzY1KwybwMBAXn/9dR555BF8fX1Nvz+Ak5MTNWvWpGbNmnlqv3jxYttxs2bNiiQmERERESk67kE1cK9ZleQz5zSKVUas3xzNlu0X2HsgjsMR8aSlmVPXwdSa6kFBQWzatInvv/+e66+/Hk9PTwzDyPLj5OREcHAwH330Ebt27aJ169ZmhmDTr18/XnjhhSJLsvJr/fr1rFixwvY6v2vSLBZLgX4mT55s8m8iIiIiUr5Yk5Jtxw5OTrScPY1Ws6fRfsknSrJKkctJVrbvusjpqKwjVL+vO8ei5ZHsPxyXJckK8HOhW3AAo+4NKtDzTN+S2sHBgSFDhjBkyBCsVivHjh0jJiaGtLQ0/Pz8qFWrVoH22yrNoqOjbVXAIKOiWKtWrewYkYiIiIjkJnMtVnJUNB1XfmGbqeXdpB7eTerZOTq5FsMwiDqXzK59sezef4nd+2M5fDQeazo8PLwO9w75d5/Vpo28Wbcpmkb1vGjayIemDb1p1siHwEqutv/m9+b0oGswPdG6kqOjI3Xr1s1SBCIhIYG0tDScnIr00SVGXFwcAwcOJDw8HABfX19mzpxp36BERERE5Jqifv6DXaNfsq3FOjF7AbVGmlu8Tcy3+q+z/Ln+HLv2x3I+JvsiFrv3x2Z5ffMNVbmtfzWcnEyd7Gfu1EGAjRs3MmLECKZPn57t9dmzZ+Pr68vQoUPZunWr2Y8vUS5evEjfvn3ZtGkTkDHa9/XXXxMUVLDhRxEREREpWrZ9sW4dbUuyKvfvSeV+5m0RJIUXHZPM2tBzHDwSl+X8nv2xrAmNzpJkuThbaNHEh7turcGUF5vy/OMNs/Rxc3M0PckCE0e00tPTGT16NJ9//jlAjntKHTlyhMTERBYuXMiPP/7Iiy++yKuvvmpWGCVGZGQkffv2ZdeuXUBGkvX5558zYMAAO0cmIiIiItmJ+vkPdj36EsmnVVGwJDEMg+MnL7Nz7yX+2XuJnXsu2dZZ3T6gOg3redvaNm9SgT83nKN54wo0b+xD8yY+NKjrhYuz+YlUbkxLtEaNGsXs2bNtrw8fPpxtO3d3d7y8vIiPj8cwDKZOnYqTkxOTJk0yKxS72759OwMHDuTUqVNARnXCL774ItdNRq8ltz1zRERKAsMw9GFEREqd1AuX2PP0FE59u9R2ThUF7e+vTdGsWH2GXXtjuRibmm2bPQezTgPs2aUi13WtVBzh5cqU1G79+vXMnj0bi8WCk5MTL730EqtWrcq27bRp0zh37hyffPIJXl5eGIbBa6+9xt69e80Ixe6WLVtGt27dbEmWh4cHixcvLlSSVZI4OjqSlpZm7zBEpIQqT2twRaTsSItPJOqn1UDGKJYqChavy0lW/t55gb3/SZqOnUzkr03nsyRZXp5OdGnvz6h7g/jg9Va8PyVrgTkHh5LzZZ8pfw0//fRT2/HChQu5+eabr9ne1dWVhx9+mEaNGnHdddeRnp7ORx99xAcffGBGOHbzwQcf8OSTT5Keng5ApUqV+OmnnwgODrZzZOZxc3MjJiZG31qLyFWsVisJCQn4+/vbOxQRkXxxr1mVJjNe4MySVbT8+FUlWEXs4qXUjCmA/z8V8OCReKxWg+u6VuKVsf/ur9uyaQUqV3SlZdMKtGzqQ6tmFQiq5VmikqlrMSXRCg0NxWKx0Lt371yTrCv16NGDG264gV9//ZXVq1ebEYrdTJ06lfHjx9teN2zYkBUrVlCvXtkq/Vm9enUiIiKIjIykevXq9g5HREqQ8PBwUlNTqV27du6NRUTsKOrnP7h84jR1Rt9jO1fz/tupef/t+iK5iOzef4kVv0exc88ljp1MzLbNP3svZfkyv0UTH378IrjU/jcxJdGKjIwEoFOnTvnu27lzZ3799VdOnDhhRih28d5772VJsjp16sTPP/9MQECAHaMqGvXr12fDhg0cOnRIiZaIZLFnzx4AmjVrZudIRESyl3opjr3PTOXkV4uwODsT0K0D3s0zKtCV1g/zJVH0+WRi49OoW9vTdu7Yycss+/V0lnaOjhYa1vOiVdMKtGpWgRZNKmT571Da/5uYOpG+IG9GZp/S+kZu2LCBZ555xva6T58+LF26FA8PDztGVXRq1qyJp6cnoaGhNGrUiKpVq9o7JBEpAcLCwtixYwfVqlUrk18yiUjpd27Vev55eDxJJ88A4OjhRuKxU7ZESwou+nwy23dfYvuui2zffZETpy7TunkFPni9ta1Nm+YVcHVxoHmTjCmArZpWoGkjH9zdHO0XeBEzJdGqUaMGR44cse0XlR/bt28HoEqVKmaEUqxSUlIYNmwYVqsVgMaNG7N48eIym2RBRjGMIUOG8NVXX/Hdd9/RtWtXWrZsibu7u71DE5FiZrVaCQ8PZ8+ePezYsQN/f3+GDh1q77BERLJIi09g39jpHP/0e9u5Sjd0pcWsKbjXKH2fP0uCS7GpbNl+IUti9V97D8SSnJKOq0tG7b2qgW788n0IznYos24vpiRaXbt25fDhw6xevZotW7bQsWPHPPXbt28fy5cvx2Kx0LVrVzNCMd2VI21z5sxhxIgRWV5HRETYXoeEhPDJJ5/k6b41a9YstR9IatWqxa233spPP/3EL7/8wm+//Ya3tzfOzs6ldmRSRPLOMAzS0tJISEggNTWjElS1atUYOnQoPj4+do5ORORf5//ays4HX+By+EkAHL08aDr9BWqOHKLPLPmQeNmKh/u/I097D8by8pv7rmrn6uJAi6Y+tGnuS5sWvjg6Zp0G6Oxcvt5zUxKtESNGMHfuXAzD4NZbb2Xp0qW0b9/+mn327dvHzTffTGpqKhaLhXvvvdeMUIrV3Llzs7y+ch+x3PTo0aPUJlqQsQajYcOG7Nu3j7179xIbG6uy7yLlhMViwd3dHX9/f2rXrk2zZs00XVBESpzYXQfY1Hs4/P9epP7dO9Lq86l4BNW0c2QlX1x8Gtt3XSRs5wX+3nkRwzD47pN/B1JaNq2AowM4OzvQokkF2rSoQJsWvjSu712uRqxyY0qi1b17d2666SaWL1/OmTNn6NKlC/3792fAgAE0a9YMPz8/AC5evMj+/fv55ZdfWLp0KSkpKVgsFgYOHEivXr3MCKVY7dq1y94h2JWzszMtW7akZcuW9g5FREREJAufFo2oducAziz+jcZTnqXO48OxOCgJyE5yspV/9sXy9/8nVgeOxPH/uxXZRMckU9HfFQBPDyc+f6cddWp6KLG6Both/H+aX0gxMTH07NmT3bt352koNvOxbdu2Zc2aNXh5eZkRRpmQ3ftn0n8mERERkTLJmpxCcmRUlhGr1AuXSD57Hq9Gde0YWcl2/FQiI/4XRkrq1Z81nZ0sNGvsQ/vWfgzqWxW/Ci52iLBkKMjnc9MSLYCEhATGjh3LZ599Zpu3n5PMTYunT5+Oq6urWSGUCUq0RERERPLu0o597Lz/edJTUui2dQmOHirSdSXDMDh2MpG/d15kz4FYJjzd2Lbpr9VqcNM9ocQnpGGxQMN6XrRr5Uf7lr60bFoBtzJcFTA/7J5oZbp48SIrVqzgt99+4+TJk0RFRZGWloavry9169YlJCSE22+/ncqVK5v96DJBiZaIiIhI7tJTUzky/VMOvfYRxv+vFW/8+nPUe+4hO0dmfzEXUti64wJbtl/g750XiI5JsV2b8247GtT9dzbZkpWR+Po407alLz7ezvYIt8QrMYmWFI4SLREREZFri9t7mJ0PjOXS37sBsDg6Un/caOq/+AgOzuUzWUhLS+fTbyLYuv0Ch47GZ9smwM+Fsf9rSJcOKmKUHwX5fG7qhsUiIiIiIkXJsFo5+u5cDr40k/TkjFEar2YNaD17GhXaNbdzdMXHMAyOn7xMlUA3215VTk4OrA09x6nTSbZ2Hu6OtG3pS7uWvrRv7Uedmh4qbV9MlGiJiIiISKmQdCqKbXc/xYXQbRknLBbqPvsgDSc9gaNb2V/zHxufyt87L7JlWwxbtl8g6lwyb7/cgo5t/W1tOrXzZ+/BOILb+NGhjT/NGnnj5KTKgPZgeqK1adMmVq9ezZkzZ0hKSiI9PT1P094sFku+9qESERERkfLFqYIXyWfOAeBRvzatZk/Dv0tbO0dVdNKsBvsPxbJ52wW2br/A3oOxV5Vd37L9QpZE66mH62vEqoQwbY3WqVOnGDp0KBs3bizwPaxWqxmhlHpaoyUiIiKSvZj1YZxe+AuNpjyDk6eHvcMpUk9O2MnfOy9edd7FxYE2zSvQsY0/XTr6U7Na2X4fSgK7FcNISUmhRYsWHD58uMAJgcViUaL1/5RoiYiISHlnGAYn5/5I7D/7afbOBHuHU2TS0w32H45jY1gMLZtWoENrP9u1L+ZF8MV3xwCoV8eTDq39CG7rR8tmvrZ1WVI87FYM49NPP+XQoUNYLBYcHR0ZNmwYvXr1olKlSnh4KMMWERERkbxLOn2WXY9M5OyKNQBU7BNC4E297BuUiWLjU9m6/QKhW2PYvC2Gi5cy9p/te11glkSrT/fKVKnkRsc2flQMKPtr0MoaUxKtBQsWABmZ3k8//UTfvn3NuK2IiIiIlDOnF65k12OTSY25CIBr1Uo4uLrYNygTnIhMZM2GaDaGnWf3/qvXWgFExyRneV2ruge1qmvQorQyJdHau3cvFouFvn37KskSERERkXxLvXCJ3U++SuS8n2znqt05gGbvTsTF39d+gRWQYRhZpptt/vsCs74Kz9LG3c2B9q396Nw+gE7t/KlcUaNWZYkpiVZCQgIAHTt2NON2IiIiIlKOnPt9A/+MfJGkU1EAOPv70uKjl6k6uHR9gX/mbBIbtp5nw5bzeLg78toLzWzXOnfwZ+anUKu6O507BNC5vT8tm1bAxVlrrcoqUxKtKlWqcOzYMdKzGwMVEREREclB0qkott48CiM1Y51SpX49aDnrNdyqVrZzZLlLTzc4eCSeDVvOs37LeQ4djbddc3FxICnJipubIwDVq7izcHYwVSq72StcKWamJFpdu3YlIiKC0NBQM24nIiIiIuWEW/VAGowfzZEZn9N0xgvUHDmkxO8DdTY6mS9/OMaGLeeJjkm56nqlABdCOgZw+YpEC1CSVc6YUt79r7/+okePHjg4OBAaGqophIWk8u4iIiJSVqWnphK/7wg+LRv/ey4tjaSTZ/CoU8OOkeUsLj4Nb69/xycuXkrl5ntDsxS0aFjXi5DgALp2DKBhPa8SnyxK/thtHy2A//3vf3z44YdUrVqVb7/9lp49e5px23JJiZaIiIiURXH7jrBzxBgSjp6gx46fcaseaO+QsmUYBhEnElm/OWO91b5DcSz7qjMVfJxtbZ6auBNHBwtdgyvSpYM/gZU0WlWW2S3R2rJlC4ZhMG7cOP78808sFgsNGzYkODiYKlWq5HkvrZdeeqmwoZQJSrRERESkLDHS04n44Gv2j3+L9KSMEua1H7mb5u9PsnNk/0pPN9h3KI51G6NZtymaE6cuZ7k+4enG9L0uMEt7BweNWpUXdku0HBwcsjz8v+Us88pqtRY2lDJBiZaIiIiUFZePR7Jz5Iuc/3NTxgmLhbrPPEDDl5/CsYTsj/XhF0f4fd1Zzp2/er1V7RoehHT0p+91Vahb29MO0UlJUJDP56YUw8juQflNDDSPVURERKTsMAyDU98uZc+Tr5IWm1GNzz2oBq2/eAP/ru3tFldyspV0A9yvKFJx7GRiliSrWSNvuneuSLdOFbVhsBSYKYnWnDlzzLiNiIiIiJQBafEJ7HzgBc4s/s12ruYDd9D0zRdw8vYq9njiE9II3XqedRuj2bwthkfuq8vgAdVt16/rWpmU1HS6d8pIrioFaONgKTzTimGIeTR1UEREREozIz2dTdffR8y6LbgGVqTFrNcIvKlXscYQcyGFvzZHs3ZjNNv+uUha2r+fpdq29OW9Ka2KNR4p3exadVDMo0RLRERESrvEiJMcnPweTWa8gGsl/2J77uZtMXy94Dg791zivx+fvDwdCekQQM+QSnTrVLHYYpLST4lWGaFES0REREqTmPVhHP98Pq1mv47F0TH3DiZKTU3H2dnB9nr1X2eZNH2f7XWAnwvdOgXQvVNF2rTwzdJWJK/sWgwjO4ZhZFskIz09ndTUVBITEzl//jx///033377LcuXLy/KcERERETERNbkFA5Ofpejb80Gw8C7RUPqPTuyyJ8bHZPM2tBo/lx/jjSrwScz2tiudekQQK3q7nRu70+PLpVo3thHZdjFLkxNtBYtWsSsWbMICwvj0qVLGoURERERKaNid+5nx4gxxO0+CICDqwuObkW3aW/0+WTWhEbz54Zz/LM367TAM2eTqFI549nubo5890nHIotDJK9MS7QmTJjA66+/DhRsmpvKu4uIiIiUfEZ6OkdnzuHgxHdIT0kFoELbZrSaMx3vpvVNfVZSkpWfV53JNrkCqFzRlV5dK2nESkokUxKt3bt355hkZSZQOZ13dnbmnnvu4cYbbzQjFBEREREpIpePR7LjgbHErN0CgMXRkXovjKLB+EdxcHY2/XkOjhY++yachESr7VxgJVd6hlTiuq6VaNrQW1/WS4llSqL1+eefYxgGFouFbt268dZbb9GyZUv27NlDu3btcHJyIjIyEk9PT86dO8cff/zBK6+8QkREBKmpqbRv354hQ4aYEYqIiIiIFIH0tDQ2XX8viUdPAOBRvzat587AL7jwZdITE9NYt+k8v687y5MP16NmtYxNgl2cHejaMYAdey7RK6QSvZRcSSliStXBtm3bsmPHDipUqMDRo0fx8/OzXfP39+fSpUt8/fXX3H333bbzsbGxdOvWjV27duHp6cnhw4cJDAwsbChlgqoOioiISEl0euFKtt31FDUfHJKx+bCXZ4HvlZySzqaw86xad5bQrTGkpKQDMPKeOoy4s7atXUJiGh7ujkquxK4K8vnclPqWJ0+exGKxMGDAgCxJFkC7du0AWL9+fZbzPj4+fPfdd1gsFhITE/nss8/MCEVERERETHL55Jksr6ve3o+um36k5SevFijJSrMabN4Ww5R39nPz8FDGv76XNRuibUlWBW8nHP7z6dTTw0lJlpRKpiRaly5dAqBRo0ZXXWvWrBmGYbBjx45sr3Xr1g3DMFi7dq0ZoYiIiIhIIVmTU9g39g3WNOrDxa3/ZLlWoV3zAt/3/c8P8+ykXaz8I8q27srd3ZEbe1ZmxqTmLP2qM/cOqZ3LXURKB1PWaHl4eBAbG4uLi8tV1xo0aADAvn37rroG0L59e9atW5fjdREREREpPnG7D7L93ueI23UAgF2jX6Lr1sX5HlU6eiyBCxdTaNfq39lOXYMr8uPPkbg4W+jUPoA+3SvTpb0/bm7Fu8mxSHEwJdEKCAggNjaWM2fOXHWtXr16QMaarNOnT1O1atUs1/39/QGIiYkxIxQRERERKQAjPZ2I979i//i3SE9OATJGr1p/OSPPSVZ0TDKr1p7l1z+jOByeQM3q7nz3cQdb/7YtfJnwdGO6Bgfg5Wnqdq4iJY4p/x/etm1bjh49yh9//HHVtcxEC2Dr1q3cfPPNWa6fPHkSULEHEREREXu5fPIMOx98gfN/bMw44eBA/RdG0WDCY7mWbb+cZGXdxmh+/TOKsJ0XSE//99qJU5cJP55I3doZ67kcHS30vU7Fz6R8MGWNVp8+fQDYtWsX06ZNy3Ktfv36eHpm/I/r66+/znItMTGRxYsXA6jioIiIiIgdRC5YwV9tb7YlWe5BNej857c0evmpayZZsfGpvPp2RlGLV9/ez5bt/yZZNaq5M/KeOsz/rKMtyRIpb0xJtIYNG0bFihUBGD9+PMHBwSxbtgzIKIU4cOBADMNg0aJFPPHEE+zevZs1a9bQr18/oqKisFgsdO7c2YxQRERERCQfon8PJfVCRmGzGvfdRve/l+LfpW22ba+cgeTp7kTYzgtcTsrIrnx9nBk8oBqfvtWGeZ90YMSdtalWxb3ofwGREsqUfbQAFi1axJAhQ0hPT8disfDUU0/x1ltvARkjXW3atMl2emDmRsd//vkn3bt3NyOUUk/7aImIiEhxSYtPYPON91P3uZFUvfWGq65Hn0/mt/9fd/XiE41o3MDbdu2zb8I5fvIyN15XmU5t/XFyMuU7fJESpyCfz01bhXjbbbexbNkyHn/8cSIiIggKCrJda9GiBe+++y5PPPFEtgGNHTtWSZaIiIhIEUtPSeHozLnUGX03Tt5eADh5edJl/Q9ZPkimpKazfvN5Vvx+hi3bY2xTAn/5MypLovXQsCBEJHumjWhlSk9PZ926dVSvXt1W2j3TunXrmDZtGps2bSI5OZlWrVrx5JNPMnToUDNDKPU0oiUiIiJmi9t3hB33Pkfsjr3UGDGYVp9NzXLdMAwOHolnxeozrFp7lti4tCzXa1V3Z/CA6gweUL04wxYpEQry+dz0REsKT4mWiIiImMUwDI599C37XphOelIyAD6tm9J5zbc4eXrY2n294DizvgrP0tfL05E+3SvTv08VmjTwzvdeWiJlhV2nDoqIiIhIyZJ0+iz/PDSOc7/+lXHCYqHemIeoO/4xTp1P58qCgJ3a+zPrq3AsFmjfyo/+farQvVMArq7aTFikIDSiVQJpREtEREQKK+qn1ex8aByp5y8C4F67OpWnTWZtbHV+/TOj6vOPczrh5Pjv544lKyPp1M6fKpXd7BS1SMlk96mDaWlprFy5krCwMM6dO0dSUlKe+1osFmbPnm1WKKWaEi0REREpjEOvf8zBl2baXqf3vJ4Vje5k1zFrlnZvTGxOSMeAYo5OpPSxa6K1Zs0ahg8fTmRkZIHvYbVac29UDijREhERkcK4sPUfQrvfidXJjV+b38POiu2zXG/drAL9+1ShZ0glPNw1NVAkN3ZLtA4cOEC7du1ITEws8D0sFkuxJFqGYdC1a1dCQ0OZM2cOI0aMMO3eJ0+e5P3332flypUcPXoUwzCoXr061113HaNGjaJNmzZ5uo8SLREREcnJkbc+p96zI7Ocy9yX9MrX4254j51GTWLdM0asKld0pV/vQPr3rkL1qtpIWCQ/7FYMY9q0aSQmJmKxWKhcuTKPP/44LVq0wNvbGweHkrVx3dSpUwkNDTX9vosWLWLEiBHExcVlOX/o0CEOHTrE559/zvjx43n55ZdNf7aIiIiUDzHrw9j/wgz8OrXBP6QdAJdPnmHDnc9R8e7BtH70ViDjQ2GL0bcR+uVRunUM4OYbq9KxjT+OjqoaKFJcTEm0/vzzTwAqVKjAli1bqFmzphm3Nd2cOXOYOHGi6ff9/fffGTJkiG1Erk2bNvTr1w8nJyf++usv/vzzT6xWK6+88gqurq6MGzfO9BhERESk7Dv02oe2/9vw+0/4fdoiHN+fgWtyPMd27qXRgGDca1UDYOANVbmhZ2Uq+rvaM2SRcsuUROvMmTNYLBbuuuuuEplkGYbBlClTeOmll0yfgpeYmMiIESNsSdarr77K+PHjswwvLly4kLvvvpvU1FQmTpzILbfcQtOmTU2NQ0RERMq2mPVhnFu9kYiAJvx0pgG12jxKqxN/2a4frNyK3u5ettfeXk54aycfEbsxZV6fv78/QIlMsqKiorjpppuYOHFikaxz+uyzzzh16hQAAwYMYMKECVfN4bz99tt54403AEhPT9f0QREREcmzNKvBL6vP8MArEbxx48f82fA2uoSvtCVZKS4eJD45npF/z8Krko+doxWRTKYkWq1atQLgyJEjZtzOFJcvX+a1116jfv36rFy5EgBvb2969Ohh6nPmzp1rO37xxRdzbPfoo49SqVIlAJYuXUpsbKypcYiIiEjZc+xEIiOf/pvXZh4g2iWAjuG/cd+maQQkRAFw3K8Bv90xleCnbsfP18XO0YrIlUxJtEaOHIlhGPz444/ExMSYcctC++GHH5g4cSLx8fEAtG3blo0bN9KzZ0/TnhEVFcWOHTsA8PPzo1OnTjm2dXV1pXfv3gAkJyfbkj8RERGRKyVetvLTr6c5dCSex17YweHwBACand7KdQcX4WhYsVocWNPgFr7r+Cy7znvw6NgdHDtR8OrPImI+UxKtwYMHc8stt3Dx4kUGDRrEuXPnzLitKfz9/Xn77bfZvHkzzZo1M/Xe27Ztsx137Ngx1wqLVyZimzdvNjUWERERKd2OHkvg7U8Occt9G3njg4OMfW0XF2NTbdf3Vu3AMf+GXPCoxNfBY9lYrz+GJeOzx8XYVCa/uY80q7aDESkpTFsh+e233zJs2DAWL15M3bp1GTRoEG3btsXPzw9Hx7xthHfvvfeaFQ6BgYG8/vrrPPLII/j6+pp23ysdOnTIdhwUFJRr+1q1atmODx48WCQxiYiISOmRmprO2o3RLFkRyY49l7Jcu3AmDk9rEgmuFQAwLA4safUwaY4upDi5XXWvQ0fj2bDlPD06VyyW2EXk2kxLtGJiYmxFIBISEpg3bx7z5s3Lc3+LxWJqotWvXz/69etn2v2yc/r0adtxjRo1cm1fvXp123FUVFS+npXdJml5MWnSJCZPnlygviIiIlI0os4lsWTlaX5edZoLF1OzXOvY1g+HQwdoufx9Elx9+K7js7aRq0TXaxe7WL7qtBItkRLClEQrJiaGXr16ceTIESwWC4ZhFEmFv5Lm0qV/v3ny8PDItb27+7+7sF/ZV0RERMqXjWExfL3guO21j7cTN/Wpws3XB5Ly/XfsWTgTR8NKQGIUzSM3sat6lzzdd/d+FdsSKSlMSbTee+89Dh8+bEuyOnbsSKtWrQgMDMzztMHSKDk52XZ8ZRKVkyvbXNlXREREyq7LSVZ27b1Ex7b+tnM39AzkozlHCarlwa39q9OrayXSz55lx4jRxKzdgiNgtTiwrsEgdlfLudjWf8UnpBXBbyAiBWFKovXjjz8CGZX1fv75Z6677jozblviXZlE5mVq35WjfLkVzhAREZHS7XRUEouWn+LnVWdITEzjh8+CqVI5Y22Vh7sj333SgYr+rhltF/3KrkcmknohY8bLRa9AFrd4kDMV6uTrmV6e2qBYpKQw5X+Nx48fx2KxcPfdd5ebJAvAy+vf3deTkpJybX9lG1dX1yKJSUREROzHMAy277rIgp9OsWHLedLT/732yx9RjLiztu11RX9X0hIS2fvMVE58scB2vuYDd/CHY0/OnHDO9/MbVS77SzdESgtTEq3MkZ169eqZcbtS48pEKzEx970rLl++bDuuUKFCvp5VHta8iYiIlFZJSVZ+XRPFjz9HcvRYQpZrrZtV4PaB1ena6eoiFakXYjmz+DcAnP0q0OKTV6l624007jeJzU75//K62cHfga4F+h1ExFymJFoNGjQgLCyMkydPmnG7UqNq1aq248jIyFzbnzp1ynZcpUqVIolJREREit/0Dw/y25qzttcuLg7c0KMygwdWp0GQV4793GtUoeWnUwj/4Ctaz52Be40qxKwPo8rq+VTu3ICzPjXzHENg7HECN/5AzIaB+Ie0K9TvIyKFZ8pCobvuugvDMPjxxx/zNIWurLhyA+SIiIhc2x87dsx23LBhw6IISURERIpBbHzWkuwDrs/4ArVyRVdG3RvEoi868cITja5KspLPxXB60a9ZzlW55Xo6rfoK9xoZ9zj02oc4GOncsvNT3FPi8hSPe0ocg3Z+hoORzqHXPizoryUiJjIl0Ro1ahQNGzbk3LlzDBs2jJSUFDNuW+K1aNHCVgRj69atubbftGmT7bht27ZFFpeIiIiYL81q8Mf6c4x6bhv/e3Fnlmn9bVr4Mv2l5sz/PJjhd9TCt8LV66ui/9jIX+1uZvvdT3Nh884s1zI/T8SsDyN6dSgAAQlRDN88g8DY41fd60qBsccZvnk6AQkZe3RG/76BmA1/F+p3FZHCM2XqoLu7O0uXLqVv374sXryYhg0b8sgjj9ChQweqVauGh4dHnqry1apVy4xwio2fnx8hISGsX7+eqKgo/v77b9q1y36oPikpidWrVwMZFQd79+5dnKGKiIhIASUkprF81RkWLDvF6bP/ztz5+5+LtG/lB2QkSl06BGTbPz01lYOT3+PIjM/g/5Oz0wtX4hfc6qq2kQtW4tW0vu21F/DYxR/Yn1yfMOfGnPCqRZKjO27Wy9SMP0771P00vnwYx9regPe/95m/QtMHRezMlESrZcuWAFitVgzD4Pjx44wfPz5f97BYLKSllb69H+68807Wr18PwOTJk/npp5+ybffBBx8QHR0NQP/+/alcuXKxxSgiIiL5d+ZsEgt/OsVPv50mIdFqO+/j7cQt/apRt5ZnrvdIOHKcHcOf5eLWfwBw9HCn2cwJ1BgxONv2zd+dmO358lPTWaTsMCXR2r1791UjVuWlSt4DDzzAW2+9RXh4OD///DPPPfccb7zxRpY9thYuXMi4ceOAjIRy0qRJ9gpXRERE8uDNjw7x06+RWK8oz16zujtDB9Wgb69A3Nwcc+78/059t4zdj08mLS6jCqFPqya0+eYtvBqXryrNIuWVKYlW9+7d8zQ1sDS68veaM2cOI0aMyHLd3d2dWbNm0b9/f9LS0njrrbdYvnw5gwYNws3NjfXr19umDAKMGzeO9u3bF1f4IiIiUgBeno62JKtNiwoMvaUGXdoH4OCQ++cdw2pl58hxnPpmie1c0BP30Wjqczi6uhRRxCJS0piSaK1Zs8aM25Ra119/Pd9//z33338/cXFx7N+/n/3792dpY7FYGDNmDK+++qqdohQREZH/Sk62smJ1FCkp6Qy9pYbt/OAB1Tl3PoUhN1enUX3va9zhahZHRxxcMophuFT0o+XsaQT272lm2CJSCpiSaO3atQtHR0eaNm1qxu1KpcGDB9O5c2fef/99li9fTkREBMnJyVStWpXu3bvz2GOPERwcbO8wRUREBIiNS2XRikgW/nSKi5dS8fJ0ZOANVfDwyPhoVCnAlYnPNC7w/Zu+PQ6LgwMNXnoct6paly1SHlkMExZT3XHHHSxatIgmTZrw2muvccstt5gQWvmV3TTM8rLmTUREpChFnUti/tKTLPv1NJeT/l2AVbWyG1PHN6NB3Zw3F85J0plzHJz0Lk3ffAEn7/z3F5GSryCfz00Z0dq8eTOGYbBv3z4qVqxoxi1FRERETHP0WALfLTrBqrVnsVr//XBUP8iTewbXolfXSjg55n+9+dlf1rLzwRdJOXue9OQUWs+dbmbYIlKKmZJoZZYtB3LcR0pERETEHgzD4NW393PoaLztXLuWvtwzuCYd2vgVqKCXNTmFAxPeJnzmnCsfRHpqKg7OV29WLCLlj4MZN2nYsKHt+MSJE2bcUkRERKRA0tMNYuNSba8tFgt33VoDiwV6hlTks7fa8O6UVnRs61+gJCv+YDihXYfakixHLw9azXmD1l/OUJIlIjamrNH68ccfGTJkCAADBgxg0aJFWfaRkvzRGi0REZH8S0tL57c1Z/lu0QmqBboxfVKLLNdOn02iZjWPAt/fMAxOfrWYPU++ijUhEYAK7ZrT5pu38axfu9Dxi0jJVZDP56YkWgCLFi1i1KhRxMTE0Lx5cx566CE6d+5MUFAQvr6+ODiYMnhWLijREhGR8iDNarBhczTLV51h94FY4hPS8PJ0onkjH266vgohwRXztG4qOSWdFb+f4dsfj3PmbLLt/FcftKdubU/T4t0/7k2OzPjM9rrucyNp9PKTOLhobyyRss5uiVb//v0BOH/+PFu3bi3QMLzFYiEtLa2woZQJSrRERKSsO3YikUkz9nI4PCHHNvWDPHnl+abUqpH9KNTlJCtLf4lk3uKTnI9JsZ0P8Hdh6KAaDOpbFU8PU5ajA3Bp2x42dB2Ki38FWs15g0rXdzXt3iJSstkt0XJwcLjq4fm9rcViwWq1FjaUMkGJloiIlGXHTiTy2As7uBibmmtbXx9nPpzWmto1syZb3yw8zrxFJ7gU9++XtFUru3HP7TXp36cKLs6Fn0ljGMZVf5PPLP0dv85tcK0cUOj7i0jpYbfy7rVq1SrQKJaIiIiUL2lWg0kz9uYpyQK4GJvK5Df38dnbbbNMIzwcnmBLsmpVd2f4kFpc370yTk7mLFVIiY5h54MvUn3YIKrd0d92vsqgPqbcX0TKPlMSrYiICDNuIyIiImXchs3R15wumJ1DR+OZt/gEw2+vZTt375BaHDuZyPA7atGjc0UcC7AHVk7Or9vC9uHPkhx5lpj1Yfi2a4FH3Zqm3V9EygdVqBAREZFis3zVmQL1m/v9MdKu2Gi4bm1PvpjZluu6VjItyTKsVg6++gGbrr+P5MizAFS6oSvOAb6m3F9EyhfzVoiKiIiI5GL3gdgC9UtOTmfr9hg6t/93bZSZyxaSIqPYfu9zxKzdAoCDmyvN3h5PzZFDtDxCRAqkSBKt9PR0/vjjD9auXcvRo0eJiYnBwcEBX19f6tatS0hICL1798ZZm/qJiIiUK/EJBaswbLGQJcky09mVa9n5wFhSoi8A4NWkHm2+fQefFo2K5HkiUj6YnmjNmzePCRMm5Lpuq1KlSrz11lvcc889ZocgIiIiJZSXpxOxcflPtry9imYSTvSfG9l688O21zVGDKbZzAk4eRZ8Y2MRETB5jdYTTzzBsGHDiIiIwDCMa/6cPXuWe++9l4cffjj3G4uIiEiZ0LyRT8H6NS5Yv9wE9AimYu8uOHp50PqrN2n12VQlWSJiCtO+HnrjjTf44IMPsFgsGIZB7dq1GTx4MK1btyYgIACr1Up0dDQ7duxg8eLFnDhxAsMwmD17Ns2bN+eJJ54wKxQREREpoW66vgqhYTEF6FfVtBisSck4urkCYHFwoNXc6VjjEvBsUMe0Z4iImLJh8cmTJ2nQoAHJyck4OTkxbdo0nn766RwXjxqGwcyZM3n++eexWq24urpy6NAhatSoUdhQygRtWCwiImXRmbNJfDn/OD/9ejpf/RrU9bpqH62CsCZeZs8zU0k4cJTgVV/i4KSaYCKSNwX5fG7K1MFPPvmE5ORkLBYL77zzDs8888w1K/RYLBaefvpp3n//fQBSUlL49NNPzQhFRERESpioc0m8+dFB7hy1Jd9Jlq+PMy+PaVLoJCtu72HWd7mDE7PnE7M+jCPT9blDRIqWKSNaHTt2JCwsjGbNmrFr16589W3RogV79+6lXbt2bNmypbChlAka0RIRkbIg5kIKXy04ztKVkaSm/ft3rEt7f/peF8jXC09w6Gh8jv0b1PXi5TFNqFWj4GumDMPg5Nwf2f3kq6RfTgLAL6Qdbb5+C/ea5k1HFJGyrSCfz00ZMw8PD8disdC3b9989+3Xrx979uzh4MGDZoQiIiIiJcDSXyJ5//MjJCWn2851bu/P/XfVpmnDjMIW3btUYsOW8yxfdZrd+2OJT0jDy9OJ5o19uOn6qoR0DCjUSFZqbDy7H5tE5Pc/Z5ywWKj/4iM0mPi4pg2KSJEz5V+Z2NiMzQcDAvK/v4Wfnx8ASUlJZoQiIiIiJUDliq62JKtdS18eGl6H5o0rZGnj5GihR+eK9Ohc0fTnX/p7N9uGPUPi4WMAuFapROuvZlCxV2fTnyUikh1TEi1/f3/Onj3LsWPH8t33+PHjtnuIiIhI6ZOcks6GLee5rmsl27lO7fy57aZq9OhckXat/Io1HmtSMltvfYTk0+cAqHRDV1rNmY5r5aLZ8FhEJDumFMNo0aIFhmGwbNmyfI1MXb58maVLl2KxWGjatKkZoYiIiEgxSUtLZ+kvkdw1agsvvbGXbbsu2q5ZLBaeeaRBsSdZAI5urrT48GUsTk40fv05Ovz0mZIsESl2piRaN910EwBnzpzhmWeeyXO/p59+mjNnzgDQv39/M0IRERGRIma1Gvy2Jop7Ht3KjA8PcTY6GYCff8tfRcH/OvLW5wXum3z2fJbXgQN703P/b9R77iEsDqZ83BERyRdTqg7Gx8cTFBRETEzGBoSDBw9m+vTp1KlTJ9v24eHhjB07lh9//BHImDZ49OhRvL29CxtKmaCqgyIiUhIZhsGGLeeZ9VU44ccTbecDK7ly/1216XtdlQIXr4hZH8bGXvfQec13+Ie0y1dM4TPncGDSuwT/Mgf/Lm0L9HwRkWspyOdzUxItgEWLFnHHHXdkCaZNmza0bt0af39/LBYL0dHR7Ny5k+3bt2MYBoZh4ODgwA8//MDgwYPNCKNMUKIlIiIlzdFjCcz48CC79sXazvn7OnPf0NoMvLEqLs6FGzXa3Pd+oleHUrFPCMErv8hTn5TzF9j54IucXf4nAB71atFj90pVFBQR09k10QL45ptvePDBB0lNTc0xoCuDcnV15YMPPuDBBx80K4QyQYmWiIiUNKfOXOae0VtJSzPw8nRi2O01GTygOu5ujoW+d+ZoVqa8jGpd2Lidbfc8TdKJjOmK7kE1aPvdTHzbtyh0PCIi/2X3RAvgwIEDTJ48mSVLlpCcnJxtG2dnZ26//XbGjRtHs2bNzHx8maBES0RE7O3c+WR8fZxxvmKk6uO5RzGAYbfXxMfL2bRnZY5mZbrWqFbmVMH9497CSEsDoMqtN9Dy0yk4+/qYFpOIyJWKPNFaunQpfn5+tGnTJtf1VElJSYSGhhIeHs758+cxDAN/f3/q169PcHAwHh4F3+W9rFOiJSIi9hIXn8a3Px5n/rJTjL4viDturlGkz/vvaFam7Ea1/jtV0OLsTNMZL1D70XtynEUjImKGIk+06taty7Fjx3jmmWeYMWOG7fy6desAqFevHtWrV8/r7SQHSrRERKS4Jaeks3jFKb6af5zYuIyRIl8fZxbODsbNhOmBOfnvaFam7Ea19r0wnaNvzQY0VVBEildBPp/na+Xq2bNnAQgIyLoXRc+ePenVqxc//PBDfm4nIiIidma1Gqz84wx3P7KFD2YftSVZzRv7MGVc0yJNsmLWh2WbZAFE/76BmA1/ZznX8KX/4d2sIVVuvYFuWxYryRKREi1fZXmsViuArYy7iIiIlF5btsXw4ZyjHIlIsJ2rVd2dUffVpXungCKfjnfotQ+vef3ASzPpsORjnLy9AHD0cKfT6q9w9vfVVEERKfHyNaJVuXJlDMNg/vz5nDp1qqhiEhERkSKWnJLO1HcP2JKsAH8Xnn+8IV992IEenSsWeSJzrdEsW5t1W/h7yP+yTM9xCfBTkiUipUK+1mgNGzaM7777DovFgsViITAwEFdXVyIiIrBYLPj5+eHjU7CKPxaLhSNHjhSob1mjNVoiIlIclv9+hpmfHmb47TUZcnONIp0m+F85rc3KTsfln1Pphm5FHJGISM6KvBjGP//8Q6dOnUhOTsYwDNsDM29R0G+YMu+VOTWxvFOiJSIiZkpOtjJ/2Skuxqbyvwfr2c5brQaxcan4+boUazw5VRrMSac/vyWga/sijEhE5NqKvBhGy5YtWbVqFV27drWNXP034SrIj4iIiJgvPd3gtzVR3D16K7O+CmfBspMcPfbveixHR0uxJ1mQ+9qs/zo85aMiikREpOjkK9ECCAkJYe3atVy8eBGr1Up6erot2XrzzTdJT08v0I9Gs0RERMyzc88lRj23nVfe2k/UuWQA6tT0JCnZvn9v87I267+yq0AoIlLS5avqoIiIiJRsp05f5uO5R1kTGm075+frzEPDgujfpwpOjvYtJJHf0awr+/13Xy0RkZLMlESrdu3aJCQk0LBhQzNuJyIiIgWweEUk7352mLS0jGn5Li4O3HlLDYYNromHh/2/Wy3IaFamzFEt/5B2JkclIlI08j11MDvNmjUjOjqae++9l6+++sqMW4qIiEg+NaznZUuybuxZmXmfdODh4UElIsmCgo9mmdVfRKQ4mfIv7/bt2wG4dOkSLVpol3YRESnf0qwGGzZHs3zVGXYfiCU+IQ0vTyeaN/LhpuurEBJc0ZQpfIeOxlM/yNNWlKpZIx9GjwiiXUs/GjfwLvT9zVSY0axMGtUSkdIkX+Xdc+Lh4UFSUhIWi4WEhATc3NzMiK3cUnl3EZHS69iJRCbN2Mvh8IQc29QP8uSV55tSq4ZHgZ5xNjqZj+Yc5fd1Z3n1hab0CqlU0HCLzd93PUXU0lUYqWkAOHp74l6zar7vE9CzE83fnWh2eCIi11Tk+2jlpHPnzmzevBmLxUJYWBht2rQp7C3LNSVaIiKl07ETiTz2wg4uxqbm2tbXx5kPp7Wmds28J1vJyVbmLTnJNwuOk5ScDkCt6u5881EHHBzsW+QiJ4ZhcHzWPPY+O5X0lIz3JXBQH1p9/jrOvj52jk5EJG/slmitWbOGvn37kpqaSufOnfnll1/w8vIq7G3LLSVaIiKlT5rVYOTTf19zJOu/GtT14rO32+Y6jdAwDNaGRvPhF0c5fTbJdr5XSCUee6AuVSqXzJkkaXHx7Hp0EpHf/wyAxdGRxq8/R9BT92f7t05EpKSyW6IFsHnzZu677z4OHTpEpUqVGDZsGJ07dyYoKAhfX1+cnHJfDlarVi0zQin1lGiJiJQ+a0PPMf71vfnuN2VcM3p0rpjj9SMR8bz72RG2/XPRdq5eHU+efLg+bVv4FiDS4hG3+yB/3/kECQfCAXCrHkibb9/R+ioRKZXslmg1bdoUgNTUVI4cOZJjMNcMxGIhLS2tsKFc5eTJk7z//vusXLmSo0ePYhgG1atX57rrrmPUqFGmTnM8ePAgH374IatXr+b48eMkJycTEBBA27ZtGTJkCHfddRfOzs653keJlohI6fP8y7sIDYvJd78uHfyZ/lL2haQuJ1m5dcQm4hMy/j5W8HbioeFBDLihqt33w8rN1lsf4ezPfwJQsU8Irb96E9dK/naOSkSkYOyWaDk4ONgeXtDbWSwWrFZzd6tftGgRI0aMIC4uLtvrjo6OjB8/npdffrnQz3rrrbd44YUXrpkstm7dmoULF1KvXr1r3kuJlohI6dP/7g3ExuX/C0MfbydWfBeS4/VvFh7ns6/DubV/dR64uzY+3rl/YVcSJEdFs77TYGo9eAf1XxyNxdHR3iGJiBSY3RKtnj17mjLX+s8//yz0PTL9/vvv9O3b15a8tWnThn79+uHk5MRff/2V5VlTpkxh3LhxBX7W+++/zxNPPGF73bJlS3r27Imfnx979+5lyZIlpKZmLACuVasWYWFhVKqUc4UoJVoiIqVP90FrSU/Pfz8HB1i3tAcA+w/HcexEIjf2CrRdT0lN59TpywTV8jQr1CJx+XgkbtUDsyRUafEJOHmV7LhFRPLCrmu0SpLExEQaNmzIqVOnAHj11VcZP358ljdo4cKF3H333aSmpuLg4MCuXbtsUyDzIyoqinr16pGQkIDFYuG9997jsccey/KsAwcOcMstt7B//34AHn74YWbNmpXjPZVoiYiUPoUZ0fp+Vkc+/TqCpb9E4uLswLcfdyixBS6yc3rxb/wz8kXqPDaMRq88be9wRERMV5DP5w5FFYw9ffbZZ7Yka8CAAUyYMOGqN+f222/njTfeACA9Pb3A0wcXLlxIQkJGham77rqLxx9//KpnNWrUiK+//tr2+vvvvye9IF97iohIidW8UcFKlVcKcOXuR7ayZGUkhgHWdIN/9l4yObqikZ6ayt4x09g25H+kxcZzeNos4g8ctXdYIiIlQplMtObOnWs7fvHFF3Ns9+ijj9qm8C1dupTY2Nh8P2v37t224x49euTYrn379vj7ZywCjo2NJTo6Ot/PEhGRkuum66sUqN+RiATbvlvtW/vy5XvtuaFnYC697O/yyTNs6j2c8JlzAHCq4E27BR/g1aiunSMTESkZiiTRMgyD9evXM23aNEaPHs2dd97JTz/9ZLs+d+5c9u7NfwncvIiKimLHjh0A+Pn50alTpxzburq60rt3bwCSk5NZuXJlvp/neMVc9MjIyBzbJSUl2Ua+HB0d8fX1zfezRESk5AoJrkj9oIKtR6oU4MIrY5vyzist87WBsb2cW7We9R1u4cLG7QD4tG5Kty2LqTKoj50jExEpOUxPtL7++msaNGhAjx49GD9+PJ9++ikLFizg0KFDtjYTJ06kZcuW3HXXXcTE5L8U7rVs27bNdtyxY0ccHK79K16ZiG3evDnfz2vSpInt+LPPPstxpOqdd94hOTkZgOuuuw4XF5d8P0tEREouJ0cLrzzfFF+fvFcFdHSwcPdtNfj2445c17VSid/E17BaOfjye2y5aSQp0RcAqPXQULr89T0edWvaOToRkZLF1ERr5MiRjBgxgvDwcAzDsP1cKSUlhcjISAzDYP78+XTs2PGaI0H5dWVCFxQUlGv7KzdJPnjwYL6fd88991ChQgUgY0SrXbt2fP3115w4cYKEhAR27NjBAw88wPjx4wHw9/fn7bffzvdzRESk5KtVw4MPp7WmQV2va7bzcHekaUNv5r7fjkfvr4eHe+kofX5h43YOvfYhGAaOHu60/nIGLT56BUc3V3uHJiJS4piWaI0fP54vvvjCllj16dOHSZMmXdUuJSWFgQMH2l4fPXqUoUOHmhUGp0+fth3XqFEj1/bVq1e3HUdFReX7eb6+vixcuBAPj4ypHsePH+fee++lVq1aeHl50aZNG+bMmYNhGFx//fWsX7+e5s2b5/s5FoulQD+TJ0/O97NERKTgatf04LO32zJlXDOC2/rh4mLBYsmoLtilgz9TxjVj4RfBzHqzTYkv2f5f/l3bU/eZB/BqUo+QjQupfvfN9g5JRKTEMiXROnDgANOnT8disVC9enU2bNjAb7/9lm2i5eXlxZIlS/jrr7+oWrUqAKGhoSxdutSMULh06d9KTZnJz7W4u7tn2zc/+vTpwz///MOQIUNybOPn50efPn3yNMomIiKlm5OjBTdXB05EXiYlxaBubU+WfdWZ6S+1oEfnivh4OZf4aYKQseY66VTWLyEbvfYMIaEL8G5a305RiYiUDqYkWrNmzcJqtWKxWFi0aNE1C1Bk6tKlC0uWLLH9ofn222/NCMW2DgqyJlE5ubLNlX3zIzY2ls8++4w//vgDgG7dujFu3DheffVV7rnnHry9vblw4QJjx46ldevWHDlypEDPERGRku/8hRQmzdjLs5N2EXkmCQBnJwcuXkq1c2T5k3oxlr9vf4wN3YaScv6C7byDs7M2IRYRyQMnM27y+++/Y7FY6N27Nx06dMhzv/bt23PjjTfyyy+/sHXrVjNCyVIFMC/fFl65hiy3whnZOX36NP369WPnzp1UqFCBlStX0rdv3yxtzp07x7Bhw/jtt984cOAAffv2ZceOHXh66g+ViEhZkZ5usOzX03zy5VHiE6xAxlqsh4cHcWv/ajg6lvwRrEyXduxj251PkHjkOAD7x79Ny09etXNUIiKliykjWidOnAAgODg4333btGkDFGx9VHa8vP5dgJyUlJRr+yvbuLrmfzHvHXfcwc6dOwGYN2/eVUkWQKVKlVi6dKntdz18+DDvvPNOvp8lIiIl05GIeB4du4M3PzpkS7J6dqnItx934PaB1UtVknXiy0WEdhtqS7IqD+hFk9efs3NUIiKljykjWplT7vIyVe+/MpObgowmZefKRCsxMTHX9pcvX7YdZ1YPzKu//vqLDRs2ABmbFffr1y/Htm5ubkyZMoX+/fsDGWXwJ0yYkOdn/bd6o4iIlBzLfj3N7v0Zm94HVnLlmUcaENIxwM5R5Y81KZk9T73GidnzM044ONDo1aep99xILCb9jRYRKU9MSbQqV67MiRMnOHz4cL77Zu57VblyZTNCsRXYgGtvIJzp1KlTtuMqVark61mrV6+2HV9//fW5tu/duzfOzs6kpqZy8OBB4uPjsySGIiJSOj00LIi/Np2nd7dKPHB3HdzdSke59kyJESfZNvQJLm3bA4BLJX/afPM2Fa/rbOfIRERKL1O+ogoODsYwDJYtW5anUaRM+/fvZ8WKFVgslnyt7bqWZs2a2Y4jIiJybX/s2DHbccOGDfP1rCsTOT8/v1zbu7i4ZGkXGxubr+eJiIj9XbiUwjuzDpGQmGY75+XpxHcfd+CxB+qVuiQLYMeI521Jlm+nNnTdslhJlohIIZmSaGWWNY+JiWH06NF56nP69Gluu+020tIy/lDddtttZoRCixYtbEUw8lJgY9OmTbbjtm3b5utZV5aPv3JkLCdWqzVLCXl/f/98PU9EROzHMAx+WxPFsNFb+fHnSD6eG57lulspTLAytfzkVRy9PKjz+HA6r/4K9xr5m+EhIiJXMyXRGjx4MO3bt8cwDL755hv69+/Phg0bsqx/yhQZGcmbb75Jq1atOHDgABaLhSZNmlxzD6r88PPzIyQkBMgosPH333/n2DYpKck2/c/BwYHevXvn61lXjoCtWLEi1/Z//fWXbT1bw4YNcXNzy9fzRETEPs6cTWLMy7t55a39XIrL+ILw/IVkrNbSuX42LT4hy2uvxvXosWslzd6ZgIOLi52iEhEpW0xb3bpgwQICAwMxDINff/2V7t27Z1l/9M4771CjRg1q1qzJ2LFjiY6OxjAMvL29mT9/vqkbN955552248mTJ+fY7oMPPiA6OhqA/v3753ud2MCBA23l5Hfs2MGCBQtybGu1Wpk4caLt9R133JGvZ4mISPFLTzf4cfkphj8exqa/YwDw83XmlbFNmTquWamqJpjp4tZ/WNdqAMdnZ/2bpVEsERFzWQwTy9mFh4czdOhQwsLC/n3AfxKoKx9Xr149FixYQOvWrc0KAcioJNisWTPCwzOmdTz77LO88cYbWfbYWrhwIXfffTepqalYLBa2bNlC+/bt8/2s0aNH88knnwAZFQ+/+OKLq5KouLg4HnroIX744QcAAgICOHjwYI5TB7NLOlV1UESkeB07kci09w+wa9+/62n7XRfI4w/Wo4KPsx0jKxjDMDj+2Q/sffo10lNScXB1ofuOn/GsX9veoYmIlHgF+XxuaqIFkJ6ezsKFC5k9ezahoaEkJGSdnuDk5ES7du247777GDFiRJFNn1u1ahX9+/e3rQFr3LgxgwYNws3NjfXr12epGDh+/Hhee+21bO9z5Zs6Z84cRowYkeV6YmIiPXv2zLIerFWrVvTu3ZuAgACOHj3K0qVLbSNnLi4u/PLLL/Tq1SvH2JVoiYjYl2EYPPTMdvYfjgOgamU3xjzWgI5tS+faWmviZXY9NplT3ywBwOLkRJNpY6jzxH2mzigRESmrSkSidSWr1cqxY8eIiYkhLS0NPz8/atWqVaD9tgrixx9/5P777ycuLi7b6xaLhTFjxjBt2rQc/9DklmhBxojVyJEjmT9//jXjqVGjBt9//71tDVlOlGiJiNjf3oOxjH5+B7fdVI2HhgXh4V46i10kHD7G30P+R9yuAwC4Vq1E2+9m4t81/7M4RETKqxKXaJUEkZGRvP/++yxfvpyIiAiSk5OpWrUq3bt357HHHiM4OPia/fOSaGXavHkzc+bMYd26dZw8eZLk5GQCAgJo1aoVN998M/fff3+eRvCUaImIFK/kZCu//3WO/r0Ds/wbHHUuicBKpbdw0Zllv7Pz/rGkxcYD4N+jI22+eRu3KpXsHJmISOlSIhOt9PR0zp49i4uLi8qZ55ESLRGR4rNr3yWmvnuAE6cu88rYplzXtWwkITHrw9jY6x7b63pjHqLhK0/h4ORkx6hEREqngnw+N63q4JVWrlzJQw89RK1atXBxcaF69epUqlQJNzc3mjZtyosvvsiOHTuK4tEiIiJ5kpxs5YPZR3h07A5OnMrYjuS3NVF2jso8fiHtqHp7X5x8vGi38EMaT31OSZaISDEydURr165dPPbYY2zYsMF27r+3vzIbvO+++3jzzTc10vUfGtESESlau/dfYurMAxz//wTLxdnCg/fU4c5bapbKku2ZDKsVyxUVdtPi4kk+E41ngzr2C0pEpAyw69TBnTt30qtXLy5dupTloe7u7vj6+mK1Wrl06ZJtw97MgBs0aMDGjRvx8/MzI4wyQYmWiEjRSE628vm3Efyw9CTp6RnnmjT0ZvxTjahT09O+wRWCYRhEvP8VkfNX0On3r3B0c7V3SCIiZYrdEq24uDgaN27M6dOngYzqes8++yw333wzQUFBWYI5ePAgS5YsYebMmURFRWGxWOjZs2eWcuvlnRItERHzWa0GDz2zjYNHMwpDODv9/yjWrTVxKsWjWGnxCfwzagKn568AoNaou2jxwWT7BiUiUsbYbY3WRx99xOnTp7FYLHTv3p3du3fz5JNPZkmyMgNs1KgRY8eOZc+ePXTs2BHDMFizZg2LFi0yIxQREZFsOTpa6NOjMgBNGnjzxbvtGHZ7rVKdZMUfDGdD16G2JMutZlVq3nubnaMSEREwaUQrODiYrVu34u/vz4EDBwgICMhTv9OnT9O4cWPi4+Pp378/P/30U2FDKRM0oiUiYo7YuFR8vJ1tr61Wg1/+jOLGXoHFmmAdeetz6j070tR7Rv20mh0jnreVbq/YJ4Q2X7+JS0WtexYRMZvdRrT279+PxWLh9ttvz3OSBVC1alUGDx6MYRhs2bLFjFBERERISU3n47lHGfLQZiLPXLadd3S0cFOfKsWaZMWsD2P/CzOI2fC3KfczrFYOTJpJ2G2P2pKsemNH0fHnz5RkiYiUIKYkWmlpaQDUrl07330bNGgAQGxsrBmhiIhIOXc4PJ6HntnGtz+eID7BylsfH7JrPIde+zDL/y2snQ++yOGpHwPg5O1JuwUf0Pi1Z7JUGxQREfszJdGqWbMmAEeOHMl337NnzwIZo1siIiIFZbUafLPwOCOf2caRiAQAGtX34rEH6tktppj1YUSvDgUg+vcNpoxq1bx/MBZHR7ya1CMkdAFVbrm+0PcUERHzmZJoDRw4EMMwWLhwIWfOnMlzv+TkZBYtWoTFYqFv375mhCIiIuXQqTOXefzFHXzyZThpaQaODnD/nbWZNaMNdWvbr2z7f0exzBjVCugRTLsfPyRkw3y8GtsviRQRkWszpRjGmTNnaN26NWfPnqVjx478+uuvVKhQIdd+Dz30ELNnz8bT05N//vnnqiqF5ZWKYYiI5I1hGPz02xne//wwl5MyNsaqWd2dCU83plkjH7vGFrM+jI297rnqfOc13+Ef0i5P90hPSWHvmDcIHHgdlfqEmB2iiIjkkd2KYVSpUoWff/6ZKlWqsHXrVpo2bcqsWbO4cOHCVW3T09NZvXo1vXr1Yvbs2bi4uPDNN98oyRIRkQJZE3rOlmTddlM15sxsZ/ckC3IevcrrqFZSZBQbe9/LsY++YfuwZ0g8dsrM8EREpIiZMqJ13XXXARkjW/v378+48f9nfXXq1KFy5co4Oztz6dIlDh06RHJyMpCRBWaXHV4VpMViK7hRHmhES0Qk76LPJ/Ps5F08dn9dOrYtGVX3chrNypTbqFbM+jC23fkkyVHRAFRo34J289/HvabWM4uI2ENBPp+bkmg5ODhc9fArb3vltczz2Z3LMUiLBavVWtgwSw0lWiIi2YtPSGP+spPcO6R2lhLtef3irrhs7nu/rQhGdir2CSF45RdXnTcMg4gPvmbf829g/P8XjDUfuINm707E0c21yOIVEZFrK8jncyczHlyrVq0S9QdORETKnu27LvLq2/s5G52MBbj/rjq2ayXpb9CVlQZzklmB8MpRrbSERHY9MpHI738GwMHFmWbvvkStkUOKNF4RESkapiRaERERZtxGRETkKmlp6Xz+bQTf/niCzC8P9x2KIz3dwMGh5CRYmfK6BuvQax/aRrWSTp9ly00jidt1AAC3GlVo98P7+HZsWWRxiohI0TIl0RIRESkKJyITeXnGfvYfjgPAxcWBxx6oy239q5WoUaxMeRnNynTlqJZLgC+OHu4ABPQMps237+BaOaAoQxURkSJmyhotMZfWaIlIeWcYBst/P8O7n/5btr1+kCeTxzShTk377YuVm9zWZv3XlWu1kk5FcXz2fOqPG42Dk74HFREpSexWDEPMpURLRMq7GR8eZOkvp22vh95Sg1H3BuHibMquJEUit0qDOcnPvloiImIfdttHS0RExEyd22eUaQ/wc+Htl1vwvwfrlegkC/K+NsusfiIiUrJpRKsE0oiWiJQ32ZVnX/brabp3qohvBWc7RZV3BR3NyqRRLRGRkk0jWiIiUuocP5XIqDHb+WfvpSznb76xaqlIsqDwo1Ia1RIRKXuUaImIiF0YhsHPq07zwJN/s/dAHK+8tY/4hDR7h5Vv+ak0mJPMCoQiIlJ2qKyRiIgUu4TENGZ8eIjf1521nevZpRIuLqXv+7/IBSvxalo/22vWy8kknTyNkZqRQDq4uuBWsyoOLleP1EXOX6HpgyIiZYjWaJVAWqMlImXZ/sNxTJq+l1Onk4CMghcTnm5Ehzb+do7MfCe/XsLOB8YCUG3oTbSY9RpOnh52jkpERPJL5d3LCCVaIlIWGYbBgmWn+GjuUdLSMv5N69jWj4lPN8bP18XO0RWdvc+9jmu1ytR9+oESucmyiIjkTolWGaFES0TKokXLT/H2J4cBcHS08PDwOtx1a00cHMpO8pF8Loa0i7F4Nqhj71BERMREJS7RSk9P59y5c1y4cIFKlSoREBBgO+/gUPrm4RcXJVoiUhYlJVkZ+cw2kpKtTB7TlOaNfewdkqkubdvD33c8joOrCyGhC3D2LVu/n4hIeVYiEq20tDS+/fZbvv76azZt2sTly5cBmDFjBs888wwAwcHB1K1bl/Hjx9O8eXMzH18mKNESkZIozWqwYXM0y1edYfeBWOIT0vDydKJ5Ix9uur4KIcEVcXL8998vq9UgLS0dV1dH27lTpy/j7e2Ej1fpKNueV6e+W8Y/oyaQnpQMQJPpL1D36fvtHJWIiJjF7onWnj17uP322zl48GCWh1ssliyJlre3N4mJiTg5OfHGG2/w1FNPmRVCmaBES0RKmmMnEpk0Yy+HwxNybFM/yJNXnm9KrRoeRMck8+pb+wnwd2HiM43L7Nqk9LQ09r8wg/B352accHCgybQxBD11f5n9nUVEyqOCfD43rbz73r176dq1K7GxsbaHuri4kJKSkqVdTEwMCQkJWCwWUlNTefbZZ3FxceHRRx81KxQRETHRsROJPPbCDi7Gpl6z3eHwBB4du4NR9wYx6+twLl7KaB/SMYDe3SoXR6jFKvlcDNvvforzazYD4OzvS9vv3qFi7y52jkxEREoCUxZKWa1WbrvtNi5duoRhGNx4442sX7+eS5cuXdXW39+fbdu2ccMNNwAZmeDzzz/PyZMnzQhFRERMlGY1mDRjb65JVqaLsam88cFBW5LV77pAOrcPKMoQ7eLStj1s6DTYlmT5tGxM100LlWSJiIiNKYnWV199xcGDB7FYLPzvf/9j5cqVdOnSBVdX12zbt27dmpUrV/K///0PgMuXL/PZZ5+ZEYqIiJhow+boa04XzImLswMTnm7M+Kcb4+HumHuHUsRIT2fHA2O5fDwSgGp3DqDLX9/jEVTTzpGJiEhJYkqitWjRIgCqVq3KjBkz8txv+vTpVKtWDYDffvvNjFBERMREy1edKVC/po286XtdoMnRlAwWBwfafPUmTt6eNJk+ltZfvYmjh7u9wxIRkRLGlERr+/btWCwWBg4ciItL3jeddHV1ZeDAgRiGYSugISIiJcfuA7EF6nf0WP5HwUoya+LlLK99Wjam16HV2oRYRERyZEqiFR0dDUDt2rXz3bdmzYypFvHx8WaEIiIiJopPSCvWfiXRpW17WNuiP6e+/znLeZcAPztFJCIipYEpiZa3tzcAcXFx+e579uxZACpUqGBGKCIiYiIvz4IVpy1ov5Lm5LdLCe1xF5ePR/LPw+NJDD9h75BERKSUMCXRCgoKwjAM1q1bl69+VquVn3/+GYvFQlBQkBmhiIiIiZo38ilYv8YF61dSpKemsvfZqewc8XzGJsQODjR6+Snc69Swd2giIlJKmJJo3XjjjQCEhoby559/5rnf66+/ztGjRwHo06ePGaGIiIiJbrq+SgH7VTU5kuKTfC6Gzf0eIPy9LwFwDvAleOUX1H1amxCLiEjemZJojRo1Cjc3NwCGDh1KaGjoNdsnJSUxbtw4Jk2aBICzszMPPfSQGaGIiIiJQoIrUrN6/irqNajrRUjH0rl31qUd+9jQ+XZi1m4BwKdVE7pu+pGK13W2c2QiIlLamDKJvkaNGrz66quMGTOG8+fP0717d3r27Em7du1sbfbs2cPnn3/Oli1bWLJkCefPn8cwDCwWC2PGjKFOnTpmhCIiIib6c/05zp5LznN7Xx9nXh7TBCfH0jfyE/vPfjb2uMtWYbDanQNoOes1lW4XEZECsRiGYZh1s7Fjx9r20brW9IorHzl8+HC+/PJLs0IoE7J770z8zyQikqu0tHQ+nnuUH5aeAsBiAX9fF85fSMmxT4O6Xrw8pgm1angUV5imMtLTCbvtUc6uWEPj15+j7jMPaqqgiIgABft8bmqiBbBs2TLGjx/Pnj17rtmuRo0aTJw4UVMGs6FES0Ts7YPZR/h+yUkAfLydmPRcE9q18mPDlvMsX3Wa3ftjiU9Iw8vT6f/au++wpq7/D+DvhL2XCrhQVBRxb6XuvWodVevW1mpt/daqrVa04B51j1pbZ23dW+uou4I4cC9cCG4UUPZM7u8PfrlNZGSQEMb79Tw83iTnnnOSXDCfnHM+BzWq2aNre3f4NnIplCNZytJj4xF75TanChIRkYoCEWgpBAcH4+zZs7h79y5iYmKQkZEBJycneHp6okWLFmjbti1MTYtG+l99Y6BFRMYW/S4Nn4+7AidHc8z+sTpKuxW96XOJD8PxeOFa1FjpD6mZmbG7Q0REBViBCrRIdwy0iCi/Kf7GKP/9CX+WCPdSlrCwMDFWtwzm7T/ncHXgeGS8j4PHVwNRY/lPxu4SEREVYLp8PtdL1sEFCxbgxYsX+qhK754/f45JkyahVq1asLW1hY2NDby8vDB69Ghcu3ZNr20JgoDdu3ejb9++qFixIqysrGBvb486derg+++/R0REhF7bIyLSh9RUGeYuu4/1W1X/RlUoZ1PkgixBEBC2ZD0udf8SGe/jAACm9rb8MouIiPROLyNaUqkUUqkUrVq1wpAhQ9CrVy/Y2trqo395smfPHgwbNgzx8fHZPm5iYgI/Pz9Mnz49z209e/YMn332GYKCgnIsY21tjdWrV2PIkCG51sURLSLKL68iU+A39w4ePE4AAPzsXwNNGxTO1OzqyJJTcGv0NLzYcgAAILWyRO21c1G6bxcj94yIiAo6o00dlEqlKo1bWVmhR48eGDx4MDp06ACpVC8DZ1o5ceIEOnXqBJlMBgCoW7cuOnfuDFNTU5w7d05lY+XZs2djypQpOrf14sULNG/eHE+ePAEA2Nvbo3fv3vD09ERUVBT279+P8PBwAJlv0t69e9GjR48c62OgRUT54dLVGAQsvIe4+AwAQG0fB8yYVB0uTuZG7pn+JT9/jSt9vkbsldsAAKvypVF/1yo41K1u5J4REVFhYLRAa9KkSdi+fTuePn2apTOlSpXCgAEDMHjwYNSpUyevTWkkKSkJXl5e4nTGmTNnws/PT+UF2rVrFwYMGID09HRIpVLcunUL1avr9h9ut27d8PfffwMA2rZti507d8LJyUl8PD09HWPGjMHatWsBAO7u7oiIiIBZDouvGWgRkSEJgoA/dz3Db5ufQPGn5dOPy+Dr4Z4wNc3/L8YMLeb8VVztOxapkVEAAOfmDVFv2zJYlCqaI3dERKR/Rk+GERQUhC1btmDXrl14+/Ztlo5Vr14dQ4YMwYABA1CmTBl9NZvFsmXLMG7cOACZQdDBgwezLbdkyRKMHz8eANC3b19s375d67YOHTqE7t27AwCaNGmCM2fOwMLCIku5tLQ01KxZEw8ePAAA7N+/Hx9//HG2dTLQIiJDSU7JXI91KjDzb7SFuRSTxnqhQytXI/fMcN4cOYvLPUYBggCP0QNQffEUZhkkIiKtGD3QUpDJZDh+/Di2bNmC/fv3i2ukFB2USCQGXc9Vt25dXL9+HUBm8NesWbNsy6WmpqJcuXJ4+/YtLCws8ObNG9jb22vVVs+ePbFv3z6YmJggJCQk11G7pUuXYu3atXBxccGoUaMwYMCAbMsx0CIiQ0hJkeGrSdfxMCxzPZa7qyXm+vmgckXjr6k1tLAl62Fqa4PyI/sZuytERFQIFZhAS1lKSgoOHjyIrVu34siRI0hNTc1s+P87q7yeq1OnTnluLzIyEm5ubgAAJycnREVF5bpG7LPPPsO2bdsAANu2bUO/fpr/JxwXF4eSJUsiLS0NnTp1wpEjR/LW+f/HQIuIDGX574+w48AL1K/tiBk/VIeDfdEb2UmLikHy80g41PE2dleIiKiIMFp699xYWlri008/xZ49exAZGYl169ahc+fOMDMzgyAISEpKwtatW9GtWze9tHf16lXxuFGjRmoTcTRp0kQ8vnjxolZtXblyBWlpaQCA9u3ba3UuEZExjBlRCRO+qoJF02sVySAr7kYoApv2weXuI5HyItLY3SEiomIsX1c929vbY/jw4fjll1/g7+8PW1tbMTrU14jNw4cPxeOKFSuqLV++fHnxWLF+SlO3bt0Sj318fAAAT548wZQpU1CrVi3Y29vDwcEB9evXx8yZMxEbG6tV/UREeZGeLse6v8IRl5Au3mdqIkHPLqVhapL1m7nC7tXuozjfoj+Sw18g9fVbPNuw09hdIiKiYsw0vxoKDQ3Ftm3bsHfvXty+fVu8XxFg6Ssj4atXr8TjsmXLqi2vnJQjMlK7bz9DQ0PFY3d3d6xevRoTJ05EUlKSSrmrV6/i6tWrWLlyJXbv3o2PPvpIq3aA7IcrNeHv74+AgACdziWiwuvd+zT4zb2Dm3fjcOd+HBb41yySwRUACHI5HkxfjkdzVmfeIZGg2tyJ8Bz/uXE7RkRExZpBA63w8HBs27YN27ZtUxn9UQRXZcqUwYABAzBkyBBxRCivlEeNrK2t1Za3srLK9lxNvH//Xjz+66+/sGDBAgCAt7c3OnfuDGdnZzx+/Bj79u3Du3fv8ObNG7Rr1w5nz55F48aNtWqLiEhT9x/F48fZd/AmKnNNbHxCBhITM4rkVMH0uATcGPY9Ig+eAgCYOtih7p+LUKpTSyP3jIiIiju9B1qvX7/G9u3bsW3bNly6dEm8XxFc2djYoGfPnhgyZAjatm2r80hNThTJNgDVIConymWUz9VEQkKCeLxgwQJIpVL8/PPPGDdunMrasIULF6Jfv344ceIEUlNT0a9fP9y/fz/bNPBERHlx4t83mLvsPlLT5ACAjq1d8cM3XrAwL3r7YyU+ikBI7zFIuPsIAGBTtSIa7P4FtlU9jdwzIiIiPQVaMTEx2LVrF7Zt24Zz585BLs/8D14RXEmlUrRp0wZDhgxB7969NRpp0pWJiYl4rEkQp7w2TF3ijA99OEVw2rRp4r5cypydnbFv3z7Url0bjx8/RkREBDZu3IhRo0Zp1R4RUU5kMgG///kEf+56BgCQSoGvh1dC3x5l9P6FVkFx66tpYpBVsnNL1N28CGYOdkbuFRERUSa9BFpubm6QyWQAVAMXHx8fDB48GIMGDULp0qX10ZRayntypaSkqC2vXEbbESZLS0vx2NnZGZMmTcqxrI2NDb7//nuMHj0aQOaGxQy0iEgfkpJlmL7wHoIuRQMA7GxNMeMHbzSs62zknhlWrbVzEdS0D8oN642qM7+DROmLNiIiImPTS6CVkZEhHru6uuKzzz7D4MGDUbduXX1UrxXlQOvDEafsJCcni8cODg5atWVn9983py1atFA7VbFdu3bisXIaek1wHy0iysmryGRcufEOAFChnDXmTa2BsqXVT50ubOQZGZCYmIgjdNYeZdDy1mGYuzgZuWdERERZ6SXQsrKywscff4whQ4agQ4cOKtP38pu7u7t4/PLlS7XlX7x4IR4rNjrWlIuLi3isyYidchbEqKgordoiIspJpQq2+GmCNw7+8wr+E71ha5NvCWXzTVpUDK70+xZun7RHxbFDxPsZZBERUUGll/+NX79+rTK6Y0zK2QvDw8PVlo+IiBCPvby8tGqrevXq4rFyBsKcKI/8FZTXi4gKp7fRqSjp8t905xZNS6B5E5ciuR4r/s5DXO45GslPniMmMAT2dbzh0ryhsbtFRESUK72koSpIQUPNmjXFDxqXL19WW/7ChQvicb169bRqS3nvL+X09Tl58uSJeFyuXDmt2iIiAgC5XMDaP5/gs1GXEPooXuWxohhkRR46haCP+iL5yXMAgHufTnCsX8PIvSIiIlJPqxGtp0+fisfly5fP9v68UK5TV05OTvD19UVgYCAiIyNx5coV1K9fP9uyKSkpOHnyJIDMjINt27bVqq1GjRqhVKlSePPmDW7duoU7d+7kuh/Y33//LR63aNFCq7aIiFJSZJi99D5OB70FAMxeEopNKxpAKi16AZYgCAhb+DtC/RYD/79G1Wv6t6j841dFMqAkIqKiR6tAq0KFCpBIJJBIJCrT4BT358WHdeZF//79ERgYCAAICAjAwYMHsy23cuVKca1Uly5dUKpUKa3aMTU1xcCBA7FkyRIAwLhx4/DPP/9k+1pERUWJ5QBg0KBBWrVFRMVbVEwqJs+8I45ilS1thdk/+hTJIEuWkopbo6bixZYDAAATG2vU2bgAbp+0N3LPiIiINCcRtEhnp9hnSiKRiOncle/PU0c+qDMvkpOT4ePjI07VmzBhAubPn6+SpGPXrl0YMGAA0tPTIZFIcOnSJTRo0EDrtqKiouDj44M3b94AyAyg1qxZo7JX2OvXr/HJJ5/g4sWLAIBu3brlGPwB2U//YdZBouLrweN4TJp5G2+j0wAA9Wo5Ytbk6rC3MzNyz/QvIyERFzsOx/tLNwAAVuVLo8Ge1bCvXc3IPSMiouJMl8/nWgVarVq1Ehs5ffp0tvfnhXKdeXX8+HF06dJFHCWrVq0aevToAUtLSwQGBopTBgHAz88Ps2bNyrYe5ee1YcMGDBs2LEuZY8eOoUePHkhNTQUAlChRAr169UL58uXx5MkT7Ny5E3FxcQAy099fu3ZNJTtibm0qMNAiKp7OBkdh5qJ7SEnN3Ai+e0d3TBhdGaamelliW+AIgoCbX/rh+cbdcPKtj/o7VsCilIv6E4mIiAzI4IFWYbN7924MHz4c8fHx2T4ukUjw/fffY968eTkGipoEWgBw5swZDB06NNf1arVq1cKBAwfg4eGRa78ZaBERAJwOeouf5t+FIABSKfDNiEr49OMyRX6Nkiw1DeErNqHC2KEwsTA3dneIiIh0+nxeNL8S/X+9e/dGaGgoJk+ejJo1a8LOzg7m5ubw8PDA4MGDERwcjPnz5+vlQ0urVq0QGhqKFStWoE2bNnB1dYWpqSmcnJzQunVrrFmzBpcvX1YbZBERKTSo7QSPstawsjLBvKk10LdH2SIXZAlyOcJX/YmMhETxPhMLc1SaOJJBFhERFWp6GdH6448/AAANGzaEt7e3VucGBQVh165dSEtLw6pVq/LalSKBI1pEpPD6TQriEzNQpaKtsbuidxmJSbgxfBJe7/0Hbj07oN62ZZDoYc0vERGRvhltRGvYsGEYPnw4jhw5ovW5Z8+exbJly7Bv3z59dIWIqNCKik7Fjv3PVe5zK2VZJIOspIgXCG7xGV7v/QcAEH/7AdLexhi5V0RERPqjVXp3Q4iNjQUAxMTwP1giKr4ehyfg++m38SYqFSYmEvTuVsbYXTKYmKAruNJ3LNLeRAMASrTzRb0tS2Dm5GDknhEREemPxoGWTCbD1q1bIZfLcywTEhIiTiPUpL7w8HCsXLkSAODiwqxSRFQ8Xboag6nz7iIpOXOLi/BnSUbukeE827gbt8b4Q0hPBwBUGDsE3gsmQWpq9O/9iIiI9EqrNVpfffUVfvvttyz3K6rQZZG2IAiQSCQYMmQINmzYoPX5RRHXaBEVHwePvcLCXx5A9v/fYY0Z7onPehbBpBcyGe5N/hlPlmb+nZeYmaHGCn+U//xTI/eMiIhIPYOnd3///j2qVq2Kt2/fat+7XFSqVAn//vtvrntLFScMtIiKPrlcwO9/hmPzzswtIczNJJg63httPipp5J5p7vGitag04QuNysbffoDAxr0gT0uHeQkn1NuxAi7NGxq4h0RERPqRL/tonTlzBmfPnlW5b/r06ZBIJGjfvj2aNm2qUUdNTExgb2+PihUrol27drC0tNSmG0UaAy2ioi01TY45y0Jx8t/ML60c7c0wd6oPanoXnjVKMYEhCG49EE3PbIGzb32Nznm+eR/CFq9Dg72rYV2hrIF7SEREpD9G27BYKpVCIpHg559/xvjx4/NaXbHHQIuoaDt47BXmr3wAAChb2gqLAmqijLuVkXulnYudhiPq5HmUaOeLxkfWZ1smIyERprY2KvfJ09IgNef+WEREVLgYLb37kCFDMGTIENSoUUMf1RERFWndOrihSzs31KpujzU/1y10QVZMYAiiTp4HAESdCEJM0JUsZZ5t3I3TXu0Qf++xyv0MsoiIqLjQy4gW6RdHtIiKvowMOWRywMK88G3QqxjNUlAe1RJkMoT6LULYonUAAJtqnmhx7SCzChIRUaFmtBEtfXj58qWxu0BEZBBXb73HxIBbSE2VifeZmkoLZZClPJqloBjVykhIxJVPvxGDLDMXR9RaPZNBFhERFUt6H9F6+fIlrly5gtjYWKSnp2eJ9ARBgFwuR3p6OpKSkhAdHY0rV67g33//RUpKij67UmhxRIuo6Dh57g1mLQ5FeoaA5k1cMGeKT6FO3f7haJaC00cNIItLQNzNUACArXclNNy3Btae5fK7i0RERHqny+dzvX3N+PbtW3z++ef4+++/tT5XsZcWEVFRsmP/cyxfm7lGycREglbNShbqv3XZjWYpvAsMEY9LdvgIdbcshZmDXX51jYiIqMDRS6All8vRpUsXXL16VaORF4lEkqWco6OjPrpCRGR0crmA1RvDsHXvcwCAlZUJ5vxYHQ3rOhu5Z3nzcNYqtWUqfDMY3j9P5nRBIiIq9vTyP+GOHTtw5coV8Zva6tWro1atWoiKisKJEydgamqKgQMHIikpCW/fvsXFixeRnJwMADA3N8eOHTvQqVMnfXSFiMio0tPlmLPsPo6ffQMAcHEyx8/+NeBVqXCP7uQ2mqXMvU9nBllERETQUzKMvXv3iscLFizA7du3sWXLFmzevBkAIJPJMG7cOGzfvh2nTp1CdHQ0xo0bBwBIT0/H5s2bYc6Uv0RUyCUmZWDi9FtikFWujBVWL6hT6IMsQLPRLG3KERERFXV6CbRCQjLn5nt7e2PixIni/a6urqhUqRIA4MSJE+L9lpaWWLx4Mb755hsIgoA9e/YgMDBQH10hIjKaR08SceNOLADAp6odVs+vi9JuhWuPrOxoOpoF5LyvFhERUXGjl0ArOjoaEokE7du3z/JYnTp1IAgCLl26lOWxefPmwc4u85texegXEVFhVdvHAVO+rYrmjV2wbFZtODqYGbtLeqHtKBVHtYiIiPQUaCnWW7m7u2d5rHr16gCAW7duZXnM2toa3bp1gyAI4qgYEVFhkiFTTezToZUr5vj5wNLSxEg90i9tRrMUOKpFRESkp0DLyckJAJCWlpblMcXUwcePH0Mmk2V5vHLlygCAiIgIfXSFiCjfXL/9HgO/uoSIZ0kq9xfmFO4fejBzpU7ncVSLiIiKO70EWqVLlwYAPHz4MMtjikArIyMDoaGhWR5XpHmPj4/XR1eIiPJF4KUojPe/hRevUjDe/yZSUrJ+kVTYRZ0KRvSpYN3O5agWEREVc3oJtD766CMIgoC///4bcXFxKo95eXmJx+fOncty7p07dwBkJsggIioMjpx6Db/Zd5CWJoeJFBg5qGKRmSqokPo2Blf6js1THRzVIiKi4kwvgVbPnj0BAO/evUPHjh1x9+5d8bGSJUvC09MTgiBg8eLFKoHYxYsXceDAAUgkEnh6euqjK0REBrVj/3PMXnIfMjlgbi7FHL8a6NTG1djd0rsHAcuQEZu3mQYc1SIiouJML7tKtm7dGr6+vggKCsKlS5dQs2ZN/PDDD5g7dy4AYOjQofD398fjx49Rs2ZNfPrpp4iKisLOnTshk8kgkUjQuXNnfXSFiMggBEHA73+G448dTwEAtjYmmD+tBmr7OBq3Y4ZiYgITOxtIpBJYuJeCRKrb93IvdxyGs299PXeOiIio4JMIikVSefT69Wt89NFHCAsLg0QiwbRp0xAQEAAASEhIQI0aNfDs2TOVcxRNu7i44Pbt23B1LXrfCusiu4X0enqbiEgHMpmAxb8+xP6jrwAAzo5mWDSjFqpUtDVyz/RLlpIKE0uL/26npkFqblakknsQERHpQpfP53qZOggAbm5uuHnzJqZNm4by5cujYsWK4mO2trY4evQoqlatCkEQxB8AKFWqFA4cOMAgi4gKrLiEdFy8GgMAcHe1xOoFdYtUkCXPyMDtb2fiUrcvIFfKHmtiYc4gi4iISEd6G9H6UHp6OszMzLLct3fvXly4cAGpqamoXbs2+vfvD3t7e0N0odDiiBZRwfP0RRIW//oQU7+rhhLOFupPKCTS4xJwbeB3eHv0XwBAxXHDUf3nyUbuFRERUcGiy+dzgwVapDsGWkTGlyETYGpStEdzkp++xOUeoxB/+wEAwL5WNTTYvwZWZd2M3DMiIqKCxahTB4mIiop379Pw5YSr+OdMpLG7YjDvQ24hyLevGGSV6tIKTc/8xSCLiIhITxhoEREpeRudim9+vIEHjxMwe0kobofGqT+pkHm19x8EtxmE1NdvAQAVxg5Bgz2/wNSu6Kw7IyIiMjat0ru3adPGUP2ARCLByZMnDVY/EZE6L14nY9zUm3gVmQIA6NDKFdWq2Bm5V/r1ZPkm3J0wJ/OGVAqfJVNRYcxA43aKiIioCNIq0Dpz5oxBMlAJgsDMVkRkVOHPEjFu6k1ExWRm3evVtTTGfVkZUmnR+ttkXdkDkEphYm2JeluXolSnlsbuEhERUZGkVTIMqY4bVmrUEYkEMpnMYPUXJkyGQZS/HjyOx/ifbuF9XDoAYFCfchg1pGKR/QLo2aY9cKhbHfa1qhm7K0RERIWCwbMORkREaN8rLXh4eBi0/sKCgRZR/rkdGouJAbeQkJj5Rc+XgytgSN+i87coKewZ0mLew7FBTWN3hYiIqNDS5fO5VlMHGQgRUVGz88ALMcj6dmQlfPpxWSP3SH9izl/Fld5jAKkUvkE7YF2h6Dw3IiKigk6rQIuIqKiZ8m1VxMano12LUujW3t3Y3dGbF9sO4eYXP0KemrnmLPLgKVQcO8TIvSIiIio+DLph8evXrxEREYF3797By8sLnp6eAIDo6Gi4uLgYqtlCj1MHifKXXC4UmaQXgiDg0Zxf8CBgOQBAYmqKGisDUP7zT43cMyIiosKrQGxYHBMTg+nTp6Ny5cooU6YMmjVrhq5du2Lfvn1imebNm6Np06Y4duyYvpsnIsrV0VORWPjLQ8jl//1xLCpBliw1DTeGTxKDLFMHOzT6ey2DLCIiIiPQ69TBkydPYuDAgXj7NnMTTEWU92EEGB4ejtTUVHTp0gVjx47F0qVL9dkNIqJsHTr+CvNXPIAgAJYWUnzzeSVjd0lv0qLf4UqfbxATGAIAsKpYFg33/wY776LzHImIiAoTvQVa586dQ9euXZGeni4GWB4eHlkyFb579w4ymUwss2LFCtjZ2WHmzJn66goRURb7j77Ez6seAgCsrEzQvEkJ8bEMmYCgi1H4+/hr3L4fh4TEDNjamKJGVXt0be8G38YlYGpSsEe9bn31kxhkOTWti/q7f4FFSWcj94qIiKj40svUweTkZPTv3x9paZmLrr/88ks8f/4cT548yVLWyckJz58/x8iRIwFkjnrNnz8f9+/f10dXiIiy2P33CzHIsrE2wZIZNVHbxwEAEPEsCV98dwV+c+/ifEgM4uIzIJcDcfEZOB8SA7+5d/HFd1fw9HmSMZ+CWtUX/ggLt5Io3b8bGv+ziUEWERGRkekl0Pr999/x6tUrSCQSzJ49G7/++itKly6dY/mSJUtizZo1mDdvHgBAJpPht99+00dXiIhU7Nj/HEt+fQQAsLUxxZKZtVCj2n9B1teTr+PRk8Rc63j0JBFjJl1HxLOCG2xZlS8N3/M7UeePhTCxtDB2d4iIiIo9vQRaBw4cAABUqlQJkyZN0vi8iRMnokqVKgCA06dP66MrRESiLXueYfnaxwAAeztTLJtVC9W97AFkThf0//ku3sela1TX+7h0BCy8hwyZ8TOACnI5QqctwZNlG1Xutyrnnm1WJCIiIsp/elmjdefOHUgkEnTp0kWr/+SlUik6dOiAhw8fIiwsTB9dISICANy6F4tfNmT+XXG0N8OSWbVQpaKt+HjQxSi1I1kfehiWgKBL0WjZtIT6wgYiS0nFjc8n49WOw4BEAuvKHnDt2tpo/SEiIqLs6WVE6927dwAAd3ftN/tUnJOcnKyPrhARAQBqejtgxAAPODmaYfmc2ipBFgD8ffy1TvX+ffyVPrqnk7SoGFzsOCwzyAJgU9kDtlU9jdYfIiIiypleAi1HR0cAmRsRa+vZs2cAAGdnwyzcfv78OSZNmoRatWrB1tYWNjY28PLywujRo3Ht2jWDtKksPDwcDg4OkEgkGDZsmMHbI6L/DO/vgT9WNoCnh02Wx27fj9Opztuhup2XV4kPwxHUvD/enb8KAHD+qAGandsGm8oeRukPERER5U4vgVaVKlUgCAKOHz+u1XkpKSnYv38/JBIJvLy89NEVFXv27EH16tWxYMEC3Lp1C4mJiUhKSsLDhw+xZs0aNGzYEP7+/npvV0Eul2PIkCGIizPOBzOi4kQQBOw88Bxx8f+tuZJIJHByMM+2fEJihk7t6HpeXsQEXUFQ835IepS5XUbp/t3Q6OgGmLs45XtfiIiISDN6CbQ6d+4MALh58yZ27Nih8Xnjx4/H69eZ03c6dOigj66ITpw4gb59+yI+Ph4AULduXUyZMgU//fQTWrfOXM8gk8kwY8YMzJkzR69tK8yfPx/nzp0zSN1E9B9BELBy3WMs+/0xxv90C/EJ6oMhWxvdlqjqep6uXu48jIsdhyE9+j0AoPKUrzIzC1pkH0ASERFRwaCXQOurr74Spw+OGDEC27Zty7X8q1evMGDAAKxZswYAYG1tjS+//FIfXQEAJCUlYdiwYZDJZACAmTNn4sqVK5g9ezamT5+OU6dOYefOnTAzMwMATJs2DXfv3tVb+wBw9epVg46WEVEmQRCwcn0Ytu9/AQCIjUtHYpL6QKtGVXud2qtRTbfzdBV14jzkqWmQmJqi1m+zUXX6OGYWJCIiKgT0Emg5OTlh5cqVEAQBycnJGDhwIKpUqYJ+/fqJZQIDAzF16lR06NABFStWxPbt2yEIAiQSCebNm4eSJUvqoysAMvf1evEi80NXt27dMHXq1CwfTPr06YP58+cDyJziN336dL21n5ycjEGDBiE9PR3m5vzWmchQBEHA6o1h2L7vOQDA3dUSK+bWhlspS7Xndm3vplObXdtrn/QnL2qs9Idbr45oePA3lBveJ1/bJiIiIt1JBEHQ26Ywv/zyC7777jukp6fn+o2rokmJRAI/Pz/MmDFDX10AkDlN8Pr16wCAoKAgNGvWLNtyqampKFeuHN6+fQsLCwu8efMG9vZ5/7b6m2++wapVqyCVSjFjxgxMnToVADB06FBs3LhR7fnZvXZ6fJuIigRBELDmjyf4c1dmQh33UpoHWUDmPlpffHdFqxTvVTxt8fviejA1MdyIUkZ8AiQmJjCxtjJYG0RERKQdXT6f62VES2HMmDE4f/48OnXqJDae3Q8ANGrUCEeOHNF7kBUZGSkGWU5OTmjSpEmOZS0sLNC2bVsAmUHXkSNH8tz+0aNHsWrVKgDApEmT4Ovrm+c6iUiVIAj4bXO4GGS5lrTA8jmaB1kAYGoiwYwfqsPR3kyj8o72Zpj+vbdBg6zk568R3Gogrg2ZCOH/pz4TERFR4aT3Vd3169fH4cOH8fLlS/z777+4e/cuYmJikJGRAScnJ3h6eqJFixaoWrWqvpsGkLk2SqFRo0aQSnOPJZs0aSKuKbt48aLKdEdtRUdHY/jw4QCAOnXqICAgAOfPn9e5PiLK3qbtT7F551MAQKkSFlgxpzbcXTUPshTKl7XGqnl1ELDwHh6GJeRYroqnLaZ/743yZa117rM6sdfv4XKPL5H68g3ibobi2YbdKP9FX4O1R0RERIZlsPRZpUuXRv/+/Q1VfY4ePnwoHlesWFFt+fLly4vHDx48yFPbI0eOxOvXr2FhYYHNmzdzfRaRgfhUtYO5uRSO9mZYMbc2SrvpPs3Oo5w1fl9cD0GXovH38Ve4HRqHhMQM2NqYokY1e3Rt7w7fRi4GHcl6c/Qsrn42DrKEpMw+jR6AssN6Gaw9IiIiMrz8zVOci/Xr12PEiBF5rufVq1ficdmyZdWWL1OmjHgcGRmpc7vr16/H3r17AQCzZ89GjRo1dK4rO7pmGfP390dAQIBe+0JkbA3rOmOhfw2UKmGJMnkIshRMTSRo2bQEWjYtoYfeaSfit224878ZmVMFJRJ4z5+EiuOGMbMgERFRIafXNVq6uHv3Lpo3b46RI0fqpb7Y2Fjx2Npa/TQfK6v/PqQpn6uNsLAwjBs3DgDQsmVLjB8/Xqd6iChn796nqdyuV8sJZUsX3oQRglyOez/+jNtf+0OQySC1tEC97cvh+d1wBllERERFgM4jWu/fv8emTZtw48YNvHr1Cq6urmjTpg0+++wzcX+q3KSkpGD69OlYvHix2iyF2khNTRWPlYOonCiXUT5XUzKZDIMHD0Z8fDzs7e2xadMmfkgi0rPNO59i695nWDqzFrwq2Rm7O3pxY8RkvPhrPwDAvKQzGuz9FU6Naxu5V0RERKQvOo1orVq1CuXKlcP48eOxadMm/PPPP9i8eTOGDx+OatWqqSSkyM7hw4dRvXp1LFiwAOnp6Tp1PCcmJibisSYBj3JaRnWJM7IzZ84cMeHF8uXL4eHhoXUdRJSzv3Y/xZo/niAuPgMzFoVCJisaWx2U7NgcAGBTtSJ8A3cwyCIiIipitB7RmjlzJgICArLNGy+RSPDkyRO0a9cOFy5cgJeXl8rj0dHRGD16NPbs2SNuVgxkBjhjxozR8SmosrW1FY9TUlLUllcuY2FhoVVbly9fFtPT9+zZE0OHDtXqfCLK3bZ9z7B64xMAgJOjGWZOrg4TAyalyE9lPusOQS5Hqc4tYe7saOzuEBERkZ5pFWg9evQIs2fPFm87OjqiR48ecHNzw4MHD3Do0CGkp6fj/fv3GDt2LI4dOyaWPXnyJIYMGYLXr1+LQZYgCGjQoAF+/fVX1KtXTy9PSDnQSkpKUls+OTlZPHZwcNC4naSkJAwaNAgZGRlwdXXFb7/9pl1HtcQNi6m42fP3C6xcFwYAcHQww7JZtVGxvI2Re6W7mMAQmDk7wq56ZfG+sgN7GLFHREREZEhaBVrr1q1DWloaJBIJmjRpgoMHD8LFxUV8/PHjx+jatSsePHiAEydO4N69e/D29samTZvw5ZdfIiMjQyxrb2+P2bNn46uvvtLrmiZ3d3fx+OXLl2rLv3jxQjx2c3PTuJ3Zs2eL6eAbNmyIjRs3Zlvu8ePH4vGdO3ewcOFCAJlBnb4SgBAVNYdPvMbiXx8BAOztTLF0Zi14ehTeIOvl9r9xY8QkWLiXQrPA7bB0K2nsLhEREZGBaRVoBQcHAwDMzMywc+dOlSALACpVqoQtW7agYcOGAIADBw7gwYMHGD78vyxagiCgX79+WLp0KVxdXfXxHFT4+PiIx+Hh4WrLR0REiMcfTnXMjXKAdujQIRw6dEjtOSEhIQgJCQEAeHh4MNAiysaJf99g3or7AAAbaxMsnl4LlSvaqjmrYBIEAY9//h33/RYBAFJeRCL28k1Ydm9r5J4RERGRoWmV/SEsLAwSiQTt2rVT2X9KWb169dCgQQMAwOnTp8W1V4IgwN3dHQcPHsTWrVsNEmQBQM2aNcWg7vLly2rLX7hwQTzW1/RFItJNeroc67aEQy4HrCylWBhQE9WqFM4sg/KMDNweO10MskztbdHo77VwZZBFRERULGgVaEVHRwMAatfOPTtWw4YNIQgCjh8/Lm4g/PHHH+PWrVvo2rWrjl3VjJOTE3x9fQFkbkB85cqVHMumpKTg5MmTADITcrRtq/kHoI0bN0IQBLU/p0+fFs8ZOnSoeL8mo21ExY2ZmRTLZtVG5Yo2mDe1Bmp6a75usiDJSEzClU+/wdM1WwEAluXc0ezsVpRo09TIPSMiIqL8olWgpdhnytHRMddyJUqUAAAx6cV3332Hffv2wcnJSbdeaql///7icUBAQI7lVq5ciaioKABAly5dUKpUKUN3jYjUKFXCAuuX1kf92vnz90LfUt9E40K7IXhzKPNLFvta1eAbuB12NTSfmkxERESFn1aBllwuB6C6V1V2FJn/JBIJOnXqhEWLFunYPd2MGDECFStWBJC5fmrixImQyWQqZXbt2oUpU6aI/fT398/XPhJRptuhsTh6KlLlPqm08KZwvz5kImJDbgEASrTzRZPTf8GytGGmShMREVHBpfU+WppQziI4depUQzSRKysrK6xZswZdunRBRkYGFi1ahL///hs9evSApaUlAgMDxSmDADBlyhRxXdmHlJ/Lhg0bMGzYMEN3n6jYuP8oHhMDbiEhUYaUVBk+6Vza2F3KM5+lU3G+xWdw7d4WNX+dAamZmbG7REREREZgkEBLWZ06dQzdRLbat2+Pbdu2Yfjw4YiPj0doaChCQ0NVykgkEnz//feYOXOmUfpIVJyFRSRi/E83kZCYOdpsalp4R7GU2VarhI8u7YGVRxm9bl1BREREhYtWUwd1YWVlZegmctS7d2+EhoZi8uTJqFmzJuzs7GBubg4PDw8MHjwYwcHBmD9/Pj8MEeWzpy+SMG7qDcTGZ+6t993oyujW3l3NWQXTkxV/4Plf+1Xus65Qln9XiIiIijmDj2gZW+nSpTF37lzMnTtXp/MFQchT+61atcpzHURFyes3KRg39SZi3qcDAMYM90TvrtlvF1GQCXI57k1agCdLN0BiZgZL91LMKkhERESiIh9oEVHB8e59Gr776SbeRGVmMB3+mQcG9Cpn5F5pT5aSihvDf8CrXUcBAOYujjBztDdyr4iIiKggYaBFRPkiITED4/1v4dmLZABA34/LYMRnHkbulfbSYt4jpNcYvAvK3KPP1rsSGh74DdYVyhq5Z0RERFSQ6BRorV69GocOHcrx8WfPnonHbdq00ahOiUSikgmQiIoWMzMp3Epa4GFYArq0dcU3n1cqdOuYkp48w6XuI5F4/wkAwLl5QzTYvQpmToVzY2UiIiIyHImgxQIiqVRqkA9Gio2NP9zrqrjK7jXmOi8qCjJkAvYffYkenUrD1KRwBVnvQ24h5JPRSI3M3OTc/dPOqL1+PkwsLYzcMyIiIjI0XT6faz2ixQ/8RKQpmUyARPLfBsSmJpJCmfgCAMJX/CEGWZ7jR6Da3O8hkRo8cSsREREVUloFWhs2bDBUP4ioiBEEAQtXP4QsQ44fxlYtdCNYH6r560wkRbxA6U+7oMLXg4zdHSIiIirgtJo6SPmDUwepKPhlYxi27M5crzmgV1mMGV7JyD3SjiAIEGQySE3/+z5KkMkgMTExYq+IiIjIGHT5fM55L0Skd5t3PhWDrDLulujbo3Bl5JOnpeHGiMm49eVUlT+iDLKIiIhIU0zvTkR6te/IS6z5IzMrXwlncyyZUQslnAtPwoj02Hhc7fc/RJ08DwCwq1UNnuOGGbdTREREVOgw0CIivTl57g0WrX4IALC3M8XiGbVQ2s3KyL3SXPLz17jcfSTibz8AADg2rIUyA7obuVdERERUGHHqIBHpxeVrMZi5OBSCAFhZmWBRQE14etgYu1sai7/9AOeb9xODLNfubdDkxB+wKOVi5J4RERFRYcRAi4jyLCo6FVPm3kVGhgAzUwnm+fnA28ve2N3SWPS5yzjfeiBSnr8GAHiMHoD6O1fCxLrwjMYRERFRwcJAi4jyrISLBb4cVAEmUmDaBG/Ur+1k7C5p7NWeY7jUeQQy3scBAKrOngCf5T8x8QURERHlCddoEZFefPpxWTRr6IIy7oVrFCjl5RvIU9MgMTVFrd9no+ygT4zdJSIiIioCuI9WAcR9tKgwSEjMgFwQYG9rZuyu5NmDGSvg1LQuSrb/yNhdISIiogJIl8/nDLQKIAZaVNClpskxwf8mYuPSsXhGLZR0KTzp2+Xp6UiPiYWFa4kcyzxetBaVJnyRj70iIiKigowbFhORwclkAmYsvIfrt2Px5GkSNm1/auwuaSwjPgGXe4zGhQ5Dkf4uNtsyMYEhCJ38M2KCruRz74iIiKgoYaBFRBoTBAGLf32Is8FRAIA6Pg4Y+0UlI/dKM6mRUQhuOwRRxwORcPcR7gcsz7bcw1mrVP4lIiIi0gUDLSLS2IZtEdh/9BUAoFIFG8ydWgMW5gX/z0jiw3Ccb9EfcdfuAABKdm6JanMmZCkXExiCqJPnAQBRJ4I4qkVEREQ6K/ifkIioQNh35CXWb4kAALiXssSigJqwsy34iUvfX7qJ8y36IynsGQCg7LDeaLDnF5jaWGcp++EoFke1iIiISFcMtIhIrTNBb7Fo9UMAgKO9GRbNqIkShSABxpsjZ3Gh/RCkRb0DAFT2G4Nav82G1DRrgKg8mqXAUS0iIiLSFQMtIspVUlIGFqx6AEEArCyl+Nm/BsqXyToaVNC82HIAIT2/giwpGZBKUWPVdFQN+DbbrEFAzqNXHNUiIiIiXTDQIqJcWVubYlFATZR0McfsH33g7WVv7C5pxMarIqSWFpBaWqD+zhXw+LJ/jmWzG81S4KgWERER6YL7aBVA3EeLCqLUVBksLEyM3Q2tvD0eCBMbazg3q5druYudhucYaAFAiXa+aHxkvb67R0RERIUE99EiIr1ISpbh4ZMElfsKepAlS07Bu4s3VO4r2f4jtUFWbqNZChzVIiIiIm0x0CIiFRkyAT/Nv4sxP1xDcEi0sbujkbTod7jQYRgudhiK95duanWupmuwuFaLiIiItMFAi4hEgiBg0S8PcOFKDJJT5Nh35FWBn7aaFPEC51sNwPsL1yBLSkbYsg0an6vJaJYCR7WIiIhIGwV/Exwi0kmGTEDQxSj8ffw1bt+PQ0JiBmxtTFGjqj26tneDb+MSMDVRnW+8aftTHPznNQDAq5It/Cd655ilryCIuxGKS92/QOqrtwCA0v27ofa6uRqfr+0o1cNZq7hWi4iIiDTCZBgFEJNhUF5FPEuC/8938ehJYo5lKle0wYwfqqN82cxU7YdPvMacZfcBZG5I/OvCunBxMs+X/uoi6nQwrvT+Ghnxmc+x4ncj4D3ve0ikmg3UxwSGILj1QK3bbXpmC5x962t9HhERERVeTIZBRIh4loSvJ1/PNcgCgEdPEjFm0nVEPEvCpasxmL/yAQDAztYUCwNqFugg6+WOw7jUdaQYZHkvmIzqCyZpHGQBuq+54lotIiIi0gRHtAogjmiRrjJkAr747oraIEtZ+TJWeBudhuQUGczNJFgyszZq+zgYsJd582r3UVzt/y0AQGJmhjob5qN0v65a1aHraJYCR7WIiIiKF45oERVzQRejtAqyAODpi2Qkp8ggkQDTJngX6CALAEq0bQa7Gl4wtbNBo0O/ax1kAXkfleKoFhEREanDZBhERcjfx1/rdJ69nSmG9vVAa9+Seu6R/pk52qPR32uRGhkNh7rVtT5fm0yDOVFkIOSoFhEREeWEgRZREXL7fpxO5wmCgH6flNVzb/RDlpyCV7uPouygT8T7LEu7wrK0q071vdx5BLbVK+e5Xy93HGagRURERDlioEVUhCQkZuh0XmKSTM890Y/0d7G43PMrvAu6grS37+D53fA811lj2TQ99IyIiIgod1yjRVSE2Nro9t2JrucZUsrLSAS3HoR3/79J8JsjZyDICmZASERERPQhBlpERUiNqva6nVdNt/MMJeF+GM63+AzxdzJTzrv17oiGB36DxMTEyD0jIiIi0gwDLaIipGt7Nx3Pc9dzT3T3/tJNnG/5GZIjXgAAyo/6DPX+WgITSwsj94yIiIhIcwy0iIoQ38YlULmijVbnVPG0hW8jFwP1SDtvjv2LC+2HID36PQDAy38saqzw50gWERERFToMtIiKEFMTCWb8UB2O9mYalXe0N8P0771hapJ1E778Fnv9HkI++QqypGRAKkWNVdNRZeo32W4QSERERFTQMdAiKmLKl7XGqnl1UMXTNtdyVTxt8cv8Oihf1jqfepY7+9rVUHZIT0gtzFFv2zJ4fNnf2F0iIiIi0plEEATB2J0gVdl9g8+3ibSVIROwYu0j7D70UrzPztYENb0d0LW9O3wbuRSIkSxl8owMJNx5BPva1YzdFSIiIiKRLp/PGWgVQAy0SF8EQcCGbREIvBiNlXPrwNqq4Kx1kqenI2zxelQcOwQm1lbG7g4RERFRjhhoFREMtEjf0tLlMDcrODOFZUnJuPrZOLw5fAalurRC/V0rITXTbF0ZERERUX7T5fN5wfnkZSDPnz/HpEmTUKtWLdja2sLGxgZeXl4YPXo0rl27pte2Ll26hFGjRsHHxwcODg4wNzeHm5sb2rVrh6VLlyIhIUGv7RFl5/nLZKSmyVXuK0hBVlrMe1zoOBxvDp8BAKS+fouM+ETjdoqIiIhIz4r0iNaePXswbNgwxMfHZ/u4iYkJ/Pz8MH369Dy1k5iYiNGjR+PPP//MtZyrqyu2bt2K1q1b51qOI1qkq+h3aRg5/ipKlbDAnCk+cHYyN3aXVCQ/e4VLXT9Hwr3HAIASbZuh/s4VMLXLPXEHERERkTFx6qCSEydOoFOnTpDJZACAunXronPnzjA1NcW5c+dw+vRpsezs2bMxZcoUndqRyWTo2rUrjh07Jt7XunVrNGvWDNbW1ggLC8O+ffsQHR0NADA3N8eJEyfQvHnzHOtkoEW6SE2TY+yU67h7P/OLhYljquCTzqWN3Kv/xN97jEtdRiDl+WsAQOl+XVF7/TxIzQtWMEhERET0IQZa/y8pKQleXl548eIFAGDmzJnw8/NTeYF27dqFAQMGID09HVKpFLdu3UL16tW1bmv16tUYM2YMAMDZ2Rl79uxBy5YtVcokJCRg6NCh2LNnDwDAw8MD9+/fh4WFRbZ1MtAibQmCgJmLQ/HPmTcAgK7t3TB5rFeB2YPqXfA1XP5kNNJj3gMAKnw9GNUXT4FEWnCmNBIRERHlhGu0/t/vv/8uBlndunXD1KlTs7w4ffr0wfz58wEAcrlc5+mDixYtEo83btyYJcgCAFtbW2zduhU1atQAAERERGDnzp06tUeUnT93PRODrNo+Dpj4VZUCE2Slx8bj0sdfikFW1VnjUX2JH4MsIiIiKtKK5CedjRs3isc//vhjjuXGjBmDkiVLAgD279+PuLg4rdq5c+cOHj/OXGvi5eWF7t2751jW3Nwco0aNEm+fOnVKq7aIcvJvcBTW/PEEAOBeyhKzfqwOswKU/MLMwQ41f5kOiakpav46C5UnjSowQSARERGRoRScT2N6EhkZievXrwMAnJyc0KRJkxzLWlhYoG3btgCA1NRUHDlyRKu2bt++LR43bNhQbXlPT0/x+OXLl7mUJNLMwycJmLn4HgDAysoE83+qASeHgrfmqfSnXdDq3jGU//xTY3eFiIiIKF8UuUDr6tWr4nGjRo0gVTM9STkQu3jxolZt9e7dG0+fPsWFCxcwadIkteWVgytbW2ZZo7zJyJDDb84dJKfIIZEAARO94elhY+xuQRAEPJq/Bgmhj1Xut65Q1kg9IiIiIsp/RS7QevjwoXhcsWJFteXLly8vHj948ECrtkxNTVGuXDk0btwYNWvWVFt+79694rGPj49WbRF9yNRUiknfeMHO1hRfDfOEbyMXY3cJgkyG22On4/7UxbjYeQSSn3LkloiIiIqnIhdovXr1SjwuW1b9N+hlypQRjyMjIw3SJwAIDAzE4cOHxdu9evXS6nyJRKLTT0BAgJ6fCRUk9Ws7YfOqBvisp/FHi+Rpabg2ZCKertkKAJCYmkCelm7kXhEREREZh6mxO6BvsbGx4rG1tbXa8lZWVtmeq09RUVEYMmSIePvjjz9G7dq1DdIWFX1JSRmwtv7vV7eEc/bbBOSnjMQkXPl0LKKOBwIA7Hy80OjwWliWdjVyz4iIiIiMo8iNaKWmporHykFUTpTLKJ+rL/Hx8ejevTuePMnMCufo6IilS5fqvR0qHgIvRqHvl5dw7dZ7Y3dFlBbzHhc7DheDLMcmddHk1GYGWURERFSsFblAy8TERDzWJIW08kZj6hJnaOv9+/fo1KkTLly4INa/efNmjdaOEX0oLCIR0xeF4n1sOqbMuYPEpAxjdwkpLyIR3GYQ3l+8DgAo2bE5Gh9dD3NnR6P2i4iIiMjYilygpZzNLyUlRW155TIWFvqbgvXy5Uu0aNEC58+fB5AZZK1duxbdunXTWxtUfMTFp+PH2beRnCwDAEz5tipsrI0/8/fa0IlIuJOZgKZ0v65osOcXmNqon7JLREREVNQZ/5OanikHWklJSWrLJycni8cODg566cO1a9fQvXt3vHjxAkBmdsL169dj8ODBOtepPPJGxYtMJiDg53t48SrzS4EvBlZA8yYljNyrTLVWz8T5VgPg3rsTfJZOhUTPo8JEREREhVWR+1Tk7u4uHmuyKbAiGAIANze3PLd/4MABNG/eXKzX2toae/fuzVOQRcXbmj/CcOnaOwBAy6YlMKRveTVnZO/xorX67BYAwKZKBTS/vBc+y6YxyCIiIiJSUuQ+GSnvTxUeHq62fEREhHjs5eWVp7ZXrlyJnj17IjExEQBQsmRJnDp1itMFSWf/nInElj3PAQCeHjbw+64apFL1aw8/FBMYgtDJPyMm6Eqe+hN58CRebDmgcp9laVeN1kMSERERFSdFLtCqWbOm+KHv8uXLassrElUAQL169XRud86cORg7dizkcjmAzKAtODgYjRs31rlOKt7uP4rHvBWZm2jb2Zpirp8PrK1M1JyVvYezVqn8q4tnm/bgyqdjcePzHxF5+IzO9RAREREVB0Uu0HJycoKvry+AzA2Ir1zJ+Rv8lJQUnDx5EkBmsoq2bdvq1Oby5cvh5+cn3m7SpAnOnz+PSpUq6VQfEQA4O5mjkocNpFJgxqTqKOOufruC7MQEhiDqZGZSlqgTQTqNaoUt2YCbX/wIQSaDxKzILe0kIiIi0rsiF2gBQP/+/cXjgICAHMutXLkSUVFRAIAuXbqgVKlSWrcVFBSE8ePHi7fbtWuHkydPwsXFReu6iJSVdLHAynl18LN/TTSs46RzPR+OYmkzqiUIAkKnLsa9H+YBAEwd7ND48Dq4dmmlc3+IiIiIigOJUATT2SUnJ8PHx0fcJHjChAmYP3++yh5bu3btwoABA5Ceng6JRIJLly6hQYMGWrWTlpaGqlWrimvBqlWrhsuXL6tkPtRFdutdiuDbRPkgJjAEwa0HZrm/6ZktcPatn+u5gkyGW18H4Nm6HQAAC7eSaPT3WtjXqmaQvhIREREVVLp8Pi+SgRYAHD9+HF26dEFGRuamrtWqVUOPHj1gaWmJwMBAccogAPj5+WHWrFnZ1qP8om7YsAHDhg0Tb69ZswajR48Wb3/++eeoVk2zD6HlypVDv3791LapUETfJvrAoeOv8O59Ogb1KaeXBBMXOw0Xpw0qK9HOF42PrM/xPFlqGq4PmYjXe44BAKw9y6HR4fWwqaRbxkMiIiKiwkyXz+dFdrFF+/btsW3bNgwfPhzx8fEIDQ1FaGioShmJRILvv/8eM2fO1KmNjRs3qtxet26dxue2bNkyx0CLiqfbobFY+MtDZGQIiIpJxXejquSpPuW1WR9SrNXKaVQrbOHvYpBlV8MLjQ6vg6W79lNriYiIiIqrIrlGS6F3794IDQ3F5MmTUbNmTdjZ2cHc3BweHh4YPHgwgoODMX/+fJ1HDm7duqXnHlNx9TY6FX5z7iIjQ4CpqQRtPsp7UKNuLVZuj3tO+ALOLRrBqVk9ND31J4MsIiIiIi0V2amDhRmnDhYvaelyfD35Ou49iAcATBxTBZ90Lp2nOnNam/Wh3NZqpcclQGpqAhNr3bIdEhERERUVunw+L9IjWkSFwdI1j8Qg6+OO7nkOsgDNMwsqyiU+DEeo3yII/78PHACY2dsyyCIiIiLSUZFdo0VUGBw6/goHjr0CAPhUtcN3oyrnuc7c1mZ9KOpEEJ79sRf3pyxEamQU5Cmp8F74o14ScRAREREVZwy0iIwk9GE8Fq9+CABwcjTDrB99YGaW90FmbfbJAoBbo/wgZMgAAKb2eduagIiIiIgyMdAiMpKgS9FISxdgIgVm/FAdJV0s8lynNqNZCoogy/vnH+E5blie+0BEREREDLSIjObzgRXg5mqJ5GQZ6tZ01Eud2o5mKdh6V2aQRURERKRHzDpYADHrIOlC00yDOcktAyERERFRccasg0QF3O3QWCQmZRikbl1Hs/R1PhERERH9h4EWUT55+jwJ43+6hS8nXEPEsyS91q3L2qwPRZ0IQkzQFT31iIiIiKh44xotonyQlCzDlDl3kJQsQ8TzJDx9kQSPctZ6q//lziOwra5ZanhBECBkZEBqZpa1nh2HOX2QiIiISA+4RqsA4hqtokUQBPw0/x5OB70FAAz+tDxGDamYL23LMzLwaO6vqPD1IJg7O+ZLm0RERERFDddoERVA2/Y9F4OsRnWd8MXACvnSriw1DdcGjsfDGStwudtIZMQn5Eu7RERERMSpg0QGdfXWe/y6MQwA4FbKAv4TvWFikvUbEX3LSEzClU/HIup4IABAnpYOWUoaTO0M3jQRERERgYEWkcG8jU6F/4K7kMkBczMJZv/oAwf7rOui9C39fRwuf/wl3gVfAwA4NauHhvvXwMzR3uBtExEREVEmBlpEBjJ7aSjevU8HAEwY44WqlQ0/nJQaGYVLXT5H3M1QAEDJDh+h3o4VMLXRX+INIiIiIlKPa7SIDGT0UE+4l7JEt/Zu6NrOzeDtJUW8QHDrgWKQ5da7IxrsXc0gi4iIiMgImHWwAGLWwaIjLiEdFmZSWFiYGLQdQSbDv3W7I+HeYwBA2WG9UevXmZCYGLZdIiIiouKAWQeJjOzDXzh7WzODB1kAIDExgc/ynyC1MEfFccNR67fZDLKIiIiIjIgjWgUQR7QKp9Q0Ob6ffgs9u5RGa9+SRulDwv0w2HhVzPYaIiIiIiLdcESLyIhWrH2EqzffY9q8u/g3OMrg7b059i/eXbiucp9tVU8GWUREREQFAAMtIj3450wk9h15BQCoUc0ezRo6G7S9V7uOIKTnGFzqPhJxt+4btC0iIiIi0h4DLaI8evI0EQtWPgAAONiZYvoP3jA1Ndyv1rONu3F14HgI6emQJyUjOeKFwdoiIiIiIt1wHy2iPEhKlmHavLtISZVDIgF+mugN15KWBmsvfNWfuDNuJgDAxNoKDfb8ghJtmxmsPSIiIiLSDQMtIh0JgoCfVz1A+LMkAMCwfh5oXM9wUwYfLfgN9/0WAQBMHezQ8MBvcG5Wz2DtEREREZHuGGgR6Wj/0Vc4fvYNAKBBHUcM6+9hkHYEQcD9n5bi8bxfAQBmLo5ofHg9HOr5GKQ9IiIiIso7BlpEOhAEAcEhMQCAEs7m8J/gDRMTw2T7C1u8TgyyLNxLovHRjbCrXtkgbRERERGRfnAfrQKI+2gVDjKZgD92RKBeLSfU9nEwWDspr94guPVACBkyND62ETaVyhusLSIiIiLKSpfP5wy0CiAGWvShpIgXkEilsCrnbuyuEBERERU73LCYyMDuPYiDTGbYoFeWkorXB06o3GftUYZBFhEREVEhwkCLSEMPwxLw9eTr+HbqDbyNTjVIGxkJibjcYxSu9P4aT9fvNEgbRERERGR4DLSINJCUlIGfFtxFWrqAW3dj8fJ1it7bSH8fh0tdPkf0qWAAwMtthyDI5Xpvh4iIiIgMj1kHidQQBAELVz/EsxfJAIDPB1bQe/KL1LcxuNTlc8RdvwsAKNmxOervWAGJlN+FEBERERVG/BRHpMbhk5H450zmflkN6zhhUB/9Zv1LeRmJC20HiUGWW88OqL/7F5hYW+m1HSIiIiLKPwy0iHLx5Gkilvz6EADg7GiGaeOrQSrV335ZSeHPEdx6IBLuPQYAlBnYA3W3LIGJhbne2iAiIiKi/Mepg0Q5SEmRwX/BPaSkyiGRAD9N9Iazk/4CoOTnrxHceiBSnr8GAJT/sj9qrPDndEEiIiKiIoCf6IhysGztY4RFJAIAhvQtjwa1nfRav4VbCTg2rg0A8Bw/AjVWBjDIIiIiIioiuGFxAcQNiwuGf4OjMGfZfVSqYINls2vD1ER/UwYV5GlpeLX7GEr375bt+05ERERExqfL53MGWgUQA62C4/WbFJiYSFDSxUIv9cXdCIVt9UqQmpnppT4iIiIiMjxdPp9znhJRLtxKWeotyHpz7F8EfdQXN0ZMhiCT6aVOIiIiIiqYGGgRKfljRwRuh8bpvd5Xe44hpOcYyFNS8WrnEby/dFPvbRARERFRwcGsg1RoBQQEaHSfpgIvReG3zeEwMYmA37iq6NDKVffOKXn+137cGDEZkMshNTdD3S1L4dS0rl7qJv3S9zVFxGuK9InXE+kbrynD4hqtAohrtDSjz9cpKjoVQ8eGIDY+AzbWJtiwrD5Ku+V9w+Cna3fg1pifAEGA1MoSDXavQsn2H+W5XjIM/u6RvvGaIn3i9UT6xmtKc7q8VhzRomJPLhcwa2koYuMzAADff+2llyArfNWfuDNuJgDAxNYaDQ/8BpfmDfNcLxEREREVfAy0qNjbtu85Qq6/BwB0buOKdi1K5bnOx4vXIXTSAgCAqYMdGh1aC6cmdfJcLxEREREVDgy0qFgLfRiPNX88AQCUcbfEd6Mq66VeEytLAICZiyMaH14Ph3o+eqmXiIiIiAoHBlpUbCUlyxCw8B5kMgEmJhIETPSGtbV+fiUqfDUQEokETr71YV+zql7qJCIiIqLCg4EWFVubd0bg+ctkAMDIQRXg7WWvc12CICDjfRzMnBzE+zxGD8hzH4mIiIiocGKgRcXWkL4eeB+bjpevUzCgVzmd6xHkctz+JgDR/15C05N/wsK1hB57SURERESFEdO7F0BMtakZfb1OaelymJvptne3IJPh5pdT8fyPPQAA1x7t0GDXKp3qIuPj7x7pG68p0ideT6RvvKY0x/TuRGoIgpDlF0XXIEueno4bwyfh5fa/AQA21TxRY/lPee4jERERERV+un3CJCqkNmyLwKwloUhKyshTPbLUNFwd8J0YZNnVrIqmJ/+EZWlXfXSTiIiIiAo5jmhRsXHjTiw2bouAXA4kJGZg3tQaOtUjS0nFlb5j8fbIWQCAQ/0aaHR4HcydHfXYWyIiIiIqzBhoUbEQn5CBGYvuQS4HzM0k+GJgBZ3qyUhMQkivMYg+FQwAcGpaFw0P/g4zBzs99paIiIiICjtOHaQiTxAE/LzqASLfpgIAxgyvhMoVbXWqK/nJc8ReuQ0AcG7ZCI0Or2OQRURERERZMNCiIu/oqUicCnwLAGjWwBm9u5XWuS67Gl5odPB3uPXuiEYHf4eprY2+uklERERERQjTuxdA2aWPJCIiIiKigkNdGMURLSIiIiIiIj1joEVERERERKRnDLSIiIiIiIj0jIEWERERERGRnnEfrQKI+UmIiIiIiAo3jmgRERERERHpGQMtIiIiIiIiPWOgRUYjCAJ8fX0hkUiwceNGjc97/vw5Jk2ahFq1asHW1hY2Njbw8vLC6NGjce3aNa36oM+6KP9dunQJo0aNgo+PDxwcHGBubg43Nze0a9cOS5cuRUJCgkb18JoihdOnT2PQoEGoWLEiLC0t4eTkhFq1auGHH37A3bt3Na6H1xTlJDw8HA4ODpBIJBg2bJhG5/B6IgCoWrUqJBKJxj/h4eE51sVrKp8IREYya9YsAYAAQNiwYYNG5+zevVuws7MTz/vwx8TERPjpp5/yvS7KXwkJCcKgQYNyfO8UP66ursKpU6dyrYvXFAmCICQlJQn9+/fP9XoyMTERJk2aJGRkZORaF68pyolMJhOaN28uvn9Dhw5Vew6vJxIEQYiPjxekUqna//eUf548eZJtXbym8g+TYZBRbNiwAdOmTdPqnBMnTqBv376QyWQAgLp166Jz584wNTXFuXPncPr0achkMsyYMQMWFhaYMmVKvtRF+Usmk6F37944duyYeF/r1q3RrFkzWFtbIywsDPv27UN0dDQiIyPRqVMnnDhxAs2bN89SF68pAjJH13v16oWjR4+K93Xs2BF169aFTCZDSEiI+P7Nnz8f8fHxWLVqVbZ18Zqi3MyfPx/nzp3TuDyvJ1K4ceMG5HI5AKBVq1bo2rWr2nOcnZ2z3MdrKp8ZO9Kj4kUulwszZ84UJBKJyjce6ka0EhMThTJlyojlZ86cKcjlcpUyO3fuFMzMzAQAglQqFe7cuWPwuij//fLLL+J75+zsLJw5cyZLmfj4eKFXr15iOQ8PDyElJUWlDK8pUlizZo343jk4OAiBgYFZyhw5ckSwtbUVy509ezZLGV5TlJsrV66I75fiJ7cRLV5PpGz58uXi+7du3Tqd6uA1lf8YaFG+ef36tdC5c+dsh5bVBVpLly4Vy3br1i3HcosXLxbL9e3b1+B1Uf6rVKmS+L4cOHAgx3KpqalCjRo1xLKbN29WeZzXFClUqVJFfF+2bduWY7lFixaJ5fr375/lcV5TlJOkpCTB29tbACCYm5trFGjxeiJlw4cPF9+b69ev61QHr6n8x0CLDC4pKUmYOXOmyrfBdnZ2QsuWLTUOtOrUqSOWDQoKyrFcSkqKULJkSQGAYGFhIcTGxhq0Lspft2/fFt87Ly8vteVXrFghlh8+fLjKY7ymSBAE4dGjR+J7V6JEiVzXX925c0csW6NGjSyP85qinHz99dfit/rK65NzC7R4PZEyxXtoaWkppKen56kOXlP5h1kHyeC2b9+OadOmiRng6tWrh+DgYLRq1Uqj8yMjI3H9+nUAgJOTE5o0aZJjWQsLC7Rt2xYAkJqaiiNHjhisLsp/t2/fFo8bNmyotrynp6d4/PLlS/GY1xQpVKpUCXFxcbhw4QJ27NgBExOTHMsmJyeLx2ZmZiqP8ZqinBw9elRc0zdp0iT4+vqqPYfXEylLS0vDnTt3AAC1atWCqan2KRZ4TRkHAy3KN87Ozli8eDEuXrwIHx8fjc+7evWqeNyoUSNIpblftsq/8BcvXjRYXZT/evfujadPn+LChQuYNGmS2vLKwZWtra14zGuKlNnZ2aFx48Zo3bp1ruW2b98uHn/4wYLXFGUnOjoaw4cPBwDUqVMHAQEBGp3H64mU3b59G+np6QCA+vXrAwDevHmDvXv3YuXKlVi3bh3Onj0rlskOrynjYNZBMjhXV1fMnTsXo0ePhqOjo9bnP3z4UDyuWLGi2vLly5cXjx88eGCwuij/mZqaoly5cihXrpxG5ffu3SseKwf3vKZIG0lJSVixYgUWL14MALCxscHEiRNVyvCaouyMHDkSr1+/hoWFBTZv3gxzc3ONzuP1RMqU96KysrJCr169cODAATHbn4KTkxMmT56M8ePHZxn14jVlHAy0yOA6d+6Mzp0763z+q1evxOOyZcuqLV+mTBnxODIy0mB1UcEWGBiIw4cPi7d79eolHvOaInWCgoJw9OhRhIWF4fDhw3j//j0AwMHBAbt27VKZlgrwmqKs1q9fL37ZM3v2bNSoUUPjc3k9kTLlQEvxhU923r17h0mTJuH48ePYs2cP7OzsxMd4TRkHpw5SgRcbGyseW1tbqy1vZWWV7bn6rosKrqioKAwZMkS8/fHHH6N27dribV5TpM7WrVsxa9YsbNmyRQyyXFxccOjQIbRr1y5LeV5TpCwsLAzjxo0DALRs2RLjx4/X6nxeT6RMOdACgJ49e+L06dOIiYlBYmIiLl++jNGjR4tT+E6cOIHBgwdDEATxHF5TxsFAiwq81NRU8Vj5lzUnymWUz9V3XVQwxcfHo3v37njy5AkAwNHREUuXLlUpw2uK1Hn27FmW+6Kjo9GiRQsMHDgwy4cFXlOkIJPJMHjwYMTHx8Pe3h6bNm2CRCLRqg5eT6Qgl8tx48YN8faSJUuwZ88etGrVCk5OTrC2tkaDBg2wevVq7NixQ7zW9u/fjz179ojn8ZoyDgZaVOApZwHT5D8r5W9wPlygqc+6qOB5//49OnXqhAsXLgDIfM82b96cZQ45rylSZ8aMGXj79i1SU1Nx//59BAQEwMrKCoIgYMuWLejQoQPS0tLE8rymSGHOnDk4f/48AGD58uXw8PDQug5eT6QglUrx+PFjnD9/HkeOHBFHSrPTu3dvjB49Wry9ZMkS8ZjXlHEUr2dLhZJytriUlBS15ZXLWFhYGKwuKlhevnyJFi1aiB9wpFIp1q5di27dumUpy2uK1KlduzZKlCgBc3NzeHl5wd/fH6dPnxanyVy6dEnlQwyvKQKAy5cvY8aMGQAyp3cNHTpUp3p4PZEyV1dXNG3aFJ06dVJbdsyYMeLxhQsXEBcXB4DXlLEw0KICT/kXOikpSW155b1uHBwcDFYXFRzXrl1Do0aNcOvWLQCZ2Qk3btwoplX+EK8p0kXjxo0xZcoU8fb69evFY15TlJSUhEGDBiEjIwOurq747bffdK6L1xPpysfHR/xCSCaT4enTpwB4TRkLsw5Sgefu7i4eK++LlJMXL16Ix25ubgariwqGAwcOYMCAAUhMTASQuTB3+/bt2Y5kKfCaIl31798fU6dOBZCZpjghIQG2tra8pgizZ88WU1c3bNgQGzduzLbc48ePxeM7d+5g4cKFADI/gI4cORIA/0aR7iQSCRwdHcUASDGixWvKOBhoUYGnvP9ReHi42vIRERHisZeXl8HqIuNbuXIlvv32W8jlcgBAyZIlcfDgQTRu3DjX83hN0YdkMhnS09NhaWmZa7kP93CLi4uDra0trylS+TB56NAhHDp0SO05ISEhCAkJAQB4eHiIgRavJ/qQTCZDWlqaRskn4uPjxWPF/qW8poyDUwepwKtZs6a42PLy5ctqyysSIQBAvXr1DFYXGdecOXMwduxYMcjy8vJCcHCw2iAL4DVF/9m4cSMqV64MKysrzJo1S235mJgYldsuLi4AeE2RfvF6IoXFixejRIkSMDMzw//+9z+15cPDw8VAy8LCQtzzj9eUkQhERuLv7y8AEAAIGzZsyLXsRx99JJYNCQnJsVxycrJQokQJAYAglUqFyMhIg9ZFxrFs2TLxPQQgNGnSRIiKitKqDl5TJAiCsGPHDvG9q1atmtryGzZsEMvXrFlT5TFeU6SJ06dPi+/t0KFDcyzH64kEQRC2bNkivndly5YVZDJZruXnzp0rlm/Xrp3KY7ym8h9HtKhQ6N+/v3gcEBCQY7mVK1ciKioKANClSxeUKlXKoHVR/gsKClLZ/LNdu3Y4efKkOLKgKV5TBACdO3eGjY0NACA0NBTbt2/Psey7d+/EjHIAMGjQIJXHeU2RPvF6IgDo2rWrOF3w+fPnKkl4PvT06VMsWLBAvP3111+rPM5rygiMHelR8aXNiFZSUpJQsWJFsfyECROEjIwMlTI7d+4UzMzMBACCRCIRLl++bPC6KH+lpqYKFSpUUBmBiI+P16kuXlOkMG3aNPG9s7e3F06dOpWlTHh4uNCwYUOxnKenp5CUlKRShtcUaULTES1eT6QwefJk8b2zsrIS9u/fn6XMnTt3hMqVK4vl2rdvn6UMr6n8JxEEpV3EiPJRQEAApk+fDgDYsGEDhg0blmv548ePo0uXLsjIyAAAVKtWDT169IClpSUCAwNx8uRJsayfn1+u6y30WRflnzVr1qhsxvj555+jWrVqGp1brlw59OvXT+U+XlMEAKmpqejYsSPOnj0LIDNrV9u2beHr6wsTExPcvHkTBw8eRGpqKgDA2dkZgYGB8Pb2zlIXrylS58yZM2jdujUAYOjQoTlmJwR4PVGmlJQUtGvXDkFBQeJ9LVq0QKtWrWBiYoKrV6/i8OHDSE9PB5D53p45cwaurq5Z6uI1lc+MHelR8aXNiJbCrl27BDs7O5X1Oco/EolE+OGHHwS5XJ6vdVH+aNKkSY7vl7qfli1bZlsnrykSBEGIj48XPvvsM7XXUf369YXHjx/nWhevKcqNpiNaCryeSBAEITY2VujTp4/av1EdOnQQXr58mWtdvKbyDwMtMhpdAi1BEIQXL14IkydPFmrWrCnY2dkJ5ubmgoeHhzB48GDhwoULWvVBn3WR4dnY2Og90BIEXlP0n6CgIGH48OFC5cqVBSsrK8HKykrw8PAQ+vfvL+zZs0fjDwu8pign2gZagsDrif5z9uxZYejQoULlypUFa2trwdraWvD09BQGDhwoHDp0SON6eE3lD04dJCIiIiIi0jNmHSQiIiIiItIzBlpERERERER6xkCLiIiIiIhIzxhoERERERER6RkDLSIiIiIiIj1joEVERERERKRnDLSIiIiIiIj0jIEWERERERGRnjHQIiIiIiIi0jMGWkRERERERHrGQIuIiIiIiEjPGGgRERERERHpGQMtIiIiIiIiPWOgRUREREREpGcMtIiIiIiIiPSMgRYRERFpbO7cuZBIJDn+mJubw9XVFW3atMHixYsRGxtr7C4TERkFAy0iMqpLly5h1KhR8PHxgYODA8zNzeHm5oZ27dph6dKlSEhIyPHcjRs35vqBTyKRwNTUFDY2NihXrhyaN2+OqVOn4s6dO3p/HgEBAVnaXr9+vdb1PHr0KEs9Z86c0fj8u3fvYv78+WjXrh0qVaoEOzs7WFpaws3NDa1bt8bUqVNx69YttfWcOXNG7Wur6c+wYcO0fh2o4Lp+/Xquj6enp+PNmzc4ffo0JkyYAB8fH1y6dCl/OpdPxo4dC4lEgq+//too7c+fP1/8/WrZsqVG5wQGBqr8Xnp7e2t0XkhIiHiOo6MjZDIZAKB79+6QSCT4+eefdX4eREWeQERkBAkJCcKgQYMEALn+uLq6CqdOncq2jg0bNqg9P6ef3r17C69fv9bb8/H398/SRqdOnbSuZ+bMmVnqOX36tNrz7t+/L/Tp00eQSCQaPf+OHTsKt27dyrG+06dP6/zafvgzdOhQrV8HKri8vLzE97Zdu3bC119/rfLTv39/wc3NTeUaKFGihF5/34zp6NGjgkQiEZycnISoqCij9CEkJER8ba2srIS0tDS15/j5+WX53Xzy5Ina8xYtWiSW/+STT8T7Hzx4IJiZmQnm5ubC9evX8/J0iIos07wEaUREupDJZOjduzeOHTsm3te6dWs0a9YM1tbWCAsLw759+xAdHY3IyEh06tQJJ06cQPPmzXOs09PTE1999VWW+9PT0xEfH4/nz5/jwoULePjwIQBg9+7dCA4Oxvnz5+Hh4aH/Jwng5MmTiImJgbOzs8bnbNu2Tet29u3bh0GDBiExMVG8r0KFCmjdujXKli0LS0tLvHjxAkFBQbhx4wYA4NixYzh9+jSWLFmCMWPGZKmzUqVKuX5THRISgu3btwPI+bVXqFGjhtbPiQqmxMREPHr0SLz9008/Zft7mZaWhv/9739Ys2YNACAqKgqLFi3CggUL8q2vhpCYmIgvvvgCgiDAz88PLi4uRulH3bp14ezsjJiYGCQnJ+Pq1ato3LhxruccPXo02/tGjx6d63n//vuveNyhQwfxuEqVKhgzZgyWLVuG4cOH4/LlyzAxMdHymRAVccaO9Iio+Pnll1/Eb0idnZ2FM2fOZCkTHx8v9OrVSyzn4eEhpKSkqJRRHtFq2bKlRm0fOHBAKFWqlHhetWrVhOjo6Dw/J+URLUtLS/F43bp1Gtdx+/btbEeEchvR2rx5s8ooVr169YTjx4/nWP7q1atCy5YtVeqfO3euNk9VEATdXnsq/IKCglSunXfv3uVYNiMjQ6hWrZpYtnr16vnXUQP5/vvvBQBC2bJls/w9ym+9e/cWX9uFCxfmWvbNmzfi34lu3bqJ5/Xo0SPX8+RyueDi4iKWf/ToUZZ6bW1tBQDC8uXL8/qUiIocrtEiony3aNEi8Xjjxo3ZrjGwtbXF1q1bxdGQiIgI7Ny5M89td+/eHYGBgShRogQAIDQ0FNOmTctzvco6deokHu/YsUPj87Zu3QoAsLCwQM2aNdWWv3HjBr788ksIggAAGDlyJIKDg9GuXbscz6lbty5OnDiBkSNHivdNmTIFR44c0bifVHxdu3ZNPC5fvjwcHR1zLGtiYoLu3buLtx8/fmzIrhlceHg4li5dCgCYNGkSLCwsjNqftm3bisdBQUG5lj127Jj4d2Lw4MGoVKkSAODUqVNIT0/P8bzbt28jOjoaQObIteI8hZIlS4oj4v7+/kx8QvQBBlpElK/u3LkjfuDy8vJS+SD2IXNzc4waNUq8ferUKb30oUqVKvj999/F22vXrkVERIRe6gYAHx8f+Pj4APhv+qAmFFPxunTpAnt7e7XlR44cieTkZADAxx9/jDVr1sDc3Fzteaampvjtt9/Qq1cvAIAgCBgzZgxSUlI06icVX8qJMGrVqqW2fKlSpcTjtLQ0yOVyQ3QrX8ycORPp6emwsbHB0KFDjd0dlS9U1AVaimmDEokErVq1EqcAxsfH53puTtMGlX311VeQSCR49+6dGIgSUSYGWkSUr27fvi0eN2zYUG15T09P8fjly5d668cnn3wirmlIS0vDb7/9pre6AaBfv34AgIyMDOzbt09t+ZCQEHHty2effaa2/IkTJ3D58mUAgKWlJdauXQuJRKJVH1esWAEHBwcAmd/Wb968WavzDalVq1aQSCSoUKECACAuLg4zZsxAzZo1YWtrCxsbG9SpUwd+fn6IjIzUqM67d+/i22+/Re3ateHo6AhLS0uULVsW3bt3x7p163L8Zr958+Zi1rXTp0/nWP+YMWPEcj179syx3K1bt8RyiuvkQ8+ePcPUqVPRsGFDlChRAhYWFihTpgy6deuG9evXIyMjI8f6K1SoAIlEIo6s7t69G7Vr14aVlRXKlSuHPn36iGv1tKU8oqVJoKU8wuHk5ASptHB+7Hj16pX4+9GvXz/Y2dllW05x3SpG4pOSkrB06VI0atQITk5OsLe3R40aNeDv7y+OFCns3r0bnTp1gru7OywsLODh4YFhw4YhNDQ027aqVKmC8uXLAwDevHkjrj/9kCAIOH78OACgdu3aKFWqlErQlN3aLQVNAq0KFSqIo2vLli0Tv/whInCNFhHlr/T0dOHp06fChQsXhJs3b6ot//vvv6tkClSW13VCK1asEM9v1KiR1ucrU16j5efnJ9y/f18lw586EyZMEAAItra2QlJSkuDr65vrGq2+ffuKj48YMULnfo8dO1asp3HjxhqfZ+g1Wop1ZB4eHsKjR4+EypUr55jV0N7ePtd1aUlJScJXX32lNiOjp6encPny5Sznz5s3TywzZcqUHNupWrWqytpDuVyebbn58+eL5TZv3pzl8YULF6qs88vux8vLS7h9+3a29Xt4eIjX3a5du7J93rllnMxJenq6Sr+2bt2q9pzu3bvrdH0VNDNmzBCfR27XmuK69fHxEe7du6dyTXz4U7lyZeHp06dCYmKi0LNnzxzLWVtbCydPnsy2veHDh4vlNmzYkG0Z5QyFkyZNEgRBEGJjYwVTU1MBgFCrVq0cn48ie6SJiYnw/v37HMutX79ebT+IiqPC+dUSERVapqamKFeuHBo3bqzROqS9e/eKx4rpePrSqlUr8fjKlSt6XV/g5eWF2rVrA1A/fVAQBHEtV48ePWBlZaW2/rNnz4rHXbp00bmfyiMvly5dwtu3b3WuyxCSk5PRvXt3PHr0CBYWFujfvz9mzpyJb775BqVLlwaQOdrVtWtX/PPPP1nOz8jIQK9evbB69WpxjUqjRo0wadIkzJw5E0OGDBFH9cLCwtCiRQuVb/EBoGvXruLxiRMnsu3nixcvcP/+ffF2TEyMyuitMsV6OBMTE3Tu3FnlsUmTJmHixIniNM5mzZph8uTJmD17Nr788ku4u7sDAB48eIBmzZrluidaTEwMRo0aJT5vhWrVqumUCfLevXsq00vVjWhFR0fj5MmT4u2cRkQKg02bNgEAbGxscs1+qvD+/Xt06tQJ9+/fR8mSJTF69GjMmjULw4cPF9d2PXr0COPGjcOgQYOwd+9eODg4YMSIEZg9ezZGjx4tXpdJSUkYPHgw0tLSsrSjyTot5RGrjh07AgDs7e3RpEkTAMDNmzfx6tWrLOc9ePAAr1+/BpD5O6PoT3YU9QL/vVZEBI5oEVHBde7cOZVvdj/cqyWvoyopKSmCVCoV67h27ZrOff1wREsQBGHOnDnifWvXrs3x3MDAQLHcwYMHBUEQch3Revjwocrr8vz5c537nZGRIZiZmYl1/fPPPxqdl18jWoofT09P4d69eyplEhIShD59+qiU+TAT3LRp08THbW1thb1792Zp6+3bt0Lnzp3Fcm5ubln2R1KMEpmYmGSbaW/Tpk1ZRiJWrFiRpVxcXJz4ejdv3lzlsf3794vnuri4ZDtykpycLHzzzTcqI1upqanZ9lXx07VrV+Hu3btCQkKCcPbsWWH37t1Z6tXEH3/8IdZpYWEhpKen51peeZ88CwsLISIiQqd2jU05G6i6vfE+vG4/+eQTITExUaXMiRMnslwrTZs2Fd68eaNSLjw8XHB1dRXL7Nu3L0t7r1+/Fh/39vbOtk8fffSRAECwsbFRuVaUR+nWr1+f5Tzl2QT+/v65Pm9BEARvb2/xd0QfmVyJigKOaBFRgRQVFYUhQ4aItz/++GNxhEhfLCwsVL6ljYqK0mv9ffv2FY9zy5io2DvL2dlZ5ZvhnCivVTM1NUWZMmV07qOJiYlKwoKCmBnO2toax44dQ7Vq1VTut7GxwdatW1G3bl0AmSNSa9euFR+PiorCkiVLxNt//fUXPvnkkyz1lyhRAvv27UO9evUAAK9fv1Y5D/hvVEsmk+HMmTNZ6lCM3Hh4eMDa2hoAsi134sQJcS2YciIYQRAwZcoUAJkJC/bu3Ztt9khLS0usWLFCvE4ePHiAv/76K0s5hRo1amDv3r3w9vaGjY0NWrRoISZB0Zby+qzq1avD1DT7rThfvHiB/v37488//xTv8/PzE9cTFTbK6/K0+RtUrlw5bN26VbweFNq2bYtGjRqJt62trbFnzx6ULFlSpZyHhwe++eYb8XZISEiWNlxdXcWR/tDQ0CzrvmJjY3HhwgUAmXsVKifLUbdOS3nUXJPRyDp16gDI/B05d+6c2vJExQEDLSIqcOLj49G9e3c8efIEAODo6GiwbFY2Njbisb4DrUqVKqF+/foAcp4+KJfLsWvXLgBA7969YWZmprZe5Q9TuU3n0ZSbm5t4/P79+zzXp29ff/01KleunO1jpqam+Omnn8Tbe/bsEY8PHjyIhIQEAEDLli3x8ccf59iGubm5yma669evV3lc3fRBRUbMdu3aie/5h1MQAaik0VcOtIKDg3Hnzh0AmVNa1U1PU96SILckJiNHjtTomtKEcsbB2NhYfPPNNyo/w4YNg6+vLypWrChm0ASAL774Qu9bKOSnS5cuiceaTHdWGD16NCwtLbN9TDlg69Gjh8rvoDLl9nKa1qsIyAVBwPnz51UeO3HihJg45cMvcRo2bChupn78+HHIZDKVxxXXr4ODg9rNkD/s68WLF9WWJyoOGGgRUYGiWNug+BZWKpVi8+bNqFixokHaS01NFY8NkRFNOfug8nozhdOnT4vrIPr3769RnYmJieJxTh/ktKE8MiF8sJ6nIFD3unTu3FkMJv79918x65nydgC9e/dW207btm3h4uICIDPLnHIWtzZt2ogjEx8GWvfv38fz588BZI4aKEYr3r59i7t376qUVYwcVK5cWWWETnn0QBGo5aZBgwbi6MSFCxdyzELYtGlTtXVpSjnQCgsLw6pVq1R+Nm3ahPPnz4sjdqVKlcK6detUtlJQuH//PhYvXoyOHTvC3d0d5ubmcHBwQMOGDTFjxgy8e/cux34oMvsp/1haWsLV1RW1a9fGsGHDsGnTJiQlJenleSuvvftwVDU3uWVVdXV1FY8VI6nZUc5umNP2C7mt0zp27Jh4/OGolFQqFc999+4drly5Ij4WERGBp0+fAsi89k1MTHLso4K3t7d4/ODBA7XliYoDBlpEVGC8fPkSLVq0EL+VlUqlWLt2Lbp162awNpUTYOS2+aqu1E0fVEwbdHNzU0nOkRvlD1/6GIFS/lCrjxEyfTIzM1ObdMHCwkLcSDUjI0OcWqkYEQX+m9akjvJIQ1hYmHhsaWmJNm3aAFANrADVgK5Vq1bw9fUVbysHULdv38azZ88AIMv+ccoB2cKFC7MEEtkFForkCMnJyTmOdujrC4qIiIhcgx9TU1O4uLjAx8cHw4YNw59//omnT59ixIgRWco+fvwY1apVw4QJE/DPP/9AKpWidu3asLOzQ0hICPz9/eHj45Nrog8gc2qer68vfH19UadOHTg7O+PBgwfYtGkThg0bBnd3d/z66695fu6KgAOAOAKkCUWyluwoBy5OTk45ltPky59WrVqJX5YEBgaqPKYItCpUqAAvL68s5yqPcilPkVS+btu3b6+2D4Dqa6P8mhEVZ9lPsCYiymfXrl1D9+7d8eLFCwCZH9zWr1+PwYMHG6zN2NhYlUxeyt8yL1y4UO35EydOVFvGw8MDjRs3xsWLF3Hy5ElER0eLoybp6eniVLe+fftqPKKmCCqAzNGt2NhYnQMkmUwmvuYf1l0QODk55bgW6MNyCpGRkahUqZLKFEtNPyAr3hsAWaZ6du3aFYcOHQKQORVUsWmtYn1WlSpVUKZMGbRs2RISiQSCIODMmTP46quvAOQ8bTC7trT17t07MSOhMn19eaC8PsvU1BQJCQli9jxtCYKAUqVK4ZtvvsHAgQNV9soLCgrCwIEDERERgU8++QR3797NsZ0RI0YgICBA5b709HQEBwdj0aJFOHDgAL766iuEhobmaeqx8pcx2vyefbg2KyeajBblxs7ODg0bNkRwcDBCQkKQmpoKCwsL3L17Vwx4clr7qTzKdfr0aUyaNAmAZvtnfUj5tdFnBleiwoyBFhEZ3YEDBzBgwABxSpy1tTW2b99u0JEsACpTZSwtLVG9enXx9vfff6/2fE0CLSBz+uDFixfFzYs///xzAMA///wjfsDWZJNihWrVqsHOzg7x8fEAMj+c6pri/fr16+LrLpFINB75yS+ari9SXl+imFKnPA1S082clev5MPD9cJ3W0KFDIZfLxZGA1q1bA8gM6mrXro3r16+rjAwoAi0HB4csa7CUp/4NGzZM660MPkykoKBJkKoJ5WmD3t7eOgdZAFC2bFmEhYWprI9U8PX1xZYtW+Dr64uwsDAcO3Ys17V1HzIzM0OLFi3QokULzJ07F1OmTMGyZcvylAREeXqxra2txudpu4F4XrRr1w7BwcFITU3FlStX0KxZs2zTun+oXLlyqFatGkJDQxEUFISMjAyYmpqKySw8PT01/vJF+bVRfs2IijMGWkRkVCtXrsS3334LuVwOIPMD48GDBzVafJ1XwcHB4nG9evX0ljTgQ59++ikmTJgg7pelCLQUCQMqVKgg7mmjCVNTU3Ts2FFMorF3716dAy3l5BH169dXGdUrCDT9Zlx5REgxsqM8iqVpohPlch+OBpUrVw61atXCzZs3xVGsGzduiG0rT/1s3bo1rl+/jsjISISGhqJs2bLitK5OnTplCYCUR+SaNm2KL7/8UqP+5hflES1FlkddqVtX2KxZMzg4OCA2Nhb37t3TKtBS9uOPP+LkyZM4efIkZsyYoXOgZWVlJX4ZkZqaqpK5r6Bo27YtZs6cCSAzeUezZs1w/PhxAJl/LxTTXrPTsWNHhIaGIiEhAVeuXEGFChXENVba7H2mvIZMk70AiYoDrtEiIqOZM2cOxo4dKwZZXl5eCA4OzpcgSxAEbNy4Ubzdp0+fLI+r+9FU2bJl0axZMwCZ63liYmKQmpqK/fv3A9A8CYaykSNHisebN29WSfmuqYSEBKxZs0a8nd16GmNLSEhQWQ+VnaSkJHE9la2trRgsKmcqvHHjhtq2BEHAzZs3xdvKU9oUFKNar169wp07d1RGrD4MtBTOnDmTY1r37NpSznKXmw9TeRuS8ohWXgMtdWQymfhaZTfqpY3//e9/ADLf/4iICJ3qsLe3F48Vo8gFTdOmTcWpiiEhIZDJZGJijCZNmuQ65VE5mLp27ZpKanZtAi1Fhk9A9TUjKs4YaBGRUSxfvhx+fn7i7SZNmuD8+fP5tkZox44dePToEYDMZAoDBw40aHvK2QcPHDiAY8eOIS4uDoB20wYVOnToIAZvqampGDJkiBiwamrMmDHih/UyZcqIa44KGuW1Tdk5ePCg+Ny7dOkijhYpT89TjP7l5sSJE2JykZIlS2abUl55+uDx48fFD6XVqlVTWSPVsmVLce3N6dOnxWlcJiYm6Ny5c5Z6W7RoIR7v27dPbca869evo0SJErC1tUXDhg1zzDqoD+/evVNJbmDoQGvv3r3i82/ZsmWe6mrevLk4hU+RyVRbFSpUEI/VBf3GYm5uLl7vISEhuHr1qhgUqguWWrVqJU4FvXHjhhigmZiY5DoS9iFFohdAf0lYiAo7BlpElO+CgoIwfvx48Xa7du1w8uRJlUQEhhQeHi4mKACA8ePHq2zaawh9+vQR1/zs3r1b/ODv7e2tNqteTlavXi1O0Tl58iQGDx6sktwjJ4Ig4IcfflDZf2nlypUaL97Pbz///LOYsv1DaWlpmDVrlnhbEdACma+5YkTk33//xYEDB3JsIz09HT/++KN4+7PPPst2jU3Tpk3F6/TEiRPidEDlESwg8xt9RdruM2fOiMGir69vtok52rZti7JlywLIHKmaMWNGjn0FIPY1MTERFStW1NtarOwoTxsENM/gqIt3795hwoQJADJH/rTZtyo7Tk5O4uhKZGSkTnVUrVpVPFbOZFnQKPbTevDggZi0Bch5fZaCtbW1mCnzxo0b4h5YjRo10ir5h/Jro/yaERVnDLSIKF+lpaVh0KBBYtKBatWqYe/evfnyIV8ul2Pnzp1o3LixmKq6Vq1aKiNrhuLu7i5+43zixAkcPHgQgG6jWQq1atXChg0bxJGTLVu2oGnTpjhz5kyO51y/fh3t27fHzz//LN73008/4ZNPPtG5H4b28OFD9OnTJ0sq+9jYWPTu3Ru3b98GkDn60bNnT/FxJycnjBs3Trw9cOBAcbqmspiYGPTq1UtMjuLq6prjNSGVStGpUycAmXtivXnzBgCyTc2vCL7evHkjjghlN20QyEzioLyp7/z58zFjxowsI1UpKSn49ttvxREyU1NTTJ06Nds69UU50KpYsaLBtgBIT09Hv3798PTpU5QsWVIvqdmB/5I06DrtT3n95IdBZ0Gi2BNLEARxSrCzszMaNGig9lzFqNetW7fE56jNtEEAuHr1qnisz/3biAozJsMgony1YcMGhIeHi7d9fX01/kBVrlw5lRELZc+ePcs2JbtMJkNsbCzCw8Px77//qqQy9/LywqFDh/K8DkRT/fr1w9mzZ5GSkiIuHNdlfdaHdVpYWGDo0KGIi4vD1atX0bp1a1SqVAmtW7dGmTJlIJVK8fr1a5w7d04MSoDMqUFz587VKMOiMZmZmeHw4cOoUqUK+vTpg3LlyuHZs2fYtWuXmLyiVKlS+O2337KMQgUEBOD8+fM4ffo0EhIS8Mknn6Bx48Zo3bo1bG1t8fDhQ+zfv18M4iwsLPDnn3/mOsLZtWtX/PXXXyoZCrMLtNq0aYMFCxao3JdToAUAX375Jc6dO4c///wTAODv749NmzahW7duKFWqFJ49e4aDBw+qrMebN2+eziOimsqP9VlyuRyDBw/G8ePHYWdnh4MHD+a6D5U2FAGWruuGlEcrFaM9BVGdOnVQokQJREVFiaN37du312jbiI4dO2Ly5Mkq66y0DbQUawtNTU3x0UcfaXUuUZElEBHloyZNmggAdPpp2bKlSl0bNmzQqR6pVCoMHz5cePfund6el7+/v1i/n59ftmUiIyMFExMTsVz9+vVzrM/X11csd/r0abXth4eHC59++qkgkUg0eg3atGkjXLt2Tcdnq/raf/i+6EPLli3F+v/66y/BxcUlx+dSo0YN4cmTJznWlZKSInz++edqX5sqVapo9JrExMSovI8+Pj7ZlktISBDMzMxU6ldHJpMJU6ZMUTkvux8rKyth+fLl2dbh4eEhltMHHx8fsb6ZM2fqpU5lMplMGDp0qABAsLGxEf79999cyyuuDX9/f7V1R0dHi33fvn27zn2sXr26AEAwNzcXEhIS1PYNQK7XpPLfiw0bNuRY7vTp02K5oUOHqu3np59+qnKdrF+/Xu05giAIcrlccHV1Fc9zcHAQMjIyNDpXEATh8ePH4rldunTR+Dyioo5TB4koX926dStf2zMxMYGDgwMqV66Mjz/+GAsWLMDjx4+xfv16vW3mqqlSpUqpfDue19EsZR4eHtixYwcePHiAWbNmoX379ihdujQsLCxgbm4OV1dXtGzZEtOmTcONGzdw8uTJArdnVk6aNWuGO3fuYOLEiahcuTIsLCzg6OiI1q1bY+3atbh69apKwoIPWVhYiOXGjh2LGjVqwMHBAaampnB1dUWXLl2wfv163L59W6PXxMnJSUxEAmQ/mgVkZsxr2LCheFuTfeGkUilmz56N0NBQTJ48GQ0aNICLiwtMTU3h6OiIRo0awc/PD6GhoRg7dqza+vIqJSUF9+/fF2/r+5oRBAGjRo3Cpk2bYG1tjUOHDmXZYywvlDPo5WU626BBgwBkTn3+559/8twvQ1Gs01LQdFRKIpGgffv24u02bdpotZGy8powxWtFRIBEELTIUUxERJQPWrVqJaZOf/LkSa6BFBVeY8aMEZO6HDx4UFxnlBvFteHv74+AgIBcy7Zt2xanTp1C3bp1VdYQaSsyMhIeHh5ITU3Fp59+ih07duhcV1HUpEkTXLx4EW5ubggPD8/ThtZERQlHtIiIiCjf/e9//8Pq1athaWmJ/fv3axRkaWPu3Lk4deoUAKgkGtGFq6urOFJz8ODBfN3DrKC7d++euHbtm2++YZBFpISBFhEREeWrH374AStWrBCDLOVpa3mRkZGBc+fOoUePHpgyZQoAYNy4cSrZKHXl5+cHc3NzpKSk4Pfff89zfUXF8uXLAQAuLi75Mp2VqDDh1EEiIipwOHWw6AoODhbXuJUqVQpVqlTJseyIESMwYsQIlfsU10a5cuVQvnx5AKrZRRV7rjk4OGDevHkYPXq03vr+7bffYvny5XB3d0dYWBgsLS31VndhFBkZCU9PTyQlJWHx4sX47rvvjN0logKF6d2JiIgo36SmporHb968Efciy86HyR2UPXv2DM+ePQMAmJubw8HBAVWqVEGdOnXQpk0bfPrpp3rfn2/GjBnYsWMHXr16hdWrVxf7wGLevHlISkpCzZo1OZpFlA2OaBERUYHDES0qqPbs2YPevXujRIkSePDgAZycnIzdJaMICwtD9erVIZPJEBgYiMaNGxu7S0QFDtdoEREREWmoV69eGD16NKKiovKcZKMw++6775CamooZM2YwyCLKAUe0iIiIiIiI9IwjWkRERERERHrGn5abGgAAAG9JREFUQIuIiIiIiEjPGGgRERERERHpGQMtIiIiIiIiPWOgRUREREREpGcMtIiIiIiIiPSMgRYREREREZGeMdAiIiIiIiLSMwZaREREREREesZAi4iIiIiISM8YaBEREREREekZAy0iIiIiIiI9+z9OsB7M5L7KPQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 960x720 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure(figsize=(8, 6), dpi=120)\n",
"\n",
"plot_axes = fig.gca()\n",
"\n",
"plot_kwarg = {\n",
" # 'fmt': 'o',\n",
" \n",
" # Style of line\n",
" 'linestyle': 'None',\n",
" 'linewidth': 2,\n",
" \n",
" # Style of markder\n",
" # 'marker': '.',\n",
" 'markersize': 5,\n",
" # 'markerfacecolor': plot_blue,\n",
" # 'markeredgecolor': plot_blue,\n",
" 'markeredgewidth': 4,\n",
" \n",
" # Style of errorbar\n",
" 'capsize': 0,\n",
" # 'ecolor': plot_blue, # color of errorbar line\n",
" 'capthick': 1.5,\n",
" 'elinewidth': 3,\n",
" \n",
" # text for legend\n",
" 'label': 'Experiment',\n",
" }\n",
"\n",
"\n",
"# 1.2157134383410748+/-0.02622973148346536\n",
"# 0.2556310933363963+/-0.009332131323758952\n",
"\n",
"Nmax = np.max(ncounts_withpush)\n",
"plot_axes.errorbar(powers, ncounts_withpush / Nmax, yerr=ncount_withpush_errors / Nmax, color=plot_red, marker='^', **plot_kwarg)\n",
"\n",
"Nmax = np.max(sat_ncount_withpush)\n",
"plot_axes.errorbar(powers, sat_ncount_withpush / Nmax, yerr=sat_ncount_withpush_errors / Nmax, color=plot_blue, marker='o', **plot_kwarg)\n",
"\n",
"x = np.linspace(100, 550, 1000)\n",
"fit_line = curve(1.422, 105.9, 234.2, x)\n",
"plot_axes.errorbar(x, fit_line, color=plot_blue, fmt='--')\n",
"\n",
"x = np.linspace(100, 550, 1000)\n",
"fit_line = curve(3.843, 117.4, 923.4, x)\n",
"plot_axes.errorbar(x, fit_line, color=plot_red, fmt='--')\n",
"\n",
"plot_axes.set_xlim([50, 550])\n",
"plot_axes.set_ylim([-0, 1.6])\n",
"\n",
"plot_axes.set_xlabel(\"2D-MOT power $P_\\mathrm{2D}$ (mW)\", fontsize=20)\n",
"plot_axes.set_ylabel(\"Relative performance\", fontsize=20)\n",
"\n",
"plot_axes.tick_params(axis='both', which='major', labelsize=20)\n",
"plot_axes.tick_params(axis='both', which='minor', labelsize=16)\n",
"plot_axes.xaxis.offsetText.set_fontsize(20)\n",
"plot_axes.yaxis.offsetText.set_fontsize(20)\n",
"\n",
"plt.setp(plot_axes.spines.values(), linewidth=3)\n",
"plot_axes.xaxis.set_tick_params(width=3)\n",
"plot_axes.yaxis.set_tick_params(width=3)\n",
"plot_axes.tick_params(direction='in', length=10)\n",
"\n",
"if np.max(plot_axes.get_xticks()) < 1000:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='x', style='plain', useMathText=True)\n",
"else:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='x', style='sci', useMathText=True)\n",
"if np.max(plot_axes.get_yticks()) < 1000:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='y', style='plain', useMathText=True)\n",
"else:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='y', style='sci', useMathText=True)\n",
"\n",
"plt.setp(plot_axes.get_xticklabels()[0], visible=False)\n",
"plt.setp(plot_axes.get_yticklabels()[0], visible=False)\n",
"\n",
"plot_axes.legend( [\"$\\Phi_\\mathrm{3D}/\\Phi_\\mathrm{3D}^{400}$\", \"$N_\\mathrm{sat}/N_\\mathrm{sat}^{400}$\"],\n",
" fontsize=20, loc = 'lower right', bbox_to_anchor=(-0.07, 0.7, 0.5, 0.5), shadow=False, \n",
" facecolor='white', framealpha=1, edgecolor='gray')\n",
"\n",
"fig.savefig('figS1_v3.pdf', bbox_inches = \"tight\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1.26452425, 2.28634918, 4.16839061, 5.77353148, 6.97112396,\n",
" 8.07563517])"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ncounts_withpush/1e7"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0.02011692, 0.03661928, 0.03542273, 0.12835443, 0.10808794,\n",
" 0.15734573])"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ncount_withpush_errors/1e7"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0.59632089, 0.97709906, 1.49764122, 1.88064547, 2.11270051,\n",
" 2.27577969])"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sat_ncount_withpush/1e8"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0.00220115, 0.00346001, 0.00221859, 0.00692999, 0.00523738,\n",
" 0.00885194])"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sat_ncount_withpush_errors/1e8"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}