analyseScript/DataContainer/ReadData.py
2023-05-16 15:51:13 +02:00

188 lines
5.1 KiB
Python

import xarray as xr
import numpy as np
from collections import OrderedDict
from functools import partial
import copy
import glob
import os
def _read_globals_attrs(variable_attrs, context=None):
"""Combine attributes from different variables according to combine_attrs"""
if not variable_attrs:
# no attributes to merge
return None
from xarray.core.utils import equivalent
result = {}
dropped_attrs = OrderedDict()
for attrs in variable_attrs:
result.update(
{
key: value
for key, value in attrs.items()
if key not in result and key not in dropped_attrs.keys()
}
)
result = {
key: value
for key, value in result.items()
if key not in attrs or equivalent(attrs[key], value)
}
dropped_attrs.update(
{
key: []
for key in attrs if key not in result
}
)
for attrs in variable_attrs:
dropped_attrs.update(
{
key: np.append(dropped_attrs[key], attrs[key])
for key in dropped_attrs.keys()
}
)
scan_attrs = OrderedDict()
scan_length = []
for attrs_key in dropped_attrs.keys():
flag = True
for key in scan_attrs.keys():
if equivalent(scan_attrs[key], dropped_attrs[attrs_key]):
flag = False
result.update({attrs_key: key})
break
if flag:
scan_attrs.update({
attrs_key: dropped_attrs[attrs_key]
})
scan_length = np.append(scan_length, len(dropped_attrs[attrs_key]))
result.update(
{
key: value
for key, value in scan_attrs.items()
}
)
result.update(
{
"scanAxis": list(scan_attrs.keys()),
"scanAxisLength": scan_length,
}
)
# if result['scanAxis'] == []:
# result['scanAxis'] = ['runs',]
return result
def _read_shot_number_from_hdf5(x):
filePath = x.encoding["source"]
shotNum = filePath.split("_")[-1].split("_")[-1].split(".")[0]
return x.assign(shotNum=shotNum)
def _assign_scan_axis_partial(x, datesetOfGlobal, fullFilePath):
scanAxis = datesetOfGlobal.scanAxis
filePath = x.encoding["source"].replace("\\", "/")
shotNum = np.where(fullFilePath==filePath)
shotNum = np.squeeze(shotNum)
# shotNum = filePath.split("_")[-1].split("_")[-1].split(".")[0]
x = x.assign(shotNum=shotNum)
x = x.expand_dims(list(scanAxis))
return x.assign_coords(
{
key: np.atleast_1d(np.atleast_1d(datesetOfGlobal.attrs[key])[int(shotNum)])
for key in scanAxis
}
)
def _update_globals_attrs(variable_attrs, context=None):
pass
def update_hdf5_file():
pass
def read_hdf5_file(filePath, group=None, datesetOfGlobal=None, preprocess=None, join="outer", parallel=True, engine="h5netcdf", phony_dims="access", excludeAxis=[], maxFileNum=None, **kwargs):
filePath = np.sort(np.atleast_1d(filePath))
filePathAbs = []
for i in range(len(filePath)):
filePathAbs.append(os.path.abspath(filePath[i]).replace("\\", "/"))
fullFilePath = []
for i in range(len(filePathAbs)):
fullFilePath.append(list(np.sort(glob.glob(filePathAbs[i]))))
fullFilePath = np.array(fullFilePath).flatten()
for i in range(len(fullFilePath)):
fullFilePath[i] = fullFilePath[i].replace("\\", "/")
if not maxFileNum is None:
fullFilePath = fullFilePath[0:int(maxFileNum)]
kwargs.update(
{
'join': join,
'parallel': parallel,
'engine': engine,
'phony_dims': phony_dims,
'group': group
}
)
if datesetOfGlobal is None:
datesetOfGlobal = xr.open_mfdataset(
fullFilePath,
group="globals",
concat_dim="fileNum",
combine="nested",
preprocess=_read_shot_number_from_hdf5,
engine="h5netcdf",
phony_dims="access",
combine_attrs=_read_globals_attrs,
parallel=True, )
datesetOfGlobal.attrs['scanAxis'] = np.setdiff1d(datesetOfGlobal.attrs['scanAxis'], excludeAxis)
_assgin_scan_axis = partial(_assign_scan_axis_partial, datesetOfGlobal=datesetOfGlobal, fullFilePath=fullFilePath)
if preprocess is None:
kwargs.update({'preprocess':_assgin_scan_axis})
else:
kwargs.update({'preprocess':preprocess})
ds = xr.open_mfdataset(fullFilePath, **kwargs)
newDimKey = np.append(['x', 'y', 'z'], [ chr(i) for i in range(97, 97+23)])
oldDimKey = np.sort(
[
key
for key in ds.dims
if not key in datesetOfGlobal.scanAxis
]
)
renameDict = {
oldDimKey[j]: newDimKey[j]
for j in range(len(oldDimKey))
}
ds = ds.rename_dims(renameDict)
ds.attrs = copy.deepcopy(datesetOfGlobal.attrs)
return ds