analyseScript/2D-MOT power.ipynb
2023-07-01 09:21:45 +02:00

3667 lines
474 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Import supporting package"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import xarray as xr\n",
"import numpy as np\n",
"\n",
"from uncertainties import ufloat\n",
"from uncertainties import unumpy as unp\n",
"from uncertainties import umath\n",
"\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from DataContainer.ReadData import read_hdf5_file\n",
"from Analyser.ImagingAnalyser import ImageAnalyser\n",
"from Analyser.FitAnalyser import FitAnalyser\n",
"from Analyser.FitAnalyser import ThomasFermi2dModel, DensityProfileBEC2dModel, Polylog22dModel\n",
"from Analyser.FitAnalyser import NewFitModel\n",
"from ToolFunction.ToolFunction import *\n",
"\n",
"from ToolFunction.HomeMadeXarrayFunction import errorbar, dataarray_plot_errorbar\n",
"xr.plot.dataarray_plot.errorbar = errorbar\n",
"xr.plot.accessor.DataArrayPlotAccessor.errorbar = dataarray_plot_errorbar\n",
"\n",
"imageAnalyser = ImageAnalyser()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"from matplotlib.colors import ListedColormap, LinearSegmentedColormap\n",
"\n",
"import matplotlib.pyplot as plt\n",
"plt.rcParams[\"font.family\"] = \"arial\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def Ncount_to_atoms():\n",
" return 1 / 8.4743e-14 / 0.3725 * 5.86e-6**2 / 0.6606**2"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"import csv\n",
"\n",
"colormap = np.zeros((1024, 3))\n",
"\n",
"with open('smooth-cool-warm-table-float-1024.csv', newline='') as csvfile:\n",
" spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|')\n",
" i = 0\n",
" for row in spamreader:\n",
" try:\n",
" a = row[0].split(',')\n",
" colormap[i, 0] = float(a[1])\n",
" colormap[i, 1] = float(a[2])\n",
" colormap[i, 2] = float(a[3])\n",
" i = i + 1\n",
" except:\n",
" pass\n",
"\n",
"colormap = ListedColormap(colormap)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"data_colors = colormap(np.linspace(0, 1, 7))\n",
"plot_blue = data_colors[0]\n",
"plot_red = data_colors[-1]\n",
"plot_red_alpha = 1"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Start a client for parallel computing"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px;\">Client</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Client-eb14457e-1720-11ee-8c04-80e82ce2fa8e</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
"\n",
" <tr>\n",
" \n",
" <td style=\"text-align: left;\"><strong>Connection method:</strong> Cluster object</td>\n",
" <td style=\"text-align: left;\"><strong>Cluster type:</strong> distributed.LocalCluster</td>\n",
" \n",
" </tr>\n",
"\n",
" \n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" \n",
"\n",
" </table>\n",
"\n",
" \n",
"\n",
" \n",
" <details>\n",
" <summary style=\"margin-bottom: 20px;\"><h3 style=\"display: inline;\">Cluster Info</h3></summary>\n",
" <div class=\"jp-RenderedHTMLCommon jp-RenderedHTML jp-mod-trusted jp-OutputArea-output\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\">\n",
" </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px; margin-top: 0px;\">LocalCluster</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">c071fe85</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Workers:</strong> 6\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads:</strong> 60\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total memory:</strong> 55.88 GiB\n",
" </td>\n",
" </tr>\n",
" \n",
" <tr>\n",
" <td style=\"text-align: left;\"><strong>Status:</strong> running</td>\n",
" <td style=\"text-align: left;\"><strong>Using processes:</strong> True</td>\n",
"</tr>\n",
"\n",
" \n",
" </table>\n",
"\n",
" <details>\n",
" <summary style=\"margin-bottom: 20px;\">\n",
" <h3 style=\"display: inline;\">Scheduler Info</h3>\n",
" </summary>\n",
"\n",
" <div style=\"\">\n",
" <div>\n",
" <div style=\"width: 24px; height: 24px; background-color: #FFF7E5; border: 3px solid #FF6132; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px;\">Scheduler</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Scheduler-d47e28b4-5276-45c0-964e-87f3987b2160</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm:</strong> tcp://127.0.0.1:54927\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Workers:</strong> 6\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads:</strong> 60\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Started:</strong> Just now\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total memory:</strong> 55.88 GiB\n",
" </td>\n",
" </tr>\n",
" </table>\n",
" </div>\n",
" </div>\n",
"\n",
" <details style=\"margin-left: 48px;\">\n",
" <summary style=\"margin-bottom: 20px;\">\n",
" <h3 style=\"display: inline;\">Workers</h3>\n",
" </summary>\n",
"\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 0</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:54966\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:54967/status\" target=\"_blank\">http://127.0.0.1:54967/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:54930\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-cvobjmxg\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 1</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:54960\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:54963/status\" target=\"_blank\">http://127.0.0.1:54963/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:54931\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-r0l_epl5\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 2</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:54965\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:54968/status\" target=\"_blank\">http://127.0.0.1:54968/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:54932\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-mnfl9i_m\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 3</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:54954\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:54955/status\" target=\"_blank\">http://127.0.0.1:54955/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:54933\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-qkxkq62s\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 4</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:54958\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:54961/status\" target=\"_blank\">http://127.0.0.1:54961/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:54934\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-zk2j62q_\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 5</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:54971\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:54972/status\" target=\"_blank\">http://127.0.0.1:54972/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:54935\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-641vd42d\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
"\n",
" </details>\n",
"</div>\n",
"\n",
" </details>\n",
" </div>\n",
"</div>\n",
" </details>\n",
" \n",
"\n",
" </div>\n",
"</div>"
],
"text/plain": [
"<Client: 'tcp://127.0.0.1:54927' processes=6 threads=60, memory=55.88 GiB>"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from dask.distributed import Client\n",
"client = Client(n_workers=6, threads_per_worker=10, processes=True, memory_limit='10GB')\n",
"client"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set global path for experiment"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"groupList = [\n",
" \"images/MOT_3D_Camera/in_situ_absorption\",\n",
" \"images/ODT_1_Axis_Camera/in_situ_absorption\",\n",
" \"images/ODT_2_Axis_Camera/in_situ_absorption\",\n",
"]\n",
"\n",
"dskey = {\n",
" \"images/MOT_3D_Camera/in_situ_absorption\": \"camera_0\",\n",
" \"images/ODT_1_Axis_Camera/in_situ_absorption\": \"camera_1\",\n",
" \"images/ODT_2_Axis_Camera/in_situ_absorption\": \"camera_2\",\n",
"}\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Old Loading Rate"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"img_dir = '//DyLabNAS/Data/'\n",
"SequenceName = \"MOT_3D_Imaging\" + \"/\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## With red push"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The detected scaning axes and values are: \n",
"\n",
"{'final_amp': array([0.16, 0.24, 0.32, 0.4 , 0.48, 0.56, 0.64, 0.72, 0.8 , 0.88, 0.96]), 'mot_load_duration': array([ 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 6. ,\n",
" 7. , 8. , 9. , 10. ]), 'runs': array([0., 1., 2.])}\n"
]
}
],
"source": [
"folderPath = img_dir + SequenceName + '2022/10/14'# get_date()\n",
"\n",
"shotNum = \"0012\"\n",
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
"\n",
"dataSetDict = {\n",
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
" for i in [0]\n",
"}\n",
"\n",
"dataSet = dataSetDict[\"camera_0\"]\n",
"\n",
"print_scanAxis(dataSet)\n",
"\n",
"scanAxis = get_scanAxis(dataSet)\n",
"\n",
"dataSet = auto_rechunk(dataSet)\n",
"\n",
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
"\n",
"imageAnalyser.center = (600, 1150)\n",
"imageAnalyser.span = (1100, 1260)\n",
"imageAnalyser.fraction = (0.1, 0.1)\n",
"\n",
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
"\n",
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
"Ncount_mean = calculate_mean(Ncount)\n",
"Ncount_std = calculate_std(Ncount)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUZf7H39uzJb03SAIBEkIXsICC9fQU5UdTQRRRPBUVvYPDu8ND0fP09LAXrIB6iuipJ3LKKWBXEKQkoQQCIQnpbXub+f2xyZIlCQRIz/N+veLszPPMzDNr2P3kWxWyLMsIBAKBQCAQCLo9ys5egEAgEAgEAoGgbRDCTiAQCAQCgaCHIISdQCAQCAQCQQ9BCDuBQCAQCASCHoIQdgKBQCAQCAQ9BCHsBAKBQCAQCHoIQtgJBAKBQCAQ9BCEsBMIBAKBQCDoIag7ewHdCUmSKC4uJjg4GIVC0dnLEQgEAoFA0AuQZRmz2UxCQgJK5YltckLYnQLFxcUkJyd39jIEAoFAIBD0Qo4cOUJSUtIJ5whhdwoEBwcDvjc2JCSkk1cjEAgEAoGgN1BXV0dycrJfh5wIIexOgQb3a0hIiBB2AoFAIBAIOpTWhIGJ5AmBQCAQCASCHoIQdgKBQCAQCAQ9BCHsBAKBQCAQCHoIIsauHfB6vbjd7s5eRpdGo9GgUqk6exkCgUAgEPQohLBrQ2RZpqSkhJqams5eSrcgLCyMuLg4URNQIBAIBII2Qgi7NqRB1MXExGAwGIRgaQFZlrHZbJSVlQEQHx/fySsSCAQCgaBnIIRdG+H1ev2iLjIysrOX0+XR6/UAlJWVERMTI9yyAoFAIBC0ASJ5oo1oiKkzGAydvJLuQ8N7JeIRBQKBQCBoG4Swa2OE+7X1iPdKIBAIBIK2RQi7TmDNmjXExMSgUChQq9UUFBSc8TWXLl3KhAkTznxxAoFAIBAIui1C2HUCr7zyCtdeey2yLOPxeOjTp09nL0kgEAgEAkEPQAi7DmbMmDF89dVXvPTSS6hUKhQKBYcOHQJ8rslnn32WgQMHEhwczHnnnceuXbv8577++uuMGjWKyMhIgoODufLKKykvLz/lNdTV1XHrrbeSnp6O0WgkMTGRv/3tb/7xlJQU/vnPfzJs2DAMBgPjxo1j27ZtXHHFFZhMJjIzM/n5558BePPNNzn77LO57bbbCAkJIT4+nocffhhZls/sjRIIBAKBQHDKCGHXwfz888+MHz+eP/3pTxw4cKDJ+L/+9S82b95MYWEhBoOBhQsX+s+76667ePHFF6msrCQ3N5f9+/fzzDPPnPIaFi9eTH5+Plu2bMFisfDMM8/w5z//mby8PP+cV199lXXr1lFSUkJZWRkTJkxgyZIlVFZWMmTIEBYvXuyf+9NPP2E0GikrK+M///kPTz31FK+//vppvDsCgUAgEAjOBCHsuhh33303cXFxhIaGMn36dPbt2wfAkCFDyM7OZsyYMVRXV1NcXEx0dDRFRUWnfI+lS5eyZs0aQkJCKCwsJCgoCIDi4mL/nJtvvpmkpCRCQkIYO3YsEydO5JxzzkGn03HZZZf5rYwAkZGRPPbYYwQFBXHWWWcxb948Vq9efWZvhEAgEAgEglNG1LHrYsTFxflfazQaJEkCQKVS8fTTT/P2229jMpkYOnQodXV1/vFToaysjHvuuYdt27aRmprKWWedBRBwrca1+FQqFeHh4f59pVIZMDclJQWNRuPf79OnDx988MEpr0sgEAgEgu6Aw+2l3OykzOyo3zq5OCOWhDB9Zy9NCLvuwvLly/niiy/YtWsXsbGxAFx11VWnda1p06YxadIkPv/8c9RqNZWVlbzyyisBc06lFElxcTGyLPvPyc/PFwkhAoFAIOhWyLKM2emhrK6RYKsLFG9lZidldQ7qHJ4m58eH6oWwE7Se2tpaNBoNWq0Wj8fDu+++y3//+1+mTZt2WtfS6/WoVCrKy8u55557AHC5XKe1tqNHj/L3v/+dP/zhD2zfvp1XXnmFF1988bSuJRAIBAJBWyJJMpVWV4BAK68XaH6xVj/mcLfeC6ZVK4kJ1hETrCM6WEeYQXPykzoAIey6CX/4wx/YtWsXffv2JSgoiJEjR3LnnXfy5ZdfnvK13njjDRYsWMCTTz5JeHg41157LSNGjGDXrl1ceumlp3y9+Ph48vPziY+PJzg4mIcffpgZM2ac8nUEAoFAIGgtLo9EuSVQoJXXvy5vJNgqLC68UusrNQTr1ESH6OpFW5BvG+ITb/794CBC9OouWWhfIYu6FK2mrq6O0NBQamtrCQkJCRhzOBzk5+eTmprqT0boDbz55pssXbo0IJmitfTW90wgEAgELWNxevxirbFAK6879rrM7KTG1vp2lAoFRBq1RJl0xIQE+S1tPtEW5Le6xQQHodd2vd7lJ9IfxyMsdgKBQCAQCNoUWZaxu73YXF7sLi9Wl+fYa6eHOocn0DVad0yw2VzeVt9Ho1IQbdIRHSDOAi1tMcFBRJq0aFS9oxCIEHY9jH/+85888MADLY7PmjWLl156qQNXJBAIBIKuiCzLuLwSdpdPgNnqxVeT104PNrf3hPMaxFvDHLvby5n4Aw1alV+gNXaL+oVbvWAL02tQKrueO7QzEa7YU0C4YtsW8Z4JBALByZFlGYvTUy+efGKq4bW9Xlg1ft1UcDU/ZnN5Tyn27HQJ0igxaNUYtCoMWhV6rZpgndpnYQtpHLdWb3ELCcKkE3anxghXrEAgEAgE3QxZlqmwuNhXam70Y2FfqRlzM+U12hKtSoneL7xUGLVq/37j1w1jzc3z/RwbM2jV6DUqVMKi1qEIYScQCAQCQQdTba0XcGUW9pUcE3LVJ0gIUCpoYvkyNCOqGo8Zm8xrXpT1lviz3oAQdgKBQCAQtBNmh5t9pRb2l5rZW2pmf6mFvaVmys3OZucrFJASaSQ9xsTAuGDSY4MZGBtMnwgDQRpllyyvIehaCGEnEAgEAsEZYnN5yCuzsLfEzP6GbamZ4lpHi+ckhesZEBtc/2NiQGww/WNMBGm6XrkNQfehU4RdVVUVCxYsYN26dUiSxAUXXMCLL75IfHw8P/30E3fffTfZ2dlER0fzl7/8hblz5/rPXblyJcuWLePo0aNkZGTw7LPPcs455wDg9XpZvHgxq1atwmazceGFF/LSSy8RHx8P+Hqkzps3j02bNqFWq5k1axZPPPEEarXQtwKBQCA4OQ63l4Pl1iZxcEeqbS1mgcaFBDEgLpgBMSbfNjaY9BgTRpEgIGgHOuW3asqUKYSHh3PgwAFUKhU33XQTt956K6tXr+aKK67goYce4rbbbuPrr7/mmmuuYciQIYwZM4ZNmzZx1113sX79esaMGcNzzz3HpEmTOHz4MAaDgYcffpgvvviCrVu3Ehoayrx587jllltYt24dADNmzCAxMZHi4mJKSkqYNGkSy5cvZ+HChZ3xNggEAoGgi+L2SuRXWI8lMJSY2Vdm5lCFlZYSSaNM2kYWOJ8VLj02mFB912g1JegddHi5k19++YVx48ZRWlrqT9mtqqri6NGj/PDDDzz++OPs27fPP//222/HZrOxcuVKZs2ahcFgYMWKFf7xjIwMFi1axJw5c0hOTuaxxx7j+uuvB6C0tJT4+Hjy8vKQJIn09HSKiopISEgA4L333mPRokUcPny4VWsX5U7aFvGeCQSCzsYryRyutPqzTxt+8iusuL3Nfz2G6jUMjA0mPbY+Di7GJ+IiTboOXr2gt9Cly538/PPPZGZm+hvFW61WfvOb3/Dkk0+SnZ3NkCFDAuZnZmby2muvAZCdnc3NN9/cZHzHjh3U1tZSWFgYcH5sbCzh4eHs3LkThUJBRESEX9Q1nFtQUEBNTQ1hYWHt99BdnNNxUX/wwQcsXLiQgwcPBhx/8cUXefLJJykpKSE1NZVHH32UK6+8sr0fQSAQCE6IJMkU1djZ1ziJocTMgXILTk/zjd9NOrVPvMX6khgG1L+ODtaJJAZBl6XDhV1VVRU7d+5k9OjRbN++HZvNxg033MDs2bOJi4vDaDQGzDcYDFgsFgDMZnOL42azGeCE5zc3BmCxWJoVdk6nE6fzWOZSXV3daTxx1+dUXNRut5vly5fz5z//mcTExICxlStX8uCDD/LJJ58wevRo3n33XaZMmUJ+fn6AoBYIBIL2pNzsJOdoXUAZkf1llhZbVQVplPVWt/okhvo4uITQICHgBN2ODhd2Op3PVP3UU08RFBREcHAwjzzyCGPHjmXOnDnYbLaA+TabjeDgYMAnzJobj4qK8ou2ls6XJKnZMcB//eN59NFHefDBB0/zSY/1yuto9BpVqz+M8vLy2LRpE0VFRRgMBtLS0liyZAmLFi1qVthdeumlBAUFsXjxYlavXh0w9sQTT7Bs2TLGjBkDwHXXXcfAgQNPajYWCASC08Xlkcg9Wse2gmq2F9Sw/Ug1R6rszc7VqpSkRRsZGBcYB5ccbhBtqToYWZaFaG4nOlzYZWZmIkkSLpfLH1fl9frEz/Dhw3nhhRcC5ufk5JCVlQVAVlYW2dnZTcavuOIKwsPDSUxMJDs72z+/pKSEqqoqsrKykCSJyspKSktLiY2N9Z+blJREaGhos2u9//77ue+++/z7dXV1JCcnt/pZ7W4vmQ983ur5bUXOQ5dh0Lbuf212dvYpuahXr15NUlISb775ZsBxm81GdnY2KpWK888/n+zsbAYOHMhjjz2GyWQ600cSCAQCAEpqHWwvqPYLuV1FtU1cqQoF9Iv2uU0bJzGkRBpQi0K8HYIsy1S4PeTbnBxyuMi3OTns3zqpcntRK0CjUKJTKtDW/+gUSrRKBZpGr7VKBTql4ri5SnQKRQtzlWgUipbnKpVoFc3P1SgU3V5wdriwu+SSS0hLS+Pmm2/mzTffxG638+c//5lrrrmG66+/ngceeICnnnqKO++8k2+//Za3336bjz/+GICbb76ZyZMnM336dMaNG8fzzz9PaWkpkydPBmDOnDk8/PDDjBkzhqioKBYsWMAFF1xAv379ABg3bhwLFixgxYoVVFRUsGzZsoBSKsej0+n8FsaeSkvubWjeRZ2UlNTsdaqrq5FlmSeeeIL333+f9PR0VqxYweWXX87u3btJSUlpj+ULBIIejMPtJbu4ju31Im5bQTVHm6kLF2bQMCI5jJF9whnRJ5xhyaEEB4lM1PZGkmWKnW4O2Z0csrvItzvrX/v2rd7mYxcb8MjgkSXsJ57W4eiUCrSKk4tArVIZMPfmxGiGhxg6e/kdL+w0Gg2bN2/mvvvuIz09HYfDwaRJk3j66acJCwtjw4YN3HPPPTzwwANER0fzzDPPMHHiRAAuuugiXnjhBW6//XYKCwsZPHgw69evJyIiAoAHHngAt9vN+PHjMZvNTJw4kTVr1vjvvXbtWubPn09qaipKpZLZs2ezZMmSdntWvUZFzkOXtdv1T3Tf1tKSextadlE3R4MAvu+++xg8eDAA8+fP58UXX+Szzz7jjjvuaPW1BAJB70OWfckN2wpq6i1yNeQU1zbJTFUqYFBcCCP7hjEiOZyRfcNJiTR0eytLV8UtyRxxNBVth+xOChwunC3VfgEUQGKQhpQgHakGHSl6HSl6Lal6HdFaNR5ZxiXJOCUZlyThqt/3HQvcd8lS/byW57obriVL/uu6JRln/X5Lc49PfnZKMk5k8EL9f1rF5VGhDKcXCjuAhIQE3n333WbHzjrrLL777rsWz501axazZs1qdkyj0fD3v/+dv//9782Ox8bG8v7775/6gk8ThULRapdoZ5GVlXXKLurmiIqKIiYmJiDZBHxu9g6uqCMQCLoBdpeXnYU1bD9Sw7bD1Ww/UtNsm60ok5YRfcIZ0cdnkRuSGCoK+7YxNq/E4UaiLd/u5HD9ttDh4kQGNY1CQZ8g7THRZtDRN8i3TQ7SolN2fde3V24QgT7R52wkAt1yI0EoyY0EpYSz8WtJZqBR39mPAoiWYr2e9PT0U3ZRt8Tvfvc7HnroIc477zyysrJ44YUXKCoq4pprrmn7hQsEgm6DLMscrrSx/Ug12w77Ehxyj5rxHmftUSsVDE4ICRBySeF6YY1rA2rdnmOxbgFuUxclLvcJz9UrlX5LW9/6bYOQSwzSourm/39UCgUGlQJ6SPylEHaCE7qoTSYTL7/8MjNnzjzpdf76178SEhLCjBkzKCoqIiMjg88++6xJWRSBQNCzsTg97DxS0yhTtYYqq6vJvNgQXX1cnE/EZSWGij6pp0lDssKh40Rb42SFExGqVvnFW4NoS9HrSNXriNGqhbjuRnR454nujOg80baI90wg6P5IkszBCqs/Lm57QTX7Ss1N2m5pVUqyEn3WuAYxlxDWNVxX3YUzTVaI0aqbiLaG/XCNsPN0Zbp05wmBQCAQdF9q7W52NLLG/Xqkhlp7U1deYpjeb4kb0SeMzIQQdGphjTsZTkniiMPlT1A4bHeSb3dx+DSSFRpi3VL1vtdG8f73CoSwEwgEAkGzeCWZvDJLvYjzWeTyyixN5gVplAxNDGNEQ6ZqnzBiQoQVviXMHm9Adunh+u0hh5Mih5sTudEakhUaYt26Y7KCoH0Rwk4gEAgEAFRbXWw/cqxm3I4jtVicnibz+kYa/Ja4EcnhDIoPRtNDAs/bgubi3fzize6i0t30PW2MQaUkpT7TtCcmKwjaFyHsBAKBoJficHv5Lq+C/+WW8uPBKvIrrE3mGLQqhiWF+evGjegTRqSpZxdubw0eSabI6fILtvwAy5sL20ni3SI1an+s2/HiLUojkhUEp48QdgKBQNCLqLK6+GpPGRtySvh6X0WTftZp0caATNUBscGoemkfVbtX4rAj0NrWkKxwxOHCcwKfaeN4twbx1jhxIVjEuwnaCSHsBAKBoIdzqMLK/3JL+SKnlK2HqgIyVhNCg7g4M5aJA2MY0SeMMIO28xbaCdS4Pf7khIC4N4eLo84T13fTKRvi3XSk6n3bBvEm4t0EnYUQdgKBQNDDkCSZHYU1bMgpZUNOKfuPS3jIiA/hksxYLs2MZXBCSI92+0myTKnLHdBR4VCjuLcaz4nru4WolaQE6epF27EivSl6HfE6Dcoe/N4JuidC2AkEAkEPwOH28sOBSr7IKeXL3FLKGrXnUisVjE2L4JKMWC7KiCU5ovP7WbYHbklme52VzdVmdpntHLK7KHA4cZygRAhAbH19t2Pu0mMu03C1qkcLX0HPQwg7gUAg6KbU2Bri5Ur5el85Vtcx65NJp+aCgdFcmhnLhAExhBo0nbjS9kGWZfLtLjZXm9lcVcd31RbMzSQtqBSQpAuMcWvY9tFrMapEvJug5yCEnUAgEHQjjlTZ+CKnlA05JWw5VB3QbzUuJIiLM2O4JDOOs9MiemRB4Gq3h2+rLWyuMrO52swRR2CrsgiNivHhwYwNNZJm8FnfEnVaNL00AUTQ+xDCTkBZWRnz5s1j06ZNqNVqZs2axRNPPIFa3fTX46WXXmL58uUUFxcTHx/PggULuOOOO5rMe/XVV7n11lsRHesEgjNDlmV2FdX64+X2lJgDxgfFBXNJZiyXZMYyJDG0x7kNXZLEL3U2vq4ys6nKzA6zjcY2OY1CwZhQIxdEBHNBRDBDTHoR9ybo1QhhJ2DGjBkkJiZSXFxMSUkJkyZNYvny5SxcuDBg3kcffcT999/P+vXrGTt2LD/++CNXXHEFsbGxTJkyxT8vOzube++9t6MfQyDoMbg8Ej8crGRDTgn/yymjpM7hH1MpFYxOCeeSzDguyYilT2TPipeTZZk8m7PevWrm+xpLkx6oAwxBTIgI5vyIYM4JMwpXqkDQCCHs2hNZBret4++rMUAr/2LNy8tj06ZNFBUVYTAYSEtLY8mSJSxatKiJsCsuLmbx4sWcffbZAJxzzjlMnDiRr7/+2i/sbDYb1157Lffccw+PPPJI2z6XQNCDqbW72bS3jC9yStm8tzyg44NBq+KCAdFcUl+WJNzYs0qSVLo8fFPtc61+XWWm6LgyI5EaNRdEBHN+uIkLIoKJ1/Ws5xcI2hIh7NoTtw3+ltDx9/1TMWiNrZqanZ1NREQECQnH1pmZmUlBQQE1NTWEhYX5jx/vci0rK+Prr7/mn//8p//YnXfeyZVXXsnFF18shJ1AcBKKauxsyC5hQ24pPx2swtMoXi46WMfFGb6SJOf0iyRI03OsUk5JYkut1ederc9gbRy0oVPWu1fDfe7VwcK9KhC0GiHsejlmsxmjMVAEGgw+147FYgkQdo0pKSnht7/9LaNGjeL6668H4K233iI3N5dXXnmFb7/9tl3XLRB0R2RZJru4zh8vl3O0LmA8Pcbkj5cblhSGsocE/MuyzF6bwx8n90ONFbsU6F7NMAb54uTCgxkbZsIges8KBKeFEHbticbgs551xn1bidFoxGYLdBc37AcHBzd7zo8//si0adMYP348b7zxBmq1mr1797J48WK++eabZpMuBILeitsr8dPBKl+8XG4ZRTV2/5hSAWf1jfCLuZSo1lnauwPlLjffVFvYVFXH11UWSlyB7tVordpvkTs/PJhYXc8rxyLw4fFYcDpLcTpL6releLwWVMogVCoDSpUelVKPSuX7UaoM/jH/MaUepVLX45KD2gPxDdyeKBStdol2FllZWVRWVlJaWkpsbCwAOTk5JCUlERoa2mT+66+/zl133cVDDz3E73//e//xtWvXUl1dzYgRIwDweHzxQWFhYbzwwgt+q55A0BswO9xs2lvOhpxSNu4tw+w4Fi+n16gYnx7FJZm+YsERPSRezuGV+LnW6k962G2xB4wHKRWcHWryZ69mGIPEl3Q3R5a9uFwVftHmqBdtjQWc01mK12s5+cVahcIv8nyir14YNhaBSr1PKAaIRQPK+rkNx5qIyfrXCkX3txQrZFGPotXU1dURGhpKbW0tISEhAWMOh4P8/HxSU1MJCgrqpBWeHuPHjycpKYkVK1ZQUVHBVVddxdSpU1m6dGnAvA8++IDrr7+eTz75hMsuu+yE19y0aRMTJ048YbmT7vyeCQTHU1xj58v6fqw/HqzE7T32ux9l0nJxhs8qd17/qB4RLyfLMrlWh6+eXJWZH2stTTo8ZJn0fvfqmFAjQcK92m1ozsrWZN9VDjQtCN0cKpUJnS7W/6NWhyBJDiSvA6/XhtdrxyvZ8XrtSPXbhh9Zdp38Bm2ETyQ2LxAD95taGsPDz0GvT26XdZ1IfxyPsNgJWLt2LfPnzyc1NRWlUsns2bNZsmQJACaTiZdffpmZM2fy4IMP4vF4AkqbAMyaNYuXXnqpM5YuEHQasiyzp8Tsj5fbVVQbMN4v2ugrSZIZy4jknhEvV+p083W9Re7rajNlLk/AeJxWw/kRJiZEhDA+3ES0VrhXuxqy7MXpKsflLGsjK5sSnS7mmGjTxgYIOJ0url7ImU57zZLkqRd79SJQsiN57fWvfcf8AtG/3yAUbXi9DqRGY8fvS5Kj0b0cSJIDN9WnvM4hWc+3m7A7FYSwExAbG8v777/f7JjFcuwf986dO1t9zQkTJojixIIeyf5SM2u2HmH97hIKq4+5GxUKGNUn3B8vlxZ9+l9kXQWbV+KnGovfvZprdQSM65VKzgkz+mvKDTQI92pn0t5WtgaRFtTotVYbhULRvhZopVKNUhmMWt183PeZIssSkuRoZCW01e8fsyRKDWMNVsVGcxuO6YLi22V9p4oQdgKBQHASLE4P/9lRzJqtR9heUOM/rlMrGZ/u68d6YUYMUSZd5y2yDZBkmWyL3d+u6+daK85G7lUFMCRYz4Rwn5AbHWpEpxTu1fZGliWcrrLjRFrZaVvZFAoVWm10oGjTxh0n4s7MytadUCiU9TF6PaPYtxB2AoFA0AyyLLP1cDXvbTnCup1Hsbu9AKiVCi4cFMP/jUziggHR6LXdO16uwuXhq6o6NlbW8XW1hUp3oHs1Uafh/Po4ufHhwURqxddGeyFJLmz2w1itediseVhtB7BaD2CzHQxwF54In5Utrt6qFou2ftvRVjZB5yH+hQoEAkEjyswOPtxWxJqtRzhYbvUfT4s2MuOsZP5vZBLRwd3XMteQ9LChoo4NlbX8UmcLKA5sVCk5N8zkT3robxAlJtoaj8eKrV60WW0H/CLObj+MLHubPefkVraGWLauXYlB0P4IYScQCHo9Hq/Exr3lvLflCBv3luGtdz8atCquHBrPjNHJjOwT3m0Fjt0r8V2NhQ0Vtfyvsq5Jy64hJj0XRoYwISKYUSEGtMK92ia43dVYAqxvedisB3A4W65vqlKZMBr7YTT0w2Dsj9HQD6OxH0FBySiV4itbcHLEb4lAIOi1HCy3sGZrIR9sK6Tc7PQfH9knjBmjk/nt0ARMuu75MXnU6eJ/lXVsqKjjm2oz9kaxcnqlgvHhwVwSFcJFESEkBPWMWnqdgSzLOJ0lWK15WG0+4dYg4tzuqhbP02giMBrTm4g4nS6u2/4BIegadM9PLIFAIDhNbC4Pn+0qYc2WI/x86NgXb6RRy/+NTGT6Wcmkx7ZP9l17Iskyv9bZ2FBZx/8q69h1XIHgRJ2GiyNDuCQqlPPCTOhFTblTQpI8OBxHfALOeqCRiDt4wqSFoKDE46xv/TEa+6HRhHfg6gW9CSHsBAJBj0eWZX49UsOarYX8Z0cxFqcvQUCpgAsGRDNjdDIXDopFq+5eYsfi8bK52swXFXV8WVlHRaPEBwUwKsTAJZGhXBIVIjo9tBKv14nNno/Vuj/A+mazHWqxUK5CoUKvT2lifTMY0kTMm6DDEcJOIBD0WKqsLj7cVsiarUfYV3rMqtI30sD0s5KZMjKJuNDu1fXkkN3pT3z4ocaKu1G9yGCVkgkRIVwSFcKFESFEiQzWFvF4zD7LW4ALNQ+7vZCW6rwplUH1wq2f3/pmMPbDoO+LUinc2YKugfhXLxAIehReSeab/eWs2XqEDTml/tZeOrWSK4bEM/2sZMamRnSbThAeSebnWisbKn2JD/ttzoDxVL2WS+utcmNCjSLxoRGyLONyV/qSF+oFnNV6AJv1AE5XaYvnqdWh9da3/gEiLigosUf0EhX0bISwE1BWVsa8efPYtGkTarWaWbNm8cQTT6BWB/56SJLEQw89xGuvvUZ1dTWpqaksWbKE6dOnA77er4sXL2bt2rWYzWYGDRrE3//+dyZOnNgZjyXoZUiSzIpvDrLy+0McrT1W82tIYijTRyczaVgCofru0eKqyu1hY2UdGyrr2FhlptZzrASGWgFjQ01cEumzzPUzdC+LY3sgyzJOVylWy36feLPs84s4j6e2xfN02lifcAsQcf3r67x1D+EvEByPEHYCZsyYQWJiIsXFxZSUlDBp0iSWL1/OwoULA+Y9//zzrFq1ik2bNtGvXz8+/fRTrr76akaNGkW/fv1YvHgx3333HT/88AMJCQm8/vrrXHnlleTm5tKnT59OejpBb8Du8rLgve18nu2zwoQZNFwz3JcIkZlw4obZXQFZltlr89WW+19lHVtqrQHOwAiNigvrXawTwoMJ1fTOj26/gLPmYbXu9wk4q0/MeTzmFs5SoNcnBwg3o9FngWuvFlUCQWfSOz8dBH7y8vLYtGkTRUVFGAwG0tLSWLJkCYsWLWoi7O68805uvvlmjEYjTqeT8vJyjEYjBoOvDYvdbuehhx4iOdnXBPnWW2/lj3/8I7/88osQdoJ2o8zs4NaVW9lRWItWpeSBqzKZOiqJIE3Xrqzv8Er8UGNhQ71l7ogjMDA/wxhUb5ULZWSIAVUvsiA1K+BsvtctCbhjCQz968uI9PeJOUMqKpWwagp6D0LYtSOyLGP32E8+sY3Rq/WtdiNkZ2cTERFBQkKC/1hmZiYFBQXU1NQQFhbmP65UKjEajXzxxRdcfvnlyLLM8uXLiY/3NT5++eWXA6791VdfUVtby/Dhw8/4mQSC5thXambOG1soqrETZtCw4oazGJMa0dnLapFSp5sv64Xc5mozNu8xu5xOqeC8MBOXRIVycWQIyb2gtpwsy7hcZVis+30Czv+Th8dT1+w5xws4kzEdozEdgyEFpbL7dgQRCNoKIezaEbvHzth3xnb4fX+6/icMmtY1MzabzRiNgen4DRY4i8USIOwauOCCC3A6nWzevJlrrrmGuLg4ZsyYETDnxx9/ZNq0aSxdupTU1NTTexCB4AR8u7+C29/6BbPTQ0qkgTfmjCE1qmuVlpBkmV0Wuz+LdYc58A+9WK3aX45kXLgJo6prWxlPl9MXcH3rrW8+C5zJOEAIOIHgJAhh18sxGo3YbLaAYw37wcHNx5/odL4P1YsuuogbbriBd955J0DYvfrqqyxYsICHHnqI++67r51WLujNvLelgD//ezceSWZ0SjgrbjiLcGPXsHBZvV6+qbL4s1hLXZ6A8eHBBn/iwxBT663r3YEzF3ANVjgh4ASC00UIu3ZEr9bz0/U/dcp9W0tWVhaVlZWUlpYSGxsLQE5ODklJSYSGhgbM/f3vfw/Ak08+6T/mdDqJiPC5vrxeL3fccQcffvghH330ERdffPGZPopAEIAkyfzji728uOkAAFcPT+DxqUPRqTvX0lVgd/rad1XW8X2NBWej9l0GlZIJ4cFcHBXCxREhxOi6R2buiWgQcFZrHhbrPr9488XACQEnCMTlcmGxWLBarf6t1+slNDSUsLAwwsLCCAoScZBthRB27YhCoWi1S7SzSE9PZ9y4cSxYsIAVK1ZQUVHBsmXLmDt3bpO5559/Ptdffz1XX30148aNY926dbz77rts2LABgHvvvZf169ezdetW+vbt29GPIujhONxefr9mB+t2HQXg7ovSuffi9E6xeHllmV9qrf7Ehz1WR8B4nyAtl0aFcHFkCOeEmdB109pyZybg+jdyo6ZjNKQKAddD8P1eNBVrFoul2WNut/uk1wwKCiI8PNwv9I7/afAUCU6OEHYC1q5dy/z580lNTUWpVDJ79myWLFkCgMlk4uWXX2bmzJlcffXVPPvss9xyyy2UlpYyYMAAPvzwQ84991wqKip4/vnnUalUDB48OOD6DecLBKdLpcXJrau2sq2gBo1KwaP/N5Spo5I6ZS1fVtZx/75CChplsSqBMaFGLokK5ZLIENINum7lYvV9UZdjte6vF3B5fjeqEHC9A1mWcTgcTURZS1uPx3PyizZCrVZjNBoxmUwYjUZUKhU1NTXU1NRgt9txOBwcPXqUo0ePNnu+wWBoUfSFhYWh1XaNUIyugEKWG/WjEZyQuro6QkNDqa2tJSQksDaWw+EgPz+f1NRUYVJuJeI9E7SGvDILN7+5hYIqGyFBal66YRTn9ovq8HWUu9ws2V/ER2U1AISqVVwUGcIlkSFMiAgmvJvVlvN4rFRXf09F5UYqKzfjdJa0MFOJwdAoicHQH6NpgBBw3QBZlrHb7a0Sag3u0VNBo9H4hdrJtjpdy3/sOJ1Ov8hr/FNdXU1NTQ0Oh6PZ8xpjNBpPKPw0mu4dAnEi/XE83euTSCAQ9Cp+OFDJbau3UufwkByh542bxtA/xtSha5BlmX8dreLBA8XUerwogVuTo1mUEoexk2P7ThWbLZ+Kyk1UVmykumbLcU3thYDrDkiShM1ma5VQs1qtSFLzfW9bQqfTtUqomUymNrOS6XQ6YmNj/XHex+NwOFoUfTU1NTidTv/zFhUVNXsNk8l0QuF3fKel7kzPeRKBQNCjWPtLIfd/uBO3V2ZknzBemX0WkaaOFRh5NgcL9x7hhxorAENMep4YlMyw4K4dO9uA1+ukpuYnn5ir3ITdfjhgXK/vQ2TkRKIiJxAWNkYU8u1gJEnC4XBgs9mw2+3+bXOvbTYbFosFm83GqTragoKCWm1Z64qWraCgIOLi4oiLi2t23G63n1D4NcQDWiwWCgsLm71GcHBws4IvPDyckJCQbiX8us9KBQJBr0CWZZb/bz/PfLkfgN8OiefJ6cM6tJOEU5J47nAZTx8uxSXL6JVK/pgaxy1J0aiVXTt2zuEo9gu5qqrvkaRjtfMUCg3hYWOIjPKJOb0+pVvFAnZVGpIJGguy5kTa8cda42JsCYPB0CqhZjQau5UoOR30ej16vd5fLL8xDe7oEwk/t9uN2WzGbDZz5MiRZu8REhJyQuGn6kI1KHv2/22BQNCtcHq8LFq7k49/LQbgjgn9+MOlA1F2oJj6scbCwr1H2G9zAnBhRDB/H5BEH33XdEdKkpva2u1UVm6konITVuu+gHGdLo7IyAuIipxAePi5qNUd68rubng8npNaz5o7dqouz8bodDr0ej0Gg8EvUo5/3VjIGQyGLiUkujIKhcL//jXusNSALMvYbLYWRV9NTQ0ej4e6ujrq6uooKCho9h4hISFcfvnlDBo0qCMe64QIYScQCLoE1VYX81ZvZcuhatRKBY9MzmLG6I7rMVzj9vDIwaOsLq4EIEqj5uH0RK6OCetyVi2nq4Kqys1UVG6iquqb4/qnKgkNHUFU5EQiIydgMg3qcuvvCBrcnK0VZg2vXS7XyS/eAiqVyi/ImhNpLQk3IdI6D4VC4bdsJiYmNhmXZRmr1XpC4ef1eqmtre0yltGusQqBQNCrya+wcvObW8ivsBKsU/PirFGMS++YzFdZlvmkvIa/7C+ivL5LxKz4SP7SL56wLpLpKssSdeZdVFb4XKx15p0B4xpNBJER5xMZNYHIiPFoNGGds9BOwuv1UlJSQmFhof+npqbmlGPRGlAoFH7RdSoiTaPR9EoR3ZNRKBSYTCZMJhNJSU1LLEmS5Bd+0dHRnbDCpnSNTy2BQNBr+Tm/inmrt1Jjc5MYpueNOaMZENt8O7u25ojDxf37Cvlfpa9WW7pBxz8GJnN2WOe7K93uWqqqvqmPl9uM210VMB4cnEVk5ASiIicSEjIEhaL3WH3q6uoCRFxxcXGLddW0Wu0pWc8MBgM6nQ5lNy0qLehYlEolwcHBLbbg7AyEsBMIBJ3Gx78WsfD9nbi8EsOSQnnlxrOICW7/zEyPJPNaUTl/P1iCXZLQKhTc3TeWu/rGdFqXCJ/LZx8VFRuprNxEbd02ZPlYXTGVykRkxHgiIycQGXk+Ol1Mp6yzo3G73Rw9ejRAyNXVNS2aHBQURFJSkv8nNjYWvV7fZdxjAkFH0Sm/8e+99x4zZ84MKEo7efJkVq9ezU8//cTdd99NdnY20dHR/OUvfwlob7Vy5UqWLVvG0aNHycjI4Nlnn+Wcc84BfOb4xYsXs2rVKmw2GxdeeCEvvfSSP1OmrKyMefPmsWnTJtRqNbNmzeKJJ54Q//AFgg5GlmWe/SqPf27wBfpfNjiWp2aMQK9tf6vTLrON3+89wk6zL1v07FAj/xiYTLqx40t9+IoE/0Bl5SYqKjfhdAZW3Tca0+sTHyYSGjoKpbLrlaJoS2RZprq6OkDElZSUNElMUCgUxMbGBgi5iIgIYWUTCOgkYbdlyxZuuOEG3njjjYDj1dXVXHHFFTz00EPcdtttfP3111xzzTUMGTKEMWPGsGnTJu666y7Wr1/PmDFjeO6555g0aRKHDx/GYDDw8MMP88UXX7B161ZCQ0OZN28et9xyC+vWrQNgxowZJCYmUlxcTElJCZMmTWL58uUsXLiwM94GgaBX4vJI3P/hLj7Y5qsnNe/8NBb/ZlC7Z75avV7+kV/CiiPlSPg6RzzQL4Hr4iNQdmBclL9IcOVmqqt/CigSrFQGER5+DlGRE4iMnIBe3zlt0zoKp9NJcXFxgJCzWq1N5hmNRpKSkkhOTiYpKYn4+HjRO1QgaIFOaSl2wQUXMH36dO68886A46+++iqPP/44+/YdS9e//fbbsdlsrFy5klmzZmEwGFixYoV/PCMjg0WLFjFnzhySk5N57LHHuP766wEoLS0lPj6evLw8JEkiPT2doqIif8rze++9x6JFizh8OLBoZ0v01JZip2PJ3L17N2PGjOGzzz5jwoQJp3Xf7vyeCU6PWpub297ayo8Hq1ApFTw4aTCzzu7b7vf9srKOP+47QqHD14z8mpgwHuqfSIyu/S1gkuSkuvpnv1XObj8UMB4UlExUlE/IhYed3WOLBEuSRGVlZYCIKysra5LgoFQqiY+PD7DGhYV1vcxkgaAj6dItxSRJYtu2bRiNRh5//HG8Xi9XXHEFjz32GNnZ2QwZMiRgfmZmJq+99hoA2dnZ3HzzzU3Gd+zYQW1tLYWFhQHnx8bGEh4ezs6dO1EoFERERATUscnMzKSgoICamhrCwsKarNXpdOJ0Ov37zcV19ARO1ZJps9m47rrrsNvtzY4LBM1RUGnjpjd/5mC5FZNOzXPXj2DCwPaNEzu+v2tSkIbHBiRzUeSJPxjPFIejmMr6ciTV1d/j9dr8YwqFmrCw0f5yJAZDWo8ULTabjaKiIr+IKyoqarYgb2hoaICIi4uL65LdDwSC7kKHC7vy8nJGjBjB1KlTWbt2LRUVFdx4443MmjWL+Ph4jEZjwHyDwYDFYgHAbDa3OG42++o4nej85sYALBZLs8Lu0Ucf5cEHHzztZ5VlGbkTxI9Cr2/1F0VeXh6bNm2iqKgIg8FAWloaS5YsYdGiRS0KuzvuuIPJkyeze/futly2oAfzy+Fq5q3aSqXVRXxoEK/fNJqM+PYTV1J9f9eHGvV3nZcczcLUOIztUDNMkjzU1m2nsr4Pq8W6N2Bcq43xu1cjIs5Fre46GXRtgdfrpby8nMLCQo4cOUJhYSGVlZVN5qnVahITE/0iLjEx8aTWB4FAcGp0uLCLjY3l66+/9u/36dOHxx9/nLFjxzJnzhxsNlvAfJvN5k8jNhqNzY5HRUX5RVtL5zc0Tj5+DGgxTfn+++/nvvvu8+/X1dWRnJzc6meV7Xb2jhzV6vltxcBtv6AwtK6XZXZ29ilZMletWkVeXh6vvfYay5Yta8tlC3ooH20vYtEHO3F5JAYnhPD6TaOJDWk/d+N+q6+/64+1vlitocF6nhiYzNA27u/qclVQWfl1oyLBjS36CkJDhvtbd5lMmT3KKtfQc7OxNc7tdjeZFxER0SRTVRTjFQjalw4Xdjt37uSdd97h0Ucf9X/QOZ1OlEolY8aM4amnngqYn5OTQ1ZWFgBZWVlkZ2c3Gb/iiisIDw8nMTGR7Oxs//ySkhKqqqrIysryx3eUlpYSGxvrPzcpKYnQ0NBm16rT6Xp8gG5LVlBoasncs2cPf/7zn/nuu+/Eh7PgpHglmX98vpeXNh8A4OKMWJ6+djhGXft87JQ53bxWVMGLBWX+/q6L0+KYm9h2/V1lWaKychOHC16lpuZn4Fh8mFodRmTk+URFTiQiYhxabUSb3LOz8Xg8zRb/PR6dTtfEGnf8Z4tAIGh/OlzYRURE8NxzzxEREcF9991HcXExCxcu5KabbmLq1KksXryYp556ijvvvJNvv/2Wt99+m48//hiAm2++mcmTJzN9+nTGjRvH888/T2lpKZMnTwZgzpw5PPzww4wZM4aoqCgWLFjABRdcQL9+/QAYN24cCxYsYMWKFVRUVLBs2bKAUiptjUKvZ+C2X9rt+ie6b2tpyQoKgZZMh8PBjBkzeOqpp+jTp+PaPAm6J2aHmwXv/sqXe8qA9u35uq3OyuuFFXxcVoO7PhD/4sgQHh2QRHKQtk3uIUluSks/5XDBy1it+/3Hg02DiYy8gMioCYSGDO/2RYJlWaaurs7vTi0sLOTo0aN4vd4mc2NiYgKscVFRUaLciEDQBehwYZeUlMS6deu4//77efjhhwkKCuLaa6/l8ccfJygoiA0bNnDPPffwwAMPEB0dzTPPPMPEiRMBuOiii3jhhRe4/fbbKSwsZPDgwaxfv56ICN9fxg888ABut5vx48djNpuZOHEia9as8d977dq1zJ8/n9TUVJRKJbNnz2bJkiXt9qwKhaLVLtHOIisrq1WWzC1btrBv3z7mzp0bIIavvPJKZs+ezQsvvNDhaxd0TQoqbcxduYX9ZRa0aiX/mDqUq4c37cF4Jrgkif+U1fBaUQXb6o79YXJWiIE7+sRweVRom7g+vV4bxcVrKCh4DYezGPAVCk5MvI7kpNkEBTVtKt7dqKmpYc+ePRw+fJjCwkJ/vHJj9Hp9QLmRhIQEkckuEHRROqXcSXelp5Y7GT9+PElJSX5L5lVXXcXUqVNZunTpCc9TKBRs3LhRlDsR+Pn+QAV3vL2NGpubmGAdr8w+i2HJYW12/VKnm1XFFawqrvT3ddUqFFwdG8bcxGiGh7TNH1IuVxWFhaspLFqN213tu482iuSkm0hMnIlG070D/svLy8nNzSU3N5ejRwOLIisUCuLi4poU/+1JMYICQXejS5c7EXQ9TmTJNJlMvPzyy8ycObOTVyno6qz+8TAPfpKNR5IZlhTKitlntUmShCzLbKuz8VpRBf9p5G6N02q4MTGSWQmRRGvbpjyG3V5EwZHXKC5egyT5Mtr1+j706XMr8XFTUKm6Z8ytLMsUFxf7xdzxGat9+vRhwIABJCcnEx8fj1bbNi5sgUDQ8QhhJyA2Npb333+/2bGGUjHNIYy9AgC3V+LB/2Tz1o8FAFw9PIHHpgwlSHNm8WZOSeKTshpeLSxnh/lY2aAxoUZuTozit9FhaNooZs9i2cvhghWUlv7H3581OHgwffvcRkzMb7pl7JzX66WgoIDc3Fz27NkTUIdTqVSSlpZGRkYGAwcOxGQydeJKBQJBWyKEnUAgOG2qrS7ueHsbPxysRKGAhZcN5PYL+p2R267E6WZlUQWriyupcPvcrTqlgmtiwpmbFNWmZUtqarZy+PDLVFR+5T8WHn4uffveRkT4ed3O/eh2uzl48CC5ubns3bs3oIi4RqMhPT2djIwM0tPTRfiDQNBDEcJOIBCcFvtKzdyycisFVTaMWhVPXTuCSzJjT+tasiyztc7Ga4XlfFpeg6feGByv03BTQhQzEyKJ0rbNx5UsS1RUbuTw4Zeord1Wf1RBTPRv6Nt3HiEhQ9vkPh2Fw+Fg//795Obmsn///oB6cnq9noEDB5KRkUFaWpro6CAQtBOy2wtKBQpV52eGC2EnEAhOmS9zS7nn3V+xOD0kR+h5dfZoBsadejcFh1fi47IaXissZ6flmHXp7FAjNydFc3lUaJu5W30lSz7hcMEr/pIlCoWW+PjJ9O1zKwZDapvcpyOwWCzs3buX3NxcDh48iCRJ/rGQkBAGDRpERkYGffr0ETUnBYJWIru9SHbPsR+bJ2BftgfuS3a3/zUemag5gwka2Pn1K4WwEwgErUaWZV7afJDHP9+DLMPY1AhenDWKCOOpBdsXO1ysKq5kVXEFVW5fTFuQUsHk2HDmJkaR1YbuVo/HSvFRX8kSp9OXAapSmUhKnEly8k3odO3br7atqK6uZs+ePeTm5lJQUBAwFhUV5RdzCQkJ3c6FLBC0FbJbChRdpyjOzgTJ7mmjpzgzhLATCAStwuH2cv+Hu/j39iIArh/bh6VXDUarbp3rQZZlfq618mphBZ9V1OCt/wxN0GmYkxjF9fGRRLaRuxUaSpas4kjhajyeGgC02miSk+eQlHh9l+/XKssyZWVlfjFXUlISMJ6QkEBGRgaDBg0iOjq6k1YpELQ9TcTZcVa0puLM00icSSe/wYlQgFKvRqlXo6jfHvvRHHttaDqu0HUN67gQdgKB4KSU1Tm4dfUv7DhSg0qpYOlVmdxwTkqrzpVlmY/Lani+oIxdx7lbb0mK5jdRoW3W8gsaSpa8Wl+yxAGAXt+Xvn3mERc3uUuXLJEkiaKiIr+Yq6qq8o8pFAr69u3rF3MttUIUCLoKsiwjO714LW4kiwvJ6q5/7UayuZsItrYWZ02FWaA4azJuUKPQqlC0Q4ecjkQIO4FAcEJ2FtZw66qtlNY5CdVreGHmSM7rH9Wqc92SzJ/3F7Kq2Fc3LUipYEpsODcnRTPY1PrWd63B4Sjm4MHllJR+3KhkSRZ9+/6OmOhLu2zJEq/Xy6FDh9izZw979uwJ6PygUqno168fGRkZDBgwQPReFXQ6ksvrE2ZWN16LC8nixmt1HztmrRdx9cf9pvlTRQGKIJ/YairOjhdmmh4nzs4EIewEAkGLfLKjmIXv78DpkegfY+LV2WeREtU6cVHt9nDr7kN8W2NBASzoG8utydFEaNr2Y8fjsXK4YAUFBa/6LXQR4ePo23ce4eHndsl4M5fLxYEDB9izZw979+7F4XD4x7RaLQMGDCAjI4P+/fuj03VdC6Og+yN7pEBhVi/K/Na1hmP1c2T3qVvTFFoVSpMGlUmD0uj7URk1zbgzNQFuzd4szs4EIewEAkETJEnmyQ17eX7jAQAmDozm6etGEBLUunIZ+60OZu86SL7dhVGl5IXMvlwW1bauQ1n2cvTovzlw8ElcrjIAwsLGkN7//i5ZssRut7Nv3z727NlDXl5eQFkSg8HgT35ITU1FrRYfzYLTQ/bKPjdnSxa1+q1kceG1uJGd3lO/iVqByqgNFGsmjf+Y0lh/3OQTcIozLFYuODXEp4dAIAjA4vRw73u/siGnFIDbzk9j0W8GoWrlX8+bquqYl32IOo9Eok7D6qFpZLax27W6+kf27X8EiyUH8LX96t9/MdFRl3YpC53ZbPa7WPPz8wPKkoSGhpKRkUFGRgbJyckolZ1f/0rQ9ZA9EpKjPgbN4sZrPbFFTbJ74FS9n0rFMTFmPCbIlCZt/bbxMY3P1dmF/p0JAhHCTkBZWRnz5s1j06ZNqNVqZs2axRNPPHFCq8Hu3bsZM2YMn332GRMmTAB8Fol7772Xjz76CKfTyciRI1m+fDlDh3Y964mgeY5U2bh11Vb2lJjRqpQ8+n9DmDIqqVXnyrLM60UVPJBXhFf2tf56LSulzfq4Aths+eTlPUZ5xQYA1OpgUlLmk5x0A0pl13BZVlVV+dt4HTlyJGAsOjraL+bi4uLEl2MvQJZlZJdPnMkNSQKOZkpwNHfM7jkt1ycKfLFpRq3fcuZ3f5q0TS1qerX4XexBCGEnYMaMGSQmJlJcXExJSQmTJk1i+fLlLFy4sNn5NpuN6667LqBdEcDSpUvZt28fOTk5mEwmFi9ezOTJkzlw4EBHPIbgDPnpYCW3v72NKquL6GAdL98wipF9wlt17vFJEtPjwvnHwGR0bWSFcrtryT/0LIWFq5FlDwqFisSE60lNvRuttnMLgsqyTGlpqV/MlZaWBownJib6M1mjolqXdCLoWsiSjHyc8GoQYj4B5j1WmsPhbVIvDenM+2orglSo6kVZYxeoX6w1sqgpDRoRn9aLEcKuHZFlGY/rDNO2TwO1Vtnqv77y8vLYtGkTRUVFGAwG0tLSWLJkCYsWLWpR2N1xxx1MnjyZ3bt3BxzPzc1FkiTfX6iyjEqlwmBou0KzgvbjXz8XsOSj3XgkmazEEF6ZfRbxoa1znx6fJPGXfgnckRzdJhYASXJTVPQOB/Of8deii4ycQHr/+zEa+5/x9U9/XRKFhYV+MVddXe0fUygUpKSk+MVcSEhIp61TcAzZIzWpeea3lB1nRZOPE3Cy4zTi0I5HqWiazRmkapQ0oGp0/LjszyC1EGqCViOEXTvicUmsuGdzh9933tMXoGllocTs7GwiIiJISEjwH8vMzKSgoICamhrCwsIC5q9atYq8vDxee+01li1bFjD2+9//nilTphAVFYVKpSIqKoqNGzee8fMI2g+PV+Lhdbm8+f0hAK4cGs8/pg5Dr23d7097JUnIskxl5Ub25z2KzXYQAKNxAOn9/0Rk5Pgzvv7pIEkSBQUFZGdnk5ubi8Vi8Y+p1eqAsiTiD5r2Q/ZKPiFmc/u2Vt/Wa6uvjWZtNNaWhWsBhUbZfP2zoOaP+bM+g9QoTuEPboHgTBDCrpdjNpub1MZq+FKyWCwBwm7Pnj38+c9/5rvvvmu2/6TH42HKlCk88MADhISEsHDhQq6++mp27txJUFBQuz6H4NSptbm5851tfJtXAcDvLxnA/Av7t/rLp3GSRFKQhlVD2iZJwmzZQ97+v1FV/R0AGk0EaWn3khA/HaWyYz+yJEni8OHD5OTkNBFzOp0uoCyJVntqbdUE9Va0epHmtbqbiDWp/pi3QchZ3WdmPVOAQteoNloji5lCrwoUZccLuCA1ilZ2WREIOhMh7NoRtVbJvKcv6JT7thaj0YjNZgs41rAfHHys5ZLD4WDGjBk89dRT9OnTp8l13G4306ZN47PPPiMxMRGAZ599lrCwMDZs2MBVV111Oo8iaCcOlFu4ZeVW8iusGLQq/jl9OL/JimvVue2VJOF0lnPw4D8pProWkFAotPRJnkNKyu0d2v7L6/UGiDmr1eofCwoKYtCgQWRmZpKWlibKkjRCdnt9Asx6nOWsQaQdJ9Akm+f0Sm3AsbZPBl8tNKWhPpvT//q4orWiNpqgFyE+ldoRhULRapdoZ5GVlUVlZSWlpaXExsYCkJOTQ1JSUkDLoi1btrBv3z7mzp3L3Llz/cevvPJKZs+ezSOPPEJ1dTVOp9M/plKpUCqVwpLRxfhmfzl3vr2NOoeHxDA9r8w+i8yE1sWBtUeShNfr4MiRNzh0+EW8Xp+Iiom5gv79FqHXJ5/2dU9tDT4x1+BmbfzHTlBQEBkZGWRmZvaKGnOyLPt6dR5nNZOsjYRZMwLutLI3oT6Ds16UGTUBr1UNQq1BrDUIOL2IORMIWqJnf0IJTkp6ejrjxo1jwYIFrFixgoqKCpYtWxYg3gDGjx/fJAtWoVDw6aef+sudjBs3jj/+8Y988sknhISEsGTJEqKiohg3blxHPY7gBMiyzKofDvPQpzl4JZlRfcN5adYoooNbVyakrZMkZFmmtOxTDhz4Bw5HEQAhIcNIT/8zYaGjTuuap0JDK68Gy1xjMafX6xk0aBCDBw8mNTW12dCDnoAsy7jya7FuLcVdbK23qrnBc5pZnErFMQFmqBdmx4m1xgJOZRCJAQJBWyOEnYC1a9cyf/58UlNTUSqVzJ49myVLlgBgMpl4+eWXmTlzZquus3DhQoYOHYrb7ebss8/m888/F/0tuwBur8TST7J5+6cCAP5vZCKP/t8QdOrOSZKord3Ovv2PUFe3HQCdLo7+/RYRG3sVCkX7xTF5vV7y8/PJyclhz549TcRcY8tcTxVzAF6LC9svZVi3lOCpsDc/Sa1A1Zy17DjXp6qRaFPoROFagaCzEcJOQGxsLO+//36zY42DxY9HlgP/qo+NjWXVqlVtujbBmVNtdXHH29v44WAlCgUs/s0g5p2f1ilJEnZ7EQcO/oPS0v8AoFIZ6NvnNvr0mYtK1bbdKRpoEHPZ2dns2bMnwPJsMBj8Yi4lJaVHizlZknHm1WDdUoI9p9LfnF2hVWEYHk1QZiSqYO0xkaYRWZwCQXdECDuBoAeTV2Zm7sqtHK60YdSqePraEVycGduqc9syScLjsXD48EsUHHkdSXICCuLjp9Iv7V50utat51Twer0cPHjQb5lrTswNHjyYvn379mgxB+CtdWLdWop1SwnemmMxsNrkYIxj4tAPjUbZxWOBBQJB6xHCTiDooWzaW8Zd72zH7PSQFK7n1RvPYlBcxydJ1NT+wu7dd+N0lgAQFjaWAel/Jjh48Clf60Q4nU4OHTrkLxrscDj8Y0aj0W+Z6w1iTvbKOPZWYf25BMfeKn/vUEWQGuPIGIxj4tDEiRAJgaAnIoSdQNDDkGWZN747xMPrcpBkGJ3iS5KINHVskoQsyxQWrWb//keQZQ96fR/S+/+JqKiL26grhcTRo0c5cOAABw4c4MiRI0jSsczMBjHXYJlTtlF7s66Mp8qBdUsJ1l9Kkepc/uPa1BCMY+IxZEWi0PRsUSsQ9HaEsBMIehAuj8QDH+/m3S2+5vPTRiXx8OSsDk+S8Hpt7NnzF0pKPwZ85UsyBv0dtfrMrEQ1NTUcPHiQAwcOcPDgwSaZ2mFhYaSnp/stc71BzMkeCXtOJdafS3Dm1fiPK40aDKNiMY6ORRMtOmEIBL0FIewEgh5CldXF7W/9wk/5VSgU8KfLM7hlfOppJ0msHpJGxmkkSdhsh9i16w4s1r0oFCr691tMcvKc07LSNbhXG6xylZWVAeM6nY7U1FT69etHv379iIiIOOV7dFfcZTasW0qwbStFsnp8BxWg6x/mi53LiBSdEgSCXogQdgJBD2B/qS9JoqDKhkmn5tnrRjBxUEyrzm3LJInyii/Jyfk9Ho8ZrTaKrMHPEh4+ptXnn8y9qlAoSExM9Au5xMTEHh8v1xjZ7cW2qwLrzyW4DtX5jytDtBjPisV4VhzqCNG+TyDozQhhJxB0czbuKeOuf23H4vSQHKHntRtHMyC2dS242ipJQpa9HMx/mkOHngcgNHQkQ7Kea1XGa01NjV/I5efnN+te7d+/P/369SMlJQW9vn3KonRlXMUWn3Vue9mxXqlKCBoYgXF0HEEDI1CoRGkSgUAghJ1A0G2RZZnXvs3nb5/lIskwJjWCl2aNIsLYuhZubZUk4XZXszv7XqqqvgEgKWk26f3vR6lsfh3Cvdo6JKcH245yrD+X4C48Vk9SFa7DODoO46hYVKGtS4gRCAS9ByHsBIJuiMsj8ZePdrFmayEA145O5qGrs9C2MqbqgM3BDTvzOWh3nlGSRF3dLnbtvhOHowilMoiMQX8jLu7qJvPKysrYs2ePcK+eBFmWcRdasP5cgm1HGbKr/n1SKdBnRmIcE4euX5howSUQCFpECDuBoJtRaXFy+1vb+PlQFUoF/OW3mcw5L6XVlrZvqszckn2IWo+XRJ2G1UNPr5NEcfEa9u77K5LkQq/vw5AhLxJsGhQwR5ZlfvzxR7744ouATiXh4eF+Iddb3auNkWxubNt9Lb7cJcfanKmj9RhHx2EYGYPK1DpLrEAg6N0IYSegrKyMefPmsWnTJtRqNbNmzeKJJ55ArW7663H55ZezcePGgLG1a9fym9/8BoAXX3yRJ598kpKSElJTU3n00Ue58sorO+xZejp7S8zMXbmFwmo7wTo1z14/ggkDW5ckAbCyqII/7S/EK8NZIQbeGJJ6ykkSXq+TffsfpLj4PQCioi4iM+MJNJrA4scul4tPPvmE3bt3A5CWlkZGRkavdq82RpZlXPl1vti5XRXgqbfOqZUYhkRhHB2HNjVEtPUSCASnhBB2AmbMmEFiYiLFxcWUlJQwadIkli9fzsKFC5vM3bp1K59//jkXXHBBk7GVK1fy4IMP8sknnzB69GjeffddpkyZQn5+PgkJCR3xKD2aL3NLuftf27G6vPSNNPDajWfRP6Z1SRIeSWbpgSJeLawAYGpsOE8MTCZIdWpJEnZ7Ebt234nZvAtQkJZ2Lyl9b0ehCLxOZWUl7733HmVlZSiVSi677DLGjBkjRArgtbiwbfNZ5zzlxxJFNHFGjGPiMAyPRmk49YxkgUAgACHs2hVZlvE4nSef2MaodbpWf4Hm5eWxadMmioqKMBgMpKWlsWTJEhYtWtRE2OXn51NVVcXIkSObvdYTTzzBsmXLGDPGV97iuuuuY+DAgYSEtK6NlaB5ZFlmxdcH+ft/9yDLcHZaBC/OHEV4K5Mk6jxebss+xMYqMwD3p8Zzd9+YUxZZlVXfkp29ALe7GrU6jKzBTxEZOb7JvL179/Lhhx/idDoxmUxMmzaNvn37ntK9ehqyJOPMq8G6pQR7TiV4fW5phVaJYVh9i68kkxC+AoHgjBHCrh3xOJ08c+PUDr/v3SvXoglqXS2r7OxsIiIiAixqmZmZFBQUUFNTQ1hYmP/4li1bCA4OZsaMGWzZsoXY2Fjuu+8+br75Zmw2G9nZ2ahUKs4//3yys7MZOHAgjz32GCaTqa0fsdfg9Hj504e7+WCbL0ni+rF9eHDSYDSttLQdsju5YedB9tuc6JVKnsvsw2+jw05pDbIscfjwSxw4uByQCA7OYkjW8+j1SQHzJEli8+bNbN68GYDk5GSmTZvWq4W9t9aJdWsp1q0leKuP/ZGnSTL5rHPDolHqxMewQCBoO8QnSi/HbDZjNAa2eTIYfO2HLBZLgLBzOp2cc845PPLII2RlZbFx40amTJlCcHAw5557LrIs88QTT/D++++Tnp7OihUruPzyy9m9ezcpKSkd+FQ9gwqLk9+t/oWth6tRKuCBKzO58dzWJ0n8UGNh7u58qtxe4nUaVg5JZWjwqbWW8njMZOf8gYqK/wGQED+dAQOWolIFltmw2+18+OGH7N+/H4AxY8Zw6aWXNhun2dORvTKOvVVYt5Tg2FMF9TkjiiA1hhHRvti5BPHHjkAgaB9636duB6LW6bh75dpOuW9rMRqN2Gy2gGMN+8HBgfFbN9xwAzfccIN//9JLL2X27Nm89957TJw4EYD77ruPwYMHAzB//nxefPFFPvvsM+64447TepbeSu7ROm5ZuZWiGjvBQWqev34k5w+IbvX5/zpayaK9hbhlmWHBelYOSSNOd2pxWxbLXnbuuh27/TAKhZaBA5eSmDCjybySkhLee+89qqurUavVXHXVVQwbNuyU7tUT8FQ5sG4pwfpLKVKdy39cmxLis84NiUKh6Z1lXAQCAMnrxVJVSV15GQ6bFW2QHp3BgKZ+q9XrUWtbH0okaB4h7NoRhULRapdoZ5GVlUVlZSWlpaXExvq6BOTk5JCUlERoaGBds9dff53g4GCmTZvmP+Z0OtHr9URFRRETE4PzuJhCr9cbUOZCcHK2F1Qz69WfsLq8pEYZefXGs+gX3ToLj1eWefhAMS8eKQdgUkwYTw3qg+EUkyRKSj4hd8+fkCQ7QboEhgx5npCQoU3m7dy5k08++QSPx0NYWBgzZswgPj7+lO7VnZE9EvacSqxbSnDm1fitc0qjGsPIWIyj49DEnJqVVCDorrgdDuoqyqirKKeuvIy6ijLMFeW+Y+XlWKoqkWXphNdQKJRoDXq0egPaID1ag2+r0xv8r7UGQ6vG1ZremYQkhF0vJz09nXHjxrFgwQJWrFhBRUUFy5YtY+7cuU3m1tbWcv/999O/f3+GDRvG+vXreeedd/j8888B+N3vfsdDDz3EeeedR1ZWFi+88AJFRUVcc801HfxU3Zfco3Xc9MYWrC4vY1MjePmGUYQZWpckYfF4uSPnMF9U+nqI/j4llt+nxKE8hb9+JcnF/ry/U1i4EoCI8HEMHrwcrTawPInX6+WLL77gp59+AqBfv35MmTLF78bvycheCfdRK7ad5dh+KUOyuv1juv5hGMfEoc+MRNHKYtECQXdAlmXsdbU+0VZRRl15oGirqyzHYa476XVUajXBkdEEmUy4HA5cDjsumw2Xww6yjCxLOK1WnFbrGa9ZqVKjNRjQ6fUBIlDbWATqDcdZDQMFY8NW1Y3CSrrPSgXtxtq1a5k/fz6pqakolUpmz57NkiVLADCZTLz88svMnDmTBQsWYLVamTx5MmVlZaSlpbFq1SrGj/dlRv71r38lJCSEGTNmUFRUREZGBp999hmJiYmd+XjdhvwKKze89jO1djcj+4TxxpzRGLSt+yd6xOHixp0HybE60CkVPD2oD9fEhp/S/Z3OUnbtvova2l8ASOl7B2lpC1AoAt2HZrOZ999/n4KCAgDOP/98JkyYgPIU+8t2B2SPhLvUhqvIjLvIgqvIgvuo1Z/VCqAM1mI8y2edU0d0bQu9QNASXo/H5yY9XrRVlFNXUY65ohyP6+RVHnQGIyFR0QRHRRMSHUNIVIzvdVQMIdExGEPDUDTzWSFLEm6X0y/yXDYbTvux1y67DZfd7tv6x+24HTactsDjbqcDAMnrwWGua5XgPBlqjbbeEqhHG2QIsCo2CMPM8ROJ7pt6xvc6UxSy8JO1mrq6OkJDQ6mtrW2S6edwOMjPzyc1NZWgLu5+7SqI9+wYxTV2pr30A0U1djLiQ3h33tmE6lvnRthaa+WmXflUuD1Ea9WszEplZKjx5Cc2orpmC7t334XLVY5KZWJw5pNER1/cZF5BQQFr1qzBYrGg0+mYPHkygwYNauaK3Q/ZI+EusfrEW4OIKwkUcQ0oglToUkMxjo4jaGAECpWICRJ0bVx2WyNrWznmRqKtrqIMa1XVSd2kKBSYwsIDhFrj1yFR0egMp/bZ0x5Ikhe3w4HTZsPtsONsEIt2WxPh2HTcjstRLyJtNjxu18lvWM+k3/+J9DHntssznUh/HI+w2AkEnUy52cmsV3+iqMZOWpSR1XPHtFrUfVBSxX17j+CUZAabglg1JI3EoNa3npJlmSOFb5KX9yiy7MVoHMDQIS9gMKQ2mbdlyxb++9//IkkS0dHRzJgxg6ioqFN61q6C7PG5U13FrRFxarRJJjSJJrSJJrQJJlSRQSLAW9BlkGUZW21NM6LNtzWXl+GwWk56HZVaHSjaIo9Z3UKiojFFRnWLuDWlUoXOYGwTken1eHA57Ljtdp8FsZEIPF44RiQkt8Hqzxwh7ASCTqTW5mb26z9zsMJKYpiet24ZS5Tp5FnNkizzeH4JTx0uBeDyqFCey+iDUd36rEu3u5Y9e/9CWdlnAMTGTiJj0COoVIbj5rn59NNP2bFjBwCDBw9m0qRJ6E4h+7ozkd0NljgzrkKfkHOX2kBqRsTp1T7xlnhMyKkihIgTdB6yLON2OrDV1vpcpJXHEhN8LlLf1ut2n/RaOqOxRdEWEh2DISS0WTdpb0alVqM3BaM3ta7LT1dACDuBoJOwOj3MefNnco/WEWXS8dYtY0kI05/8PK+Xu3MLWFdeC8BdfWK4Py3+lJIkKis3k5t7P05XKQqFmvT+fyIpaXYTAVNdXc17771HSUkJCoWCSy65hHPOOafLCh3ZLeE62sgKdwIRpzSo/eLNtw1GFS5KLQjaBlmSfMkBdpvfutN42+S13Y7LZj1mFaqPJ3PabdCaiCmFAlN4xLGYtsaiLSqa4KgYdL0guUkghJ1A0Ck43F7mrd7KtoIaQvUa3rplDKlRJ3cbHHW6uHFnPjstdrQKBU8MSmZ6XMRJz2vA47GwP+9vFBe/B4Ben8LgzCcIDR3RZG5eXh5r167F4XBgMBiYNm0aqamdHxh8PJLLi2NvFfZdFTj2VCG7msYJKY1qNInBAdY4VZgQcYKmNI7POpEQ8+83BPnXB/c3dte1SpC1EpVG4xdoja1sDceCIyNRqbu+m1TQ/ghhJxB0MG6vxF3/2s53eZUYtCrenDOaQXEnb7v1a52NG3cdpNTlIUKj4o2sVMaGtb6DQXX1j+Tk/hGHw9eeLDnpJvr1+wMqVaCVUJIkvvnmGzZu3AhAYmIi06dPb1LXsDORXF4cexqJOfcxMac0ao7FwyWa0CSZUIUKEdeTaciodDscvh+nI8Di1RA077Q3FWIumw2nzeq3mrkd9jZdm1Kl8pfU0OoNx71uKLdhbHS8/lh9SQ7fmCjcK2g9QtgJBB2IJMksWruTDTmlaNVKXr3xLEb0OXlZkk/Kargn9zB2SWagMYhVQ1Lpq29djJvXayfvwD/8temCgpLIzHiM8PCzm8x1OBz8+9//Zu/evQCMGjWKyy+/vEu0BjuRmFOF69APicYwJApNkkl8AXZRvB4Pbucx8RUgxPzH7Lidzvpt/XGHI+DY8ed4nCcvw3GqKFVqn9CqF2G6eiHWIMJ89dGOCTHfvjFAnGkNBtQarfh9FHQonf9pLRD0EmRZ5oFPdvPv7UWolQpenDmSc/udOKtUlmWWHy7l8fwSAC6KCOGlwX0JbmWSRG3tNrJzFmK3HwIgIeFa0vvfj1rd1NJXVlbGu+++S1VVFSqVit/+9reMHDny1B6yjZGcDWKuHMfe6kAxFxGEfkiUT8wlCjHXVsiyjMftChBd/m1joXWcEHMdJ8jcDmcTkeb1eNp9/RpdEJog349faDW2ljUWYg2WsgBxVt+1QNv67HKBoCvRqcLO6/Vy0UUXkZKSwptvvgnATz/9xN133012djbR0dH85S9/CeiCsHLlSpYtW8bRo0fJyMjg2Wef5ZxzzvFfb/HixaxatQqbzcaFF17ISy+95G9xVFZWxrx589i0aRNqtZpZs2bxxBNPdAlrhKDn89h/9/LWjwUoFPDPGcO5KCP2hPPtXon79hTw77IaAG5LiuaB/gmoWiFgJMnJwYNPc7jgFUBCp4sjY9DfiIy8oNn5u3fv5uOPP8btdhMaGsr06dM7rbC0T8xVYt9ZgWNfUzFnGBKFXoi5M0KWZWpKj1Kyfy9H8/ZRkrePuspynwBzOE9ez+wMUapUxwRYo63Wv69HE6Q7bkyPRqfzjTUSb43PU2u1IqtT0OvpVEXz4IMP8s0335CSkgL4MvCuuOIKHnroIW677Ta+/vprrrnmGoYMGcKYMWPYtGkTd911F+vXr2fMmDE899xzTJo0icOHD2MwGHj44Yf54osv2Lp1K6GhocybN49bbrmFdevWATBjxgwSExMpLi6mpKSESZMmsXz5chYuXNiJ74KgN/D8xjxe2nwAgEeuGcKkYQknnF/mdHPT7ny21dlQK+DvA5KZlRDZqnvVmXeTk/MHrNb9AMTFXcOA9AfQaJrGyHm9Xr788ku+//57AFJTU5k6dSpGY8cWGZWcHhy5Vdh2VeDYWw2eRmIuskHMRaNJMAoxdxrYLWZK8vZxdP9eSvL2cvTA/lZV41drtAEC6oRCTKc7Tmy1LMRUarX4/ygQtBOd1nniq6++4q677mLw4MEYDAbefPNNXn31VR5//HH27dvnn3f77bdjs9lYuXIls2bNwmAwsGLFCv94RkYGixYtYs6cOSQnJ/PYY49x/fXXA1BaWkp8fDx5eXlIkkR6ejpFRUUkJPi+VN977z0WLVrE4cOHW7Xmntp54lQsmZs3b2bRokVkZ2cTHh7OHXfcwf33399k3quvvsqtt97KiX69uvN7diqs+uEQD3ycDcCfr8jg1vPTTjj/gM3B9F8PUOR0E6ZW8WpWCuPCT15DSZLcHDr8IocOPY8se9BoIhg06GFioi9rdr7FYmHt2rUcOnQIgPPOO48LL7wQlar1tfDOBL+Yq7fMNRZz6sgg9EOifZY5IeZOCa/HTdmhgxzdv88n4vL2UlNytMk8lVpNTGo/4voPIL7/QCISk31CzS/EdCiVHfO7IBAITkyX7zxRVlbG3Llz+eijj1i+fLn/eHZ2NkOGDAmYm5mZyWuvveYfv/nmm5uM79ixg9raWgoLCwPOj42NJTw8nJ07d6JQKIiIiPCLuoZzCwoKqKmpISwsrMk6nU4nzkZBuXV1Z95vrivSWkvmnj17uOKKK3jhhReYPXs2u3bt4sILLyQ9PZ2pU6f652VnZ3Pvvfd29GN0ST74pdAv6u6+sP9JRV2uxc70HQcod3nop9exemgaaYaTJ0lYLPvIyf0DZrPvXtHRv2HQwIfQapu38h05coQ1a9ZgNpvRarVcc801ZGZmnuLTnTqSo5Flbl8VeI4Jf3WUHn2DmzVeiLnWIMsytaUlHK0XcCX791F26ECzsWzh8QnE9R9IfL2Qi05JFeUxBIIeSIcLO0mSmDVrFvfddx/Dhg0LGDObzU1cQAaDAYvFctJxs9kMcMLzmxsDn+WiOWH36KOP8uCDD57iEx5DluWA+KCOQqFRtvpLMS8vj02bNlFUVITBYCAtLY0lS5awaNGiJsLu+eef55prruHGG28EYOjQoXz//fcBfz3YbDauvfZa7rnnHh555JG2e6huyH93l7Bwra9bw03npnDvJQNOOH+H2ca1vx6g2uNlsCmI94b1J0p74n+isuyloOBVDhx8Cll2oVaHMnDAUmJjr2r2d+D41mBRUVHMmDGD6Ojo03/QkyBLMvbsCmzbynDsrxZi7gwIcKke8MXG2ZtxqQYFhxDfL90n5NIHEtd/QLeqnC8QCE6fDhd2jz76KEFBQdx1111NxoxGIzU1NQHHbDYbwcHB/nGbzdZkPCoqyi/amhsPDg5GkqRmxwD/9Y/n/vvv57777vPv19XVkZzc+l5wslui+IHvWz2/rUh46FwU2ta5ULKzs1ttyfz555+5+OKLue6669iwYQPR0dHce++9zJs3zz/nzjvv5Morr+Tiiy/u1cLum/3l3P2v7UgyTB2VxANXZp5QtGyptXL9jgOYvRIjQwy8MzSNMM2J/3nabPnk5Cyktm47AJGRE8kY9Ag6XfNJGS6Xi08//ZSdO3cCvv/PV199dbu2BnMerKXms4O4C4/1qVRHN4i5aDRxBiHmWsDrcVN+KL/eGudzq1YfLW4yT6VWE5PSj7h0nyUuvv9AQmPjxPsqEPRSOlzYrV69muLiYr9gaBBXH330Ef/4xz/44osvAubn5OSQlZUFQFZWFtnZ2U3Gr7jiCsLDw0lMTCQ7O9s/v6SkhKqqKrKyspAkicrKSkpLS4mNjfWfm5SU1GLhVZ1O1236YZ4uLVlBoakls6qqimeeeYZ3332X1atX8/3333PllVcSERHB1KlTeeutt8jNzeWVV17h22+/7cjH6FJsPVTFvFW/4PJKXDEkjr//3xCUypa/ZL+tNjN7Vz42r8TZoUbeGpqG6QTlTGRZorBwNXkHHkeSHKhUJgakLyE+fkqLX+aVlZWsWbOG0tLSDmkN5i63Ubv+EI6cSgAUWhWmcxMwDI9GHSvE3PH4XaoH9tVnqu6l7NDBZvt/hsXFE99/YL01bgDRfdO6RWN2gUDQMXS4sNuzZ0/A/k033QTAm2++SWVlJYsWLeKpp57izjvv5Ntvv+Xtt9/m448/BuDmm29m8uTJTJ8+nXHjxvH8889TWlrK5MmTAZgzZw4PP/wwY8aMISoqigULFnDBBRfQr18/AMaNG8eCBQtYsWIFFRUVLFu2LKCUSluj0ChJeOjcdrv+ie7bWlqygkJTS6ZOp+Pqq6/mt7/9LQDnn38+N9xwA2vWrGHIkCEsXryYb775pleXj9ldVMucN7Zgd3u5YEA0T80YgVrV8v+PLyvrmLs7H4ckMyE8mNeHpGI4wXy7vZDc3D9SXfMjAOHh55Ax6DH0+pZLk+zZs4d///vfOJ1OjEYj06ZN82eitzVeqxvzlwVYfjzq68+qAOOYOEIu7osqWNQFa8BhsdQnNuzzxca15FI1BRPff8Axl2q/dPTBJ+9SIhAIei9d6hs4MjKSDRs2cM899/DAAw8QHR3NM888w8SJEwG46KKLeOGFF7j99tspLCxk8ODBrF+/nogIX6/MBx54ALfbzfjx4zGbzUycOJE1a9b4r7927Vrmz59PamoqSqWS2bNns2TJknZ7HoVC0WqXaGeRlZXVaktmZmZmQDIJ+MplyLLM2rVrqa6uZsQIX89RT33wdlhYGC+88II/U7knk1dmYfbrP2N2ehiTEsFLs0ahVbcs0taV1/C77MO4ZZnLokJYMTgFXQs1uGRZpvjoGvbvfwSv14pSqad//z+SlDgThaL5cyRJYuPGjXzzzTcAJCcnM23atJNmVJ0OskfC8n0xdV8VIDu8AAQNDCf0ilQ0sR1bOqWr4fW4KT98qD65wSfmqo8WNZmnUquJTkmrd6cOIC59IGGx8cK6KRAITolOK3fSHemp5U7Gjx9PUlKS35J51VVXMXXqVJYuXRow76uvvuKyyy7jjTfeYObMmXzzzTf89re/5e2332bSpEkBczdt2sTEiRN7TbmTI1U2pr30AyV1DrISQ3jn1rMJCWrZPfZhaTV35R7GK8PVMWE8l9EXTQvuWoezhD17/kRl5WYAQkNHkZnxOAZDSovXt1qtfPDBBxw8eBCAsWPHcskll7S5NVWWZew7K6j9bz7eap/o18QbCb0ilaD0k7dK62nIskxtWWkjEXdil2pcvwHEpw+sz1IVLlWBQNA8Xb7ciaBrcSJLpslk4uWXX2bmzJlceOGFfPLJJzzwwAPccccdREdH88QTTzQRdb2NsjoHs177iZI6B+kxJlbdPPaEou7t4kr+sPcIMjAjLoJ/DkputpuELMuUlH7Mvn0P4vHUoVRqSUu7jz7JN6NQtGwJLioqYs2aNdTW1qLRaJg0aVKTMkJtgfNwHbWfHsR1xJeRrgzREnppCoaRMShOEFPYk3BYLb4s1Xp36tG8fdjrapvMCzIF19eLG1AfHzdAuFQFAkG7ICx2p0BPtdh1Fj3hPau2upix4gf2lVpIjtCz9nfnEhvS8rO8cqScJXk+N9xNiVH8LT0RZTOizuWqYM/eJZSX+5KJgoOHkJn5D0zG9BavLcsyv/zyC+vXr8fr9RIREcGMGTP8Lva2wlNpp/a/h7DvqgBAoVUSfH4SpvOTUHbx0IMzxeNyUbB7B3lbfqBwTw7VxYVN5ihVamJSUv1xcfH9BxAWlyBcqgKB4LQRFjuBoAOwOD3c9MbP7Cu1EBui4+25Z59Q1D1zuJS/HfR1ALg9OZoH+jX/ZW+x7GX7r7NxuSpQKNSkpsynb9/foVS2bAV0u92sW7eOX3/9FYBBgwZxzTXXtKlglmxu6r46guWHYvDWJ0acFUfIJX1RhfTcxAinzUb+9i3s3/Ij+du34nbYA8bDYuN91rgGl2rfVNFAXiAQdBpC2AkEp4HD7WXum1vYUVhLuEHDW3PH0ifS0OxcWZZ5PL+E5YdLAfhDShy/T4ltVtSZzbls//UG3O5qjMZ0Bmc+SXDw4BOupbq6mvfee4+SkhIUCgUXXXQR5513XptZiGSPhOXHo9R9WYBs9yXF6NLDCPttGpq4npkYYa2p5sAvP5H38w8U7N4R0MnBFB5Bv9HnkDbiLOL6D8AQ0ny5JIFAIOgMhLATCE4Rl0fi9rd+4af8Kkw6NatuHkt6bPNFrmVZZmleMS8XlgOwpF8Cd/aJaXau2ZzNtu2z8XhqCAkeyvDhb6LRnFg07Nu3jw8//BCHw4HBYGDq1KmkpZ24bVlrkWUZ++5KX2JEpQMAdayBsN+mETSg5yVG1JSWkLflB/K2/EDR3lxoFKUSHp9I/zHnkD76HOL6paNoIXtZIBAIOhsh7ASCU8Arydy75lc27i0nSKPk9ZtGMySpefElyTKL9xWyqthXpPdv6YncnNR86666ul1s/3U2Hk8dISHDGTH8TdTqlltASZLE5s2b2bzZlymbmJjI9OnTWyy2fao4C+qoXZeP67CvtprSpCHk0r4YR8WhUPWMWDFZlik/nO8Tcz//QHnBoYDx2LR00secQ//R5xCZ1PqOMwKBQNCZCGEnELQSWZb58793sW7nUTQqBS/NGsWY1Ihm53okmXv3FvB+STUK4MlByVwfH9ns3Lq6nfWizkxoyAiGD3/jhKLOZrPx4YcfkpeXB8Do0aO57LLL2qSUiafKQe3nh7Dv8FkYFRolpvGJBF+QhFLX/T8uJMlL8b495P38A3lbf6S2tMQ/plAqScrIov/oc+g/+mxCotqvf65AIBC0F93/k1og6CDe+vEw7245glIBT187ggkDm3epuiSJO3MK+E95DSoFPJfRl8mxzbsua2u3s/3Xm/B6LYSGnsXwYa+hVptaXMPRo0d57733qKmpQa1Wc+WVVzJ8+PAzfjbJ7qFu4xEs3xX5EyMMI2MJubQv6tDu3VbP43ZzZPcO9m/5gQNbf8JWW+MfU2u09B02gv6jz6HfqDGiBIlAIOj2CGEnELSC3KN1LFuXC8CfrsjgiiHxzc5zeCVuzT7Ehso6tAoFLw/uy+XRYc3Oran9hV9/vRmv10JY2BiGDX0VtbrlZITt27fz6aef4vV6CQ8PZ8aMGcTFxZ3Rc8leCetPJdT97zCSrT4xol8ooVekoU1sWWB2dVx2G/m//sL+n38gf/tWXPZjbfN0RiNpI8eQPvocUoaNRNNNS+0IBAJBcwhhJxCcBJvLw13/2o7LIzFxYDRzx6U2O8/q9TJnVz5fV1sIUip4IyuViZHNW4Bqarby646b8XqthIWNZfiwV1Gpms+qdbvdrF+/nm3btgEwYMAAJk+ejF6vP6PnchbUUf3+PjzlvvId6hg9oVekETQwvFvWXJO8XvZ+/zV7vv+aw7t+Dej2YAyPoP9ZZ9N/zDkkZw5B1Yv7GQsEgp6N+HQTCE7CQ//JIa/MQkywjiemDWu+TInHy6ydB/mp1opRpWT1kDTODW/e4lVd/TM7ds7F67URHn4uw4auQKVqXqTV1NSwZs0aiouLAZg4cSLjx49HeQZZmbJbovZ/h7F8XQgyKI0aQi7pg3F0fLdMjPB63OR8vZGfPloTEDMXHp9QHy93DvH9B4hMVoFA0CsQwk4gOAGf7izm3S1HUCjgqRnDiTQ1jTerdnu4dscBdpjthKpVvDM0jVGhzbtUq6t/5NcdtyBJdiLCxzF06MuoVM27AvPy8vjggw+w2+3o9XqmTJlC//79z+h5XEfMVL2/F0+Zz0pnGBFD2FVpKA3dr0epx+0me9P/+Pnj96krLwNAHxLK8Et/y4CzzyMyqU+3tDwKBALBmSD+hBVQVlbGNddcQ1hYGFFRUSxYsABPo4KsDVx++eWYTKaAH4VCwW233Qb4WoQtWLCApKQkQkNDGTt2LBs3buzox2kzjlTZuP/DXQDcMaEf5/aPajKn3OVmyvY8dpjtRGhUrB3er0VRV1X1Hb/umOsTdRHjWxR1sizz9ddf89Zbb2G324mPj2fevHlnJOpkj0Tt54coe/FXPGV2lCYNkTdkEjFjYLcTdR6Xi+2ff8pr99zK/159nrryMoxh4UyYfQu3Pvsa5067nqjkvkLUCQSCXomw2AmYMWMGiYmJFBcXU1JSwqRJk1i+fDkLFy4MmLd+/fqA/ddff52lS5eydOlSABYvXsx3333HDz/8QEJCAq+//jpXXnklubm59OnTp6Mep01weyXufnc7ZoeHkX3CWHDxgCZzjjpdTPv1AHk2JzFaNe8P789AY/PWt8rKb9i56zYkyUlk5ASGZL2AStXU+ifLMv/973/56aefABg5ciSXX345Gs3piy9XkYXq9/fiLvElEOiHRRM2qR8qY/cSdG6Xk13/+y8/f/IB1uoqwNcFYvTV0xhy0aVotN07e1cgEAjaAiHs2hFZlnE3CuDuKDQaTautFXl5eWzatImioiIMBgNpaWksWbKERYsWNRF2jdm7dy/z58/n888/Jz7elyFqt9t56KGHSE72FXO99dZb+eMf/8gvv/zS7YTd8g372F5QQ3CQmqevHYFGFWjcLrA7mfbrAQ47XCTqNLw/vD9phuaFRWXlZnbu+h2S5CIq6iKGZD2LUtl0riRJrFu3jl9++QWAK664gjFjxpz2M8geibqNRzBvPAKSjNKoJuya/hiGdK/6bG6Hgx3/W8+WTz7wlyoxRUYx9uppZE28RPRlFQgEgkYIYdeOuN1u/va3v3X4ff/0pz+hbeWXXXZ2NhERESQkJPiPZWZmUlBQQE1NDWFhYc2ed8cdd3DjjTcyfvx4/7GXX345YM5XX31FbW1tm9RZ60i+y6vgxc0HAPj7/w0lOSIwW/WAzcG0Xw9Q7HSTotfy/vD+JAc1/35XVGxk5647kGUXUVEX14u6pnMlSeKTTz7h119/BeDqq69mxIgRp/0MrmIL1e/vw33UCoA+K5Kwa/qjMnUfEeRy2Pn183Vs/fTf2OtqAQiJjmHsNdPJvOAi1GdgxRQIBIKeihB2vRyz2YzRGBgTZjD4hIzFYmlW2H377bf8+OOPvP322y1e98cff2TatGksXbqU1NTmy4N0RSosTha89yuyDNeNSea3QwPr1eVa7EzfcYByl4d0g473h/cnTte8wCiv+JJdu+5Elt1ER19G1uCnmhV1Xq+Xjz76iF27dqFQKJg8eTJDhw49rfXLXgnzpkLqvioAr4zSoCbs6v7oh0Z1m5gzp83Gr59/ytZ1H+Ew+1qahcbGMXbydDLHXyhKlQgEAsEJEJ+Q7YhGo+FPf/pTp9y3tRiNRmw2W8Cxhv3g4ObbWr388stMnz69xeK4r776KgsWLOChhx7ivvvua/VaOhtJkvnD+zsoNztJjzHxwJWDA8bzbU6m/JpHldtLlknPu8P6EaVt/p9QefkGdu2+C1l2ExNzBYMz/4lS2fT/i8fj4YMPPiA3NxelUsmUKVMYPHhwM1c8Oe5SK1Vr9uEusgAQlBlJ+OT+qIK7h5XOYbWwff1/+OWzj3BafZbG8PgExk6eQca4CShVqk5eoUAgEHR9hLBrRxQKRatdop1FVlYWlZWVlJaWEhsbC0BOTo4/s/V4PB4PH3/8MR999FGTMa/Xyx133MGHH37IRx99xMUXX9zey29TXv8un017y9GplTx7/Qj02mNCwurxctPufKrcXoYF63lvWD/CNM3/8ykr+5zd2Xcjyx5iY64kM/NJlMqmcz0eD2vWrGHfvn2oVCqmT5/OwIEDT3ndslfG/E0hdRsOg1dGEaQm/Op+6IdHdwsrnd1iZttnn7B9/Sc4bT5BF5GQxNlTrmXgueNRKoWgEwgEgtYihF0vJz09nXHjxrFgwQJWrFhBRUUFy5YtY+7cuc3O37lzJ3a7nXPPPbfJ2L333sv69evZunUrffv2be+ltym7Cmt57L97APjLlZkMijvWMUKWZe7eU8Beq4NYrZpVQ9JaFHWlZZ+Rnb0AWfYSGzuJzIx/NCvq3G437777LgcOHECtVjNjxgzS09NPed3uMhvV7+/DdcQMQNCgCML/rz+qkK6fIWqrq2XbZx+z/b//wWX31dWLTOrD2VOuZcDZ5wlBJxAIOgxJkvG4vHjdEh635HvtkfC4mu775nh9r/1zvGSel0BkF2jFKISdgLVr1zJ//nxSU1NRKpXMnj2bJUuWAGAymXj55ZeZOXMmAAcPHiQiIoKg4/prVlRU8Pzzz6NSqZq4Ehuf3xWxOD3c9a9tuL0ylw2OZdbYwAzeZw6Xsa68Fo1CwWtZqcS2EFNXWvop2Tn3Icte4uKuITPjcRSKpuLE5XLxzjvvcOjQITQaDddddx1paWmntGZZkrF8W0TtF4fAI6PQqQi7qh+GUTFd3kpnq61h66f/5tfP1+F2OgCI7pPC2VOvI330OaJDhEDQy5G8DWLKJ5gaxJa3XmD5Xzez760XXB534Lk+QdZobv21PW4Jr0tCkuQzXndiergQdoKuQWxsLO+//36zYxaLJWB/6tSpTJ06tcm8qKgovF5vu6yvvXngo90cqrSREBrEY1OGBgij/1XW8ff8owA8OiCJs1ooPlxS8gnZOb8HJOLjppCR8Wizos7hcPDOO+9QUFCAVqtl5syZp2zddFfYfVa6w77EAt2AcMKnpKMO7dpWOmtNNVs++YAdG9bjcTkBiEntxzlTrqPfqDFC0AkE3QRZkvG4JdxOL26np34rNXrtxeP04qp/3bDvPu7nmCDzNhJbEnIbiKwzQalWoNaoUGuUqLVKVGolaq1vX6XxvfYdU/rmaFSotEpCY86sf3dbIYSdoFfz4bZCPtxehFIBT183gjDDsZjIgzYnd+QcQgZmJ0QyKyGy2WscPfpvcnIXARIJ8dMZNOgRFIqmIsVut/PWW29RVFSETqdj1qxZ/pp/rUGWZCzfF1P3+SFkt+Sz0v02DcPo2C5rpbPWVFOYu5tDO7az59tNeNwuAOL6pXPO1OtJHXFWl127oHvhsnuoKbNRW2anpsyGw+pGpVKiVClQqpWo1AqUqua29XNUClTqpscDtg1j9ddUKrv2764sy3g99QLMUS+oXN7AfacXz/HHXI0EmOO4/fr5dJD2ahBQKo2yXlgdE1wB+xolKm2j1/WCy3+uVola7RNg6sZjfoHmG1N1g/+vJ0MIO0GvJb/Cyl8+2g3AgosHMDolwj9m8Xi5aVc+dR6J0SFGHk5PbPYaxUfXkpu7GJBJSLiWQQOXNSvqbDYbq1ev5ujRo+j1em644YaA2oEnw1Npp2rtPlz59Va6/mE+K114850uOgtLdRWFObsozN3NkexdVBUXBozHDxjEuVOuo++wkULQCU4Zr1uitsJOTanNJ+JKbdSU+fZtda4OX49CgU80NohHv4gMFIvHtscJy4YxlU80NrdtmIdME4uXz0IWaDnzuCTcjmOWM7mdBZhGp0KtU6Gp/9Eet6/RqdBoVWiCju2rtfXbBouYRtVEjKk1vvdR0c1FVmcghJ2gV+L0eLnrX9uwubyMTY3gzonH+rDKssw9ewrYZ3MQp9XwalYK2mbchMXFa8jd8ydAJjFxJgMHLG1W1FksFlatWkVZWRkGg4HZs2e3WCrmeGRJxvrTUWo/y/dZ6bRKQq9Iwzg2rksII0tVJUdyd1OYs4sjObupPk7IoVAQ3TeV5Mwh9Bs1luTBQ7rEugVdF0mSsVQ5qCmzUVNqbyTgbJgrHScUKvpgDWGxBsJiDOiDtUiSjOSR8HobthKSx2fFkrwyklfC6znxVvLWz/fITeKwZNknNr1ugK4diqLWKP3iqkFYtfSjrhdovn01ap0SjU7ddJ5GCK+uiBB2gl7J4//dy+6iOsIMGp66djiqRh9OTx8uZV15LVqFgteyUppNligq+hd79v4FgKSkGxiQ/tdmBYvZbGblypVUVFRgMpm48cYbiY5uXUsvT5WD6g/24Tzg67qgSwslfOoA1BGdZ6UzV1VQmLObwpzdHMnZRfXRosAJCgUxfdNIHpxFUuZQkgYNJsjU+cHEgq6FLMvYze5jlrfGIq7MjtcjtXiuJkhFWIyhXsDpCYs1EBrje60ztG83ElmSfUKvQSAeJ/wCjjcSlAHneBqd421GZAYI0WNb4KQWMP+x4/bVWlW3dy8KWo8QdoJex8Y9Zbz2bT4A/5g6jPjQYwGvGypqeSy/BPAlS4xqJlmisPBt9u57AIDkpJtIT/9Ls6KutraWlStXUlVVRUhICDfeeCORkc3H6TVGlmWsW0qo/TQf2eVFoVESenkqxrPjO/yvY3NVBYXZuzhS716tPlocMK5QKIlO8VnkkgcPIXGgEHKCYzTEvfmtb6UNIs6Gy9GyhUupVhAafUy4+YScntAYA4YQbadZfRVKBSqlApVGJPoIui5C2Al6FaV1Dn7//g4Abjo3hUsyY/1jB21O7sw97E+WmNlMssSRwtXs27cUgD7Jc+nf//5mv2Sqq6tZuXKlv9/ujTfeSHh4+EnXJ7m81Hy4H9uv5QBo+4YQMW0A6qiOybYyV1ZwJGcXR7J3UZi7i5qSowHjCoWSmNR+JGVmkZw5hMRBmQQZhZDrzXjdErXl9nrxZmu0tWM/UdybAkIig+qtbT7h1mCJM0UECQuTQHCaCGEn6DV4JZl73/uVKquLjPgQFl8+yD/WOFliTGjzyRIlJZ/4RV3fPvPo129Rs6KusrKSlStXUldXR0REBLNnz2625+7xeCrtVK7OxV1iBSWEXpaKaXxiu1rprDXVHN65nSM5vji5mtKmQi42rR9JmUP8Qk5naL7ki6Dn4o97K7UFxr6V2airdJwwQ1Ifoj3O8ubbhkQHodaIItQCQVsjhJ2g1/DS5gN8f6ASvUbFc9ePIKj+S0WSZe7ObZQsMbhpskRN7S/k5P4RgOTkm1sUdeXl5axcuRKLxUJUVBSzZ88mJCSkybzjse+pourdvcgOD0qThsjrB6FLCzvzh24Byetly38+5Ie17+B1u/3HFUolsWn9ScrI8rtWdQZDu61D0HWQZRlbnSsg3q3B8lZbbkPytKzetEGqY7FusY2sbzEGtHrxNSMQdCTiX5ygV/DL4Sr+uWEfAA9ePZh+0cfch08fLuWzCl+yxOtZKcQclyxhtx9h587fIcsuoqIuJr3/4mZFXWlpKStXrsRmsxETE8Ps2bMxnSTeTJZkzF8VUPdlAcig7RNMxMyMdi02XHboIJ+/9DRl+QcAiEnpR9+hw0nOHELCwEwh5HoBTpubyiIrFYUWKossVBRaqC6x4j5B3JtK7SvA2jjercECpw/WiGxngaCLIISdgLKyMubNm8emTZtQq9XMmjWLJ554ArW66a/H008/zVNPPUVlZSUpKSn89a9/ZcqUKZ2w6tZTa3dz979+xSvJTBqWwLRRSf6xLypqebw+WeLvA5IYeVyyhMdjZsfOW3G7qzCZMhmc+c9mO0oUFxezevVq7HY78fHx3HDDDRhOIpAkm5uqNftw7KkCwHh2PGFXpqFQt09gtsfl4scP3+Xnj9ciSxJBpmAmzL6FzPMvFF/KPRRJkqkrtwcIuMpCC+YqR7PzFQoIjgzyu0tDG8W+ibg3gaB7IISdgBkzZpCYmEhxcTElJSVMmjSJ5cuXs3DhwoB569ev529/+xtff/01AwcO5IMPPmD69OkcOHCAlJSUzln8SZBlmT99uIuiGjvJEXoenpzlFzF5Ngd35viSJW5MiOT645IlJMnDrt13YbXuR6uNYdjQFajVzWXJFvLWW2/hcDhITExk1qxZ6PUnTnZwHbVSuToHb5UD1ErCJ/fHOCr2hOecCYV7svni5Wf9deYGnD2OC+fchjHs5Akdgu5Bc1a4qmILHlfzpUNMETqiEk1EJpmISgomIt5IaLReZHwKBN0cIex6OXl5eWzatImioiIMBgNpaWksWbKERYsWNRF2ubm5yLKMJEnIsoxKpUKr1TZr2esqvLvlCOt2HUWtVPDsdSMJCfK5Wc0eL3N25WP2SowNNbKsmWSJ/XkPU1X1DUplEMOGriAoKL7JnMOHD/P222/jcrlITk5m5syZBAWduM6cbXsZ1R/uR3ZLqMJ1RM7KRNtOjaNddhvf/Gslv36+DgBjWDgXzb2d9DHntsv9BO3PqVrh1BolEQlGopIaRJyJiAQTQcb2rfkmEAg6h677jdwD8Ikge4ffV6nUt9q1lp2dTUREREB7q8zMTAoKCvylOhq47rrreOONN8jMzESlUqFQKHjrrbdISkpq5sqdz/5SMw/+JxuAP1w2kOHJYYAvWeKu3MPstzmJ12l4pZlkiSOFqygsXA3A4Mx/EhIypMn1Dx48yL/+9S/cbjcpKSlcd9116HQtx8bJHonaz/KxfO+rBacbEE7EjIGo2ukLNv/XX9jwynOYK3ylU7ImXsoFs24Wdea6EQFWuEIzFUXWU7LCRSYaCY0xCBeqQNCLEMKuHZEkO5s2NxUE7c2EC3ahUrUuAN5sNmM0BroXG2LDLBZLgLBzuVwMHz6c119/nWHDhvH2228zd+5cMjMzGTKk45/zRDjcXua/sx2HW2J8ehTzxqf5x5YfKuW/FXXolL7OEscnS1RWbmbfvmUA9EtbSEzMZU2un5eXx7vvvovH46Ffv35ce+21aDQtCzRvnYvKt3NxHfb1eg2+MJmQi/u2SykTu7mOTateJefrrwAIjYnlknl30XfI8Da/l6BtEFY4gUDQVghh18sxGo3YbLaAYw37wcHBAcfnz5/Peeedx+jRowGYM2cO77zzDm+++SZPPvlkxyy4lTy8Loe9pWaiTFqenD7Mb7H4oqKWfxxqlCwREihqLZa97Np9NyARHz+Vvn1va3LtvXv3smbNGrxeLwMGDGDatGknFHXOQ7VUvp2LZHaj0KmImDEQfebJO1CcKrIss+/H7/jqjZew1daAQsGoKyZx3vQb0JzEPSzoOHxWOAsVhVZhhRMIBG2OEHbtiFKpZ8IFuzrlvq0lKyuLyspKSktLiY31Be/n5OSQlJREaGhowNyCggLOOuusgGMajQatVnvmi25D/rv7KG/9WADAP6cPJybYJ2oakiUA5iRGcV18oLhyuSrYsfNWvF4LYWFjGDRwWROXdk5ODmvXrkWSJDIyMpgyZUqLMYayLGP5vpjadfkgyahjDUTekImmHbpIWKoq+fL1F8nb8iMAkUl9uPS2u0kYMOgkZwrai+ascBWFZixVzmbnCyucQCBoC4Swa0cUCkWrXaKdRXp6OuPGjWPBggWsWLGCiooKli1bxty5c5vMnTRpEs899xxXXXUVw4cP58MPP2Tjxo387W9/64SVN09RjZ1Fa3cCcNv5aZw/IBoITJY4O9TIQ/0DkyW8Xic7d/4Oh6MIvb4vQ4e8gFIZKFhzc3N5//33kWWZrKwsJk+ejErVfOV8yeWl+sP92Otbg+mHRRM+JR2ltm0r7cuyzO6NG9i8+jWcNitKlYqxk6cz5prpqE9gRRS0LcIKJxAIugqnJewcDgfV1dVEREScMFhc0D1Yu3Yt8+fPJzU1FaVSyezZs1myZAkAJpOJl19+mZkzZ/LXv/4VlUrFlClTqKqqIj09nY8++ojhw4d37gPU4/FK3POv7dQ5PAxLCuX3lw4EfMkS8+uTJRJ0Gl7JSkHT6AtUlmVy9/yR2rrtqNUhDBv6KhpNYBmQvLw81q5diyzLDB06lGuuuQalsvmyEJ4KO5Vv5eAusflag12Rhum8hDavFVdTWsKGFc9QsNsnZOP6pXPp7+4huk9Km96nO1FZbKGu3I7c0CRBBtn3H/8x2f+i6Riy7OuO5T8mB15LPrZvqXbUJzYIK5xAIOg6nJKw++677/jjH//Ijz/+6C93cd555/H444/7464E3Y/Y2Fjef//9ZscsFov/tVqtZunSpSxdurSDVnZqPPNVHlsPV2PSqXnmuhFo6wv9/vNQKZ/7kyVSidYGfqnmH3qO0tL/oFCoGZL1PEZjWsD4oUOHePfdd/F6vWRmZnL11Ve3KOp8rcH2IDu87dYaTJK8bF//H759dzUelxO1Vsd5M2Yx8opJKJW9r/em1yNxYHsZuzYWUXKwttPWIaxwAoGgK9BqYffdd99x8cUXM2XKFObPn09UVBRlZWV88sknXHjhhXzzzTddxnIj6H38eLCS577aD8Ajk7PoG+lLivi8opYn6pMlHhuQxIiQQNd4Sel/yM9/CoCBAx8iIiKwvltRURHvvPMOHo+H9PR0/u///q9Z96ssydR9WYD5S19sn7ZPMJEzM1C1cWuwioJDfP7yM5Tk+dqjJQ8eyqXz7iIsrmmNvZ6OpdpJ9jdFZH9bjL3OBYBSqSAq2eTPNvYZSRW+bb2+arCcHjtWP+4/pmg4HHCu4tgFUSggyKQhSljhBAJBF6PVwu6vf/0rf/nLX/jzn/8ccPz666/nwQcf5OGHH2bt2rVtvkCB4GRUW10sePdXJBmmjkri6uG++Ln91mPJEjcnRnHtcckStbXbyc1dBECf5LkkJswIGC8pKWH16tW4XC5SUlKYPn16s4kSks1N1Xt7ceytBtqnNZjX4+anf7/PT/9eg+T1oNUbuOCGmxly4WW9qh2YLMsU76th16ZCDu6oQJZ8flFjqJbB5yeSOS4BYzv22RUIBIKuTquF3bZt2/j3v//d7Ng999xDVlZWmy1KIGgtsiyzcO1OSuocpEUZeXDSYADqPF7m7M7HUp8s8eBxyRJ2eyE7dt6GJLmIirqY/v3/GDBeUVHB6tWrcTgcJCUlcd111zVb0sRVbKHyrdx2bQ12NG8vX7z0DBVHfCK131ljuWju7QRHRLXpfboyLoeHfT+VsGtzEVXFVv/xhPQwhkxIInV4FCqVaIUlEAgErRZ2bre7SV2zBsLCwjCbzW22KIGgtaz+8TD/yy1Fq1LyzHUjMOrUvmSJnMPktZAs4fGY2bHzVtzuSkymTAZn/hOF4ph7tbq6mlWrVmG1WomLi2PmzJnNJglZt5dR046twdwOB9+teYttn32CLEvoQ0K5cM5tDDxnfK+x0lWXWNm1uYi9PxzF5fACoNapGDg2jiEXJBLZTq3YBAKBoLvSamF3si8Sf6aZQNBB5BTX8fC6XAAWXz6IrERf3b0nDpXwRaUvWeL145IlJMnD7ux7sFr3odXGMGzoCtTqY0WK6+rqWLVqFXV1dURFRXHDDTeg1wfWnZM9EjXrDmL94Sjgaw0Wee1AlIa2i7Eq2L2DL1Y8S22pLz4wY/xEJsy+BUNI6EnO7P5IXolDuyrZtamQwj3V/uNhsQayLkhk0Dnx6PSiUpNAIBA0R6s/HWVZ5siRIy0KOCHsBB2JzeXhrn9tw+WRuHBQDHPOSwFgfXkN/zxUCsDjA5IZflyyxP68v1FZuRmlMohhQ18mKOhY0oHVamXVqlVUV1cTHh7O7Nmzm7Rb89Y5qXx7T7u1BnM7HHz9zhv8+vk63/Ujo7n41jtIG9Hzs87tZhc53xWz++sif/kQhQJShkYx5IIkkgaFt0sLNoFAIOhJtFrYWa1WUlJSWhRwvcU1JOgaLPs0hwPlVmKCdfxj6lAUCgX7rA7m5/qyUucmRjEjPiLgnMLCtygsXAnA4MwnCQkZ6h+z2+2sXr2aiooKQkJCmD17NiEhIQHnu8ttlK/YhWR2oQhSETG9bVuDFe3J4b8vLKem1GcJHHbJ5Yy/fg46Q9cucn2mlObXsWtTIft/KUXy+D5fgowaMsclMPj8BEIi275Th0AgEPRUWi3s8vPz/a89Hg8VFRVERUW12E5JIGgv1u08yr9+PoJCActnDCfSpPMlS+zKx+qVOCfMyNLjkiUqK79m3/6HAOiX9gdiYn7jH3M6nbz99tuUlJRgNBqZPXs24eGBBYo9NQ4qXt2NZHahjjEQObvtWoN5XC6+f/9ttvznQ5Bl/r+9+w6Pqsr/OP6+0zOZ9IQkkACBJEAIRUVRBBEUEURFQVFRFNvaRf3p2rA3XF2xrK4FlVV0FXTtCKgUO2KhhB5KICG9zWQy9d7fH5MMGRIgQCCF7+t55pk799xyZgiZT8499xxbXDyjr7uV7v2PaZHjt0U+r5/NK4pZvWQnxdt398/t1C2CfiNSSD+uEwbj0TcmnxBCHKpm30bWrVs3zGYzd999N3379mXIkCH07duXu+66C6PRSLdu3Zp90u+++47BgwcTGRlJUlISN998M7W1tQD8+uuvDB48GJvNRlpaGrNmzQrZd/bs2aSnpxMeHs6gQYP4+eefg2V+v58777yTxMREIiIiOPfcc9m1a1ewvLi4mPHjxxMdHU18fDzTpk3D5/M1u96i9e2scHL3x4GZFq4f3pOT0+NRNY0b124nt9ZNF7OR1/qG3izhcGxk9Zqb0TQ/yUnn063bdcEyr9fL+++/z86dO7FYLFx22WXEx4febep3eCh9Yw3+KjeGhDASru3XYqGuaMtm3r1nGr999hFoGn2Hn8bl/3ipw4a66tJafv7fZmbf/RPfzl5H8XY7eoOOXicmMfHvg7jgnuPpfWKyhDohhDhIzQ52FRUVDB48mB07dvDKK6/w1Vdf8dxzz7Ft2zZOOOEEysvLm3WckpISzjrrLK6//noqKyv5888/WbJkCU899RQVFRWMHTuWKVOmUFlZyaxZs7jttttYvnw5AEuWLOHmm29m9uzZVFZWMnnyZM455xycTicAjz32GAsXLmTFihXk5+cTFhbG1VdfHTz3pEmTsNlsFBQUsHz5cr755huee+65A/m8RCvy+VVu/e9f2F0+BqZGc9uoTADe2FnCorKmZ5bweMpYueoa/H4H0VHH07v3Y8FuAz6fjw8//JBt27ZhMpm49NJLSUpKCjmnWuujdNYafKW16KPNxF/VD70tdA7Zg+H3+fhp7nu8d/8dlO3MwxoVzbn/dz9n3nAblvCOc6en369SUVjD5t+L+fLlVbwz/Wf+WJCHq8aLLdbMieN7cPmTQzj9iiwS0yL3f0AhhBD7pGjNvOvhzjvvZMuWLcybNy+kP52qqpx//vmkp6fzzDPPNOukdrudiIgINE0jJyeH8847j1tvvRWLxcLTTz/Nxo0bg9tef/31OJ1OZs+ezaWXXorVauW1114Llvfp04e77rqLqVOnkpqayowZM7jkkksAKCoqIjk5mc2bN6OqKhkZGeTn59O5c2cAPvjgA+666y62b9/erHpXV1cTFRVFVVVVo/5XLpeLrVu3kpaWhsViadbx2ori4mKuvfZalixZgsFg4NJLL+WZZ55p8jL7888/z8yZMykrK6N79+48+OCDTJgwAQj0U7vtttv45JNPcLvdHHvssTz33HP079+/0XHgwD+zZxdu4MXvNhNhNvDVrcNIjbWyvqaW0Ss24lY1nspM4Youu1vb/H43f/51KVVVfxAW1pVBx32EyRTod6eqKvPmzWPt2rXB99y9e/eQ86keP6Wz1uDZXo3OZiThugEt0lJXumM78//1T4q35gKQOfhkTrv6hnZ9x6un1kdFkZOKwhoqCp1U7KqhsshJVXEtqhr6Kya1TwzZw1Po3j9eptsSQohm2Ff+2FOzO8h9+umnfPHFF41uktDpdDzxxBOce+65zQ529ePhpaamkp+fz7Bhw5g6dSr3338//fr1C9k2KysreDk2JyeHK6+8slH5ypUrqaqqYufOnSH7JyYmEhMTw6pVq1AUhdjY2GCoq983Ly+PyspKoqOjm/tRdDiTJk2iS5cuFBQUUFhYyDnnnMNzzz3HnXfeGbLd/PnzeeKJJ1i2bBm9evXio48+4sILLyQ3N5fu3bvz0EMPsXHjRtauXYvNZuPuu+/mvPPOIzc395Dr+HNuGS8t3gzA4+f3IzXWikdVuWltHm5VY2RsBJd33n0jg6ZprF9/D1VVf2AwRDKg/xshoe6zzz5j7dq16HQ6LrrookahTvOplL27Ds/2ahSLgfirDv3yq6r6+f3LT/nxg3fwe71Ywm2MvOp6eg85pV3cfKRpGs4qz+7wVrg7yNVUuve6n8GsJybRSnJ6FNmndCEmKXyv2wohhDg0zQ52hYWFZGZmNlnWp08fCgsLD/jkmzZtoqKigsmTJzNx4kS6dOnSaHgJq9UanIjebrfvtbx+gOR97d9UGQQmum8q2Lndbtzu3V9Y1dXVB/T+NE3DqaoHtE9LsOp0zQ4KmzdvZsmSJeTn52O1WunRowfTp0/nrrvuahTs1q1bh6ZpqKqKpmno9XpMJlOwZW/dunXBsvpyawvc0Vle42HaB3+iaXDhoBTOGRAI589uK2KNo5ZYo57nencNec/btr1EYdGnKIqBftkvER7eEwj8m8yfP5+//voLRVG44IILSE9PDzmfpmqUf7AB98YKFKOO+Kl9MSUfWhipKCzg65dnUrBhLQBpxwzijGtvxhbbcnfVthS/X6W6pDYkuFUUOqksrAkOEtwUa6SJmCQrMUnhRCdZg8u2aLMMUyKEEEdIs4OdxWKhsLCwUR8kCIS+vc1KsS9hYWGEhYUxY8YMBg8ezC233EJlZWXINk6nM3js8PDwYH+6huXx8fHB0NZUeUREBKqqNlkG7LXuTz75JA8//PABv6/g8VWVnstWH/T+Byv3lH6ENzFRfVNycnKa3ZJ58cUX89Zbb5GVlYVer0dRFN59911SUlIAuOOOO5gwYQLx8fHo9Xri4+NZvHjxIb0XTdO4a94qiqrd9EgI56G6KcOWVzp4cfvu8eoSzbv71RUVfcGWrTMB6JX5MLGxJweP9c033/Dbb78BMH78ePr06dPofBUfb6J2dSnoFeKmZGHudvB9vzRNY+Wi+Sx9dxY+txujJYwRl19D9ohRbaKVrrLISdHWqpAWuKqSWlT/3oY1gsiEMGKSwuuCW12QS7RiCW+5AZqFEEIcnGYHu+HDh/Pyyy/zyCOPNCp75ZVXGD58eLOO89NPP3HllVeyatUqTKZAJ3S3243JZCIrK4uFCxeGbL927drgPLTZ2dnk5OQ0Kh87diwxMTF06dKFnJyc4PaFhYWUl5eTnZ2NqqqUlZVRVFREYmJicN+UlBSiopru23TPPfdw++23B19XV1eTmprarPfZXuytFRQat2R6PB4GDhzIm2++yYABA5gzZw5XXXUVWVlZ9OvXD5/Px4QJE3jggQeIjIzkzjvv5Nxzz2XVqlUH3e8wZMqwi47BajLg8Pm5eV0eKnBBUgzjOu2uY1XVX6xddxcAXVOvokuXi4Jly5Yt48cffwRg3LhxDBgwIORcmqZR9eVWnCuKQIG4i3tjyQgd9uRAVJeWsPDVF9i+6k8AUrP6Mfr6aUR1atm5ZA+Go8LFr59tYf0vhdBEhqu/fBoS3pKsRCdY0RtlTlYhhGirmh3s7rnnHoYNG0ZYWBiXXXYZSUlJbN++nVmzZvHiiy/y008/Nes4/fv3x+l0cvfdd/PUU0+xa9cu/u///o+rrrqKiRMncvfddzNz5kxuvPFGfvjhB+bMmcOnn34KwJVXXsl5553HhRdeyNChQ/nXv/5FUVER5513HgBTp07lscce44QTTggOZzJ8+HB69gxchhs6dCjTpk3jtddeo7S0lEcffZSrrrpqr3U1m81NzhHaXFadjtxT+u1/wxZm1TX/i3dvraDQuCXzpptu4uSTT+b44wOzIEydOpX33nuPt99+m6eeeooLLriAr776ii5dAmPIvfjii0RHR7No0SLOPvvsA34fe5sy7KHNBWx3eehiNvJ4Rkpw+9rafFauuhZVdRMffxrp6X8Plv3888/B1sPRo0czaNCgRuezf7cDxw/5AMRMyCQsO77RNs2haRprl33Hd2+9iqfWicFoYtjkKzhm9DiUA/i3ORw8Lh9/Lszjr0V5+LyBbgLJ6VHEdraFhDi5fCqEEO1Ts4PdscceywcffMA111zD/fffH1yflJTERx991Oimh72x2Wx8/fXXTJs2jcTERKKiorj00kuZPn06ZrOZRYsWceutt/LAAw+QkJDACy+8wIgRIwA47bTTePnll7n++uvZuXMnffv2Zf78+cTGBjrFP/DAA3i9XoYNG4bdbmfEiBF8+OGHwXPPmzePm266ibS0NHQ6HVOmTGH69OnN/QgOmKIozb4k2lqys7Ob3ZKZl5fXKBAZjUZMJhMOh4OKioqQPol6vR6dThdsmT0Qe5sybGFpFe/uKkMBXujTlUhD4PP1+eysWnUNXm8ZNlsf+mY9h6IEyn7//XcWLFgAwKmnnspJJ53U6HyOH/OpXhS4OzpqXA/CBx1cq1pNZQWLXn+J3BW/ApCc3oszb7yN2M4p+9nz8FL9Kut+2sWvn2+lttpTV7cohkxIJymt/d6NK4QQIlSzhzup5/F4+PnnnykoKCA5OZmhQ4ceNbNPdNThToYNG0ZKSkqwJfPss89m4sSJPPTQQyHbTZ8+nX//+98sWLCAgQMH8vHHH3PZZZfx888/M3DgQIYNG4bX6+Wzzz4jMjKS6dOnM2/ePNasWdPoci/s+zO75+NVvL98B50izMy/dRhxNjOlHh+nLl9PqdfHdakJwdklNM3PylXXUla2BJMpgeMHfYzFEugzuGrVKj7++GMAhgwZwqhRjfu21fxeRMXcwBA7kad3JfL05g+23dDGX35g0Rsv47JXo9MbGHLBJRx/zgR0rRjuNU1j+5oyfvo4l4pdNQBEJYRx0vk96TEwoU308xNCCLFvh2W4k3omk6nZ/elE+7Cvlkybzcarr77K5MmTefDBB9Hr9UyYMIHy8nIyMjL45JNPGDhwYPA4d955J/3798fr9XLiiSeyYMGCJkPdvjQ1ZZimady5YQelXh+9wy3cnZYc3H7btpcpK1uCTmdhQP/XgqFu3bp1/O9//wNg0KBBTYa62jWlVMwLhDrbyZ2JOK3rAX9+tQ473735b9b/uBSAhG5pjLnxdhK6pR3wsVpS6U47P87bzM71FQCYww0cf1Ya2ad0QW+QfnJCCNERHXCL3dGso7bYtZamPrOdFU7GPP89dpePG07tyV1n9gbg/V1l3LZ+B0ZF4etBmfS1BcaUq6hYzh9/TgZUsvo8Q3JyoL/l5s2bef/99/H7/QwYMIBzzz0X3R7921ybKih9Owf8GtbjEomZkHHA/cq2/PkbC199kZqKchSdjsHjL+DECRehN7TeHaKOCje/fr6F9T/vAg10BoX+I1IZNKYbZqvcuSqEEO3NYW2xE+Jw2duUYdtr3dy/KXBTw11pScFQ5/GUk7P2NkAlOen8YKjbvn07//3vf/H7/fTp04dzzjmnUahz51VT9s5a8GuEZccRc/6BhTq308nSd95g9XeBu7hjO6dw5o23kZze61A/hoPW1I0RGYM6ceL4nkS20Ny2Qggh2jYJdqLNeP7bTfy+vYIIs4EXLz4Go16HX9O4dV0eNX6VwVHh3NC1ExDoO7Zu3d9xuwuxWnuQmfkQAPn5+cyZMwefz0d6ejoTJkxAv0cfN8+uGkrfzEHzqJgzoom9qDeKvvmhLm/NKhb8eybVJcWgKBw39hxOvmgKRtPB30F9KJq8MaJnFEMmyo0RQghxtJFgJ9qEhlOGPVE3ZRjAK3nF/FJVQ7hexwt9uqKv6yO3Y8dblJZ9h05nIjv7RQyGcAoLC3nnnXfweDx0796dSZMmNbqxx1daS+ms1WguH6ZukcRdloXSzP5mqt/P0nff5I+vAsPvRCYkcuYN00jNOvJD2kAg3ObllPPTx5spL5AbI4QQQkiwE21ApTN0yrCz66YMy3HUMmNrYKq6RzO60C0s0CJWXb2KzblPA5CRfj8Rtt6Ulpbyzjvv4HK5SElJ4eKLL8ZoDO1P5qtyU/LGalSHF2NyOPFX9EVnat4dq36fj69eepaNP38PQP/TzmT4ZVdiCjv0KdMORulOOz99tJkd6xrcGDE2jezhcmOEEEIczSTYiVb3zIKNjaYMc/lVblq7Ha+mMTo+kouTAmMV+nx2Vq+5BU3zkpBwJl26XILdbuc///kPNTU1JCUlMXny5EYDS/sdHkrfWI2/0o0hPoz4K7PRhTXvx9/v8/LlC/9g068/odMbOOvWO8kcfHLLfgjNVFPp5pfP9rgx4tQUjhvTXab0EkIIIcFOtC6H28fPW0pDpgwDmLF1F+tqXMQZDTzTKxVFUQL96tbfi8u1A4slhT69n0TTND7++GOqq6uJi4vj0ksvJSws9EYB1eWj9K0cfCW16KPMxF+djT6ieYMm+31ePn9uBrkrfkFvMHD27ffS87gTWvxz2B+Py8efi+pujPAEboxIH9SJE8/tSVSC3BghhBAiQIKdaDUuj5+qWi8QOmXYTxUO/r2jBIB/9k4lwRRoiSoo+C/FxV+hKAay+z6P0RjJkiVL2Lp1K0ajkYsuugibzRZyDs3rp3R2Dt58B7pwI/FXZ2OIbt5wND6vl8//+QRb/vgNvdHIuf93P2kDj2upt98sqqqx/qdd/PrZFpx1N0Yk9Yji5InpJPWQGyOEEEKEkmAnWoVf1dhV5ULTYHCPuOCUYdU+Pzev244GXJIcy+j4QHhxODawcdOjAPTscQdRUQPZsmULS5YsAWDcuHEkJCSEnEPzqZS9uw7P1moUi574K7MxJjSvT5zP4+HTZx9n21+/YzCaOPeu6XTvf0yLvPfm2p5Txk8f7b4xIjIhjCHn9aTHMXJjhBBCiKZJsBOtYldVLR6/H71O4c4zegWDyv2bdpLv9tLVYuKRuinD/H4nq9fcgqq6iYsbTteuV2O32/noo48AOOaYYxgwYEDI8TVVo/zDDbg2VKAYdcRf0RdTl9DWvL3xul18+szjbF/1JwazmfPueoCu2QP2v2MLqSxy8v0HG8lbWw6A2Vo3Y4TcGCGEEGI/JNiJI67S6aG8JnBZMdZqJCY80N/ty5JKPiysQAe81KcrNkPgjtUNGx/B6dyMydSJrD7/QNPg448/pqamhk6dOjFmzJiQ42uaRuUnm6ldVQp6hbhL+2Du3rzLll6Xi0/+8Qh5a1ZhNFs47+4Hj9hwJj6vnz++3s7vC7aj+jR0eoV+I1IYJDdGCCGEaCb5819QXFzM+PHjiY6OJj4+nmnTpuHz+Zrc9u2336Z3795ERERw0kknsWzZspDyV155hfT0dGw2G/369eOLL74IKff4/ORX1gIQG27CbAyEt2K3lzs37ADgxq6dOCE60LpWWPgZu3bNBXRk930OkymOZcuWBfvVXXDBBZhMoTdCVH29jZrlhaBA7KReWHrFNutz8Lhq+fiphwKhzhLG+fc+fMRC3Y615fz3keX89uU2VJ9G16xYLn5wMEMnZkioE0II0WwS7ASTJk3CZrNRUFDA8uXL+eabb3juuecabffZZ59x3XXX8cwzz1BZWcmdd97JmDFj2LBhAwCzZ8/m4Ycf5r333sNut3PvvfcyYcIECgoKgLoBdctr8asaVpOBOJs5uP629Tso9/rpa7NwZ1oSAE7nVtZvuB+AtO43ERNzYki/urPOOqtRv7rqJTtwLN0JQMz5GVj7h5bvjafWyUdPPMjOdWswhVmZeN8jpPTue4Cf5IGrqXKzcFYOn73wF1UltVijTIy+JptxNw8gulPrjJEnhBCi/VI0TdNauxLtxb4m4W1qQntN06j1+o94PcOM+mZ3rt+8eTMZGRnk5+fTuXNgYOAPPviAu+66i+3bt4dse9FFF2G1WnnzzTeD68aMGUP//v2ZMWMG/fr145ZbbuGaa64Jlv/xxx9kZmZis9korHJRbHehVxQyEm2oPi9bt25lVXg0t+YWYdYpfH1cJn1sYaiqmxW/X4DdnkN09GCOPeYdHA4n//73v6mpqeGYY47h3HPPDamf45cCKj/JBSDqrB5EDOvSrM/A7azhoyceYNemDZjDw5lw7yOHfc5XVdXIWZbPL5/k4nH5URTod2oKg8/pgamZ4+sJIYQ4Ouwrf+xJvkEOo1qvn6wHFhzx8659ZHRwPLj9ycnJITY2NhjqALKyssjLy6OyspLo6Ojger/fT3h4eMj+Op2O9evX43Q6ycnJQa/Xc8opp5CTk0OvXr2YMWMGNpsNh8tHsd0FQJeYMEwGPS6fF5+q8cK2YgDuSUumjy0wJtumzTOw23MwGmPp2/efaJoS7FeXkJDQqF+d889iKj8NhLqIkanNDnWuGgcfPT6dwtxNWMJtTLz/MRJ7pDdr34NVvL2ape9toHi7HYBO3SI4dXJvErpGHNbzCiGE6PjkUuxRzm63NwprVmvgEqDD4QhZP2HCBP7zn/+wdOlSfD4fn376Kd9++y21tbVUVFSgaRrPPPMMr7zyCrt27eKSSy5hzJgxbM7dwo4KJwCxVhPR1kCfOE3TKPf5cGsqJ0fbuDY1cNm0pGQRO3fOBiCrz9NYzEkh/eouvPDCkH51tRvKKZ+7ATSwDelM5KhuzXrvtQ47cx+9LxDqIiK54IEnDmuoc9f6WPbBRuY9tYLi7XZMFj2nXJTJhL8PklAnhBCiRUiL3WEUZtSz9pHRrXLe5goPD8fpdIasq38dEREaNi666CJKSkq45pprqKioYOzYsVx88cU4nc7gFF633347ffsG+qbddNNNvPLKK7z/0aece8lUzAY9ydG7Z0ko8/pwqxrhOh3P9+mKTlFwuQpYu+7vAHRNvYr4+BFs3bp1r/3qPDvslL+7DlSwHtOJqHE9mnUZ2lldxbzHp1OybQthkVFcMP1xErp2b/bndiA0TWPz78X8MHcTzqrA3cAZxydy8sR0wqPM+9lbCCGEaD4JdoeRoijNviTaWrKzsykrK6OoqIjExEQA1q5dS0pKClFRoUOEFBYWcuaZZ3LzzTcH15144olMmDCB+Ph4OnXqhNvtDtnH4/VR6/GhKApdY8PQ6wKhy+n3U+oN3Hl7W/dEUiwmVNXLmpxb8fmqiIwcQM+e/4fD4QgZr27gwIHBY3tLnJS+vQbNq2LOjCFmYgaKrhmhrqqSuY/dT2neNqxR0Vww/XHiU5vXynegqkqcLHt/95h0UZ3CGH5xL1L7NO9OXSGEEOJAyKXYo1xGRgZDhw5l2rRp2O12tm7dyqOPPspVV13VaNulS5dy6qmnsn37dlwuFzNnzmTDhg1cfvnlAFx33XU88sgj/PXXX/h8Pv753EwKCgoYMfoskqMshNWFXFXTyKv1gAZWnS44u8SWrc9TVfUHer2N7L4zAQMff/wxDoejUb86f7WH0jfXoNb4MKbYiJvcB0W//x/nmsoKPnzkXkrzthEeE8uFDz55WEKd36vy25dbef/h5eStLUdnUDh+XBoXTT9BQp0QQojDpm03J4kjYt68edx0002kpaWh0+mYMmUK06dPB8Bms/Hqq68yefJkJk2axPr16znppJNwOBwce+yxfPfdd3Tq1AmABx98kMjISCZNmkR+fj49M3rxr9kf0LN7V+LCd/eJ2+X24lY19IpCTN0dvGXlP7B9+78B6NPnScLCurJ06VK2bNnSqF+d6vJR+tYa/BVuDHEW4q/oi868/8vPjopy5j5yL+UFO7HFxnHB9CeI7dy8mywOxM715Sx9fyOVRYFL2im9Yxh+cS+iE2X4EiGEaO80TUOrrcXvcKA6alAddlSHA3Pv3hhiW/8Pdxnu5AAc6HAnRzOX18/GosBdnxmdbMHWOrvPzxZn4HJtF51GyY48unSJ4q+V4/F6y+jS+WJ6936MrVu38p///AdN0xg/fnzwEqzmUyl9aw3u3Cp0NiOdrh+AIS6syTo0ZC8vZe4j91Kxq4CIuAQufOAJopOSW/Q9O6s9/PjRJjb+WgRAWKSJoRekkzEoUeZ2FUIcNE3TwO9HMUhbzKHQNA3N7UZ1OPDb7YFQVtNg2eFAddgbBDYHfkeDMrsdf01gGX/jocxSXn6ZiJEjDkvdZbgT0eqKqgNDm0SFGYOhzqdq7HAFbh6IMxmwoVKCxubNM/B6y7CF9yIj4/5gvzpN0xg4cODuUFc3/6s7twrFrCd+anazQl11aTFzH7mPyqJdRCZ04sIHniCqU1KLvVdN1cj5oYBfPsnF7fSBAv1O6cLgc3tgtsqsEUIczTRNQ61xBlp17Hb89rrwYLejBpfrQoOjbp29LlzUP9cHCb0exWxGZzajmM0oZhM6s2X3ssmMYrE0XjabUUxmFIu58XLda52liWWzGZ3JFDiOvvk35R0Oal0gC4SywLNa0/h1w5AWEsocDvwOB+xlVqWDoijobDZ0ETb04TYUY9v4fS/BTrS4Wo+PqlovAImRu1sv890evKqGSaeQbDbidbvx+RxUVf+BThdGdvYLKIqJjz/+MNivbuzYsUDgl2PVF1t2z/96WR9MXWz7rUtVcREfPnIv1SVFRHVK5MIHniQyoVOLvdeSHXaWvreBoq3VAMSn2jh1cm8Su+/7LyohRNunqSqq01kXyOy7W20OJJw5HKCqLVMhvx/N6cS/x0gGR4TBsDvk1Qc+cyA8hiybTYHgaK4LiE0sK2YTik63u2XMbg+EMoej7vN04K/Zvaw6HGheb8u9F0VBFx4eCGW2cPS2iLplG/oIG7rwBsu2utcRNvR12+hsgWXFam2TV2Mk2IkWV1QduNQabTVhqRt6pcLro9LrBwW6WkzoFYVanxOfLxCIemU+RHh4eki/uobzwDqW7cTxU2BqstgLM7Gkx+y3HpVFhXz4yD3YS0uITkrmgulPEBnfvCnG9sfj8rH8862s+m4HmgZGi57B5/Sg3/Au6JpxE4cQ4vDSVHV3EAsGMvvuy3B7hLOQQNYgVNBSvZUMhkAwiIioCwkR6CIimlhnQx8Rgc4WEQgWdcuKyYjm8aC53YHLiW4PmttVt+xusN6NVlfW9PIe23vcaK6mlj3QMEz5fKg+H7RGqGxAZ7XWfSZ7hrLQgKazhQc+x/AGy/VlViuKruP+npZgJ1pUjdtHtcuLgkJiRGCMNo+qkl93CTbRZCDcoEdVfbjdhQDEx51GcvKERuPV1d+UUfN7EVXztwEQNa4H1gH7b3GrKCzgw0fuxVFWSkxyFy544HEiYuMP+f1pmsaWP0v4/sNN1FQGAmzPYzsx9IIMbDEyJp0QB6O+M7paUxNoIWv4qHHuZX39ut1lWo0Tv7MGrcaJWlvbcqHMaAwGsCbDWYQN3V5DWWCdYrG0ydadfdH8/t1B0ONBczUIiB43qsvVeNntrnvt3r3srguMnrpA6nKBpgY+s2Aoq/sM65ebCmVWa6tfEm4PJNiJFlXfty7GasRs1KNpgX51fg3C9Do6mYxomobLlY+m+VAUA2lpN1NTU9Nkv7raDeVUfLQRANvwFCKG7v8u1vKCncx95F4cFeXEdknlgumPY4s59DuVah0evpu9jm2rywCIjLdwysW96NY37pCPLUR7se8QVhMIYs0IYfXrWjyE7UExGvcdxJoRzhSzud2Fspag6PUoVis6q9zR355IsGthakv1pWiHHC4vDndgMOJOkYHWq1KvD4dPRam7BKtTFDyeUny+6sAlTGMMer2VuXPnNupX12hWidHd91uHsp07mPvovdRUVhCX0pULpj9OePT+L9vuT0menfn/Xo293IVOr3Ds6G4cd2Y3DCb561Hsm6ZpgT5Wfn+gBcSvghpYRlWDz/j9aHt79vv3eF1/jH08+33N266uLprHu0dYq9ndYuY8MiEM6i61hYcHWmfCA6Ei8AhHF173bLWGPsLry/ZYFxGBziwt6eLoIsGuhZhMJnQ6HQUFBSQkJGAymY6qv/A0TaOg3Inm8xNlNaH6vFS53RS43GgaJJgM4PVQ43LhdBbg82lUV+swGMwsX768Ub+6g5lVojRvG3Mfux9nVSUJXbszcfrjWCOj9rlPc2z4ZReL52zA71WJTAhj7HX9iGvGjRui49B8Pty5ubjWrKF2zRpca3LwlZbuO4zVPbdYx/m2RlFCglQwhIWHh4YxaxPrm9zWGrhc2YH7PglxJEiwayE6nY60tDR27dpFQUFBa1fniHN5/ZQ6PCgK6CMt1JQplHgCAxFbdAomk5FKTcXjKUHVvOgUMzEx3fD5fI361fntBz6rRMn2rcx99D5q7dUkdO/BBfc/RljEod2Z6ver/PTRZlZ9txOArn3jGHVlFpbwtnFLuzg8NL8fz7ZtdSEuB9eaNbjWrQv0CzocdLrAMBbNeTboUXR60Ovqnpuxn34/2+l1oNOjmExNt4g11RpmtaKEhR1Vf7wK0V5IsGtBJpOJrl274vP58DcxeGFHpWkaN8z5g41Fdi44LoWhx/Tgk6IKnikuxKzoeKd/d5LNRjZtfoqKyu8wmxI45pg38PmMvPrqqyH96lSXj9I3D2xWiZ3rc/j0H4/hcthJ7JHOhPseJcwWcUjvyVntYcHrayjYVAnAoLHdOX5cGrpmzEUr2g9N0/Dm5QVb4VyrV+Nauxa1iTv/dDYblr59sWT3JSw7G2NKCuh0geCk06EYDI1CU0i5Xh8IUPo9gpWEIyFEC5Jg18IURcFoNGJsIwMVHgkLcgpZvLkSq0nPZUMzKEdh+vYS7KrCo+md6REdSUHBXEpK3kVR9GT1nYnZHM3cue+G9KvTfCpl767Du6sGnc1I/JXZ6G2mfZ577feLWfjv5/H7fCSn9+L8ex/GEn5ol0mLtlXz9aurcVS4MZr1nH5FFj2OaZlhUkTr0TQNX0FBXSvc6kCYy1mLWl3daFslLAxLVhZh2X2xZGdj6ZuNqXs3uUwohGjzJNiJQ6KqGv9cGLhr9cqT04gNN3H56q3Y/SrHRlq5MiUeR80mNmx8CIAeabcTHXVco/HqjAYj5f9dj3tzJYpp/7NKaKrKT3Pn8MvHHwCQccIQxtx0O0bzoU3ntu6nXSx9bwN+n0p0opUx1/UjNjn8kI4pWoe3qBhXzhpqV68OtMatWYO/oqLRdorJhLl3b8KyswMhLrsv5p49ZVgFIUS7JMFOHJIvVu9iQ5GdCIuBa4b14NPiShaWVWNUFP7ZOxVUF2vW3IKquoiNHUa3btc2Gq8uISHhgGaV8HrcfP3yTDb+/D0AJ5w7kaEXTTmk1hS/T+XHuZtYvTQfgO794zl9ahbmMPkv0tZpmoavqAjX2rW41q7DlRMIcb6SksYbGwyYMzMIy+4XvKRqTk9HMe27ZVgIIdoL+dYSB83nV5m5KNBad+2wHviNCvdtCgSjW7p1ond4GOvW30tNzUZMpgSysp6hpsbZaLw6+9KdOH6sm1XigkwsGXsfnqSmsoJP/vEohZs3otMbGHXNjWSPGHVI76Omys2C19ewa3MVAMePS+P4sd33exeuOPI0VcWzbTuudWtxr1sXCHLr1jXZEodOh7lnz0ArXL/sQIjr1UuGvxBCdGgS7MRB+9+f+WwprSHGamTq0DTu2ZxPmddHptXCLd0SKS1dTEHBB4BC36xnMRpi+eC/of3qav4oomr+VgCizuqBdeDeZ5UoydvG/2Y8jL20BIstgnPuuJfUrH6H9B4Kt1Tx9aurqanyYLLoOf3KvqT1P/QZKsSh0zwe3Js342oQ4Fzr16M1NaWRXo+5Rw8sWX2wZGVh6dcPS+/eMrCqEOKoI8FOHBSPT+X5bzcBcN3wnvzmcDK3sAIFeK53KgbNxYaNDwLQNfVKYmNPZtmyZSH96tStDirmBY5hO6ULEcP2PqvElj9/44uZT+N11RKT3Jnz/v4gMcn7n4ViX9b+UMDS/25A9WnEJAX608UkSX+61qDW1ODasKEuwAUuqbo3bw6dq7KOYjZj7tULS58+gUffLMwZGegsh9a/UgghOgIJduKgfLhiBzsraom3mZlwfCqj/woEtKtT4jkuKpzNm2fgcuVjMXemR49pbNu2jcWLFwOBfnXR7jBK5qwCVQvMKnFm2l7P9cf8z1ky+3U0TSU1qx9n33HvIQ1n4veqfP/hRnK+D1z+TRsQz+lXZGGS/nRHhK+iAtfa+kupgRDn2b69ydkMdJGRuwNcVuDZlJaGYpB/KyGEaIr8dhQHzOX18+J3gSB304iezMwvJt/tJcVi5O60ZByODeTteBOAzF4PUVurMm/evGC/ur4pvSh55S80j4o5I5qYCU3PKqH6/Sye/Rp/LfgSgOwRozj96hvQGw5+KJmaSjdfv7aawi3VoMDgs3tw3JndpD/dYeTZmU/1/K+o/eNPXOvW4SssbHI7Q6dOWPr0wZxVH+SyMHbpIuO8CSHEAZBgJw7YnF/zKKp20znKQq/e8dyzKheAZ3qlYtUr/L7+PjTNR0LCGcTFjuDdd3f3qxt9yumUvlE3q0QXG3GX9kExNL6b1e2s4Yvnn2bbX7+DojDs4ss5/pwJh/Qlv2tzJV+/tgZntQdTmIFRV2bRvZ/0pzscfOXlVM+fT/UXX1L755+Nyo3dumLpkxXoD1fXGmeIi2uFmgohRMciwU4ckBq3j1eWbAbg+pHp/H1zPhpwQVIMp8ZGkp//X6qq/0SvDycz4wF++OGHYL+6ieeeT/W7G/GXu9DHWYif2hedufGPYFVxEf+b8TBlO/MwmMyMvfkOMk4YctB11jSNnO8L+P6Djah+jdjO4Yy5rh/RnaRjfUvyO2pwfPctVV98Qc2PPwXmSQVQFKwnDiZixAgsWVmYe/dGb5O5doUQ4nCQYCcOyOyft1Hq8NA11kp+nJGNOyqINxp4OL0LHk8pm3OfBqBHj9soKfEF+9WNPXMsuq9LcRcEZpVI2MusEgUb1/HpM4/jrKokPCaW8+56gMQe6QddX5/Xz7L/bmTdj7sA6HlsAiOn9MFkkR/9lqB5PDh++JHqL77A/t13IfOpWrKziRx3FpFjxmJM3PvdzkIIIVqOfLuJZqt2eXl16RYALhzajRk7AwPAPp7ZhVijgZycJ/H5qoiw9SUp8SJee20WmqbRr18/um4Mo3ZzSWBWiSv6NjmrxPofl/L1KzPxe70kdO/BeXc9QETcwV8qdVS4mP/qGoq3VaMocOL4nhxzRlfps3WINFXFuWIF1V98SfWCBahVVcEyU7duRJ59NpFnjcWctvcbYoQQQhweEuxEs735w1aqar30TAjnS5MXr1tjdHwk5yREU17+I4VFnwAKvXs/xrJlP1JaWorNZuNkXR9qV5bsnlUiJfSOVk3T+OWj//LT3DkA9Bw0mLE3/x8my96nFNufgk0VfP3aGmrtXsxWA2dc3ZeuWdKH62BpmoZ7/XqqPv+C6q++CrkBwpCQQOTYsUSOG4clu68EZyGEaEUS7ESzVNR4mPV9YCDh/scm8b69lgi9jqcyU1BVD+s3PABASsql2O1x/Pjj/wAYmXYivl/LgKZnlfB5PCx89QXW/bAEgOPGnccpk69Apzu4eTo1TWP1knx+nLsJVdWI62JjzHX9iEo4+JB4NPPk5VH95ZdUffElntzc4HpdRAQRZ4wi6uyzsR5/vMyrKoQQbYQEO9Esr32/BbvbR3qijf8pbtBges/OJJtNbNnyPLW12zCZOtGt6628+eb7aJpGn66ZdPotMDZZ1FlpjWaVcFZX8ek/HqNg4zp0ej2nXXU9/U8786Dr6PP4WfreBtb/EmhNyhjUiRGX9cFoltBxIHwlJVTP/5qqL7/AtXJVcL1iMmEbMYLIcWdhO+UUmZpLCCHaIAl2Yr9K7G7e/nEbALrMKFyaxknR4VzaOY6ami1s2/5vADIz7ufnn/+iuLgYq9XKoIIUAMJPTCZiWErIMct25vG/GQ9TVVyE2RrO2bffQ7d+Aw+6jvZyF/P/vZqSPDuKAkMmpDPgtFS5LNhMfocD+6JvqP7iC2p+/hlUNVCg0xF+4olEjhtHxKjT0Ucc/MDQQgghDj8JdmK/XlmSS63XT2qijVVhGhadjmd7dUUBNmx8AE3zEBd7Cqp6LN9//zoAw2wDMOcpGDpZiT4rtBP9tlV/8vk/n8RT6yQ6MZnxf3+AuC6pB12/oq3VfPnySmrtXizhRs64pi+pvWMP5S0fFdSamsAdrV99hWPxYjSPJ1hm6d+fqHHjiBxzJoaEhFaspRBCiAMhwU7s066qWt79dTsAhd3CQFG4o3sSPaxmdhV+QkXFz+h0ZtLTH+Dddz9FVVUyktJI2RYGeoXYi3qhGHdfCl256Cu+ffPfaKpKl959OeeOe7FGRh10/bbnlPH1q6vxeVTiU22M+Vs/IuOlP93eeIuLcSxZguPb76j5+eeQMGdKSyPy7HFEnXUWpm7dWrGWQgghDpYEO7FPL323GY9PJbqTlcJoI/1sYVyf2gmvt5JNmx4HIK37zfzxxw4KCwsJs1g4oSAVBYWoM7ph6hwYiFZV/Sx9503++OpTALJOGcmoa2/GYDz46cE2/FrId7PXoaoaqX1iOPNv/WR8uj1omoYnNxf7t99h/+7bkD5zAMaUFCJGjSLq7HGY+/SRS9dCCNHONZ7L6QhYuXIlo0aNIjY2lqSkJKZMmUJpaSkAv/76K4MHD8Zms5GWlsasWbNC9p09ezbp6emEh4czaNAgfv7552CZ3+/nzjvvJDExkYiICM4991x27doVLC8uLmb8+PFER0cTHx/PtGnT8Pl8R+ZNt0M7yp188NsOAIq6WdHrFP7ZOxWDTmFz7tN4veWEh2dgsZzD0qVLARhi6kuYx4gpLQpbXb86T62TT//xWDDUDb1oCmfecNshhbq/vsnjm7fWoqoaGccnctaNAyTU1dF8Ppy//UbRUzPIHX0mW8adTclzzwVDnaVfPxKm3UraZ5/Sc9FCEv9+F5asLAl1QgjRARzxYFdbW8uYMWMYMmQIhYWF5OTkUFZWxtSpU6moqGDs2LFMmTKFyspKZs2axW233cby5csBWLJkCTfffDOzZ8+msrKSyZMnc8455+B0OgF47LHHWLhwIStWrCA/P5+wsDCuvvrq4LknTZqEzWajoKCA5cuX88033/Dcc88d6Y+g3Xj+2034VA1DvAUt1sz1qZ3oF2GlsnIFBQUfAJCZ8Qiff/4Vfr+ftNhUuhdHoZj1xF6YiaJTqC4t4b8P3MWWP37DYDQxbtrdDD7vwoMOEZqq8dNHm/lxXmBaswEjUxk1NQt9E/PNHk1Up5PqhQsp+PvdbBo6jO2XTaH87bfx5uWhGI2EnzKMpIceIn3pUtLmfkj8dddhycyUMCeEEB2MommadiRPuGHDBqZNm8YXX3yBvm7sq88++4zLLruMZ599lqeffpqNGzcGt7/++utxOp3Mnj2bSy+9FKvVymuvvRYs79OnD3fddRdTp04lNTWVGTNmcMkllwBQVFREcnIymzdvDvT9ysggPz+fzp07A/DBBx9w1113sX379mbVvbq6mqioKKqqqoiMjGypj6RNyi1xMOqfS1E1cA9OIC05gm+P74VZ8bP8t3OoqdlI5+QLKS8fx6JFizCbzJzvGES4aiF2Ui+sx3SiurSY9+7/P2oqyrFGRTP+rukkp/c66Dr5/SqL31nPhrrhTE467+ieScJXUoJ98eIm+8vpoqKIOHU4thEjCR86FL0tvBVrKoQQ4lAcSP444teuevXqxfz580PWzZs3j+OOO46cnBz69esXUpaVlRW8HJuTk8OVV17ZqHzlypVUVVWxc+fOkP0TExOJiYlh1apVKIpCbGxsMNTV75uXl0dlZSXR0dGN6up2u3G73cHX1dXVB/2+25uZ32xC1cCfYEGLNvFs71TC9Dq2bX+dmpqNGI2xxMRczUcfvQ/ASUovwlULYf3jCRuYgKaqfP3yTGoqyolL6cr59zxEZPzBzxfqdfv5+rU15OWUoegURlzamz5Dklvq7bYL++0vl5pKxMiR2EaOxHrcsSgGuTQthBBHm1b9za9pGtOnT+fzzz9n2bJlPP/884SHh7YsWK1WHA4HAHa7fa/ldrsdYJ/7N1UG4HA4mgx2Tz75JA8//PDBv8F2at2uaj5fWQCALz2CKZ3jOCnaRm3tDrZufQGAnj3/zpdfLsHn89HVlkzP0nj0USZixqejKAorvvyEHTmrMJjNnHvn/YcU6modHr781yqKtlZjMOoYfW023fsd/Byy7Ynm91P7xx/Yv1uM/btv8W7PCym39O9PxMgR2EaOxJyRcdS2XgohhAhotWBXXV3N1KlT+f3331m2bBn9+vUjPDycysrKkO2cTicRdYOihoeHB/vTNSyPj48PhramyiMiIlBVtckyIHj8Pd1zzz3cfvvtIXVOTT348dbai+cWBS6F+xPDSIwP5/6endE0jQ0bH0JVXURHDyZvexd27FiDyWDkpNI0FBRiLshEZzVSkreNH96fDcCIKdcQk9R5X6fbp+qyWj5/YSWVRU7MVgPjbhpAUo+DHx6lPdBUFcfSpdgXLMSxZAn+Bv8nFKMR60knEjHyNGwjRmBMPPjALIQQouNplWCXm5vL2LFj6dq1KytWrCA+PtD6kp2dzcKFC0O2Xbt2LdnZ2cHynJycRuVjx44lJiaGLl26kJOTE9y+sLCQ8vJysrOzUVWVsrIyioqKSExMDO6bkpJCVFTTQcFsNmM+yqZNWrWzkoVri9AItNbN6JVCpEFPcfHXlJUtQVGMJCf9H2+9FbicfoKaQQRh2IZ2wZIeg8/rZf6Lz+D3+ehx7PH0O230QdelLN/B5y/8RU2VB1uMmbNvHkhs547bV0zzeKj6/AvKZs3Cs2VLcL0+KgrbqcOxjTyN8JNPlv5yQggh9uqI30pYUVHByJEjGTJkCAsWLAiGOoDzzz+fwsJCZs6cidfrZfHixcyZMyfYr+7KK69kzpw5LF68GK/Xy8yZMykqKuK8884DYOrUqTz22GNs3boVu93OtGnTGD58OD179iQjI4OhQ4cybdo07HY7W7du5dFHH+Wqq6460h9Bm/bMwkBrndo5jHN6JDA6Pgqfz87GjY8A0LXrtSxcuAqv10sXSwK9nEkYk6xEje4OwE8fvktJ3jbCIiI542+3HPSlwYLNlfzv2T+oqfIQkxzOhLuO67ChTq2poXz2bDafMZpd992HZ8sWdBERxEy5jK6zZ5Px4w90njGDyNFnSKgTQgixT0e8xe6tt94iLy+PDz/8kLlz54aUORwOFi1axK233soDDzxAQkICL7zwAiNGjADgtNNO4+WXX+b6669n586d9O3bl/nz5xMbG5g+6oEHHsDr9TJs2DDsdjsjRozgww8/DB5/3rx53HTTTaSlpaHT6ZgyZQrTp08/cm++jfttWznLNpagKWDNjOaxjC4A5G55DreniLCwbpSXDWbbtkUY9AZOrkpH0euImdQbxahjx9rV/Pb5xwCc8bdbCI+OOah6bF1ZwoI3cvB7VZJ6RHHWjf2xhB/8mHdtla+igop351Dx7rv4q6oAMCQkEHvFFURPuhC9zdbKNRRCCNHeHPHhTtqzjjzciaZpnPvvn1i1vRJfipV/ThzAhUmxVFev5rcV5wMqGekv8+67v+PxeDhJ7UVfTwpRZ6URMSwFt7OG2XfehL20hOwRZzD6ulsOqh5rfyhgyZz1aBp07xfHGddkYzTp979jO+ItKKDs7bepnDsPrbYWAGO3rsRddRVR48ejM5lauYZCCCHakjY93Ilom37YXMqq7ZVoChx/TDIXJMagaX7Wb7gfUElMPIelS4vxeDwkGWLJcnTB3DMK28mBVr3v3noVe2kJUZ0SGXH51fs+WRM0TeP3+dv59bNA37I+Q5I5dXIvdPqOM/CwOzeXsjdmUfX551A344klK4u4a68hYtQoFH3HCrBCCCGOPAl2Ak3TuOfLtQAoXW08f2waiqKwY8c72O1rMBgicNWeTW7uMvQ6PUNrMtFZjMRc0AtFp7Dxlx9Yu+w7FEXHmBvvwBRmPaDzq6rGDx9uYvWSnQAce2Y3Tjy3R4cZuqN25UpKX38dxzffBtdZTzyRuGuuJnzIkA7zPoUQQrQ+CXaCeasL2FnoQNMpTBuZTtcwMy53IblbAtOtdel8M3Pn/grAcZ40orVwYs7riSHajKOinEWv/wuAE8ZPpEvvrAM6t9+r8s3ba9n8ezEoMPSCDAaMbP9DymiaRs0PP1L2+us466bEQ1GIOP104q65mrD+/Vu3gkIIITokCXZHOVVVeWj+OgDiM6K5JTMw5tymjY/h9zuIjBzI8uVm3G43nXTRZPu6Yh2YgHVAJzRNY8G/n8flsNOpe09OmnjxAZ3bU+vjq3+vJn9DBTq9wulXZJFxfGKLv8cjSfP7sS9YQOnrb+BeF/hcMRqJOvts4q6+CnOPHq1bQSGEEB2aBLuj3KM/baGmwo2mV3h5XF/0ikJp6WKKS+ajKHp0yhQ2bvwTvaJjWG0vjFEWos9NB2Dlwq/Y9tfvGIwmxt58B3pD8+9cdVZ7+PzFvyjd4cBo1jPmun6k9ok9XG/zsFPdbqo++ZSyWbPw5gVmh1CsVmIuuIDYKy7HmHx0TX8mhBCidUiwO4qVuL28vTRws8LxAxIZnBCF31/Lho0PAZCYOJnPPwu0Og30dCcGGzEXZqILM1BesJOl774JwLDJVxCX0rXZ560qcfLZCyupLqklLMLIuJsG0Klb+7zL2O9wUPnf/1I2ezb+klIA9NHRxFx2KTGXXIIh5uCGfBFCCCEOhgS7o9i1i9ai2b3ojDr+fVZgto6tW1/E5dqJ2dyZNat74HLlEkcEA/zdsJ2SgqVnNH6fj69efBafx03XfgM5ZvS4Zp+zJM/O5y/+Ra3dS2S8hbNvHkh04oHdbNEW+EpLKf/PO1S8/z5q3TzFhuRk4qZOJXriBHTW9veehBBCtH8S7I5Si0qq+P2PXeiAi07qRny4GYdjA3k7ZgEQFnYl69blokPhFHcfzMkRRJ3RDYBfPv6Aoi2bsITbOPOGaSi65g1JsnN9OV/9ezVel5/4VBvjbhpAeFT7mrLNs3MnZbNmUfXRx2geDwCmnj2Ju/pqos4aiyJj0AkhhGhFEuyOQjU+P9O+XYfO6cds0XPvaZlomsr6DfejaT5iYk7jm0UlAAzwdSdOH0nsRb1QDDoKNq7n1/99AMBpV99ARGz8vk4VtGlFEd+8tRbVr9GlVzRjr+uPKaz9/Pj5SkspffllKj6cu3sMugH9ib/2WmwjRjQ73AohhBCHU/v5ZhUt5tW8YhzrK1GAW0akYzMbyC/4gKqqP9Drw9m65QSczp3EaDYG+roTNS4NY2I4Hlct8//1LJqq0vvk4fQeckqzzrdq8U6+/3AjaNDz2ARGTe2L3tg+gpDfUUP5m29S9vbbaE4nAOEnn0zc367FevzxMgadEEKINkWC3VHG7vPz8vdbUFx+IsONXHlSGh5PKZs3zwAgPPwSlizeiQKc4umDNT0W25DAEChL35lFZeEubHHxnHbV9fs9l6ZpLP98Kyu+2gZAv+FdGDopE52u7YchzeOh4sO5lL78Mv7yciDQQtfpjjsIP+GEVq6dEEII0TQJdkeZFzbtwrupCgW4e3Rvwkx6ctY+ic9XhdXam6VLAi1p/Xzd6GSJJfaCTBSdQu7vy1n1zdcAjLnhNizh+5+gfsVX24KhbvA5aRw3pnubb+HSVJXq+fMpmfk83h07ADB160bC7bcTccaoNl9/IYQQRzcJdkeRKq+PWUtyUXwanROsTBqUSnn5TxQWfgIoFBefgcNRQZRq5VhfGjEXpqOPMuOsrmLhqy8AcNxZ59I1e8B+z7X2hwKWf74VgGGTMug/ou3PJlHz888UP/MsrpwcAPTx8STcdCPREyagGJs/Rp8QQgjRWiTYHUWeWp2HP8+BAjx9bj8UPGzY+AAAtvBxfL+sAoBTvFlEHpuMtX8Cmqax8NUXcVZVEpfSlaEXXb7f82xdWcKSOesBGDS2e5sPda61ayl+9p/U/PgjALrwcOKuvorYKVPQhYe3cu2EEEKI5pNgd5So8Pr47+KtKBr06xnL0PR4tmx9AadzK0ZjAj/91AnwkO1LpXNUJ6LP6QnAmiWLyF3xCzq9gbE3/x+G/QznsSu3igVv5KBp0GdIMiecnXYE3t3B8ezcScnzL1D9+eeBFUYjMRddRPz112GIbb+zYAghhDh6SbA7Stz302a0EhcoMHN8P5zOrWzb9goAdvsYqqo8RKphDPL3JHZSL3QWA5VFhSx++3UATp50KZ2673ue0/JdNXz5r5X4vSrd+8Vx6uRebbJPmq+igtJXXqHi/f+C1wtA5FlnkTDtVkypbbt1UQghhNgXCXZHgaJaD199vx2A047tTI/4cP786zo0zUOYZRDfL1MBhWHePsQM74Y5LQpV9TP/X//E66qlS+++DDr7vH2ew1Hh5vMX/sLt9JGYFskZ12Sj07etIU1Up5Py//yHsjdmoTocAIQPOYmEO+4grG/fVq6dEEIIcegk2B0Fblu0Dhw+dCYd/zyrL8XFX1FR8TM6nZk//+wDQJYvha7JKUSeHphd4rdPP6Jgw1pMYWGMufF2dDr9Xo/vdnr5/MW/cFS4iU60Mu7GARhNe9/+SNN8Pio/+pjSl17CVxIYeNmc1YdOd9yB7eSTW7l2QgghRMuRYNfB5VY5+em3AgAmDeuOzayx5q+nAXC7R1JSAjbNwvFkEHtRbxSDjqItm/lp7hwARk69jqhOiXs9vs/r56tXVlNeUIM1ysTZtwzAYmsbd5BqmoZ90SJKnpuJZ2vgDl1jSgoJ06YROXaMzBYhhBCiw5Fg18Hd8vka8KqYIow8MiKTHTtex+XaiV6fwI8/RAMwzNuHhHEZGDtZ8XrcfPXSs6h+PxknDCHrlJF7Pbaqaix6cy0FmyoxWfScffNAIuPCjtA72zfnihUU/+MZaleuBEAfE0P89dcTfdEkdDKfqxBCiA5Kgl0HtqKgkpycwKXHG0ZnoqoVbNseuGFi27ZjUFUDvXyd6ZHek/CTkgH44b3ZlOfvIDw6htOvuXGvNz9omsb3H2xky58l6AwKY6/vT3zK/gctPtxcGzdS8s/ncCxZAoASFkbsFZcTd9VV6G2tXz8hhBDicJJg14Hd9slq0CA8ycqtx3Vj/Yb78PsdoHVn29ZOWDUzJxl7EzsxE0VR2LbqT/6Y/xkAo6+7FWtk1F6P/fv8baxZmg8KjJraly69Yo7U22qSd9cuSl58iapPPgFVBb2e6AsmEn/DDRg7dWrVugkhhBBHigS7DurL9UXsyKtGU+Desb1x1GygoGAuAKtX9QEUTvJmknhJFvpIE7UOOwtefg6AAaPGknbMoL0ee+0PBfz6Wd2sEhdmkn5c6wUnTdOo/OADip6ageZyARBxxhkkTJuGuUfbHUNPCCGEOBwk2HVAflXj/s/WABDfM4qL0xP5a+VdgEqtsy+VVfGk+GPJ6t+XsOx4NE3j2zdexlFRTkxyZ4ZfeuVej711VWlwVonjzuxG/xEpR+ItNclXVsau++4PXnYNO+44Eu/8P8IGDmy1OgkhhBCtSYJdB/T6z1upKHehGRQeG5NFWfliKip+AoysXp2JTlM4SdeH6LMCAw6v/3EpG37+HkWnY8xNd2C0WJo8buGWKha+vgZNg94nJTH43H0PWHw42ZcsYdd99+MvK0MxGkm443Zip0yRO12FEEIc1STYdTAOt4+Z32wCoEvfeM5ICmf5b08CUFzUD7fbxgB/N7qemYU+wkR1aQnfzgrcUHHi+ReRnN6ryeOW76rhi3+txOdV6ZYdx6mX9m6VWSXU2lqK//EPKt57HwBzRgadn/kHll5N11sIIYQ4mkiw62BmLNqAq9aHatXz1Kje5Be8h9O5FYhg8+YMwjUzg2L7YDupM5qq8vXLz+F21pCUnsng8y5s8piOCjefv/gX7prArBKjr8lG3wqzSrjWriX//+7Es2ULADFTLqPTHXegM5uPeF2EEEKItkiCXQeyo9zJnJ8DU4dlHJvISVEqP619EYDcTdn4/SZO9GbSaXwvFL3C719+yo6cVRjMZsbceAd6Q+MfB7fTyxcv/YWjPDCrxFk39sdoPrKzSmh+P2VvvknJCy+C14shIYHkJ5/ENlRmjRBCCCEakmDXgTzw5VpUv4Y/1sTjJ6ezZetz+HxVeL2JFOzqQRd/LH2yszD3iKY0bxvfvz8bgFMvu4rYzl0aHa9+Vomy/BqskSbOvnkAYbYjO7ivt6CAgr/fjfO33wCIGHU6SY88giGmdYdXEUIIIdoiCXYdxIpt5SzOKUIDBh7fmX6mEn7ND0wLtn5dP3SaniFKH2LG9cDv8/LVS8/i93pJO2YQ/U8f0+h4qqrxTcNZJW4ZQGT8kZ1VourLLyl86GFUux3FaiXp3nuImjChVfr2CSGEEO2BBLsOQFU17v8sBwB/FysPHdudzbm3oWk+qqu6U1mZzAB/V7qO6oM+0sxPc9+jZPtWLBGRjL7u1kZBSdM0fvhgI7l1s0qMub4/8SkRR+z9+O12Ch95lOrPPwfAMqA/XZ5+GlO3bkesDkIIIUR7JMGuA/jkr3zWF1Sj6RVOPL4zaf6/+LP0W0DPxo39AzdMRPfBdnJnynbm8ev/PgTgtKl/Izy68SXN37/ezuq6WSVOvyKLlCM4q4RzxQoK7vo73oIC0OmIv+464q+/DsVoPGJ1EEIIIdorCXbtnNPj44n5gQGDfT0iuK9PZzZtuB2AgoJMamujOM2bScK5vdB0GgtefQHV76PHscfTa8gpjY639scCfv00cNfpsAszyBiUeETeh+b1UvLSvyh7/XVQVYwpKXR++mmsxx5zRM4vhBBCdAQS7Nq515ZtodTuRrPoGXFsMp0cX7LesR5VDWP7tn6BGyb69MaSEcOfX3/Oro3rMVrCOO2qGxpdgt22qpQlczYAcOzobvQfkXpE3oN7y1YK7roL15rAbBlR551H4n33orfZjsj5hRBCiI5Cgl07tquqlleW5gLg7RXJ/6VFk7v6nwBs3dIX1WthCL2JPrsn1aXFfP/+fwAYdsnlRMYnhByrcEsVC15fg6Zq9D4xiRPHH/5ZJQLzvH5I0YwZaLW16KKiSH74YSLPHH3Yzy2EEEJ0RBLs2rF/fL0Bt1dFjTZxRt8kbGVvUeYtw+2KZteuXvT3dyV1ZG/0UWa+mfEyXlctnTP7MHDU2JDjVBTunlWia984Tr3s8M8q4SsvZ9f903F89x0A1pNOpPOTT2JMSjqs5xVCCCE6Mgl27dTKHZV8/Gc+AN7eUdzcWceONW8CsHnzQKxqGMdF9iZiWAobflrG1j9XoDcYOONvN4fMp1pT6eazFwKzSnTqFsGZ1x7+WSUcy5ZRcO99+EtLA/O83nYbsVdcLvO8CiGEEIdIgl07pGkaj36xFgB/5zDOSk/AVPgsquqhsjKZ8vIUTvNmkHBOL1wuB9+9/RoAg8+bRFxK1+Bx3E4vn78YmFUiqlMY424acFhnlVBdLor/8QwVcwLj65kz0un8j39g6d37sJ1TCCGEOJpIsGuHvly9ixXbK9B0Cr6MKK6NK6N43VdomkJu7nF09sfRO7M3Yb1jmf+vf1JbXUVcSldOGD8xeIw9Z5U455aBhEUcvlklXOvWBeZ5zQ30CYy57DI63XE7OovlsJ1TCCGEONpIsGtnXF4/T9UPb5Jm45zUWJSdgeFNCgt74nLEMkTrRczZPdm28g/WLvsOFIUz/nYLekNgLDhN1fjmrcCsEkaLnnE3H75ZJTRVpfyttyie+Tx4vegT4un8xJPYhg09LOcTQgghjmYS7NqZN3/cys6KWjSzDrW7jSkRa6kuXoXfb2T7toFk+7uSOrw3WrjCotf/BcAxZ46jc+buy52/L9hO7h8l6PQKY6/rR0Lq4ZlVwl9Zyc5pt+H85RcAbKefRvKjj8o8r0IIIcRhIsGuHSm2u3h5cd3wJplRnNc5Cm3nzQDk5WVj8kQzKLwXEcNTWPbft6guKSIiPoGhky4LHqNgUyXLPwsMQDz8kl6k9I49LHX1FhWz4+qrcG/ajBIWRuK99xA9caLM8yqEEEIcRhLs2pF/LtyIw+1DjTRCchgXGhfjdhficoWTv7MPI7wZJFyQSXFeLn989RkAo66+EVOYFYBah4eFs3LQNOg1OIk+Q5IPSz09O3aQd+VVeHfswJCQQOqsN7BkZh6WcwkhhBBiNxlfop1YW1DNByt2AIHhTc7rFIZWMBOArVuPJdmXQO+evTD2imLBqy+gaSp9hp5K2jGDgEC/um9nr6Om0k10opVTLs48LK1n7k2b2H7JZLw7dmBMTaXbe3Mk1AkhhBBHiAS7dqB+eBNNA39SGLpYM+PVD1DVWqqqEigv7s4QtRcx5/Tk9y/+R2neNiwRkZx6+TXBY/z17Q62ry5Db9Ax+pq+mCwt31hbu2oV2y+9DF9JCeaMDLrNeRdT6pGZlkwIIYQQEuzahUVri/h5SxmKTsGXGcl5sQq60sD0YFu2DCLb343UoZnYveX8/NH7AIy4/BqskVEAFG6t4pf/BfrmDb0wg/iUlr9ZouaXX8i7Yir+qiosA/rT7Z3/YOzUqcXPI4QQQoi9k2DXxnl8Kk98tQ4Ab7dw9FYDY9wvA1BclIZa3YVBYZnYTk1h4asv4vd66T7gWPoMPRUAV42Xha/noKoa6cd1ou+wzi1eR/u337Lj2r+hOp1YTzqRbm++iT46usXPI4QQQoh9k2DXxv3n521sK3NisOjx9YhgfLQTi/0b/H49W7cdw4neDOLHZbLmh2/IX5+D0Wxh1DU3oSgKmqax+J312MtdRMZbOPXSlp8DturTT9l5y61oHg8Ro04n9dVX0YWHt+g5hBBCCNE8EuzasPIaDy98uwmA2p4RGI06RtX8A4D8nVnEO1Po3S0DXwosm/MWAEMvuozIhMAl0NVL8tnyV2C8utHXZGMOa9l+deXvvEvB3+8Gv5+o8ePp8txz6EyHb/YKIYQQQuxbqwa7kpIS0tPTWbJkSXDdr7/+yuDBg7HZbKSlpTFr1qyQfWbPnk16ejrh4eEMGjSIn3/+OVjm9/u58847SUxMJCIignPPPZddu3YFy4uLixk/fjzR0dHEx8czbdo0fD7fYX+fB2vmNxupdvmwRJvxd7FyTkQRNvcq3O4wduZlc5K/F9Hn9uS7N1/FU+skKT2TgWeOA6Akz86PHwVC4ZDz0+nULbLF6qVpGiUvv0zR448DEDPlMpKfeBzFIKPnCCGEEK2p1YLdjz/+yEknnURu3dyhABUVFYwdO5YpU6ZQWVnJrFmzuO2221i+fDkAS5Ys4eabb2b27NlUVlYyefJkzjnnHJxOJwCPPfYYCxcuZMWKFeTn5xMWFsbVV18dPP6kSZOw2WwUFBSwfPlyvvnmG5577rkj+8abaVORnTm/5gFQnR6BSacw0v4kANu2HUNfb09Sh2SybftKclf8gk6v54y/3YJOp8dT62PB62tQfRppA+LpPzKlxeqlaRrFT82g9IUXAYi/6SYS77kHRSeNv0IIIURra5UmltmzZ/PAAw/w9NNPc9FFFwXXf/TRR8TFxXHjjTcCMHLkSCZPnsy//vUvTjjhBN544w0uuugiTj75ZABuu+02XnvtNT744AOmTp3KG2+8wYwZM0itG2Lj+eefJzk5mS1btqCqKkuWLCE/Px+r1UqPHj2YPn06d911F3feeeeR/xD24/Gv1uFXNSI7h1McZ2acdTPRjh3Y7bE4CvtwnDkD00lxfHfvgwCcMP4CErp2R9M0lsxZT1VJLbZYMyOn9GmxfnWaz8euBx6k6uOPAUi89x5ip0xpkWMLIYQQrUnVVFw+F06fk1pfbejDG3husqyu/IrsK8iKy2rtt9E6wW706NFMnjwZg8EQEuxycnLo169fyLZZWVnBy7E5OTlceeWVjcpXrlxJVVUVO3fuDNk/MTGRmJgYVq1ahaIoxMbG0rlz55B98/LyqKysJLoN3cW5ZEMxSzaUoNcplPSwYVZgpONpIDC8yYneTOLPzeD7ubOpqawgtnMKg8+bBMC6H3exaUUxik5h9NXZWMKNLVIn1eOh4I7/w75oEeh0JD/+ONHnjW+RYwshhBDNUR++mgxZ3t3LBxXOfLWHVLczup9x9Aa7pKSkJtfb7XbC97ij0mq14nA49ltut9sB9rl/U2UADoejyWDndrtxu93B19XV1ft7a4fM51d5/MvA8CbR6VHUhBsYa/qDGFcZpSVdsZX3pldKOmXGXaxZvBCAUX+7GYPRSFm+g2UfbATgxHN7kNQjqkXqpDqd7LzpZmp++gnFaKTzP58lctSoFjm2EEJomobb7979pewN/eLd84u4YXmwbI8vba/qDR5fYfdVi/orGCHrmihvqL68Ydn+jtnU8Zo6Z5Pna2IfBQWdokNRFPSKHkVR0KELrtMpgeVG69hjnwbrgvvUPerPUb+s1+lD1zU4Z1Pr6s/T8FgNz6nT7a6fqqkHF84OMXw1V5ghLORhNVhD1xkbl2fEZByRuu1Pm+rtHh4eTmVlZcg6p9NJREREsLy+P13D8vj4+GBoa6o8IiICVVWbLAOCx9/Tk08+ycMPP3zQ7+dgvL88j03FDmxhBvJTwrAoGqNcL6GqOrZtOY6x/l5EnNWVL579OwADRo0lpXdfvG4/C15fg9+r0rVvLMeM6toi9fFXVbHjb9dR+9dfKFYrqS+9SPiQIS1ybCFE+6FpGl7VG/ql6w398t1nINtLa4nT68Tld6Fqamu/RdHOHEj4alS2j3KLwYJOab/9xttUsMvOzmbhwoUh69auXUt2dnawPCcnp1H52LFjiYmJoUuXLuTk5AS3LywspLy8nOzsbFRVpaysjKKiIhITE4P7pqSkEBXVdMvWPffcw+233x58XV1dHey/dzhU1Xr556JAi5u1VzQYdYzWLSVKrWJnfhbpNVmkDE5nxY+fUVm0C1tsHMMuuQKAZf/dQEWhk/AoE6dfkYWiO/R+db6SEvKuvgb3hg3ooqLo+uq/CRs48JCPK4RoPV6/l+LaYoqdxRTVFFHkDDwqXZVNh7IGgcyv+Q97/cx6c+MvYmPTX85Wo7XxF3vdtkadEQUFDS147ODy7lWh5ZrWeF3dcn3Znpoq39e6kH2b2qeJ+tQva2j4NT+apqFqKirq7uX6xx7rGu1Tty5knz3WaVpgn4brG54zZD9NCzln8FyoofvtUT8F5YDC155l7T18HU5tKtidf/753HXXXcycOZMbb7yRH374gTlz5vDpp58CcOWVV3Leeedx4YUXMnToUP71r39RVFTEeeedB8DUqVN57LHHOOGEE4LDmQwfPpyePXsCMHToUKZNm8Zrr71GaWkpjz76KFddddVe62M2mzGbzYf/jdf54Lc8KpxekuOsbE0wEab4OdP3Nl6PmdLtxzHclIE7U2XFI4GbF0676gbMVivrf9nF+p8LURQYdVVfwiIOfSw5z8588q66Eu/2PPQJ8XR9YxaWXpmHfFwhxOHj9DoDga0urBU7iymsKQy8rgm8LnOVHfJ5jDrj/gPWXr6U65cb7WO0YtFb0Ov0LfBJCHH0alPBLi4ujkWLFnHrrbfywAMPkJCQwAsvvMCIESMAOO2003j55Ze5/vrr2blzJ3379mX+/PnExsYC8MADD+D1ehk2bBh2u50RI0bw4YcfBo8/b948brrpJtLS0tDpdEyZMoXp06e3ynttylVDexAdZuT54jLQKZyhfU0k1WzefgKDXNnEnduTT96egaaqZJ40jPRBg6korGHp+4FWvuPHpdElM+aQ6+HOzSXvyqvwFRVhTEmh65uzMHVtmUu7QogDp2ka1Z7qkIBWH97q1xU5i7B77M06nlFnJNGaSCdrJxLDE0myJhFjidl3SGsQ1Iy6lrkpSwjR8hRtb+3LopHq6mqioqKoqqoiMrLlBvxtaH5JJVPXbCNM8fGcehW6Gj2Fv13GOQnD2dF1K8veewtLuI0r/vkKZmsk82asoCy/hi69Yjjn1oHoDvESbO3qNey45hr8lZWY0nvSddYsjHWXroUQLU/VVMpd5SGXRfcMb8XO4mZ3GrcarCSGJ5JoTQyGt6TwpMDr8MDrGHNMi08vKIQ4fA4kf7SpFrujnapp/GNrIQBnqJ8RgYM1uacx0tcbw7BofnpmDgDDp1xNeHQMS+aspyy/hrAII6OuzDrkUFfz63J23nADak0Nln79SH3tVQwxh94CKMTRyqt6KXWWUuQsotBZGBrY6paLncX4tObNgBNtjg4JaPXhrX5dojURm8l2mN+VEKItk2DXhnxVUsXaGhdWxc1Y7VPKyzuTUnoiXY7rybefv4HP66Fr9gD6Dj+NTSuKyPm+ABQYNbUv4VGH1hfQ/t1i8qdNQ/N4sA4eTMq//oXeFr7/HYU4StX6ahvdgFC/XB/eymrLmuw0vycFhYSwhOCl0T3DW5I1iQRrAhaD5Qi8MyFEeybBrg3pHmZiWISfhOpPCNdq2J47mrMNGRTYtpG3ZhUGk5lR195MdWkti99dD8Bxo7uRmhV7SOet+vxzCu6+B/x+bCNH0uW5f6I7gjeNCNFWuP1uymrLKK0tpay2jDJXWdPPtWXYvc3rz2bQGUJa1vYMb4nWROLC4qTfmhCiRUiwa0P62szc5r2fGjaxa1cGA6qOJ/L0ZL589z4ATr5wMhGxnfjoH7/jdflJTo/ihLPTDumc5e+9R9Gjj4GmEXnO2XR+/HEUo3zBiI6j1lfbZDgrrS2l3FUess7hdRzQscMMYSEBranwFmOJkWEZhBBHjAS7NmTXro+prd2I6jPi2jKcXp168NNf83DX1JDYI51jx57Ljx9tpiTPjiXcyBlX9UWnP7gvDE3TKHv1NUpmzgQgZvJkEu+7F0UnX0Ci/fCqXgocBeRV55Fnz2OHfQdFNUUhIa7GW3NAxzTqjMSFxRFniQs+x4fFN15njSfCGCE3IQgh2hQJdm1IZWUiJSXdsFcncGLtAGqOd7Px7R9QdDrO+NstbFtdzqrvdgJw2hV9sMUcXH8bTdMofuYZyme9CUD8DdcTf/PN8gUl2iS3381O+0522HeEBLi86jx21exq1qC5Jp2JuLC6gFYXzmItsYGQtkd4k7AmhGjPJNi1IeHWbhRtHEuKO4akfl35+NMZABx/9vlYIpL57IXfABh4eird+8Uf1Dk0TaPo8SeoePddADrd/XfirriiReovxMFyep3ssO8IBDZ7HnnVecHlopqifd6AYNFbSI1MpWtEV7pGdCUpPKlRC5vNaJOwJoQ4Kkiwa0Piik2MrzkezDrWVP+Ao6KcmOTOnHDeJD5/IQe300en7pGcOL7nQR0/JNQpCkmPPEzMBRe08LsQoml2jz0Y1nZUhwa4ktqSfe4bbgwPBLfIQHhLjUgNLseHxUtoE0KIOhLs2hBLRgy27ARqw5z88eHnAIy69mZ+n59P0dZqTGEGRl/dF73hwPvB7Rnqkh97lOgJE1r6LYh2wOFxsKlyExvKN7CpYhNVnqrAHI+qPzjXo6qp+DRfyPqGZcFtVF+T6+uX/ao/uM7td++zXtHmaFIjUkNCW/2yDKgrhBDNI8GuDTHEWIi6MJ1P/34LAP1OG42qdubPhSsBGDmlN5HxYQd8XAl1RydVU9lh38HGio1sKN/AxoqNbKzYSL4jv9XqFGeJo2tkXWBr0AKXEpFClDmq1eolhBAdhQS7NubX/31ARcFOwmNiOe6syXzyXA4A/U5NoecxnQ74eBLqjg7Vnmo2VWwKhrhNFZvYVLlpr9NQJVoTyYzJJDMmkwRrAnpFj07R7X7W7X5d/2i4vuG2Bp0hdN8mjqVX9ESZowg3yqDXQghxOEmwa0NKtm9l+afzABh5xd9Y+v5WXA4v8ak2hkw48H51mqZR9NjjVMyZI6Gug/CrfvLsecHWt43lgeeCmoImtzfrzaRHp5MZk0mv2F5kxmSSEZ1BtCX6yFZcCCHEESHBrg0p25mHTm+g53GDqShOZtfmbRjNekZfnY3BqD+gY0moa/+q3FW7A1xdiNtcuRmX39Xk9snhycFWuMzYwHPXiK4YdPLfXAghjhbyG78N6X3ycJLSe1Gc52TRm9sAGHFpb6ITrQd0HAl17YvT6yS3MpfNlZvZXLk5uFzkLGpye4veQkZMxu4QF5NJRkyG9FETQgghwa6tMYXF8sPczaBB1tDOZByfeED7S6hru5xeJ1urtoaEt9zK3L1eRgXoYusSDHG9YgKXUlMjUtHrDqwFVwghxNFBgl0boqkai97MobbaQ2zncIZemHFg+2saRY8+RsV770moa0UunyskwNWHuHxH/l4H2o0Pi6dndE/So9ODz+nR6USYIo5w7YUQQrRnEuzakFWLd7JzfQUGk47RV2djNDW/VaZxqHuM6AnnH8baCo/fw9aqrY0uo+507ETV1Cb3ibXEhgS3+mW5jCqEEKIlSLBrQ3oNTmLn+nJ6HNOJ2M7NHxZCQt2Rsa1qG9/kfUNOaQ6bKzezw75jr/OURpujG7XA9YzuSawl9gjXWgghxNFEgl0bYrEZGXtD/wMaYV9C3eFV4ChgwbYFzN86n3Xl6xqVR5giGoW39Oh04ixxMlOCEEKII06CXRsjoa71lThLWLh9IfO3zmdlycrger2i58TOJzIkeQjpMYFLqQlhCRLghBBCtBkS7NqpQKh7lIr33g+EuscfJ/r881q7Wu1WhauCRdsXsWDbAn4r/C14k4OCwvFJxzO6+2hGdRtFjCWmlWsqhBBC7J0Eu3ZIQl3LsHvsfJf3HfO3zeeXgl9C+ssNSBjAmLQxjOo2ik7WA5/KTQghhGgNEuzaGQl1h8bpdbJ051Lmb53PD/k/4FW9wbI+sX0YkzaG0d1H09nWuRVrKYQQQhwcCXbtiIS6g+P2u/lh5w/M3zafZTuXUeurDZb1iOrBmLQxnNn9TLpHdW+9SgohhBAtQIJdO6FpGoWPPELl+/+VUNcMXtXLLwW/8PW2r/k271tqvDXBstSIVM7sfiZnpp1JRnSG3PwghBCiw5Bg1w40CnVPPEH0eeNbu1ptjl/1s6JoBfO3zuebvG+oclcFyxKtiZzZ/UzGpI0hKy5LwpwQQogOSYJdGyehbjdVU6l0V1JeW065K/Aoc5VRVltGsbOYH/J/oMxVFtw+1hLL6O6jGZM2hgEJA9ApulasvRBCCHH4SbBrw46GUFfrqw2EtNrdQa3cVU5ZbVnI6/LacircFXudqqtepCmSUd1GMSZtDIMSB6HXNX9aNiGEEKK9k2DXRmmqSuGjj7brUOf0Ovl1168U1BQ0GdTKXGUhNzI0V5Q5ilhLLLGWWOIsccHlvvF9OSn5JIx642F4N0IIIUTbJ8GuDWrPoa7YWcySHUtYvGMxv+76NWQ4kb0x6UzEhe0OaA2Xg+EtLPAcbYnGqJPgJoQQQjRFgl0b0yjUPfkE0ePHt3a19krTNDZWbGTJjiUs2bGENWVrQspTI1LJisva3bIWFtrSFhcWh9VglZsZhBBCiBYgwa4NaS+hzqt6+aPoDxbvWMySHUvId+QHyxQU+iX0Y0TqCEakjqBHVA8JbUIIIcQRIsGuDSl/6+02G+rsHjs/5v/I4h2L+T7/e+wee7DMrDdzUvJJnJp6KsNThxMfFt+KNRVCCCGOXhLs2pDoCyZiX7iQ6IsvahOhbpdjF0t2LmFx3mJ+K/oNn+oLlsVaYjkl5RRGpI7gxOQTsRqtrVhTIYQQQoAEuzZFHxlJt/fmoOhbZ4gOTdNYV74u2F9uXfm6kPLukd0Z0TVwibV/fH8ZSkQIIYRoYyTYtTFHOtR5/V5+K/yN73Z8x5IdSyhyFgXLdIqOgQkDOTX1VE5NPZW0qLQjWjchhDiqqX7wucHvBlUFnR50hgYPPUgfZrEHCXZHIZfPxXd53/Hdju/4If+HkHlUwwxhDOk8hFNTT+WUlFOItcS2Yk2FEOIIUdVAgPK5we/Z49kNPs8ez01t5zm0fffcfj8DsgOg6HeHvJBnQ8u8VvQtcMwm1ukNYLQ2eISBqW5Zb5LAeggk2B1FNldsZt6meXyW+1nIzQ/xYfEMTxnOyK4jOSHpBCwGSyvWUghx1NI08LnAWxt4hCzXgtdV99yMcp97H8Gq7tnv2b3coA9xu6L5we8Hf2tXpAUpOjCGB8KeMQxM9csNQqDRWhcEw/YeEI1hez9OBx7IXoJdB1frq2XhtoXM2ziPv0r+Cq5PDk/mrB5nMSJ1BNnx2TKPqhCiMU0LhJ/9hizX7nVe5+5tfXWvQ8r3EdJ8rtZ+x7vpzYGWI4MpsNzoub684fOe2x3KvnucX6cPXJpVfQ0e/kCwa/g6pLypdU29bs42+zmuph7YMXyewL+/x1n3M+CE+gHtNRU89sDjcNEZ9xIEDzAgNtw+OhXMEYevzs0kwa6D2lixkXkb5/FF7hfYvYH/HHpFz6mppzIxcyInJZ8kNz8I0ZZpWt0XoKtBS1Pdss9V19rU8LW7QSvVPsqCrVh7butqHNJ8tc27HHg46IyBL0uDBYyWwJenwdJgXd2XrCEsUG6o28ZoCawzmPcemPYXrPTGtnkpUKcHTK1di8PH7637Q6AWPDW7Q7+3Znf4axgEg4/6gLhnWRPHqf95Vr3grgo8WsoFs6Hv+JY73kGSYNeBOL1OFmxbwLxN81hVsiq4voutCxMyJjA+fTwJ1oRWrKEQLUjTwOMAVzW4q8FtDyz7PaHbhXxBK/tfv899Gqyu79jeKCg1FaL2DGTN3BbtoD6aw0LR7Q5RwZBVF6KCIath8GoQsoyWPUJYE/vsWa6Xr6ejjt4I+iiwRB2e4wdboBsGxAMNjQ2C4p6h0Ww7PPU+QPI/pwNYX76eeRvn8eWWL3F4HQAYFAMjuo5gYuZETkw+US61irZF9QfC2J6hzF0NrqoGZfbQ7YLb15W1VmtSa9AZdrc2hbRG1T8sda1PlkDLU5OvzXsvM5ibCG4NQlpbbcUSorkUZff/l7CY1q7NYSPBrp1yep3M3zqfeRvnhczPmhqRyoSMCZybfq7MAHG0q//rdK9363l3dyD3+wLPqrduvbfB672V+fZY9gReN1z2e+v28wT+6q0PZB5Hy71PnQHMkWCJDDwbzLvf/+4PI/RzaYn1im53IGpWwNpf+GoqrDV4LV0nhBDNIMGunVlbtjbYOuf0OQEw6Ayc1vU0JmZO5ISkE6R1ri1R/bs7j4f0/2jYCb12j7L6Duh73NHn9+6xrmFYa1het66+I3JbZrA0CGURDZajdgc1c8Tu5ZCyuu2NYdKSJIQQdSTYtQM13hq+2voV8zbOY23Z2uD6bpHdmJgxkbN7nk1cWFwr1vAI0zRwVYK9EOy76p4LA2EGrUELyx7L9fs2a5m9b1N/l2CjwFbb4I7AunV79vdqTcFLeXvecWcKXGbTGev6uNQvmwL9nPSmutcNlw9iO5O1QVCLqmtd68AdwYUQohVIsGujNE1jbdla5m6cy1dbv6LWVwuAUWfk9G6nc0HmBQxKHITSkVoqNC1wmS4ksO0CR1Hoa3th2xoWobmC/ZasuzuLBx/WpjuQNzXsgaHurr29DYvQ1DALehPopCVXCCE6Ogl2bYzD4wi2zjWcq7V7ZHcmZk7knJ7nEGNph50+PTWNW9iaWm4wC8Z+hcVARDLYEiEiKTC2EABKg0tzdc+Kso9lmrFNg2W9aS9hrOE66+5O6PUd0DtSCBdCCNEmSbBrQ77a8hUP/fxQsHXOpDNxRvczmJAxgeMSjzu01jm3A8o2QclGKN0YWPY4CVyuVOse2u67DBu+1tQG2+25TmuwXxPH0lSorQh0mm8ucxRE1IW1iOSmn21JgeAkhBBCiCAJdm1Iekw6tb5aekb1ZGJmoO9clPkAxvPRNKgpgZINgfBW/yjZCNU7D1/Fm8sYvkdIayq4NWx5E0IIIcSBkGDXhmTGZPLhuA/pHdt7361zqh8qt+9ufSvdsHvZVbn3/cITID6z7pEBlujAkA2KUvdc1wer0ToldF3I66bWNdxPqbtkmtQmplo5WJqmsavKxbpd1WgaxEeYibeZiLeZsRjb5zAUtR4/5U4PRp1CnM2MXieXioUQor076oJdcXEx1157LUuWLMFgMHDppZfyzDPPYDC0jY+iT1yf3S+8tVC2ObQFrmRjYJ3fvZcjKBDTbXeAS+i1e9kae0TeQ3unqhpby2rIKagmp6CKtQXV5BRUU17T9B2uEWZDMOglRJiJtzV8mIiPMJNQ9zrMdHhCoKZpOD1+yms8lDrclNd4KKvxUF73KHN4KK9x15UH1tV6d88arlMg3mamU6SZThEWEiPNJERY6BRhJjEy8NwpMvAejPqj6yYMVdXwqipev4bXp+L1q7h9KqqmBXocEPj8A8/1ezUsA63uzupgz4W6chrso9H4eLvL9zhe3U4hx9cI2Wdvx6NhWYN9FMCgVzDqdRh0Cga9gkGnC1ln1OvQ15UZ9yjT65SOdTNXM2iahk/V8NT9XHh8gZ8Nr1/FU/fa4wtd9vo1PH5/gzKtQVmDbRvu71NRFIgKMxJlNRIVZiQ6zBR4rntdXxZhNhx1/w4iVNtIM0fQpEmT6NKlCwUFBRQWFnLOOefw3HPPceedd7Z21aBwDax8f3eQq8xjr1MK6c2BVrdggMuE+F4Q1zPQWV80i8ensrHIXhfeqsgpqGbdrmpqPP5G2+p1CukJNsxGHSV2N6UON16/ht3tw+72sbV0/zd+2MyGYEtfvM1MfMTu5fpQmFC33qdqlDsaBjQ3ZcGQVr/eHdzG7TvwWRiMegW/qqFqUGx3U2x3A3vvD6koEBduCoa+YPCLDCwnBEOhGbPh4EOspmm4fSpur4rL58fl9ePyqtR665cDr911ZbUePy6fisvrD35BBr5A1QavVTw+Lbjs9e/+Yg2ua/C6fj+f2oam9WrjDHuEPr1Oh1Efus4QfFYw6OvK67bT169rUKbX7S5vWKbXKSH7GvYIpECDf+PQZ2+j0FX/s+IP/NzUlbmDPxN72c+vho5f3QbodQqRFkNd0KsLf3XBLyQEhhmJtoaGw/Z69aE1qWrgd5XL68dq1h/S772WomhaW/uxPHw2b95MRkYG+fn5dO7cGYAPPviAu+66i+3bt+93/+rqaqKioqiqqiIyMrLlK7jha3h/Uug6S3Roq1v9cnTXfY5E71c17C4vVbVeqmt9VNV6Qx52lxeDTiHcbCDcbMBW9xxu1mOre12/zmrSd4i/AGvcPtbtqg62xOUUVLOxyI7X3/i/gNmgo09yJH07R9K3cxR9O0fSKyki5BefpmlU1/oocQRCXqnDTandTakj0GpWH/5KHR5KHG48BxG8DpTZoCMu3ESczUxsuIm4cBOx4SZibfXLDdbbTESYDagalDkCoa6o2hUIeNVuiu0uiqrdlNgD60rs7gMKOdFWI4kRgdAXCHo6XF41JJjVB7X6X4z1610+f5v7wqxXHyj0SqCFSoFArwMIvK6/gbr+NfU3RAcKlOC2oKAEX1O3fXCbuvLQfULPxx7nqD8eTZU1cTwalKsa+PwqPn+ghdKvaoHlunDr9TdYp7a9QNMW6BQwGXSY9LrQZ4MO457r9Hus30+ZpmlUOb1U1v0Or3R6qa71UlnrCb4+mD/uGjIZdE2EwNDwF201EtkgLNY/DG2oJb8+bNX/ftnzD8LAH4IN/iD01JX5/NR66v6YbLhNE39UNvzdVW/W5YM4rU/iYXlPB5I/jqoWu5ycHGJjY4OhDiArK4u8vDwqKyuJjo4O2d7tduN2777kWV19AHd2HoykfjD4+rrWt0w8MRlU66Kocu0OZtVOL9UbvFTVbtm9bo/gVu3yYnf5WqxaigLhpkDoC4ZAUyD0RVgarDc1HRLDTIG/YixGXcizUX/4Lt2U13iC4a0+yG0trWnyyyjSYgiGt75dAkGuR3z4fn9RKYoSuCxiNZLead+TP2taoGWvYfBrGP5K7LvXlTrcuLyBXxZWkz4YxBqFtXATcbZAWKtfdzAhXK9Ap0gLnSItZHfZ+806qqpR7vQEQ18gADYVBN14/CqVzsCXzYYi+wHVZ086BcKMeix1D7NRh8WgJ8wU+FmyGBqsN+oxN/iSNAYfSug6gw5T3WXE+kew3BBYb2qw3thgW+mLGOBXd4c+f13YaxgEfcHn3WXBdXWXtn3+3cv+4Lr6INlgXfDYdcv1x/dreEPOtTuEalogqOz589CcEGUK+XnY/dq8x3ZGvYJZrw++bu2fDZfXH/weqHR6Gyx76kJg47L6h7/ukvLulvsDYzMbGrQE7hkCTY3KLEZ9XTCqC1NNBLDd6wJByt1gm9oG2+y53ZH4I7op9b+3W9tRFezsdjvh4aF3XFqtVgAcDkejYPfkk0/y8MMPH6nq8WOJmUfWj6XqTy9VtQ5qvSsO+ZhWk55Iy+6/qiLDjESGGYi0GFE1DYfbh8Plo8bjw+H2U+P2UeP24ah7Vuv64Tjq1sGB/4ffG50CZsPuL+qmns3B591f2k09G/U6dpQ7ySmoZm1BFQVVTQ9g3CnCTHaXuhBX1xqXEhN22FskFUUh0mIk0mKkR8K+t9U0jRqPH4NOaVOXRnQ6JXjZOIu9/8WoaRpVtd7dLYDVgS8Kr18NBDGjPhDGTHosdf9+gYcuGODMDbY7nH8AiIOn1ynoZf7aNqX+/1Ji5IENBaXVfReEtgTuGQI9Ia/rt7O7A40I9d8R+ZW1h+OtHTSTXoe5we+WsLrfNZY9Xtc3QISZ9HV/ODb+XRX4Y3Jvx9C3erCvd1QFu/DwcJxOZ8i6+tcREY3v2Lznnnu4/fbbg6+rq6tJTU09bPXzqVqTrRsRlt1/CTUMaVFWY7AvRWRYaHir39ZkOPjmcU3TcHlV7G4vNXWhzxES/ALr7HXrGpbXuP2BZY+PWs/uS20Nm61VDWrr/tKClp/XtFucNeRSat/OUSREmFv8PC1NURRs5vb7X1NRFKKtJqKtJjIT2++d0EIcLRRFIcJiJMJiJOUAx7/3+VWqXb5gy2DDVsCGIbBhOKyq9VLr8TcKV80OW3tu1+CPw7Yato6k9vvtcRCys7MpKyujqKiIxMTAdfC1a9eSkpJCVFTjS1Bmsxmz+cgFgQEpUbx71eAGAc1AhMXYaj+YiqIQZgr8p6KFvp+DneJ9Km5vaOALdIRv4tkb6AfhbqqswXNChJnsuhDXp3MkkRZjy1RaCCFEkwx6XbBrCMgYpG3BUXXzBMCwYcNISUnhtddeo7S0lLPPPpuJEyfy0EMP7Xffw37zhBBCCCHEHg4kf7Sd21iOkHnz5uHz+UhLS2Pw4MGceeaZTJ8+vbWrJYQQQghxyI6qS7EAiYmJzJ07t7WrIYQQQgjR4o66FjshhBBCiI5Kgp0QQgghRAchwU4IIYQQooOQYCeEEEII0UFIsBNCCCGE6CAk2AkhhBBCdBAS7IQQQgghOggJdkIIIYQQHYQEOyGEEEKIDkKCnRBCCCFEByHBTgghhBCig5BgJ4QQQgjRQUiwE0IIIYToIAytXYH2RNM0AKqrq1u5JkIIIYQ4WtTnjvocsi8S7A6A3W4HIDU1tZVrIoQQQoijjd1uJyoqap/bKFpz4p8AQFVVCgoKiIiIQFGU1q6OaKC6uprU1FR27NhBZGRka1dH7EH+fdo2+fdp2+Tfp207Ev8+mqZht9vp3LkzOt2+e9FJi90B0Ol0pKSktHY1xD5ERkbKL742TP592jb592nb5N+nbTvc/z77a6mrJzdPCCGEEEJ0EBLshBBCCCE6CAl2okMwm808+OCDmM3m1q6KaIL8+7Rt8u/Ttsm/T9vW1v595OYJIYQQQogOQlrshBBCCCE6CAl2QgghhBAdhAQ7IYQQQogOQoKdaNdWrlzJqFGjiI2NJSkpiSlTplBaWtra1RJ78Pv9nHrqqVxxxRWtXRWxh/LycqZMmUJcXBwxMTGMHz+eXbt2tXa1RJ0//viDU045hejoaJKTk7n11ltxu92tXa2jXklJCenp6SxZsiS47tdff2Xw4MHYbDbS0tKYNWtWq9RNgp1ot2praxkzZgxDhgyhsLCQnJwcysrKmDp1amtXTezh4Ycf5vvvv2/taogmTJgwAYfDQW5uLnl5eej1eq655prWrpYgMNvRuHHjmDhxIuXl5fz2228sWLCAp59+urWrdlT78ccfOemkk8jNzQ2uq6ioYOzYsUyZMoXKykpmzZrFbbfdxvLly494/STYiXYrLy+PAQMG8MADD2AymYiLi+Nvf/sby5Yta+2qiQa+++47PvroIyZMmNDaVRF7+P333/nll194++23iY6OJiIigtdff50ZM2a0dtUEgbCwa9cuVFUNTv6u0+mwWq2tXLOj1+zZs7nkkkt4/PHHQ9Z/9NFHxMXFceONN2IwGBg5ciSTJ0/mX//61xGvowQ70W716tWL+fPno9frg+vmzZvHcccd14q1Eg0VFxdz1VVX8d5778mXURu0fPlysrKyeP3110lPTyc5OZk77riD5OTk1q6aAOLi4rjtttu44447MJvNpKamkpmZyW233dbaVTtqjR49mtzcXCZNmhSyPicnh379+oWsy8rKYuXKlUeyeoAEO9FBaJrG/fffz+eff87zzz/f2tURBC4jXXrppdx+++0MGDCgtasjmlBeXs6qVavYtGkTf/75J3/99Rf5+flMmTKltasmCPwfCgsL46WXXqKmpoY1a9awdu1aHnzwwdau2lErKSkJg8HQaL3dbic8PDxkndVqxeFwHKmqBUmwE+1edXU1EydO5N1332XZsmWN/moSrePJJ5/EYrFw8803t3ZVxF7Uj5Q/c+ZMIiIiSExM5PHHH+err75qlS8kEep///sfH330Eddffz1ms5m+ffvy4IMP8vLLL7d21cQewsPDcTqdIeucTicRERFHvC6NY6cQ7Uhubi5jx46la9eurFixgvj4+NaukqjzzjvvUFBQQHR0NEDwl94nn3xCZWVl61VMBGVlZaGqKh6PB4vFAgTuYAaQSYlaX15eXqM7YI1GIyaTqZVqJPYmOzubhQsXhqxbu3Yt2dnZR7wu0mIn2q2KigpGjhzJkCFDWLBggYS6Nmb9+vVUV1dTWVlJZWUll1xyCZdccomEujZk1KhR9OjRgyuvvBKHw0FJSQn33Xcf48ePb5WWBhFq9OjR7Nq1iyeeeAK/38+WLVt47LHHuPTSS1u7amIP559/PoWFhcycOROv18vixYuZM2cOV1555RGviwQ70W699dZb5OXl8eGHHxIZGYnNZgs+hBD7ZzQaWbp0KQaDgYyMDDIzM0lJSeHNN99s7aoJAi2qX3zxBZ999hlxcXGMGDGCs88+u9EdmaL1xcXFsWjRIubOnUtcXBxXX301L7zwAiNGjDjidVE0aW8XQgghhOgQpMVOCCGEEKKDkGAnhBBCCNFBSLATQgghhOggJNgJIYQQQnQQEuyEEEIIIToICXZCCCGEEB2EBDshhBBCiA5Cgp0QokPavHlza1ehzauqqqKkpKS1qyGEaEES7IQQHc6dd97JY4891qxtlyxZgqIoh60uiqKwZMmSg9r3oYce4tRTT23R+jSUnp5OTk4OAHPmzKFv376H7VxCiCNDgp0QosORVqjmKS0tDS5Pnjw5GPKEEO2XBDshRJuwl49lkgAABzRJREFUbds2FEXhP//5D926dSM8PJypU6fyww8/MGDAAGw2G6eddhqlpaWoqspTTz1Fz549iYqK4oQTTmDBggUAPProo8yZM4c5c+YwYMCAA67H6tWrGTt2LLGxsaSkpHDDDTdQVVUFgKZpzJgxg379+hEdHU1MTAyTJ0+mtrYWAK/Xy+233058fDwJCQn84x//OKBz//TTTxx//PGEh4dz8skns3Xr1mDZ22+/Tffu3UO2P/XUU3nooYcAuOKKK7jgggvo06cPCQkJ5Obm8tNPPzFy5Eg6d+6MxWJh0KBB/PLLLwD06tULgDFjxvD00083Ov7333/PKaecQnR0NGlpaUyfPh232w0EWhInTpzIpZdeSnR0NCkpKdxzzz0H9F6FEIeJJoQQbcDWrVs1QJs0aZJWU1OjrV69WtPr9dqAAQO0nTt3aiUlJVp6err28MMPaw8++KCWkpKi/f7775rX69U++OADzWw2a8uXL9c0TdMuv/xy7fLLL2/WeRcvXqzV/yosLS3VYmNjtTvuuENzOp3arl27tJEjR2rnnHOOpmma9sEHH2hJSUnaxo0bNU3TtHXr1mmxsbHaG2+8oWmapk2fPl3LyMjQcnNzNYfDoV122WUaoC1evHi/9SgtLdWio6O1p556SvN4PNoPP/ygRUZGasOHD9c0TdPeeustrVu3biH7DB8+XHvwwQeD79lms2mrV6/WKioqNKfTqcXGxmovvfSS5vf7NYfDoV144YXa0KFDg/s3rFvD469fv14zm83azJkzNbfbrW3atEnr37+/dsstt2iapmkPPvigpiiKNnv2bM3n82lffvmlpiiK9vPPPzfrMxdCHD7SYieEaFP+7//+D6vVSnZ2NsnJyVx++eV06dKF+Ph4TjrpJLZt28abb77JPffcw7HHHovBYODCCy/knHPOYdasWYd07k8//RSTycSMGTMICwsjKSmJF198kc8++4zCwkLGjBnDb7/9RkZGBiUlJZSWlhIfH09+fj4A77zzDnfeeSc9evQgPDycF154odn997744gvCw8O56667MBqNnHzyyVx55ZUHVP8TTzyR7OxsoqOjMZlM/PLLL9xwww243W62bdtGXFxcsK77MmfOHPr378+tt96KyWQiPT2dJ598ktdffx1VVQHIzMxkypQp6PV6xo4dS3JyMhs3bjyg+gohWp6htSsghBANxcXFBZf1ej0xMTHB1zqdDlVVKSoqokePHiH7paWlsXLlykM6d1FREd26dUOv14ccFwKXivv06cN9993H559/TqdOnRg4cCButzsYdvLz8+natWtw3+joaGJjY5t17vz8fFJTU0OCYM+ePfnzzz+bXf/OnTsHl/V6PYsXL2bMmDE4HA769u2L0WgM1nVf9vb51tbWUlxcDEBSUlJIeXOPLYQ4vCTYCSHalOa0cHXv3p3c3NyQdbm5uSQnJx/Subt378727dvx+/3BcFd/nuTkZO6++27y8vLYtm0bkZGRAPTr1y+4f2pqKlu2bAm+rqmpobKyslnnTk1NZfv27aiqik4XuJiyc+fOYLler8fj8YTs0/DmBwj97H799VduvvlmfvrpJ4477jgAnn32WdavX7/funTv3p2PP/44ZF1ubi5ms7nZQVUI0TrkUqwQot25+uqreeqpp/jjjz/w+/3MnTuXzz77jCuuuAIAi8USvOHhQIwdOxZFUfj73/9ObW0thYWF3HrrrYwcOZJu3bpRVVWFxWLBYDDgcrl49tlnWbNmTTBwXX311Tz99NOsW7cOl8vFHXfcgd/vb9a5zz77bFRV5aGHHsLj8fD777/z+uuvB8v79OlDYWEhixcvRtM03n33XdatW7fX41VVVaHT6QgLCwPgl19+4fnnnw8Jh2azucnP6eKLL2bt2rXB7XNzc7n33nuZPHkyJpOpWe9HCNE6JNgJIdqd22+/nRtvvJFJkyYRFRXFE088wX//+1+GDx8OwKRJk/jxxx9DLos2R1RUFIsWLWLNmjWkpKSQnZ1N9+7dmTt3LgCPPfYYTqeTTp060b17d3755Rcuu+wyVq9eDcDf//53Lr30UoYPH05ycjJRUVEhl5b3JTo6mgULFvDtt98SExPDVVddxcSJE4PlgwYN4v777+fyyy8nNjaWb7/9NqR8T6NGjeKGG27glFNOISYmhhtuuIFbbrmF4uJiioqKAPjb3/7GxRdfzH333Reyb/fu3VmwYAHz5s2jU6dODB06lFGjRvHSSy8d0OcphDjyFE3TtNauhBBCCCGEOHTSYieEEEII0UHIzRNCiA6ruLi40d2de3I4HEekLvHx8bhcrr2Wr1279oAvHQshxJ7kUqwQQgghRAchl2KFEEIIIToICXZCCCGEEB2EBDshhBBCiA5Cgp0QQgghRAchwU4IIYQQooOQYCeEEEII0UFIsBNCCCGE6CAk2AkhhBBCdBAS7IQQQgghOoj/BzVnMONVNIiLAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"# ax = fig.gca()\n",
"Ncount_mean.plot.errorbar(hue='final_amp')\n",
"# plt.xlabel('MOT AOM Frequency (MHz)')\n",
"# plt.ylabel('MOT Gradient Coil Current (A)')\n",
"plt.tight_layout()\n",
"# plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZp0lEQVR4nO3dd3wUdeL/8dem9w4pJCSBhJqIBUEpIiBSPCnKiQIize8deiigoqiInihiOdFTvJ+KEhWR4nlioSrYQBDpAQRCCaQSIMmGkLrz+yOyEgUMkGSSzfv5eOzDZD4zu+/ZaPJ2ZuczFsMwDERERESk3nMyO4CIiIiIVA8VOxEREREHoWInIiIi4iBU7EREREQchIqdiIiIiINQsRMRERFxECp2IiIiIg5CxU5ERETEQajYiYiIiDgIFTsRMcWRI0fo1q0bHh4eNG7cmC+//BKLxcKaNWuq/bUsFgtPPvlktT9vfZKRkcEdd9xBSEgIfn5+DB48mLS0tD/d7rvvvqNr1674+fnRtGlT7r//fqxWa6V1Dh06xG233Ubjxo0JCQlh4MCBpKSk1NSuiMh5uJgdQEQaplmzZrF27VrmzZtHkyZNSExMZN26dbRp08bsaA6nrKyMvn37UlBQwBtvvEFpaSmPPPIIN954I1u2bMHV1fWs2+3YsYNevXrRpUsXFi5cyJEjR5g8eTL79+/ns88+A6CwsJBevXpRVlbGv//9bzw8PJg6dSrXX38927dvJyAgoBb3VERU7ETEFMeOHSMiIoLbbrvNvuyaa64xMZHjWrRoEVu3bmXHjh20bdsWgMsvv5yEhAQWLFjA8OHDz7rdhx9+iMVi4X//+x8+Pj5ARUkcN24chw4dIjo6mu+//569e/eyatUqevbsCUDLli1p3bo1n376KXfddVft7KSIADoVKyImiImJYe7cuaSmptpPk65Zs6bSqdgnn3ySuLg4vvjiCy677DLc3d1p0aIFSUlJlZ5r27Zt3HLLLTRq1AhXV1eaNGnCfffdx6lTpy4p46lTp5gyZQrx8fG4u7vj5+dHr1692LJli32dkSNH0qdPH9566y2aN2+Op6cnnTt3Zs+ePXz++eckJibi5eVFx44d/7Dd9ddfzzvvvEN0dDQ+Pj706NGDzZs3nzeTxWI55yMmJuac2y1fvpyWLVvaSx1AmzZtaN26NV9++eU5tysuLsbV1RUvLy/7spCQEKCimJ9eB8DPz++c64hI7dEROxGpdZ988gmPP/44mzZt4pNPPiEyMpJ9+/b9Yb2MjAz+8Y9/8PjjjxMdHc0LL7zAyJEj6dixI61atSIjI4OuXbtyzTXXMHfuXNzd3fniiy+YNWsWYWFhPProoxedccSIEXzzzTc899xzNG/enD179jB16lRuv/12du3ahcViAWDdunWkp6fzr3/9i8LCQsaNG0e/fv2wWCz885//xNnZmfvvv59hw4aRnJxsf/4tW7awe/duZsyYQWBgINOmTeP6669n586dNGnS5KyZ1q1bd8687u7u5xzbtWsXLVq0+MPyuLg49uzZc87txowZw9tvv82kSZOYOnUqmZmZPPXUUyQmJtKuXTsAevXqRUJCApMnT2bOnDl4eXkxYcIEfHx8GDhw4DmfW0RqiCEiYoK77rrLiI6Otn+/evVqAzBWr15tGIZhTJs2zQCMVatW2dc5dOiQARgvvviiYRiGsXz5cuO6664z8vLyKj13YmKiceONN9q/B4xp06ZVOVtxcbHRu3dv46OPPqq0/KWXXjIAIz093b4PgLFr1y77On/7298MwPjqq6/sy1588UUDME6cOFFpu2+++ca+Tnp6uuHh4WE8+OCDVc5ZVS1atDCGDRv2h+XDhg0z4uPjz7vt7NmzDScnJwMwACM6OtpITU2ttM7atWuN4OBg+zru7u7GihUrqnUfRKRqdMROROq0a6+91v51ZGQkACdPngTgxhtv5MYbb6S0tJQ9e/awZ88etm3bRnZ2NsHBwRf9mm5ubixbtgyoOGq4d+9edu/ezeeffw5ASUmJfd3AwEBatWpl/z4sLAyo/HnB01lyc3PtFxM0bdqU6667zr5OeHg4nTp14rvvvjtnrrKysnOOWSwWnJ2dzzpms9nsRxjPZBjGObcBmDFjBo8++ij33nsvt9xyC0ePHuXpp5+mZ8+efPfdd4SGhrJmzRr69OlD586dmTRpEs7OzrzxxhsMGjSIpUuX0rVr13M+v4hUPxU7EanTzvx8l5NTxceCbTab/Z+PPvoor7/+OgUFBURFRdGhQwc8PT0xDOOSXnf58uVMmDCB3bt34+vry2WXXYavry9Apec+87Nl58p9NhEREX9Y1rhxYzZt2nTObc519SpAdHQ0Bw8ePOtYQEAA+fn5f1heUFCAv7//WbcpKytj+vTpDBs2jNdee82+/Prrr6d58+a88MILvPjiizz77LM0adKEL7/80n46+MYbb+Taa69l4sSJbNy48ZyZRaT6qdiJSL313HPP8a9//Yv//Oc/3HrrrfaS0qFDh0t63pSUFAYOHMiAAQP4/PPPad68OQCzZ8+2H8m7VGe7sCArK4vGjRufc5uffvrpnGPn+4xdy5Ytz3phxr59+875Xh09epTCwkI6d+5caXloaCitWrWyf17w0KFDtG/fvtLrOzk50bVrV15//fVzZhKRmqGrYkWk3vr+++9p27Yto0ePtpe6tLQ0tm/fbj+qdzF+/vlnioqKmDJlir3UASxduhTgkp77tJSUFHbu3Gn/Pj09nXXr1tmnDDmb9u3bn/ORmJh4zu1uvPFGdu3aVen1du7cya5du7jxxhvPuk3jxo0JCgr6w6nhnJwc9uzZQ2xsLACtWrViw4YN9qtjoeKI5rp16+zriEjtUbETkXqrQ4cObNu2jeeee45vvvmGOXPmcN1111FcXGz/HN7FuPLKK3FxceHhhx9m5cqVfP7559x666188cUXAJf03KcZhsGAAQNYsGABH3/8Mb179yYwMJD77rvvkp/794YMGUKLFi3o27cv8+fPZ/78+fTt25fExET++te/2tfbvHmzvfw5Ozvz1FNPMX/+fP7+97/z1VdfsWDBAm644QacnZ154IEHAJg6dSoZGRn07duXJUuW8OWXX/LXv/6VdevW8fTTT1f7vojI+anYiUi9NWXKFMaNG8crr7xC3759eeGFF7jzzjt58sknSU5O5sSJExf1vHFxccyfP58jR47Qv39//va3vwHY59o73wUOVdW0aVMeeOABJk6cyOjRo2nRogVr164lKCjokp/799zd3Vm5ciVXXXUV//d//8e9997Ltddey7Jly3Bx+e0TOYMGDeKee+6xf/+Pf/yD999/n/Xr19OvXz8mTZpEq1at2Lx5s/1IZvv27fnmm29wcXFh6NChDB8+nGPHjrF69WpuvfXWat8XETk/i3GpnzAWEZELMnLkSNasWXPOix1ERC6WLp4QkQbDZrNV6fNxZx7FEhGpT3QqVkQajNGjR+Pq6vqnDx1JE5H6SqdiRaTBOHjwIDk5OX+63mWXXYabm1stJBIRqV4qdiIiIiIOQqdiRURERByEip2IiIiIg9ClXxfAZrORnp6Or6/vWW+oLSIiIlLdDMPAarUSERFhv2f2uajYXYD09HSioqLMjiEiIiIN0OHDh4mMjDzvOip2F8DX1xeoeGP9/PxMTiMiIiINQX5+PlFRUfYecj4qdhfg9OlXPz8/FTsRERGpVVX5GJgunhARERFxECp2IiIiIg5CxU5ERETEQajYiYiIiDgIFTsRERERB6FiJyIiIuIgVOxEREREHISKnYiIiIiDMKXYHT9+nBEjRhAcHExgYCADBw4kIyMDgPXr19OxY0d8fHyIjY1lzpw5lbZNSkoiLi4Ob29v2rdvz7p16+xj5eXlPPTQQ4SGhuLr68uAAQPszwuQnZ3NwIEDCQgIICQkhAkTJlBWVlY7Oy0iIiJSw0wpdrfeeisFBQWkpKSQmpqKs7Mzd999NydOnKBfv36MGDGC3Nxc5syZw8SJE9mwYQMAa9asYfz48SQlJZGbm8uwYcPo378/hYWFAEyfPp0VK1awceNG0tLS8PT0ZOzYsfbXHTJkCD4+PqSnp7NhwwZWrVrFyy+/bMZbICIiIlLtLIZhGLX5gj///DNdunQhKyvLfluu48ePk5GRwbp163j++efZs2ePff1x48ZRWFhIUlISw4cPx8vLizfffNM+3rp1ayZPnsyoUaOIiopi5syZDB06FICsrCzCw8PZt28fNpuN+Ph40tLSiIiIAGDBggVMnjyZQ4cOVSl7fn4+/v7+5OXl6ZZiIiIiUisupH/U+hG7DRs20KZNG9566y3i4uIIDw/ngQceIDw8nOTkZBITEyut36ZNG7Zu3Qpw3vG8vDyOHDlSaTw0NJTAwEC2bdtGcnIyQUFB9lJ3etvU1FRyc3PPmrW4uJj8/PxKDxEREZG6qtaL3fHjx9m2bRt79+5l8+bNbNmyhbS0NEaMGIHVasXb27vS+l5eXhQUFACcd9xqtQKcd/xsY4D9+X9vxowZ+Pv72x9RUVEXv+MiIiIiNazWi527uzsAs2bNwtfXl9DQUJ555hm+/PJLDMOwf17utMLCQnx9fYGK0nau8dOl7XzjZxsD7M//e1OmTCEvL8/+OHz48EXutYiIiEjNc6ntF2zTpg02m42SkhI8PDyAiqtZAS6//HJmz55daf2dO3eSkJAAQEJCAsnJyX8Y79evH4GBgTRp0oTk5GT7+pmZmRw/fpyEhARsNhvHjh0jKyuL0NBQ+7aRkZH4+/ufNau7u7u9iIqIiMiFySssZd9RK3uzCtibXfHYl2Ulp6AEdxcn3F2dcHdxxt3FCTcXJ9xdK76ueDj/Ov7bOmeu716F9T0qrV8x7ubshJOTxey3psbU+sUTpaWltGnThnbt2jF37lxOnTrF7bffjr+/v/1zd9OmTePee+/l+++/Z8CAAXz66ad0796dr776ikGDBvHpp5/SpUsXXn/9df75z3+yb98+goKCmDp1Kv/73/9YsmQJISEh3H333WRmZrJmzRoAunbtSmRkJG+++SY5OTncfPPNDB48mCeffLJK2XXxhIiISGWGYXDsZAl7swrYd7SiuJ0ucUetxWbHOys3Z6dqL5ZXxwQREeBZI3kvpH/U+hE7V1dXvvnmGyZNmkR8fDxFRUX079+fV155hYCAAFauXMn999/PE088QaNGjXj11Vfp3r07AD179mT27NmMGzeOI0eO0LZtW5YuXUpQUBAATzzxBKWlpXTt2hWr1Ur37t1ZuHCh/bUXL17MP/7xD2JjY3FycmLEiBFMnTq1tt8CERGRescwDLLyi9mbbT2jxBWwN9vKicLSc24X7u9BXGMf4hv7Eh/qQ1xjH8L9PSgrNygus1FcVl7xz9Izvi4r//X7s3z9h3X/fJ2i0nJsZxzGKim3UVJuozp753+GX1ljxe5C1PoRu/pMR+xERMTR2WwGabmn2Jdd8IcSZy0++6T+FgtEBXr9WuAqylt8qC/NG3nj6+Fay3twdmXltioXwYsplpN6teSq6MAayV6nj9iJiIiI+crKbRw+cYq9v546PV3kUrJPcqq0/KzbODtZiA72Iq6RD/GhFUfh4hr70LyRD55uzrW8BxfGxdkJF2cnvB38o/MqdiIiIg6spMzGwWMnK4rbr6dO92UXsP/oSUrKbWfdxtXZQrMQH+JCfSqVuJgQL9xd6naBa+hU7ERERBxAUWk5KUcrjrydWeIOHiuk3Hb2T125uzjZT59WnDqtKHHRQV64OJty11G5RCp2IiIi9UhBcRkp2aenD7Hav049Xsi5PjXv7eZMXKhvRYFrXFHe4hr50iTQE2cHnvqjIVKxExERqYNyC0t+O/r26yMlu4C03FPn3Mbf0/W34tbY134hQ7i/BxaLClxDoGInIiJiEsMwyLYWn1HgrL9+fZKcgnPPxRHi437G1ac+9ulEQnzcVOAaOBU7ERGRGnZ6CpHfiluB/UpUa9HZpxCB3+aAqzQPXCMfAr3dajG91CcqdiIiItWktNzGoTOuQN13tOKf+3MKKCo9+xWoThZoGuRF3K9Th5y+mKF5Yx983PVnWi6M/o0RERG5QKdKKq5ATfm1uO3LrihxB3NOUnaOK1DdnJ2IDfG2l7fTp1Fjgr3xcNUUIlI9VOxERETOIe9UKft+vWih4uiblX1HCzhy4tQ5r0D1cnOuKG6NfpsHLq6xD001hYjUAhU7ERFp0AzDIKegxD51yJmff8s+z81EA7xc7RcwnHkaNdzPAydNISImUbETEZEGwWYzSM87Zb944cwCl3fq3DexD/Vz/+3WWWfcCzXYW1egSt2jYiciIg6l3GbYb6H1+8e57oH6+5vYNz/jn3515Cb2IlWhYiciIvVeUWk5a1NyWLYjk5U7szhRePYjcK7OFmKCvSsVuNM3sdcFDOIIVOxERKReKiguY80v2Szbkcnq3dmcLPntaJyHq9NvFzCc8Rm46GAvXHUBgzgwFTsREak3TpwsYeWuLFYkZ/Lt3hxKyn6bGy7Uz53ebcPo0zaMDrFBugJVGiQVOxERqdMy8k6xIjmL5cmZrD9wnPIz5omLCfaid0JFmWsXGaCrUaXBU7ETEZE650DOSZYnZ7JsRyZbDudWGmsd7keftmH0TgilZaivrkwVOYOKnYiImM4wDHZlWFmWnMnyHZn8kmWtNH5VdCC924bSu20Y0cHeJqUUqftU7ERExBQ2m8HmwydYtiOT5clZpB4vtI85O1m4tlkwvRPCuLFNKKF+HiYmFak/VOxERKTWlJbb+HH/MZYnZ7IiOavSnR3cXZy4rkUj+rQNo2frxgR4uZmYVKR+UrETEZEaVVRazrd7jrIsOZOvdmVXusuDr7sLPVo3pk/bMLq1bISXm/4siVwK/RckIiLVLr+olNW7K+aYW/PL0Up3fAj2duPGXz8vd23zYNxdNDGwSHVRsRMRkWqRU1DMyp0V05L8sC+H0vLfpiVpEuDJjW1D6dM2jPYxQThrWhKRGqFiJyIiFy0t9xTLd2SyLDmTjQePc8YUc8Q19qF321D6tA0noYmfpiURqQUqdiIickH2ZVtZnpzFsh2ZbE/LqzSW2MSfPglh9G4bSlxjX5MSijRcKnYiInJehmGwIy2fZckZLNuRScrRk/YxiwWujgmiT9swbmwbSmSgl4lJRUTFTkRE/qDcZrDx4HGW/TotSVruKfuYq7OFznEh9G4bxg2tQ2nk625iUhE5k4qdiIgAUFxWztqUY6z4tcwdO1liH/N0daZ7q0b0bhtG91aN8fNwNTGpiJyLip2ISANWVFrOml+OsnRHBl/vysZaXGYf8/d0peevc8xd16IRHq6alkSkrlOxExFpYMrKbaxNOcaSreks35FZqcw18nW3X8nasVkQrs5OJiYVkQulYici0gAYhsGm1BMs2ZLOF9szyCn47TRruL8Hf7ksnD4J4VwRFYCT5pgTqbdU7EREHJRhGOzOtLJkazpLtqRXugAi0MuVfonhDLi8Ce2jA1XmRByEip2IiINJPVbIkq1pfLolnb3ZBfbl3m7O9G4bxs2XR9AlLkSnWUUckIqdiIgDyM4v4vNtGXy6NZ2th3Pty92cnejeqhH92zWhR6vGeLrpAggRR6ZiJyJST+UVlrJ0RwZLtqbz4/5j9tt5OVmgc1wIN7eLoHfbMPw9NTWJSEOhYiciUo8UlpSxalc2S7ak882ebErLf7s565VNA+jfLoKbLovQpMEiDZSKnYhIHVdSZuO7vUdZsjWdlTuzKCwpt4+1CvPl5nYR9G8XQVSQbucl0tCp2ImI1EE2m8H6A8dZsjWdpTsyyC0stY9FBXkyoF0T+l8eQYtQXxNTikhdo2InIlJHGIbB9rQ8lmxJ57Nt6WTlF9vHGvm685fLwunfLoLLowKwWDQ9iYj8kYqdiIjJ9mVbWbIlnSVb0zl4rNC+3NfDhX4J4fS/PIJrmgXjrLnmRORPqNiJiJggPfcUn21N59Mt6ezMyLcv93B14obWofRvF0G3lo1wd9H0JCJSdSp2IiK15FhBMV/uyGTJljR+OnjCvtzFycJ1LRrRv10EvdqE4u2uX80icnH020NEpAZZi0pZkZzFkq3pfL8vh/JfJ5uzWKBDTBD9L4+gX0I4gd5uJicVEUegYiciUs2KSstZ80s2S7am89WubIrLbPaxxCb+9G8XwV/ahRPu72liShFxRCp2IiLVoKzcxtqUYyzZms7yHZlYi8vsY80aeTOgXRNubhdOs0Y+JqYUEUenYicicpEMw2BT6gmWbEnni+0Z5BSU2MfC/T3o3y6Cm9tF0DbCT9OTiEitULETEblAKUcLWPzzEZZsSSct95R9eZC3G/0Sw+jfrgntowNx0vQkIlLLVOxERKrIMAze+eEgzy3dZb9Hq7ebM73bhnHz5RF0iQvB1dnJ5JQi0pCp2ImIVEFuYQkPLtrGql1ZAHSND+H2q5vSs3VjPFw115yI1A0qdiIif2LjwePcN38z6XlFuDk7MfUvrRl+TbQ+NycidY6KnYjIOdhsBv/5NoWXVuyh3GYQE+zFa0OvJKGJv9nRRETOSsVOROQscgqKmbhgC9/tzQGgf7sInr0lER/dFUJE6jD9hhIR+Z11Kce4/6PNZFuL8XB14qn+bbmtfZROvYpInadiJyLyq3Kbwb+/3surX+3FZkB8Yx9eG3olLcN8zY4mIlIlKnYiIkBWfhH3f7SZH/cfB+C29pE82b8tXm76NSki9Yd+Y4lIg/fNnqNMWrCFYydL8HJz5plBCQy6ItLsWCIiF0zFTkQarNJyGy+t2MN/vkkBoHW4H68PvUL3cxWRekvFTkQapLTcU4z/cBObUnMBuPOaaB67qbUmGxaRek3FTkQanJU7s3hw0VbyTpXi6+7CzMGX0S8x3OxYIiKXzJSbGi5YsAAXFxd8fHzsjzvvvBOA9evX07FjR3x8fIiNjWXOnDmVtk1KSiIuLg5vb2/at2/PunXr7GPl5eU89NBDhIaG4uvry4ABA8jIyLCPZ2dnM3DgQAICAggJCWHChAmUlZXVzk6LiOlKymz887Od3P3eRvJOldIu0p8v7uuqUiciDsOUYvfTTz9x5513UlBQYH+8//77nDhxgn79+jFixAhyc3OZM2cOEydOZMOGDQCsWbOG8ePHk5SURG5uLsOGDaN///4UFhYCMH36dFasWMHGjRtJS0vD09OTsWPH2l93yJAh+Pj4kJ6ezoYNG1i1ahUvv/yyGW+BiNSyQ8dOMvg/a3nnhwMAjO0Sy6K/d6JpsJfJyUREqo/FMAyjtl+0W7du3Hbbbdx7772Vlr/99ts8//zz7Nmzx75s3LhxFBYWkpSUxPDhw/Hy8uLNN9+0j7du3ZrJkyczatQooqKimDlzJkOHDgUgKyuL8PBw9u3bh81mIz4+nrS0NCIiIoCKI4eTJ0/m0KFDVcqdn5+Pv78/eXl5+Pn5XerbICK15PNt6Uz5eDvW4jICvFx5cXA7bmgTanYsEZEquZD+UetH7Gw2G5s2beKLL74gOjqayMhI/u///o8TJ06QnJxMYmJipfXbtGnD1q1bAc47npeXx5EjRyqNh4aGEhgYyLZt20hOTiYoKMhe6k5vm5qaSm5u7lmzFhcXk5+fX+khIvVHUWk5j32ynX98uBlrcRntowP58r6uKnUi4rBqvdgdPXqUK664gsGDB7Nr1y7Wrl3L3r17GT58OFarFW9v70rre3l5UVBQAHDecavVCnDe8bONAfbn/70ZM2bg7+9vf0RFRV38jotIrdqXXcDA139g3vpULBa4t3tzPvq/a4gI8DQ7mohIjan1q2JDQ0P59ttv7d83bdqU559/no4dOzJq1Cj75+VOKywsxNe34nY+3t7eZx0PCQmxl7ZzbW+z2c46Btif//emTJnCpEmT7N/n5+er3InUA//ddITH/7eDwpJyQnzc+Ndtl3Ndi0ZmxxIRqXG1fsRu27ZtPPLII5z50b7i4mKcnJzo0KEDycnJldbfuXMnCQkJACQkJJxzPDAwkCZNmlQaz8zM5Pjx4yQkJJCQkMCxY8fIysqqtG1kZCT+/v5nzeru7o6fn1+lh4jUXYUlZTy4aCuTFm6lsKScTs2D+fK+rip1ItJg1HqxCwoK4rXXXuOFF16grKyM1NRUHnroIUaOHMngwYPJzMxk1qxZlJaWsnr1aubNm8fo0aMBGD16NPPmzWP16tWUlpYya9YssrKyGDRoEACjRo1i+vTpHDhwAKvVyoQJE+jWrRvNmzcnPj6eLl26MGHCBKxWKwcOHODpp59mzJgxtf0WiEg1K7cZfLL5CH1f+Y7FPx/ByQKTerXg/TEdaeznYXY8EZFaU+vFLjIyki+++IL//e9/BAUF0b59e66++mpee+01goODWblyJYsWLSI4OJixY8fy6quv0r17dwB69uzJ7NmzGTduHIGBgcyfP5+lS5cSFBQEwBNPPMFNN91E165diYyMpKioiIULF9pfe/HixZSVlREbG0vHjh3p06cPU6dOre23QESqSbnN4H+b0+j1r2+YuGArh44VEurnzod3X8N9PeNxdrKYHVFEpFaZMt1JfaXpTkTqhnKbwefb0nnlq73sP3oSgAAvV+7u2oy7OsXg466b6oiI47iQ/qHffiJSb5TbDL7YnsGrX+1lX3bF1ewqdCIiv9FvQRGp82xnFLq9vxY6f09X7u4ay12dYvD1cDU5oYhI3aBiJyJ1ls1m8OWODF5Z9Vuh8/NwqThC1zkGPxU6EZFKVOxEpM6x2QyW7sjkla/2sCerotD5ergwtkszRnVRoRMRORcVOxGpM2w2g2XJmbyyai+/ZFXcTcbXw4UxXWIZ1TkWf08VOhGR81GxExHT2WwGy5MzeeWrvezO/LXQubswuksso7uo0ImIVJWKnYiYxmYzWLEzi1mr9lQqdKO6xDKmcyz+Xip0IiIXQsVORGqdYVQUuldW7WVnRj4APu4ujOocw5gusQR4uZmcUESkflKxE5FaYxgGK3dmMeuMQuft5syozrGM7apCJyJyqVTsRKTGGYbBql3ZzFq1h+T03wrdyM4xjO3SjEBvFToRkeqgYiciNer4yRL+772NbDx0AgAvN2dGdophbNdmBKnQiYhUKxU7EakxOQXFDHtrPb9kWfFyc+auTjHcrUInIlJjVOxEpEZk5xcx9O317MsuoLGvOx/efQ1xjX3MjiUi4tBU7ESk2mXmFTH0rR/Zn3OScH8PPrz7GmJDvM2OJSLi8FTsRKRapeWeYuhbP3LoWCFNAjyZf/c1NA32MjuWiEiDoGInItXm8PFC7njrR46cOEVUUEWpiwxUqRMRqS0qdiJSLQ4dO8kdb/5Iel4RMcFefHj3NUQEeJodS0SkQVGxE5FLtv9oAUPfWk9mfhHNGnnz4dhrCPP3MDuWiEiDo2InIpdkX7aVoW+tJ9taTHxjH+bd3ZHGvip1IiJmULETkYv2S6aVYW//SE5BCa3CfPlgbEdCfNzNjiUi0mCp2InIRdmZns/wOes5frKENuF+fDC2oyYeFhExmYqdiFywHWl5DJ+zntzCUhKb+PP+mA4EeKnUiYiYTcVORC7I1sO53DlnPflFZVweFUDS6A74e7qaHUtERFCxE5EL8POhE4x8ZwPW4jKuig5k7qir8fVQqRMRqStU7ESkSjYcOM6odzdwsqScDrFBvDvyarzd9StERKQu0W9lEflT61KOMXruT5wqLadT82Devqs9Xm769SEiUtfoN7OInNf3e3MY+95PFJXa6Bofwlsj2uPh6mx2LBEROQsVOxE5pzW/ZPN/7/9MSZmN7i0b8cbwq1TqRETqMBU7ETmrr3ZlMe6DTZSU27ihdSivD7sCdxeVOhGRukzFTkT+YHlyJv/4cBOl5QZ92obx6h1X4ObiZHYsERH5Eyp2IlLJl9szuG/+ZspsBjddFs6sIZfj6qxSJyJSH+i3tYjYfboljfG/lrqBl0fwikqdiEi9oiN2IgLAfzcd4cFFW7EZMPiqSGbeehnOThazY4mIyAVQsRMRFv50mIf/uw3DgNuvjuLZQYk4qdSJiNQ7KnYiDdyH61N59JPtAAy/pin/7J+gUiciUk+p2Ik0YO+tO8gTnyYDMLJTDNNuboPFolInIlJfqdiJNFBzvj/A05/vBODurrE82q+1Sp2ISD2nYifSAL317X6e+XIXAH/v1pyH+7RUqRMRcQAqdiINzBtrUpi5bDcA43vEMalXC5U6EREHoWIn0oC89vVeXlyxB4AJN8Qz4YYWJicSEZHqpGIn0kDMWrWHWav2AvBArxaM7xlvciIREaluKnYiDs4wDF5euYdXv94HwOQ+Lbnn+jiTU4mISE1QsRNxYIZh8MLyX5i9JgWAR/u14v+ua25yKhERqSkqdiIOyjAMnlu2m//3zX4Apv6lDWO6xJqcSkREapKKnYgDMgyDZ77YxdvfHwDgqf5tuatTjLmhRESkxqnYiTgYwzB46rOdzF17EICnByZw5zXR5oYSEZFaoWIn4kBsNoNpS5J5/8dDAMy4JZE7OjQ1OZWIiNQWFTsRB2GzGTz+6Q4+XJ+KxQIzb7mM266OMjuWiIjUIhU7EQdgsxlM+e92Fmw8jMUCLw5ux61XRZodS0REapmKnUg9V24zePjjbSz++QhOFvjXbZcz8IomZscSERETqNiJ1GPlNoMHF23lk81pODtZmDXkcm5uF2F2LBERMYmKnUg9VVZuY9LCrSzZmo6Lk4VX77iCfonhZscSERETqdiJ1EOl5TYmfLSFL7Zn4OJk4bWhV9InIczsWCIiYjIVO5F6pqTMxn3zN7MsORNXZwuzh11FrzahZscSEZE6QMVOpB4pKbNx74ebWLkzCzdnJ/5z55X0aKVSJyIiFVTsROqJ4rJy7vlgE1/tzsbNxYk377yK61s2NjuWiIjUISp2IvVAUWk5f//gZ9b8chR3Fyfevqs9XeMbmR1LRETqGBU7kTquqLScu9/byHd7c/BwdeKdu66mU1yI2bFERKQOUrETqcNOlZQz9r2f+GHfMbzcnHln5NVc0yzY7FgiIlJHOZn54uXl5Vx//fWMHDnSvmz9+vV07NgRHx8fYmNjmTNnTqVtkpKSiIuLw9vbm/bt27Nu3bpKz/fQQw8RGhqKr68vAwYMICMjwz6enZ3NwIEDCQgIICQkhAkTJlBWVlbj+ylyMQpLyhg9t6LUebs5M3dUB5U6ERE5L1OL3VNPPcV3331n//7EiRP069ePESNGkJuby5w5c5g4cSIbNmwAYM2aNYwfP56kpCRyc3MZNmwY/fv3p7CwEIDp06ezYsUKNm7cSFpaGp6enowdO9b+/EOGDMHHx4f09HQ2bNjAqlWrePnll2t3p0Wq4GRxGSPf/Yl1+4/h4+7Ce2M60CE2yOxYIiJSx1kMwzDMeOGvv/6a8ePH07ZtW7y8vJg7dy5vv/02zz//PHv27LGvN27cOAoLC0lKSmL48OF4eXnx5ptv2sdbt27N5MmTGTVqFFFRUcycOZOhQ4cCkJWVRXh4OPv27cNmsxEfH09aWhoRERW3XFqwYAGTJ0/m0KFDVcqcn5+Pv78/eXl5+Pn5VeO7IfKbwpIy7npnAz8dPIHvr6XuiqaBZscSERGTXEj/MOWIXXZ2NmPGjOHDDz/Ey8vLvjw5OZnExMRK67Zp04atW7f+6XheXh5HjhypNB4aGkpgYCDbtm0jOTmZoKAge6k7vW1qaiq5ubk1sJciF66s3Mb4Dzfz08ET+Hm48MHYjip1IiJSZbV+8YTNZmP48OFMmjSJdu3aVRqzWq14e3tXWubl5UVBQcGfjlutVoDzbn+2MYCCggICAgL+kLW4uJji4mL79/n5+VXdTZELZhgGUz9N5qvd2bi7OPHuqKtpFxVgdiwREalHav2I3YwZM/Dw8GD8+PF/GPP29rZ/Xu60wsJCfH19/3T8dGk73/jZxgD7858tq7+/v/0RFRV1AXsqcmFe+3of8zek4mSBV++4gqui9Zk6ERG5MLVe7N5//33WrFlDQEAAAQEBfPjhh3z44YcEBASQkJBAcnJypfV37txJQkICwHnHAwMDadKkSaXxzMxMjh8/TkJCAgkJCRw7doysrKxK20ZGRuLv73/WrFOmTCEvL8/+OHz4cHW9DSKVLNp4mJdWVny29Kn+bendNszkRCIiUh/VerHbvXs3+fn55Obmkpuby9ChQxk6dCi5ubnccsstZGZmMmvWLEpLS1m9ejXz5s1j9OjRAIwePZp58+axevVqSktLmTVrFllZWQwaNAiAUaNGMX36dA4cOIDVamXChAl069aN5s2bEx8fT5cuXZgwYQJWq5UDBw7w9NNPM2bMmHNmdXd3x8/Pr9JDpLqt+SWbR/67HYBx1zfnzmtjzA0kIiL1lqnTnfxecHAwK1euZNGiRQQHBzN27FheffVVunfvDkDPnj2ZPXs248aNIzAwkPnz57N06VKCgipOWT3xxBPcdNNNdO3alcjISIqKili4cKH9+RcvXkxZWRmxsbF07NiRPn36MHXqVFP2VQRg+5E87pm3iXKbwaArmjC5d0uzI4mISD1m2nQn9ZGmO5HqdPh4IYNmryWnoJgucSG8M/Jq3Fzq1P9riYhIHVDnpzsRaeiOnyzhrnc2kFNQTJtwP94YfqVKnYiIXDL9JRGpZadKyhmT9BP7c07SJMCTd0ddja+Hq9mxRETEAajYidSicpvBfR9tZnNqLv6eriSNvppQPw+zY4mIiINQsROpJYZhMG3JDlbuzMLNxYm372pPXOOzz6EoIiJyMVTsRGrJ7DUpfPBjKhYLvHr75VwdowmIRUSkeqnYidSCj38+wgvLfwFg2l/a0Cch3OREIiLiiFTsRGrYt3uO8vDH2wD423XNGNk51uREIiLiqFTsRGrQjrQ8xn3wM2U2gwGXR/Bwn1ZmRxIREQemYidSQw4fL2TU3J84WVJOp+bBvDC4HU5OFrNjiYiIA1OxE6kBJ06WcNe7GzhqLaZVmC//ufMqTUAsIiI1Tn9pRKpZUWk5Y9/byP6jJ4nw92DuqA74aQJiERGpBSp2ItWo3GZw/0eb+fnQCfw8XJg7ugNh/pqAWEREaoeKnUg1MQyDpz5LZnlyFm7OTrw1oj0tQjUBsYiI1B4VO5Fq8p9v9vPeukNYLPDykMvp2CzY7EgiItLAqNiJVINPNh9h5rLdADx+UxtuukwTEIuISO1TsRO5RN/vzeGhRRUTEI/tEsuYLpqAWEREzKFiJ3IJktPz+PuvExD/5bJwHu3X2uxIIiLSgKnYiVykIycKGfXuTxQUl3FNsyBeuk0TEIuIiLlU7EQuQm5hCSPf/YlsazEtQ335f3e2x93F2exYIiLSwKnYiVygotJy7n5vI/uyCwjz8+DdUVfj76kJiEVExHwqdiIXoNxmMHHBFn46eAJfDxfmjr6aiABPs2OJiIgAKnYiF+Tpz3eydEcmbs5OvHlne1qF+ZkdSURExE7FTqSKPtuazty1BwF48bZ2XNtcExCLiEjdomInUgXZ+UVM/XQHAON7xNG/XYTJiURERP5IxU7kTxiGwSP/3U5uYSltI/y4r2e82ZFERETOSsVO5E8s2niEr3dn4+bsxL9uuxxXZ/1nIyIidZP+Qomcx+Hjhfzz850APHBjC1qG+ZqcSERE5NwuqtgVFRWRkZFBcXFxdecRqTNsNoPJi7dRUFxG++hAxnZtZnYkERGR87qgYvfDDz/QpUsXfHx8iIyMxNfXl+7du/PTTz/VVD4R0yStO8i6/cfwdHXmxb+2w1m3CxMRkTquysXuhx9+4IYbbiAmJoYPPviA5cuXM3fuXEJDQ+nRowdbtmypwZgitSvlaAHPLd0NwKP9WhET4m1yIhERkT9nMQzDqMqKN9xwA927d+exxx77w9hTTz3F9u3bWbx4cbUHrEvy8/Px9/cnLy8PPz9NTOuoysptDP7POrYczqVrfAjvje6AxaKjdSIiYo4L6R8uVX3STZs28cknn5x17P777ychIeHCUorUUf/v2/1sOZyLr4cLM2+9TKVORETqjSqfii0tLcXX9+xXBAYEBGC1WqstlIhZdqbnM2vVHgCevLmt7gMrIiL1SpWL3Z8dtajiGV2ROqukzMakhVsoLTfo1SaUW65sYnYkERGRC1LlU7GGYXD48OFzFjgVO6nvXvlqD7szrQR5u/HsoESdghURkXqnysXu5MmTxMTEnLPA6Y+g1GebU0/wxpoUAJ4ZmEAjX3eTE4mIiFy4Khe7AwcO2L8uKysjJyeHkJAQXFyq/BQiddKpknIeWLgVmwEDL4+gb2K42ZFEREQuSpU/YxcdHY27uzuPPPIIbdu2pVOnTrRt25bJkyfj6upKdHR0TeYUqTHPL9/N/pyThPq581R/Xd0tIiL1V5UPt504cYKOHTsSFRXFG2+8QUREBPv372fu3Ll06NCBbdu2ERQUVJNZRard2pQc3v3hIAAzb70Mfy9XcwOJiIhcgipPUPzQQw+xf/9+Fi9eXOnzdDabjVtuuYW4uDhefPHFGgtaF2iCYsdiLSqlz6zvSMs9xR0dmjLjlkSzI4mIiPzBhfSPKp+K/fTTT5kxY8YfLpJwcnLi2Wef5dNPP724tCImeeaLXaTlniIqyJPHbmptdhwREZFLVuVil5mZSYsWLc461rp1azIzM6stlEhN+3p3Fh/9dBiLBV4c3A4fd10EJCIi9V+Vi52Hh8c5y1tmZuY570ohUtecOFnCwx9vB2BM51g6Ngs2OZGIiEj1qHKx69atG7Nnzz7r2BtvvEG3bt2qLZRITXpiSTJHrcXENfbhwd4tzY4jIiJSbap8/mnKlCl07doVT09P7rzzTsLCwjh06BBz5szh3//+N2vXrq3JnCLV4vNt6Xy2NR1nJwsv/bUdHq7OZkcSERGpNlUudldeeSULFizg7rvv5vHHH7cvDwsL4+OPPyYxUVcUSt2WbS1i6v92AHDv9c1pFxVgbiAREZFqdkGfGP/LX/7CoUOHWLduHenp6YSHh9OlSxfdfULqPMMwmPLxdk4UltI2wo9/9Ig3O5KIiEi1u+BG5ubmps/TSb2z6OcjfLU7GzdnJ/512+W4uVT546UiIiL1hv66icM7cqKQf362E4BJN7agZZiu4BYREcekYicOzWYzmLx4GwXFZVzZNIC7uzYzO5KIiEiNUbETh/b+j4dYm3IMT1dnXrrtcpydLH++kYiISD2lYicOa//RAmYs3QXAlH6tiA3xNjmRiIhIzVKxE4dUbjN4YNFWikptdI4LZnjHaLMjiYiI1DgVO3FI/+/bFDan5uLr7sLzg9vhpFOwIiLSAKjYicPZnZnPyyv3APDEzW1oEuBpciIREZHaoWInDqWkzMakBVspLTe4oXUog6+KNDuSiIhIrVGxE4fy76/3sjMjn0AvV569JQGLRadgRUSk4VCxE4ex5XAus9ekAPDMoEQa+3qYnEhERKR2qdiJQygqLeeBhVsotxn0bxdBv8RwsyOJiIjUOhU7cQgvLP+FlKMnaezrzj8HtDU7joiIiClMKXZff/01HTt2xM/Pj7CwMMaPH8+pU6cAWL9+PR07dsTHx4fY2FjmzJlTadukpCTi4uLw9vamffv2rFu3zj5WXl7OQw89RGhoKL6+vgwYMICMjAz7eHZ2NgMHDiQgIICQkBAmTJhAWVlZ7ey01JhNqSd454cDAMy89TICvNxMTiQiImKOWi92R48e5aabbmLcuHHk5uayefNm1qxZw3PPPceJEyfo168fI0aMIDc3lzlz5jBx4kQ2bNgAwJo1axg/fjxJSUnk5uYybNgw+vfvT2FhIQDTp09nxYoVbNy4kbS0NDw9PRk7dqz9tYcMGYKPjw/p6els2LCBVatW8fLLL9f2WyDVqNxmMO3TZAwDbr0yku6tGpsdSURExDQWwzCM2n5Rq9WKr68vhmGQnJzMoEGDuP/++/Hw8OD5559nz5499nXHjRtHYWEhSUlJDB8+HC8vL9588037eOvWrZk8eTKjRo0iKiqKmTNnMnToUACysrIIDw9n37592Gw24uPjSUtLIyIiAoAFCxYwefJkDh06VKXc+fn5+Pv7k5eXh5+fXzW+I3Kx5m9IZcp/t+Pr7sLXD15PI193syOJiIhUqwvpH6acivX19QUgKiqKxMREwsPDGTVqFMnJySQmJlZat02bNmzduhXgvON5eXkcOXKk0nhoaCiBgYFs27aN5ORkgoKC7KXu9Lapqank5ubW0J5KTcorLOWF5b8AMKFXC5U6ERFp8Ey9eGLv3r2kpaXh7OzM4MGDsVqteHtXvlG7l5cXBQUFAOcdt1qtAOcdP9sYYH/+3ysuLiY/P7/SQ+qOf638heMnS4hv7MOIa3UvWBEREVOLnaenJxEREcycOZNly5bh7e1t/7zcaYWFhfYjfOcbP13azjd+tjH47Qji782YMQN/f3/7Iyoq6uJ3VqrVrox83v+x4hT6U/3b4uqsC7xFRERq/a/h2rVradWqFSUlJfZlxcXFuLm50aZNG5KTkyutv3PnThISEgBISEg453hgYCBNmjSpNJ6Zmcnx48dJSEggISGBY8eOkZWVVWnbyMhI/P39z5p1ypQp5OXl2R+HDx++5P2XS2cYBtOWJGMzoF9iGJ3iQsyOJCIiUifUerG77LLLKCws5JFHHqGkpIRDhw7x4IMPMmbMGAYPHkxmZiazZs2itLSU1atXM2/ePEaPHg3A6NGjmTdvHqtXr6a0tJRZs2aRlZXFoEGDABg1ahTTp0/nwIEDWK1WJkyYQLdu3WjevDnx8fF06dKFCRMmYLVaOXDgAE8//TRjxow5Z1Z3d3f8/PwqPcR8n23LYMOB43i4OvHYTW3MjiMiIlJn1Hqx8/HxYdmyZezYsYPQ0FC6detGr169ePnllwkODmblypUsWrSI4OBgxo4dy6uvvkr37t0B6NmzJ7Nnz2bcuHEEBgYyf/58li5dSlBQEABPPPEEN910E127diUyMpKioiIWLlxof+3FixdTVlZGbGwsHTt2pE+fPkydOrW23wK5BCeLy3jmi50A3Ht9HE0CPE1OJCIiUneYMt1JfaXpTsw3c9lu3liTQtMgL1ZMvA4PV2ezI4mIiNSoOj/dicjFOJBzkre/2w/A1L+0UakTERH5HRU7qTf++VkypeUG3Vo04obWusOEiIjI76nYSb3w1a4sVv9yFFdnC9NuboPFYjE7koiISJ2jYid1XlFpOf/8vOKCidFdYmnWyMfkRCIiInWTip3UeW9/t59Dxwpp7OvO+B7xZscRERGps1TspE5Lzz3F66tTAHjsptb4uLuYnEhERKTuUrGTOu2ZL3dxqrScDjFB9G8XYXYcERGROk3FTuqstSk5fLEtAycLPNm/rS6YEBER+RMqdlInlZXbeGpJxQUTwzpG0yZCE0KLiIj8GRU7qZPe//EQv2RZCfRy5YEbW5gdR0REpF5QsZM6J6egmH+t3APAg71bEuDlZnIiERGR+kHFTuqc55ftxlpURkITP26/uqnZcUREROoNFTupU7YczmXhxiMAPNW/Lc5OumBCRESkqlTspM6w2QymfboDgFuubMJV0UEmJxIREalfVOykzlj88xG2HsnDx92FR/q2MjuOiIhIvaNiJ3VC3qlSZi7bDcD9PeNp7OthciIREZH6R8VO6oRZq/Zw7GQJzRt5c1enGLPjiIiI1EsqdmK6XzKtvLfuEFBxhwk3F/1rKSIicjH0F1RMZRgG05bsoNxm0LttKF3jG5kdSUREpN5SsRNTfbE9gx/3H8fdxYnHb2pjdhwREZF6TcVOTFNYUsYzX+wC4O/dmhMV5GVyIhERkfpNxU5MM3t1Chl5RUQGejLu+uZmxxEREan3VOzEFIeOneTNb/cD8PhNbfBwdTY5kYiISP2nYiemePrznZSU2+gaH0LvtqFmxxEREXEIKnZS61bvzmbVrmxcnCxMu7ktFovuBysiIlIdVOykVhWXlfPUZ8kAjOocQ1xjH5MTiYiIOA4VO6lVc74/wMFjhTTydee+nvFmxxEREXEoKnZSazLzinjt630APNKnFb4eriYnEhERcSwqdlJrnv1yF4Ul5VzZNIBBVzQxO46IiIjDUbGTWrF+/zGWbE3HYoF/DkjAyUkXTIiIiFQ3FTupcWXlNqYtqbhg4o4OTUlo4m9yIhEREcekYic1bt76VHZnWvH3dOWhG1uaHUdERMRhqdhJjTpWUMxLK34B4MEbWxDo7WZyIhEREcelYic16sUVv5BfVEbrcD+Gdow2O46IiIhDU7GTGrMjLY+PfjoMwFP92+KsCyZERERqlIqd1AjDMJixdBeGATe3i6BDbJDZkURERByeip3UiG/2HOWHfcdwc3Zicm9dMCEiIlIbVOyk2pXbDGZ8uRuAEddGExXkZXIiERGRhkHFTqrdx5uO8EuWFT8PF/7RI87sOCIiIg2Gip1Uq1Ml5fbpTf7RI44AL01vIiIiUltU7KRavfPDAbLyi2kS4MmIa2PMjiMiItKgqNhJtckpKOaNNSkATO7TEg9XZ5MTiYiINCwqdlJtXv1qLwXFZSQ08ePmyyLMjiMiItLgqNhJtdh/tIAP16cC8Gi/1jhpMmIREZFap2In1eL5Zb9QZjPo3rIRnZqHmB1HRESkQVKxk0v286HjLEvOxMkCj/RtbXYcERGRBkvFTi6JYRg888UuAP56VRQtw3xNTiQiItJwqdjJJVmenMmm1Fw8XJ2YdGMLs+OIiIg0aCp2ctFKy23MXFYxGfHdXZsR6udhciIREZGGTcVOLtr8DakcyDlJsLcbf+vW3Ow4IiIiDZ6KnVwUa1Epr6zaC8CEG+LxcXcxOZGIiIio2MlF+X/f7OfYyRKahXhze4emZscRERERVOzkImTmFfH29/sBeLhvK1yd9a+RiIhIXaC/yHLBXlrxC0WlNtpHB3Jjm1Cz44iIiMivVOzkguzOzGfxpiMAPHpTaywW3TpMRESkrlCxkwsy48vdGAb0SwzjyqaBZscRERGRM6jYSZV9vzeHb/YcxcXJwuTercyOIyIiIr+jYidVYrMZzFhaceuw4ddEExPibXIiERER+T0VO6mST7emkZyej6+7C+N7xJkdR0RERM5CxU7+VFFpOS8u3wPA369vTrCPu8mJRERE5GxMKXZbt26lV69eBAUFERYWxogRI8jJyQFg/fr1dOzYER8fH2JjY5kzZ06lbZOSkoiLi8Pb25v27duzbt06+1h5eTkPPfQQoaGh+Pr6MmDAADIyMuzj2dnZDBw4kICAAEJCQpgwYQJlZWW1s9P1WNLag6TlniLc34MxXWLNjiMiIiLnUOvF7tSpU/Tt25dOnTqRmZlJcnIyx44dY9SoUZw4cYJ+/foxYsQIcnNzmTNnDhMnTmTDhg0ArFmzhvHjx5OUlERubi7Dhg2jf//+FBYWAjB9+nRWrFjBxo0bSUtLw9PTk7Fjx9pfe8iQIfj4+JCens6GDRtYtWoVL7/8cm2/BfXKiZMlvLZ6HwCTerXAw9XZ5EQiIiJyTkYt2717t9GnTx+jrKzMvuzTTz81/Pz8jLfeesuIj4+vtP7f//53Y8SIEYZhGMawYcOMu+++u9J4q1atjHfeeccwDMOIjIw05s2bZx/LzMw0LBaLkZKSYuzdu9cAjLS0NPv4Rx99ZDRt2rTK2fPy8gzAyMvLq/oO13P//CzZiH74c6P3y98YZeU2s+OIiIg0OBfSP2r9iF3Lli1ZunQpzs6/HflZvHgxV111FcnJySQmJlZav02bNmzduhXgvON5eXkcOXKk0nhoaCiBgYFs27aN5ORkgoKCiIiIqLRtamoqubm5NbCn9V/qsULeW3cQgCn9WuPspMmIRURE6jJTL54wDIPHH3+czz77jFdeeQWr1Yq3d+VpNLy8vCgoKAA477jVagU47/jZxgD78/9ecXEx+fn5lR4NyfPLd1NabtA1PoRuLRqZHUdERET+hGnFLj8/n8GDB/PBBx/w7bffkpiYiLe3t/3zcqcVFhbi6+sLcN7x06XtfONnGwPsz/97M2bMwN/f3/6Iioq6+B2uZ7YczuXzbRlYLPBIX01GLCIiUh+YUuxSUlK4+uqryc/PZ+PGjfbTpwkJCSQnJ1dad+fOnSQkJPzpeGBgIE2aNKk0npmZyfHjx0lISCAhIYFjx46RlZVVadvIyEj8/f3PmnPKlCnk5eXZH4cPH66W/a/rDMPg2S8rJiMedEUT2kac/f0RERGRuqXWi92JEyfo0aMHnTp1Yvny5YSEhNjHbrnlFjIzM5k1axalpaWsXr2aefPmMXr0aABGjx7NvHnzWL16NaWlpcyaNYusrCwGDRoEwKhRo5g+fToHDhzAarUyYcIEunXrRvPmzYmPj6dLly5MmDABq9XKgQMHePrppxkzZsw5s7q7u+Pn51fp0RB8tSubDQeO4+bixIM3tjQ7joiIiFRRrRe7d999l9TUVBYuXIifnx8+Pj72R3BwMCtXrmTRokUEBwczduxYXn31Vbp37w5Az549mT17NuPGjSMwMJD58+ezdOlSgoKCAHjiiSe46aab6Nq1K5GRkRQVFbFw4UL7ay9evJiysjJiY2Pp2LEjffr0YerUqbX9FtRpZeU2+63DRneOJSLA0+REIiIiUlUWwzAMs0PUF/n5+fj7+5OXl+ewR+8+XJ/Ko59sJ9DLlW8md8fPw9XsSCIiIg3ahfQP3VJM7E4Wl/GvlRW3DhvfI16lTkREpJ5RsRO7t77bT05BMU2DvBh+TbTZcUREROQCqdgJANnWIt78dj8Ak/u0xM1F/2qIiIjUN/rrLQC8vHIvhSXltIsK4KbEcLPjiIiIyEVQsRP2ZVtZ8FMqAI/1a43FoluHiYiI1EcqdsJzS3djM6BXm1A6xAaZHUdEREQukopdA/fj/mOs2pWNs5OFh/vo1mEiIiL1mYpdA2azGcz49dZht18dRVxjH5MTiYiIyKVQsWvAvtiewdYjeXi5OTPhhhZmxxEREZFLpGLXQBWXlfP88t0A/O265jTydTc5kYiIiFwqFbsG6oMfUzl8/BSNfN25+7pYs+OIiIhINVCxa4DyTpXy76/3AjCpVwu83FxMTiQiIiLVQcWuAVrwUyq5haXENfbhr1dFmh1HREREqomKXQNTVm4jae0hAO7uGouLs/4VEBERcRT6q97ArNqVTVruKQK9XBlweROz44iIiEg1UrFrYN794QAAd3Roioers8lpREREpDqp2DUgO9PzWX/gOM5OFu68NtrsOCIiIlLNVOwakLlrK47W9UkII9zf0+Q0IiIiUt1U7BqI4ydL+N+WdABGdYoxN4yIiIjUCBW7BmL+hlRKymwkNvHnquhAs+OIiIhIDVCxawBKy228v65iipORnWKwWCwmJxIREZGaoGLXACxPziQzv4gQHzf+0i7c7DgiIiJSQ1TsGoB3fzgIwNCO0bi7aIoTERERR6Vi5+C2Hcnl50MncHW2MLxjU7PjiIiISA1SsXNwc9ceBOCmxHAa+3mYG0ZERERqlIqdAztqLebzrRkAjOwca3IaERERqWkqdg7sw/WplJTbuKJpAJdHBZgdR0RERGqYip2DKimz8cH636Y4EREREcenYuegvtyewVFrMaF+7vRL1BQnIiIiDYGKnQMyDIN3f6i4L+zwjtG4OuvHLCIi0hDoL74D2nw4l61H8nBzduIOTXEiIiLSYKjYOaC5v05I3P/yCEJ83M0NIyIiIrVGxc7BZOYV8eX2X6c40UUTIiIiDYqKnYOZt/4QZTaDDjFBJDTxNzuOiIiI1CIVOwdSVFrOh+tTARjZOcbcMCIiIlLrVOwcyGdb0zl2soQIfw9ubBNqdhwRERGpZSp2DsIwDPt9Ye+8NgYXTXEiIiLS4Oivv4P46eAJktPz8XB14varo8yOIyIiIiZQsXMQc9dWTEg86IomBHq7mZxGREREzKBi5wDSck+xPDkLgLs0xYmIiEiDpWLnAN5fd4hym0Gn5sG0CvMzO46IiIiYRMWunjtVUs5HP/06xYmO1omIiDRoKnb13P+2pJFbWEpUkCc9W2uKExERkYZMxa4eMwzDfl/Yu66NwdnJYm4gERERMZWKXT22LuUYv2RZ8XJz5q/tNcWJiIhIQ6diV4+9++uExLdeGYm/p6u5YURERMR0Knb1VOqxQlbtOj3FSbTJaURERKQuULGrp95bdxDDgK7xIcQ19jU7joiIiNQBKnb10MniMhZsPAzA6M6xJqcRERGRukLFrh7676YjWIvKiA3xpluLRmbHERERkTpCxa6esdkM5v560cRd10bjpClORERE5FcqdvXMd/tySDl6Eh93F269KtLsOCIiIlKHqNjVM3N/OADAX9tH4uuhKU5ERETkNyp29ciBnJOs/uUoFkvFnSZEREREzqRiV48k/frZuu4tGxMT4m1uGBEREalzVOzqCWtRKYt+neJkVOcYc8OIiIhInaRiV08s2niEkyXlxDX2oUtciNlxREREpA5SsasHbDaDpHUHARjZKQaLRVOciIiIyB+p2NUDq3/J5tCxQvw8XLjlyiZmxxEREZE6SsWuHjg9IfHtHZri5eZibhgRERGps0wtdkePHiUuLo41a9bYl61fv56OHTvi4+NDbGwsc+bMqbRNUlIScXFxeHt70759e9atW2cfKy8v56GHHiI0NBRfX18GDBhARkaGfTw7O5uBAwcSEBBASEgIEyZMoKysrMb381LszbLy3d4cnCxw5zXRZscRERGROsy0YvfDDz9w7bXXkpKSYl924sQJ+vXrx4gRI8jNzWXOnDlMnDiRDRs2ALBmzRrGjx9PUlISubm5DBs2jP79+1NYWAjA9OnTWbFiBRs3biQtLQ1PT0/Gjh1rf/4hQ4bg4+NDeno6GzZsYNWqVbz88su1u+MX6PTRuhtahxIV5GVuGBEREanTTCl2SUlJDB06lGeeeabS8o8//pjg4GDuvfdeXFxc6NGjB8OGDeP1118H4O233+b222+nc+fOuLq6MnHiREJCQliwYIF9/OGHHyYqKgo/Pz9eeeUVli5dyv79+9m3bx9r1qzh+eefx8vLi2bNmjF16lRee+21Wt//qsorLOW/m9IAGNU51uQ0IiIiUteZUux69+5NSkoKQ4YMqbQ8OTmZxMTESsvatGnD1q1b/3Q8Ly+PI0eOVBoPDQ0lMDCQbdu2kZycTFBQEBEREZW2TU1NJTc396w5i4uLyc/Pr/SoTQs2pnKqtJxWYb5c0yyoVl9bRERE6h9Til1YWBguLn+8CMBqteLtXfmOCl5eXhQUFPzpuNVqBTjv+NnGAPvz/96MGTPw9/e3P6Kioi5gLy9Nuc0gae0hoGJCYk1xIiIiIn+mTl0V6+3tbf+83GmFhYX4+vr+6fjp0na+8bONAfbn/70pU6aQl5dnfxw+fPjid+4CrdqVRVruKQK8XBlwuaY4ERERkT9Xp4pdQkICycnJlZbt3LmThISEPx0PDAykSZMmlcYzMzM5fvw4CQkJJCQkcOzYMbKysiptGxkZib+//1nzuLu74+fnV+lRW9794QAAd3Roioerc629roiIiNRfdarY3XLLLWRmZjJr1ixKS0tZvXo18+bNY/To0QCMHj2aefPmsXr1akpLS5k1axZZWVkMGjQIgFGjRjF9+nQOHDiA1WplwoQJdOvWjebNmxMfH0+XLl2YMGECVquVAwcO8PTTTzNmzBgzd/msdmXk8+P+4zg7WTTFiYiIiFRZnSp2wcHBrFy5kkWLFhEcHMzYsWN59dVX6d69OwA9e/Zk9uzZjBs3jsDAQObPn8/SpUsJCqq4sOCJJ57gpptuomvXrkRGRlJUVMTChQvtz7948WLKysqIjY2lY8eO9OnTh6lTp5qyr+cz94eDAPRpG0ZEgKe5YURERKTesBiGYZgdor7Iz8/H39+fvLy8Gjste/xkCdfO+IriMhuL/34t7WN0NayIiEhDdiH9o04dsROYvyGV4jIbCU38uCo60Ow4IiIiUo+o2NUhpeU2Pvjx1ylOOsVqihMRERG5ICp2dciK5Cwy8ooI8XHjL+3CzY4jIiIi9cwfZwkW0zRr5M2AyyNo3sgHdxdNcSIiIiIXRsWuDmkd7scrt19hdgwRERGpp3QqVkRERMRBqNiJiIiIOAgVOxEREREHoWInIiIi4iBU7EREREQchIqdiIiIiINQsRMRERFxECp2IiIiIg5CxU5ERETEQajYiYiIiDgIFTsRERERB6FiJyIiIuIgVOxEREREHISKnYiIiIiDcDE7QH1iGAYA+fn5JicRERGRhuJ07zjdQ85Hxe4CWK1WAKKiokxOIiIiIg2N1WrF39//vOtYjKrUPwHAZrORnp6Or68vFovF7Dhyhvz8fKKiojh8+DB+fn5mx5Hf0c+nbtPPp27Tz6duq42fj2EYWK1WIiIicHI6/6fodMTuAjg5OREZGWl2DDkPPz8//eKrw/Tzqdv086nb9POp22r65/NnR+pO08UTIiIiIg5CxU5ERETEQajYiUNwd3dn2rRpuLu7mx1FzkI/n7pNP5+6TT+fuq2u/Xx08YSIiIiIg9AROxEREREHoWInIiIi4iBU7EREREQchIqd1Gtbt26lV69eBAUFERYWxogRI8jJyTE7lvxOeXk5119/PSNHjjQ7ivzO8ePHGTFiBMHBwQQGBjJw4EAyMjLMjiW/2rRpE9dddx0BAQGEh4dz//33U1xcbHasBu/o0aPExcWxZs0a+7L169fTsWNHfHx8iI2NZc6cOaZkU7GTeuvUqVP07duXTp06kZmZSXJyMseOHWPUqFFmR5Pfeeqpp/juu+/MjiFnceutt1JQUEBKSgqpqak4Oztz9913mx1LqLjb0V/+8hcGDx7M8ePH+emnn1i+fDnPP/+82dEatB9++IFrr72WlJQU+7ITJ07Qr18/RowYQW5uLnPmzGHixIls2LCh1vOp2Em9lZqaSrt27XjiiSdwc3MjODiYv/3tb3z77bdmR5MzfP3113z88cfceuutZkeR3/n555/58ccfmTt3LgEBAfj6+vLWW28xc+ZMs6MJFWUhIyMDm81mv/m7k5MTXl5eJidruJKSkhg6dCjPPPNMpeUff/wxwcHB3Hvvvbi4uNCjRw+GDRvG66+/XusZVeyk3mrZsiVLly7F2dnZvmzx4sVcddVVJqaSM2VnZzNmzBg+/PBD/TGqgzZs2ECbNm146623iIuLIzw8nAceeIDw8HCzowkQHBzMxIkTeeCBB3B3dycqKooWLVowceJEs6M1WL179yYlJYUhQ4ZUWp6cnExiYmKlZW3atGHr1q21GQ9QsRMHYRgGjz/+OJ999hmvvPKK2XGEitNIw4cPZ9KkSbRr187sOHIWx48fZ9u2bezdu5fNmzezZcsW0tLSGDFihNnRhIr/hjw9PXnttdc4efIkO3bsYOfOnUybNs3saA1WWFgYLi4uf1hutVrx9vautMzLy4uCgoLaimanYif1Xn5+PoMHD+aDDz7g22+//cP/NYk5ZsyYgYeHB+PHjzc7ipzD6ZnyZ82aha+vL6GhoTzzzDN8+eWXpvxBkso++eQTPv74Y8aNG4e7uztt27Zl2rRpzJ492+xo8jve3t4UFhZWWlZYWIivr2+tZ/lj7RSpR1JSUujXrx9NmzZl48aNhISEmB1JfvX++++Tnp5OQEAAgP2X3v/+9z9yc3PNCyZ2bdq0wWazUVJSgoeHB1BxBTOAbkpkvtTU1D9cAevq6oqbm5tJieRcEhISWLFiRaVlO3fuJCEhodaz6Iid1FsnTpygR48edOrUieXLl6vU1TG7d+8mPz+f3NxccnNzGTp0KEOHDlWpq0N69epFs2bNGD16NAUFBRw9epTHHnuMgQMHmnKkQSrr3bs3GRkZPPvss5SXl7N//36mT5/O8OHDzY4mv3PLLbeQmZnJrFmzKC0tZfXq1cybN4/Ro0fXehYVO6m33n33XVJTU1m4cCF+fn74+PjYHyLy51xdXfnmm29wcXEhPj6eFi1aEBkZyTvvvGN2NKHiiOrnn3/OkiVLCA4Opnv37tx8881/uCJTzBccHMzKlStZtGgRwcHBjB07lldffZXu3bvXehaLoePtIiIiIg5BR+xEREREHISKnYiIiIiDULETERERcRAqdiIiIiIOQsVORERExEGo2ImIiIg4CBU7EREREQehYiciDmnfvn1mR6jz8vLyOHr0qNkxRKQaqdiJiMN56KGHmD59epXWXbNmDRaLpcayWCwW1qxZc1HbPvnkk1x//fXVmudMcXFxJCcnAzBv3jzatm1bY68lIrVDxU5EHI6OQlVNTk6O/ethw4bZS56I1F8qdiJSJxw8eBCLxcJ7771HdHQ03t7ejBo1iu+//5527drh4+NDz549ycnJwWaz8dxzz9G8eXP8/f3p0KEDy5cvB+Dpp59m3rx5zJs3j3bt2l1wju3bt9OvXz+CgoKIjIzknnvuIS8vDwDDMJg5cyaJiYkEBAQQGBjIsGHDOHXqFAClpaVMmjSJkJAQGjVqxAsvvHBBr7127VquvvpqvL296dy5MwcOHLCPzZ07l5iYmErrX3/99Tz55JMAjBw5kr/+9a+0bt2aRo0akZKSwtq1a+nRowcRERF4eHjQvn17fvzxRwBatmwJQN++fXn++ef/8Pzfffcd1113HQEBAcTGxjJ16lSKi4uBiiOJgwcPZvjw4QQEBBAZGcmUKVMuaF9FpIYYIiJ1wIEDBwzAGDJkiHHy5Elj+/bthrOzs9GuXTvjyJEjxtGjR424uDjjqaeeMqZNm2ZERkYaP//8s1FaWmosWLDAcHd3NzZs2GAYhmHcddddxl133VWl1129erVx+ldhTk6OERQUZDzwwANGYWGhkZGRYfTo0cPo37+/YRiGsWDBAiMsLMzYs2ePYRiGsWvXLiMoKMh4++23DcMwjKlTpxrx8fFGSkqKUVBQYNx5550GYKxevfpPc+Tk5BgBAQHGc889Z5SUlBjff/+94efnZ3Tr1s0wDMN49913jejo6ErbdOvWzZg2bZp9n318fIzt27cbJ06cMAoLC42goCDjtddeM8rLy42CggLjtttuM7p06WLf/sxsZz7/7t27DXd3d2PWrFlGcXGxsXfvXuOyyy4z7rvvPsMwDGPatGmGxWIxkpKSjLKyMuOLL74wLBaLsW7duiq95yJSc3TETkTqlAcffBAvLy8SEhIIDw/nrrvuokmTJoSEhHDttddy8OBB3nnnHaZMmcKVV16Ji4sLt912G/3792fOnDmX9Nqffvopbm5uzJw5E09PT8LCwvj3v//NkiVLyMzMpG/fvvz000/Ex8dz9OhRcnJyCAkJIS0tDYD333+fhx56iGbNmuHt7c2rr75a5c/vff7553h7ezN58mRcXV3p3Lkzo0ePvqD811xzDQkJCQQEBODm5saPP/7IPffcQ3FxMQcPHiQ4ONie9XzmzZvHZZddxv3334+bmxtxcXHMmDGDt956C5vNBkCLFi0YMWIEzs7O9OvXj/DwcPbs2XNBeUWk+rmYHUBE5EzBwcH2r52dnQkMDLR/7+TkhM1mIysri2bNmlXaLjY2lq1bt17Sa2dlZREdHY2zs3Ol54WKU8WtW7fmscce47PPPqNx48ZcfvnlFBcX28tOWloaTZs2tW8bEBBAUFBQlV47LS2NqKioSkWwefPmbN68ucr5IyIi7F87OzuzevVq+vbtS0FBAW3btsXV1dWe9XzO9f6eOnWK7OxsAMLCwiqNV/W5RaRmqdiJSJ1SlSNcMTExpKSkVFqWkpJCeHj4Jb12TEwMhw4dory83F7uTr9OeHg4jzzyCKmpqRw8eBA/Pz8AEhMT7dtHRUWxf/9++/cnT54kNze3Sq8dFRXFoUOHsNlsODlVnEw5cuSIfdzZ2ZmSkpJK25x58QNUfu/Wr1/P+PHjWbt2LVdddRUAL730Ert37/7TLDExMfz3v/+ttCwlJQV3d/cqF1URMYdOxYpIvTN27Fiee+45Nm3aRHl5OYsWLWLJkiWMHDkSAA8PD/sFDxeiX79+WCwWHn74YU6dOkVmZib3338/PXr0IDo6mry8PDw8PHBxcaGoqIiXXnqJHTt22AvX2LFjef7559m1axdFRUU88MADlJeXV+m1b775Zmw2G08++SQlJSX8/PPPvPXWW/bx1q1bk5mZyerVqzEMgw8++IBdu3ad8/ny8vJwcnLC09MTgB9//JFXXnmlUjl0d3c/6/t0xx13sHPnTvv6KSkpPProowwbNgw3N7cq7Y+ImEPFTkTqnUmTJnHvvfcyZMgQ/P39efbZZ/noo4/o1q0bAEOGDOGHH36odFq0Kvz9/Vm5ciU7duwgMjKShIQEYmJiWLRoEQDTp0+nsLCQxo0bExMTw48//sidd97J9u3bAXj44YcZPnw43bp1Izw8HH9//0qnls8nICCA5cuX89VXXxEYGMiYMWMYPHiwfbx9+/Y8/vjj3HXXXQQFBfHVV19VGv+9Xr16cc8993DdddcRGBjIPffcw3333Ud2djZZWVkA/O1vf+OOO+7gscceq7RtTEwMy5cvZ/HixTRu3JguXbrQq1cvXnvttQt6P0Wk9lkMwzDMDiEiIiIil05H7EREREQchC6eEBGHlZ2d/YerO3+voKCgVrKEhIRQVFR0zvGdO3de8KljEZHf06lYEREREQehU7EiIiIiDkLFTkRERMRBqNiJiIiIOAgVOxEREREHoWInIiIi4iBU7EREREQchIqdiIiIiINQsRMRERFxECp2IiIiIg7i/wO9H3AXr6qIiQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data = Ncount_mean.sel(final_amp=0.88)\n",
"data_std = Ncount_std.sel(final_amp=0.88)\n",
"fig = plt.figure()\n",
"# ax = fig.gca()\n",
"data.plot.errorbar()\n",
"# plt.xlabel('MOT AOM Frequency (MHz)')\n",
"# plt.ylabel('MOT Gradient Coil Current (A)')\n",
"plt.tight_layout()\n",
"# plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"def factor_from_Ncounts_to_Natom():\n",
" return 1 / (8.474337362524987e-14 * 0.3725) * 5.86e-6**2 / 0.438**2"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"def mot_loading(x, A, tau):\n",
" return A * (1 - np.exp(-x / tau)) * np.heaviside(x, 0)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"data = data * factor_from_Ncounts_to_Natom()\n",
"data_std = data_std * factor_from_Ncounts_to_Natom()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABk9ElEQVR4nO3de3zO9f/H8ce1IzsZxhw25zNDIZE5NqcOzpRTDpVUSjoXIen8E9909KUkimZ8c8ohFpUix5CwZGwzZnZmx+v3x5Ursw1juz7Xrj3vt9tu2/X+vK/P53XtnTy9P4e3yWw2mxERERGREs/J6AJEREREpGgo2ImIiIg4CAU7EREREQehYCciIiLiIBTsRERERByEgp2IiIiIg1CwExEREXEQCnYiIiIiDkLBTkRERMRBKNiJSJE6deoUnTp1okyZMlSuXJm1a9diMpkIDw8v8mOZTCamTZtW5PstSWJiYrj//vvx8/PDx8eHgQMHEhUVdc33bdu2jeDgYHx8fKhRowZPPvkkycnJufqcOHGCwYMHU7lyZfz8/Ojbty8RERHF9VFEpAi4GF2AiDiW2bNn8/PPP7N48WKqV69OUFAQ27dvp0mTJkaX5nCysrLo1asXKSkpfPTRR2RmZvLCCy/QvXt39u7di6ura77vO3DgACEhIXTo0IFly5Zx6tQpnnvuOf766y9WrVoFQFpaGiEhIWRlZfH+++9TpkwZpkyZQufOnfn999/x9fW14ScVkeulYCciRercuXNUq1aNwYMHW9tuv/12AytyXN988w379u3jwIEDNG3aFICWLVvSrFkzli5dyvDhw/N935IlSzCZTKxcuRIvLy/AEhLHjx/PiRMnqFmzJj/++CNHjx5l06ZNdOvWDYCGDRvSuHFj/ve///HAAw/Y5kOKSKHoVKyIFJlatWrx+eefExkZaT1NGh4enutU7LRp06hXrx5r1qyhefPmuLu706BBAxYuXJhrX/v376d///5UqlQJV1dXqlevzhNPPMGFCxduqsYLFy7w4osvUr9+fdzd3fHx8SEkJIS9e/da+4waNYqePXsyb9486tatS9myZbnjjjs4cuQIq1evJigoCA8PD9q2bZvnfZ07d2bBggXUrFkTLy8vunbtyp49e65ak8lkKvCrVq1aBb5v/fr1NGzY0BrqAJo0aULjxo1Zu3Ztge9LT0/H1dUVDw8Pa5ufnx9gCeaX+gD4+PgU2EdE7I9m7ESkyKxYsYLJkyeze/duVqxYQUBAAMeOHcvTLyYmhscff5zJkydTs2ZN3nnnHUaNGkXbtm1p1KgRMTExBAcHc/vtt/P555/j7u7OmjVrmD17NlWqVOGll1664RpHjhzJDz/8wJtvvkndunU5cuQIU6ZM4b777uOPP/7AZDIBsH37dqKjo5k1axZpaWmMHz+e3r17YzKZePXVV3F2dubJJ59k2LBhHDx40Lr/vXv3cvjwYd544w3Kly/P1KlT6dy5M4cOHaJ69er51rR9+/YC63V3dy9w2x9//EGDBg3ytNerV48jR44U+L6xY8fy3//+l0mTJjFlyhROnz7N9OnTCQoKokWLFgCEhITQrFkznnvuOebPn4+HhwcTJ07Ey8uLvn37FrhvETGYWUSkCD3wwAPmmjVrWl9v2bLFDJi3bNliNpvN5qlTp5oB86ZNm6x9Tpw4YQbM7777rtlsNpvXr19v7tixozkxMTHXvoOCgszdu3e3vgbMU6dOve7a0tPTzT169DB//fXXudr/7//+zwyYo6OjrZ8BMP/xxx/WPuPGjTMD5u+//97a9u6775oB8/nz53O974cffrD2iY6ONpcpU8b8zDPPXHed16tBgwbmYcOG5WkfNmyYuX79+ld974cffmh2cnIyA2bAXLNmTXNkZGSuPj///LO5YsWK1j7u7u7mDRs2FOlnEJGipRk7ETFEu3btrD8HBAQAkJqaCkD37t3p3r07mZmZHDlyhCNHjrB//37OnDlDxYoVb/iYbm5ufPfdd4Bl1vDo0aMcPnyY1atXA5CRkWHtW758eRo1amR9XaVKFSD39YKXaklISLDeTFCjRg06duxo7VO1alXat2/Ptm3bCqwrKyurwG0mkwlnZ+d8t+Xk5FhnGC9nNpsLfA/AG2+8wUsvvcRjjz1G//79OXv2LDNmzKBbt25s27YNf39/wsPD6dmzJ3fccQeTJk3C2dmZjz76iH79+rFu3TqCg4ML3L+IGKfUXWN39uxZ6tWrd92PXsjJyeHll18mICCAcuXKcfvtt/PDDz8Ub5EipcDl13c5OVn+V5STk2P9/sILL1ChQgUaNmzIo48+yu7duylbtixms/mmjrt+/XoaN25MtWrVuPvuu/niiy+spzsv3/fl15YVVHd+qlWrlqetcuXKnD9/vsD3uLq6FvhVt27dAt/n6+tLUlJSnvaUlBTKlSuX73uysrJ47bXXGDZsGHPnzqVr164MGTKE77//nujoaN555x0AXn/9dapXr87atWu566676NmzJytWrKBp06Y89dRTV/0diIhxStWM3U8//cQDDzxQqOcwffLJJ6xcuZJff/2VqlWrMmfOHO666y7i4uIoU6ZMMVYrUnq9+eabzJo1i48//pgBAwZYQ8ptt912U/uNiIigb9++9OnTh9WrV1tD04cffmidybtZ+d1YEBsbS+XKlQt8z86dOwvcdrVr7Bo2bJjvjRnHjh0r8Hd19uxZ0tLSuOOOO3K1+/v706hRI+v1gidOnKB169a5ju/k5ERwcDAffPBBgTWJiLFKzYzdwoULGTp0KDNnzsyzbdOmTdx22234+vrStGlTFi9ebN32xx9/kJOTQ05ODmazGScnp2v+i11Ebs6PP/5I06ZNGTNmjDXURUVF8fvvv1tn9W7Erl27uHjxIi+++GKumbB169YB3NS+L4mIiODQoUPW19HR0Wzfvt36yJD8tG7dusCvoKCgAt/XvXt3/vjjj1zHO3ToEH/88Qfdu3fP9z2VK1emQoUKeU4Nx8XFceTIEWrXrg1Ao0aN2LFjh/XuWLDMaG7fvt3aR0TsT6kJdj169CAiIoIhQ4bkat+3bx/33nsvL7zwAufOnWPevHlMnDiR9evXA/DII4+QlpZGjRo1cHd3Z/LkyYSGhmq2TqQY3Xbbbezfv58333yTH374gfnz59OxY0fS09Ot1+HdiFtvvRUXFxeef/55Nm7cyOrVqxkwYABr1qwBuKl9X2I2m+nTpw9Lly5l+fLl9OjRg/Lly/PEE0/c9L6vNGTIEBo0aECvXr346quv+Oqrr+jVqxdBQUEMGjTI2m/Pnj3W8Ofs7Mz06dP56quveOSRR/j+++9ZunQpd955J87Ozjz99NMATJkyhZiYGHr16sW3337L2rVrGTRoENu3b2fGjBlF/llEpGiUmmBXpUoVXFzynnn+5JNP6NOnD/3798fZ2Zn27dvz0EMPMXfuXMByMXXnzp05fPgwycnJPPfccwwcOJDTp0/b+iOIlBovvvgi48ePZ86cOfTq1Yt33nmHESNGMG3aNA4ePHjV69Wupl69enz11VecOnWKe++9l3HjxgFYn7V3tRscrleNGjV4+umneeqppxgzZgwNGjTg559/pkKFCje97yu5u7uzceNGWrVqxcMPP8xjjz1Gu3bt+O6773L9/65fv348+uij1tePP/44ixYt4tdff6V3795MmjSJRo0asWfPHutMZuvWrfnhhx9wcXFh6NChDB8+nHPnzrFlyxYGDBhQ5J9FRIqGyXyzVyKXQCaTiS1bttC5c2d69+7N5s2bc83AZWdnU7duXfbu3UtQUBAvv/wy9913n3V7/fr1eeKJJ5gwYYIR5YuInRo1ahTh4eH8/fffRpciIqVUqbp5Ij8BAQGMGjWKjz/+2NoWExNjvTsuMjIy1zUmYLmDzc3NzaZ1ikjBLl0Hey35zdqLiDiSUnMqtiBjx45lyZIlbNiwgZycHI4ePUrHjh159913Abj33nt57bXX+Ouvv8jMzGTOnDnExMRw9913G1y5iFwyZsyYqz4y5NKXZtJExNGV+lOxAGvWrGHq1KkcPXoUT09P7r//ft544w3c3NxISUnh5ZdfZvny5aSmptK8eXPeffdd2rRpY+yHEBGrv//+m7i4uGv2a968uWbbRcShlcpgJyIiIuKISv2pWBERERFHoWAnIiIi4iAc/haxnJwcoqOj8fb2znexbBERERF7ZjabSU5Oplq1ata1tQvi8MEuOjqawMBAo8sQERERuSknT54kICDgqn0cPth5e3sDll+Gj49PsRwjMzOTDRs20L17d1xdXYvlGHJjNDb2SeNivzQ29knjYp9sNS5JSUkEBgZaM83VOHywu3T61cfHp1iDnYeHBz4+PvoDZ2c0NvZJ42K/NDb2SeNin2w9LtdzSZlunhARERFxEAp2IiIiIg5CwU5ERETEQSjYiYiIiDgIBTsRERERB2FIsNu8eTNt27bFx8eHKlWqMGHCBC5cuJBv3169elGmTBm8vLysX999952NKxYRERGxfzYPdmfPnuWuu+5i/PjxJCQksGfPHsLDw3nzzTfz7f/bb7+xfv16UlJSrF89e/a0cdUiIiIi9s/mz7GrVKkSZ86cwdvbG7PZzLlz57h48SKVKlXK0/f48ePEx8dz66232rpMERERkRLHkAcUX3pycmBgIFFRUQQHBzN69Og8/Xbu3Im3tzdDhgxh586d+Pv7M2nSJMaMGVPgvtPT00lPT7e+TkpKAiwPEczMzCziT4J135d/F/uhsbFPGhf7pbGxTxoX+2SrcSnM/k1ms9lcjLVc1YULFzh//jzDhg2jTJkyrFu3Ltf2RYsWsWTJEl5//XWaNWvGli1bGDBgAAsWLGDQoEH57nPatGlMnz49T/uSJUvw8PAols8hIiIiUlzS0tIYOnQoiYmJ11xFy9Bgd8mOHTto27Yt8fHxlC9f/qp9H3vsMWJjYwkNDc13e34zdoGBgcTFxRXrkmIbN24kJCRES73YGY2NfdK42C+NjX3SuNgnW41LUlISfn5+1xXsbH4q9ueff2bMmDHs378fNzc3wBLG3Nzc8PT0zNV3wYIFeHt755qdS09Pp2zZsgXu393dHXd39zztrq6uxf6HwRbHkBujsbFPGhf7pbGxTxoX+1Tc41KYfdv8rtjmzZuTlpbGCy+8QEZGBidOnOCZZ55h7Nix1qB3SWJiIo8//jh79uwhJyeHNWvWsGTJEh5++GFbly0iIiJi92w+Y3fpOXQTJ07E39+fcuXKMXz4cKZMmWLd/sknnzBs2DAmTpxIamoq/fr148yZM9SpU4cvvviC4OBgW5ctIiIiYvcMuSu2SZMmbNiwId9tKSkp1p9NJhOTJ09m8uTJtipNREREpMQyJNiJiIhI6ZOaCl5elp9TUuCKS+vtitlsJj07nTIuZaxtn+35jJiUGOLS4jibdpYzKWe4w3QHveltYKW5KdiJiIhIqZBjzuFC5gU83f5NlB/s+ICo5CjOpJ4hNjWW2JRYYlNjOZN6htuq38YPo36w9n1p80ucTjmda5+1A2rbrP7roWAnIiIiNpGd/e/PW7dC9+7g7Hzz+83MzsTV+d87R+f8Moeo5KhcQS02JZazaWdpF9COraO3WvvO3DaTmJSYfPd7JvVMrtcDGg8gNTOVSh6VqORRiQplKpB+LD3f9xpFwU5ERESKXVgYPPHEv69794aAAJgzB/r3v/b7lx9azsmkk0QnR1u/YlJiiE6OpmWVlrlm1t766a0Cw1psamyu18OChnEh6wL+nv74e/lbv1f2rIy/p3+uvnN7z7X+nJQE5cpZfq6xKotevYompN4sBTsREREpVmFhMHAgXLkkwqmMAwx48QQPnzuJX52TnEo+ZQ1tdcrXYdX9q6x9n/juCaKTo/Pd/5Xto1uOzhPWKntWtga2y73T/Z0b+jyXh9R77nEpVEgtTgp2IiIiUqTSMtM4mXiSk0knOXH+JJM+P4n57pNwsTxsfPvfjsN7gE80n0YDV2S29Kzcpzjvqn8XSelJVPOuRjXvalT1qvrvz95Vc/Wd2W1mMX2ygkNqVJSlPTTU2HCnYCciIiLXzWw2c/7ieY6fP87fCX+Tbc5mcNPB1u1BHwVx4MyB3G9q9c/3+Dq5g11sC0itDEmB9OkSSNtGAVT3qU4172oE+gTm2sWn93xaTJ/o+mVnw5NP5g11YGkzmWDiROjTx7jTsgp2IiIikkt6VjruLv8uzzk9fDp7Tu/heIIlzCWlJ1m31fatnSvYebpa7jj1cvOiRrkauKQGsn9bICQFwvk6uQ+0eK31xyH3wP12vv7Atm1w6lTB281mOHnS0q9zZ5uVlYuCnYiISCkUlRTFkXNHOBZ/jGPxx/g78W+Onz/O8YTjlHMvx7Enjln7rju2jl+jfs31fn9Pf2qXr039CvUxm82YTCYAvhn0Dd7u3pRzL4fJZCI8HLo8d+16qla9dh+jxeR/P8YN9ysOCnYiIiJ2LDsbfvjBxNat1fH0NNGly/Wd5ssx53Aq6RRHzx3lWPwxzl88zwsdXrBu77e0Hzujd+b73sSLiWTnZOPsZDnQhNsmMOLiCGqXr01t39rU9K2Jh6tHvu8NLJf7FGpwsOXu16io/E9hmkyW7SVhtdDrDZ9GhlQFOxERETsVFma5puvUKRegNbNm5X5EyOUzZWB5ftvmvzdzLP4YEfERpGf/ewOCq5Mrz7Z/1hrWGldqTMLFBOpXrE/d8nWpU74OtXxrUdu3NrV8a1n7AQxrPuyGP4Ozs6XegQMtIe7ycHep9Nmz7eNRIddSEkKqgp2IiIgdynX3pXMGVDgGfoc55XeYAV/+Qd1jh0l2iiTm6RicTE4AbD+1nW///Na6D1cnV+qUr0O9CvWoX6E+F7Iu4OVmWdPr8z6f5wqFxal/f8vdok88YQlFlwQEWEKd0Y8IuV4lIaQq2ImIiNiJhIsJHI47TOsqbXnySZMlOPR+DFp/Ak7ZufpGXLB8j0yMpJZvLQBGthhJx5odrUEusFwgLk75/1Vvq1B3Sf/+cOed/z7Ud+3aolt5wpbsPaQq2ImIiNhYWmYah84e4sCZA7m+opItSWHZ7ac4daq6pfNFX0uoS/eGuEb/fp1tzOfvNiLAJ8C639717Wcx+vz4+OR/CrOk6d/f8kiTLVuyWLduL716taRLFxe7CKkKdiIiIsUkMzuTI+eOcODMAXrV74WPuw8Ar2x5hf/b/n/5vqe6d3WORscC/wS7HRNg52OQXBXIPcvmlgQuTsX4AaRAzs7QqZOZ1NQoOnVqYRehDhTsREREikT8hXh+i/6NPTF72Be7jwNnDnA47jCZOZkA/DDqBzrW7AhAs8rN8PPwI6hyEM0qN7N+b1q5KT7uPoSHX7bjlCoFHrMkPCJEbEvBTkREHM7lC7QX9bVcOeYcjp8/zp7Te7g94HbrqdCvfv+Kx9c9nqe/l5sXzSo3Izvn32vkRrYYyaiWowo8Rkm4+1Lsk4KdiIg4lCsXaO/dmxteoD0jO4ODZw6y9/Re9pzew97Te9l7ei/JGckAzL93PmNuGQNAq2qtaFCxAS2rtKSlf0uC/C2zcDXK1bDetXrJla+vVBLuvhT7pGAnIiIO42YWaM/OyeaPuD/wdvOmpm9NADYf30yvxb3y9HV3difIP4iyLmWtbbcH3M6fj/9ZZJ/l0t2XlufY/dtuL3dfin1SsBMREYdQmAXanZzMRJyPYGfUTnZGW752x+wmLTONFzu8yOvdXgegdbXWVChbwToL17JKS26pegsNKzbE1dm12D+TPd99KfZJwU5ERBzCVRdod8rCnOPCyZOwYlM0D+9txvmL5/N083LzIiM7w/raz8OPuGfjbP7Mt8vZ692XYp8U7ERExCFYF143ZUPlgxCwHQJ/hsDtEN0ali8BIONcVXLMObg7u9OySkvaVGtD62qtaVO9DQ0rNsy1lBbY/kG+IjdDwU5ERBzCxowZMGIrBPwK7sm5Nzr/OwtXrZqJnT12UtO3Jm7ObjauUqR4KdiJiEiJcjLxJFtPbOVU0ime7/C8tX3fxZVQd7flRboXRLWFk+3gVDs4dXuuR4Q4O9c3pniRYqZgJyIidstsNvPX+b/44cQPbD2xla0ntnI84ThgWeB+QtsJeLh6ADDx9ols25HCvFfaw5lmkPPvKVU9IkRKCwU7ERGxG+Z/bmm9dF3b2G/H8tnez3L1cTI5cWvVW+lYoyMXMi9Yg92IFiMY0QJ6VrTfBdpFipuCnYiIGMZsNnMs/hib/trE98e/54cTP/Drg79Sp3wdAJr7N8fVyZXbqt9Gp5qd6FizI+0C21nXXM3PpUeEbNtmuaGiatVLp19t9alEjKNgJyIiNhWXFsf6Y+v5/vj3bPprEyeTTuba/sPfP1iD3dhbxjKu1TjKupbNb1cFcnaGzp2LqmKRkkPBTkREilVSehJZOVlUKFsBsAS34SuGW7e7ObvRPrA93Wp3o2vtrrSu1tq6zdvd2+b1ipRkCnYiIlKkcsw57Irexbpj6/ju2HfsiNrBlI5TmNp5KgBdanfh1qq30q12N+6scycdanSwXicnIjdHwU5ERADLklw//GBi69bqeHqa6NLl+q9Ly8jO4JuD37Du2DrWR6wnLi0u1/bD5w5bf65QtgK7Ht5VlKWLyD8U7EREhLCwS3eSugCtmTXLcifpnDn530manZPNqaRT1PStCVjuVH1s7WMkpicC4OPuw5117qRXvV6E1Amx9hOR4qVgJyJSyoWFwcCB8M+TRqyioiztoaGWcHf+wnnWHVvH6iOr2RCxAR93HyKeiMBkMuHi5MK4VuMwmUz0qteL9oHtcXV2NeYDiZRiCnYiIqVYdjY8+WTeUAf/tPn+zdh5K3k/6Vu2RW4l25xt3Z6Vk0VsaixVvKoA8FbIWzaqWkQKomAnIlKKbdsGp05d1mDKsXw3O1m+3/EWCW0+JvyE5WWzys24p8E99K7fm9sDbsfFSX+NiNgT/YkUESnFYmIA53SoswkarYSGq2BZKER2sHQ43A/8/mTEbfcy9b57qFuhrpHlisg1KNiJiJRCFzIvsD5iPZ8lLIdnv4UySf9urL/232AX0R0iujNmFNStYEipIlIICnYiIqXMn3F/0urTVqRmploaygBJ1Syzc4f7wIlO1r4mk+Xu2OBgY2oVkcJRsBMRcWBJ6UmsObKGlIwUHmr1EAD1K9bHx92HCmUrMLDJQPzODOTlB27HhFOumyhMJsv32bO1zqpISaFgJyLiYC5mXWTt0bUs+X0Jq4+sJj07HX9Pf8bcMgZnJ2ecTE78+uCvBPgEYPonvTXytNwde/mNFAEBllCX33PsRMQ+KdiJiDiIbSe2sWDvAsL+CCMp/d9r5hpUbMCgJoO4mHURTzdPAALLBeZ6b//+0KcPbNmSxbp1e+nVqyVdurhopk6khHEy4qCbN2+mbdu2+Pj4UKVKFSZMmMCFCxfy7bt27VqCgoLw9PSkcePGrF692sbViojYJ7PZTI45x/r6f3/+j8/3fk5SehKBPoE82/5Z9ozbw+HHDvNa19esoa4gzs7QqZOZjh2j6NTJrFAnUgLZPNidPXuWu+66i/Hjx5OQkMCePXsIDw/nzTffzNP36NGjDBgwgBkzZpCYmMj06dMZPHgwUVFRti5bRMRu/Bn3J5M3T6buf+ry/V/fW9tHNB/BI60eYeuorfw98W/eDnmbllVaWk+3iojjs/mp2EqVKnHmzBm8vb0xm82cO3eOixcvUqlSpTx9Fy5cSHBwMH379gVg8ODBfPbZZ3z66adMnz7dxpWLiBgn4WICSw8s5fN9n/PLqV+s7csOLiOkbggALaq04KO7PzKqRBGxA4ZcY+ft7Q1AYGAgUVFRBAcHM3r06Dz9Dh48SFBQUK62Jk2asG/fPpvUKSJyNamp4OVl+TklBTyvfqbzhiSnJ/Pw6odZ8ccK0rPTAXA2OdOzXk+GNx/OPQ3uKfqDikiJZejNE0ePHuX8+fMMGzaMgQMHsm7dulzbk5OT8bzi/5QeHh6kpKQUuM/09HTS09Otr5OSLBcQZ2ZmkpmZWYTV/+vSfotr/3LjNDb2yVHG5eJFAMtC91u2ZHHnnUVzXdrZ1LNU8rScxXA3ubMrehfp2ek0rdSUkc1Hcn/T+63rs0LR/h4dZWwcjcbFPtlqXAqzf5PZnN/Sz7a1Y8cO2rZtS3x8POXLl7e29+nTh/r16/Puu+9a255++mn++usvVqxYke++pk2blu9p2iVLluDh4VH0xYtIqbR9e1XmzQsiPr6sta1ixQs8+ODvtGsXU+j9peek8+P5H9kYv5HIC5F81uwz3J3cAdibvBdvZ2/qlK2j6+VESqG0tDSGDh1KYmIiPj4+V+1r8xm7n3/+mTFjxrB//37c3NwAyyybm5tbntm5Zs2asXv37lxthw4donXr1gXu/8UXX2TSpEnW10lJSQQGBtK9e/dr/jJuVGZmJhs3biQkJARXV9diOYbcGI2NfSrp47JihYm333bmyn8Wx8eX4e232/D119n063d9/2beF7uPBXsXsOSPJSSmJwKWU60VgyrSsWZHAHrTu0jrv5qSPjaOSuNin2w1LpfOPl4Pmwe75s2bk5aWxgsvvMCbb75JTEwMzzzzDGPHjrUGvUtGjBjBrFmzWLZsGf379ycsLIzw8HDmzJlT4P7d3d1xd3fP0+7q6lrsfxhscQy5MRob+1QSxyU7G55+mjyhDsBsNmEywTPPuDBgwNVXa9gRtYMJ6yawI2qHta1O+To8dOtDjGo5KtepViOUxLEpDTQu9qm4x6Uw+7b54068vLz47rvvOHDgAP7+/nTq1ImQkBDee+896/bFixcD0KhRI1auXMnrr79O+fLlefXVV1m+fDkNGjSwddkiIgBs25Z7dYYrmc1w8qSl35UuZl20/uxbxpcdUTtwcXJhUJNBbByxkaMTjvJChxcMD3UiUnIZcvNEkyZN2LBhQ77brrwxokePHvTo0cMWZYmIXFPMdV4+d6lfZnYmYX+E8f6O96nmXY1lg5YBltUgvuz3JXfWuRN/L/9iqlZEShstKSYiUghVq15fP/eKp5ke/gmf7PqEmBRLyivrUpaEiwn4lvEFYFjzYcVUpYiUVgp2IiKFEBwMAQEQFZX/dXZU24VHt//jvl9DycyxPKKgilcVxrUax8OtHraGOhGR4qBgJyJSCM7OMGcODBwIJlPucGcygbnmVtLqfgU50D6wPY+3eZwBTQbg5uxW8E5FRIqIgp2ISCH17w+hofDYs+c4Xf1jOBMEf95LQADMfGo0W90PMb7NeG6teqvRpYpIKaNgJyJSSBHxEWwu8x5JYz6DrDSIvpU1s+6hRw8Tzs6+jGCe0SWKSCmlYCcicp1+Pvkz7/78LisPr8SM5RxsyyotebrfU/QMMuOkVSFExGAKdiIi12HC2gnM3TnX+rp3/d483e5putTqomW+RMRu2PwBxSIiJUFmdiZpmWnW1yF1Q3BzdmPsLWM5+OhB1gxdQ9faXRXqRMSuKNiJiFzmQuYF5u6YS7336zFr+yxr+90N7iZyYiT/vfe/NKnUxMAKRUQKpmAnIgIkpSfx1o9vUWtOLSasm0BkYiRLDy7F/M/zTJxMTlohQkTsnq6xExGHlJ1tWa81JsayWkRwsOUZdFc6l3aOOb/O4f0d75NwMQGAmuVq8vwdzzP6ltE61SoiJYqCnYg4nLAwePJJOHXq37aAAMuDhfv3z933+U3PM3/PfAAa+TXixQ4vcn+z+3F1drVhxSIiRUPBTkQcSliYZVWIK5f7ioqytH/2dTzde6VT1duy6Osz7Z9hX+w+XrjjBfo17oeTSVeoiEjJpWAnIg4jO9syU5ffGq5m9wRo9x6j973HUOc+fDlgEWCZpdv50E7bFioiUkwU7ETEYWzblvv0KwDuSdB2DrT/PyiTiBnY8fch0rPScXdxN6JMEZFio2AnIg4jJuayF65pcNv7cMfb4BFvaTvTFLZMZ+rkfri76JSriDgeBTsRcRhVq172ou1/4M4XLT+fbQzh0+DQQDA7Ub2aEdWJiBQ/BTsRcQhms5nGrc4REOBHVBSYdz4KjcPg1wnw+1AwO2MyQUCg5dEnIiKOSMFOREq88L/DeX7T8wDMnv0LgwaZMGX4YJ73K2B5Dt2lx9HNnp3/8+xERByBLjIRkRJr3+l99Frciy4Lu7AjagcHzxykScfDhIZC9epwKdSB5Tl2oaF5n2MnIuJINGMnIjaVmgpeXq5AH86fz8TXt/D7iEmOYfLmyXy29zPMmHFxcmFcq3FM6TgFfy9/GveHPn2ub+UJERFHomAnIjaVnf3vzz/+aKJXr8IFrt9jf6fd/HakZqYCMKTpEF7r+hr1KtTL1c/ZGTp3LoKCRURKEJ2KFRGbCQuDJk3+fX3PPS7UqmVpv15NKzelQcUGtK3elp/H/MzXA7/OE+pEREorBTsRsYlLS31FReVuv7TUV0Hh7tdTvzJg2QDSMtMAcDI58d3w7/h57M+0C2xXzFWLiJQsCnYiUuyuutTXP20TJ+Y+TRuVFMWwsGHcPv92wv4IY9b2WdZtlT0ra01XEZF86P+MIlLs8l3q6zJmM5w8aemXkZ3B2z+9TcO5DVny+xJMmBjdcjRjbhlju4JFREoo3TwhIsUu11JfV7Ex4nvGH3ycw3GHAWgX0I73e71Pq2qtirE6ERHHoWAnIsUu11JfV7Ht4gccjjtMJY9KvB3yNiNbjNQpVxGRQlCwE5FiFxxseUBwVNQV19k5Z4DLBUwZ5QgIgM/ve4/3d9Zkauep+JbxNapcEZESS/8UFpFi5+wMc+ZYfr60tBe1tsD45tB7AmBZ6qtOxZq81/M9hToRkRukYCciNtG/v2VJL//a56DPGBjVFfz+xKn+Bj77Ol5LfYmIFAGdihURmzCbzVys/xVZ4ybChbMA9Ko0jkUPvElFT19DaxMRcRQKdiJS7KKToxnzvzGsj1gPQBO/JowsP5JJgybh6upqcHUiIo5Dp2JFpNh5uHqwL3Yf7s7uvNblNXaM3UEjz0ZGlyUi4nA0YycixeJw3GEaVmyIyWTCt4wvXw34imre1WhQsQGZmZlGlyci4pA0YyciRSo9K53JmyfT7MNmLP59sbW9c63ONKjYwMDKREQcn4KdiBSZ3TG7aT2vNTO3zSTbnM32k9uNLklEpFTRqVgRuWkZ2Rm8tvU1Xt/2OtnmbCp5VOLDuz5kYJOBRpcmIlKqKNiJyE3Zd3ofI1eOZH/sfgAGNRnEB70/oJJnJYMrExEpfRTsROSmJFxMYH/sfvw8/Piw94cMajrI6JJEREotBTsRKbTUjFQ83TwB6FSrE5/3+Zxe9XtR2bOywZWJiJRuunlCRK6b2Wzm/V/fp9acWkTER1jbH2j5gEKdiIgdMCTY7du3j5CQECpUqECVKlUYOXIkcXFx+fbt1asXZcqUwcvLy/r13Xff2bhikdIhOxvCw+Grryzfs7P/3RaTHEOvxb144rsniEuL49NdnxpVpoiIFMDmwe7ChQv06tWL9u3bc/r0aQ4ePMi5c+cYPXp0vv1/++031q9fT0pKivWrZ8+eNq5axPGFhUGtWtClCwwdavleq5alfcUfKwj6KIj1Eesp41KGD3p/wJt3vml0ySIicgWbX2MXGRlJixYteOWVV3B2dqZixYqMGzeOESNG5Ol7/Phx4uPjufXWW21dpkipEhYGAweC2Zy7/dTZZAZ8MRFuWQDArVVv5ct+X9K4UmPbFykiItdk82DXsGFD1q1bl6stNDSUVq1a5em7c+dOvL29GTJkCDt37sTf359JkyYxZsyYAvefnp5Oenq69XVSUhIAmZmZxbaM0aX9apkk+6OxubbsbHjiCZd/Qp0p98bb3reEOrOJZ9o9w7ROU3Fzdrvp36fGxX5pbOyTxsU+2WpcCrN/Q++KNZvNTJkyhVWrVrF169Y829PT02nXrh0zZ86kWbNmbNmyhQEDBuDt7c2gQfk/UuGNN95g+vTpedo3bNiAh4dHkX+Gy23cuLFY9y83TmNTsN9/r0hUVIf8N/78DFTZAzsmUM7FiU0XNxXpsTUu9ktjY580LvapuMclLS3tuvuazOYrT77YRlJSEqNHj2bXrl2sWrWKoKCg63rfY489RmxsLKGhofluz2/GLjAwkLi4OHx8fIqk9itlZmayceNGQkJCcHV1LZZjyI3R2Fzb11+bGDnyn3/jecRBu/+DLa9CTu7f1xdfZHHffUXzvwuNi/3S2NgnjYt9stW4JCUl4efnR2Ji4jWzjCEzdhEREfTu3ZsaNWrw22+/4efnl2+/BQsW5JmdS09Pp2zZsgXu293dHXd39zztrq6uxf6HwRbHkBujsSlYYOA/P9TYBgPvB58oMDvD5teu6OdCUf8KNS72S2NjnzQu9qm4x6Uw+7b5XbHnz5+na9eutG/fnvXr1xcY6gASExN5/PHH2bNnDzk5OaxZs4YlS5bw8MMP27BiEcfW/o5sfO6eAaM6W0JdXEM4+O8/pkwmS/gLDjauRhERuT42n7H77LPPiIyMZNmyZXzzzTe5tqWkpODl5cUnn3zCsGHDmDhxIqmpqfTr148zZ85Qp04dvvjiC4L1N4xIkYhNiWVo2FCSWm+2NOx9ANbOhQwvwBLqAGbPBmdnY2oUEZHrZ/NgN2nSJCZNmlTg9pSUFOvPJpOJyZMnM3nyZFuUJlKq/HrqV/ot7UdMSgyerp6M8f+IFf8dwamMf/sEBFhCXf/+hpUpIiKFoLViRUopH3cfktKTaFKpCcsHL6eRXyPeGwXbtkFMDFStajn9qpk6EZGSQ8FOpBTJzsnG2cmS1BpXasz64etpUaUFXm6WU6/OztC5s4EFiojITTFkrVgRsb1DZw/R8pOWbD3x7zMj76hxhzXUiYhIyadgJ1IKfH3ga26bdxsHzhzgmQ3PYNDjK0VEpJgp2Ik4sKycLJ5e/zT3L7+f1MxUutXuxpqhazCZTNd+s4iIlDi6xk7EQcVfiOe+0PvY+JdlqZsXO7zIjC4zrNfYiYiI41GwE3FAZ1LP0H5+eyLOR+Dh6sHCvgsZ2GSg0WWJiEgxU7ATcUCVPCrRulprss3ZrByykhZVWhhdkoiI2ICCnYiDyDHnkJGdQRmXMphMJhb0WUBaZhp+HgUv2yciIo5FwU7EAaRkpDBq5SgAlg1ahpPJCQ9XDzxcPYwtTEREbErBTqSEO5V0inu+uoe9p/fi6uTKvtP7uKXqLUaXJSIiBtDjTkRKsN0xu2n737bsPb2Xyp6VCR8VrlAnIlKKacZOpATIzs67huvqo/9jaNhQ0jLTaFKpCWuGrqGWby2jSxUREQMp2InYubAwePJJOHXq3zbfOz8hscN4zJgJqRPCN4O+oVyZcsYVKSIidkGnYkXsWFgYDByYO9QBJPwZhDnLje4VxrFm6BqFOhERATRjJ2K3srMtM3X/LutqBv5ZCuxke/h4L4fKNsTpUS0PJiIiFpqxE7FT27ZdNlPncwrGdAD//f92iGvEqZMmtm0zpDwREbFDCnYidiom5p8fKh2Ese2gxs9wz8NYZu7y6SciIqWeTsWK2KmqVYEaP8L990DZBIhrCN8sxXo69vJ+IiIiKNiJ2K24SmEwcii4pMPJdrBkFVyoaN1uMkFAgOXRJyIiIqBTsSJ26cOdHzI4dKAl1B2+F77YlCfUAcyeDc7OxtQoIiL2R8FOxM5k52Sz4vAKzJh5+NaHWTZwOQH+udd8DQiA0FDo39+gIkVExC7pVKyInXF2cmb54OV89ftXPNzqYUwmE/375l15QjN1IiJyJQU7ETuQnpXOsoPLGN58OCaTCR93H8a1Hmfd7uwMnTsbV5+IiJQMCnYiBkvJSKHf0n5s+msTUclRvNDhBaNLEhGREkrBTsRA5y+c564ld7H91HY8XT1pU62N0SWJiEgJpmAnYpDYlFi6f9md/bH7KV+mPOuGraNtQFujyxIRkRJMwU7EACcSThCyKISj8Ufx9/Rn44iNBPkHGV2WiIiUcAp2IjaWlplGp887cSLxBDXL1WTTyE3Uq1DP6LJERMQB6Dl2Ijbm4erB83c8TyO/Rvw45keFOhERKTKasROxEbPZjOmfJSPGtxnP6FtGU8aljMFViYiII9GMnYgN7I7ZTbcvuhGXFmdtU6gTEZGipmAnUsx+i/6Nbl90Y8vfW3hhk55RJyIixUfBTqQY/XrqV+784k4SLibQPrA9s3rMMrokERFxYAp2IsXk55M/E7IohMT0RDrU6MB3w77Dx93H6LJERMSBKdiJ3ITUVDCZLF+pqf+2/xj5Iz2+7EFyRjKdanZi3bB1eLt7G1eoiIiUCgp2IjchO/vfn7dutbzOysnioVUPkZKRQtfaXVkzdA1ebl7GFSkiIqWGgp3IDQoLgyZN/n3duzfUqgXfrnRh7dC1jGk5hlX3r8LTzdOwGkVEpHTRc+xEbkBYGAwcCGbzZY0uF4iKKsvAgRAaWpv5/ecbVp+IiJROmrETKaTsbHjyyStCXeUD8ER9zPVXATBxYu7TtCIiIragYCdSSNu2walTlzVU/BNGdgOfKOjwFmZyOHnS0k9ERMSWDAl2+/btIyQkhAoVKlClShVGjhxJXFxcvn3Xrl1LUFAQnp6eNG7cmNWrV9u4WpHcYmIue1E+Ah7oCl5nIKYlLFkFZqe8/URERGzA5sHuwoUL9OrVi/bt23P69GkOHjzIuXPnGD16dJ6+R48eZcCAAcyYMYPExESmT5/O4MGDiYqKsnXZIlZVq/7zQ7kTllDnEw1nmsKiDXCxfN5+IiIiNmLzYBcZGUmLFi145ZVXcHNzo2LFiowbN46tW7fm6btw4UKCg4Pp27cvLi4uDB48mE6dOvHpp5/aumwRq+BgqNogGh7oBr6RENcAvtgEaZUAyzPtAgMt/URERGzJ5sGuYcOGrFu3DmdnZ2tbaGgorVq1ytP34MGDBAUF5Wpr0qQJ+/btK/Y6RQri7AztnpwLFSIgvg4s3AwpVQBLqAOYPdvST0RExJYMfdyJ2WxmypQprFq1Kt8Zu+TkZDw9cz8DzMPDg5SUlAL3mZ6eTnp6uvV1UlISAJmZmWRmZhZR5bld2m9x7V9uXHGNzZIHpzL0UxM/LnmQM8nVre3Vq5v5v//L5p57zOg/h4Lpz4z90tjYJ42LfbLVuBRm/yazOddDG2wmKSmJ0aNHs2vXLlatWpVnZg6gT58+1K9fn3fffdfa9vTTT/PXX3+xYsWKfPc7bdo0pk+fnqd9yZIleHh4FN0HkFIny5yFE044mf6d6E5Lc2bo0LsBmDJlOy1bntFMnYiIFKm0tDSGDh1KYmIiPj5XX3PckBm7iIgIevfuTY0aNfjtt9/w8/PLt1+zZs3YvXt3rrZDhw7RunXrAvf94osvMmnSJOvrpKQkAgMD6d69+zV/GTcqMzOTjRs3EhISgqura7EcQ25MUY1Ndk42I/43AhcnF+bfPR9XZ8u+Ll8fdtKk1nhqkYnroj8z9ktjY580LvbJVuNy6ezj9bB5sDt//jxdu3ala9euzJ8/Hyengi/zGzFiBLNmzWLZsmX079+fsLAwwsPDmTNnToHvcXd3x93dPU+7q6trsf9hsMUx5MbczNiYzWYmrJlA6B+huDq5MqndJNpUbwOAr+/lDyrW2BeW/szYL42NfdK42KfiHpfC7NvmN0989tlnREZGsmzZMnx8fPDy8rJ+AXh5ebF48WIAGjVqxMqVK3n99dcpX748r776KsuXL6dBgwa2LltKsVe2vMInuz7BhInF/RdbQ52IiIi9sfmM3aRJk3KdKr3SlTdG9OjRgx49ehR3WSL5mv3LbF7b9hoAH931EYOaDjK4IhERkYJpSTGRAny5/0ueWv8UADO7zmRc63EGVyQiInJ1RRbsCnNhn4i9i0uL45HVjwDw1O1P8WKHFw2uSERE5NoKHewqVKiQb3uNGjVuuhgRe+Hn4ceq+1cxrtU43u3+LqZLTx4WERGxY9d1jd2xY8cYN24cZrOZpKQkunbtmmt7UlISvr6+xVGfiGG61O5Cl9pdjC5DRETkul1XsKtXrx4DBgzg7Nmz/PTTT3Tq1CnX9jJlynDPPfcUS4EitpJ4MZHhK4bz1p1v0aRSE6PLERERKbTrviv20UcfBaB27dqMHDmy2AoSMUJGdgYDlg3g++Pf89f5v9j/yH6cnbSEhIiIlCyFftzJyJEj2bFjB0eOHCEnJyfPNpGSxmw28+C3D/L98e/xcvPiy35fKtSJiEiJVOhg99JLL/HWW29RtWrVXE9CNplMCnZSIk3ZMoVF+xfhbHImdFAot1S9xeiSREREbkihg92iRYtYvXo1vXr1Ko56RGxq3q55zNw2E4BP7/mUHvX0MGwRESm5Cv24k5SUFHr27FkctYjYVPjf4YxfMx6AqZ2mMuaWMQZXJCIicnMKHezuvvtulixZUhy1iNhUc//mBNcMZnjz4UztNNXockRERG5aoU/FXrx4kQceeICZM2dSpUqVXNs2b95cZIWJFLcKZSuwfvh6zGazHkAsIiIOodDBrlmzZjRr1qw4ahEpdhnZGaw5soZ+jfsB4ObsZnBFIiIiRafQwW7qVJ2ykpLJbDbz6JpHmb9nPi91eImZ3WYaXZKIiEiRKnSwGzOm4AvMFyxYcFPFiBSnWdtnMX/PfJxMTnSo0cHockRERIpcoW+eMJvNub7Onj3L0qVL8fT0LI76RIrEqiOreHbjswDM6j6LXvX1uB4REXE8hZ6x++yzz/K0bdq0iQ8//LBIChIpaicunOCl/72EGTPjWo3jibZPGF2SiIhIsSj0jF1+7rzzTt0RK3YnOxtWbTrPK3+8TWpmKp1rduH9Xu/rDlgREXFYNx3ssrKyWLRoEZUqVSqKekSKRFgY1KoFA57bTKIpGs7X4s/XlrHqf67XfK+IiEhJVehTsU5OTnlmPFxcXJgzZ06RFSVyM8LCYOBAMJuBU/dBhick1uD0GT8GDoTQUOjf3+gqRUREil6hg92WLVtyvXZ2dqZevXp5HlYsYoTsbHjySctNPvDPP0CO3AOAGTCZYOJE6NMHnJ2NqlJERKR4FPpUbKdOnQgODqZs2bLExsZiNpupXLlycdQmUmjbtsGp7N0wpgOUO5Fnu9kMJ09a+omIiDiaQs/YnT59mnvuuYe9e/dSsWJF4uLiaNCgARs2bCAgIKA4ahS5bodPnoH7+kK5k9B1MqxYlG+/mBjb1iUiImILhZ6xe+aZZ2jQoAHnz5/n9OnTnDt3jpYtWzJp0qTiqE/kumVmZ/LxucGWUHeuPqx7v8C+VavasDAREREbKfSM3ebNmzl8+DBeXl4AlCtXjo8++ojatWsXeXEihfH8pufZl/gDpgxvzF//Dy765uljMkFAAAQH274+ERGR4lboGbvs7GycnHK/zWQy4eamxdTFON8c/Ib3fnkPgGfrLcQU15grH1d36fXs2bpxQkREHFOhg12XLl0YP348qampAKSkpPDoo4/SuXPnoq5N5LocjjvMmG8taxg/1/453hrdj9BQqF49d7+AAD3qREREHFuhT8W+/fbb3HnnnZQvXx4/Pz/i4uJo2rQpq1evLo76RK6pjEsZGlZsiLe7NzO7zQQs4a1PH9iyJYt16/bSq1dLunRx0UydiIg4tEIHuxo1anDo0CG2bdtGbGwstWrVok2bNjjrb0wxSC3fWvw45kdSM1Jxcfr3P2lnZ+jUyUxqahSdOrVQqBMREYdXqFOxZrOZiIgIXFxc6NKlC/fddx8nTuR9VpiILZxMPGn9uYxLGSp6VDSwGhEREeNdd7BLTU2lQ4cOPPvss9a2M2fOMGrUKDp37my95k7EFraf3E699+sxZfMUcsw5RpcjIiJiF6472L322mu4ubnx8ccfW9sqV67MiRMnyMzM5I033iiWAkWudCb1DIO+GURGdgZ/nvsTE6Zrv0lERKQUuO5gFxoayrx58/IsH1a5cmU+/vhjli1bVuTFiVwpx5zDiBUjiEqOopFfI+bfOx/Tlc81ERERKaWuO9idOXOGevXq5butZcuWnD59usiKEinI2z+9zYaIDZR1KUvooFC83b2NLklERMRuXHew8/Hx4dy5c/lui4+Px8PDo8iKEsnPT5E/MXnzZADm9p5L08pNDa5IRETEvlx3sOvWrRsffPBBvts+/PBD2rVrV2RFiVwpJSOF+5ffT7Y5m2FBwxjdcrTRJYmIiNid636O3UsvvcStt97K2bNnue+++6hSpQoxMTEsXbqUBQsWsHXr1uKsU0o5LzcvZnSZwZxf5/DRXR/pujoREZF8XHewa9CgARs2bGDcuHF88MEHmEwmzGYzQUFBrFu3jlatWhVnnSI80PIBRrQYgZOp0CvhiYiIlAqFWnmiffv2/P7770RERBAXF0fVqlWpUaNGcdUmwsEzB/H38sfPww9AoU5EROQqCr2kGEDdunWpW7duUdcikkvixUTu+eoeMrIzWDtsLc39mxtdkoiIiF277mBXu3btq17XZDKZiIiIKJKiRMxmM+NWj+N4wnFq+daiRjnNDIuIiFzLdQe7adOm5dv+yy+/8Mknn3DLLbcUVU0iLNq/iKUHl+JscubrAV/jW8bX6JJERETs3nVfsPTAAw/k+YqLi2PBggWMHz+en3/+udAHP3v2LPXq1SM8PLzAPr169aJMmTJ4eXlZv7777rtCH0tKjoj4CB5b+xgA0ztPp21AW4MrEhERKRlu6Bq7hIQEHnjgAbZu3cqXX37JoEGDCr2Pn376iQceeOCap29/++031q9fT6dOnW6kVClhMrMzGb5iOCkZKQTXCOaFDi8YXZKIiEiJUehbDH/55RdatGhBVFQUu3btuqFQt3DhQoYOHcrMmTOv2u/48ePEx8dz6623FvoYUjK998t7/HLqF8q5l+PL/l/i7ORsdEkiIiIlRqFm7N555x2mTJnCuHHjeOedd3Bzc7uhg/bo0YNhw4bh4uLCfffdV2C/nTt34u3tzZAhQ9i5cyf+/v5MmjSJMWPGFPie9PR00tPTra+TkpIAyMzMJDMz84bqvZZL+y2u/Zcmo4JG8VvUb/Rp2IeqHlVv+neqsbFPGhf7pbGxTxoX+2SrcSnM/k1ms9l8PR3vuece1q5dy4QJE+jfv3++fTp27HjdB7YWYDKxZcsWOnfunGfbokWLWLJkCa+//jrNmjVjy5YtDBgwgAULFhQ4Uzht2jSmT5+ep33JkiVaz1ZERERKnLS0NIYOHUpiYiI+Pj5X7Xvdwc7J6epnbU0mE9nZ2ddf5WXvKyjY5eexxx4jNjaW0NDQfLfnN2MXGBhIXFzcNX8ZNyozM5ONGzcSEhKCq6trsRzDkZnNZrb8vYUutboU+VJhGhv7pHGxXxob+6RxsU+2GpekpCT8/PyuK9hd96nYnJycmy6ssBYsWIC3t3eu2bn09HTKli1b4Hvc3d1xd3fP0+7q6lrsfxhscQxH9OX+LxmxYgSDmgxi6cClxbIOrMbGPmlc7JfGxj5pXOxTcY9LYfZt1+szJSYm8vjjj7Nnzx5ycnJYs2YNS5Ys4eGHHza6NCkiJxNPWh9t0qxys2IJdSIiIqXFDT3upDh5eXnxySefMGzYMCZOnEhqair9+vXjzJkz1KlThy+++ILg4GCjy5QikGPOYcy3Y0hKT+L2gNt5Kfglo0sSEREp0QwPdlde4peSkmL92WQyMXnyZCZPnmzrssQGPtr5EZv+2kRZl7Is7LsQFyfD/3MUEREp0ez6VKw4riPnjvDsxmcBeOvOt2hQsYHBFYmIiJR8CnZic2azmdH/G82FrAt0q92Nx257zOiSREREHIKCndhcTo6JQRVep6Z7Sx6u/BnmHP1nKCIiUhR0UZPYVFgYPPkknDrVCdjNEEwEBMCcOVDAc69FRETkOmmqRGxmaWg6Ax6K4NSpSy2WR5tERcHAgZbQJyIiIjdOwU5sIjsbHlo8HR5pDi0/z7Xt0o3REyda+omIiMiNUbATm5i3ZifJzd8CtzRIz7scitkMJ0/Ctm0GFCciIuIgFOyk2GVkZ/D6wTHglAO/3w9/FHwxXUyMDQsTERFxMAp2Uuxe3/Y6JzMOQGolWPefq/atWtVGRYmIiDggBTspVvtj9zNz20wAKvwyF9MFv3z7mUwQGAhaLU5EROTGKdhJscnKyWL0/0aTlZNFv0b9+PTJQYAlxF3u0uvZs8HZ2bY1ioiIOBIFOyk2OeYcetfrTWXPynx414cMGGAiNBSqV8/dLyAAQkP1HDsREZGbpQcUS7Fxc3ZjRtcZPN/hebzcvABLeOvTx3L3a0yM5Zq64GDN1ImIiBQFBTspctk52Zgx4+Jk+c/rUqi7xNkZOnc2oDAREREHp1OxUuT+8+t/aPvftuw7vc/oUkREREoVBTspUsfPH+flzS+zO2Y3O6J2GF2OiIhIqaJgJ0XGbDYzfs14LmRdoHOtzjx464NGlyQiIlKqKNhJkfnqwFesj1iPu7M7n9z9CaYrn2siIiIixUrBTopE/IV4Jn43EYCXg1+mQcUGxhYkIiJSCinYSZF4buNznE07S2O/xjzf4XmjyxERESmVFOzkpl3Musihs4cA+PSeT3FzdjO4IhERkdJJz7GTm1bGpQzbRm9j64mtdKjRwehyRERESi3N2EmRcHZypkvtLkaXISIiUqop2MkNOxx3mOc3Pk9aZprRpYiIiAg6FSs3yGw2M271OLae2Er8hXjm3TvP6JJERERKPc3YyQ1ZuG8hW09sxcPVg5c7vmx0OSIiIoKCndyA8xfO89zG5wCY2mkqtXxrGVuQiIiIAAp2cgMmb55sfWbdxNsnGl2OiIiI/EPBTgplV/QuPvrtIwA+vOtDPbNORETEjijYSaE8t+k5zJgZGjSUzrU6G12OiIiIXEbBTgrl8z6fM6L5CN4NedfoUkREROQKetyJFEpguUC+6PeF0WWIiIhIPjRjJ9flz7g/jS5BRERErkHBTq7pl1O/0PiDxgwLG0Z2TrbR5YiIiEgBFOzkqrJzsnl0zaOYMePu7I6zk7PRJYmIiEgBFOzkqj7d9Sl7Tu/Bt4wvb975ptHliIiIyFUo2EmB4i/EM3nLZABmdJlBZc/KBlckIiIiV6NgJwWaFj6N+AvxNKvcjEdaP2J0OSIiInINCnaSrwNnDvDhzg8BmN1jNi5OejKOiIiIvdPf1pKv2JRY/L38aVu9Ld3qdDO6HBEREbkOCnaSr251uvHn43+SmpFqdCkiIiJynQw9FXv27Fnq1atHeHh4gX3Wrl1LUFAQnp6eNG7cmNWrV9uuwFLOy80Lfy9/o8sQERGR62RYsPvpp59o164dERERBfY5evQoAwYMYMaMGSQmJjJ9+nQGDx5MVFSUDSstPZKSwNTmY0wtv2DN2hyy9SxiERGREsWQYLdw4UKGDh3KzJkzr9kvODiYvn374uLiwuDBg+nUqROffvqpjSotPcLCoGHrKOj+DPR7gLufWkOtWpZ2ERERKRkMCXY9evQgIiKCIUOGXLXfwYMHCQoKytXWpEkT9u3bV5zllTphYTBwIJxu9iK4pcLJdnDkbqKiLO0KdyIiIiWDITdPVKlS5br6JScn4+npmavNw8ODlJSUAt+Tnp5Oenq69XVSUhIAmZmZZGZm3kC113Zpv8W1/+KUnQ1PPOGCufov0GKRpXHdfwATZjOYTGaefBJ6987CuQSuJlaSx8aRaVzsl8bGPmlc7JOtxqUw+7fru2I9PT1JS0vL1ZaWloa3t3eB73njjTeYPn16nvYNGzbg4eFR5DVebuPGjcW6/+Lw++8ViYq6A8ZOsjTsGQ3Rra3bzWYTp07Bu+/+SlDQOYOqvHklcWxKA42L/dLY2CeNi30q7nG5MgtdjV0Hu2bNmrF79+5cbYcOHaJ169YFvANefPFFJk2aZH2dlJREYGAg3bt3x8fHp1jqzMzMZOPGjYSEhODq6losxyguSUkmaPoNBP4CGR7wff7XPdaseTu9e5ttXN3NK8lj48g0LvZLY2OfNC72yVbjcuns4/Ww62A3YsQIZs2axbJly+jfvz9hYWGEh4czZ86cAt/j7u6Ou7t7nnZXV9di/8Ngi2MUtWoBWdDtRcuLn56DlKr59gsMdKGEfbRcSuLYlAYaF/ulsbFPGhf7VNzjUph9292SYl5eXixevBiARo0asXLlSl5//XXKly/Pq6++yvLly2nQoIHBVTqOzh1dqPTTF3D4Xvj5mTzbTSYIDITgYAOKExERkUIxfMbObM59eu/KGyN69OhBjx49bFlSqeLsDB+/dAcDB/4PgMtHw2SyfJ89mxJ544SIiEhpY3czdmI7KRmWEN2/P4SGQrVqubcHBFja+/c3oDgREREpNAW7UupY/DECZgUwefNksnOy6d8fTpyALVtgyRLL9+PHFepERERKEsNPxYoxnt/0PInpieyO2Y2zk+U8q7MzdO5sbF0iIiJy4zRjVwr9GPkjYX+E4WRy4p2Qd4wuR0RERIqIgl0pk2PO4ekNTwPw4C0P0rRyU4MrEhERkaKiYFfKLD2wlB1RO/B09WR6l7wrdIiIiEjJpWBXimRkZ/Dy5pcBeP6O56nidX1r9oqIiEjJoGBXiuyM2kl0cjRVvKowqd2ka79BREREShTdFVuK3FHjDo5MOMKx+GN4unkaXY6IiIgUMQW7UqZGuRrUKFfD6DJERESkGOhUbCkQlxbHr6d+NboMERERKWYKdqXAzK0zuX3+7bz8/ctGlyIiIiLFSMHOwZ1IOMGHv30IQOdanY0tRkRERIqVgp2DeyX8FTKyM+hWuxshdUOMLkdERESKkYKdA/s99ncW7VsEwBvd3jC4GhERESluCnYO7OXNL2PGzMAmA2lTvY3R5YiIiEgxU7BzUD9G/siqI6twNjkzs+tMo8sRERERG9Bz7BxUwsUEqnlX4+76d9OgYgOjyxEREREbULBzUHc3uJujE46SnpVudCkiIiJiIwp2DszD1QMPVw+jyxAREREb0TV2Dmbz8c18uf9LsnOyjS5FREREbEwzdg4kx5zDpPWT2Be7j+jkaJ674zmjSxIREREb0oydAwn7I4x9sfvwdvNm7C1jjS5HREREbEzBzkFk52QzNXwqAE/d/hQVPSoaXJGIiIjYmoKdg1h6cCmHzh7Ct4wvT7V7yuhyRERExAAKdg4gKyeLaeHTAHim3TP4lvE1tB4RERExhoKdA1i0bxFH44/i5+HHE22fMLocERERMYjuinUADSo2oH1ge/o16oe3u7fR5YiIiIhBFOwcwB017uDH0T+Sbdaz60REREozBTsHYTKZcDFpOEVEREozXWNXgn2x7wte2fIK8RfijS5FRERE7ICmeEqojOwMpmyZQmRiJJU8KjGh7QSjSxIRERGDacauhPpi3xdEJkZSxasKD976oNHliIiIiB1QsCuBMrMzeX3b6wA81/45yrqWNbgiERERsQcKdiXQ4t8XczzhOJU9KzOu9TijyxERERE7oWBXwmTlZDFz20zAssqEh6uHwRWJiIiIvVCwK2G+PvA1x+KPUbFsRca3GW90OSIiImJHdFdsCdM+sD0P3vIgDf0a4uXmZXQ5IiIiYkcU7EqYOuXrMO/eeUaXISIiInZIp2JFREREHISCXQkR9kcYQ0KH8Hvs70aXIiIiInZKp2JLALPZzKs/vMq+2H1kxTRiQlAQwcHg7Gx0ZSIiImJPDJmxO3PmDH379sXX1xc/Pz8mTpxIVlZWvn179epFmTJl8PLysn599913Nq7YWC8tXM2+2H2Q7k3Y80/SpQvUqgVhYUZXJiIiIvbEkGA3ZMgQvLy8iI6OZseOHWzatIn33nsv376//fYb69evJyUlxfrVs2dPG1dsnOXLzbz54xuWFzsfhQsVAIiKgoEDFe5ERETkXzYPdseOHSM8PJy3334bDw8P6tSpw5QpU5g7d26evsePHyc+Pp5bb73V1mXahexsGP/mVgjcDlnu8MtE6zaz2fJ94kRLPxERERGbX2N38OBBKlSoQLVq1axtTZo0ITIykoSEBHx9fa3tO3fuxNvbmyFDhrBz5078/f2ZNGkSY8aMKXD/6enppKenW18nJSUBkJmZSWZmZtF/oH/2ffn3ovLDDybONvpntm7PaEipkmu72QwnT8KWLVl06mQu0mM7iuIaG7k5Ghf7pbGxTxoX+2SrcSnM/m0e7JKTk/H09MzV5uFhWRYrJSUlV7BLT0+nXbt2zJw5k2bNmrFlyxYGDBiAt7c3gwYNynf/b7zxBtOnT8/TvmHDButxisvGjRuLdH/f/JgM9dZDjhP8/GyB/dat20tqalSRHtvRFPXYSNHQuNgvjY190rjYp+Iel7S0tOvuazKbzTad6lmxYgUPPfQQcXFx1rbff/+d5s2bk5CQQLly5a76/scee4zY2FhCQ0Pz3Z7fjF1gYCBxcXH4+PgUzYe4QmZmJhs3biQkJARXV9ci2++671PoM+O/4B0N6/O/BhFg40bN2BWkuMZGbo7GxX5pbOyTxsU+2WpckpKS8PPzIzEx8ZpZxuYzds2aNePcuXPExsbi7+8PwKFDhwgICMgT6hYsWJBndi49PZ2yZcsWuH93d3fc3d3ztLu6uhb7H4aiPsZdIeUJeOhZoqIgv9hmMkFAAHTp4qJHn1yDLcZfCk/jYr80NvZJ42KfintcCrNvm988Ub9+fTp06MDEiRNJTk7m+PHjzJgxg7Fjx+bpm5iYyOOPP86ePXvIyclhzZo1LFmyhIcfftjWZRvC2RnmzLH8bDLl3nbp9ezZep6diIiIWBjyuJPQ0FCysrKoXbs2bdu2pWfPnkyZMgUALy8vFi9eDMDEiROZMGEC/fr1w8vLi+eff54vvviC4OBgI8q2maikKNrNb8eyg8vo189MaChUr567T0AAhIZC//7G1CgiIiL2x5CVJ/z9/fnmm2/y3ZaSkmL92WQyMXnyZCZPnmyr0uzCrO2z+OXUL8zdMZfBTQfTvz/06QPbtkFMDFStilaeEBERkTy0pJidib8Qzye7PgHgxQ4vWtudnaFzZ4OKEhERkRLBkFOxUrC5O+aSmplKyyot6Vmv9KywISIiIjdPwc6OpGak8p9f/wPAC3e8gOnKOyZERERErkLBzo4s2LOAcxfOUbd8XQY2GWh0OSIiIlLCKNjZiaycLN77xfIQ4mfaP4Ozk+6MEBERkcJRsLMTTiYn3uvxHnc3uJuRLUYaXY6IiIiUQLor1k44mZzo06gPfRr1MboUERERKaE0YyciIiLiIBTs7MCD3z7Ia1tf4/yF80aXIiIiIiWYTsUa7HDcYebvmY8JE4OaDKJ82fJGlyQiIiIllGbsDDZr+ywA7m14Lw39GhpcjYiIiJRkCnYGik2J5Yt9XwCWR5yIiIiI3AwFOwN9sPMD0rPTaVu9LXcE3mF0OSIiIlLCKdgZJC0zjQ92fgBYZuu0fJiIiIjcLAU7g3y+93PiL8RT27c2/Rr1M7ocERERcQC6K9YgXWp1YXTL0bSt3lbLh4mIiEiRULAzSONKjVnQZ4HRZYiIiIgD0alYEREREQehYGdje2L2MPp/o9l7eq/RpYiIiIiD0alYG5vz6xwW7ltIelY6SwYsMbocERERcSCasbOh2JRYvjrwFQBPtn3S4GpERETE0SjY2dDHv31MRnYGtwfcTtuAtkaXIyIiIg5Gwc5G0rPS+ei3jwDN1omIiEjxULCzkaUHlxKbGkt17+oMaDzA6HJERETEASnY2YDZbGbOr3MAeKzNY7g6uxpckYiIiDgi3RVrA1k5WfRr1I/Ei4k83Opho8sRERERB6UZOxtwdXZlcsfJHJ1wlIoeFY0uR0RERByUgp0NmUwmo0sQERERB6ZgV8zm7ZpH2B9hZOdkG12KiIiIODgFu2KUmpHKc5ueY8CyAayPWG90OSIiIuLgFOyK0aL9i0i4mEDd8nXpWa+n0eWIiIiIg1OwKyZms5m5O+YCMOG2CTiZ9KsWERGR4qW0UUy2ntjKwbMH8XT1ZFTLUUaXIyIiIqWAgl0x+WDnBwAMbz6ccmXKGVyNiIiIlAYKdsUgOjmaFYdXAJaVJkRERERsQStPFIMzqWdoVbUVbs5uBPkHGV2OiIiIlBIKdsWgZZWW/PLgLySnJxtdioiIiJQiOhVbjLzdvY0uQUREREoRBbsi9tXvX3H+wnmjyxAREZFSSMGuCP1+5neGhg2l1pxaOg0rIiIiNqdgV4Q+2fUJACF1QnQaVkRERGzOkGB35swZ+vbti6+vL35+fkycOJGsrKx8+65du5agoCA8PT1p3Lgxq1evtnG11yc1O5XFBxYDesSJiIiIGMOQYDdkyBC8vLyIjo5mx44dbNq0iffeey9Pv6NHjzJgwABmzJhBYmIi06dPZ/DgwURFRRlQ9dWFx4eTmplKY7/GdK7V2ehyREREpBSyebA7duwY4eHhvP3223h4eFCnTh2mTJnC3Llz8/RduHAhwcHB9O3bFxcXFwYPHkynTp349NNPbV32VZnNZtbFrQPg0TaPYjKZDK5IRERESiObB7uDBw9SoUIFqlWrZm1r0qQJkZGRJCQk5OkbFJT7Ab9NmjRh3759tij1uoWfCOdU+ik8XT0Z2WKk0eWIiIhIKWXzBxQnJyfj6emZq83DwwOAlJQUfH19r9k3JSWlwP2np6eTnp5ufZ2UlARAZmYmmZmZN1t+vvbE7MEZZ+5vcj9lncoW23Gk8C6NhcbEvmhc7JfGxj5pXOyTrcalMPu3ebDz9PQkLS0tV9ul197e3tfV98p+l3vjjTeYPn16nvYNGzZYA2RRa0Qj5jWdhznTzNq1a4vlGHJzNm7caHQJkg+Ni/3S2NgnjYt9Ku5xuTILXY3Ng12zZs04d+4csbGx+Pv7A3Do0CECAgIoV65cnr67d+/O1Xbo0CFat25d4P5ffPFFJk2aZH2dlJREYGAg3bt3x8fHpwg/yb8yMzPZuHEjISEhuLq6Fssx5MZobOyTxsV+aWzsk8bFPtlqXC6dfbweNg929evXp0OHDkycOJFPP/2UuLg4ZsyYwdixY/P0HTFiBLNmzWLZsmX079+fsLAwwsPDmTNnToH7d3d3x93dPU+7q6trsf9hsMUx5MZobOyTxsV+aWzsk8bFPhX3uBRm34Y87iQ0NJSsrCxq165N27Zt6dmzJ1OmTAHAy8uLxYstz4Nr1KgRK1eu5PXXX6d8+fK8+uqrLF++nAYNGhhRtoiIiIhds/mMHYC/vz/ffPNNvtuuvDGiR48e9OjRwxZliYiIiJRoWlJMRERExEEo2ImIiIg4CAU7EREREQehYCciIiLiIBTsRERERByEgp2IiIiIg1CwExEREXEQCnYiIiIiDkLBTkRERMRBKNiJiIiIOAgFOxEREREHoWAnIiIi4iBcjC6guJnNZgCSkpKK7RiZmZmkpaWRlJSEq6trsR1HCk9jY580LvZLY2OfNC72yVbjcinDXMo0V+PwwS45ORmAwMBAgysRERERuXHJycmUK1fuqn1M5uuJfyVYTk4O0dHReHt7YzKZiuUYSUlJBAYGcvLkSXx8fIrlGHJjNDb2SeNivzQ29knjYp9sNS5ms5nk5GSqVauGk9PVr6Jz+Bk7JycnAgICbHIsHx8f/YGzUxob+6RxsV8aG/ukcbFPthiXa83UXaKbJ0REREQchIKdiIiIiINQsCsC7u7uTJ06FXd3d6NLkStobOyTxsV+aWzsk8bFPtnjuDj8zRMiIiIipYVm7EREREQchIKdiIiIiINQsLtJZ86coW/fvvj6+uLn58fEiRPJysoyuqxSb9++fYSEhFChQgWqVKnCyJEjiYuLM7os+Ud2djadO3dm1KhRRpci/4iPj2fkyJFUrFiR8uXL07dvX2JiYowuS4Ddu3fTsWNHfH19qVq1Kk8++STp6elGl1VqnT17lnr16hEeHm5t+/XXX2nbti1eXl7Url2b+fPnG1afgt1NGjJkCF5eXkRHR7Njxw42bdrEe++9Z3RZpdqFCxfo1asX7du35/Tp0xw8eJBz584xevRoo0uTf0yfPp1t27YZXYZcZsCAAaSkpBAREUFkZCTOzs489NBDRpdV6uXk5HD33XczcOBA4uPj2blzJ+vXr+ftt982urRS6aeffqJdu3ZERERY286fP0/v3r0ZOXIkCQkJzJ8/n6eeeoodO3YYUqOC3U04duwY4eHhvP3223h4eFCnTh2mTJnC3LlzjS6tVIuMjKRFixa88soruLm5UbFiRcaNG8fWrVuNLk2AzZs3s3z5cgYMGGB0KfKPXbt28csvv/D555/j6+uLt7c38+bN46233jK6tFLv/PnzxMTEkJOTY10n1MnJCQ8PD4MrK30WLlzI0KFDmTlzZq725cuXU7FiRR577DFcXFzo2rUrw4YN44MPPjCkTgW7m3Dw4EEqVKhAtWrVrG1NmjQhMjKShIQE4wor5Ro2bMi6detwdna2toWGhtKqVSsDqxKwXLowduxYlixZor+Y7MiOHTto0qQJ8+bNo169elStWpWnn36aqlWrGl1aqVexYkWeeuopnn76adzd3QkMDKRBgwY89dRTRpdW6vTo0YOIiAiGDBmSq/3gwYMEBQXlamvSpAn79u2zZXlWCnY3ITk5GU9Pz1xtl/6ySklJMaIkuYLZbGby5MmsWrWKOXPmGF1OqZaTk8Pw4cOZNGkSLVq0MLocuUx8fDz79+/n6NGj7Nmzh7179xIVFcXIkSONLq3Uy8nJoWzZssydO5fU1FQOHDjAoUOHmDp1qtGllTpVqlTBxSXvSqwFZQGjcoCC3U3w9PQkLS0tV9ul197e3kaUJJdJSkpi4MCBfPnll2zdujXPv6jEtt544w3KlCnDhAkTjC5FrnDp4aqzZ8/G29sbf39/Zs6cydq1a/WPVIOtWLGC5cuXM378eNzd3WnatClTp07lww8/NLo0+UdBWcCoHJA3esp1a9asGefOnSM2NhZ/f38ADh06REBAwHUv1ivFIyIigt69e1OjRg1+++03/Pz8jC6p1Fu0aBHR0dH4+voC//4jaOXKlbp0wWBNmjQhJyeHjIwMypQpA1juXAbQM+yNFRkZmecOWFdXV9zc3AyqSK7UrFkzNmzYkKvt0KFDNGvWzJB6NGN3E+rXr0+HDh2YOHEiycnJHD9+nBkzZjB27FijSyvVzp8/T9euXWnfvj3r169XqLMThw8fJikpiYSEBBISEhg6dChDhw5VqLMDISEh1KlThzFjxpCSksLZs2d5+eWX6du3r84+GKxHjx7ExMTw+uuvk52dzV9//cVrr73G8OHDjS5N/tG/f39Onz7N7NmzyczMZMuWLSxevJgxY8YYUo+C3U0KDQ0lKyuL2rVr07ZtW3r27MmUKVOMLqtU++yzz4iMjGTZsmX4+Pjg5eVl/RKRvFxdXfnhhx9wcXGhfv36NGjQgICAABYsWGB0aaVekyZNWL16Nd9++y0VK1akS5cu3HPPPXnuzBTjVKxYkY0bN/LNN99QsWJFHnzwQf7zn//QpUsXQ+rRWrEiIiIiDkIzdiIiIiIOQsFORERExEEo2ImIiIg4CAU7EREREQehYCciIiLiIBTsRERERByEgp2IiIiIg1CwExEREXEQCnYiUii1atWiTJkyeHl54e3tjaenJ9WqVePZZ58lJyfnpvb9999/YzKZ+Pvvvwv1vmeffRaTycSKFSvy3X7s2DEeeOABqlWrhqenJzVq1GDcuHFERkbmOXbZsmVJTEzMs48nnngCk8nE559/nu8xRo0ahaura66VTi59XVp31Rb+7//+jzfeeAOAzp07YzKZ+OSTT/L027NnDyaTic6dOwNX/92PGjWKUaNGXfPYP/30E3379r2J6kXkZinYiUihffzxx6SkpJCcnExqairr169n4cKFTJ8+3ea1XLhwgQULFvDII4/w7rvv5tn+22+/ceutt1KmTBl++uknUlJS2LZtGyaTiRYtWvD777/n6u/l5cXXX3+dqy0jI4Ovv/4aT0/Pq9YybNgwUlJS8nw5Ozvf/Ae9Dn/88Qfz5s3j6aeftrb5+fnlG0bnz5+Pj49PkR7/jjvuwMvLS0uRiRhIwU5EblpQUBAdO3Zk9+7dgGWmaNq0adbtV84GffTRR9StWxdfX1+aN2/Of//731z7W7x4MY0bN8bT05M777yTqKioAo+9ZMkSqlevzhtvvMHevXv55Zdfcm1/6KGHGDx4MJ988gm1a9fGZDJRs2ZNPv74Y3r27MmDDz6Yq/+wYcNYuHBhrraVK1dyyy234OfnV9hfjdW0adPo3r07bdq0oUKFCmzdupXk5GQef/xxAgMDqVy5Mvfddx+xsbHW9/z000+0adMGT09P2rZty4svvmidYcvPK6+8wujRo3Fzc7O2DR48mF27dnHkyBFrW3p6OkuXLmXQoEGF/hz33HNPrtlId3d3TCYTERERAEyYMIGpU6eSkZFR6H2LyM1TsBORm5KZmUl4eDibN2+me/fu1+z/119/8dRTT7F27VoSEhJ45513mDBhAjExMdY+u3bt4pdffuHUqVPEx8fz6quvFri/uXPn8thjj+Hr68uIESNyzdr9/fff7N27l5EjR+b73oceeogdO3bkOiU7bNgwfvvtt1xBaMGCBYwdO/aan+1avv/+e9566y0iIyNp3749Y8aM4ejRo+zatYu//voLHx8f+vXrh9lsJi4ujrvvvpsBAwaQkJDAW2+9xYcffljgvmNjYwkLC2Po0KG52itVqkTv3r1zzdqtWLGCNm3aEBAQkGc/zZs3x9fXN9fXkiVLrNtXrVplnYk8efIkdevW5ZlnnqFu3boAtG3bFjc3N7799tub/G2JyI1QsBORQnv00Uetf+lXqlSJxx9/nKeffprHH3/8mu91cXHBbDbz8ccf89NPP9GtWzdSU1OpWrWqtc/LL79MuXLlKF++PD179rTOBl3pxx9/JDIykhEjRgDw5JNPsnLlSv766y8AoqOjAahSpUq+769WrVqufmAJQnfddZc1CJ08eZLdu3fTp0+fa362JUuW5AlF69evt26vU6cOXbt2xcvLi/j4eEJDQ/nPf/5D5cqV8fLyYvbs2ezcuZPdu3ezatUqPD09ef7553F1daVz586MGTOmwGOHh4dTrVo1AgMD82wbPXo0ixYtsl4DOX/+/AL3tX//fhISEnJ9XRkWAS5evMi9995L06ZNefvtt3Nta9euHd9///01f18iUvQU7ESk0D788MNcf/EfOHCAl19+GZPJdM331qhRg/DwcP7++2/uvvtuKlSowFNPPcXFixetfSpWrGj92c3NjaysrHz39f7775OcnEyNGjXw8/MjODiYnJwc3nvvPQBrWDxx4kS+7z9+/HiufpdcHoQ+//xz7r//ftzd3a/52YYOHZonFPXo0cO6/VKQBKynpdu2bWsNgdWqVcPFxYXjx49z5swZAgMDc/1OGzZsWOCxIyMjqV69er7b7rrrLjIyMvj++++JjIxk//793Hvvvdf8PAXJyclh+PDhZGdns2jRojzjHhAQwMmTJ294/yJy41yMLkBEHI+zs3Oua6zi4uKsP585c4bs7GxWrFhBTk4OP//8MwMGDKBBgwbcdddd132M6OhoVqxYwbp163IFnnXr1vHUU0/x6quvUrt2bVq1asX8+fMJCQnJs4///ve/tGrVipo1a+a6G7R3797WIPT5558XeLdtYV0egC6dBj18+HCuGcVDhw5Rp04dVq1axYkTJ8jJycHJyfJv8FOnThW4bycnpwLvSnZxcbFeO9igQQOGDRuW6zq8wpo4cSJ79+5l+/btlClTJs/2rKwsm90wIiK5acZORIpc48aN+e6770hISCAxMZG33nrLui0yMpKQkBA2b96Mk5OTdRarsDcmfPzxxzRp0oRu3boREBBg/XrggQcoW7YsH330EWA57fjdd9/xyCOP8Pfff5OTk8Px48d56KGH2LhxY54bN8AShIYPH86kSZOoUKECzZs3v4nfRv6qVavGXXfdxZNPPsm5c+fIzMxk5syZtGnThoSEBO666y7c3d2tNyLs3r0738eWXFKzZs2r3mQyevRoVq5cyWeffXbVU7rX8vbbb7N06VLWrVtHpUqV8u0THR1NjRo1bvgYInLjFOxEpMi99NJL+Pv7U7t2bVq2bJnrtF/r1q354IMPeOSRR/Dy8qJjx448+uijDB48+Lr3n5mZybx58/J9tpqbmxujRo3i/fffJyMjgxYtWrBnzx4yMzMJDg62HhMs15O1bNky32OMHj2aAwcO3FQIupZFixbh6+tLy5Yt8fPzY82aNaxfv54qVarg4eHBhg0b+PXXX/H392f8+PF07dq1wH117dqVM2fOWE8vXykoKIhGjRpRuXJlmjVrdsM1v/DCC6SmptK2bVu8vb2td8cuXrzY2uenn36iZ8+eN3wMEblxJrPZbDa6CBERubZp06YRHh5OeHh4vtsHDhxImzZteP75521b2GW2b9/OkCFDOHbs2E2d7hWRG6MZOxERBzFjxgzmzZtHenq6YTW89957TJ8+XaFOxCAKdiIiDqJx48Y8/PDD+a7AYQvbtm3jwoULjB492pDji4hOxYqIiIg4DM3YiYiIiDgIBTsRERERB6FgJyIiIuIgFOxEREREHISCnYiIiIiDULATERERcRAKdiIiIiIOQsFORERExEEo2ImIiIg4iP8HN07+VJYxaW8AAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fitModel = NewFitModel(mot_loading)\n",
"fitAnalyser = FitAnalyser(fitModel, fitDim=1)\n",
"\n",
"params = fitAnalyser.fitModel.make_params()\n",
"params.add(name=\"A\", value=1e8, max=np.inf, min=-np.inf, vary=True)\n",
"params.add(name=\"tau\", value=1, max=np.inf, min=-np.inf, vary=True)\n",
"\n",
"fitResult = fitAnalyser.fit(data, params, x='mot_load_duration').load()\n",
"freqdata = np.linspace(0, 10, 500)\n",
"fitCurve = fitAnalyser.eval(fitResult, x=freqdata, dask=\"parallelized\").load()\n",
"fitCurve = fitCurve.assign_coords({'x':np.array(freqdata)})\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"data.plot.errorbar(ax=ax, yerr = data_std, fmt='ob')\n",
"fitCurve.plot.errorbar(ax=ax, fmt='--g')\n",
"plt.xlabel('Push AOM Freq (MHz)')\n",
"plt.ylabel('NCount')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: ()\n",
"Coordinates:\n",
" final_amp float64 0.88\n",
"Data variables:\n",
" A float64 3.548e+08\n",
" tau float64 2.918</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-306565fe-c794-4807-9d12-42b0a94b6e46' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-306565fe-c794-4807-9d12-42b0a94b6e46' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-df5adb4c-20c8-4566-8e8d-a86a1f0f8f23' class='xr-section-summary-in' type='checkbox' checked><label for='section-df5adb4c-20c8-4566-8e8d-a86a1f0f8f23' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>final_amp</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.88</div><input id='attrs-46e0a84f-98ec-4515-8ae3-f47284f3bb80' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-46e0a84f-98ec-4515-8ae3-f47284f3bb80' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-728f29aa-4c6d-4813-bfb4-f25e88ee19b1' class='xr-var-data-in' type='checkbox'><label for='data-728f29aa-4c6d-4813-bfb4-f25e88ee19b1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.88)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-bcc4a974-46bb-4072-8c23-89fa6a78d769' class='xr-section-summary-in' type='checkbox' checked><label for='section-bcc4a974-46bb-4072-8c23-89fa6a78d769' class='xr-section-summary' >Data variables: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>A</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>3.548e+08</div><input id='attrs-e952e42d-4ebd-4c1a-8370-88315a4e1039' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e952e42d-4ebd-4c1a-8370-88315a4e1039' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ae3e1a27-1db7-44c3-8223-74f1032c0006' class='xr-var-data-in' type='checkbox'><label for='data-ae3e1a27-1db7-44c3-8223-74f1032c0006' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(3.54756438e+08)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tau</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>2.918</div><input id='attrs-173f8442-39e3-4477-b976-54be113fe968' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-173f8442-39e3-4477-b976-54be113fe968' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-16a309d6-1e1c-4753-8138-a305ff297155' class='xr-var-data-in' type='checkbox'><label for='data-16a309d6-1e1c-4753-8138-a305ff297155' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(2.91809259)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-0a1d5298-df4e-4299-8163-fbaa9fb327b6' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-0a1d5298-df4e-4299-8163-fbaa9fb327b6' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-5d1f8b9a-d597-4d37-8d23-c0d374053b2a' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-5d1f8b9a-d597-4d37-8d23-c0d374053b2a' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: ()\n",
"Coordinates:\n",
" final_amp float64 0.88\n",
"Data variables:\n",
" A float64 3.548e+08\n",
" tau float64 2.918"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"val = fitAnalyser.get_fit_value(fitResult)\n",
"val"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: ()\n",
"Coordinates:\n",
" final_amp float64 0.88\n",
"Data variables:\n",
" A float64 2.776e+06\n",
" tau float64 0.05867</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-11c5cd5b-f73f-4855-a7a6-c2f7d26b992b' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-11c5cd5b-f73f-4855-a7a6-c2f7d26b992b' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-9070dfd9-5691-4d56-afbe-ea45a13da857' class='xr-section-summary-in' type='checkbox' checked><label for='section-9070dfd9-5691-4d56-afbe-ea45a13da857' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>final_amp</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.88</div><input id='attrs-5e6f08c9-a13b-414c-8f0e-f69366ce99ab' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5e6f08c9-a13b-414c-8f0e-f69366ce99ab' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a61baea4-47a3-4bb0-abae-0f21c5b981e7' class='xr-var-data-in' type='checkbox'><label for='data-a61baea4-47a3-4bb0-abae-0f21c5b981e7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.88)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-29c4a383-1ce7-4a2e-a4a8-445563d27ef6' class='xr-section-summary-in' type='checkbox' checked><label for='section-29c4a383-1ce7-4a2e-a4a8-445563d27ef6' class='xr-section-summary' >Data variables: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>A</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>2.776e+06</div><input id='attrs-667a112d-177c-4a07-ad4d-8ff370431006' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-667a112d-177c-4a07-ad4d-8ff370431006' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-77ad3d5f-cffb-47d3-97fc-ae92496f9a2f' class='xr-var-data-in' type='checkbox'><label for='data-77ad3d5f-cffb-47d3-97fc-ae92496f9a2f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(2776453.58029856)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tau</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.05867</div><input id='attrs-7eddaa69-a7ac-4e0e-9dcc-bc1faf26f824' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-7eddaa69-a7ac-4e0e-9dcc-bc1faf26f824' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b3f9db1e-7125-465b-b8b5-3864b935dc4a' class='xr-var-data-in' type='checkbox'><label for='data-b3f9db1e-7125-465b-b8b5-3864b935dc4a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.05867137)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-bdb7c108-f4fe-4ec3-afb5-1b3ba4661daa' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-bdb7c108-f4fe-4ec3-afb5-1b3ba4661daa' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-32fc181f-3e6c-47c5-afac-ebe7f3cb8933' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-32fc181f-3e6c-47c5-afac-ebe7f3cb8933' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: ()\n",
"Coordinates:\n",
" final_amp float64 0.88\n",
"Data variables:\n",
" A float64 2.776e+06\n",
" tau float64 0.05867"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"std = fitAnalyser.get_fit_std(fitResult)\n",
"std"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.DataArray ()&gt;\n",
"array(1.2157134383410748+/-0.02622973148346536, dtype=object)\n",
"Coordinates:\n",
" final_amp float64 0.88</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'></div></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-5f93dfa3-52ec-495e-92cf-d730bb50a676' class='xr-array-in' type='checkbox' checked><label for='section-5f93dfa3-52ec-495e-92cf-d730bb50a676' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>1.216+/-0.026</span></div><div class='xr-array-data'><pre>array(1.2157134383410748+/-0.02622973148346536, dtype=object)</pre></div></div></li><li class='xr-section-item'><input id='section-fa458166-a05a-4e93-858d-3935c8899d5f' class='xr-section-summary-in' type='checkbox' checked><label for='section-fa458166-a05a-4e93-858d-3935c8899d5f' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>final_amp</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.88</div><input id='attrs-3a363972-1acf-477b-87b0-7dd33ed4bbcb' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3a363972-1acf-477b-87b0-7dd33ed4bbcb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f6589cbf-4c1c-40d0-9976-2b9ae8db4d3b' class='xr-var-data-in' type='checkbox'><label for='data-f6589cbf-4c1c-40d0-9976-2b9ae8db4d3b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.88)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-41ec6a75-61b8-47c6-80f4-7d80b3e49d40' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-41ec6a75-61b8-47c6-80f4-7d80b3e49d40' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-c2222dfd-faf3-4012-ae97-78b5ac9ee3da' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-c2222dfd-faf3-4012-ae97-78b5ac9ee3da' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.DataArray ()>\n",
"array(1.2157134383410748+/-0.02622973148346536, dtype=object)\n",
"Coordinates:\n",
" final_amp float64 0.88"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res = fitAnalyser.get_fit_full_result(fitResult)\n",
"res.A / res.tau / 1e8"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Without push"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The detected scaning axes and values are: \n",
"\n",
"{'mot_load_duration': array([ 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5,\n",
" 6. , 6.5, 7. , 8. , 9. , 10. , 11. , 12. , 13. , 14. , 15. ,\n",
" 16. ]), 'runs': array([0., 1.])}\n"
]
}
],
"source": [
"folderPath = img_dir + SequenceName + '2022/10/11'# get_date()\n",
"\n",
"shotNum = \"0018\"\n",
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
"\n",
"dataSetDict = {\n",
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
" for i in [0]\n",
"}\n",
"\n",
"dataSet = dataSetDict[\"camera_0\"]\n",
"\n",
"print_scanAxis(dataSet)\n",
"\n",
"scanAxis = get_scanAxis(dataSet)\n",
"\n",
"dataSet = auto_rechunk(dataSet)\n",
"\n",
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
"\n",
"imageAnalyser.center = (600, 1125)\n",
"imageAnalyser.span = (1100, 1200)\n",
"imageAnalyser.fraction = (0.1, 0.1)\n",
"\n",
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
"\n",
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
"Ncount_mean = calculate_mean(Ncount)\n",
"Ncount_std = calculate_std(Ncount)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbiklEQVR4nO3deXhU5eH28W92sk42CCEJa9hCEJRNFGTTqmhBKi0qmyAuaFHQHyqvBTeUQm0Ba21dUFBQQbQuKAXFIFVRQBQw7GHJAtkImUzIOjPn/QMYSVlMMMmZTO7Pdc0FOc+Zyf0gTm7OmfMcL8MwDERERESkwfM2O4CIiIiI1A4VOxEREREPoWInIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ/iaHaAhcTqdHDlyhNDQULy8vMyOIyIiIo2AYRjYbDZatGiBt/eFj8mp2NXAkSNHSEhIMDuGiIiINEIZGRnEx8dfcB8VuxoIDQ0FTv7BhoWFmZxGREREGoOioiISEhJcPeRCVOxq4PTp17CwMBU7ERERqVfV+RiYLp4QERER8RAqdiIiIiIeQsVORERExEOo2ImIiIh4CBU7EREREQ+hYiciIiLiIVTsRERERDyEip2IiIiIh1CxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiIiIeAgVOxEREREPoWInIiIi4iFMKXbbtm3jmmuuITIykubNmzNu3Djy8/MB+O677+jTpw8hISG0adOGRYsWVXnukiVLSExMJDg4mJ49e7Jx40bXmMPhYPr06cTExBAaGsrw4cM5evSoazw3N5ebbrqJ8PBwoqOjmTp1Kna7vX4mLSIi4kEMwyDXVsbGtGN88EMWOzKtVNidZsdq9Hzr+xuWlpZy/fXXc+edd/LJJ59gs9kYN24cEyZM4I033mDo0KE89dRT3H333WzYsIGbbrqJrl270rt3b9avX8+UKVNYvXo1vXv35oUXXmDYsGEcPnyYoKAgZs+ezdq1a9myZQsWi4W77rqLSZMm8cknnwAwatQo4uLiOHLkCNnZ2QwbNoz58+czffr0+v5jEBERaRDsDifpBSWk5Z1gf24xaXknH/tzi7GVVT044u/jTefYUC6JD+eSeAuXxIeT2CwEH28vk9I3Pl6GYRj1+Q337NnD1KlTWbVqFT4+PgB89NFHjB07lr/+9a/MmzePvXv3uvafPHkyJSUlLFmyhDFjxhAUFMTLL7/sGu/cuTMPP/wwEyZMICEhgblz53LbbbcBkJOTQ2xsLPv378fpdNK+fXuysrJo0aIFAMuXL+fhhx/m8OHD1cpeVFSExWLBarUSFhZWW38kIiIipisut3PgjNKWlnuCtLxiDh07QaXj3FXB2wsSIoOICW3Cnhwb1tLKs/YJ8vchuYWFrvEWLom30C0+nFZRQXh5qexVV036R70fsevYsSOrV6+usm3lypX06NGD1NRUunbtWmUsKSnJdTo2NTWViRMnnjW+bds2rFYrmZmZVZ4fExNDREQE27dvx8vLi8jISFepO/3c9PR0CgsLCQ8PPytreXk55eXlrq+Lioouet4iIiJmO3n6tJy03DMKXN7JAnfUWnbe5wX6+dC2aTCJzUJo1/TkI7FZCK2igmji5+N67YyCUrZlFrI9s5BtmVZ+yrJSUuFg06ECNh0qcL1eWBPfKkf1uiVYaB7WRGWvFtR7sTuTYRjMnDmTjz/+mA0bNrBw4UKCg4Or7BMUFERxcTEANpvtvOM2mw3ggs8/1xhAcXHxOYvdnDlzePLJJy9+giIiIiaodDg5fKykymnTtLwTHMgtxlZ+/s+WR4cE0O7MAtfsZIGLDWuC9y+cTvXy8qJlVBAto4L4bbeTB1EcToMDecVsy7SyPbOQ7ZlWdh4toqjMzlf78/lqf36V793tVNG75NTRvaiQgNr5A2lETCt2RUVFTJgwge+//54NGzbQtWtXgoODKSwsrLJfSUkJoaGhwMliVlJSctZ4dHS0q7Sdazw0NBSn03nOMcD1+v9rxowZPPjgg1UyJyQk1HyyIiIidSSnqIxv0vLZl1Ps+gzc4WMl2J3nP33aKiqYdk2DaXfmEbimIViC/Go1m4+3F+1jQmkfE8rIHvEAVNid7M2xsf1U2duWaWVvjo384nLW7c5l3e5c1/PjwgPplmCha1w43eItJMdbCGtSuxk9jSnFLi0tjaFDh9KyZUu2bNlCdHQ0AMnJyaxdu7bKvjt37iQ5Odk1npqaetb40KFDiYiIIC4ujtTUVNf+2dnZFBQUkJycjNPp5NixY+Tk5BATE+N6bnx8PBaL5Zw5AwICCAjQvxZERMR9OJ0G2zILSTlVglKPnPtjQkH+PqdKW9UjcK2iggjw9ann1D/z9/UmOc5CcpyF2/q0BKCs0kHqkSLXUb3tmYUcyD9BVmEpWYWlfLoj2/X8tk2DuSTu51O4SbEWAv3Nm4+7qfeLJ44fP0737t0ZPHgwixYtwtv75xVXjh07RmJiIo8//jj33XcfX331FcOHD+fDDz9k0KBBrFu3jhEjRvDhhx/Sr18//vGPf/DUU0+xf/9+IiMjmTlzJh988AEfffQR0dHR3HnnnWRnZ7N+/XoA+vfvT3x8PC+//DL5+fn89re/ZeTIkTzxxBPVyq6LJ0RExAzW0kr+uy+PL3bn8uWePI6dqHCNeXnBJXEnL044/dm3dk1DiLU07M+s2coq2ZFlZUemle2ZVrZlFpJ5vPSs/Xy8vWgdFUSgvw9+Pt74eXvj6+N18vc+Xvie+trf5+Svvj7e+HmfHPc9Yx8/X69feO6pMe9TY2fs4+/rRXNLICEBdXO8rCb9o96L3d/+9jceeughgoLOviKmuLiYLVu28MADD7Bjxw6aNm3KzJkzuf322137LF26lNmzZ5OZmUmXLl14/vnn6dOnDwCVlZXMnDmTpUuXYrPZGDRoEC+//DLNmjUDTl4l+8c//pGUlBS8vb0ZN24cc+fOdV2d+0tU7EREpD4YhkFaXjFf7M7li925bDl0vMqp1dAAX67q0JRBnZoxsGNTohvJZ9GOFZezI8ta5TRunq38l59YD/415jKuS46tk9d262LXkKnYiYhIXSmrdPDtgWOk7M7liz25ZBRUPTrVrmkwQzrHMKhjM3q2jsDPRzePMgyDnKJyDuQVU+5wYncYVDqcVJ76vd3ppMJhYD895nRSaT+5vfLUvnaHk0rnyX1+3nbqdZw/P7fC4cTuPOP3p1630nly3/mjujOoY7M6madbL3ciIiIiJx21lpKyO48vdufw9f5jlFY6XGP+Pt5c3i6KwR2bMrhTDC2jgkxM6p68vLxobmlCc0sTs6O4DRU7ERGReuJwGvyYcfzUKdY8dh2teuFD87AmDOrUjMGdmnFlYhRB/voxLTWjvzEiIiJ1qLCkgi/35pGyO5cv9+ZxvOTnuzN4ecGlCeEM7tSMQZ2akRQb1qAveBDzqdiJiIjUIsMw2Jtz8sKHlN25bDlcwJlLyoU1OXnhw5DOzRjQoRmRwf7mhRWPo2InIiLyK5VVOvgmLf9Umcsjq7DqhQ8dYkJOnmLt2IwerSLw1YUPUkdU7ERERGrAVlbJ7mwbO48UsfNIEalHrezNLqbC4XTtE+DrTd92UQzp1IyBHZuREKkLH6R+qNiJiIicw+mlNHYetZKaVcTOoycfh4+VnHP/FpafL3y4ol207oYgplCxExGRRs/ucHIg/8TJo3BHi1y/Fpxxh4czxVqakBQbRlKLMLq0CKNzbBgtI89eeF+kvqnYiYhIo3Ki3M7u7KIqJW53to1yu/OsfX28vWjXNJguLSyuItc5NkwXPIjbUrETERGPZBgGebZyUs84ArfrSBEHj53gXPdcCvb3ofOp8na6xHWICaWJn06pSsOhYiciIg2ew2lwMP+E6whc6hEru44WkV987lOpMWEBrvKWFGshqUUYrSKD8PbWqVRp2FTsRETErZRVOigsqeR4SQXHSyqwllRy/NTX1tJKjp+o4HhJJYUlFRSWnvq1pBK78+zDcN5e0LZpyFmfh4sOCTBhZiJ1T8VORETqhN3hPFnESn4uX8dP/VpY+nM5O36i0lXQjpdUUFZ59mfdqiPQz4dOsaF0OeMoXMeYUF2dKo2Kip2IiPwqJRV2Fq7bx66jNqwlFa6ja7Yy+0W/pq+3F+FBfoQH+RMeePLXiCA/IoL9sQT6EXHq6/Agf8KDTn7dNDQAH51KlUZOxU5ERC5ablEZdyzZwo4s63n3CWviS0Rw1YJ2ZiE7XeAizvg6JMBXS4eIXAQVOxERuSh7sm1MXLyZrMJSIoP9eeg3HYgJbUJE8M9H2iyBfrp9lkg9UrETEZEa27A3j/uWbcVWbqdt02Bev70XraKCzY4l0uip2ImISI28symdxz74CYfToE+bSF4a24PwIC3YK+IOVOxERKRanE6Dv6zdwz/XpwHwu0vjmHNzVwJ8ddWpiLtQsRMRkV9UVungoXe38cn2owBMvbo9DwxprwscRNyMip2IiFzQseJy7nxjC1vTC/Hz8WLuzZfwu8vizY4lIuegYiciIueVllfMhNc3k15QQlgTX14a25O+7aLMjiUi56FiJyIi5/TtgWPc/eb3WEsraRkZxGu39yKxWYjZsUTkAlTsRETkLP/+IZOHV26n0mFwactwXh3XkyjdX1XE7anYiYiIi2EYLFy3jwWf7wPghq6x/PUP3WjipytfRRoCFTsREQGgwu7k0fe38/7WLADuGdCOh6/tiLfuvyrSYKjYiYgI1pJK7l66hW8PFODj7cXTw5O5rU9Ls2OJSA2p2ImINHLpx0qYsHgTaXknCAnw5R+jL2NAh6ZmxxKRi6BiJyLSiG1NP86dS7Zw7EQFsZYmvHZ7LzrHhpkdS0QukoqdiEgj9emOo0xb/iPldiddWoTx2u29iAlrYnYsEfkVVOxERBoZwzB4ecMB5qzeDcDVnZux8JZLCQ7QjwSRhk7/F4uINCJ2h5NZH6Xy1nfpANx+RWtm3piEj658FfEIKnYiIo2ErayS+976gQ178/Dyglk3JjHhyjZmxxKRWqRiJyLSCBwpLGXi4s3szrYR6OfD87deyjVJMWbHEpFapmInIuLhfsqyMnHxZnJt5TQNDeC18b3oGm8xO5aI1AEVOxERD7ZuVw5T3v6BkgoHHWJCeH1Cb+LCA82OJSJ1RMVORMRDLf76IE+t2onTgP7to/nH6MsIa+JndiwRqUMqdiIiHsbhNJj9yU5e//oQALf0SuDpm5Lx8/E2N5iI1DkVOxERD1JSYef+t3/k8105ADx8XUcmD2iHl5eWMxFpDFTsRERqQaXDydHCMgL8vAnw9SbA1wd/X+96XR8u11bGHYu3sCPLir+vN3/7QzduvKRFvX1/ETGfqcUuLy+Pvn378uqrrzJw4EDuueceli5dWmWf0tJSrr76atasWQNA586dOXz4MN7eP59S2Lx5M507d8bhcPDoo4/yxhtvUFJSwuDBg/nXv/5FbGwsALm5udx1112sX78eX19fxowZw3PPPYevr/qtiFy8zOMl3PrKt2QUlJ415ufj5Sp5Ab4/l74zC2CAr/epr31+3sfv59/7n3e/n1+nuNzO9He3k1VYSmSwP6+M60GPVpEm/GmIiJm8DMMwzPjGX3/9NePHjyctLY2UlBQGDhx41j5r167l1ltvZcOGDXTp0oWioiLCw8M5ePAgrVq1Omv/J598kvfff59Vq1ZhsVi46667sNlsfPLJJwAMGjSIuLg4Xn75ZbKzsxk2bBjjx49n+vTp1cpcVFSExWLBarUSFqabZIsIFJyoYOS/vuFA3gl8vb1wGgZOU95VT2obHczrE3rRKirYvBAiUqtq0j9MOVS1ZMkSZs2axbx587jlllvOuU9+fj6jR4/m+eefp0uXLgB8//33REVFnbPUAbz66qvMnTuXhIQEABYuXEhsbCwHDhzA6XSyfv16srKyCAoKom3btsycOZOHH3642sVORORMJ8rtTFi8mQN5J2hhacJ7915BrCUQu8NJhcNJeaWTcruTcrvj5K+VZ/ze7jhrvMJ+6uvK0/uce78zX6fijP0uaxnBvJGXEB7kb/YfjYiYxJRid+211zJ69Gh8fX3PW+weeeQRevbsyejRo13bNm/eTFBQEAMGDCA1NZXWrVvzxBNPcOONN2K1WsnMzKRr166u/WNiYoiIiGD79u14eXkRGRlJixY/f94kKSmJ9PR0CgsLCQ8Pr7P5iojnqbA7mbxsK9syCgkP8uONO/oQazm5Ppyvjze+Pt6oX4lIfTOl2DVv3vyC4wcPHuTNN99k06ZNVbZ7eXnRq1cv5syZQ6tWrXj33Xe5+eab+fLLL4mPjwcgOLjq6YegoCCKi4vPOwZQXFx8zmJXXl5OeXm56+uioqLqTVBEPJrTafDwym1s2JtHoJ8Pr9/ei8RmIWbHEhHBLRc1eu2117jyyivp3r17le3Tp09n5cqVtG/fHn9/f0aPHs3VV1/NypUrXaWtpKSkynNKSkoIDQ0lODj4nGMAoaGh58wxZ84cLBaL63H6FK+INF6GYfDMp7v44Mcj+Hp78c8xl3FpywizY4mIAG5a7N577z3Gjh171vbnnnuOdevWVdlWXl5OYGAgERERxMXFkZqa6hrLzs6moKCA5ORkkpOTOXbsGDk5Oa7xnTt3Eh8fj8Vy7nsmzpgxA6vV6npkZGTU0gxFpKF6acMBFn11EIB5Iy9hYMdmJicSEfmZ2xW7Y8eOsWvXLq666qqzxjIyMrjvvvs4cOAAdrud1157jW+++Ybx48cDMGHCBGbPns3Bgwex2WxMnTqVAQMG0K5dO9q3b0+/fv2YOnUqNpuNgwcP8vTTT3PHHXecN0tAQABhYWFVHiLSeL27JYM/r94NwGNDO/O7y+JNTiQiUpXbLeB28ODJfwnHxcWdNTZv3jy8vb3p378/hYWFdOnShU8//ZTExEQAZs2aRWVlJf3798dmszFo0CBWrFjhev7KlSv54x//SJs2bfD29mbcuHHMnDmzfiYmIg3aul05PPr+DgDuvqotd17V1uREIiJnM20du4ZI69iJNE7fHy5g9KvfUVbp5HeXxfHcyG541+MdJUSkcatJ/3C7U7EiIu5kX46NiYu3UFbpZFDHpsy9+RKVOhFxWyp2IiLncaSwlHGvbcJaWsmlLcP5x+jL8PPR26aIuC+9Q4mInMPxExWMe20TR61ltGsazGvjexHk73YfSxYRqULFTkTkf5RU2Jm4ZDP7c4uJtTThjTv6EBGs20iIiPtTsRMROUOlw8l9y7byQ3ohlkA/lkzsTVx4oNmxRESqRcVOROQUwzB45L3tpOzJo4mfN6/d3pMOMee+M42IiDtSsRMROeXPq3fz/tYsfLy9+Mdtl9GjVaTZkUREakTFTkQEeGXDAV7acACAP/+uK0M6x5icSESk5lTsRKTR+/cPmTzz6S4AHrmuE7/vmWByIhGRi6NiJyKNWsqeXKa/ux2AO/q14Z4BulWYiDRcKnYi0mj9kH6ce5duxe40GN69BY8N7YyXl+4qISINl4qdiDRK+3OLmbh4M6WVDq7q0JS/6P6vIuIBVOxEpNE5ai1l/GubOF5SSbd4C/8cfRn+vno7FJGGT+9kItKoWEsqGf/aJrIKS2kbHcxrt/ciOEC3ChMRz6BiJyKNRmmFgzuWbGZvTjExYQG8cUdvokICzI4lIlJrVOxEpFGwO5xMeXsrWw4fJ7SJL0sm9iY+IsjsWCIitUrFTkQ8nmEY/L9/7+DzXbkE+HqzaHwvOjUPMzuWiEitU7ETEY/3lzV7WLElE28v+Putl9K7jW4VJiKeScVORDzaa18d5MX1aQA8O6Irv+nS3OREIiJ1R8VORDzWR9uO8NSqnQD83286cEvvliYnEhGpWyp2IuKR/rsvj4dW/AjA7Ve05r5BieYGEhGpByp2IuIWHE6DCruzVl5rW0Yhd7/5PZUOgxsviWXWjUm6VZiINApalVNE6o2trJL0ghIyCkpIdz1KySwoIfN4KQ7DoF3TYLq0sNClRRhdWlhIahGGJdCv2t/jQF4xExZvpqTCQb/EaP76B90qTEQaDxU7Eak1doeTo9ayM0rbyUfmqV+Pl1T+4mvszSlmb04x//4hy7UtITKQLrGnyl7cycLXLDTgrKNwOUVljF20iYITFXSNs/CvsT0I8PWp9XmKiLgrFTsRqRXzP9vLP1L2Y3caF9wvMtifhMggWkYG0TIykJaRQSREBpEQEYSvjxc7jxSReqSI1CNWfsoqIquwlIyCk4//pGa7Xic6xJ8k15G9MNo1DWHa8h/JKiyldVQQr0/oRYhuFSYijYyXYRgXfhcWl6KiIiwWC1arlbAwLW4qctr3hwu4+Z8bAfD39SYhIvCM8hbk+n1CZFCNy1ZhSUWVspd6pIi0vGLO1x+bhgbw/uQrSIjUXSVExDPUpH/on7Mi8qs4nAaPf5QKwO97xDP35ktq9TNt4UH+XJEYzRWJ0a5tpRUOdmefLntF7DxiZVe2jWB/HxZP6KVSJyKNloqdiPwqyzdn8FNWEaFNfHnk+k71cqFCoL8Pl7aM4NKWEa5tdocTp3HyiKGISGOlYiciF81aUslf1uwGYNrVHYgOCTAti6+PCp2IiN4JReSizf98L8dLKmnfLISxfVuZHUdEpNFTsRORi7I7u4g3vz0MwBPDuuCnI2YiIqbTO7GI1JhhGDzxUSoOp8H1yc258owLG0RExDwqdiJSY5/sOMq3BwoI8PXm/w3tbHYcERE5RcVORGqkpMLOs5/sAmDywHZaWkRExI2o2IlIjfxrfRpHrGXEhQdyz4B2ZscREZEzqNiJSLWlHyvhXxsOADDzxs408dN9WEVE3ImKnYhU2+xPdlJhd3JlYhTXdmludhwREfkfKnYiUi0b9uaxdmcOPt5ePP7bLnh51f0dJkREpGZU7ETkF1XYnTzx8cn7wY7v25oOMaEmJxIRkXNRsRORX/TGxkMcyDtBVLA/D1zd3uw4IiJyHip2InJBubYyFny+D4BHruuEJdDP5EQiInI+pha7vLw8EhMTWb9+vWvb5MmTCQgIICQkxPV4+eWXXeNLliwhMTGR4OBgevbsycaNG11jDoeD6dOnExMTQ2hoKMOHD+fo0aOu8dzcXG666SbCw8OJjo5m6tSp2O32epmrSEM17z97KC63c0m8hZE94s2OIyIiF2Basfv666/p27cvaWlpVbZv3ryZl19+meLiYtfjrrvuAmD9+vVMmTKFJUuWUFhYyOjRoxk2bBglJSUAzJ49m7Vr17JlyxaysrIIDAxk0qRJrtceNWoUISEhHDlyhE2bNvH5558zf/78+pu0SAOzNf04K7/PBODJYV3w9tYFEyIi7syUYrdkyRJuu+02nnnmmSrby8vL2bFjBz179jzn81599VVuueUWrrzySvz8/Jg2bRrR0dEsX77cNf7II4+QkJBAWFgYCxcuZPXq1Rw4cID9+/ezfv165s2bR1BQEG3btmXmzJm88MILdT5fkYbI6Tx5P1iAkT3iubRlhMmJRETkl5hS7K699lrS0tIYNWpUle3btm2jsrKSWbNmERMTQ4cOHZg7dy5OpxOA1NRUunbtWuU5SUlJbNu2DavVSmZmZpXxmJgYIiIi2L59O6mpqURGRtKiRYsqz01PT6ewsLDuJivSQK38PpPtmVZCAnx5+LqOZscREZFq8DXjmzZvfu6FTa1WKwMHDuT+++/nnXfe4YcffmDEiBF4e3szffp0bDYbwcHBVZ4TFBREcXExNpsN4Lzj5xsDKC4uJjw8/Kw85eXllJeXu74uKiqq2URFGihraSVz/7MbgKlXt6dZaBOTE4mISHW41VWx11xzDV988QUDBgzAz8+P3r17M3XqVNep1uDgYNfn6U4rKSkhNDTUVdouNH6uMYDQ0HOvyTVnzhwsFovrkZCQUCvzFHF3Cz/fx7ETFbRrGsy4vq3NjiMiItXkVsXugw8+4KWXXqqyrby8nMDAQACSk5NJTU2tMr5z506Sk5OJiIggLi6uynh2djYFBQUkJyeTnJzMsWPHyMnJqfLc+Ph4LBbLOfPMmDEDq9XqemRkZNTWVEXc1t4cG0s2HgLgiWFd8Pd1q7cJERG5ALd6xzYMg2nTprFu3ToMw2Djxo0sXLiQu+++G4CJEyeybNkyUlJSqKysZMGCBeTk5DBixAgAJkyYwOzZszl48CA2m42pU6cyYMAA2rVrR/v27enXrx9Tp07FZrNx8OBBnn76ae64447z5gkICCAsLKzKQ8STGYbBkx+n4nAa/CYphv7tm5odSUREasCUz9idz4gRI5g/fz733nsvmZmZNG/enCeffJIxY8YAMGTIEF588UUmT55MZmYmXbp0YfXq1URGRgIwa9YsKisr6d+/PzabjUGDBrFixQrX669cuZI//vGPtGnTBm9vb8aNG8fMmTNNmauIO1qTms3X+4/h7+vNn25IMjuOiIjUkJdhGIbZIRqKoqIiLBYLVqtVR+/E45RWOLj6b1+SVVjK/YMTefA3uhJWRMQd1KR/uNWpWBExzz/X7yersJQWliZMHphodhwREbkIKnYiwtf783khZT8Aj92QRKC/j8mJRETkYqjYiTRyRwpLmfL2DzgN+EPPeIZ2Pfc6kyIi4v5U7EQasXK7g8nLtlJwooLkuDCeGp6Ml5fuBysi0lCp2Ik0Yk99vJNtGYWEB/nxz9E9aOKnU7AiIg2Zip1II/XulgyWfZeOlxcsGNWdhMggsyOJiMivpGIn0gj9lGXlsQ9+AmDa1R0Y2LGZyYlERKQ2qNiJNDKFJRXcs/R7KuxOBndqxh8HaWkTERFPoWIn0og4nQYPvPMjmcdLaRkZxPw/dMfbWxdLiIh4ChU7kUZk4bp9fLk3jwBfb/41pgeWID+zI4mISC1SsRNpJL7YncPCdfsAeHZEV5Ja6LZ4IiKeRsVOpBFIP1bC1Hd+BGDs5a24uUe8uYFERKROqNiJuAmH0+BIYSmGYdTq65ZWOLh76fcUldm5tGU4M29MqtXXFxER96FiJ+ImZn+ykyv+/AU3//MbUvbk1krBMwyDxz7Ywa6jRUQF+/Pi6Mvw99X/9iIinkrv8CJu4PiJCt76Lh2AremFTHh9M8P/8TWf7cz5VQVv2XfpvL81C28v+PttlxJrCaytyCIi4oZU7ETcwIotGZTbnXRqHsqd/dsQ6OfD9kwrd76xhRue/4rVO47idNas4P2QfpwnP04F4JHrOnFFu+i6iC4iIm5ExU7EZA6nwdLvDgMw4crWPHZDEv99ZBD3DGhHsL8PO48WMXnZVq5buIGPth3BUY2Cl19czr3LtlLpMLiuS3PuuqptXU9DRETcgIqdiMk27M0jo6AUS6Afw7rFARAdEsCj13fiq0cGM2VwIqEBvuzNKeb+t3/gmvlf8u8fMrE7nOd8PbvDyZS3fuCotYy2TYP5y+8vwctLixCLiDQGKnYiJntj4yEAft8jnkB/nypjEcH+PPSbjnz16GCmXd2BsCa+HMg7wbTl27j6b1+yYksGlf9T8J5bu5eNB44R5O/DS2N6ENpEixCLiDQWKnYiJko/VsL6vXkAjL681Xn3swT68cDV7fn60cFMv7YjEUF+HDpWwsMrtzPoufW89V06FXYn//npKP/6Mg2AeSMvoX1MaL3MQ0RE3IOv2QFEGrOl3x3GMOCqDk1pEx38i/uHNvHjvkGJ3H5Fa5Z9d5iXNxwg83gp/+/fO3jhi30UldkBmNSvDTde0qKu44uIiJvRETsRk5RVOlixJQOAcRc4WncuwQG+3HVVO/778GBm3phEs9AAjljLKC6307tNJI9c36kuIouIiJvTETsRk3y07QiFJZXEhQcyqFOzi3qNQH8f7ujXhtF9WvLulgx2HrXx0G864Oejf7OJiDRGKnYiJjAMgzc3nlziZMzlrfDx/nVXrTbx82Fs39a1kExERBoy/bNexATbMq3syLLi7+vNqF4JZscREREPoWInYoLTS5zceEkskcH+5oYRERGPoWInUs8KTlSwavtRAMbp9KmIiNQiFTuRerZ8cwYVdidd4yx0i7eYHUdERDyIip1IPXI4DZZ+e/KiibF9W+lWXyIiUqtU7ETqUcruXLIKSwkP8mNYNy0gLCIitUvFTqQevXHqaN0feibQxM/nF/YWERGpGRU7kXpyKP8EG/bm4eUFY/rU7E4TIiIi1aFiJ1JPTn+2bmCHprSMCjI5jYiIeCIVO5F6UFpxxn1htcSJiIjUERU7kXrw0bYsisrsJEQGMqBDU7PjiIiIh1KxE6ljhmHwxun7wvZphfevvC+siIjI+ajYidSxremFpB4pIsDXmz/01H1hRUSk7qjYidSxN0/dF/a33VoQofvCiohIHVKxE6lD+cXlfLojG4BxfbXEiYiI1C0VO5E6tHxzBhUOJ90SwrkkPtzsOCIi4uFU7ETqiMNp8NZ36QCMu1xH60REpO6ZWuzy8vJITExk/fr1rm3vvfce3bt3JywsjNatW/Pkk0/idDpd4507dyYoKIiQkBDXY9euXQA4HA6mT59OTEwMoaGhDB8+nKNHj7qem5uby0033UR4eDjR0dFMnToVu91eb/OVxmXdrhyyCkuJDPbnhktizY4jIiKNgGnF7uuvv6Zv376kpaW5tn3//feMHTuW2bNnU1hYyOrVq1m8eDHz588HoKioiD179rBr1y6Ki4tdj86dOwMwe/Zs1q5dy5YtW8jKyiIwMJBJkya5Xn/UqFGEhIRw5MgRNm3axOeff+56bZHa9qbuCysiIvXMlGK3ZMkSbrvtNp555pkq2w8dOsQ999zDjTfeiLe3N507d2bEiBFs2LABOFn8oqKiaNXq3Ke1Xn31VR555BESEhIICwtj4cKFrF69mgMHDrB//37Wr1/PvHnzCAoKom3btsycOZMXXnihzucrjc+BvGL+uy8fLy8Y3ael2XFERKSRMKXYXXvttaSlpTFq1Kgq22+++Wb+9re/ub4uLS3lk08+oUePHgBs3ryZoKAgBgwYQHR0ND179mTVqlUAWK1WMjMz6dq1q+v5MTExREREsH37dlJTU4mMjKRFixau8aSkJNLT0yksLKzD2UpjdPpo3eCOzUiI1H1hRUSkfvia8U2bN2/+i/vYbDZGjhxJYGAg06ZNA8DLy4tevXoxZ84cWrVqxbvvvsvNN9/Ml19+SXx8PADBwcFVXicoKIji4uLzjgEUFxcTHh5+Voby8nLKy8tdXxcVFVV/ktJolVTYWfl9JgBjtcSJiIjUI7e8KnbPnj307dsXu91OSkoKoaGhAEyfPp2VK1fSvn17/P39GT16NFdffTUrV650lbaSkpIqr1VSUkJoaCjBwcHnHANcr/+/5syZg8VicT0SEnTXAPllH/54BFuZndZRQVzVXveFFRGR+uN2xe7TTz+ld+/eXHfddaxZs4aIiAjX2HPPPce6deuq7F9eXk5gYCARERHExcWRmprqGsvOzqagoIDk5GSSk5M5duwYOTk5rvGdO3cSHx+PxWI5Z5YZM2ZgtVpdj4yMjFqerXiaKveFvVz3hRURkfrlVsXu22+/ZcSIEcyfP5/nnnsOX9+qZ4ozMjK47777OHDgAHa7nddee41vvvmG8ePHAzBhwgRmz57NwYMHsdlsTJ06lQEDBtCuXTvat29Pv379mDp1KjabjYMHD/L0009zxx13nDdPQEAAYWFhVR4iF/L94ePsOlpEEz9vft9DR3hFRKR+uVWxe/bZZ6msrOT++++vsk7d9ddfD8C8efO4/vrr6d+/PxaLhX/96198+umnJCYmAjBr1ixuuOEG+vfvT3x8PGVlZaxYscL1+itXrsRut9OmTRv69OnDddddx8yZM02Zq3im00frhneLwxLkZ3IaERFpbLwMwzDMDtFQFBUVYbFYsFqtOnonZ8mzlXPFn9dR6TBYNaUfyXHnPsUvIiJSEzXpH251xE6kIVu+OZ1Kh8GlLcNV6kRExBQqdiK1wOE0eHvTyYtrxuq+sCIiYhIVO5Fa8OXeXLIKSwkP8mNoV90XVkREzKFiJ1IL3vouHYCRl8XrvrAiImIaFTuRX+lIYSlf7M4F4FbdF1ZEREykYifyK72zOQOnAX3bRtGuaYjZcUREpBFTsRP5FewOJ8s3nzwNe5uO1omIiMlU7ER+hXW7c8kpKicq2J9ruzQ3O46IiDRyKnYiv8KyUxdN/L5nAv6++t9JRETMpZ9EIhcpo6CE/+7LA+C23joNKyIi5lOxE7lIb29KxzCgf/toWkYFmR1HRERExU7kYlTYnazYcvJOE6P76E4TIiLiHlTsRC7CZztzyC+uoFloAEM6NzM7joiICKBiJ3JRln13GIBRvRLw89H/RiIi4h70E0mkhg7kFfNN2jG8veAWXTQhIiJuRMVOpIbe3nRyiZOBHZsRFx5ochoREZGfqdiJ1EBZpYOV32cCMFp3mhARETejYidSA2tSszleUkkLSxMGdtRFEyIi4l4uqtiVlZVx9OhRysvLazuPiFtb9u3J07C39G6Jj7eXyWlERESqqlGx+/rrr+nXrx8hISHEx8cTGhrKoEGD2Lx5c13lE3Eb+3JsbDpUgI+3F6N6JZgdR0RE5CzVLnZff/01V199Na1bt2bp0qWsWbOGxYsXExMTw+DBg/nxxx/rMKaI+U7fF3ZIp2bEhDUxOY2IiMjZvAzDMKqz49VXX82gQYN47LHHzhp78skn2bFjBytXrqz1gO6kqKgIi8WC1WolLCzM7DhSj0orHPR59nOKyuwsmdibAR2amh1JREQaiZr0D9/qvujWrVv597//fc6xBx54gOTk5JqlFGlAVm0/QlGZnYTIQPonRpsdR0RE5JyqfSq2srKS0NDQc46Fh4djs9lqLZSIu3nr1Np1t/ZuibcumhARETdV7WLn5XXhH2bVPKMr0uDsPFLED+mF+Hp78fseumhCRETcV7VPxRqGQUZGxnkLnIqdeKq3Np28L+y1yc1pGhpgchoREZHzq3axO3HiBK1btz5vgfulI3oiDdGJcjsf/HAEgNG6L6yIiLi5ahe7gwcPun5vt9vJz88nOjoaX99qv4RIg/PRtiMUl9tpEx1M33ZRZscRERG5oGp/xq5Vq1YEBATw6KOP0qVLF6644gq6dOnCww8/jJ+fH61atarLnCKmeOvU2nW39W6po9IiIuL2qn247fjx4/Tp04eEhAT++c9/0qJFCw4cOMDixYvp3bs327dvJzIysi6zitSr7ZmF7Miy4u/jzc094s2OIyIi8ouqXeyeffZZevbsycqVK6scubj77rv53e9+x7PPPstzzz1XJyFFzHD6aN3Qrs2JDPY3OY2IiMgvq/ap2A8//JA5c+acdTrK29ubZ599lg8//LDWw4mYpaiskg9/PHnRxG199DEDERFpGKpd7LKzs+nQocM5xzp37kx2dnathRIx24c/ZFFa6aB9sxB6tY4wO46IiEi1VLvYNWnS5LzlLTs7+7x3pRBpaAzDYNnpiyb66KIJERFpOKpd7AYMGMCLL754zrF//vOfDBgwoNZCiZhpa3ohu7NtBPh687tLddGEiIg0HNW+eGLGjBn079+fwMBAxo4dS/PmzTl8+DCLFi3i73//O998801d5hSpN6cvmvhttxZYgvxMTiMiIlJ91S52l112GcuXL+fOO+/kT3/6k2t78+bNee+99+jatWudBBSpT9aSSlZtP33RhO40ISIiDUuNbhtx4403cvjwYTZu3MiRI0eIjY2lX79+uvuEeIz3tmZSbnfSOTaMSxPCzY4jIiJSIzVuZP7+/vo8nXikkxdNHAZ00YSIiDRM1b54QsTTfXuggLS8EwT5+3BT9xZmxxEREakxFTsRIGVPLpOXfQ/A8O4tCG2iiyZERKThMbXY5eXlkZiYyPr1613bvvvuO/r06UNISAht2rRh0aJFVZ6zZMkSEhMTCQ4OpmfPnmzcuNE15nA4mD59OjExMYSGhjJ8+HCOHj3qGs/NzeWmm24iPDyc6Ohopk6dit1ur/N5ivtyOA2eW7OHCa9vprCkkm7xFh68pqPZsURERC6KacXu66+/pm/fvqSlpbm2HT9+nKFDhzJu3DgKCwtZtGgR06ZNY9OmTQCsX7+eKVOmsGTJEgoLCxk9ejTDhg2jpKQEgNmzZ7N27Vq2bNlCVlYWgYGBTJo0yfX6o0aNIiQkhCNHjrBp0yY+//xz5s+fX78TF7eRZytn7KLveCFlPwDj+rZixT19aRoaYHIyERGRi2SYYPHixUbLli2Nd955xwCMlJQUwzAM45VXXjHat29fZd977rnHGDdunGEYhjF69GjjzjvvrDLeqVMn47XXXjMMwzDi4+ONZcuWucays7MNLy8vIy0tzdi3b58BGFlZWa7xd955x2jZsmW1c1utVgMwrFZrjeYr7ue7A8eMXrM/M1o9ssroPHO18cEPmWZHEhEROaea9A9Tjthde+21pKWlMWrUqCrbU1NTz1oPLykpiW3btv3iuNVqJTMzs8p4TEwMERERbN++ndTUVCIjI2nRokWV56anp1NYWHjOnOXl5RQVFVV5SMNmGAYvb0jj1le+JddWTvtmIXz0xysZ3j3O7GgiIiK/minFrnnz5udc+85msxEcHFxlW1BQEMXFxb84brPZAC44fq4xwPX6/2vOnDlYLBbXIyEhoQazFHdjLa3k7je/59lPd+NwGtzUvQUf/vFKEpvpPsciIuIZ3Oqq2ODgYNfn5U4rKSkhNDT0F8dPl7YLjZ9rDHC9/v+aMWMGVqvV9cjIyLj4yYmpfsqy8tu/f8XanTn4+3jzzIhk5o/qTpC/FtcWERHP4VY/1ZKTk1m7dm2VbTt37iQ5Odk1npqaetb40KFDiYiIIC4ujtTUVNf+2dnZFBQUkJycjNPp5NixY+Tk5BATE+N6bnx8PBaL5Zx5AgICCAjQB+kbMsMweGdzBo9/lEqF3Ul8RCD/HN2DrvHn/m8uIiLSkLnVEbvf/e53ZGdns2DBAiorK0lJSWHZsmVMnDgRgIkTJ7Js2TJSUlKorKxkwYIF5OTkMGLECAAmTJjA7NmzOXjwIDabjalTpzJgwADatWtH+/bt6devH1OnTsVms3Hw4EGefvpp7rjjDjOnLHWopMLOQ+9uY8b7O6iwO7m6czM+mdJfpU5ERDyWWxW7qKgoPvvsM959912ioqKYNGkSzz//PIMGDQJgyJAhvPjii0yePJmIiAjefvttVq9eTWRkJACzZs3ihhtuoH///sTHx1NWVsaKFStcr79y5Ursdjtt2rShT58+XHfddcycOdOUuUrdSssr5qZ/fM37W7Pw9oJHr+/Ey2N7YgnSwsMiIuK5vAzDMMwO0VAUFRVhsViwWq2EhYWZHUfOY9X2IzyycjsnKhw0DQ3g77deyuVto8yOJSIiclFq0j/c6jN2Ir9Ghd3Js5/uYvE3hwC4vG0kz996Kc1Cm5gbTEREpJ6o2InH+OvaPa5Sd+/Adjx4TQd8fdzq0wYiIiJ1SsVOPELm8RJe//oQAAtGdeemS7XgsIiIND46nCEeYf5n+6hwOOnbNorh3Vv88hNEREQ8kIqdNHi7s4t4/4dM4OTVr15eXiYnEhERMYeKnTR4c1fvxjDghq6xdEsINzuOiIiIaVTspEHbmHaMlD15+Hp78X/XdjQ7joiIiKlU7KTBMgyDP/9nNwC39m5Jm+hgkxOJiIiYS8VOGqz//JTNtoxCgvx9mDIk0ew4IiIiplOxkwap0uHkL2v2ADCpf1stQiwiIoKKnTRQyzdncCD/BFHB/tx1VVuz44iIiLgFFTtpcE6U21nw+T4A7h/SnpAArbMtIiICKnbSAL321UHyi8tpGRnErb1bmh1HRETEbajYSYNyrLiclzYcAOD/ru2Iv6/+CouIiJymn4rSoLyQsp/icjvJcWHc2DXW7DgiIiJuRcVOGoz0YyUs/fYwAI9e1xlvb906TERE5EwqdtJg/PWzPVQ6DPq3j6Zf+2iz44iIiLgdFTtpEH7KsvLhj0cAeOS6TianERERcU8qdtIgzD1167Dh3VuQHGcxOY2IiIh7UrETt/fVvnz+uy8fPx8vHrqmo9lxRERE3JaKnbg1p9Pgz//ZBcDoPq1oGRVkciIRERH3pWInbm3VjqP8lFVESIAvUwYnmh1HRETEranYiduqsDt5bs0eAO6+qi1RIQEmJxIREXFvKnbitt7elE56QQnRIQHc0b+N2XFERETcnoqduCVbWSXPr9sHwNSr2xPk72tyIhEREfenYidu6ZX/HuTYiQraRgczqleC2XFEREQaBBU7cTu5tjJe/e8BAKZf2xE/H/01FRERqQ79xBS38/d1+ympcNAtIZzrkpubHUdERKTBULETt3Iw/wRvb0oHYMb1nfDy8jI5kYiISMOhYidu5bk1e7A7DQZ1bMrlbaPMjiMiItKgqNiJ2/gh/Tif7DiKlxc8fF0ns+OIiIg0OCp24hZOlNt5aMU2AH53aTydY8NMTiQiItLwqNiJW5j1YSoH8k8Qa2nCn27obHYcERGRBknFTkz3wQ9ZvLc1E28vWHjLpUQE+5sdSUREpEFSsRNTHco/wWP/3gHA/UPa07tNpMmJREREGi4VOzFNhd3JlLd/4ESFgz5tIpkyuL3ZkURERBo0FTsxzbz/7GZHlpXwID8W3NIdH2+tWSciIvJrqNiJKVJ25/LqVwcB+MvIbsRaAk1OJCIi0vCp2Em9yykq46F3Ty5tcvsVrbkmKcbkRCIiIp5BxU7qlcNpMG35jxScqCApNowZQ7UQsYiISG1RsZN69c/1+/km7RhB/j78/bZLCfD1MTuSiIiIx3C7Yrds2TJCQkKqPPz9/QkICABg8uTJBAQEVBl/+eWXXc9fsmQJiYmJBAcH07NnTzZu3OgaczgcTJ8+nZiYGEJDQxk+fDhHjx6t9zk2Vt8fLmD+5/sAeGp4Mu2ahpicSERExLO4XbEbPXo0xcXFrseePXuIjo5m0aJFAGzevJmXX365yj533XUXAOvXr2fKlCksWbKEwsJCRo8ezbBhwygpKQFg9uzZrF27li1btpCVlUVgYCCTJk0yba6NibWkkvvf/hGH0+Cm7i24+bI4syOJiIh4HC/DMAyzQ5yPYRgMGTKEdu3a8corr1BeXk5YWBhbt26lS5cuZ+0/ZswYgoKCqhzB69y5Mw8//DATJkwgISGBuXPncttttwGQk5NDbGws+/fvp23btr+Yp6ioCIvFgtVqJSxM9zKtLsMwmLx0K/9JzaZVVBCf3N+fkABfs2OJiIg0CDXpH253xO5MS5cuJTU1lb/97W8AbNu2jcrKSmbNmkVMTAwdOnRg7ty5OJ1OAFJTU+natWuV10hKSmLbtm1YrVYyMzOrjMfExBAREcH27dvP+f3Ly8spKiqq8pCaW/ZdOv9JzcbPx4u/33qpSp2IiEgdcdti53Q6efrpp3nssccIDQ0FwGq1MnDgQO6//34yMzNZunQpzz//PH/9618BsNlsBAcHV3mdoKAgiouLsdlsAOcdP5c5c+ZgsVhcj4SEhNqepsfbnV3E06t2AvDIdZ24JD7c3EAiIiIezG2LXUpKCkePHuWOO+5wbbvmmmv44osvGDBgAH5+fvTu3ZupU6eyfPly4GRpO/15utNKSkoIDQ11FbrzjZ/LjBkzsFqtrkdGRkZtTtHjlVY4+ONbP1BudzKwY1MmXtnG7EgiIiIezW2L3XvvvceIESOqHGH74IMPeOmll6rsV15eTmDgybsWJCcnk5qaWmV8586dJCcnExERQVxcXJXx7OxsCgoKSE5OPmeGgIAAwsLCqjyk+p5alcr+3GKahQbw3O+74a1bhomIiNQpty12X331FVdddVWVbYZhMG3aNNatW4dhGGzcuJGFCxdy9913AzBx4kSWLVtGSkoKlZWVLFiwgJycHEaMGAHAhAkTmD17NgcPHsRmszF16lQGDBhAu3bt6n1+nm7V9iO8vSkDLy9YMKo70SEBZkcSERHxeG77KfYDBw4QF1d1SYwRI0Ywf/587r33XjIzM2nevDlPPvkkY8aMAWDIkCG8+OKLTJ48mczMTLp06cLq1auJjIwEYNasWVRWVtK/f39sNhuDBg1ixYoV9T43T5dRUMKM93YAcN/ARK5IjDY5kYiISOPg1suduBstd/LLKh1Ofv+vjfyYUUiPVhEsv+tyfH3c9sCwiIiI2/OY5U6k4fnbZ3v5MaOQsCa+LLylu0qdiIhIPdJPXak136Tl88/1aQDMvfkS4iOCTE4kIiLSuKjYSa0otzv4079/AuDW3i25vmusyYlEREQaHxU7qRUvf3mAA/knaBoawIyhncyOIyIi0iip2Mmvln6shBdS9gPwpxs6E9bEz+REIiIijZOKnfwqhmHw+Ec/UW53cmViFMO6tTA7koiISKOlYie/yprUHFL25OHv481Tw5Px8tLdJURERMyiYicX7US5nSc/PnmLtrsHtKVd0xCTE4mIiDRuKnZy0Rau28dRaxkJkYHcNyjR7DgiIiKNnoqdXJQ92TYWfXUQgKeGJdPEz8fkRCIiIqJiJzXmdBr86YMdOJwG13aJYVCnZmZHEhEREVTs5CK8tzWTzYeOE+Tvw+O/7WJ2HBERETlFxU5q5PiJCuas3g3AA0Pa0yI80OREIiIicpqKndTIvDW7KThRQYeYECb2a2N2HBERETmDip1U29b047y9KQOA2Td1xc9Hf31ERETciX4yS7XYHU4e+/dPAIzsEU/vNpEmJxIREZH/pWIn1fLGxsPsOlqEJdCPGdd3MjuOiIiInIOKnfyinKIy/vbZXgAeua4TUSEBJicSERGRc1Gxk1/01KqdFJfb6Z4Qzi29EsyOIyIiIuehYicXtGFvHp9sP4q3F8y+KRlvby+zI4mIiMh5qNjJeZVVOpj14ckLJsZf0ZrkOIvJiURERORCVOzkvF768gCHjpXQLDSAB6/pYHYcERER+QUqdnJOh/JP8I/1+wGYeWMSoU38TE4kIiIiv0TFTs5iGAazPkqlwu6kX2I0N14Sa3YkERERqQYVOznL6p+y2bA3D38fb54a3gUvL10wISIi0hCo2EkVxeV2nvp4JwD3DGhL26YhJicSERGR6lKxkyoWfLaX7KIyWkYGce+gRLPjiIiISA2o2InL3hwbr39zCIAnh3ehiZ+PuYFERESkRlTsxOWt79JxOA2u7hzDoI7NzI4jIiIiNaRiJwDYHU5WbT8CwOg+LU1OIyIiIhdDxU4A+CbtGPnFFUQE+dGvfbTZcUREROQiqNgJAB/+ePJo3Q2XxOLno78WIiIiDZF+ggtllQ7WpGYDMLx7nMlpRERE5GKp2Alf7M6luNxOXHggPVpGmB1HRERELpKKnfDBD1kADOveAm9v3WVCRESkoVKxa+SsJZWs35MHwPDuLUxOIyIiIr+Gil0j95/Uo1Q4nHSMCaVT8zCz44iIiMivoGLXyJ2+GnaYjtaJiIg0eCp2jVhOURkbDxwDYFg3FTsREZGGTsWuEft42xEMA3q2iiAhMsjsOCIiIvIruWWxW758Ob6+voSEhLgeY8eOBeC7776jT58+hISE0KZNGxYtWlTluUuWLCExMZHg4GB69uzJxo0bXWMOh4Pp06cTExNDaGgow4cP5+jRo/U6N3dy+jSsLpoQERHxDG5Z7DZv3szYsWMpLi52Pd58802OHz/O0KFDGTduHIWFhSxatIhp06axadMmANavX8+UKVNYsmQJhYWFjB49mmHDhlFSUgLA7NmzWbt2LVu2bCErK4vAwEAmTZpk5lRNk5ZXzI4sKz7eXgztGmt2HBEREakFblvsevbsedb29957j6ioKO677z58fX0ZPHgwo0eP5h//+AcAr776KrfccgtXXnklfn5+TJs2jejoaJYvX+4af+SRR0hISCAsLIyFCxeyevVqDhw4UK/zcwcfnTpa1799NFEhASanERERkdrgdsXO6XSydetWPvnkE1q1akV8fDx33XUXx48fJzU1la5du1bZPykpiW3btgFccNxqtZKZmVllPCYmhoiICLZv3173E3MjhmHw0baTxe4m3UJMRETEY7hdscvLy+PSSy9l5MiR7Nq1i2+++YZ9+/YxZswYbDYbwcHBVfYPCgqiuLgY4ILjNpsN4ILP/1/l5eUUFRVVeXiCHVlWDuafoImfN9ckxZgdR0RERGqJ2xW7mJgYNmzYwMSJEwkKCqJly5bMmzeP1atXYxiG6/Nyp5WUlBAaGgqcLG3nGz9d6C70/P81Z84cLBaL65GQkFBb0zTVBz+cPFp3TVJzggN8TU4jIiIitcXtit327dt59NFHMQzDta28vBxvb2969+5Nampqlf137txJcnIyAMnJyecdj4iIIC4ursp4dnY2BQUFruf/rxkzZmC1Wl2PjIyM2pqmaRxOg4+3n7oaVmvXiYiIeBS3K3aRkZG88MIL/OUvf8Fut5Oens706dO5/fbbGTlyJNnZ2SxYsIDKykpSUlJYtmwZEydOBGDixIksW7aMlJQUKisrWbBgATk5OYwYMQKACRMmMHv2bA4ePIjNZmPq1KkMGDCAdu3anTNLQEAAYWFhVR4N3bcHjpFnKyc8yI+rOjQ1O46IiIjUIrcrdvHx8XzyySd88MEHREZG0rNnT3r16sULL7xAVFQUn332Ge+++y5RUVFMmjSJ559/nkGDBgEwZMgQXnzxRSZPnkxERARvv/02q1evJjIyEoBZs2Zxww030L9/f+Lj4ykrK2PFihVmTrfeffhjFgBDu8bi7+t2//lFRETkV/AyzjznKRdUVFSExWLBarU2yKN3ZZUOej3zObYyO8vvupw+baPMjiQiIiK/oCb9Q4dsGpH1e3KxldmJtTShV+tIs+OIiIhILVOxa0RO30JsWLcWeHt7mZxGREREapuKXSNRVFbJut25AAzTvWFFREQ8kopdI7Hmp2wq7E7aNwshKbbhfT5QREREfpmKXSNx+hZiw7u3wMtLp2FFREQ8kYpdI5BrK+Pr/fkADOume8OKiIh4KhW7RmDVtqM4Dbi0ZTgto4LMjiMiIiJ1RMWuEfhwm24hJiIi0hio2Hm4Q/kn2JZRiI+3FzdcomInIiLiyVTsPNzpiyauTIymaWiAyWlERESkLqnYeTDDMPjg1L1hdRpWRETE86nYebDUI0UcyDtBgK83v+kSY3YcERERqWMqdh7sw1NH667uHENoEz+T04iIiEhdU7HzUA6nUWVRYhEREfF8KnYeatPBAnKKyglr4suAjk3NjiMiIiL1QMXOQ3207eRp2KFdYwnw9TE5jYiIiNQHFTsPVG538OmObACG6TSsiIhIo6Fi54G+3JOHtbSSmLAA+rSJMjuOiIiI1BMVOw90+hZiw7q1wMfby+Q0IiIiUl9U7DxMcbmdz3fmADC8e5zJaURERKQ+qdh5mLWp2ZTbnbRtGkyXFmFmxxEREZF6pGLnYT788dTadd3i8PLSaVgREZHGRMXOg+QXl/PV/nxAixKLiIg0Rip2HuT9rZk4nAbd4i20jg42O46IiIjUMxU7D+FwGryx8TAAo/u0MjmNiIiImEHFzkOs25VD5vFSIoL8tCixiIhII6Vi5yEWf3MIgFt6t6SJn24hJiIi0hip2HmAPdk2vkk7ho+3F2Mu12lYERGRxkrFzgMs2XgIgN8kxRAXHmhuGBERETGNil0DZy2p5P2tmQDcfkVrc8OIiIiIqVTsGrjlW9Ipq3TSOTaM3m0izY4jIiIiJlKxa8DOXOLk9ita6U4TIiIijZyKXQN2eomT8CA/hnePMzuOiIiImEzFrgE7fdHELb20xImIiIio2DVYe3NsfL3/GN5eMLavljgRERERFbsG6/SCxNd2aa4lTkRERARQsWuQrCWV/HtrFgDjtcSJiIiInKJi1wCt2JJBaaWDTs1D6aMlTkREROQUFbsGxuE0XBdN3H5Fay1xIiIiIi4qdg3MF7tztcSJiIiInJOKXQOz+JuDwMklTgL9tcSJiIiI/Mwti922bdu45ppriIyMpHnz5owbN478/HwAJk+eTEBAACEhIa7Hyy+/7HrukiVLSExMJDg4mJ49e7Jx40bXmMPhYPr06cTExBAaGsrw4cM5evRovc/vYu07Y4mTMZe3NDuOiIiIuBm3K3alpaVcf/31XHHFFWRnZ5OamsqxY8eYMGECAJs3b+bll1+muLjY9bjrrrsAWL9+PVOmTGHJkiUUFhYyevRohg0bRklJCQCzZ89m7dq1bNmyhaysLAIDA5k0aZJpc62p00uc/CapOfERQeaGEREREbfjdsUuPT2dbt26MWvWLPz9/YmKiuLuu+9mw4YNlJeXs2PHDnr27HnO57766qvccsstXHnllfj5+TFt2jSio6NZvny5a/yRRx4hISGBsLAwFi5cyOrVqzlw4EB9TvGiWEsqef/UEie3X9na3DAiIiLiltyu2HXs2JHVq1fj4/Pz58dWrlxJjx492LZtG5WVlcyaNYuYmBg6dOjA3LlzcTqdAKSmptK1a9cqr5eUlMS2bduwWq1kZmZWGY+JiSEiIoLt27fXz+R+hXe/1xInIiIicmG+Zge4EMMwmDlzJh9//DEbNmwgOzubgQMHcv/99/POO+/www8/MGLECLy9vZk+fTo2m43g4OAqrxEUFERxcTE2mw3gvOPnUl5eTnl5uevroqKiWp5h9WiJExEREakOtztid1pRUREjR45k6dKlbNiwga5du3LNNdfwxRdfMGDAAPz8/OjduzdTp051nWoNDg52fZ7utJKSEkJDQ12F7nzj5zJnzhwsFovrkZCQUAcz/WVf7M4lo6AUS6CWOBEREZHzc8til5aWRq9evSgqKmLLli2u06cffPABL730UpV9y8vLCQw8ea/U5ORkUlNTq4zv3LmT5ORkIiIiiIuLqzKenZ1NQUEBycnJ58wxY8YMrFar65GRkVGb06y2Jacumrild4KWOBEREZHzcrtid/z4cQYPHswVV1zBmjVriI6Odo0ZhsG0adNYt24dhmGwceNGFi5cyN133w3AxIkTWbZsGSkpKVRWVrJgwQJycnIYMWIEABMmTGD27NkcPHgQm83G1KlTGTBgAO3atTtnloCAAMLCwqo86tu+HBtf7c/H2wvGXt6q3r+/iIiINBxu9xm7119/nfT0dFasWMG7775bZay4uJj58+dz7733kpmZSfPmzXnyyScZM2YMAEOGDOHFF19k8uTJZGZm0qVLF1avXk1k5MmLDWbNmkVlZSX9+/fHZrMxaNAgVqxYUe9zrInTn627JilGS5yIiIjIBXkZhmGYHaKhKCoqwmKxYLVa6+XonbW0ksufXUdppYO377ycvu2i6vx7ioiIiHupSf9wu1Ox8rN3t5xc4qRjTCiXt9USJyIiInJhKnZuyuE0eGPjYeDkgsRa4kRERER+iYqdm0rZnUt6QQmWQD9u0hInIiIiUg0qdm7q9H1hb+mlJU5ERESkelTs3NCZS5yM0RInIiIiUk0qdm7ozCVOEiK1xImIiIhUj4qdm7GWVvL+1iwAxl/R2twwIiIi0qCo2LmZd7dkUFJxcomTvm21bp2IiIhUn4qdGzlziZPxV2iJExEREakZFTs3sn7PGUucXNrC7DgiIiLSwLjdvWIbs4hgf67q0JTOsaEE+es/jYiIiNSM2oMbuaxlBG9M7I3Tqdv3ioiISM3pVKwb8vbWZ+tERESk5lTsRERERDyEip2IiIiIh1CxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiIiIeAgVOxEREREPoWInIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ6jYiYiIiHgIX7MDNCSGYQBQVFRkchIRERFpLE73jtM95EJU7GrAZrMBkJCQYHISERERaWxsNhsWi+WC+3gZ1al/AoDT6eTIkSOEhobi5eV1zn2KiopISEggIyODsLCwek5ovsY8/8Y8d9D8NX/Nv7HOvzHPHepn/oZhYLPZaNGiBd7eF/4UnY7Y1YC3tzfx8fHV2jcsLKxR/gU/rTHPvzHPHTR/zV/zb6zzb8xzh7qf/y8dqTtNF0+IiIiIeAgVOxEREREPoWJXywICAnj88ccJCAgwO4opGvP8G/PcQfPX/DX/xjr/xjx3cL/56+IJEREREQ+hI3YiIiIiHkLFTkRERMRDqNiJiIiIeAgVu1qUm5vLTTfdRHh4ONHR0UydOhW73W52rHqxbds2rrnmGiIjI2nevDnjxo0jPz/f7Fj1zuFwMHDgQG6//Xazo9SrgoICxo0bR1RUFBEREdx0000cPXrU7Fj1ZuvWrVx11VWEh4cTGxvLAw88QHl5udmx6lxeXh6JiYmsX7/ete27776jT58+hISE0KZNGxYtWmRewDp0rrm/9957dO/enbCwMFq3bs2TTz6J0+k0L2QdOtf8Tzt69CgxMTEsXry43nPVl3PNf/v27QwZMoTQ0FBiYmJ48MEHTekAKna1aNSoUYSEhHDkyBE2bdrE559/zvz5882OVedKS0u5/vrrueKKK8jOziY1NZVjx44xYcIEs6PVuyeffJL//ve/ZseodzfffDPFxcWkpaWRnp6Oj48Pd955p9mx6oXT6eTGG29k5MiRFBQUsHnzZtasWcO8efPMjlanvv76a/r27UtaWppr2/Hjxxk6dCjjxo2jsLCQRYsWMW3aNDZt2mRi0tp3rrl///33jB07ltmzZ1NYWMjq1atZvHixR/4MONf8T3M6nYwePdqj/2F/rvnn5+czZMgQrr76agoKCvjuu+9YtWoVCxYsqP+AhtSKffv2GYCRlZXl2vbOO+8YLVu2NDFV/di9e7dx3XXXGXa73bXtww8/NMLCwkxMVf/WrVtnJCUlGb///e+N8ePHmx2n3mzZssVo0qSJYbVaXduOHTtm/PTTTyamqj/5+fkGYMyfP9+w2+1GRkaG0blzZ+O5554zO1qdWbx4sdGyZUvjnXfeMQAjJSXFMAzDeOWVV4z27dtX2feee+4xxo0bZ0LKunG+ua9cudKYNm1alX2nTZtmDBs2zISUded88z/t8ccfN8aOHWu0atXKeP31103JWJfON//nnnvOuOKKK6rse+jQIePw4cP1nlFH7GpJamoqkZGRtGjRwrUtKSmJ9PR0CgsLzQtWDzp27Mjq1avx8fFxbVu5ciU9evQwMVX9ys3N5Y477uCtt94iKCjI7Dj1atOmTSQlJfHKK6+QmJhIbGwsDz30ELGxsWZHqxdRUVFMmzaNhx56iICAABISEujQoQPTpk0zO1qdufbaa0lLS2PUqFFVtqemptK1a9cq25KSkti2bVt9xqtT55v7zTffzN/+9jfX16WlpXzyySce9z54vvkDpKSk8M477/Diiy+akKx+nG/+mzZtIjk5mXvuuYfmzZvTrl07li5dWu3bkNYmFbtaYrPZCA4OrrLt9A/44uJiMyKZwjAM/vSnP/Hxxx+zcOFCs+PUC6fTyZgxY3jwwQfp1q2b2XHqXUFBAdu3b2ffvn388MMP/Pjjj2RlZTFu3Dizo9ULp9NJYGAgL7zwAidOnOCnn35i586dPP7442ZHqzPNmzfH1/fsW42f733Qk94Dzzf3M9lsNm666SYCAwM9ruCfb/65ublMmDCBZcuWERISYkKy+nG++RcUFPD666/Tu3dvMjIyeP/993nppZeqlP36omJXS4KDgykpKamy7fTXoaGhZkSqd0VFRYwcOZKlS5eyYcOGs/7l7qnmzJlDkyZNmDJlitlRTHF6tfUFCxa4PjT8zDPP8Omnn3rUD/Tz+fe//817773H5MmTCQgIoEuXLjz++OMefdTifM73PthY3gMB9uzZQ9++fbHb7aSkpDSKuRuGwdixY7n//vs97ghldQUEBNC7d28mTpyIn58f3bp1Y8qUKaxYsaLes6jY1ZLk5GSOHTtGTk6Oa9vOnTuJj4/HYrGYmKx+pKWl0atXL4qKitiyZUujKXUAb775JuvXryc8PJzw8HDeeust3nrrLcLDw82OVi+SkpJwOp1UVFS4tjkcDuDkG76nS09PP+sKWD8/P/z9/U1KZJ7k5GRSU1OrbNu5cyfJyckmJapfn376Kb179+a6665jzZo1REREmB2pXmRkZPDll1/y1FNPud4H09PTuffee7nxxhvNjlcvkpKSznofcDgc5rwH1vun+jxYv379jFtuucUoKioyDhw4YHTp0sV4/PHHzY5V5woKCoyWLVsat99+u+FwOMyOY7rx48c3qosnKioqjMTEROPmm282bDabkZubawwePNgYMWKE2dHqRWpqqhEQEGA888wzht1uN9LS0oyuXbsa//d//2d2tHrBGR8gz8/PN8LDw4358+cbFRUVxhdffGGEhoYaX3zxhbkh68iZc9+4caPh7+9vLFq0yNxQ9YhzXDxxmqdePHGmM+e/a9cuIyAgwJg7d65ht9uN7du3G3FxccbChQvrPZeO2NWilStXYrfbadOmDX369OG6665j5syZZseqc6+//jrp6emsWLGCsLAwQkJCXA/xfH5+fnz55Zf4+vrSvn17OnToQHx8PK+99prZ0epFUlISq1at4qOPPiIqKopBgwbx29/+lmeeecbsaPUuKiqKzz77jHfffZeoqCgmTZrE888/z6BBg8yOVueeffZZKisruf/++6u8B15//fVmR5N60KlTJ7788ktWrVpFdHQ01113Hffcc48pH9HxOtU6RURERKSB0xE7EREREQ+hYiciIiLiIVTsRERERDyEip2IiIiIh1CxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiEfav3+/2RHcntVqJS8vz+wYIlKLVOxExONMnz6d2bNnV2vf9evX4+XlVWdZvLy8WL9+/UU994knnmDgwIG1mudMiYmJrnu7Llu2jC5dutTZ9xKR+qFiJyIeR0ehqic/P9/1+9GjR7tKnog0XCp2IuIWDh06hJeXF2+88QatWrUiODiYCRMm8NVXX9GtWzdCQkIYMmQI+fn5OJ1O/vznP9OuXTssFgu9e/dmzZo1ADz99NMsW7aMZcuW0a1btxrn2LFjB0OHDiUyMpL4+HjuvfderFYrAIZhMHfuXLp27Up4eDgRERGMHj2a0tJSACorK3nwwQeJjo6madOm/OUvf6nR9/7mm2/o1asXwcHBXHnllRw8eNA1tnjxYlq3bl1l/4EDB/LEE08AcPvtt/P73/+ezp0707RpU9LS0vjmm28YPHgwLVq0oEmTJvTs2ZNvv/0WgI4dOwJw/fXXM2/evLNe/7///S9XXXUV4eHhtGnThpkzZ1JeXg6cPJI4cuRIxowZQ3h4OPHx8cyYMaNGcxWROmKIiLiBgwcPGoAxatQo48SJE8aOHTsMHx8fo1u3bkZmZqaRl5dnJCYmGk8++aTx+OOPG/Hx8cb3339vVFZWGsuXLzcCAgKMTZs2GYZhGOPHjzfGjx9fre+bkpJinH4rzM/PNyIjI42HHnrIKCkpMY4ePWoMHjzYGDZsmGEYhrF8+XKjefPmxt69ew3DMIxdu3YZkZGRxquvvmoYhmHMnDnTaN++vZGWlmYUFxcbY8eONQAjJSXlF3Pk5+cb4eHhxp///GejoqLC+Oqrr4ywsDBjwIABhmEYxuuvv260atWqynMGDBhgPP744645h4SEGDt27DCOHz9ulJSUGJGRkcYLL7xgOBwOo7i42PjDH/5g9OvXz/X8M7Od+fq7d+82AgICjAULFhjl5eXGvn37jEsuucS4//77DcMwjMcff9zw8vIylixZYtjtduOTTz4xvLy8jI0bN1brz1xE6o6O2ImIW/m///s/goKCSE5OJjY2lvHjxxMXF0d0dDR9+/bl0KFDvPbaa8yYMYPLLrsMX19f/vCHPzBs2DAWLVr0q773hx9+iL+/P3PnziUwMJDmzZvz97//nY8++ojs7Gyuv/56Nm/eTPv27cnLyyM/P5/o6GiysrIAePPNN5k+fTpt27YlODiY559/vtqf31u1ahXBwcE8/PDD+Pn5ceWVVzJx4sQa5b/88stJTk4mPDwcf39/vv32W+69917Ky8s5dOgQUVFRrqwXsmzZMi655BIeeOAB/P39SUxMZM6cObzyyis4nU4AOnTowLhx4/Dx8WHo0KHExsayd+/eGuUVkdrna3YAEZEzRUVFuX7v4+NDRESE62tvb2+cTic5OTm0bdu2yvPatGnDtm3bftX3zsnJoVWrVvj4+FR5XTh5qrhz58489thjfPzxxzRr1ozu3btTXl7uKjtZWVm0bNnS9dzw8HAiIyOr9b2zsrJISEioUgTbtWvHDz/8UO38LVq0cP3ex8eHlJQUrr/+eoqLi+nSpQt+fn6urBdyvj/f0tJScnNzAWjevHmV8eq+tojULRU7EXEr1TnC1bp1a9LS0qpsS0tLIzY29ld979atW3P48GEcDoer3J3+PrGxsTz66KOkp6dz6NAhwsLCAOjatavr+QkJCRw4cMD19YkTJygsLKzW905ISODw4cM4nU68vU+eTMnMzHSN+/j4UFFRUeU5Z178AFX/7L777jumTJnCN998Q48ePQD461//yu7du38xS+vWrXn//ferbEtLSyMgIKDaRVVEzKFTsSLS4EyaNIk///nPbN26FYfDwbvvvstHH33E7bffDkCTJk1cFzzUxNChQ/Hy8uKRRx6htLSU7OxsHnjgAQYPHkyrVq2wWq00adIEX19fysrK+Otf/8pPP/3kKlyTJk1i3rx57Nq1i7KyMh566CEcDke1vvdvf/tbnE4nTzzxBBUVFXz//fe88sorrvHOnTuTnZ1NSkoKhmGwdOlSdu3add7Xs1qteHt7ExgYCMC3337LwoULq5TDgICAc/453XrrrezcudO1f1paGv/v//0/Ro8ejb+/f7XmIyLmULETkQbnwQcf5L777mPUqFFYLBaeffZZ3nnnHQYMGADAqFGj+Prrr6ucFq0Oi8XCZ599xk8//UR8fDzJycm0bt2ad999F4DZs2dTUlJCs2bNaN26Nd9++y1jx45lx44dADzyyCOMGTOGAQMGEBsbi8ViqXJq+ULCw8NZs2YN69atIyIigjvuuIORI0e6xnv27Mmf/vQnxo8fT2RkJOvWrasy/r+uueYa7r33Xq666ioiIiK49957uf/++8nNzSUnJweAu+++m1tvvZXHHnusynNbt27NmjVrWLlyJc2aNaNfv35cc801vPDCCzX68xSR+udlGIZhdggRERER+fV0xE5ERETEQ+jiCRHxWLm5uWdd3fm/iouL6yVLdHQ0ZWVl5x3fuXNnjU8di4j8L52KFREREfEQOhUrIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ6jYiYiIiHgIFTsRERERD6FiJyIiIuIh/j9FBTOXhjHtYAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"# ax = fig.gca()\n",
"Ncount_mean.plot.errorbar()\n",
"# plt.xlabel('MOT AOM Frequency (MHz)')\n",
"# plt.ylabel('MOT Gradient Coil Current (A)')\n",
"plt.tight_layout()\n",
"# plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbiklEQVR4nO3deXhU5eH28W92sk42CCEJa9hCEJRNFGTTqmhBKi0qmyAuaFHQHyqvBTeUQm0Ba21dUFBQQbQuKAXFIFVRQBQw7GHJAtkImUzIOjPn/QMYSVlMMMmZTO7Pdc0FOc+Zyf0gTm7OmfMcL8MwDERERESkwfM2O4CIiIiI1A4VOxEREREPoWInIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ/iaHaAhcTqdHDlyhNDQULy8vMyOIyIiIo2AYRjYbDZatGiBt/eFj8mp2NXAkSNHSEhIMDuGiIiINEIZGRnEx8dfcB8VuxoIDQ0FTv7BhoWFmZxGREREGoOioiISEhJcPeRCVOxq4PTp17CwMBU7ERERqVfV+RiYLp4QERER8RAqdiIiIiIeQsVORERExEOo2ImIiIh4CBU7EREREQ+hYiciIiLiIVTsRERERDyEip2IiIiIh1CxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiIiIeAgVOxEREREPoWInIiIi4iFMKXbbtm3jmmuuITIykubNmzNu3Djy8/MB+O677+jTpw8hISG0adOGRYsWVXnukiVLSExMJDg4mJ49e7Jx40bXmMPhYPr06cTExBAaGsrw4cM5evSoazw3N5ebbrqJ8PBwoqOjmTp1Kna7vX4mLSIi4kEMwyDXVsbGtGN88EMWOzKtVNidZsdq9Hzr+xuWlpZy/fXXc+edd/LJJ59gs9kYN24cEyZM4I033mDo0KE89dRT3H333WzYsIGbbrqJrl270rt3b9avX8+UKVNYvXo1vXv35oUXXmDYsGEcPnyYoKAgZs+ezdq1a9myZQsWi4W77rqLSZMm8cknnwAwatQo4uLiOHLkCNnZ2QwbNoz58+czffr0+v5jEBERaRDsDifpBSWk5Z1gf24xaXknH/tzi7GVVT044u/jTefYUC6JD+eSeAuXxIeT2CwEH28vk9I3Pl6GYRj1+Q337NnD1KlTWbVqFT4+PgB89NFHjB07lr/+9a/MmzePvXv3uvafPHkyJSUlLFmyhDFjxhAUFMTLL7/sGu/cuTMPP/wwEyZMICEhgblz53LbbbcBkJOTQ2xsLPv378fpdNK+fXuysrJo0aIFAMuXL+fhhx/m8OHD1cpeVFSExWLBarUSFhZWW38kIiIipisut3PgjNKWlnuCtLxiDh07QaXj3FXB2wsSIoOICW3Cnhwb1tLKs/YJ8vchuYWFrvEWLom30C0+nFZRQXh5qexVV036R70fsevYsSOrV6+usm3lypX06NGD1NRUunbtWmUsKSnJdTo2NTWViRMnnjW+bds2rFYrmZmZVZ4fExNDREQE27dvx8vLi8jISFepO/3c9PR0CgsLCQ8PPytreXk55eXlrq+Lioouet4iIiJmO3n6tJy03DMKXN7JAnfUWnbe5wX6+dC2aTCJzUJo1/TkI7FZCK2igmji5+N67YyCUrZlFrI9s5BtmVZ+yrJSUuFg06ECNh0qcL1eWBPfKkf1uiVYaB7WRGWvFtR7sTuTYRjMnDmTjz/+mA0bNrBw4UKCg4Or7BMUFERxcTEANpvtvOM2mw3ggs8/1xhAcXHxOYvdnDlzePLJJy9+giIiIiaodDg5fKykymnTtLwTHMgtxlZ+/s+WR4cE0O7MAtfsZIGLDWuC9y+cTvXy8qJlVBAto4L4bbeTB1EcToMDecVsy7SyPbOQ7ZlWdh4toqjMzlf78/lqf36V793tVNG75NTRvaiQgNr5A2lETCt2RUVFTJgwge+//54NGzbQtWtXgoODKSwsrLJfSUkJoaGhwMliVlJSctZ4dHS0q7Sdazw0NBSn03nOMcD1+v9rxowZPPjgg1UyJyQk1HyyIiIidSSnqIxv0vLZl1Ps+gzc4WMl2J3nP33aKiqYdk2DaXfmEbimIViC/Go1m4+3F+1jQmkfE8rIHvEAVNid7M2xsf1U2duWaWVvjo384nLW7c5l3e5c1/PjwgPplmCha1w43eItJMdbCGtSuxk9jSnFLi0tjaFDh9KyZUu2bNlCdHQ0AMnJyaxdu7bKvjt37iQ5Odk1npqaetb40KFDiYiIIC4ujtTUVNf+2dnZFBQUkJycjNPp5NixY+Tk5BATE+N6bnx8PBaL5Zw5AwICCAjQvxZERMR9OJ0G2zILSTlVglKPnPtjQkH+PqdKW9UjcK2iggjw9ann1D/z9/UmOc5CcpyF2/q0BKCs0kHqkSLXUb3tmYUcyD9BVmEpWYWlfLoj2/X8tk2DuSTu51O4SbEWAv3Nm4+7qfeLJ44fP0737t0ZPHgwixYtwtv75xVXjh07RmJiIo8//jj33XcfX331FcOHD+fDDz9k0KBBrFu3jhEjRvDhhx/Sr18//vGPf/DUU0+xf/9+IiMjmTlzJh988AEfffQR0dHR3HnnnWRnZ7N+/XoA+vfvT3x8PC+//DL5+fn89re/ZeTIkTzxxBPVyq6LJ0RExAzW0kr+uy+PL3bn8uWePI6dqHCNeXnBJXEnL044/dm3dk1DiLU07M+s2coq2ZFlZUemle2ZVrZlFpJ5vPSs/Xy8vWgdFUSgvw9+Pt74eXvj6+N18vc+Xvie+trf5+Svvj7e+HmfHPc9Yx8/X69feO6pMe9TY2fs4+/rRXNLICEBdXO8rCb9o96L3d/+9jceeughgoLOviKmuLiYLVu28MADD7Bjxw6aNm3KzJkzuf322137LF26lNmzZ5OZmUmXLl14/vnn6dOnDwCVlZXMnDmTpUuXYrPZGDRoEC+//DLNmjUDTl4l+8c//pGUlBS8vb0ZN24cc+fOdV2d+0tU7EREpD4YhkFaXjFf7M7li925bDl0vMqp1dAAX67q0JRBnZoxsGNTohvJZ9GOFZezI8ta5TRunq38l59YD/415jKuS46tk9d262LXkKnYiYhIXSmrdPDtgWOk7M7liz25ZBRUPTrVrmkwQzrHMKhjM3q2jsDPRzePMgyDnKJyDuQVU+5wYncYVDqcVJ76vd3ppMJhYD895nRSaT+5vfLUvnaHk0rnyX1+3nbqdZw/P7fC4cTuPOP3p1630nly3/mjujOoY7M6madbL3ciIiIiJx21lpKyO48vdufw9f5jlFY6XGP+Pt5c3i6KwR2bMrhTDC2jgkxM6p68vLxobmlCc0sTs6O4DRU7ERGReuJwGvyYcfzUKdY8dh2teuFD87AmDOrUjMGdmnFlYhRB/voxLTWjvzEiIiJ1qLCkgi/35pGyO5cv9+ZxvOTnuzN4ecGlCeEM7tSMQZ2akRQb1qAveBDzqdiJiIjUIsMw2Jtz8sKHlN25bDlcwJlLyoU1OXnhw5DOzRjQoRmRwf7mhRWPo2InIiLyK5VVOvgmLf9Umcsjq7DqhQ8dYkJOnmLt2IwerSLw1YUPUkdU7ERERGrAVlbJ7mwbO48UsfNIEalHrezNLqbC4XTtE+DrTd92UQzp1IyBHZuREKkLH6R+qNiJiIicw+mlNHYetZKaVcTOoycfh4+VnHP/FpafL3y4ol207oYgplCxExGRRs/ucHIg/8TJo3BHi1y/Fpxxh4czxVqakBQbRlKLMLq0CKNzbBgtI89eeF+kvqnYiYhIo3Ki3M7u7KIqJW53to1yu/OsfX28vWjXNJguLSyuItc5NkwXPIjbUrETERGPZBgGebZyUs84ArfrSBEHj53gXPdcCvb3ofOp8na6xHWICaWJn06pSsOhYiciIg2ew2lwMP+E6whc6hEru44WkV987lOpMWEBrvKWFGshqUUYrSKD8PbWqVRp2FTsRETErZRVOigsqeR4SQXHSyqwllRy/NTX1tJKjp+o4HhJJYUlFRSWnvq1pBK78+zDcN5e0LZpyFmfh4sOCTBhZiJ1T8VORETqhN3hPFnESn4uX8dP/VpY+nM5O36i0lXQjpdUUFZ59mfdqiPQz4dOsaF0OeMoXMeYUF2dKo2Kip2IiPwqJRV2Fq7bx66jNqwlFa6ja7Yy+0W/pq+3F+FBfoQH+RMeePLXiCA/IoL9sQT6EXHq6/Agf8KDTn7dNDQAH51KlUZOxU5ERC5ablEZdyzZwo4s63n3CWviS0Rw1YJ2ZiE7XeAizvg6JMBXS4eIXAQVOxERuSh7sm1MXLyZrMJSIoP9eeg3HYgJbUJE8M9H2iyBfrp9lkg9UrETEZEa27A3j/uWbcVWbqdt02Bev70XraKCzY4l0uip2ImISI28symdxz74CYfToE+bSF4a24PwIC3YK+IOVOxERKRanE6Dv6zdwz/XpwHwu0vjmHNzVwJ8ddWpiLtQsRMRkV9UVungoXe38cn2owBMvbo9DwxprwscRNyMip2IiFzQseJy7nxjC1vTC/Hz8WLuzZfwu8vizY4lIuegYiciIueVllfMhNc3k15QQlgTX14a25O+7aLMjiUi56FiJyIi5/TtgWPc/eb3WEsraRkZxGu39yKxWYjZsUTkAlTsRETkLP/+IZOHV26n0mFwactwXh3XkyjdX1XE7anYiYiIi2EYLFy3jwWf7wPghq6x/PUP3WjipytfRRoCFTsREQGgwu7k0fe38/7WLADuGdCOh6/tiLfuvyrSYKjYiYgI1pJK7l66hW8PFODj7cXTw5O5rU9Ls2OJSA2p2ImINHLpx0qYsHgTaXknCAnw5R+jL2NAh6ZmxxKRi6BiJyLSiG1NP86dS7Zw7EQFsZYmvHZ7LzrHhpkdS0QukoqdiEgj9emOo0xb/iPldiddWoTx2u29iAlrYnYsEfkVVOxERBoZwzB4ecMB5qzeDcDVnZux8JZLCQ7QjwSRhk7/F4uINCJ2h5NZH6Xy1nfpANx+RWtm3piEj658FfEIKnYiIo2ErayS+976gQ178/Dyglk3JjHhyjZmxxKRWqRiJyLSCBwpLGXi4s3szrYR6OfD87deyjVJMWbHEpFapmInIuLhfsqyMnHxZnJt5TQNDeC18b3oGm8xO5aI1AEVOxERD7ZuVw5T3v6BkgoHHWJCeH1Cb+LCA82OJSJ1RMVORMRDLf76IE+t2onTgP7to/nH6MsIa+JndiwRqUMqdiIiHsbhNJj9yU5e//oQALf0SuDpm5Lx8/E2N5iI1DkVOxERD1JSYef+t3/k8105ADx8XUcmD2iHl5eWMxFpDFTsRERqQaXDydHCMgL8vAnw9SbA1wd/X+96XR8u11bGHYu3sCPLir+vN3/7QzduvKRFvX1/ETGfqcUuLy+Pvn378uqrrzJw4EDuueceli5dWmWf0tJSrr76atasWQNA586dOXz4MN7eP59S2Lx5M507d8bhcPDoo4/yxhtvUFJSwuDBg/nXv/5FbGwsALm5udx1112sX78eX19fxowZw3PPPYevr/qtiFy8zOMl3PrKt2QUlJ415ufj5Sp5Ab4/l74zC2CAr/epr31+3sfv59/7n3e/n1+nuNzO9He3k1VYSmSwP6+M60GPVpEm/GmIiJm8DMMwzPjGX3/9NePHjyctLY2UlBQGDhx41j5r167l1ltvZcOGDXTp0oWioiLCw8M5ePAgrVq1Omv/J598kvfff59Vq1ZhsVi46667sNlsfPLJJwAMGjSIuLg4Xn75ZbKzsxk2bBjjx49n+vTp1cpcVFSExWLBarUSFqabZIsIFJyoYOS/vuFA3gl8vb1wGgZOU95VT2obHczrE3rRKirYvBAiUqtq0j9MOVS1ZMkSZs2axbx587jlllvOuU9+fj6jR4/m+eefp0uXLgB8//33REVFnbPUAbz66qvMnTuXhIQEABYuXEhsbCwHDhzA6XSyfv16srKyCAoKom3btsycOZOHH3642sVORORMJ8rtTFi8mQN5J2hhacJ7915BrCUQu8NJhcNJeaWTcruTcrvj5K+VZ/ze7jhrvMJ+6uvK0/uce78zX6fijP0uaxnBvJGXEB7kb/YfjYiYxJRid+211zJ69Gh8fX3PW+weeeQRevbsyejRo13bNm/eTFBQEAMGDCA1NZXWrVvzxBNPcOONN2K1WsnMzKRr166u/WNiYoiIiGD79u14eXkRGRlJixY/f94kKSmJ9PR0CgsLCQ8Pr7P5iojnqbA7mbxsK9syCgkP8uONO/oQazm5Ppyvjze+Pt6oX4lIfTOl2DVv3vyC4wcPHuTNN99k06ZNVbZ7eXnRq1cv5syZQ6tWrXj33Xe5+eab+fLLL4mPjwcgOLjq6YegoCCKi4vPOwZQXFx8zmJXXl5OeXm56+uioqLqTVBEPJrTafDwym1s2JtHoJ8Pr9/ei8RmIWbHEhHBLRc1eu2117jyyivp3r17le3Tp09n5cqVtG/fHn9/f0aPHs3VV1/NypUrXaWtpKSkynNKSkoIDQ0lODj4nGMAoaGh58wxZ84cLBaL63H6FK+INF6GYfDMp7v44Mcj+Hp78c8xl3FpywizY4mIAG5a7N577z3Gjh171vbnnnuOdevWVdlWXl5OYGAgERERxMXFkZqa6hrLzs6moKCA5ORkkpOTOXbsGDk5Oa7xnTt3Eh8fj8Vy7nsmzpgxA6vV6npkZGTU0gxFpKF6acMBFn11EIB5Iy9hYMdmJicSEfmZ2xW7Y8eOsWvXLq666qqzxjIyMrjvvvs4cOAAdrud1157jW+++Ybx48cDMGHCBGbPns3Bgwex2WxMnTqVAQMG0K5dO9q3b0+/fv2YOnUqNpuNgwcP8vTTT3PHHXecN0tAQABhYWFVHiLSeL27JYM/r94NwGNDO/O7y+JNTiQiUpXbLeB28ODJfwnHxcWdNTZv3jy8vb3p378/hYWFdOnShU8//ZTExEQAZs2aRWVlJf3798dmszFo0CBWrFjhev7KlSv54x//SJs2bfD29mbcuHHMnDmzfiYmIg3aul05PPr+DgDuvqotd17V1uREIiJnM20du4ZI69iJNE7fHy5g9KvfUVbp5HeXxfHcyG541+MdJUSkcatJ/3C7U7EiIu5kX46NiYu3UFbpZFDHpsy9+RKVOhFxWyp2IiLncaSwlHGvbcJaWsmlLcP5x+jL8PPR26aIuC+9Q4mInMPxExWMe20TR61ltGsazGvjexHk73YfSxYRqULFTkTkf5RU2Jm4ZDP7c4uJtTThjTv6EBGs20iIiPtTsRMROUOlw8l9y7byQ3ohlkA/lkzsTVx4oNmxRESqRcVOROQUwzB45L3tpOzJo4mfN6/d3pMOMee+M42IiDtSsRMROeXPq3fz/tYsfLy9+Mdtl9GjVaTZkUREakTFTkQEeGXDAV7acACAP/+uK0M6x5icSESk5lTsRKTR+/cPmTzz6S4AHrmuE7/vmWByIhGRi6NiJyKNWsqeXKa/ux2AO/q14Z4BulWYiDRcKnYi0mj9kH6ce5duxe40GN69BY8N7YyXl+4qISINl4qdiDRK+3OLmbh4M6WVDq7q0JS/6P6vIuIBVOxEpNE5ai1l/GubOF5SSbd4C/8cfRn+vno7FJGGT+9kItKoWEsqGf/aJrIKS2kbHcxrt/ciOEC3ChMRz6BiJyKNRmmFgzuWbGZvTjExYQG8cUdvokICzI4lIlJrVOxEpFGwO5xMeXsrWw4fJ7SJL0sm9iY+IsjsWCIitUrFTkQ8nmEY/L9/7+DzXbkE+HqzaHwvOjUPMzuWiEitU7ETEY/3lzV7WLElE28v+Putl9K7jW4VJiKeScVORDzaa18d5MX1aQA8O6Irv+nS3OREIiJ1R8VORDzWR9uO8NSqnQD83286cEvvliYnEhGpWyp2IuKR/rsvj4dW/AjA7Ve05r5BieYGEhGpByp2IuIWHE6DCruzVl5rW0Yhd7/5PZUOgxsviWXWjUm6VZiINApalVNE6o2trJL0ghIyCkpIdz1KySwoIfN4KQ7DoF3TYLq0sNClRRhdWlhIahGGJdCv2t/jQF4xExZvpqTCQb/EaP76B90qTEQaDxU7Eak1doeTo9ayM0rbyUfmqV+Pl1T+4mvszSlmb04x//4hy7UtITKQLrGnyl7cycLXLDTgrKNwOUVljF20iYITFXSNs/CvsT0I8PWp9XmKiLgrFTsRqRXzP9vLP1L2Y3caF9wvMtifhMggWkYG0TIykJaRQSREBpEQEYSvjxc7jxSReqSI1CNWfsoqIquwlIyCk4//pGa7Xic6xJ8k15G9MNo1DWHa8h/JKiyldVQQr0/oRYhuFSYijYyXYRgXfhcWl6KiIiwWC1arlbAwLW4qctr3hwu4+Z8bAfD39SYhIvCM8hbk+n1CZFCNy1ZhSUWVspd6pIi0vGLO1x+bhgbw/uQrSIjUXSVExDPUpH/on7Mi8qs4nAaPf5QKwO97xDP35ktq9TNt4UH+XJEYzRWJ0a5tpRUOdmefLntF7DxiZVe2jWB/HxZP6KVSJyKNloqdiPwqyzdn8FNWEaFNfHnk+k71cqFCoL8Pl7aM4NKWEa5tdocTp3HyiKGISGOlYiciF81aUslf1uwGYNrVHYgOCTAti6+PCp2IiN4JReSizf98L8dLKmnfLISxfVuZHUdEpNFTsRORi7I7u4g3vz0MwBPDuuCnI2YiIqbTO7GI1JhhGDzxUSoOp8H1yc258owLG0RExDwqdiJSY5/sOMq3BwoI8PXm/w3tbHYcERE5RcVORGqkpMLOs5/sAmDywHZaWkRExI2o2IlIjfxrfRpHrGXEhQdyz4B2ZscREZEzqNiJSLWlHyvhXxsOADDzxs408dN9WEVE3ImKnYhU2+xPdlJhd3JlYhTXdmludhwREfkfKnYiUi0b9uaxdmcOPt5ePP7bLnh51f0dJkREpGZU7ETkF1XYnTzx8cn7wY7v25oOMaEmJxIRkXNRsRORX/TGxkMcyDtBVLA/D1zd3uw4IiJyHip2InJBubYyFny+D4BHruuEJdDP5EQiInI+pha7vLw8EhMTWb9+vWvb5MmTCQgIICQkxPV4+eWXXeNLliwhMTGR4OBgevbsycaNG11jDoeD6dOnExMTQ2hoKMOHD+fo0aOu8dzcXG666SbCw8OJjo5m6tSp2O32epmrSEM17z97KC63c0m8hZE94s2OIyIiF2Basfv666/p27cvaWlpVbZv3ryZl19+meLiYtfjrrvuAmD9+vVMmTKFJUuWUFhYyOjRoxk2bBglJSUAzJ49m7Vr17JlyxaysrIIDAxk0qRJrtceNWoUISEhHDlyhE2bNvH5558zf/78+pu0SAOzNf04K7/PBODJYV3w9tYFEyIi7syUYrdkyRJuu+02nnnmmSrby8vL2bFjBz179jzn81599VVuueUWrrzySvz8/Jg2bRrR0dEsX77cNf7II4+QkJBAWFgYCxcuZPXq1Rw4cID9+/ezfv165s2bR1BQEG3btmXmzJm88MILdT5fkYbI6Tx5P1iAkT3iubRlhMmJRETkl5hS7K699lrS0tIYNWpUle3btm2jsrKSWbNmERMTQ4cOHZg7dy5OpxOA1NRUunbtWuU5SUlJbNu2DavVSmZmZpXxmJgYIiIi2L59O6mpqURGRtKiRYsqz01PT6ewsLDuJivSQK38PpPtmVZCAnx5+LqOZscREZFq8DXjmzZvfu6FTa1WKwMHDuT+++/nnXfe4YcffmDEiBF4e3szffp0bDYbwcHBVZ4TFBREcXExNpsN4Lzj5xsDKC4uJjw8/Kw85eXllJeXu74uKiqq2URFGihraSVz/7MbgKlXt6dZaBOTE4mISHW41VWx11xzDV988QUDBgzAz8+P3r17M3XqVNep1uDgYNfn6U4rKSkhNDTUVdouNH6uMYDQ0HOvyTVnzhwsFovrkZCQUCvzFHF3Cz/fx7ETFbRrGsy4vq3NjiMiItXkVsXugw8+4KWXXqqyrby8nMDAQACSk5NJTU2tMr5z506Sk5OJiIggLi6uynh2djYFBQUkJyeTnJzMsWPHyMnJqfLc+Ph4LBbLOfPMmDEDq9XqemRkZNTWVEXc1t4cG0s2HgLgiWFd8Pd1q7cJERG5ALd6xzYMg2nTprFu3ToMw2Djxo0sXLiQu+++G4CJEyeybNkyUlJSqKysZMGCBeTk5DBixAgAJkyYwOzZszl48CA2m42pU6cyYMAA2rVrR/v27enXrx9Tp07FZrNx8OBBnn76ae64447z5gkICCAsLKzKQ8STGYbBkx+n4nAa/CYphv7tm5odSUREasCUz9idz4gRI5g/fz733nsvmZmZNG/enCeffJIxY8YAMGTIEF588UUmT55MZmYmXbp0YfXq1URGRgIwa9YsKisr6d+/PzabjUGDBrFixQrX669cuZI//vGPtGnTBm9vb8aNG8fMmTNNmauIO1qTms3X+4/h7+vNn25IMjuOiIjUkJdhGIbZIRqKoqIiLBYLVqtVR+/E45RWOLj6b1+SVVjK/YMTefA3uhJWRMQd1KR/uNWpWBExzz/X7yersJQWliZMHphodhwREbkIKnYiwtf783khZT8Aj92QRKC/j8mJRETkYqjYiTRyRwpLmfL2DzgN+EPPeIZ2Pfc6kyIi4v5U7EQasXK7g8nLtlJwooLkuDCeGp6Ml5fuBysi0lCp2Ik0Yk99vJNtGYWEB/nxz9E9aOKnU7AiIg2Zip1II/XulgyWfZeOlxcsGNWdhMggsyOJiMivpGIn0gj9lGXlsQ9+AmDa1R0Y2LGZyYlERKQ2qNiJNDKFJRXcs/R7KuxOBndqxh8HaWkTERFPoWIn0og4nQYPvPMjmcdLaRkZxPw/dMfbWxdLiIh4ChU7kUZk4bp9fLk3jwBfb/41pgeWID+zI4mISC1SsRNpJL7YncPCdfsAeHZEV5Ja6LZ4IiKeRsVOpBFIP1bC1Hd+BGDs5a24uUe8uYFERKROqNiJuAmH0+BIYSmGYdTq65ZWOLh76fcUldm5tGU4M29MqtXXFxER96FiJ+ImZn+ykyv+/AU3//MbUvbk1krBMwyDxz7Ywa6jRUQF+/Pi6Mvw99X/9iIinkrv8CJu4PiJCt76Lh2AremFTHh9M8P/8TWf7cz5VQVv2XfpvL81C28v+PttlxJrCaytyCIi4oZU7ETcwIotGZTbnXRqHsqd/dsQ6OfD9kwrd76xhRue/4rVO47idNas4P2QfpwnP04F4JHrOnFFu+i6iC4iIm5ExU7EZA6nwdLvDgMw4crWPHZDEv99ZBD3DGhHsL8PO48WMXnZVq5buIGPth3BUY2Cl19czr3LtlLpMLiuS3PuuqptXU9DRETcgIqdiMk27M0jo6AUS6Afw7rFARAdEsCj13fiq0cGM2VwIqEBvuzNKeb+t3/gmvlf8u8fMrE7nOd8PbvDyZS3fuCotYy2TYP5y+8vwctLixCLiDQGKnYiJntj4yEAft8jnkB/nypjEcH+PPSbjnz16GCmXd2BsCa+HMg7wbTl27j6b1+yYksGlf9T8J5bu5eNB44R5O/DS2N6ENpEixCLiDQWKnYiJko/VsL6vXkAjL681Xn3swT68cDV7fn60cFMv7YjEUF+HDpWwsMrtzPoufW89V06FXYn//npKP/6Mg2AeSMvoX1MaL3MQ0RE3IOv2QFEGrOl3x3GMOCqDk1pEx38i/uHNvHjvkGJ3H5Fa5Z9d5iXNxwg83gp/+/fO3jhi30UldkBmNSvDTde0qKu44uIiJvRETsRk5RVOlixJQOAcRc4WncuwQG+3HVVO/778GBm3phEs9AAjljLKC6307tNJI9c36kuIouIiJvTETsRk3y07QiFJZXEhQcyqFOzi3qNQH8f7ujXhtF9WvLulgx2HrXx0G864Oejf7OJiDRGKnYiJjAMgzc3nlziZMzlrfDx/nVXrTbx82Fs39a1kExERBoy/bNexATbMq3syLLi7+vNqF4JZscREREPoWInYoLTS5zceEkskcH+5oYRERGPoWInUs8KTlSwavtRAMbp9KmIiNQiFTuRerZ8cwYVdidd4yx0i7eYHUdERDyIip1IPXI4DZZ+e/KiibF9W+lWXyIiUqtU7ETqUcruXLIKSwkP8mNYNy0gLCIitUvFTqQevXHqaN0feibQxM/nF/YWERGpGRU7kXpyKP8EG/bm4eUFY/rU7E4TIiIi1aFiJ1JPTn+2bmCHprSMCjI5jYiIeCIVO5F6UFpxxn1htcSJiIjUERU7kXrw0bYsisrsJEQGMqBDU7PjiIiIh1KxE6ljhmHwxun7wvZphfevvC+siIjI+ajYidSxremFpB4pIsDXmz/01H1hRUSk7qjYidSxN0/dF/a33VoQofvCiohIHVKxE6lD+cXlfLojG4BxfbXEiYiI1C0VO5E6tHxzBhUOJ90SwrkkPtzsOCIi4uFU7ETqiMNp8NZ36QCMu1xH60REpO6ZWuzy8vJITExk/fr1rm3vvfce3bt3JywsjNatW/Pkk0/idDpd4507dyYoKIiQkBDXY9euXQA4HA6mT59OTEwMoaGhDB8+nKNHj7qem5uby0033UR4eDjR0dFMnToVu91eb/OVxmXdrhyyCkuJDPbnhktizY4jIiKNgGnF7uuvv6Zv376kpaW5tn3//feMHTuW2bNnU1hYyOrVq1m8eDHz588HoKioiD179rBr1y6Ki4tdj86dOwMwe/Zs1q5dy5YtW8jKyiIwMJBJkya5Xn/UqFGEhIRw5MgRNm3axOeff+56bZHa9qbuCysiIvXMlGK3ZMkSbrvtNp555pkq2w8dOsQ999zDjTfeiLe3N507d2bEiBFs2LABOFn8oqKiaNXq3Ke1Xn31VR555BESEhIICwtj4cKFrF69mgMHDrB//37Wr1/PvHnzCAoKom3btsycOZMXXnihzucrjc+BvGL+uy8fLy8Y3ael2XFERKSRMKXYXXvttaSlpTFq1Kgq22+++Wb+9re/ub4uLS3lk08+oUePHgBs3ryZoKAgBgwYQHR0ND179mTVqlUAWK1WMjMz6dq1q+v5MTExREREsH37dlJTU4mMjKRFixau8aSkJNLT0yksLKzD2UpjdPpo3eCOzUiI1H1hRUSkfvia8U2bN2/+i/vYbDZGjhxJYGAg06ZNA8DLy4tevXoxZ84cWrVqxbvvvsvNN9/Ml19+SXx8PADBwcFVXicoKIji4uLzjgEUFxcTHh5+Voby8nLKy8tdXxcVFVV/ktJolVTYWfl9JgBjtcSJiIjUI7e8KnbPnj307dsXu91OSkoKoaGhAEyfPp2VK1fSvn17/P39GT16NFdffTUrV650lbaSkpIqr1VSUkJoaCjBwcHnHANcr/+/5syZg8VicT0SEnTXAPllH/54BFuZndZRQVzVXveFFRGR+uN2xe7TTz+ld+/eXHfddaxZs4aIiAjX2HPPPce6deuq7F9eXk5gYCARERHExcWRmprqGsvOzqagoIDk5GSSk5M5duwYOTk5rvGdO3cSHx+PxWI5Z5YZM2ZgtVpdj4yMjFqerXiaKveFvVz3hRURkfrlVsXu22+/ZcSIEcyfP5/nnnsOX9+qZ4ozMjK47777OHDgAHa7nddee41vvvmG8ePHAzBhwgRmz57NwYMHsdlsTJ06lQEDBtCuXTvat29Pv379mDp1KjabjYMHD/L0009zxx13nDdPQEAAYWFhVR4iF/L94ePsOlpEEz9vft9DR3hFRKR+uVWxe/bZZ6msrOT++++vsk7d9ddfD8C8efO4/vrr6d+/PxaLhX/96198+umnJCYmAjBr1ixuuOEG+vfvT3x8PGVlZaxYscL1+itXrsRut9OmTRv69OnDddddx8yZM02Zq3im00frhneLwxLkZ3IaERFpbLwMwzDMDtFQFBUVYbFYsFqtOnonZ8mzlXPFn9dR6TBYNaUfyXHnPsUvIiJSEzXpH251xE6kIVu+OZ1Kh8GlLcNV6kRExBQqdiK1wOE0eHvTyYtrxuq+sCIiYhIVO5Fa8OXeXLIKSwkP8mNoV90XVkREzKFiJ1IL3vouHYCRl8XrvrAiImIaFTuRX+lIYSlf7M4F4FbdF1ZEREykYifyK72zOQOnAX3bRtGuaYjZcUREpBFTsRP5FewOJ8s3nzwNe5uO1omIiMlU7ER+hXW7c8kpKicq2J9ruzQ3O46IiDRyKnYiv8KyUxdN/L5nAv6++t9JRETMpZ9EIhcpo6CE/+7LA+C23joNKyIi5lOxE7lIb29KxzCgf/toWkYFmR1HRERExU7kYlTYnazYcvJOE6P76E4TIiLiHlTsRC7CZztzyC+uoFloAEM6NzM7joiICKBiJ3JRln13GIBRvRLw89H/RiIi4h70E0mkhg7kFfNN2jG8veAWXTQhIiJuRMVOpIbe3nRyiZOBHZsRFx5ochoREZGfqdiJ1EBZpYOV32cCMFp3mhARETejYidSA2tSszleUkkLSxMGdtRFEyIi4l4uqtiVlZVx9OhRysvLazuPiFtb9u3J07C39G6Jj7eXyWlERESqqlGx+/rrr+nXrx8hISHEx8cTGhrKoEGD2Lx5c13lE3Eb+3JsbDpUgI+3F6N6JZgdR0RE5CzVLnZff/01V199Na1bt2bp0qWsWbOGxYsXExMTw+DBg/nxxx/rMKaI+U7fF3ZIp2bEhDUxOY2IiMjZvAzDMKqz49VXX82gQYN47LHHzhp78skn2bFjBytXrqz1gO6kqKgIi8WC1WolLCzM7DhSj0orHPR59nOKyuwsmdibAR2amh1JREQaiZr0D9/qvujWrVv597//fc6xBx54gOTk5JqlFGlAVm0/QlGZnYTIQPonRpsdR0RE5JyqfSq2srKS0NDQc46Fh4djs9lqLZSIu3nr1Np1t/ZuibcumhARETdV7WLn5XXhH2bVPKMr0uDsPFLED+mF+Hp78fseumhCRETcV7VPxRqGQUZGxnkLnIqdeKq3Np28L+y1yc1pGhpgchoREZHzq3axO3HiBK1btz5vgfulI3oiDdGJcjsf/HAEgNG6L6yIiLi5ahe7gwcPun5vt9vJz88nOjoaX99qv4RIg/PRtiMUl9tpEx1M33ZRZscRERG5oGp/xq5Vq1YEBATw6KOP0qVLF6644gq6dOnCww8/jJ+fH61atarLnCKmeOvU2nW39W6po9IiIuL2qn247fjx4/Tp04eEhAT++c9/0qJFCw4cOMDixYvp3bs327dvJzIysi6zitSr7ZmF7Miy4u/jzc094s2OIyIi8ouqXeyeffZZevbsycqVK6scubj77rv53e9+x7PPPstzzz1XJyFFzHD6aN3Qrs2JDPY3OY2IiMgvq/ap2A8//JA5c+acdTrK29ubZ599lg8//LDWw4mYpaiskg9/PHnRxG199DEDERFpGKpd7LKzs+nQocM5xzp37kx2dnathRIx24c/ZFFa6aB9sxB6tY4wO46IiEi1VLvYNWnS5LzlLTs7+7x3pRBpaAzDYNnpiyb66KIJERFpOKpd7AYMGMCLL754zrF//vOfDBgwoNZCiZhpa3ohu7NtBPh687tLddGEiIg0HNW+eGLGjBn079+fwMBAxo4dS/PmzTl8+DCLFi3i73//O998801d5hSpN6cvmvhttxZYgvxMTiMiIlJ91S52l112GcuXL+fOO+/kT3/6k2t78+bNee+99+jatWudBBSpT9aSSlZtP33RhO40ISIiDUuNbhtx4403cvjwYTZu3MiRI0eIjY2lX79+uvuEeIz3tmZSbnfSOTaMSxPCzY4jIiJSIzVuZP7+/vo8nXikkxdNHAZ00YSIiDRM1b54QsTTfXuggLS8EwT5+3BT9xZmxxEREakxFTsRIGVPLpOXfQ/A8O4tCG2iiyZERKThMbXY5eXlkZiYyPr1613bvvvuO/r06UNISAht2rRh0aJFVZ6zZMkSEhMTCQ4OpmfPnmzcuNE15nA4mD59OjExMYSGhjJ8+HCOHj3qGs/NzeWmm24iPDyc6Ohopk6dit1ur/N5ivtyOA2eW7OHCa9vprCkkm7xFh68pqPZsURERC6KacXu66+/pm/fvqSlpbm2HT9+nKFDhzJu3DgKCwtZtGgR06ZNY9OmTQCsX7+eKVOmsGTJEgoLCxk9ejTDhg2jpKQEgNmzZ7N27Vq2bNlCVlYWgYGBTJo0yfX6o0aNIiQkhCNHjrBp0yY+//xz5s+fX78TF7eRZytn7KLveCFlPwDj+rZixT19aRoaYHIyERGRi2SYYPHixUbLli2Nd955xwCMlJQUwzAM45VXXjHat29fZd977rnHGDdunGEYhjF69GjjzjvvrDLeqVMn47XXXjMMwzDi4+ONZcuWucays7MNLy8vIy0tzdi3b58BGFlZWa7xd955x2jZsmW1c1utVgMwrFZrjeYr7ue7A8eMXrM/M1o9ssroPHO18cEPmWZHEhEROaea9A9Tjthde+21pKWlMWrUqCrbU1NTz1oPLykpiW3btv3iuNVqJTMzs8p4TEwMERERbN++ndTUVCIjI2nRokWV56anp1NYWHjOnOXl5RQVFVV5SMNmGAYvb0jj1le+JddWTvtmIXz0xysZ3j3O7GgiIiK/minFrnnz5udc+85msxEcHFxlW1BQEMXFxb84brPZAC44fq4xwPX6/2vOnDlYLBbXIyEhoQazFHdjLa3k7je/59lPd+NwGtzUvQUf/vFKEpvpPsciIuIZ3Oqq2ODgYNfn5U4rKSkhNDT0F8dPl7YLjZ9rDHC9/v+aMWMGVqvV9cjIyLj4yYmpfsqy8tu/f8XanTn4+3jzzIhk5o/qTpC/FtcWERHP4VY/1ZKTk1m7dm2VbTt37iQ5Odk1npqaetb40KFDiYiIIC4ujtTUVNf+2dnZFBQUkJycjNPp5NixY+Tk5BATE+N6bnx8PBaL5Zx5AgICCAjQB+kbMsMweGdzBo9/lEqF3Ul8RCD/HN2DrvHn/m8uIiLSkLnVEbvf/e53ZGdns2DBAiorK0lJSWHZsmVMnDgRgIkTJ7Js2TJSUlKorKxkwYIF5OTkMGLECAAmTJjA7NmzOXjwIDabjalTpzJgwADatWtH+/bt6devH1OnTsVms3Hw4EGefvpp7rjjDjOnLHWopMLOQ+9uY8b7O6iwO7m6czM+mdJfpU5ERDyWWxW7qKgoPvvsM959912ioqKYNGkSzz//PIMGDQJgyJAhvPjii0yePJmIiAjefvttVq9eTWRkJACzZs3ihhtuoH///sTHx1NWVsaKFStcr79y5Ursdjtt2rShT58+XHfddcycOdOUuUrdSssr5qZ/fM37W7Pw9oJHr+/Ey2N7YgnSwsMiIuK5vAzDMMwO0VAUFRVhsViwWq2EhYWZHUfOY9X2IzyycjsnKhw0DQ3g77deyuVto8yOJSIiclFq0j/c6jN2Ir9Ghd3Js5/uYvE3hwC4vG0kz996Kc1Cm5gbTEREpJ6o2InH+OvaPa5Sd+/Adjx4TQd8fdzq0wYiIiJ1SsVOPELm8RJe//oQAAtGdeemS7XgsIiIND46nCEeYf5n+6hwOOnbNorh3Vv88hNEREQ8kIqdNHi7s4t4/4dM4OTVr15eXiYnEhERMYeKnTR4c1fvxjDghq6xdEsINzuOiIiIaVTspEHbmHaMlD15+Hp78X/XdjQ7joiIiKlU7KTBMgyDP/9nNwC39m5Jm+hgkxOJiIiYS8VOGqz//JTNtoxCgvx9mDIk0ew4IiIiplOxkwap0uHkL2v2ADCpf1stQiwiIoKKnTRQyzdncCD/BFHB/tx1VVuz44iIiLgFFTtpcE6U21nw+T4A7h/SnpAArbMtIiICKnbSAL321UHyi8tpGRnErb1bmh1HRETEbajYSYNyrLiclzYcAOD/ru2Iv6/+CouIiJymn4rSoLyQsp/icjvJcWHc2DXW7DgiIiJuRcVOGoz0YyUs/fYwAI9e1xlvb906TERE5EwqdtJg/PWzPVQ6DPq3j6Zf+2iz44iIiLgdFTtpEH7KsvLhj0cAeOS6TianERERcU8qdtIgzD1167Dh3VuQHGcxOY2IiIh7UrETt/fVvnz+uy8fPx8vHrqmo9lxRERE3JaKnbg1p9Pgz//ZBcDoPq1oGRVkciIRERH3pWInbm3VjqP8lFVESIAvUwYnmh1HRETEranYiduqsDt5bs0eAO6+qi1RIQEmJxIREXFvKnbitt7elE56QQnRIQHc0b+N2XFERETcnoqduCVbWSXPr9sHwNSr2xPk72tyIhEREfenYidu6ZX/HuTYiQraRgczqleC2XFEREQaBBU7cTu5tjJe/e8BAKZf2xE/H/01FRERqQ79xBS38/d1+ympcNAtIZzrkpubHUdERKTBULETt3Iw/wRvb0oHYMb1nfDy8jI5kYiISMOhYidu5bk1e7A7DQZ1bMrlbaPMjiMiItKgqNiJ2/gh/Tif7DiKlxc8fF0ns+OIiIg0OCp24hZOlNt5aMU2AH53aTydY8NMTiQiItLwqNiJW5j1YSoH8k8Qa2nCn27obHYcERGRBknFTkz3wQ9ZvLc1E28vWHjLpUQE+5sdSUREpEFSsRNTHco/wWP/3gHA/UPa07tNpMmJREREGi4VOzFNhd3JlLd/4ESFgz5tIpkyuL3ZkURERBo0FTsxzbz/7GZHlpXwID8W3NIdH2+tWSciIvJrqNiJKVJ25/LqVwcB+MvIbsRaAk1OJCIi0vCp2Em9yykq46F3Ty5tcvsVrbkmKcbkRCIiIp5BxU7qlcNpMG35jxScqCApNowZQ7UQsYiISG1RsZN69c/1+/km7RhB/j78/bZLCfD1MTuSiIiIx3C7Yrds2TJCQkKqPPz9/QkICABg8uTJBAQEVBl/+eWXXc9fsmQJiYmJBAcH07NnTzZu3OgaczgcTJ8+nZiYGEJDQxk+fDhHjx6t9zk2Vt8fLmD+5/sAeGp4Mu2ahpicSERExLO4XbEbPXo0xcXFrseePXuIjo5m0aJFAGzevJmXX365yj533XUXAOvXr2fKlCksWbKEwsJCRo8ezbBhwygpKQFg9uzZrF27li1btpCVlUVgYCCTJk0yba6NibWkkvvf/hGH0+Cm7i24+bI4syOJiIh4HC/DMAyzQ5yPYRgMGTKEdu3a8corr1BeXk5YWBhbt26lS5cuZ+0/ZswYgoKCqhzB69y5Mw8//DATJkwgISGBuXPncttttwGQk5NDbGws+/fvp23btr+Yp6ioCIvFgtVqJSxM9zKtLsMwmLx0K/9JzaZVVBCf3N+fkABfs2OJiIg0CDXpH253xO5MS5cuJTU1lb/97W8AbNu2jcrKSmbNmkVMTAwdOnRg7ty5OJ1OAFJTU+natWuV10hKSmLbtm1YrVYyMzOrjMfExBAREcH27dvP+f3Ly8spKiqq8pCaW/ZdOv9JzcbPx4u/33qpSp2IiEgdcdti53Q6efrpp3nssccIDQ0FwGq1MnDgQO6//34yMzNZunQpzz//PH/9618BsNlsBAcHV3mdoKAgiouLsdlsAOcdP5c5c+ZgsVhcj4SEhNqepsfbnV3E06t2AvDIdZ24JD7c3EAiIiIezG2LXUpKCkePHuWOO+5wbbvmmmv44osvGDBgAH5+fvTu3ZupU6eyfPly4GRpO/15utNKSkoIDQ11FbrzjZ/LjBkzsFqtrkdGRkZtTtHjlVY4+ONbP1BudzKwY1MmXtnG7EgiIiIezW2L3XvvvceIESOqHGH74IMPeOmll6rsV15eTmDgybsWJCcnk5qaWmV8586dJCcnExERQVxcXJXx7OxsCgoKSE5OPmeGgIAAwsLCqjyk+p5alcr+3GKahQbw3O+74a1bhomIiNQpty12X331FVdddVWVbYZhMG3aNNatW4dhGGzcuJGFCxdy9913AzBx4kSWLVtGSkoKlZWVLFiwgJycHEaMGAHAhAkTmD17NgcPHsRmszF16lQGDBhAu3bt6n1+nm7V9iO8vSkDLy9YMKo70SEBZkcSERHxeG77KfYDBw4QF1d1SYwRI0Ywf/587r33XjIzM2nevDlPPvkkY8aMAWDIkCG8+OKLTJ48mczMTLp06cLq1auJjIwEYNasWVRWVtK/f39sNhuDBg1ixYoV9T43T5dRUMKM93YAcN/ARK5IjDY5kYiISOPg1suduBstd/LLKh1Ofv+vjfyYUUiPVhEsv+tyfH3c9sCwiIiI2/OY5U6k4fnbZ3v5MaOQsCa+LLylu0qdiIhIPdJPXak136Tl88/1aQDMvfkS4iOCTE4kIiLSuKjYSa0otzv4079/AuDW3i25vmusyYlEREQaHxU7qRUvf3mAA/knaBoawIyhncyOIyIi0iip2Mmvln6shBdS9gPwpxs6E9bEz+REIiIijZOKnfwqhmHw+Ec/UW53cmViFMO6tTA7koiISKOlYie/yprUHFL25OHv481Tw5Px8tLdJURERMyiYicX7US5nSc/PnmLtrsHtKVd0xCTE4mIiDRuKnZy0Rau28dRaxkJkYHcNyjR7DgiIiKNnoqdXJQ92TYWfXUQgKeGJdPEz8fkRCIiIqJiJzXmdBr86YMdOJwG13aJYVCnZmZHEhEREVTs5CK8tzWTzYeOE+Tvw+O/7WJ2HBERETlFxU5q5PiJCuas3g3AA0Pa0yI80OREIiIicpqKndTIvDW7KThRQYeYECb2a2N2HBERETmDip1U29b047y9KQOA2Td1xc9Hf31ERETciX4yS7XYHU4e+/dPAIzsEU/vNpEmJxIREZH/pWIn1fLGxsPsOlqEJdCPGdd3MjuOiIiInIOKnfyinKIy/vbZXgAeua4TUSEBJicSERGRc1Gxk1/01KqdFJfb6Z4Qzi29EsyOIyIiIuehYicXtGFvHp9sP4q3F8y+KRlvby+zI4mIiMh5qNjJeZVVOpj14ckLJsZf0ZrkOIvJiURERORCVOzkvF768gCHjpXQLDSAB6/pYHYcERER+QUqdnJOh/JP8I/1+wGYeWMSoU38TE4kIiIiv0TFTs5iGAazPkqlwu6kX2I0N14Sa3YkERERqQYVOznL6p+y2bA3D38fb54a3gUvL10wISIi0hCo2EkVxeV2nvp4JwD3DGhL26YhJicSERGR6lKxkyoWfLaX7KIyWkYGce+gRLPjiIiISA2o2InL3hwbr39zCIAnh3ehiZ+PuYFERESkRlTsxOWt79JxOA2u7hzDoI7NzI4jIiIiNaRiJwDYHU5WbT8CwOg+LU1OIyIiIhdDxU4A+CbtGPnFFUQE+dGvfbTZcUREROQiqNgJAB/+ePJo3Q2XxOLno78WIiIiDZF+ggtllQ7WpGYDMLx7nMlpRERE5GKp2Alf7M6luNxOXHggPVpGmB1HRERELpKKnfDBD1kADOveAm9v3WVCRESkoVKxa+SsJZWs35MHwPDuLUxOIyIiIr+Gil0j95/Uo1Q4nHSMCaVT8zCz44iIiMivoGLXyJ2+GnaYjtaJiIg0eCp2jVhOURkbDxwDYFg3FTsREZGGTsWuEft42xEMA3q2iiAhMsjsOCIiIvIruWWxW758Ob6+voSEhLgeY8eOBeC7776jT58+hISE0KZNGxYtWlTluUuWLCExMZHg4GB69uzJxo0bXWMOh4Pp06cTExNDaGgow4cP5+jRo/U6N3dy+jSsLpoQERHxDG5Z7DZv3szYsWMpLi52Pd58802OHz/O0KFDGTduHIWFhSxatIhp06axadMmANavX8+UKVNYsmQJhYWFjB49mmHDhlFSUgLA7NmzWbt2LVu2bCErK4vAwEAmTZpk5lRNk5ZXzI4sKz7eXgztGmt2HBEREakFblvsevbsedb29957j6ioKO677z58fX0ZPHgwo0eP5h//+AcAr776KrfccgtXXnklfn5+TJs2jejoaJYvX+4af+SRR0hISCAsLIyFCxeyevVqDhw4UK/zcwcfnTpa1799NFEhASanERERkdrgdsXO6XSydetWPvnkE1q1akV8fDx33XUXx48fJzU1la5du1bZPykpiW3btgFccNxqtZKZmVllPCYmhoiICLZv3173E3MjhmHw0baTxe4m3UJMRETEY7hdscvLy+PSSy9l5MiR7Nq1i2+++YZ9+/YxZswYbDYbwcHBVfYPCgqiuLgY4ILjNpsN4ILP/1/l5eUUFRVVeXiCHVlWDuafoImfN9ckxZgdR0RERGqJ2xW7mJgYNmzYwMSJEwkKCqJly5bMmzeP1atXYxiG6/Nyp5WUlBAaGgqcLG3nGz9d6C70/P81Z84cLBaL65GQkFBb0zTVBz+cPFp3TVJzggN8TU4jIiIitcXtit327dt59NFHMQzDta28vBxvb2969+5Nampqlf137txJcnIyAMnJyecdj4iIIC4ursp4dnY2BQUFruf/rxkzZmC1Wl2PjIyM2pqmaRxOg4+3n7oaVmvXiYiIeBS3K3aRkZG88MIL/OUvf8Fut5Oens706dO5/fbbGTlyJNnZ2SxYsIDKykpSUlJYtmwZEydOBGDixIksW7aMlJQUKisrWbBgATk5OYwYMQKACRMmMHv2bA4ePIjNZmPq1KkMGDCAdu3anTNLQEAAYWFhVR4N3bcHjpFnKyc8yI+rOjQ1O46IiIjUIrcrdvHx8XzyySd88MEHREZG0rNnT3r16sULL7xAVFQUn332Ge+++y5RUVFMmjSJ559/nkGDBgEwZMgQXnzxRSZPnkxERARvv/02q1evJjIyEoBZs2Zxww030L9/f+Lj4ykrK2PFihVmTrfeffhjFgBDu8bi7+t2//lFRETkV/AyzjznKRdUVFSExWLBarU2yKN3ZZUOej3zObYyO8vvupw+baPMjiQiIiK/oCb9Q4dsGpH1e3KxldmJtTShV+tIs+OIiIhILVOxa0RO30JsWLcWeHt7mZxGREREapuKXSNRVFbJut25AAzTvWFFREQ8kopdI7Hmp2wq7E7aNwshKbbhfT5QREREfpmKXSNx+hZiw7u3wMtLp2FFREQ8kYpdI5BrK+Pr/fkADOume8OKiIh4KhW7RmDVtqM4Dbi0ZTgto4LMjiMiIiJ1RMWuEfhwm24hJiIi0hio2Hm4Q/kn2JZRiI+3FzdcomInIiLiyVTsPNzpiyauTIymaWiAyWlERESkLqnYeTDDMPjg1L1hdRpWRETE86nYebDUI0UcyDtBgK83v+kSY3YcERERqWMqdh7sw1NH667uHENoEz+T04iIiEhdU7HzUA6nUWVRYhEREfF8KnYeatPBAnKKyglr4suAjk3NjiMiIiL1QMXOQ3207eRp2KFdYwnw9TE5jYiIiNQHFTsPVG538OmObACG6TSsiIhIo6Fi54G+3JOHtbSSmLAA+rSJMjuOiIiI1BMVOw90+hZiw7q1wMfby+Q0IiIiUl9U7DxMcbmdz3fmADC8e5zJaURERKQ+qdh5mLWp2ZTbnbRtGkyXFmFmxxEREZF6pGLnYT788dTadd3i8PLSaVgREZHGRMXOg+QXl/PV/nxAixKLiIg0Rip2HuT9rZk4nAbd4i20jg42O46IiIjUMxU7D+FwGryx8TAAo/u0MjmNiIiImEHFzkOs25VD5vFSIoL8tCixiIhII6Vi5yEWf3MIgFt6t6SJn24hJiIi0hip2HmAPdk2vkk7ho+3F2Mu12lYERGRxkrFzgMs2XgIgN8kxRAXHmhuGBERETGNil0DZy2p5P2tmQDcfkVrc8OIiIiIqVTsGrjlW9Ipq3TSOTaM3m0izY4jIiIiJlKxa8DOXOLk9ita6U4TIiIijZyKXQN2eomT8CA/hnePMzuOiIiImEzFrgE7fdHELb20xImIiIio2DVYe3NsfL3/GN5eMLavljgRERERFbsG6/SCxNd2aa4lTkRERARQsWuQrCWV/HtrFgDjtcSJiIiInKJi1wCt2JJBaaWDTs1D6aMlTkREROQUFbsGxuE0XBdN3H5Fay1xIiIiIi4qdg3MF7tztcSJiIiInJOKXQOz+JuDwMklTgL9tcSJiIiI/Mwti922bdu45ppriIyMpHnz5owbN478/HwAJk+eTEBAACEhIa7Hyy+/7HrukiVLSExMJDg4mJ49e7Jx40bXmMPhYPr06cTExBAaGsrw4cM5evRovc/vYu07Y4mTMZe3NDuOiIiIuBm3K3alpaVcf/31XHHFFWRnZ5OamsqxY8eYMGECAJs3b+bll1+muLjY9bjrrrsAWL9+PVOmTGHJkiUUFhYyevRohg0bRklJCQCzZ89m7dq1bNmyhaysLAIDA5k0aZJpc62p00uc/CapOfERQeaGEREREbfjdsUuPT2dbt26MWvWLPz9/YmKiuLuu+9mw4YNlJeXs2PHDnr27HnO57766qvccsstXHnllfj5+TFt2jSio6NZvny5a/yRRx4hISGBsLAwFi5cyOrVqzlw4EB9TvGiWEsqef/UEie3X9na3DAiIiLiltyu2HXs2JHVq1fj4/Pz58dWrlxJjx492LZtG5WVlcyaNYuYmBg6dOjA3LlzcTqdAKSmptK1a9cqr5eUlMS2bduwWq1kZmZWGY+JiSEiIoLt27fXz+R+hXe/1xInIiIicmG+Zge4EMMwmDlzJh9//DEbNmwgOzubgQMHcv/99/POO+/www8/MGLECLy9vZk+fTo2m43g4OAqrxEUFERxcTE2mw3gvOPnUl5eTnl5uevroqKiWp5h9WiJExEREakOtztid1pRUREjR45k6dKlbNiwga5du3LNNdfwxRdfMGDAAPz8/OjduzdTp051nWoNDg52fZ7utJKSEkJDQ12F7nzj5zJnzhwsFovrkZCQUAcz/WVf7M4lo6AUS6CWOBEREZHzc8til5aWRq9evSgqKmLLli2u06cffPABL730UpV9y8vLCQw8ea/U5ORkUlNTq4zv3LmT5ORkIiIiiIuLqzKenZ1NQUEBycnJ58wxY8YMrFar65GRkVGb06y2Jacumrild4KWOBEREZHzcrtid/z4cQYPHswVV1zBmjVriI6Odo0ZhsG0adNYt24dhmGwceNGFi5cyN133w3AxIkTWbZsGSkpKVRWVrJgwQJycnIYMWIEABMmTGD27NkcPHgQm83G1KlTGTBgAO3atTtnloCAAMLCwqo86tu+HBtf7c/H2wvGXt6q3r+/iIiINBxu9xm7119/nfT0dFasWMG7775bZay4uJj58+dz7733kpmZSfPmzXnyyScZM2YMAEOGDOHFF19k8uTJZGZm0qVLF1avXk1k5MmLDWbNmkVlZSX9+/fHZrMxaNAgVqxYUe9zrInTn627JilGS5yIiIjIBXkZhmGYHaKhKCoqwmKxYLVa6+XonbW0ksufXUdppYO377ycvu2i6vx7ioiIiHupSf9wu1Ox8rN3t5xc4qRjTCiXt9USJyIiInJhKnZuyuE0eGPjYeDkgsRa4kRERER+iYqdm0rZnUt6QQmWQD9u0hInIiIiUg0qdm7q9H1hb+mlJU5ERESkelTs3NCZS5yM0RInIiIiUk0qdm7ozCVOEiK1xImIiIhUj4qdm7GWVvL+1iwAxl/R2twwIiIi0qCo2LmZd7dkUFJxcomTvm21bp2IiIhUn4qdGzlziZPxV2iJExEREakZFTs3sn7PGUucXNrC7DgiIiLSwLjdvWIbs4hgf67q0JTOsaEE+es/jYiIiNSM2oMbuaxlBG9M7I3Tqdv3ioiISM3pVKwb8vbWZ+tERESk5lTsRERERDyEip2IiIiIh1CxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiIiIeAgVOxEREREPoWInIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ6jYiYiIiHgIX7MDNCSGYQBQVFRkchIRERFpLE73jtM95EJU7GrAZrMBkJCQYHISERERaWxsNhsWi+WC+3gZ1al/AoDT6eTIkSOEhobi5eV1zn2KiopISEggIyODsLCwek5ovsY8/8Y8d9D8NX/Nv7HOvzHPHepn/oZhYLPZaNGiBd7eF/4UnY7Y1YC3tzfx8fHV2jcsLKxR/gU/rTHPvzHPHTR/zV/zb6zzb8xzh7qf/y8dqTtNF0+IiIiIeAgVOxEREREPoWJXywICAnj88ccJCAgwO4opGvP8G/PcQfPX/DX/xjr/xjx3cL/56+IJEREREQ+hI3YiIiIiHkLFTkRERMRDqNiJiIiIeAgVu1qUm5vLTTfdRHh4ONHR0UydOhW73W52rHqxbds2rrnmGiIjI2nevDnjxo0jPz/f7Fj1zuFwMHDgQG6//Xazo9SrgoICxo0bR1RUFBEREdx0000cPXrU7Fj1ZuvWrVx11VWEh4cTGxvLAw88QHl5udmx6lxeXh6JiYmsX7/ete27776jT58+hISE0KZNGxYtWmRewDp0rrm/9957dO/enbCwMFq3bs2TTz6J0+k0L2QdOtf8Tzt69CgxMTEsXry43nPVl3PNf/v27QwZMoTQ0FBiYmJ48MEHTekAKna1aNSoUYSEhHDkyBE2bdrE559/zvz5882OVedKS0u5/vrrueKKK8jOziY1NZVjx44xYcIEs6PVuyeffJL//ve/ZseodzfffDPFxcWkpaWRnp6Oj48Pd955p9mx6oXT6eTGG29k5MiRFBQUsHnzZtasWcO8efPMjlanvv76a/r27UtaWppr2/Hjxxk6dCjjxo2jsLCQRYsWMW3aNDZt2mRi0tp3rrl///33jB07ltmzZ1NYWMjq1atZvHixR/4MONf8T3M6nYwePdqj/2F/rvnn5+czZMgQrr76agoKCvjuu+9YtWoVCxYsqP+AhtSKffv2GYCRlZXl2vbOO+8YLVu2NDFV/di9e7dx3XXXGXa73bXtww8/NMLCwkxMVf/WrVtnJCUlGb///e+N8ePHmx2n3mzZssVo0qSJYbVaXduOHTtm/PTTTyamqj/5+fkGYMyfP9+w2+1GRkaG0blzZ+O5554zO1qdWbx4sdGyZUvjnXfeMQAjJSXFMAzDeOWVV4z27dtX2feee+4xxo0bZ0LKunG+ua9cudKYNm1alX2nTZtmDBs2zISUded88z/t8ccfN8aOHWu0atXKeP31103JWJfON//nnnvOuOKKK6rse+jQIePw4cP1nlFH7GpJamoqkZGRtGjRwrUtKSmJ9PR0CgsLzQtWDzp27Mjq1avx8fFxbVu5ciU9evQwMVX9ys3N5Y477uCtt94iKCjI7Dj1atOmTSQlJfHKK6+QmJhIbGwsDz30ELGxsWZHqxdRUVFMmzaNhx56iICAABISEujQoQPTpk0zO1qdufbaa0lLS2PUqFFVtqemptK1a9cq25KSkti2bVt9xqtT55v7zTffzN/+9jfX16WlpXzyySce9z54vvkDpKSk8M477/Diiy+akKx+nG/+mzZtIjk5mXvuuYfmzZvTrl07li5dWu3bkNYmFbtaYrPZCA4OrrLt9A/44uJiMyKZwjAM/vSnP/Hxxx+zcOFCs+PUC6fTyZgxY3jwwQfp1q2b2XHqXUFBAdu3b2ffvn388MMP/Pjjj2RlZTFu3Dizo9ULp9NJYGAgL7zwAidOnOCnn35i586dPP7442ZHqzPNmzfH1/fsW42f733Qk94Dzzf3M9lsNm666SYCAwM9ruCfb/65ublMmDCBZcuWERISYkKy+nG++RcUFPD666/Tu3dvMjIyeP/993nppZeqlP36omJXS4KDgykpKamy7fTXoaGhZkSqd0VFRYwcOZKlS5eyYcOGs/7l7qnmzJlDkyZNmDJlitlRTHF6tfUFCxa4PjT8zDPP8Omnn3rUD/Tz+fe//817773H5MmTCQgIoEuXLjz++OMefdTifM73PthY3gMB9uzZQ9++fbHb7aSkpDSKuRuGwdixY7n//vs97ghldQUEBNC7d28mTpyIn58f3bp1Y8qUKaxYsaLes6jY1ZLk5GSOHTtGTk6Oa9vOnTuJj4/HYrGYmKx+pKWl0atXL4qKitiyZUujKXUAb775JuvXryc8PJzw8HDeeust3nrrLcLDw82OVi+SkpJwOp1UVFS4tjkcDuDkG76nS09PP+sKWD8/P/z9/U1KZJ7k5GRSU1OrbNu5cyfJyckmJapfn376Kb179+a6665jzZo1REREmB2pXmRkZPDll1/y1FNPud4H09PTuffee7nxxhvNjlcvkpKSznofcDgc5rwH1vun+jxYv379jFtuucUoKioyDhw4YHTp0sV4/PHHzY5V5woKCoyWLVsat99+u+FwOMyOY7rx48c3qosnKioqjMTEROPmm282bDabkZubawwePNgYMWKE2dHqRWpqqhEQEGA888wzht1uN9LS0oyuXbsa//d//2d2tHrBGR8gz8/PN8LDw4358+cbFRUVxhdffGGEhoYaX3zxhbkh68iZc9+4caPh7+9vLFq0yNxQ9YhzXDxxmqdePHGmM+e/a9cuIyAgwJg7d65ht9uN7du3G3FxccbChQvrPZeO2NWilStXYrfbadOmDX369OG6665j5syZZseqc6+//jrp6emsWLGCsLAwQkJCXA/xfH5+fnz55Zf4+vrSvn17OnToQHx8PK+99prZ0epFUlISq1at4qOPPiIqKopBgwbx29/+lmeeecbsaPUuKiqKzz77jHfffZeoqCgmTZrE888/z6BBg8yOVueeffZZKisruf/++6u8B15//fVmR5N60KlTJ7788ktWrVpFdHQ01113Hffcc48pH9HxOtU6RURERKSB0xE7EREREQ+hYiciIiLiIVTsRERERDyEip2IiIiIh1CxExEREfEQKnYiIiIiHkLFTkRERMRDqNiJiEfav3+/2RHcntVqJS8vz+wYIlKLVOxExONMnz6d2bNnV2vf9evX4+XlVWdZvLy8WL9+/UU994knnmDgwIG1mudMiYmJrnu7Llu2jC5dutTZ9xKR+qFiJyIeR0ehqic/P9/1+9GjR7tKnog0XCp2IuIWDh06hJeXF2+88QatWrUiODiYCRMm8NVXX9GtWzdCQkIYMmQI+fn5OJ1O/vznP9OuXTssFgu9e/dmzZo1ADz99NMsW7aMZcuW0a1btxrn2LFjB0OHDiUyMpL4+HjuvfderFYrAIZhMHfuXLp27Up4eDgRERGMHj2a0tJSACorK3nwwQeJjo6madOm/OUvf6nR9/7mm2/o1asXwcHBXHnllRw8eNA1tnjxYlq3bl1l/4EDB/LEE08AcPvtt/P73/+ezp0707RpU9LS0vjmm28YPHgwLVq0oEmTJvTs2ZNvv/0WgI4dOwJw/fXXM2/evLNe/7///S9XXXUV4eHhtGnThpkzZ1JeXg6cPJI4cuRIxowZQ3h4OPHx8cyYMaNGcxWROmKIiLiBgwcPGoAxatQo48SJE8aOHTsMHx8fo1u3bkZmZqaRl5dnJCYmGk8++aTx+OOPG/Hx8cb3339vVFZWGsuXLzcCAgKMTZs2GYZhGOPHjzfGjx9fre+bkpJinH4rzM/PNyIjI42HHnrIKCkpMY4ePWoMHjzYGDZsmGEYhrF8+XKjefPmxt69ew3DMIxdu3YZkZGRxquvvmoYhmHMnDnTaN++vZGWlmYUFxcbY8eONQAjJSXlF3Pk5+cb4eHhxp///GejoqLC+Oqrr4ywsDBjwIABhmEYxuuvv260atWqynMGDBhgPP744645h4SEGDt27DCOHz9ulJSUGJGRkcYLL7xgOBwOo7i42PjDH/5g9OvXz/X8M7Od+fq7d+82AgICjAULFhjl5eXGvn37jEsuucS4//77DcMwjMcff9zw8vIylixZYtjtduOTTz4xvLy8jI0bN1brz1xE6o6O2ImIW/m///s/goKCSE5OJjY2lvHjxxMXF0d0dDR9+/bl0KFDvPbaa8yYMYPLLrsMX19f/vCHPzBs2DAWLVr0q773hx9+iL+/P3PnziUwMJDmzZvz97//nY8++ojs7Gyuv/56Nm/eTPv27cnLyyM/P5/o6GiysrIAePPNN5k+fTpt27YlODiY559/vtqf31u1ahXBwcE8/PDD+Pn5ceWVVzJx4sQa5b/88stJTk4mPDwcf39/vv32W+69917Ky8s5dOgQUVFRrqwXsmzZMi655BIeeOAB/P39SUxMZM6cObzyyis4nU4AOnTowLhx4/Dx8WHo0KHExsayd+/eGuUVkdrna3YAEZEzRUVFuX7v4+NDRESE62tvb2+cTic5OTm0bdu2yvPatGnDtm3bftX3zsnJoVWrVvj4+FR5XTh5qrhz58489thjfPzxxzRr1ozu3btTXl7uKjtZWVm0bNnS9dzw8HAiIyOr9b2zsrJISEioUgTbtWvHDz/8UO38LVq0cP3ex8eHlJQUrr/+eoqLi+nSpQt+fn6urBdyvj/f0tJScnNzAWjevHmV8eq+tojULRU7EXEr1TnC1bp1a9LS0qpsS0tLIzY29ld979atW3P48GEcDoer3J3+PrGxsTz66KOkp6dz6NAhwsLCAOjatavr+QkJCRw4cMD19YkTJygsLKzW905ISODw4cM4nU68vU+eTMnMzHSN+/j4UFFRUeU5Z178AFX/7L777jumTJnCN998Q48ePQD461//yu7du38xS+vWrXn//ferbEtLSyMgIKDaRVVEzKFTsSLS4EyaNIk///nPbN26FYfDwbvvvstHH33E7bffDkCTJk1cFzzUxNChQ/Hy8uKRRx6htLSU7OxsHnjgAQYPHkyrVq2wWq00adIEX19fysrK+Otf/8pPP/3kKlyTJk1i3rx57Nq1i7KyMh566CEcDke1vvdvf/tbnE4nTzzxBBUVFXz//fe88sorrvHOnTuTnZ1NSkoKhmGwdOlSdu3add7Xs1qteHt7ExgYCMC3337LwoULq5TDgICAc/453XrrrezcudO1f1paGv/v//0/Ro8ejb+/f7XmIyLmULETkQbnwQcf5L777mPUqFFYLBaeffZZ3nnnHQYMGADAqFGj+Prrr6ucFq0Oi8XCZ599xk8//UR8fDzJycm0bt2ad999F4DZs2dTUlJCs2bNaN26Nd9++y1jx45lx44dADzyyCOMGTOGAQMGEBsbi8ViqXJq+ULCw8NZs2YN69atIyIigjvuuIORI0e6xnv27Mmf/vQnxo8fT2RkJOvWrasy/r+uueYa7r33Xq666ioiIiK49957uf/++8nNzSUnJweAu+++m1tvvZXHHnusynNbt27NmjVrWLlyJc2aNaNfv35cc801vPDCCzX68xSR+udlGIZhdggRERER+fV0xE5ERETEQ+jiCRHxWLm5uWdd3fm/iouL6yVLdHQ0ZWVl5x3fuXNnjU8di4j8L52KFREREfEQOhUrIiIi4iFU7EREREQ8hIqdiIiIiIdQsRMRERHxECp2IiIiIh5CxU5ERETEQ6jYiYiIiHgIFTsRERERD6FiJyIiIuIh/j9FBTOXhjHtYAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data = Ncount_mean\n",
"data_std = Ncount_std\n",
"fig = plt.figure()\n",
"# ax = fig.gca()\n",
"data.plot.errorbar()\n",
"# plt.xlabel('MOT AOM Frequency (MHz)')\n",
"# plt.ylabel('MOT Gradient Coil Current (A)')\n",
"plt.tight_layout()\n",
"# plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"data = data * factor_from_Ncounts_to_Natom()\n",
"data_std = data_std * factor_from_Ncounts_to_Natom()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZC0lEQVR4nO3deVxU9f7H8dewiLKJiikIbrkkri1mlrjlvmVoWlpqeb1p3RKt7s26XjVbbt5SKTOtm9Y1zRLRW6alpahZZpvlkjc1FcQVFdkUh+H8/pgfkwgoKDMHZt7Px4MHzHe+c87nAwbvvmfOORbDMAxEREREpMLzMrsAERERESkbCnYiIiIibkLBTkRERMRNKNiJiIiIuAkFOxERERE3oWAnIiIi4iYU7ERERETchIKdiIiIiJtQsBMRERFxEx4X7E6ePEmjRo1ITEws0fy8vDyeffZZIiIiqFq1KrfddhsbN250bpEiIiIiV8Gjgt2WLVto3749+/fvL/Fr5s+fz8qVK/n22285c+YMQ4cOpW/fvpw/f96JlYqIiIiUnscEu/fee49hw4bxwgsvFHruiy++4NZbbyUkJITmzZuzePFix3O//voreXl55OXlYRgGXl5e+Pv7u7J0ERERkRKxGIZhmF2EKxw7dozQ0FB8fHywWCxs2LCBzp078/PPP9O+fXvef/997rrrLr799lvuuusu3n//fXr27Mnu3bvp3bs3SUlJeHt7U6VKFT799FM6duxodksiIiIiBXjMil3t2rXx8fEpND5//nzuuusuYmJi8Pb25vbbb2fMmDHMmTMHgAsXLtC5c2f27NlDRkYGf/3rXxk8eDDHjh1zdQsiIiIil+Uxwa44Bw8eZMWKFYSEhDg+Xn/9dZKTkwF44IEH6N27N02bNqVKlSpMnjyZqlWrsmzZMpMrFxERESmo8BKWh4mIiGDUqFHMmzfPMXb06FHyj1AnJSWRk5NT4DW+vr5UqlTJpXWKiIiIXInHr9iNHj2aJUuWsHbtWvLy8ti7dy8dO3bklVdeAWDAgAE8//zz/P7771itVuLi4jh69Cj9+vUzuXIRERGRgjw+2LVr144PPviAZ555hmrVqtGpUycGDBjAP//5TwDefPNN+vTpQ8eOHbnuuutISEhg7dq11KlTx+TKRURERArymLNiRURERNydx6/YiYiIiLgLBTsRERERN+H2Z8Xm5eVx5MgRgoKCsFgsZpcjIiIiUiqGYZCRkUF4eDheXpdfk3P7YHfkyBEiIyPNLkNERETkmiQnJxMREXHZOW4f7IKCggD7NyM4ONgp+7Baraxdu5YePXrg6+vrlH2UZ+pf/at/9a/+1b/6d17/6enpREZGOjLN5bh9sMs//BocHOzUYOfv709wcLDH/sNW/+pf/at/9a/+PY2r+y/JW8p08oSIiIiIm1CwExEREXETCnYiIiIibkLBTkRERMRNKNiJiIiIuAlTg93Jkydp1KgRiYmJxc6ZN28eTZs2JSgoiCZNmjB37lzXFSgiIiJSgZh2uZMtW7YwcuRI9u/fX+yclStXMmnSJNasWUO7du3YunUrffr0oVatWgwaNMiF1YqIiIiUf6as2L333nsMGzaMF1544bLzjhw5wtNPP81tt92GxWKhffv2dOnShU2bNrmoUhEREZGKw5QVu549ezJ8+HB8fHy49957i533yCOPFHh84sQJNm3axMyZM4t9TU5ODjk5OY7H6enpgP0iglar9RorL1r+dp21/fJO/av/iz97GvWv/i/+7GnUv2v6L832LYZhGE6s5coFWCxs2LCBzp07X3besWPH6Nu3L6GhoXz66af4+BSdSadOncq0adMKjS9ZsgR/f/+yKFlERETEZbKzsxk2bBhnz5694l20KkSw27p1K/fccw/R0dEsXLgQPz+/YucWtWIXGRlJamqqU28ptm7dOrp37+6xt1RR/+pf/at/9a/+PY2r+k9PTyc0NLREwa7c3yt2wYIFPPbYYzz33HM88cQTV5zv5+dXZPDz9fV1+j86V+yjPFP/6l/9q39Ppf7VvzP7L822y3WwW758OePGjePjjz+mZ8+eZpcjIiIiUq6VuwsUBwYGsnjxYgCmTZtGbm4ugwYNIjAw0PExduxYk6sUERERKX9MX7G79C1+mZmZjq9/+eUXV5cjIiIiUmGVuxU7ERERubKsLLBY7B9ZWWZXI+WFgp2IiIiIm1CwExEREXETCnYiIiIibkLBTkRERMRNKNiJiIiIuAnTL3ciIiIiFU9WFgQG+gJ3ceaMlZAQsytyrfLav1bsREREpNRstj++/uorS4HHYh4FOxERESmVhASIivrjcf/+PtSvbx8XcynYiYiISIklJMDgwZCSUnA8JcU+rnBnLgU7ERERKRGbDcaPh0vuBgr8MRYbiw7LmkjBTkREREpk82Y4fLj45w0DkpPt88QcCnYiIiIV0MWrYps2uWaV7OjRsp13LXSv3KIp2ImIiFQwl5680KcPLjl5ISysbOddCzOCbXH7L09nBSvYiYiIVCBmnrwQHQ0REfZVsqJYLBAZaZ/nTGYF2+L2X57OClawExERqSDMPnnB2xvi4uxfXxru8h/Pnm2f5yxmn5Vr9v6vRMFORESkgigPJy/ExEB8PISHFxyPiLCPx8Q4b99mB1uz918SCnYiIiJXISsLKlXyZeDAu1z25v3ycvJCTAzs3v3H408+yeXAAeeGOjA/2Jq9/5JQsBMREakgytPJCxcfbu3QwXDq4dd8Zgdbs/dfEgp2IiIiFUR5OXkBICAALlywsnLlfwkIcP7+wPxga/b+S0LBTkRE5CqYcbmL8nDygpnMDrZm778kFOxERERKyczLXZh58oLZzA62Zu+/JBTsRERESqE8XO7i0pMXVq/GJScvlAdmB1uz938lCnYiIiIlVJ4ud3HxqlDHju57+LUoZgdbs84KLgkfswsQERGpKEpzuYvOnV1WlkcKDi46YLuKGWcFl4SCnYiIVEg2mz1AHT1qPwsxOtr5q1YV4XIX4tkU7EREpMJJSLAfEr149Swiwv7GdmceDqsIl7sQz6b32ImIyFWx2WDjRgubNtVh40bXXO4D/jh54dJDoq44eaEiXO5CPJuCnYiIlFpCAtSvD927+zBz5i107+6ay32YffJCRbjchXg2BTsRESkVM1fMysO9Osv75S7EsynYiYhIiZm9YlZeTl4oz5e7EM+mYCciIiVm9opZeTp5obxe7kJcw4x75ZaEgp2IiJSY2Stm5enkhfL6h108m4KdiIiUmNkrZjp54Q8BAfYVUsNAwVIcFOxERKTEysOKWf7JC3XqFBzXyQsiukCxiIiUQv6K2eDB9hB38UkUrlwxi4mBu+5y/Z0nRMo7BTsRESmV/BWzou78MHu261bMvL11P1aRSynYiYhIqeWvmG3YkMuaNdvp3bsNXbr4aMVMxGQKdiIiUmp5Rh47Tv5Cp07NycpKoVOn1gp1IuWAgp2IiJRI5oVM1u1fxye/fcKnez/lRNYJfv/L72aXJSIXUbATEZFiHc04SsKvCazau4r1B9ZzwXbB8VywXzB7Tu0xsToRuZSCnYiIOOQZeeTk5lDFtwoAGw9t5C9r/uJ4/vpq19O/SX/6N+1PdN1oyIPVv642q1wRuYSCnYiIh7ParGw8tJGEXxNYsWcFf2n7F57t+CwAvRr1olO9TvRp3If+TfpzQ+gNWC66iJ01z2pW2SJSBAU7EREPdD73POv2ryNhTwIf/+9jTp877Xhu/cH1jmAXUjmExFGJJlUpIqWlYCci4mFseTYaxjXkaOYfN3QN9Q9lYNOBDIoaRNcGXU2sTkSuhYKdiIgby7qQxarfVrE5aTNz+swBwNvLmw51O/B18tfENIthULNB3FH3Dny89CdBpKLTf8UiIm4mJzeHz/d/zgc7P+Dj/31MtjUbgEfbPkqzms0AeKv/WwT7BeNl0S3DRdyJgp2IyFXKyoLAQF/gLs6csRISYm49Px/7mbhv40j4NYGzOWcd4w2rNeTe5vcS7BfsGAupHGJChSLibAp2IiIVVJ6Rx/nc8/j7+gOQnJ7Mwu0LAQgPCmdo86Hc2+Je2oa3LXAmq4i4LwU7EZGrZLP98fVXX1no3RuX3FZr3+l9LPp5Ef/5eREHP7kP1r9AZib0uL4Hj9/6OIOiBtGhbgcdZhXxQPqvXkTkKiQkQFTUH4/79/ehfn37uDOknU/jrR/e4o4Fd9D49cY8t+k5Dp49AI3tFwfetAm8qURc7zg61uuoUCfioUz9L//kyZM0atSIxMTEYuesXr2ali1bEhAQQLNmzVi1apXrChQRKUJCAgweDCkpBcdTUuzjZR3uHv7kYWq/UpuHVz3M18lf42Xxok1gT6qtXwILtgDQpw9ODZYiUjGYFuy2bNlC+/bt2b9/f7Fz9u7dy6BBg5g+fTpnz55l2rRpDBkyhJRLf5uKiLiIzQbjx4NhFH4ufyw2tuBh2tLad3ofxiU7yLHl0Lxmc2Z0m8H8psn8/NRnnNl0H1j9HXOcFSxFpOIwJdi99957DBs2jBdeeOGK86Kjoxk4cCA+Pj4MGTKETp068dZbb7moUhGRgjZvhsOHi3/eMCA52T6vNLKt2by3/T2iF0bT+PXGbEvZ5njuyduf5Ic//8COcTuYeNtTTHsy3KnBUkQqLlNOnujZsyfDhw/Hx8eHe++9t9h5u3btomXLlgXGoqKi+Pnnn51doohIkY4evfKc0sz76ehP/PvHf7N4x2LHJUq8Ld58d+Q72kW0A6BxjcaO+aUJlp07l6wGEXEfpgS72rVrl2heRkYGAQEBBcb8/f3JzMws9jU5OTnk5OQ4HqenpwNgtVqxWp1zs+r87Tpr++Wd+lf/F392dzVrWijJr86aNXOxWotYVvt/KRkpDFo2iB+P/egYaxDSgAdbP8iIViMIDwov8nuanFyy/ScnX37/ZcXTfv6XUv/q/+LPzt5PSZTry50EBASQnZ1dYCw7O5ugoKBiX/PSSy8xbdq0QuNr167F39+/iFeUnXXr1jl1++Wd+lf/nsBmgxo1enDqVGWgqGvDGYSGniM9fR2rVxd8Jj03nWAf+0WCbYaN5FPJ+Fh8uK3qbXSv0Z2WgS3xOuvF9s3b2c72Ivd/6FANoMMV6zx0aCurV58qVW/XwlN+/sVR/+rfmS7NQpdTroNdixYt+PHHHwuM7d69m1tuuaXY10yaNImJEyc6HqenpxMZGUmPHj0IDg4u9nXXwmq1sm7dOrp3746vr69T9lGeqX/172n9z51rwf4uEgPD+CPcWSz2FbI33qhE//59ALhgu8DyPcuZ98M8DqYdZN+j+/D1tn+frmtzHddXu55Q/9AS77tnT5g3z+DIEQrs++Ia6tSBJ59s55Jr6nniz/9i6l/9u6L//KOPJVGug90DDzzAzJkz+eijj4iJiSEhIYHExETi4uKKfY2fnx9+fn6Fxn19fZ3+j84V+yjP1L/695T+hwwBHx94/PGClzyJiLAwezbExPhwOP0w87+fz9s/vs3xrOMA+Hj5sP3kdm6PvB2ADvWvvPJ2KV9feO01+9mvFkvBs3PtN5ewEBcHlSu79mfhST//oqh/9e/M/kuz7XJ3BcvAwEAWL14MwA033MDKlSt58cUXqVatGs899xzLly+nSZMmJlcpIp4uJgZ27/7j8Sef5HLgADTtsItBHw2i/uz6PL/5eY5nHSc8KJxpnaeRFJvkCHXXuu/4eAgPLzgeEWEfj4m55l2ISAVl+ordpddquvTEiJ49e9KzZ09XliQiUiIXH+rs0MHA2xty83JJ+NV+IblO9TrxaNtHGXjDQMfh17ISEwPdukHVqvbHq1dDjx6uuaWZiJRfpgc7EZGKKpuT/OPLOez63y4CAj4AoHXt1szoNoPejXvT4roWTt3/xSGuY0eFOhFRsBMRKbXdJ3cze+ts/vPzf8ix5eBr8eV45nEiqkUA8NQdT7mkjoCAou+AISKeS8FORKQEDMPgywNfMvObmazZt8YxfnPYzXSu1JnqVaqbWJ2IiJ2CnYhICbz27WvEfh4LgAULA28YyMT2E7m19q2sWbOmzN9DJyJyNcrdWbEiIuVBTm4OyWeTHY+HtRxGTf+aPHbrY+x9bC8JQxPoULcDFktRFykWETGHVuxERC6SkZPB/B/mM/ObmTQNbcqGkRsAqBlQk+QJyfj5FL5OpohIeaFgJyICnMw6yevbXmfOtjmcOX8GAG8vb1KzUx13hlCoE5HyTsFORDzascxj/GvLv3jz+zc5l3sOgCY1mvC3O/7G/a3up5J3JZMrFBEpOQU7EfFon+37jJlbZwL2M1wndZjEwBsG4u2li8KJSMWjYCciHuV45nF+P/M77SPbA3B/q/tZs28ND7Z5kJ7X99TJECJSoSnYiYhHOJ55nH99/S/mfjeXmgE12fvYXip5V8LHy4cPB39odnkiImVCwU5E3Nqp7FP886t/8sZ3bzjeQxcWGMaxzGPUrVrX5OpERMqWgp2IuKXMC5nM+mYWr3zzCuk56QC0q9OOqZ2n6pCriLgtBTsRcUs/H/uZfyT+A4A2tdvwQtcX6N2otwKdiLg1BTsRcQu2PBs/H/+Zm8JuAuCOunfwaNtH6VC3A0OaD8HLohvtiIj7U7ATkQrNMAz++7//8uz6Zzlw5gD7H99PWFAYAHP6zDG5OhER11KwExHT2GyweTMcPQphYRAdDd6luHzcpn3f0enFJ6DeZgCqVa7GzhM7HcFORMTTKNiJiCkSEmD8eDh8+I+xiAiIi4OYmMu/NulsEpO+nMSSHUugHmCtwpMdJvBs56cIqRzizLJFRMo1BTsRuWo2G2zcaGHTpjoEBFjo0qVkK24JCTB4MBhGwfGUFPt4fHzx4S4jJ4NWb7bibM5ZLFgwto+A9c/T9Y4IgnyvvScRkYpM7yYWkauSkAD16kH37j7MnHkL3bv7UL++ffxybDb7St2loQ7+GIuNtc/Ll2fkOb4O8gvizzf/meYBnQlN+B5WvgvpEfTpQ4n2LyLizhTsRKTU8lfcUlIKjuevuF0uXG3eXPDw66UMA5KT7fMA1u5fS6s3W7EtZZtjzi3pL7Drr+s5+ctNpd6/iIg7U7ATkVK5mhW3ix09WrL9/Jx0gLs/vJue7/dk18ldPL/pecf+n4j1BaPw9ehKsn8REXemYCcipVLaFbdLhV3phFWfc9B5Kn89FMXKPSvxtngT2y6W/9z9nzLZv4iIO9PJEyJSKiVdcStuXnS0/ezXlJQiVv0afwp9H4WQQ1zIg64NuvJar9dofl3zMtu/iIg704qdiJTKFVfcrjDP29t+SROAQnf3Ck6BkEOE+kay7J5lfPHAFwVCXVnsX0TEnSnYiUip5K+4FXfLVYsFIiPt84oTE2O/pElYvSy4bqdjPOLkaEaHvcbBJ39lcNTgIu/rWhb7FxFxVzoUKyKlkr/iNniwPURdfDg1P2zNnn3l69n5tfgU3/GPUus8vBS5iwZ1AoiO9sbb+zGX7F9ExB1pxU5ESi1/xa1OnYLjERGXv7gwwJGMI9yz7B76fdCPQ2cP4VfZoG33A3TuXPIwlr//8PDS719ExJ1pxU5ErkpMDNx1F2zYkMuaNdvp3bsNXbr4FBvObHk23vz+TZ758hkyLmTgbfFmYvuJTOk0hYBKAVe1/27doGpV++PVq6FHD63UiYhnU7ATkavm7Q2dOhlkZaXQqVPrYkNVRk4Gd/7nTr478h0A7eq0Y36/+bSu3fqa95+vY0eFOhERHYoVEacL8gsiIjiCqn5VmdtnLlse2nLNoU5ERArTip2IOMWWpC00qdGEmgE1AXijzxsAhAWV3XVIAgKKvgOGiIin0oqdiJSprAtZjF8znuiF0Yz/bLxjPCworExDnYiIFKYVOxEPlpUFgYH2rzMz7Stg12L9gfX86eM/cSDtAABVfKqQm5eLj5d+1YiIuIJ+24rINcu2ZfPomkd5+6e3AahbtS5v93+bHtf3MLkyERHPomAnItdk+/HtPL7ncVKtqQCMu2UcL3d7mSC/IJMrExHxPAp2InJN6gXXw8CgYUhD3rnrHTrX72x2SSIiHksnT4hIqf0v9X8Y/386arUq1fhHw3/ww59+UKgTETGZgp2IlJjVZmVa4jSaz23Ou9vfdYzXq1Lvqu4eISIiZUvBTkRK5H+p/+OOBXcwdeNUbIaNr5O/NrskERG5hN5jJyKXZRgGc7+by1PrnuJc7jlCKocwt89c7mt5n9mliYjIJRTsRDyYzfbH15s2QY8eBe+3eir7FA99/BAf/+9jALo37M6CuxYQERzh4kpFRKQkdChWxEMlJEBU1B+P+/SB+vXt4/l2ntjJJ//7hErelZjdczaf3f+ZQp2ISDmmFTsRD5SQAIMHF77PakqKfTw+HmJioFP9Trze+3XuqHsHbWq3MaVWEREpOa3YiXgYmw3Gjy8c6gCM4EMYw3vx6D/2Og7TPnrrowp1IiIVhIKdiIfZvBkOHy7iiah4GNcaGn3OsZvHsnmzy0sTEZFrpGAn4mGOHr1kwOc89B0HQ+6BymfhcDv4+N+F54mISLmn99iJeJiwsIsehByEIYMh/AcwLPDV32DDc5DnW3CeiIhUCAp2Ih4mOhoiIuCw9RcY1RmqnIHs6pCwGPb1wmKBiEj7PBERqVh0KFbEw3h7Q1wckHoDnGpiP/Q6/ydHqAOYPbvg9exERKRiULAT8SAns06Sm5dLTAws/6gStTd8DAs3wdm6gH0lL/9SJyIiUvGYEuxOnDjBwIEDCQkJITQ0lNjYWHJzc4ucGxcXR4MGDQgODqZVq1YsX77cxdWKOE9WFlgs9o+sLOfua9OhTbSe15q/r/87YA9v//vxOrBVAmD1ajhwQKFORKQiMyXYDR06lMDAQI4cOcK2bdv44osvmDVrVqF5a9as4cUXX+Szzz4jPT2dKVOmMGTIEA4ePOj6okWc4NJbel38uKwYhsHsrbPp+l5XjmYeZdVvqzhnPQcUPNzasaMOv4qIVHQuD3b79u0jMTGRGTNm4O/vT8OGDZk8eTJz5swpNPfXX3/FMAzy8vIwDANvb28qVaqEj4/O+ZCKryS39LpW56znGLlyJBM+n4DNsDG85XC+/dO3VPGtUnY7ERGRcsPlwW7Xrl1Ur16d8PBwx1hUVBRJSUmkpaUVmHvfffdRq1YtoqKi8PX15Z577uHdd98lIkL3qpSKLf+WXikpBcfzb+lVFuEu+WwyHd/tyKJfFuFt8WZ2z9ksunsRAZUCrn3jIiJSLrl86SsjI4OAgIJ/WPz9/QHIzMwkJCTEMX7hwgXatGnDggULaN26NYsXL2b06NFERUXRsmXLIrefk5NDTk6O43F6ejoAVqsVq9Vaxt3g2PbFnz2N+i9d/zYbPP64z//f0stS4DnDAIvFYPx46NMn96oPjV6wXaDTu504kHaAGlVqsOTuJXSp36XQe1ntJfs66r+aH6F+/ur/4s+eRv2r/4s/O3s/JWExjKLuGOk8K1asYMyYMaSmpjrGduzYQatWrUhLS6Nq1aqO8f79+3PHHXfw9NNPO8a6d+9Oq1atePXVV4vc/tSpU5k2bVqh8SVLljgCpIiZduyoweTJHa44b/r0r2jZ8tRV7+erM1+x/MRynq7/NLX8ahU55/x5b+69tx8AS5euonJlJ7zJT0RErkl2djbDhg3j7NmzBAcHX3auy1fsWrRowalTpzh+/Di1atn/2OzevZuIiIgCoQ4gKSmJW265pcCYr68vlSpVKnb7kyZNYuLEiY7H6enpREZG0qNHjyt+M66W1Wpl3bp1dO/eHV9fX6fsozxT/6XrPz3dcsU5APXq3UafPpf//66sLKhWzb7PYyczSc09RJMaTQDoQx+ey3sOH6/i/zO/+Ezcnj17EnAVR2n181f/6l/9q3/n9p9/9LEkXB7sGjduTIcOHYiNjeWtt94iNTWV6dOnM3r06EJzBwwYwJw5c+jfvz9t2rQhISGBDRs28OKLLxa7fT8/P/z8/AqN+/r6Ov0fnSv2UZ6p/5L1HxlZsu1FRvpwpc155b9L1j+VO/8Tw2ljHz/8+QfCguz3A/Pl8hsICYE/1uyv7Wenn7/6V//q31M5u//SbNuUy53Ex8eTm5tLgwYNaNeuHb169WLy5MkABAYGsnjxYgCmTJnCo48+yqBBg6hWrRr//Oc/WblyJW3atDGjbJEykX9LL0sxC3cWiz38XemWXo6zakN/hT+1Y1fGZo6dzuKdlfvKvGYREakYTLluSK1atVi2bFmRz2VmZjq+9vHxYerUqUydOtVFlYk4X/4tvQYPtoe4i9/lWtJbeuWfVWs0WAcP3AOVz8KZBhhLVvGP1CiiAnShYRERT6RbiomYICbGfuuui676A5Tsll42G4wfD8bN8+D+3vZQl3QHvP0tnLRfGC821jkXOxYRkfJNV/oVMUlMDNx1F2zeDEePQliY/fDrlS5xsnkzHK75DvQbZx/4+QH4+G2w2d9bahiQnGyf17mzc3sQEZHyRcFOxETe3qUPX0ePAruGQLvXYNdQ2DyJS6+H55gnIiIeRcFOpII4e/4swX7BhIVZ4EIQvL3NsUpXlLAwFxYnIiLlgt5jJ1IB/HryV1rPa80rX7/yx1m1eUWHupKeVSsiIu5HwU6knPsq6SvuWHAHh84e4p2f3uFC3jni4uzPXXrJlJKeVSsiIu5JwU6kHFu+eznd/tONM+fP0D6iPV899BVVfKtc01m1IiLivhTsRMqpuK1x3LPsHnJsOQy8YSBfjPiCUP9Qx/MxMbB79x/zV6+GAwcU6kREPJlOnhAph/667q/86+t/AfDILY/wWu/X8PYqfGw1OLjgBY5FRMSzacVOpByqV7UeAC/d+RJz+swpMtSJiIhcSit2IuXQo7c+yu2Rt3Nj2I1mlyIiIhWIVuxEyoGz588y5uMxnD532jGmUCciIqWlFTsRkx3PPE6vxb3Yfmw7hzMOs2b4GrNLEhGRCkrBTsREh9IO0X1Rd/ae3st1Adfxzzv/aXZJIiJSgSnYiZhk98nd9FjUg5SMFOpVrce6B9bRuEZjs8sSEZEKTMFOxATfH/meXu/34tS5U0TVjGLt/WupE1zH7LJERKSCU7ATcbE8I49RK0dx6twp2oa3Zc3wNdTwr2F2WSIi4gZ0VqyIi3lZvFgxdAVDmg/hyxFfKtSJiEiZUbATcZG082mOrxvXaMyHgz8kyC/IvIJERMTtKNiJuMBn+z6j/uz6fLbvM7NLERERN6ZgJ+Jkn/zvE+5aehdnc86ycPtCs8sRERE3pmAn4kTLdy8n5qMYLtguMKjZIBbdvcjskkRExI0p2Ik4yYc7P2Ro/FBy83K5r8V9LB28lErelcwuS0RE3JiCncg1sNlg40YLmzbVYeNGCzabfXzZrmUMTxiOzbAxsvVIFt29CB8vXV1IREScS39pRK5SQgKMHw+HD/sAtzBzJkREQFwcfOr1KTbDxqg2o3hnwDt4WfT/UCIi4nwKdiJXISEBBg8Gwyg4npJiH/9w2Tvc0e8OHrrxIYU6ERFxGQU7kVKy2ewrdZeGOmr9jHGiBRa8eWKCNwcOjMFbmU5ERFxIf3ZESmnzZjh8+JLBhl/AmHYw8EEMbCQn2+eJiIi4koKdSCkdPXrJQP1EuG8A+OSAXzpY8oqeJyIi4mQKdiKlFBZ20YO6X8GwvuB7Dn7rC8s+hDzfwvNERERcQMFOpJSio+1nvxL+AwzvA5WyYV9P+CgebH5YLBAZaZ8nIiLiSgp2IqXk7Q1PvfwrDO8FfhlwoDMsXQG5lbFY7HNmz7bPExERcSUFO5Gr0PCW/fgEpuN78hb44GPIrQLYV/Li4yEmxuQCRUTEI+lyJyJXoV+Tfnw5ch1Nq0exY2AV1qz5nt6929Cli49W6kRExDQKdiIldObcGdJz0qkXUg+AjvU6AlC9k5WsrBQ6dWqtUCciIqbSoViREsi6kEXfJX25Y8Ed/HryV7PLERERKZKCncgV5OTmcPeHd/PN4W/ItmaTm5drdkkiIiJFKrNgl56eXlabEik3bHk27l9xP+t+X0eAbwBrhq+hZa2WZpclIiJSpFIHu+rVqxc5Xrdu3WsuRqQ8MQyD2M9iid8dTyXvSqy8dyXtItqZXZaIiEixSnTyxL59+3j44YcxDIP09HS6du1a4Pn09HRCQkKcUZ+IaV7e8jJzvpsDwH8G/oduDbuZXJGIiMjllSjYNWrUiEGDBnHy5Em2bNlCp06dCjxfuXJl+vfv75QCRcyQk5vD0p1LAZjVcxZDWww1uSIREZErK/HlTh555BEAGjRowIgRI5xWkEh54Ofjx8ZRG/lo10eMuXmM2eWIiIiUSKmvYzdixAi2bdvGb7/9Rl5eXqHnRCqys+fPUrVyVQCqVq6qUCciIhVKqYPdM888w8svv0xYWBi+vr6OcYvFomAnFdr+0/vpsLADT7Z/kiduf8LsckREREqt1GfFLlq0iFWrVnH48GEOHDjg+Pj999+dUZ+IS6Rmp9JrcS+OZR7j/R3vcz73vNkliYiIlFqpg11mZia9evVyRi0ipjife56BSwey7/Q+6lWtx+phq6nsU9nsskREREqt1MGuX79+LFmyxBm1iLicYRg89N+H2JK8hap+VVkzfA1hQWFmlyUiInJVSv0eu/PnzzNy5EheeOEFateuXeC59evXl1lhIq4wJXEKH+z8AB8vH5YPWU6zms3MLklEROSqlTrYtWjRghYtWjijFhGX+i7lO6Zvmg7A/H7zubPhnSZXJCIicm1KHeymTJnijDpEXK5tnba83vt1jmUe46EbHzK7HBERkWtW6mD30EPF/wFcsGDBNRUj4moPNv8LgYHwApCZCQEBZlckIiJy9Up98oRhGAU+Tp48yYcffkhAKf4injhxgoEDBxISEkJoaCixsbHk5uYWOXfjxo20a9eOwMBAIiMjeemll0pbsohDanYqD/33Ic6cO2N2KSIiImWu1Ct2CxcuLDT2xRdfMHfu3BJvY+jQodSpU4cjR45w7NgxBgwYwKxZs3jqqacKzNuzZw99+vRh7ty5jBgxgh07dtC1a1caN27M4MGDS1u6eLgLtgsM+mgQmw5t4mjmUdYMX2N2SSIiImWq1Ct2RenWrVuJz4jdt28fiYmJzJgxA39/fxo2bMjkyZOZM2dOoblvvPEGAwcOZOTIkVgsFlq1asXXX39Nhw4dyqJs8TCPr3mcTYc2EVQpiFe6v2J2OSIiImXumoNdbm4uixYtombNmiWav2vXLqpXr054eLhjLCoqiqSkJNLS0grM3bZtG/Xr1+e+++4jNDSUZs2akZiYWOgyKyJX8uZ3bzL/h/lYsLBk0BKaX9fc7JJERETKXKkPxXp5eWGxWApuxMeHuLi4Er0+IyOj0Pvx/P39AftdLUJCQhzjp0+f5rXXXmPp0qUsWrSIr7/+mn79+lG9evViD8Xm5OSQk5PjeJyeng6A1WrFarWWqMbSyt+us7Zf3pX3/hMPJvL4Z48D8HyX5+nZoOdFNQP4/v/XVq6mhfLev7Opf/V/8WdPo/7V/8Wfnb2fkrAYhmGUZuMbN24s8Njb25tGjRqVeBVtxYoVjBkzhtTUVMfYjh07aNWqFWlpaVStWtUx3qJFC9q0acP777/vGHv00Uc5efIkH330UZHbnzp1KtOmTSs0vmTJEkeAFM9xLOcYT/32FBm2DDpV60Rs3dgC/2Ny/rw3997bD4ClS1dRubLNrFJFRESKlJ2dzbBhwzh79izBwcGXnVvqFbtOnTqRl5fH999/z8GDBwkLC+O6664r8etbtGjBqVOnOH78OLVq1QJg9+7dREREFAh1YD9Ee/HqG4DNZuNyWXTSpElMnDjR8Tg9PZ3IyEh69OhxxW/G1bJaraxbt47u3bvj6+vrlH2UZ+W5/10nd1H9SHWa+jfl4/s/popvlQLP//+CLgABAb3o1s3A27t0+yjP/buC+lf/6l/9q3/n9p9+8R+rKyh1sDt27Bj9+/dn+/bt1KhRg9TUVJo0acLatWuJiIi44usbN25Mhw4diI2N5a233iI1NZXp06czevToQnPHjh1Lz549ef/99xk+fDibN29m8eLFLF68uNjt+/n54efnV2jc19fX6f/oXLGP8qw89t8mvA3fjfkOa56VYP+CwT4hAR5//I/H/fv7EBEBcXEQE1P6fZXH/l1J/at/9a/+PZWz+y/Ntkt98sSTTz5JkyZNOHPmDMeOHePUqVO0adOmwCrZlcTHx5Obm0uDBg1o164dvXr1YvLkyQAEBgY6glvXrl35+OOPiYuLo2rVqjz44IO88sorDBgwoLRli4c5nH7Y8XXNgJqEB4UXeD4hAQYPhpSUgq9LSbGPJyS4okoREZGyVeoVu/Xr17Nnzx4CAwMBqFq1Km+++SYNGjQo8TZq1arFsmXLinwuMzOzwOPevXvTu3fv0pYpHmzFryu4b/l9zO07t8hbhdlsMH48FHVE3zDAYoHYWLjrLkp9WFZERMRMpV6xs9lseHkVfJnFYqFSpUplVpRISWVl2YOYxWL/ek/qHkauHEmOLYcdx3cU+ZrNm+Hw4SKfAuzhLjnZPk9ERKQiKXWw69KlC+PGjSMrKwuwr7A98sgjdO7cuaxrEymVjAsZxHwYQ8aFDDrW68iM7jOKnHf0aMm2V9J5IiIi5UWpD8XOmDGDbt26Ua1aNUJDQ0lNTaV58+asWrXKGfWJlJDBuM8e4tfUXwkPCuejwR/h6130m03Dwkq2xZLOExERKS9KHezq1q3L7t272bx5M8ePH6d+/fq0bdsWb70ZScx0+6us/C0eXy9f4u+Jp1ZgrWKnRkdDRIT9RImi3mdnsdifj452Yr0iIiJOUKpDsYZhsH//fnx8fOjSpQv33nsvhw4dclZtIiVT+yfo9jcAZveaTfvI9ped7u1tv6QJ2EPcxfIfz56tEydERKTiKXGwy8rKokOHDjz11FOOsRMnTjBq1Cg6d+7seM+diMsdbw2J03igxYOMu2VciV4SEwPx8RBe8CooRETYx6/mOnYiIiJmK3Gwe/7556lUqRLz5s1zjF133XUcOnQIq9XKSy+95JQCRS7HZgMML9j0d+6t8g55eZYrviZfTAzs3v3H49Wr4cABhToREam4Shzs4uPjefvttwvdPuy6665j3rx5xd67VcRZJiz4gGYtzzke9+1roX790l1c+OLDrR076vCriIhUbCUOdidOnKBRo0ZFPtemTRuOHTtWZkWJXMkTCz5kdvIwjvRpDz7nHeO6c4SIiHiyEge74OBgTp06VeRzp0+fxt/fv8yKErmcPSf3Mmv/GPuD3/pCbmXHc/lnucbG/v9hWhEREQ9S4mB355138sYbbxT53Ny5c2nf/vJnIoqUhXPWc/R77x6MShlwsCMkTis0R3eOEBERT1Xi69g988wz3HTTTZw8eZJ7772X2rVrc/ToUT788EMWLFjApk2bnFmnCAATPp/A/qyfIasmLP8A8or/J6w7R4iIiKcpcbBr0qQJa9eu5eGHH+aNN97AYrFgGAYtW7ZkzZo13Hzzzc6sU4QPdnzA/B/mY8GCsXwxZIRfdr7uHCEiIp6mVHeeuP3229mxYwf79+8nNTWVsLAw6tat66zaRBysNivPrH8GgGc6/J33/t2dFMu13zkiIKDobYiIiFREpb6lGMD111/P9ddfX9a1iBTL19uXTaM2MWvrLKZ1mcJNcfazXy2XhDvdOUJERDxZiYNdgwYNsFx6/6WLWCwW9u/fXyZFiRQlsmokM3vOBP64c8Tjj9svcZIvIsIe6nSRYRER8UQlDnZTp04tcnzr1q3Mnz+fG2+8saxqEnH4757/4mXxon/T/oWei4mBbt2galX749WroUcPrdSJiIjnKnGwGzlyZKGxV199lQULFjBu3DhmzpxZpoWJJJ1NYtR/R5F2Po3/3vtfBjQdUGiO7hwhIiLyh6t6j11aWhojR45k06ZNvP/++9xzzz1lXZd4uNy8XIYnDCftfBrt6rSjd6PeZpckIiJS7pU62G3dupWhQ4dSs2ZNfvjhBxo2bOiMusTDvbj5Rb5K+oqgSkEsGbQEX29fs0sSEREp90p85wmAf/3rX3Tu3JmBAwfy9ddfK9SJU2xJ2sK0jfY7SsztO5eG1fTvTEREpCRKvGLXv39/Vq9ezWOPPUZMTAxbt24tNKdjx45lWpx4nrTzaQxLGEaekcf9re7n/lb3m12SiIhIhVHiYPfpp58C8Nprr/Haa68Vet5isWDTXdflGi3fvZyks0k0rNaQN/oUfW9iERERKVqJg11eXp4z6xABYPRNowmpHEJEcATBfsFXnK87R4iIiPzhqs6KFXGmQVGDzC5BRESkQirVyRMizpCbl8vf1v2NoxlHzS5FRESkQlOwE9O9/NXLzPh6BtELo8nNyzW7HBERkQpLwU5M9ePRH5m6cSoAUzpNwcdL7w4QERG5Wgp2Yprzued5YMUD5OblMqjZIF3aRERE5Bop2IlpnvnyGXaf3A2ZtVj+4Dyysy1mlyQiIlKhKdiJKTYc2MCsrbPsD/77DmSHmluQiIiIG1CwE1O8+NWLAIxqNQb29jW5GhEREfegYCemWDl0JX+P/jsvRM90jG3aBLp5iYiIyNVTsBNTBFQK4Ma06dzaJtAx1qcP1K8PCQnm1SUiIlKRKdiJy6RmpzL/+/nkGXkkJMDgwZCSUnBOSop9XOFORESk9BTsxGUeW/MYYz8dy9hPxjF+fNH3eM0fi43VYVkREZHSUrATl1i5ZyVLdy7Fy+LFTfyJw4eLn2sYkJwMmze7rj4RERF3oGAnTnf63GnGrhoLwF9v/ytVs9qW6HVHdetYERGRUlGwE6cb/9l4jmcdp1loM6Z0nkJYWMleV9J5IiIiYqdgJ0616rdVvP/L+3hZvFhw1wIq+1QmOhoiIsBSzI0mLBaIjIToaNfWKiIiUtEp2InTWG1WHl39KAATb5vIbRG3AeDtDXFx9jmXhrv8x7Nn2+eJiIhIySnYidP4evuSMCSBQc0G8VyX5wo8FxMD8fEQHl7wNRER9vGYGBcWKiIi4iZ8zC5A3NvN4TcTPyS+yOdiYqBbN6ha1f549Wro0UMrdSIiIldLK3ZS5tJz0tl5YmeJ5l4c4jp2VKgTERG5Fgp2Uuae+fIZbpp/E/O+n3fFuQEB9uvWGYb9axEREbl6OhQrZeqb5G+Y+91cDAwaV29sdjkiIiIeRSt2UmYu2C7w51V/xsBgZOuR3NnwTrNLEhER8SgKdlJmXt36KjtP7CTUP5RXe7xqdjkiIiIeR4dipUyknE/hxR0vAjC752xq+NcwuSIRERHPoxU7uWaGYfDm4TfJseXQ4/oeDGs5zOySREREPJKCnVwTmw02bDSontqVqj6hzOn1Jpbi7hUmIiIiTqVgJ1ctIQHq14dePfzY9M84zk47RNcbG5KQYHZlIiIinsmUYHfixAkGDhxISEgIoaGhxMbGkpube9nX7Ny5E39/fxITE11TpFxWQgIMHgyHj1z0c7P6k5JiH1e4ExERcT1Tgt3QoUMJDAzkyJEjbNu2jS+++IJZs2YVOz87O5v77ruPc+fOubBKKY7NBuPHg3H9ZzCuJdTb5HjOMOyfY2Pt80RERMR1XB7s9u3bR2JiIjNmzMDf35+GDRsyefJk5syZU+xrHnnkEe6++24XVimXs3kzHD52Dvo8CjX3wA0rCjxvGJCcbJ8nIiIiruPyy53s2rWL6tWrEx4e7hiLiooiKSmJtLQ0QkJCCsz/z3/+w759+3jnnXeYPn36Fbefk5NDTk6O43F6ejoAVqsVq9VaNk1cIn+7ztp+eZOcbIEO/4Tqv0N6HdjwXDHzcrFaDRdX53qe9vO/lPpX/xd/9jTqX/1f/NnZ+ykJlwe7jIwMAi65Kai/vz8AmZmZBYLdnj17ePbZZ9myZQveJbw7/EsvvcS0adMKja9du9axH2dZt26dU7dfXvx4MBs6vGx/8NksuBBU5LxDh7ayevUpF1ZmLk/5+RdH/at/T6b+1b8zZWdnl3iuy4NdQEBAoQLzHwcF/REQzp8/z9ChQ5k9ezZ169Yt8fYnTZrExIkTHY/T09OJjIykR48eBAcHX2P1RbNaraxbt47u3bvj6+vrlH2UF4Zh8MbZ/nAgB/b1gN2DC82xWAzq1IEnn2xHCfN4heZJP/+iqH/1r/7Vv/p3bv/5Rx9LwuXBrkWLFpw6dYrjx49Tq1YtAHbv3k1ERARVq1Z1zPvuu+/47bffGD16NKNHj3aM9+vXjxEjRjB37twit+/n54efn1+hcV9fX6f/o3PFPsy2fPdy1h1Yi4+lErlr5mCxWBwnTADYL2FnIS4OKld27+/FpTzh53856l/9q3/176mc3X9ptu3ykycaN25Mhw4diI2NJSMjgwMHDjB9+vQC4Q0gOjqac+fOkZaW5vgAWLVqVbGhTpzv498+BmBS9N9Y/lZj6tQp+HxEBMTHQ0yMCcWJiIh4OFMudxIfH09ubi4NGjSgXbt29OrVi8mTJwMQGBjI4sWLzShLSuDdu94l/p54JnWYREwMHDwI69blMnHi96xbl8uBAwp1IiIiZnH5oViAWrVqsWzZsiKfy8zMLPZ1huH+Z1iWdxaLhUFRgxyPvb2hUyeDrKwUOnVq7RHvqRMRESmvdEsxuSLDMJj1zSzOnDtjdikiIiJyGQp2ckWLdyxm4tqJ3PTWTVywXTC7HBERESmGgp1cVnpOOk+ufRKAP9/0Zyp5VzK5IhERESmOgp1c1vSN0zmedZwmNZrwxO1PmF2OiIiIXIaCnRTrt1O/EfdtHACzes7Sap2IiEg5p2AnxZrw+QSseVb6NO5Dn8Z9zC5HRERErkDBToq0eu9qVu9dja+XL7N6zjK7HBERESkBU65jJ+XfzWE3M/rG0dSoUoMmNZqYXY6IiIiUgIKdFKlWYC3+PeDfuii0iIhIBaJDsVKA1WYt8NhisZhUiYiIiJSWgp0U8PCqhxnwwQD2n95vdikiIiJSSjoU6+FsNti8GY4ehbMB37Fw+0IAnol+huurX29ydSIiIlIaCnYeLCEBxo+Hw4cBDBg9HiKhU8gD3BZxm9nliYiISCnpUKyHSkiAwYPzQx3Q8gOI/AYuBLBx8j9JSDC1PBEREbkKCnYeyGazr9Q5Tnj1OQfdnrZ/vfkZLJnhxMba54mIiEjFoWDngTZvvmilDuC2OKiaDGcj4ZsJGAYkJ9vniYiISMWhYOeBjh696IElD1p8YP/6yxcht0rR80RERKTc08kTHigs7KIHhhf8+1touRh2DCt+noiIiJR7WrHzQNHREBEBjmsP51aGn0bbQx728chI+zwRERGpOBTsPJC3N8TFgdFoNXjlFnguP+zNnm2fJyIiIhWHgp2HqnbjBhjeF99H2oLXH7cRi4iA+HiIiTGxOBEREbkqeo+dB8oz8nhi7RMAPNw7mkGDfDl61P6euuhordSJiIhUVAp2HmjRz4v46dhPVPWrypTO/yDU3+yKREREpCzoUKyHybZm8+z6ZwF4NvpZQv1DTa5IREREyoqCnYd59etXSclIoV7VejzW7jGzyxEREZEypGDnQU5mnWTG1zMAeOnOl6jsU9nkikRERKQs6T12HiTtfBo3hd1E5oVMhrYYanY5IiIiUsYU7DxI4xqNSRyZyJnzZ/CyaLFWRETE3eivu4exWCxUr1Ld7DJERETECRTsPMCO4zv427q/cfrcabNLERERESfSoVgP8Oz6Z/nkt084lnWM9wa+Z3Y5IiIi4iRasXNzXyV9xSe/fYK3xZtnOjxjdjkiIiLiRAp2bswwDJ7+4mkAHrrxIZqGNjW5IhEREXEmBTs39uneT9mSvIXKPpWZ0mmK2eWIiIiIkynYuSlbno1JX04C4PFbH6dOcB2TKxIRERFnU7BzU0t2LGHniZ2EVA7h6Q5Pm12OiIiIuIDOinVTXRt0ZcxNY2hSownVqlQzuxwRERFxAQU7N1UnuA5v9X/L7DJERETEhXQo1s0YhmF2CSIiImISBTs3E/dtHHd/eDc7T+w0uxQRERFxMQU7N5J1IYuXvnqJlXtWsvXwVrPLERERERdTsHMjc7bN4UTWCRpWa8jI1iPNLkdERERcTMHOTaTnpDPj6xkATOk0BV9vX5MrEhEREVdTsHMTcVvjOH3uNE1rNGV4y+FmlyMiIiImULBzA2fOneHVb14FYGrnqXh7eZtckYiIiJhBwc4NvPn9m5zNOUvzms0Z0nyI2eWIiIiISXSBYjcw4bYJVPGpQpMaTfCyKKuLiIh4KgU7N1DFtwoT2k8wuwwRERExmZZ3KrBsaza2PJvZZYiIiEg5oRW7Cmzy+sl8vv9zHgp7jbDzXQkLg+ho8Na5EyIiIh5Jwa6COpF1gjnfvskF4xxPzMqBffbxiAiIi4OYGHPrExEREdcz5VDsiRMnGDhwICEhIYSGhhIbG0tubm6Rc+fNm0fTpk0JCgqiSZMmzJ0718XVlk8Pv/sqF4xzkNIW9vVyjKekwODBkJBgYnEiIiJiClOC3dChQwkMDOTIkSNs27aNL774glmzZhWat3LlSiZNmsR7771Heno67733Hs8++yzLly83oery43hGKv89+ob9wcZ/ABbHc4Zh/xwbCza9/U5ERMSjuDzY7du3j8TERGbMmIG/vz8NGzZk8uTJzJkzp9DcI0eO8PTTT3PbbbdhsVho3749Xbp0YdOmTa4uu1x5Mn42hm8WHL0Rfutb6HnDgORk2LzZhOJERETENC5/j92uXbuoXr064eHhjrGoqCiSkpJIS0sjJCTEMf7II48UeO2JEyfYtGkTM2fOLHb7OTk55OTkOB6np6cDYLVasVqtZdRFQfnbddb2L3bm3BmWJ79uf7BxMhev1l0qOTkXq9Vwek2u7L88Uv/q/+LPnkb9q/+LP3saV/Vfmu1bDMNw/l/+i7z//vs888wzJCUlOcb2799Po0aNSE5OJiIiosjXHTt2jL59+xIaGsqnn36Kj0/RmXTq1KlMmzat0PiSJUvw9/cvmyZMtCZ1DfMPz4fjLWDez2AUv+g6ffpXtGx5yoXViYiISFnLzs5m2LBhnD17luDg4MvOdXmwW7FiBWPGjCE1NdUxtmPHDlq1akVaWhpVq1Yt9JqtW7dyzz33EB0dzcKFC/Hz8yt2+0Wt2EVGRpKamnrFb8bVslqtrFu3ju7du+Pr6+uUfeQzDIPP9q3loVGVOf39nRhG4RU7i8WgTh3YuzfXJZc+cWX/5ZH6V//qX/2rf/XvzP7T09MJDQ0tUbBz+aHYFi1acOrUKY4fP06tWrUA2L17NxEREUWGugULFvDYY4/x3HPP8cQTT1xx+35+fkUGP19fX6f/o3PFPgAGRPXjraftZ79aLH+cMAH2x2AhLg4qV3btf2Su6r+8Uv/qX/2rf0+l/p3bf2m27fKTJxo3bkyHDh2IjY0lIyODAwcOMH36dEaPHl1o7vLlyxk3bhwJCQklCnXuLNuaTXpOuuNxTAzEx0OdOgXnRUTYx3UdOxEREc9jyuVO4uPjyc3NpUGDBrRr145evXoxefJkAAIDA1m8eDEA06ZNIzc3l0GDBhEYGOj4GDt2rBllm2rud3OpN7se876f5xiLiYGDB2HDBliyxP75wAGFOhEREU9lyp0natWqxbJly4p8LjMz0/H1L7/84qqSyrVsazavfP0KaefT8PMueJjZ2xs6dzanLhERESlfTFmxk9J5+4e3OZ51nPoh9bm/1f1mlyMiIiLllIJdOZeTm8OMr2cA8PQdT+Pr7blvThUREZHLU7Ar5xb9sogjGUeoE1SHUW1GmV2OiIiIlGMKduWYLc/GjC321bon2j+Bn0/x1+8TERERUbArx7albGP/mf1Uq1yNMTePMbscERERKedMOStWSqZ9ZHv2PLqHPal7CKwUaHY5IiIiUs4p2JVzjWs0pnGNxmaXISIiIhWADsWWU4fTD5tdgoiIiFQwCnbl0LaUbdSbXY/hCcMxLr4RrIiIiMhlKNiVQy9veZk8Iw9fL18sFovZ5YiIiEgFoWBXzuxJ3cOKX1cA8Nc7/mpyNSIiIlKRKNiVM//a8i8MDO5qehdRNaPMLkdEREQqEAW7cuRw+mEW/bIIgKc7PG1yNSIiIlLRKNiVI7O+mYU1z0rn+p25LeI2s8sRERGRCkbBrpzIzctl2e5lADx9h1brREREpPR0geJywsfLh12P7GLZ7mX0uL6H2eWIiIhIBaRgV44E+QXx0I0PmV2GiIiIVFA6FGuyrCywBB7HYjHIyjK7GhEREanIFOxMlmfkwagu8PBN/Jq62+xyREREpALToViTrTvwGdT8Fc4HUycowuxyREREpALTip3JZn/3iv2LH8ew/dtgbDZz6xEREZGKS8HORK8s/onNyRvA5gNbx9OnD9SvDwkJZlcmIiIiFZGCnUkSEuCphFftD3YNgfRIAFJSYPBghTsREREpPQU7E9hs8OgzydBiqX3gmycczxmG/XNsLDosKyIiIqWiYGeCzZvhWM33wcsGBzrD0ZsKPG8YkJxsnyciIiJSUjor1gRHjwJb/gbHW8H5apefJyIiIlJCCnYmCAsDDC/Y2/fK80RERERKSIdiXSw3L5dbbjtHRARYLEXPsVggMhKio11bm4iIiFRsCnYutnz3chq8Xpfuk2cDhcNd/uPZs8Hb26WliYiISAWnYOdicd/GkZqdSmTjM8THQ3h4wecjIiA+HmJizKlPREREKi69x86Fvkv5jm8Of4Ovly/j2o6jdiB06wZVq9qfX70aevTQSp2IiIhcHa3YuVDct3EADG0xlNqBtYGCIa5jR4U6ERERuXoKdi5yNOMoH+36CIDx7cabXI2IiIi4Ix2KdZF538/Dmmfl9sjbuSX8Fsd4QMAfd5sQERERuRZasXOB3Lxc5v8wH9BqnYiIiDiPVuxcwMfLh/Uj1/Pu9ne5+4a7zS5HRERE3JSCnYtE1YxiRvcZZpchIiIibkyHYp3M0BvoRERExEUU7JxsWMIwhicM57dTv5ldioiIiLg5BTsnOpR2iI92fcSSHUu4YLtgdjkiIiLi5hTsnOiN794gz8jjzgZ30uK6FmaXIyIiIm5Owc5Jsq3Z/PvHfwO6xImIiIi4hoKdkyzZsYQz58/QIKQBfRr3MbscERER8QAKdk5gGAZvfPcGAONuGYe3l24AKyIiIs6nYOcEWw9vZfux7VT2qcxDNz5kdjkiIiLiIXSBYidoGtqUGd1mcDbnLDX8a5hdjoiIiHgIBTsnqF6lOk/d8ZTZZYiIiIiH0aFYERERETehYFeGbHk27ll2D0t2LMFqs5pdjoiIiHgYBbsy9Om+T4nfHc/jax7HZtjMLkdEREQ8jIJdGZr/w3wARt84mso+lU2uRkRERDyNKcHuxIkTDBw4kJCQEEJDQ4mNjSU3N7fIuatXr6Zly5YEBATQrFkzVq1a5eJqSyblfArrDqzDgoWxt4w1uxwRERHxQKYEu6FDhxIYGMiRI0fYtm0bX3zxBbNmzSo0b+/evQwaNIjp06dz9uxZpk2bxpAhQ0hJSTGh6sv77NRnAPRp3IcG1RqYXI2IiIh4IpcHu3379pGYmMiMGTPw9/enYcOGTJ48mTlz5hSa+9577xEdHc3AgQPx8fFhyJAhdOrUibfeesvVZV9W1oUsvjz1JQCPtn3U5GpERETEU7k82O3atYvq1asTHh7uGIuKiiIpKYm0tLRCc1u2bFlgLCoqip9//tkVpZbY0l1Lyc7LpmFIQ3o26ml2OSIiIuKhXH6B4oyMDAICAgqM+fv7A5CZmUlISMgV52ZmZha7/ZycHHJychyP09PTAbBarVitzrkESURgBM0DmjO8zXBsuTZseNYZsfnfV2d9f8s79a/+L/7sadS/+r/4s6dxVf+l2b7Lg11AQADZ2dkFxvIfBwUFlWjupfMu9tJLLzFt2rRC42vXrnUESGd4ofELGGcMVq9e7bR9lHfr1q0zuwRTqX/178nUv/r3ZM7u/9IsdDkuD3YtWrTg1KlTHD9+nFq1agGwe/duIiIiqFq1aqG5P/74Y4Gx3bt3c8sttxS7/UmTJjFx4kTH4/T0dCIjI+nRowfBwcFl2MkfrFYr69ato0ePHvj6+jplH+VZfv/du3dX/+rf7HJcTv2rf/Wv/p3df/7Rx5JwebBr3LgxHTp0IDY2lrfeeovU1FSmT5/O6NGjC8194IEHmDlzJh999BExMTEkJCSQmJhIXFxcsdv38/PDz8+v0Livr6/T/9G5Yh/lmfpX/+pf/Xsq9a/+ndl/abZtyuVO4uPjyc3NpUGDBrRr145evXoxefJkAAIDA1m8eDEAN9xwAytXruTFF1+kWrVqPPfccyxfvpwmTZqYUbaIiIhIuebyFTuAWrVqsWzZsiKfu/TEiJ49e9Kzp840FREREbkS3VJMRERExE0o2ImIiIi4CQU7ERERETehYCciIiLiJhTsRERERNyEgp2IiIiIm1CwExEREXETCnYiIiIibkLBTkRERMRNKNiJiIiIuAkFOxERERE3oWAnIiIi4iZ8zC7A2QzDACA9Pd1p+7BarWRnZ5Oeno6vr6/T9lNeqX/1r/7Vv/pX/+rfef3nZ5j8THM5bh/sMjIyAIiMjDS5EhEREZGrl5GRQdWqVS87x2KUJP5VYHl5eRw5coSgoCAsFotT9pGenk5kZCTJyckEBwc7ZR/lmfpX/+pf/at/9a/+nde/YRhkZGQQHh6Ol9fl30Xn9it2Xl5eREREuGRfwcHBHvkPO5/6V//qX/17KvWv/p3d/5VW6vLp5AkRERERN6FgJyIiIuImFOzKgJ+fH1OmTMHPz8/sUkyh/tW/+lf/6l/9e6Ly2L/bnzwhIiIi4im0YiciIiLiJhTsRERERNyEgt01OnHiBAMHDiQkJITQ0FBiY2PJzc01uyyX+fnnn+nevTvVq1endu3ajBgxgtTUVLPLcjmbzUbnzp0ZNWqU2aW41OnTpxkxYgQ1atSgWrVqDBw4kKNHj5pdlsv8+OOPdOzYkZCQEMLCwhg/fjw5OTlml+V0J0+epFGjRiQmJjrGvv32W9q1a0dgYCANGjTgnXfeMa9AJyuq/+XLl9OmTRuCg4OpX78+06ZNIy8vz7winaio/vMdPXqUWrVq8e6777q8Llcpqv9ffvmFO++8k6CgIGrVqsXEiRNNywIKdtdo6NChBAYGcuTIEbZt28YXX3zBrFmzzC7LJc6dO0fv3r25/fbbOXbsGLt27eLUqVM8+OCDZpfmctOmTWPz5s1ml+FygwYNIjMzk/3795OUlIS3tzdjxowxuyyXyMvLo1+/fgwePJjTp0/z3Xff8fnnnzNjxgyzS3OqLVu20L59e/bv3+8YO3PmDH369GHEiBGkpaXxzjvvMGHCBLZt22Zipc5RVP8//PADDzzwAM8//zxpaWmsWbOGd9991y3/FhTVf768vDyGDx/u1v9zX1T/qamp3HnnnXTr1o3Tp0/z7bffsmrVKmbPnm1OkYZctb179xqAkZKS4hhbunSpUbduXROrcp09e/YYvXr1MnJzcx1j//3vf43g4GATq3K9L7/80oiKijLuueceY+TIkWaX4zLff/+9UblyZePs2bOOsVOnThk7d+40sSrXSU1NNQBj1qxZRm5urpGcnGw0a9bMeOWVV8wuzWneffddo27dusbSpUsNwNiwYYNhGIbx9ttvG40bNy4wd+zYscaIESNMqNJ5ius/Pj7emDBhQoG5EyZMMAYMGGBClc5TXP/5pkyZYjzwwANGvXr1jIULF5pSozMV1/8rr7xi3H777QXmHjx40Dh06JAJVRqGVuyuwa5du6hevTrh4eGOsaioKJKSkkhLSzOvMBdp2rQpa9aswdvb2zEWHx/PzTffbGJVrnXixAlGjx7NkiVL8Pf3N7scl9q2bRtRUVG8/fbbNGrUiLCwMJ544gnCwsLMLs0latSowYQJE3jiiSfw8/MjMjKSJk2aMGHCBLNLc5qePXuyf/9+hg4dWmB8165dtGzZssBYVFQUP//8syvLc7ri+h80aBAzZ850PD537hyffvqp2/0uLK5/gA0bNrB06VLmzp1rQmWuUVz/27Zto0WLFowdO5batWtz/fXX8/7777vsrleXUrC7BhkZGQQEBBQYy//jnpmZaUZJpjEMg7///e988sknxMXFmV2OS+Tl5XH//fczceJEWrdubXY5Lnf69Gl++eUX9u7dy08//cT27dtJSUlhxIgRZpfmEnl5eVSpUoU5c+aQlZXFzp072b17N1OmTDG7NKepXbs2Pj6F70RZ3O9Cd/s9WFz/F8vIyGDgwIFUqVLF7UJ+cf2fOHGCBx98kMWLFxMYGGhCZa5RXP+nT59m4cKF3HrrrSQnJ5OQkMD8+fMLhH1XUrC7BgEBAWRnZxcYy38cFBRkRkmmSE9PZ/Dgwbz//vts2rSp0P+5u6uXXnqJypUr89hjj5ldiinyL8g5e/ZsxxuGX3jhBVavXu12f9CLsmLFCpYvX864cePw8/OjefPmTJkyxa1XLIpT3O9CT/o9CPC///2P9u3bk5uby4YNGzyif8MweOCBB3j88cfdboWypPz8/Lj11lt56KGH8PX1pXXr1jz22GN89NFHptSjYHcNWrRowalTpzh+/LhjbPfu3URERJT4Zr0V3f79+2nbti3p6el8//33HhPqABYtWkRiYiIhISGEhISwZMkSlixZQkhIiNmluURUVBR5eXlcuHDBMWaz2QD7L3t3l5SUVOgMWF9fXypVqmRSReZp0aIFu3btKjC2e/duWrRoYVJFrrd69WpuvfVWevXqxeeff061atXMLsklkpOT2bhxI88995zjd2FSUhKPPPII/fr1M7s8l4iKiir0u8Bms5n3e9CUd/a5kQ4dOhj33nuvkZ6ebvz+++9G8+bNjSlTpphdlkucPn3aqFu3rjFq1CjDZrOZXY7pRo4c6VEnT1y4cMFo1KiRMWjQICMjI8M4ceKE0bVrV+Puu+82uzSX2LVrl+Hn52e88MILRm5urrF//36jZcuWxpNPPml2aS7BRW8eT01NNUJCQoxZs2YZFy5cMNavX28EBQUZ69evN7dIJ7q4/2+++caoVKmS8c4775hblAtRxMkT+dz15ImLXdz/r7/+avj5+Rkvv/yykZuba/zyyy9GnTp1jLi4OFNq04rdNYqPjyc3N5cGDRrQrl07evXqxeTJk80uyyUWLlxIUlISH330EcHBwQQGBjo+xP35+vqyceNGfHx8aNy4MU2aNCEiIoIFCxaYXZpLREVFsWrVKj7++GNq1KhBly5d6N+/Py+88ILZpblcjRo1WLduHcuWLaNGjRr86U9/4rXXXqNLly5ml+YSL774Ilarlccff7zA78HevXubXZq4wA033MDGjRtZtWoVoaGh9OrVi7Fjx5r2Nh3dK1ZERETETWjFTkRERMRNKNiJiIiIuAkFOxERERE3oWAnIiIi4iYU7ERERETchIKdiIiIiJtQsBMRERFxEwp2IiIiIm5CwU5ESqV+/fpUrlyZwMBAgoKCCAgIIDw8nKeeeoq8vLxr2vbBgwexWCwcPHiwVK976qmnsFgsrFixosjn9+3bx8iRIwkPDycgIIC6devy8MMPk5SUVGjfVapU4ezZs4W28fjjj2OxWHj33XeL3MeoUaPw9fUtcOeB/I/8e+i6wquvvspLL70EQOfOnbFYLMyfP7/QvJ9++gmLxULnzp2By3/vR40axahRo6647y1btjBw4MBrqF5ErpWCnYiU2rx588jMzCQjI4OsrCw+//xz3nvvPaZNm+byWs6dO8eCBQsYO3Ysr7zySqHnv//+e2666SYqV67Mli1byMzMZPPmzVgsFlq3bs2OHTsKzA8MDGTp0qUFxi5cuMDSpUsJCAi4bC3Dhw8nMzOz0Ie3t/e1N1oCv/76K2+//TZPPPGEYyw0NLTIMPrOO+8QHBxcpvu/4447CAwM9JjbyomURwp2InLNWrZsSceOHfnxxx8B+0rR1KlTHc9fuhr05ptvcv311xMSEkKrVq3497//XWB7ixcvplmzZgQEBNCtWzdSUlKK3feSJUuoU6cOL730Etu3b2fr1q0Fnh8zZgxDhgxh/vz5NGjQAIvFQr169Zg3bx69evXiT3/6U4H5w4cP57333iswtnLlSm688UZCQ0NL+61xmDp1Kj169KBt27ZUr16dTZs2kZGRwV/+8hciIyO57rrruPfeezl+/LjjNVu2bKFt27YEBATQrl07Jk2a5FhhK8o//vEPHnzwQSpVquQYGzJkCD/88AO//fabYywnJ4cPP/yQe+65p9R99O/fv8BqpJ+fHxaLhf379wPw2GOPMWXKFC5cuFDqbYvItVOwE5FrYrVaSUxMZP369fTo0eOK83///XcmTJjA6tWrSUtL41//+hePPfYYR48edcz54Ycf2Lp1K4cPH+b06dM899xzxW5vzpw5PProo4SEhPDAAw8UWLU7ePAg27dvZ8SIEUW+dsyYMWzbtq3AIdnhw4fz/fffFwhCCxYsYPTo0Vfs7Uq+/PJLXn75ZZKSkrj99tt56KGH2Lt3Lz/88AO///47wcHB3H333RiGQWpqKv369WPQoEGkpaXx8ssvM3fu3GK3ffz4cRISEhg2bFiB8Zo1a9KnT58Cq3YrVqygbdu2REREFNpOq1atCAkJKfCxZMkSx/OffPKJYyUyOTmZ66+/nieffJLrr78egHbt2lGpUiU+/vjja/xuicjVULATkVJ75JFHHH/0a9asyV/+8heeeOIJ/vKXv1zxtT4+PhiGwbx589iyZQt33nknWVlZhIWFOeY8++yzVK1alWrVqtGrVy/HatClvvrqK5KSknjggQcAGD9+PCtXruT3338H4MiRIwDUrl27yNeHh4cXmAf2INS3b19HEEpOTubHH3/krrvuumJvS5YsKRSKPv/8c8fzDRs2pGvXrgQGBnL69Gni4+N57bXXuO666wgMDGT27Nl89913/Pjjj3zyyScEBATwt7/9DV9fXzp37sxDDz1U7L4TExMJDw8nMjKy0HMPPvggixYtcrwH8p133il2W7/88gtpaWkFPi4NiwDnz59nwIABNG/enBkzZhR4rn379nz55ZdX/H6JSNlTsBORUps7d26BP/w7d+7k2WefxWKxXPG1devWJTExkYMHD9KvXz+qV6/OhAkTOH/+vGNOjRo1HF9XqlSJ3NzcIrf1+uuvk5GRQd26dQkNDSU6Opq8vDxmzZoF4AiLhw4dKvL1Bw4cKDAv38VB6N133+W+++7Dz8/vir0NGzasUCjq2bOn4/n8IAk4Dku3a9fOEQLDw8Px8fHhwIEDnDhxgsjIyALf06ZNmxa776SkJOrUqVPkc3379uXChQt8+eWXJCUl8csvvzBgwIAr9lOcvLw87r//fmw2G4sWLSr0c4+IiCA5Ofmqty8iV8/H7AJExP14e3sXeI9Vamqq4+sTJ05gs9lYsWIFeXl5fP311wwaNIgmTZrQt2/fEu/jyJEjrFixgjVr1hQIPGvWrGHChAk899xzNGjQgJtvvpl33nmH7t27F9rGv//9b26++Wbq1atX4GzQPn36OILQu+++W+zZtqV1cQDKPwy6Z8+eAiuKu3fvpmHDhnzyySccOnSIvLw8vLzs/w9++PDhYrft5eVV7FnJPj4+jvcONmnShOHDhxd4H15pxcbGsn37dr755hsqV65c6Pnc3FyXnTAiIgVpxU5EylyzZs347LPPSEtL4+zZs7z88suO55KSkujevTvr16/Hy8vLsYpV2hMT5s2bR1RUFHfeeScRERGOj5EjR1KlShXefPNNwH7Y8bPPPmPs2LEcPHiQvLw8Dhw4wJgxY1i3bl2hEzfAHoTuv/9+Jk6cSPXq1WnVqtU1fDeKFh4eTt++fRk/fjynTp3CarXywgsv0LZtW9LS0ujbty9+fn6OExF+/PHHIi9bkq9evXqXPcnkwQcfZOXKlSxcuPCyh3SvZMaMGXz44YesWbOGmjVrFjnnyJEj1K1b96r3ISJXT8FORMrcM888Q61atWjQoAFt2rQpcNjvlltu4Y033mDs2LEEBgbSsWNHHnnkEYYMGVLi7VutVt5+++0ir61WqVIlRo0axeuvv86FCxdo3bo1P/30E1arlejoaMc+wf5+sjZt2hS5jwcffJCdO3deUwi6kkWLFhESEkKbNm0IDQ3l008/5fPPP6d27dr4+/uzdu1avv32W2rVqsW4cePo2rVrsdvq2rUrJ06ccBxevlTLli254YYbuO6662jRosVV1/z000+TlZVFu3btCAoKcpwdu3jxYsecLVu20KtXr6veh4hcPYthGIbZRYiIyJVNnTqVxMREEhMTi3x+8ODBtG3blr/97W+uLewi33zzDUOHDmXfvn3XdLhXRK6OVuxERNzE9OnTefvtt8nJyTGthlmzZjFt2jSFOhGTKNiJiLiJZs2a8ec//7nIO3C4wubNmzl37hwPPvigKfsXER2KFREREXEbWrETERERcRMKdiIiIiJuQsFORERExE0o2ImIiIi4CQU7ERERETehYCciIiLiJhTsRERERNyEgp2IiIiIm1CwExEREXET/wefDsHQT1aCvwAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fitModel = NewFitModel(mot_loading)\n",
"fitAnalyser = FitAnalyser(fitModel, fitDim=1)\n",
"\n",
"params = fitAnalyser.fitModel.make_params()\n",
"params.add(name=\"A\", value=1e8, max=np.inf, min=-np.inf, vary=True)\n",
"params.add(name=\"tau\", value=1, max=np.inf, min=-np.inf, vary=True)\n",
"\n",
"fitResult = fitAnalyser.fit(data, params, x='mot_load_duration').load()\n",
"freqdata = np.linspace(0, 10, 500)\n",
"fitCurve = fitAnalyser.eval(fitResult, x=freqdata, dask=\"parallelized\").load()\n",
"fitCurve = fitCurve.assign_coords({'x':np.array(freqdata)})\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"data.plot.errorbar(ax=ax, yerr = data_std, fmt='ob')\n",
"fitCurve.plot.errorbar(ax=ax, fmt='--g')\n",
"plt.xlabel('Push AOM Freq (MHz)')\n",
"plt.ylabel('NCount')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: ()\n",
"Data variables:\n",
" A float64 1.193e+08\n",
" tau float64 4.666</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-3e8b8706-d701-41ad-8200-e1caf324ff4f' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-3e8b8706-d701-41ad-8200-e1caf324ff4f' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-48c4bb83-68b0-49be-94ac-b96b366e2a21' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-48c4bb83-68b0-49be-94ac-b96b366e2a21' class='xr-section-summary' title='Expand/collapse section'>Coordinates: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-c2d074f7-2a4c-4728-8200-18cb7daecd27' class='xr-section-summary-in' type='checkbox' checked><label for='section-c2d074f7-2a4c-4728-8200-18cb7daecd27' class='xr-section-summary' >Data variables: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>A</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1.193e+08</div><input id='attrs-d11e30e4-f834-4f05-9d5f-d03a106fad86' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d11e30e4-f834-4f05-9d5f-d03a106fad86' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bdb6f408-a6e6-4edb-8486-2c3ccaaed511' class='xr-var-data-in' type='checkbox'><label for='data-bdb6f408-a6e6-4edb-8486-2c3ccaaed511' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(1.19289449e+08)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tau</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>4.666</div><input id='attrs-8730b129-dbfe-44dc-87d2-e8279113e974' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8730b129-dbfe-44dc-87d2-e8279113e974' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6e38aadd-38e6-4f9d-a670-31f988ae90aa' class='xr-var-data-in' type='checkbox'><label for='data-6e38aadd-38e6-4f9d-a670-31f988ae90aa' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(4.66646868)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-0e6a306c-69c4-4e2d-a06e-f91190fd01d3' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-0e6a306c-69c4-4e2d-a06e-f91190fd01d3' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-7c126d51-7bce-44d7-a8e5-f8285ece4e46' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-7c126d51-7bce-44d7-a8e5-f8285ece4e46' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: ()\n",
"Data variables:\n",
" A float64 1.193e+08\n",
" tau float64 4.666"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"val = fitAnalyser.get_fit_value(fitResult)\n",
"val"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: ()\n",
"Data variables:\n",
" A float64 1.591e+06\n",
" tau float64 0.1586</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-38c68664-9f21-47e9-ae7b-e2791ad41bc4' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-38c68664-9f21-47e9-ae7b-e2791ad41bc4' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-15885cae-358f-44e6-b2c7-152bbe3484eb' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-15885cae-358f-44e6-b2c7-152bbe3484eb' class='xr-section-summary' title='Expand/collapse section'>Coordinates: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-8e6f4849-f4ef-4966-8549-1e26327a3a91' class='xr-section-summary-in' type='checkbox' checked><label for='section-8e6f4849-f4ef-4966-8549-1e26327a3a91' class='xr-section-summary' >Data variables: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>A</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1.591e+06</div><input id='attrs-f987e1c1-8bbd-4837-aea6-81f1f3631bb5' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f987e1c1-8bbd-4837-aea6-81f1f3631bb5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2cea5ed4-cd11-4731-92f1-a9f83e88f20a' class='xr-var-data-in' type='checkbox'><label for='data-2cea5ed4-cd11-4731-92f1-a9f83e88f20a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(1591103.66003124)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tau</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.1586</div><input id='attrs-e050af12-da09-4017-b33d-295dda743e20' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e050af12-da09-4017-b33d-295dda743e20' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-413af6b2-77de-4114-ab8c-180f8e3f6dad' class='xr-var-data-in' type='checkbox'><label for='data-413af6b2-77de-4114-ab8c-180f8e3f6dad' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.15857749)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-636e37ff-da1b-49df-af26-ab46778e7ee3' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-636e37ff-da1b-49df-af26-ab46778e7ee3' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-84a633aa-a33c-4e99-ba4d-8c38d3dadea4' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-84a633aa-a33c-4e99-ba4d-8c38d3dadea4' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: ()\n",
"Data variables:\n",
" A float64 1.591e+06\n",
" tau float64 0.1586"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"std = fitAnalyser.get_fit_std(fitResult)\n",
"std"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.DataArray ()&gt;\n",
"array(0.2556310933363963+/-0.009332131323758952, dtype=object)</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'></div></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-0f74fa61-81d9-43b3-8dfa-efeee1be9233' class='xr-array-in' type='checkbox' checked><label for='section-0f74fa61-81d9-43b3-8dfa-efeee1be9233' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>0.256+/-0.009</span></div><div class='xr-array-data'><pre>array(0.2556310933363963+/-0.009332131323758952, dtype=object)</pre></div></div></li><li class='xr-section-item'><input id='section-c5825fc5-54fe-44a0-94bf-b6406a837c7f' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-c5825fc5-54fe-44a0-94bf-b6406a837c7f' class='xr-section-summary' title='Expand/collapse section'>Coordinates: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-596126cf-96e8-460c-b70b-6f0af94bbaef' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-596126cf-96e8-460c-b70b-6f0af94bbaef' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-8562ca1f-db6a-4c04-acc5-429ba0b0bb3a' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-8562ca1f-db6a-4c04-acc5-429ba0b0bb3a' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.DataArray ()>\n",
"array(0.2556310933363963+/-0.009332131323758952, dtype=object)"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res = fitAnalyser.get_fit_full_result(fitResult)\n",
"res.A / res.tau / 1e8"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Loading rate"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"img_dir = '//DyLabNAS/Data/'\n",
"SequenceName = \"Repetition_scan\" + \"/\""
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"powers = [150, 200, 250, 300, 350, 400]\n",
"ncounts_withpush = np.array([5072.7, 9171.8, 16721.7, 23160.8, 27965.0, 32395.8]) * Ncount_to_atoms()\n",
"ncount_withpush_errors = np.array([80.7, 146.9, 142.1, 514.9, 433.6, 631.2]) * Ncount_to_atoms()\n",
"\n",
"ncounts_withoutpush = np.array([629.0, 1567.6, 3063.7, 4426.5, 4755.4, 4920.9]) * Ncount_to_atoms()\n",
"ncount_withoutpush_errors = np.array([22.9, 53.8, 79.9, 63.7, 191.5, 190.9]) * Ncount_to_atoms()\n",
"\n",
"sat_ncount_withpush = np.array([23921.7, 39196.8, 60078.6, 75443.0, 84752.0, 91294.0]) * Ncount_to_atoms()\n",
"sat_ncount_withpush_errors = np.array([88.3, 138.8, 89.0, 278.0, 210.1, 355.1]) * Ncount_to_atoms()\n",
"\n",
"sat_ncount_withoutpush = np.array([4224.1, 9672.3, 17949.6, 24080.9, 25218.2, 26968.5]) * Ncount_to_atoms()\n",
"sat_ncount_withoutpush_errors = np.array([37.5, 77.2, 105.9, 75.3, 217.6, 265.0]) * Ncount_to_atoms()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1.50000000e+02, 2.00000000e+02, 2.50000000e+02, 3.00000000e+02,\n",
" 3.50000000e+02, 4.00000000e+02],\n",
" [1.26452425e+07, 2.28634918e+07, 4.16839061e+07, 5.77353148e+07,\n",
" 6.97112396e+07, 8.07563517e+07],\n",
" [1.26452425e+07, 2.28634918e+07, 4.16839061e+07, 5.77353148e+07,\n",
" 6.97112396e+07, 8.07563517e+07]])"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.array([powers, ncounts_withpush, ncounts_withpush])"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('loading_rate_withpush.txt', \n",
" np.array([powers, ncounts_withpush, ncount_withpush_errors]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('loading_rate_withoutpush.txt', \n",
" np.array([powers, ncounts_withoutpush, ncount_withoutpush_errors]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('sat_ncount_withpush.txt', \n",
" np.array([powers, sat_ncount_withpush, sat_ncount_withpush_errors]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('sat_ncount_withoutpush.txt', \n",
" np.array([powers, sat_ncount_withoutpush, sat_ncount_withoutpush_errors]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('old_loading_rate_withpush.txt', \n",
" np.array([[430], [1.2157134383410748e8], [0.02622973148346536e8]]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('old_loading_rate_withoutpush.txt', \n",
" np.array([[430], [0.2556310933363963e8], [0.009332131323758952e8]]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('old_sat_ncount_withpush.txt', \n",
" np.array([[430], [3.54756438e8], [2776453.58029856]]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt('old_sat_ncount_withoutpush.txt', \n",
" np.array([[430], [1.19289449e8], [1591103.66003124]]),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_axes.errorbar([430], [1.2157134383410748e8], yerr=[0.02622973148346536e8], color=plot_red, marker='^', **plot_kwarg)\n",
"plot_axes.errorbar([430], [0.2556310933363963e8], yerr=[0.009332131323758952e8], color='k', marker='*', markersize=15)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_axes.errorbar([430], [3.54756438], yerr=[2776453.58029856/1e8], color=plot_red, marker='^', **plot_kwarg)\n",
"plot_axes.errorbar([430], [1.19289449], yerr=[1591103.66003124/1e8], color=\"k\", marker='*', markersize=15)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAvsAAAVGCAYAAAAAcnRrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAABJ0AAASdAHeZh94AAEAAElEQVR4nOzdd5xU1f3/8dcHWJBepFkQpCgtCEZF0CgQiSJgCZZEjaJG/SZqEk0zGhVLEpP8ojFRo8av4jdiYiJWxC5gAYwFsCCKIIiCIB0EhHU/vz/u3d27uzOzs7PT9/18POYxZ+49557P7FI+c+bcc8zdERERERGR4tMo1wGIiIiIiEhmKNkXERERESlSSvZFRERERIqUkn0RERERkSKlZF9EREREpEgp2RcRERERKVJK9kVEREREipSSfRERERGRIqVkX0RERESkSCnZFxEREREpUkr2RURERESKVFqTfTP7i5m5md2ZzutGrt/azD4zs1IzOzQTfYiIiIiIFAtz9/RcyOxo4ElgM9DH3T9Py4Vr9nM2cDewBBjs7lsz0Y+IiIiISKFLy8i+mbUE7gIM+G2mEv3QvcACoBfw2wz2IyIiIiJS0NIysm9mfwB+DnwK9Hb3HfW+aOL+jiH4FuEr4CB3n5/J/kREREREClG9R/bNrAfwk/DlDZlO9AHc/Sngv0Bj4E+Z7k9EREREpBClYxrPlUAJ8AXBFJtsuS18HmVmR2axXxERERGRglCvZN/M9gC+F758wN23JNFmlJn91czmmdlqM9tpZpvMbKmZ/dvMvmtmjZPo/j/AprB8WYpvQURERESkaNVrzr6ZXQlcG74c7e7PJajbFfg38I0kLv0GMNbdV9fS/73AmYAT3CuwNKnARUREREQagPom+x8SrIrzBbC7u38Zp15LKlfQAdgIPAF8AOwE9gBGA/0izZ5w93G19H8aMCV8Ocndr0ntnYiIiIiIFJ+Uk30zGwC8E758yt3HJKh7DXBV+PIN4Gh3Xxej3s+BP0QO9XD35Qmu2xkoH/2f5+4H1uEtiIiIiIgUtfrM2R8ZKS+ope5ZkfK5sRJ9AHf/I7Awcihh8u7ua4BV4cvBZtauljhERERERBqMJvVoe0ik/Ha8SmbWFLgG2BfYzd1r+2DwFtA/LLdOIo63CaYBWRjTM0m0EREREREpevVJ9vePlBfFq+TuO4F7krmgmXUBOkYOlSTR7D3gW2F5P5Tsi4iIiIgA9Uv294mU19elYTjXfj+CG3Z7EdyYO4TKG3grqiZxuWjf+8StJSIiIiLSwNQn2W8bKW+KWytkZq0JdtqdCPRMUPUrgp1xkxXtu23cWiIiIiIiDUx9kv1mkfLWRBXNrC/wFNC92qlSYAnBvPv/As8BP6bqDb21ifbdLG4tEREREZEGpj7J/nagZVhuRrBefg3hDboPUZnoLwVuAmYBi9x9V7X6LeoYx27VYhIREREREeqX7G+mMtlvDWyJU+9EKjfL+gQ42N0TzfHvFCknM2e/VbWYRERERESE+q2zvyxS3jtBvUMj5f8kSvTNrDkwNHIomfi6RcofJVFfRERERKRBqE+y/36knOiG2+g8+o5xawV+CzSPvE5m6c1948QkIiIiItKg1SfZnxspD0lQL7qJ1slmdmj1CmbW0sz+QrBaT1Qy8/fLd9ktBV5Lor6IiIiISINQnzn7MyLloXFrwb+Aa4HOBDfTvmxmjwHvAg70BsZRuVvuLipH9HdPFICZdQO6hi9fd/eEqwKJiIiIiDQkKSf77v6Bmb1HcPPtMDNr6e5fxKi3ycxOBB4HOhCsoX9i+KjuYeD/wmeAr9cSxrci5Yfq+BZERERERIpafabxAPwjfG4KHB2vkrvPBgYCvwfeIlgbvxTYAMwH7gKOdPdvE6zHvzFseqSZJdoVd2z4XAbcn9I7EBEREREpUubuqTc26wIsJ7gJd6q7n5SuwJLoux3wWdj3I+4e65sCEREREZEGq14j++6+GrgvfDnOzGpbbSedTqNypZ//l8V+RUREREQKQn2n8QD8hmD33GbABWm4Xq3MzICLw5fPuvsr2ehXRERERKSQ1DvZd/ePgNvDlxeFG2Nl2nigL8FqPr/KQn8iIiIiIgUnHSP7AFcRzJ/vClyYpmvGFI7qXxu+vMPd38hkfyIiIiIihapeN+hWuZDZt4GpwHpgP3dfl5YL1+znewTLc64AvubumzLRj4iIiIhIoUvXyD7u/hDBdJ4OBPP4087MWhMs3/kVcLoSfUmFmQ01s4fMbI2Z7TKz1eHrw3Idm4iIiEg6pW1kX6QQmNlpBN8MNQbeBhYD+xHsA+HA+e5+V+4iFBEREUkfJfvSYIR7M3wMtAa+7+7/Gzl3AcE3UzuAHuGysiIiIiIFLW3TeEQKwDcIEv13ook+gLvfAbwH7AYMz0FsIiIiImmnZF8akrLwubOZNYueMLMSoF34cm02gxIRERHJFCX70pC8DGwEOgMPmtlAM9vNzPoB/wb2AF4M64mIiIgUPM3ZlwbFzI4A/gnsWe2UAzcA17n79qwHJiIiIpIBGtmXhmYhwWo8ZcBbwCMEc/UNOBs4JmeRiYiIiKSZRvalwTCzbsAsguk6p7j745Fz3yH4EGDAN939xdxEKSIiIpI+GtmXhuQ3wL7A9dFEH8Dd/0UwjacJ8OscxCYiIiKSdkr2pSEZHT5Pj3O+/APAQVmIRURERCTjlOxLQ9IufN4V53xp+FyS+VBEREREMk/JvjQkC8Pn4+KcL785980sxCIiIiKScUr2pSH5S/h8hZkdHT1hZmOBK8OXf8pqVCIiIiIZotV4pEExs5uBH4Uv5wNLgD7AoPDYJHe/JgehiYiIiKSdkn1pcMzsWOCHwFCCefwbgDnAn919Rg5DExEREUkrJfuSdWZmwMvAcOBsd59ch7Z7AhcDY4BeQGPg0/B6f3f32WkPWERERKRANcl1ANIg/Yog0a8TMzsBuBdoU+1U7/Ax0cxuA37k7l/VN0gRERGRQqdkX7LKzM4Grk+h3SjgQYKRfIC3gSeAHcChwNEEu9/+MDx/Yb2DFRERESlwSvYbMDNr6e5fpNi2lbtvrUN9I9iZ9hqCpLwufTUHJlOZ6F8PXOWROWhmdhTwCNAS+KGZPaj59yIiItLQaenNBsrMDgM+MrMjU2g7GlhqZkOTrN+VYBT+WuqY6Ie+D3QLy8+6+5Ve7WYTd38OOC9yqM7fHoiIiIgUGyX7DZCZ9QOmA52AJ8zs8Dq0HQU8GrZ9ysz2S1C3uZn9GlhMcEMtwBZgVh1Dnhgp/yZBvX8B74Xl4WbWs479iIiIiBQVJfsN04fAi2G5JfCkmdV6w6yZjQAeB5qHh2YASxM0ORW4DmgVvn4TGAbMTDZQM+sEDAlfbiRYdSemcLR/euTQicn2IyIiIlKMlOw3QO6+CzgJeCo81Iog4Y87LcfMvgFMA1qEh6YBp7p7aRJdrgcuBYa6+7t1DPdAKqf+vJbEKjtzI+WkphmJiIiIFCsl+w2Uu39JMPL9XHioDfC0mR1cvW44v386wbcAAE8CJ4UfGhJZTbDMZi93vynJDwbVRacJJfoWodzyOG1FREREGhwl+w2Yu+8AjqdyDn1b4BkzO7C8jpkNI0juy6fiPAt8O/ywUNv1n3T3G9x9Yz3C3CNSXpFE/ZWRcpd69CsiIiJS8JTsN3Duvg0YC7wSHmoHPGdmg83sEIKpPq3DczOA48MPCdnSNlLelkT9aJ22cWuJiIiINABK9oVwrf0xVM53b08wvedpKnerfQkY7+7bsxxes0g5mb6jdZrFrSUiIiLSACjZFwDcfQtwDPB6eGh3glF+gNnAsaluwFVPZfVo67VXERERESleSvalgrtvIlg1p7qf1GW33DSL9rtbEvWbR8rZnG4kIiIikneU7EsFM+sPPBjj1CNm1ifb8YSiyX6LuLVi19mU5lhERERECoqSfQHAzPYHngc6h4f+C8wPy3sCM8ysVw5Ci66us2cS9feKlFelORYRERGRgqJkXwhH7V8AuoaH3gCOBo4C3gqP7UWQ8O+b5fCim3D1SKJ+90j5g/SGIiIiIlJYlOw3cOFo/QtUjprPA0a7+0Z3X0eQ8L8TnutGkPB3r3mljHmbyhttDzYzS1QZGBYpv5GZkEREREQKg5L9BiwcpX8B2Ds8tAA4yt03lNdx98+BbwILw0PdCRL+btmIMdyQ6+XwZWegxg6/5cIPAsdGDj2VuchERERE8p+S/QbKzPYhSPT3CQ+9TZDor69e193XECT874eH9iVI+PeqXjdD7o+UJyWodxqwf1h+3d3fTVBXREREpOgp2W+AzGxvgt1we4SH3gW+6e5r47Vx98+AkVTOg+9FkPDvkcFQy00GloTlMWZ2s5k1iVYws6OAOyKHrs5CXCIiIiJ5rUntVaQIbQfKN8h6jyDR/7y2Ru6+ysxGATOB3gTLYmZ8LXt332Fm5xNMyykBfkSQ9D8SxjCUYAfg8vn8f3f36ZmOS0RERCTfaWS/AQpvvB0NPA6McvfVdWj7KTAqbPut6Pz+THL3F4CTqVw7vw/wc+Aagnn65Yn+ncAPshGTiIiISL7TyH4DFSb4x6XYdkWqbevD3R8N9wO4CBhHcO9Ac2A1MBu43d1nZjsuERERkXxl7l57LRERERERKTiaxiMiIiIiUqSU7IuIiIiIFCnN2S9SZqb5WSIiIiJFzt0t0XmN7IuIiIiIFCkl+yIiIiIiRUrJvoiIiIhIkVKyLyIiIiJSpHSDbgOiPRVERERECpdZwntxY9LIvoiIiIhIkVKyLyIiIiJSpJTsi4iIiIgUKSX7IiIiIiJFSsm+iIiIiEiRUrIvIiIiIlKklOyLiIiIiBQpJfsiIiIiIkVKyb6IiIiISJFSsi8iIiIiUqSU7IuIiIiIFCkl+yIiIiIiRUrJvoiIiIhIkVKyLyIiIiJSpJTsi4iIiIgUKSX7IiIiIiJFSsm+iIiIiEiRUrIvIiIiIlKklOyLiIiIiKRoyZ/uynUICTXJdQAiIiIiIoXmg2v/yvaPV/LJvQ+xddFSmnfbg/2uujjXYdVg7p7rGCQDzKzGL1a/axEREZH0eKJk/xrHxu56P6N9mlmNY+5e82CEpvGIiIiIiBQpJfsiIiIiIkVKyX4KLPCKmbmZTUzztQ8xs9vN7B0z22RmO81stZm9YGY/NbM26exPREREROpm/cuvxz7+yhtZjqR2SvZT8ytgeDovaGYtzez/gFeBC4ABQBugBOgMjAT+H7DEzL6Vzr5FREREJHmLr7+1TsdzSavx1JGZnQ1cn+ZrNgamAkdHDs8EZgNfAD2BE4DdgY7ANDMb4+7PpzOOfLN27VoWLlzI8uXL2bZtG1999VWuQxIRSVmTJk1o3bo1AwYMoF+/fpSUlOQ6JBFJwfqXX2ft87Njnlv73Cusf+UNOhz29SxHFZ9W40mSBbc//xq4Boje9Xy2u0+u57V/ANwWvlwPfNvdZ1Wr0xq4FzgxPPQp0Mfdt8e5ZsGuxrN582YeeOABVq5cCUBJSQktW7bUf4wiUtB27drF5s2bKSsro1mzZowfP54BAwbkOiwRqaNXjzk7brIP0PGowxj65N0Z6TuV1Xg0sp8EM+sK3A2MyVAXP42Uz6qe6AO4+xYz+w7wOvA1YC/gVGByhmLKic2bN3Pvvfeyfv16Bg8ezMCBA+nRoweNGzfOdWgiIvW2fft23nrrLV5++WUefvhh2rRpQ7du3XIdlogkKdGofrl8G93XnP0EzKy5mf0aWExlor8FqJGM16OPAUCv8OUH7j4tXl133wn8LXLom+mKI1888MADrF+/nrFjx3L88cfTq1cvJfoiUjSaN2/O0KFDOe2002jUqBEPPPCApiiKFJBk5+Tn09x9JfuJnQpcB7QKX78JDCOYT58uAyPl15KovyRS3iONceTc2rVrWblyJYMHD+aggw7KdTgiIhmzxx57MHz4cL744gs++eSTXIcjIklIZlS/XPnofj5Qsp+c9cClwFB3fzfN154K7AMcCvw+ifp7Rspb0xxLTi1cuBCAgQMH1lJTRKTw9enTB4DFixfnOBIRSUZdR+vzZXRfyX5iqwmW2ezl7je5e2m6O3D3Undf4e6vuvvbSTSZECmn+4NHTi1fvpySkhJ69OiR61BERDJuzz33pGnTpnz66ae5DkVEalGXUf1y+TK6r2Q/AXd/0t1vcPeNuY4FwMwOA8ZGDk3NVSyZsG3bNlq2bKk5+iLSIJgZLVq0YMeOHbkORURqkeoofT6M7ivZLxBm1hH4B5XLfk5z9zfreI2UHpMmTUr324npq6++0vKaItKgNGnSRDfoiuS5VEb1y+XD6L6S/QIQrrH/OLBveGgj8OOcBSQiImkRa81sEckv9R2dz/XovtbZz3Nm1g54guAGXoAy4Ex3X5qzoKSKD679a41j+111cQ4iERERkXSqz6h+uVyvu69kP4+Z2Z7AUwSbaEGQ6H/f3R/PXVRS3eLrbqlxTMm+iIhI4Vv5nydp1b93zHNbF35Y41i8uiv/PV3JvlRlZkMIpu7sFR4qBc5x93/kLioRERGRhmPgzVfGPfdEyf41jh254IlMhpMSJft5yMyOA+4HWoaHtgPfcffH6nNdd69vaCIiIiJSQJTs5xkzuwi4mcqbp9cC4919bu6iEsl/7k5ZWZmWbhURkazoc+VFuQ4hKVqNJ4+Y2eXAX6n8vSwGhinRl4Zs4sSJFcvAzpw5M2adhQsXcuSRR7JixYqY58vba8O2wKRJkyp+JpMnT851OHlFf1ZEJFn7XXVxjUc+UrKfJ8zsR8BvIodeBYa7e827P0Skwo033siQIUN46aWXch2KiIhI3lGynwfM7HDgxsihF4BvuvvaHIUkUjAee+wxdu7cmeswRERE8pKS/Rwzs6YEO+OWTzReABzv7l/kLiqR/DF58mTcHXdnxIgRuQ5HRESkoOgG3Swws+gyOGe7++Toa6BH5PVrwP8kuaviJ+7+r3oHKCIiIiJFScl+7k2s9vr7dWj7CqBkP0fKSktZ/fgLMc+tevgZuowfRaMm+ismIiIiuaNpPLn3tdqrSL7ZumgJrwydwJunxL7z/s1TLuaVoRPY+v7SLEeWPUcccUTFyiUvvBD7Qw/Aj3/844p648ePj1tv0aJFFfWOP/74iuPxVuPp0aMHZsasWbMqju27774VdZctWxa3r3Xr1nH11Vdz4IEH0rZtW1q1akXfvn25+OKLeffdd5P7AcQxc+bMihj+9a9/sX37di699FK6dOlCq1atGDBgAJdeeilfffVVjbbPPPMMEydOpFevXrRs2ZLWrVuz//77c8EFF/Dqq68mHcMrr7zCGWecwT777EPTpk3p2rUrY8eOZfr06fV6b1EjRoyosmrNli1buO666/ja175Gq1ataNmyJYMHD+aKK65g9erVca8T/XlNnDgxYZ/Lli2rqJtoStczzzzDmWeeSe/evWnevDktWrSge/fuHH/88dxxxx3s2LEj6feZyT8rIiLZoGHHFLj7JGBSHerHnZPj7q3SEJJk0dZFS5gz8nR2rt2QsN7mtxYxZ8RpDJsxhVZ9e2UpuuwZO3ZsxQo4zz33HKNGjYpZ7/nnn68ov/TSS5SVldGoUc1xhieffLKinOhDQX099dRTnH766axfv77K8ffff5/333+fO++8kz//+c/84Ac/SEt/3/nOd3jsscr98BYuXEjz5s2r7Aewfv16TjvtNJ5++uka7T/44AM++OAD7rzzTs466yxuv/12dtttt5h9lZWVcemll3LzzTdXOb569WqmT5/O9OnTOeecc9hrr71itk/VRx99xDHHHMMHH3xQ5fiCBQtYsGABt9xyC1OnTuWoo45Ka7/Vbd++ndNOO41HHnmkxrmPP/6Yjz/+mMcee4xrr72Whx9+mEMOOSTh9bL9Z0VEJBOU7IvUQVlpKfNOv7TWRL/czrUbmHfGTzls7oNFN6Vn7NixXHbZZUCQ7P/2t7+tUeezzz6rMvq5adMm5s+fz4EHHlijbnmyb2aMHTu21v6vuOIKNm3axN/+9jeWLg2+Qbn88stp3749AB06dKjRZvXq1Rx33HHs2rWLjh07cuKJJ9K9e3c+//xzHnroIVasWMHOnTu56KKLGDRoEIcddlgSP4n47r33Xp566qkax08++eSK8oYNGxg+fDjvv/8+AC1atOC4446jf//+lJaWMn/+fJ588kl27drFvffey8cff8wzzzxDkxh/ns4999wq6+aPGDGCI444AnfnxRdfZNasWdx9993svvvu9XpfUdu3b2fcuHF88MEHNGvWjBNOOIGBAweyevVqHnroIVauXMnmzZsZO3Ys06ZNY/To0Wnru7qLL764ItFv3bo148ePZ//998fMWLp0KVOnTmXLli2sXLmSo48+mg8//DDuzyLbf1ZERDKmfJULPYrrAXj1R7679dZb/dZbb811GAmtfOhpn9Zkvzo/Vj38TK5Dz4ju3bs74I0aNfINGzbUOD9lypQafw7/9Kc/1aj3xRdfeLNmzRzwgw8+uMq5s846q6LtjBkzarQ98sgjK85/9NFHMeOsHsP555/v27dvr1Jn27ZtPnr06Io6Y8eOTfrnEDVjxowqfTVp0sRvvPFGX7duna9evdrvuusuX7ZsWUX9E088saLu6NGjffXq1TWu+cEHH/jAgQMr6l111VU16jzzzDMV53fbbTd/+OGHa9R55JFHvHnz5lXiu+eee1J6n9GfO+A9e/b0hQsXVqmzdetWP+mkk6rU2bFjR9yf11lnnZWwz48++qii7pFHHlnl3Mcff+yNGjVywLt27epLly6t0f7zzz/3AQMGVFzjmmuuqVEnm39W3Avj3z0RyR9x8ruEOaHm7IvUwSeTp6bUbkWK7fJd+Qh8WVlZzHn75VN4unXrRuvWrQFi7oI7Y8YMvvzySyCzU3gAxowZwx133FFjKkzz5s25/fbbKV8JK12bdF177bVccskldOjQgc6dO3PuuefSvXt3AP773//y8MMPA9CvXz8effRROnfuXOMaffr04YknnqB58+YA3HTTTWzcuLFKncsvv7yifNNNN3HCCSfUuM7xxx/P7bffnpb3FdWiRQuefvpp+vXrV+V4y5Yt+ec//8mQIUMAWLp0KXfddVfa+wd47bXXKCsrA+DUU09l3333rVGnY8eO3HLLLRWv33jjjYTXzPafFRGRTMirZN/M2pnZeDO73sz+bWZzzew9M1tqZu+a2Rwzu9/Mrjazb5lZi1zHLA3LhrnzU2s3Z156A8kT0ek2zz33XI3z5cn+qFGjOOigg4DKeftR2ZqvD/CLX/wi7rmePXvSs2dPADZv3lwjoa4rM0s4nzua+F5yySUVyXws++yzD2eeeSYQ3Az76KOPVpz79NNPef311wHo0qUL5513XtzrnHnmmfTp0yfp95CMCy+8kN69e8c816RJE6666qqK1w899FBa+472U+61116jtLQ0Zr0jjjiCBQsW1PgZxpLNPysiIpmS82TfzJqZ2Zlm9jywBngE+BUwATgY2A/oDvQFDgFOBa4CngQ2mNnjZnaKmZXkIn5pWHZt3JzVdvlu1KhRtGgRfOaunuwvWbKE5cuXAzBy5EiGDh0KwMaNG1mwYEGVuuXz2rt168bgwYMzFm+jRo0YPnx4wjpdu3atKG/ZsqVe/fXr14927drFPR9dSSjWfQzVDRs2rKL88ssvV5SjP/vRo0dXufk3luhqR+nwne98J+H5MWPGVCTjL774Itu3b09r/wCHHnooTZs2BWD27NkMHz6ce++9t8ZKQI0aNWLQoEG0apV4bYRs/1kREcmUnCX7ZtbKzK4EPgXuAUYQ3DBsdXiUAMcC/wSWmdllZqbVbSRjStq1yWq7fLfbbrtVrMKzePFiPv7444pz0Wk9I0eOrJI4RZPcxYsXs2TJEgDGjRuX0XjbtWtXkRDGEx0hjrU8Zl3EmkpSrrS0lMWLF1e8PuiggyqWlYz3iC5NGf1Zl3+oAmpMpYnla19L34q/JSUlDBo0KGGdZs2aVYz8l5aWsnLlyrT1X65z58788pe/rHj92muvMXHiRPbYYw+GDBnCZZddxqxZs+KO+FeX7T8rIiKZkvVk3wIXAssIlq/sQGXy/h5B4n45cCJwJDAY6A0MBA4FTgZ+QbCZ1NJI2z2A3wBLzOxHZpbzby2k+LQ/dHBq7YYNSW8geSQ6lefZZ5+tKJdP4enZsyf77LMPRxxxRMWIc3TefnQKT6aT/fL7BrIl0aj+hg0bym+mT0l0Ocjo6HWiPst17Ngx5X6ra9++fcyVgWLVK5do3f36uOaaa7jhhhuqTIdyd+bPn8/vf/97RowYQdeuXbnwwgurfFiKJdt/VkREMiWrawGa2dcIRvGHECToDjwH3A884+7JDPf8t9o1ewJjgdMJpvl0Am4Czjaz89z99fS9A2no9p44gTXTZ9a5XbeJE9IfTJ6oPm//3HPPxd0rRvZHjhwJQNu2bRkyZAivv/46L774YsV6++VTeFq0aBF3rf5ClSgJrj7C/Pvf/z7m/gPxRG/kLb9RNFm1jVjXRUlJcjMooyPfqfZf24cjM+OXv/wl5513Hv/5z3949NFHmTlzZpVpQ+vWreO2227jnnvu4cEHH+TYY49NKRYRkUKRtWTfzH4KXA80A7YCtwF/c/flCRvWwt2XAn8F/mpm/YAfA98DDgBeMbMr3f0P9QpeJNRl/CjaDOrL5rcWJd2mzQH96DxuZAajyq1u3boxaNAg3nrrLV544QXcnXfeeYfPP/8cqEz2IZjj//rrr7Nhwwbeeust+vbtWzHKP3r06LibRRWj6Eg3wHnnnVfjWLKic8erbwAVy6ZNm1Lqpz7XisYVjTeqtmQ+2Z1vO3TowAUXXMAFF1zAl19+ydy5c3n++eeZNm0a8+YFN8tv376d7373uyxfvjypb0NERApVNqe6/DHs769AT3e/rL6JfnXu/p67/w/QM+ynDPhdOvuQhq1RkyYMuf8mmnZMLilr2rE9Q6bcWHQbalVXPrq/Zs0a3n777SrTdKon++VmzpzJjBkzKkZdM70KT77Zbbfd2GOPPSpeRzcfi2fbtm0xb27t0aNHRfmtt96q9TrvvfdeckEmYevWrXzyyScJ62zbtq1i47OWLVtWSfajNxOXL78az6pVq+ocX7NmzTjyyCO59tprefPNN3nppZdo27YtEKyiE93dWESkGGUz2X8S+Jq7/9jd12ayI3df7e4/Br4GTM9kX9LwtNq/J8NmTKHNAYlvhGxzQD+GzbyfVvv3zFJkuROda//888/z4osvArDffvux5557Vpw7/PDDK6Z9zJw5k+nTg7+eye6aG0tdp7DkkyOOOKKiXL7efiK/+MUvaNGiBV27duW6666rOH7MMcdUJM3PPPMM27ZtS3id6H0S6VDb9R5//PGK5VaPOeaYKtObyldzAiq+DYrntddei3vuhhtu4IgjjqBTp07Mnj07br3DDz+c0047reJ1bR9UREQKXdaSfXcf6+4fZKu/sM8P3b1hDRdKVrTq24vD5j7I1/9zS8zzX//PLRw298EGkehDsOzh7rvvDgTz9suT/eioPgSjuocccggQLMFYnuwffPDBcad21CY6MlxoK6KcddZZFeU77rijyuo81S1evLhiXf7Vq1fz9a9/veJcx44d+eY3vwkE02p+97v4X2g+88wzCZPhVPzxj3+Mu5zmzp07uf766yten3LKKVXOd+vWraL86quvsnlz7GVqt27dWmVDrOo+++wzXnrpJdauXcuUKVMSxhv9ULHXXnslrCsiUui0Yo1Iiho1aULXE0bHPNf1hNFFP3UnqlGjRhxzzDEAPP3006xZswaomexD5VSeDRs2VEztqM8UnjZtKpc1XbZsWcrXyYUxY8ZULEn6xRdfMHr0aN58880a9RYtWsT48eMrprkccsghNW4s/cMf/lAxYv6b3/yGv/zlLzWu8/LLL/Pd73433W+DxYsXc9JJJ9XYWGrTpk1MmDCBd955B4DDDjuMk08+uUqdzp07M2DAACD4GVx44YU1PrStWbOGcePGJRyFP+eccyrKf/vb37j77rtj3gMwderUio29mjdvzpgxY5J/oyIiBajhZCMiklHjxo1jypQpVRK1ESNG1Kg3cuTIKlNQoH7JfnQt+3POOYdzzz2XsrIyLrjggipz4vPVv/71L4YOHcqqVatYvnw5Bx98MKNHj+aQQw6puNn58ccfr/i5tm/fnvvuu6/GdQ444ACuvfZaLr/8ctydH//4x9xzzz2MGTOG5s2b8+qrrzJ9+nTcnf32248PPkjfF60lJSVMnz6dPn36cNJJJ9GtWzdWrFjBgw8+yNq1wazNTp06cdddd8WcdvWTn/ykYtff++67j1dffZXx48fTtm1b3nvvPR555BF27NjBkCFD2LJlCx9++GGNawwaNIgLLriAO+64A3fn3HPP5eabb+bwww9n7733ZuvWrcyZM4cZM2ZUtJk0aVKVVY1ERIpRwST7FvwPcRiwN8FGXHPdfVduoxKRckcffTSNGzeuSEr79+9Ply5datQbPnw4u+22W8XKKvvssw8HHHBAyv2effbZ3HLLLezcuZOPP/6Yq6++GgiS3xNPPDHl62ZLt27d+O9//8upp57K7NmzKSsr4+mnn+bpp5+uUbdfv378+9//pk+fPjGv9atf/Yo2bdrwk5/8hNLSUubPn8/8+fOr1Dn22GM566yzOPXUU9P2HiZPnsyPfvQj1q5dy+23317jfP/+/Zk2bVrcTca+//3vs3DhQm666SYg+KbgxhtvrFJn+PDhTJ06teIbpFj++te/smPHDu69914guFk51g3LTZs25corr+QXv/hF0u9RRKRQ5c00HjNrYmZnmNnNMc4NARYDs4ApwExgqZmdXL2uiORG+/btq+ySG2sKDwSro0TrpXpjbrmBAwcyY8YMjj76aDp06ECTJk3o1KlTUktQ5ou9996bV155hccff5zvfe979OrVi1atWtG0aVP23HNPxo4dyz333MP8+fMZOHBgwmtdeOGFvP322/zgBz+gd+/eNG3alPbt23PYYYdx1113MW3atLSusw9BIr5w4UJ+9rOf0bt3b5o1a0a7du0YOXIkd955J/PmzUu4mzDAjTfeyOzZsznzzDPZZ599aNasGZ07d2bkyJHcfffdvPjii7Xe11FSUsLkyZN56aWXOO+88xg4cCCtW7eu+DNx0EEH8etf/5qFCxfy61//Op0/AhGRvGX12cExbUEEG2M9TbBkpgMt3H1neG534H2CnXarKwO+7+6TsxRqwTCzGr/YfPhdJ3LbbbcB8MMf/jDHkdTNEyX71zg2dtf7OYhEJHtGjBjBrFmzAPjoo4+qLP8pySvUf/dEJDdiTYV094TL0uV8ZN/MGgFPAL0IdtU1gqS/3M8IEn0HdhEs4Vm+K24j4M9mVnOugIiIiIhIA5fzZB/4DrA/QTK/CjgHWBY5f0ak/N1wCc9DgEvDY62BiZkPU0RERESksORDsl++DMdO4HB3v9fddwCY2cHAXgQfBN5394fKG7n7n4H/EnwTUL9JvyIiIiIiRSgfVuM5hCCZf8jdP6p2LroA8uMx2s4K2/fKUGwitepz5UW5DkFEREQkpnxI9juFz7EWfY6usfZcjPMbwueOaY1IpA72u+riXIcgIiIiElM+TOMpCZ93Rg+aWVvg4PDlLuDlGG3L12HbkZnQREREREQKVz6M7K8GulF1BR6A0UBjgik+r7j79hhtyz8MfJq58EREpLqZM2fmOgQREUlCPozsl99ke1w4ml/uvEj5seqNzOwYYBjBh4HXMhqhiIiIiEgByodk/9/hc0fgFTP7kZn9k2BkH6AUeKC8spntYWY/BR6KXOOfWYlURERERKSA5MM0nqnAHIJR+n7ATeHx8u1eb3b3zyL13wXaEnwbAPC0uz+VjUBFRERERApJzkf23d2B44AXqNxBt/xxH3BFtSaLqEz0nwJOyU6kIiIiIiKFJR9G9nH3dcBRZjYMOJRg6s4sd38rRvU5BDf13u3usdbeFxERERERspjsm9m+MTbNqsLd5xAk84nq/DStgYmIiIiIFKlsTuP50MwWmtmfzOybZpYX3yqIiIiIiBSrbCbcBvQF9gd+AnxhZs8DTwLT3f2TLMYiIiIiIlL0spnsDweODR9DgFbA8QQ352Jm7wLTw8cr7v5VFmMTERERESk6WZvG4+5z3f0qdz8I2BM4B/gPsIlg1H8g8HNgBrDWzP5jZmebWddsxSgiIiIiUkxyMm/e3VcDk4HJZtaYqqP+XyNYR38C8G0AM5tP5aj/3HC5ThERERERSSDnN8mG03VeCh+/MrO9gDEEif83gdYE034GA5cDG8zsGYLE/yl3X5uLuEXKTZo0KaljIiIiItmW82S/Onf/FLgLuMvMSoBvUDnq3xfoAJwaPtzMXgeecPfrchSyNHDXXHNNjWNK9kVERCQf5HwH3UTcfZe7v+DuP3P3/sC+wIUEo/rbCeI/BJiUuyhFRERERPJTXif71bn7cnf/m7uPB3YnmO5zC7Akt5GJiIiIiOSfvJvGkyx3/xJ4OnyISAPn7pSVldG4ceNch5Iz+hmIiEh1BTOyb4HDzew7ZvaNcD6/iBS5iRMnYmaYGTNnzoxZZ+HChRx55JGsWLEi5vny9j169MhcoDlW28+gIWsIv38RkXjyJtk3syZmdoaZ3Rzj3BBgMTALmALMBJaa2cnZjVJE8s2NN97IkCFDeOmll3IdSs7oZyAiIvHkxTQeM+tJMB2nJ8EKOz93953hud2BZwlW4YnaC/inmbV098nZjFdE8sdjjz3Gzp07cx1GTulnICIi8eR8ZN/MGgFPAL0IdtI1gqS/3M8IEn0HdgFPAq+H5xoBfzazLlkLWESyavLkybg77s6IESNyHY6IiEhByXmyD3wH2J8gmV8FnAMsi5w/I1L+rruPdfdDgEvDY62BiZkPU0RERESksOTDNJ7x4fNO4HB3/6j8hJkdTDBdx4H33f2h8nPu/mcz+w7BOvtjgd9nL2RpqI477jiWLKl9pdcBAwZUed2rVy8ee+yxTIUlIiIiElM+jOwfQpDMPxRN9ENjIuXHY7SdFT73ykRgItUtWbKEhQsXVnnEUr1OMh8QCs0RRxxRscrJCy+8ELfej3/844p648ePj1tv0aJFFfWOP/74iuPxVuPp0aMHZsasWbMqju27774VdZctWxa3r3Xr1nH11Vdz4IEH0rZtW1q1akXfvn25+OKLeffdd5N6/1u2bOHmm29m9OjRdO3alaZNm9KxY0cOPvhgLr/8cpYvX56wfXn8ZlZrXyNGjIj5vurzM0jUT/mqNVu2bOG6667ja1/7Gq1ataJly5YMHjyYK664gtWrV8e9zsyZMytimDhxYsI+ly1bVlE30TStZ555hjPPPJPevXvTvHlzWrRoQffu3Tn++OO544472LFjR9LvMx2/fxGRQpEPI/udwucPYpw7JlJ+Lsb5DeFzx7RGJCK1Gjt2bMXqL8899xyjRo2KWe/555+vKL/00kuUlZXRqFHNcYYnn3yyopzoQ0F9PfXUU5x++umsX7++yvH333+f999/nzvvvJM///nP/OAHP4h7jUceeYTzzjuPtWvXVjm+bt061q1bx+uvv86NN97IlVdeyRVXXJGR95FpH330EccccwwffFD1n+YFCxawYMECbrnlFqZOncpRRx2V0Ti2b9/OaaedxiOPPFLj3Mcff8zHH3/MY489xrXXXsvDDz/MIYcckvB66fj9i4gUknxI9svXy6+ylISZtQUODl/uAl6O0bZr+Jz8kI6IpMXYsWO57LLLgCDZ/+1vf1ujzmeffVZlpHTTpk3Mnz+fAw88sEbd8mTfzBg7dmyt/V9xxRVs2rSJv/3tbyxduhSAyy+/nPbt2wPQoUP1Bbxg9erVHHfccezatYuOHTty4okn0r17dz7//HMeeughVqxYwc6dO7nooosYNGgQhx12WI1r/POf/+T000/H3QHo2rUrxx13HN27d2fdunU89dRTLFy4kC+//JJf//rXrFixgttvv73W95OKVH4Gydi+fTvjxo3jgw8+oFmzZpxwwgkMHDiQ1atX89BDD7Fy5Uo2b97M2LFjmTZtGqNHj07be6ru4osvrkj0W7duzfjx49l///0xM5YuXcrUqVPZsmULK1eu5Oijj+bDDz9k9913j3mtdPz+RUQKTvkqF7l6ENyM+xXw92rHTwLKwnPPx2n7SlhnYa7fR749CKZGVXnku1tvvdVvvfXWXIeRUP/+/Wv8XJN59O/fP9ehZ0T37t0d8EaNGvmGDRtqnJ8yZUqNn8Wf/vSnGvW++OILb9asmQN+8MEHVzl31llnVbSdMWNGjbZHHnlkxfmPPvooZpzVYzj//PN9+/btVeps27bNR48eXVFn7NixNa7z/vvve9OmTatc54svvqhSp6yszP/yl79448aNK+r93//9X41rlf/skvm7Wdt7TOZnkIzodQDv2bOnL1y4sEqdrVu3+kknnVSlzo4dO6rUmTFjRsX5s846K2GfH330UUXdI488ssq5jz/+2Bs1auSAd+3a1ZcuXVqj/eeff+4DBgyouMY111xTo066fv+ZUAj/7olI/oiT3yXMCfNhzv5/CZbbPC4czS93XqRc485GMzsGGEbwRl/LaIQ1+zYze8XM3Mwmpvnae5rZ78xsvpltMbNtZrbYzO4xs+Hp7EukvspH4MvKymLO2y+fwtOtWzdat24NEHMX3BkzZvDll18CmZ3CAzBmzBjuuOMOdttttyrHmzdvzu23314xhz7WBlWTJk2qWM/+29/+NnfccQctWrSoUsfMuPjii/n97yvXDLjyyispLS1N91vJqBYtWvD000/Tr1+/KsdbtmzJP//5T4YMGQLA0qVLueuuuzISw2uvvUZZWRkAp556Kvvuu2+NOh07duSWW26peP3GG28kvGZ9fv8iIoUoH5L9f4fPHYFXzOxHZvZPoPx74VLggfLKZraHmf0UeChyjX9mJdJKvwLSnnib2QnAe8BlwAFAK6A50JtgedFXzOxWM2uc7r5FUhGdbvPcczVvqylP9keNGsVBBx0EVM7bj8rWfH2AX/ziF3HP9ezZk549g20+Nm/ezMaNGyvO7dixg4cffhgIEvo//vGPCfu55JJL6N69OwDLly+vcu9CIbjwwgvp3bt3zHNNmjThqquuqnj90EMPxaxXX02aVM40fe211+J+YDriiCNYsGABW7Zs4dFHH014zVR//yIihSofkv2pwByC0f1+wE3AKVR+PXGzu38Wqf8u8AegfFjmaXd/KlvBmtnZwPUZuO4o4EGgTXjobeAGYBLwFMHPAuCHwF/S3b9IKkaNGlUxsl092V+yZEnFijQjR45k6NChAGzcuJEFCxZUqfvUU8Ff4W7dujF48OCMxduoUSOGD0/8Ob1r164V5S1btlSUZ8+eXbHiy5AhQyqSwkR9TZgwoeL1iy++mErIOfOd73wn4fkxY8ZUJOMvvvgi27dvT3sMhx56KE2bNgWCn//w4cO59957a6wE1KhRIwYNGkSrVq0SXq8+v38RkUKV82Q/nH90HPAClTvolj/uA6ovZbEoPAdBEnxKNuIMp+5cCfxvpP90Xbs5MBkoH7G/HjjA3X/l7te4+xjgW8AX4fkfmtnIdMYgkorddtutYhWexYsX8/HHH1eci07rGTlyZJUkK7pU5OLFiyuWJh03blxG423Xrl1F8hhPdDT5q6++qih/9FHlysDJfiCJ1iu/gbYQlJSUMGjQoIR1mjVrVjHyX1paysqVK9MeR+fOnfnlL39Z8fq1115j4sSJ7LHHHgwZMoTLLruMWbNmJT1Fqj6/fxGRQpXzZB/A3de5+1HAYcBPgR8Dg939LHffVa36HOBR4Hh3P9bdt2Y6PjPrCjwBXEuaE/3Q94FuYflZd78y/BBUwd2fo+p9DGn/dkEkFdGpPM8++2xFuXzaSs+ePdlnn3044ogjaNw4+DwbnbcfncKT6WS//L6BVKxbt66inOwqN9FVYaov9ZjP2rdvXyXpTVSvXKJ19+vjmmuu4YYbbqB58+YVx9yd+fPn8/vf/54RI0bQtWtXLrzwwiofNmOpz+9fRKRQ5UWyX87d57j7Te7+V3d/K06dn7r7ie4ea5OttDKz5mb2a2AxlRt8baFyM690mRgp/yZBvX8RzOkHGG5miecRiGRBrHn77l4xsj9yZPAlVNu2bStu6nzxxRcr5u2XT+Fp0aJF3LX680G1z99JiY4MJ7N5Vjr7ro+SkpLaK1H1/dU2Yh5Pbe/NzPjlL3/JJ598wu23386YMWOqJP4QfBC77bbb6Nu3L9OnT08pDhGRYpVXyX4eOhW4juBGWYA3CVYAmpmuDsysEzAkfLmR2PsJABVTnqL/k52YrjhEUtWtW7eKKR8vvPAC7s4777zD559/DlQm+0BFMr9hwwbeeustduzYUTHKP3r06BorpOST6Ch2dJQ/keimW+3atYtbr7aEty67w6bDpk2bkqoX/bYiOtc9Kl3vrUOHDlxwwQVMnz6dDRs2MHPmTK688sqKD5AQ7A/w3e9+VzfWiohEKNlPznrgUmCou6d7L/UDqZwa9Jq71zZJdG6kPDTNsYikpHx0f82aNbz99ttVpunESvYhmMozY8aMihs7M70KT3316dOnolz9BuN45s+fX1GufkNv+ZQmoGLZ0XhWrVqVVH/psnXrVj755JOEdbZt21ZxH0LLli2rJPuZfm/NmjXjyCOP5Nprr+XNN9/kpZdeom3bYOXmzZs389hjNVZrFhFpsPIm2TezEjM7zsyuNbO/mdnddXj8b4bCWk2wzGavcHpRJhbK3i9STuYOvuVx2orkTHSu/fPPP1+x8sx+++3HnnvuWXHu8MMPr5giMnPmzIopF8numhtLfabH1MXQoUMrYp83b17FTcXxlJWVVSzVCTBs2LAq56Pr85d/CxLLZ599xooVKxL2lYmfQfReilgef/zxiqlYxxxzTJU5/sm+Nwhuuo3nhhtu4IgjjqBTp07Mnj07br3DDz+c0047reJ1bR9UREQaktrvwMoCM/sm8H9A7O+Bk3NumsKp4O5PAon/x6u/PSLlxP+jB6JLXnRJcyxSi169etU4tnDhwhrH+vfvX2u7YnLooYey++67s27dOp577jlef/11oOqoPgQjwIcccgivvPIKL774YsXUmIMPPjjuNJDaREeRM7l6SosWLTj55JO5//77cXd+8YtfMHXq1Lj1b7755ookfffdd2f06NFVznfr1o133nkHCG5sPuecc2Je54Ybbqg1tkz8DP74xz9yxhln1JgfD7Bz506uv75yjYBTTqm6KFq3bt0qyq+++iqbN2+mTZs2VLd169YqG2JV99lnn1VsbjVlypSEy2ZGP1TstddeceuJiDQ0OR/ZN7P+BDvk7kHNpTeTfRSy6K7B25KoH63TNm6tGMwspcekSZPq0k1Re+yxx3j33XerPGKpXqfYpxU0atSIY445BoCnn36aNWvWADWTfag6b798Gkh9pvBEk8hly5alfJ1kXHHFFRX3FTz00ENccMEFbNtW9a+tu3P77bfz85//vOLYH/7whxr3I0SnNF155ZVVlvaE4JuBP/zhD/z1r3+tNa5M/AwWL17MSSedVGP++6ZNm5gwYULFB5XDDjuMk08+uUqdzp07M2DAAAC++OILLrzwwhofQtasWcO4ceMSjsJHPwD97W9/4+677455D8DUqVMrNvZq3rw5Y8aMqVFHRKShyoeR/csIdol1glHrW4CFwFagLEG7YtEsUk5mV5ponWZxa4lk2bhx45gyZUqVpG7EiBE16o0cOZLrrruuyrH6JPv77rtvRfmcc87h3HPPpaysjAsuuIA99tgjQcu669+/P7fddhvnnnsu7s6dd97JY489xvHHH88+++zDhg0bePLJJ6t8CDzrrLNijtqfffbZXH/99WzatImVK1cyYMAATjnlFHr37s2aNWuYNm0aH330EU2bNuXYY4/lkUceyerPoKSkhOnTp9OnTx9OOukkunXrxooVK3jwwQcrbjzu1KkTd911V8xpRD/5yU8477xgteD77ruPV199lfHjx9O2bVvee+89HnnkEXbs2MGQIUPYsmULH374YY1rDBo0iAsuuIA77rgDd+fcc8/l5ptv5vDDD2fvvfdm69atzJkzhxkzZlS0mTRpEp07d07pPYuIFCV3z+kD+Jggqf8c2CPX8SQZ8yQqd/idWM9r3Rm51v8kUX+3SP3SBPU8XY+rr77as+HWW2/1W2+9NSt9pVOsn1lDtH79em/cuHHFz6B///4x6+3YscN32223inr77LNPwuueddZZFXVnzJhR4/zbb7/tTZs2rfE7eOihhyrqlB/r3r17re/jyCOPrKj/0UcfxawzdepU79ChQ8K/NyUlJf7HP/7Ry8rK4vY1c+ZMb9++fdxrtGvXzh955BG/6aabEsaUzM8gGdH3PmXKFN99993jxta/f39funRpwutdcsklCX9Gw4cP91WrVvkBBxzggB955JE1rrFz584qfwbiPZo2berXXXddzDjS/ftPp0L9d09EciNOzpEwd8z5NB6gM0Gw/3T37C45kR+im4Ils+5gdAJtdtfjE0mgffv2VeZUx5rCA8FKKtF6qd6YW27gwIHMmDGDo48+mg4dOtCkSRM6deqU0U2svv3tb/PRRx/x//7f/2PkyJF06dKFkpISWrduzde//nUuv/xyFi9ezM9+9rOEN88eeeSRLF68mKuuuorBgwfTunVrWrVqxYABA7jssst45513OP7442uNJxM/g+HDh7Nw4UJ+9rOf0bt3b5o1a0a7du0YOXIkd955J/PmzavyjUIsN954I7Nnz+bMM89kn332oVmzZnTu3JmRI0dy99138+KLL9Z6r0ZJSQmTJ0/mpZde4rzzzmPgwIG0bt264j0edNBB/PrXv2bhwoX8+te/Tvn9iogUK/Na1kDOeABmnxDM1/+1u/8up8EkycwmAVeHL89298n1uNa1wJXhyyvc/be11N8LKJ/kutLdY96JZmZp+8VeffXVWZm3f9tttwHwwx/+MON9pVOsZC7Xf69EUjFixAhmzQr2DPzoo4/o0aNHbgNqAAr13z0RyY04OUfC+1fzYc7+68B4YP9cB5Ij0dV19oxbq1I0ua/TNyFKQEVEREQalnyYxvM3ghV1JoSj1g1NdDmXHknU7x4pf5DeUERERESkmOQ82Xf3p4G/Ay2BJ82soY3wv01wzwLAwVb77jjRnXneyExIIiIiIlIM8mEaD8APCG42vRh418xmA/OBDUBSO8S4+7UZiy6D3H2jmb0MfIPgZuWDgf/Gqht+EDg2cuipzEcotbn66qtrryQiIiKSA/mS7PcHhoblRsBh4aMuCjLZD91PkOxDsKznsXHqnUblvQ2vu3vsHZ0kq7TpmIiIiOSrnE/jCefpP0swol0+naUh7aALMBlYEpbHmNnNZlblg5iZHQXcETmk4WQRERERSSgfRvZ/AnQhSPS/Ah4mmMLzGUWyg261ZTBrLNXp7jvM7HyCaTklwI8Ikv5HCNbhHwqMofKDzd/dfXqm4xaRhmXmzJm5DkFERNIsH5L9ceHzduAb7j4vl8Hkiru/YGYnA/cCbYE+wM9jVL0T0ILMIiIiIlKrfEj29yYY1f9PQ030y7n7o+FqRBcRfAjal2DH3NXAbOB2d5+ZuwhFREREpJDkQ7L/JdCCyjnrec/dJxHcSJts/aTvK3D31QQ76l5ZW10RERERkURyfoMu8GH4vHdOoxARERERKTL5kOw/QOUOui1yHYyIiEi2uHvtlURE6iEfkv07gMVAB2CKmTXLcTySI40bN2bXrl25DkNEJGtKS0tp3LhxrsMQkSKW8zn77r7NzI4HngSOAxab2e0Eu8h+Cmyjcv39RNf5OKOBSsa1aNGCdevW8dVXX+k/PxEpeu7Otm3baNeuXa5DEZEilvNk38zeCouNCabz7A1cV8fLOHnwXqR+unfvztKlS1m2bBm9evXKdTgiIhm1cuVKdu7cyV577ZXrUESkiOXDNJ6BwAAg+q9dXXfQLYZddBu8/v37A/DOO+/kOBIRkcxbvHgxAH369MlxJCJSzPJhNPxFkpimI8WvY8eO7LnnnsyfP5+99tqLgw46KNchiYhkxKpVq5g9ezYtW7Zk7721GJ2IZI5pJYDiZGY1frGF8LvevHkz9957L+vXr2fw4MEMHDiQHj16aA6/iBSFbdu28fbbb/Pyyy+zfft2zjrrLLp165brsESkQJjVnMxS235OSvaLVKEm+xAk/A888AArV64EoKSkhJYtW9KkSZOYf8hFRPKdu7Nr1y62bNlCWVkZzZo1Y/z48QwYMCDXoYlIASmqZN/MegE9CZbkdGAjsNTdP0zUTgKFnOyXW7duHe+++y7Lly9n+/btlJaW5jokEZGUNWnShDZt2tC/f3/69etHSUlJrkMSkQJT8Mm+mXUALgHOAbrGqbaWYCOu6919TbZiKzTFkOyLiIiISKWCTvbN7AiCJL5z+aEE1R1YA3zP3Z/LdGyFSMm+iIiISHEp2GTfzA4GZgHNqEzy1wELwufGQEdgENAu0vRLYJi7z89WrIVCyb6IiIhIcSnIZN/MSoBFwL7hoTeBX7j7C3HqjwZ+C3w9PLQYGOjuuzIdayFRsi8iIiJSXFJJ9vNhU60zCRJ9B6YTjNTHTPQB3P1ZYBjwRHioN3BapoMUERERESk0+ZDsnxA+bwLOTGaE3t1LCT4kbAwPnZSRyEREREREClg+JPuDCUb1H3X39ck2cvcNwKMEc/y/Xkt1EREREZEGJx+S/Y7h8+IU2pa32T1NsYiIiIiIFI18SPZ3hM+tUmhb3uaLNMUiIiIiIlI08iHZX04wFWdkCm3L26xIXzgiIiIiIsUhH5L9GeHzIWY2PtlGZnYcMJRgvv+MWqqLiIiIiDQ4+ZDs30mQsAPcZ2Zja2tgZuOAf4QvHbgrQ7GJiIiIiBSsnG+qBWBmtwA/pDLpnwVMBeYD5Sv07A4cQLDM5hEEU38c+Lu7/0824y0E2lRLREREpLgU5A66AGbWjCC5P5bKhD9hk/D5WWBsuO6+RCjZFxERESkuhbqDLu7+JXA8cC2wlSCZT/TYClwHjFGiLyIiIiISW16M7EeZWQdgPDAK2Jdg+o4BGwjW1X8JmOruG3MVYyHQyL6IiIhIcSnYaTySfkr2RURERIpLQU7jMbO7w8e3Umh7hpnNM7P5GQhNRERERKSgNcl1AMBEgpty3wGeqWPbvQhW6NmW5phERERERApezkf262lA+Jzw6wsRERERkYYoKyP7ZtYEuAlomaDaqWY2MMlLNgZ6AIcTfCvwSb0CFBEREREpQllJ9t291MyWA38g9jr6BhwUPuqifGOtB+oXoYiIiIhI8cnaajxm1hh4AxiUxss68C9gorvvSuN1C55W4xEREREpLnm/9KaZ7QX0jh4CXiBI2m8H/p3EZRz4CtgMLHf3zemOsxgo2RcREREpLqkk+1ldjcfdPwU+jR6LBL3E3WdlMx4RERERkWKWD0tvnh0+v5bTKEREREREiox20C1SmsYjIiIiUlwKcgfddDCz5rmOQUREREQk3+TDNJ4KZtYM6Au0BkqouVmWEXxAKQFaALsDXwdOBDplL1IRERERkfyXF8m+mbUAbgAmknjjLRERERERSVJeJPvAg8DR1BzJT9ZXaYxFRERERKQo5HzOvpkdCxwTObQRmAu8E74uBWYRrNazrFrzncD5wD4ZDVJEREREpADlPNkHTo2U/wp0cffhwHHhscbA+e4+1N17Aj2BR8NzJcCB7r4qa9GKiIiIiBSIfEj2Dw2flwOXuPsuAHdfBqwIz40ur+zuy9z9RIKpPwacb2aDsheuiIiIiEhhyIdkvxPgwJPuXlbt3LzweViMdv8DfEmQ8J+TufBERERERApTPiT7rcLnFTHOLSRI5muM3Lv7emB6eH5oxqITERERESlQ+ZDsbwqfY8XyYfjcx2JtGQaLwudeaY9KRERERKTA5UOy/1n43CPGuSXhczOgd4zzX4bPbdIck4iIiIhIwcuHZH8OwVScseEOulGLI+XDYrTdL3wuzURgIiIiIiKFLB+S/Wnhc1fgQTPrVH7C3VcC5ctqXmxmJeXnzKwnMIHg5t7lWYpVRERERKRg5DzZd/fHgHfDl8cCy8zs55Eq/yQY+R8MzDazi8xsEsE3AuXfBDyfnWhFRERERAqHuXuuY8DM+gIvAx0IRupvcPcrwnOdgPeA9tWbhc/bgEHuvjSD8e0JXAyMIbgZuDHwaRjz3919dhr76g1cBHyTYGfg3YB1wJvAf4D7y/ciqOU6NX6x+fC7FhEREZHUxFqvxt1jLWJT2SZfEsAwof4dcBLwI3f/38i5w4CpQOdqzXYAp7n7IxmM6wTgXhLfBHwbQcxf1bOvnwB/BJokqPYWcJK7L05QR8m+iIiIZFxZaSmrH3+BTyZPZcPc+ezauJmSdm1of+hg9p44gS7jR9GoSaK0RuqioJP9cmbWHGjq7puqHe8AfJ9gx91mwALgznCn3UzFMgp4hmAkH+Bt4AmCDxmHAkdT+Q3Dbe5+YT36+iFwa+TQW8BMYAPQHzgeaBqe+wQ4yN1XJ7iekn0RERHJmK2LljDv9EvZ/NaiuHXaDOrLkPtvotX+PbMYWfEqimQ/X4QfOt4HuoWHrgeu8sgPzMyOAh4BWoaHRrn7jBT66kKwzGhLgmlMPwJurdZXn7Cv/uGhu9393ATXVLIvIiIiGbF10RLmjDydnWs31Fq3acf2DJsxhVZ9tS1SfaWS7Of8Bt089n0qE/1n3f1Kr5Ytu/tzwHmRQ9en2NdJVH5guN/db4nR12LgtMihU8xM34uJiIhIVpWVljLv9EuTSvQBdq7dwLwzfkpZqVZKz4WsJftmdns4FSdrzKy9md2WYvOJkfJvEtT7F8ENxADDwyVB62pgpPxivEruvgBYE75sRc17GEREREQyavXjLyScuhPL5gXvsWZanSc/SBpkc2T/fGCxmf3UzJrWWrsezKyZmV0KfABckEL7TsCQ8OVGglV3YgpH4KdHDp1Y1/6A6I29eyWIqynQOnxZBqxPoS8RERGRlH0yeWpK7Vak2E7qJ5vJ/i1AO+APwIdm9gMza5m4Sd2YWQcz+xWwlGBVm92BO1K41IFU3nj7WhKr7MyNlIem0N/CSPn7ZtYxTr0fA83D8kx335FCXyIiIiIp2zB3fmrt5sxLbyCSlKwl++7+I4JNs1YCexMk/6vM7E4zGxXdHbcuzKy5mZ1gZv8mWKXmemAPYDUwwd1/mMJl94uUk1m/P7qD735xa8U3heAbBIA9gTfM7Htm1s3MWprZYDP7X+D3YZ0NwKUp9CMiIiJSL7s2bs5qO6mfrN7g6e5Pm9n+wCSCUepWwLnh4wsze4lgSc23gUUE01Q2AVsJlttsTfBBoSfBNJuhwDAql6Q0YCdwO8HKOan+qdojUl6RRP2VkXKXunbm7pvMbALwGMGNuvsA/xen+vPAj9393Tjn44p1B3cyrr76aiZNmpRSWxERESkuJe3asGv9xpTaSfZlfTUXd98G/MLMbgWuAs4ASggS/2PCR12UZ7BfAvcBv0nD2vttI+VtSdSP1mkbt1YC7v6CmR0A/BY4JU61jcBzJPdtg4iIiEjatT90MGumz6x7u2FDaq8kaZezpTfdfXm4Tnx34GqCdeYthcd7wOVAd3c/L02bbDWLlLcnUT9ap1ncWgmYWVvgB8Do8NBLBKsAXUkwzWcLwT0PvwMWmFnvVPoRERERqY+9J05IqV23FNtJ/eR8nXZ3/wy4DrjOzPoDI4FDgP0JprO0JUigtwObgWUEm13NBWaE68+nW1k92tZ55yoz2wN4ChhEMG1pjLs/Va1OJ4JvLr4F9AGeNLPB7v5FPWIVERERqZMu40fRZlDfOi2/2eaAfnQeNzKDUUk8OU/2o9x9IcHKNLfmOJStkfJuSdRvHimnskLOfwgSfYDvVk/0Adz9czM7HphNcL9Cb+ASUt/IS0RERKTOGjVpwpD7b2LOiNOS3kF3yJQbadQkr9LOBkM76MYWTfZbJFE/WmdTXToys28Ah4UvZ7n7k/HqhkttXhE59L269OXuKT10c66IiIhEtdq/J8NmTKHNAf0S1mtzQD+GzbyfVvunsueopIM+YsUWXV1nzyTqRzfCWlXHvr4ZKT+bRP3ngV0ENzXvZ2at3H1rLW1ERERE0qpV314cNvdB1kybwYrJU9kwZx67Nm6mpF0b2g8bQreJE+g8bqRG9HNMP/3Yosta9kiifvdI+YM69hX9MFHrd2HuvtPMNgCdw0NtqPpNhIiIiEhWNGrShK4njKbrCaNrryw5oWk8sb1N5Y22B1vtC9QPi5TfqGNf0WU794pbK2Rmjam6vOf6OvYnIiIiIg2Ekv0Y3H0j8HL4sjNwcLy64QeBYyOHatxcW4voNwHHxq1V6RtULu/5QTiPX0RERESkBiX78d0fKU9KUO80gmVCAV5PYWfbx4GvwvJgMzs5XsVwVP+6yKH/1LEvEREREWlAlOzHN5lgoy+AMWZ2s5lVucfBzI4C7ogcurqunbj7CuDvkUN3x0r4zaw1weZah4eH1gE31rU/EREREWk4zL3Oe0A1GGY2imBaTkl4aDHwCMENsUOBMQS7+AL83d3Pj3Od6A/5bHefXO18C2AmVacLLSBYeWcd0BM4HugYntsJHOPuMxLEXuMXq9+1iIiISOGKdRupuye8t1TJfi3CjazupepNsdXdCfzQ3b+KdbK2ZD+s0xq4CzillpA+Ab7j7q/UEreSfREREZEiomQ/Q8ysC3ARMA7Yl2DH3NUEu9ne7u4za2lfa7IfqTsUOBs4Atib4GbcdQQj/Y8B9yRzU66SfREREZHiomRfKijZFxERESkuqST7ukFXRERERKRIFdQOuma2N8EGVl2A1sAmguk0c9x9ZS5jExERERHJNwWR7Ic3yV4NHJCgzhvANe7+RNYCExERERHJY3k/Z9/MbgR+TOUSlw5sJlj+sjXQJlLdgf/n7r/MapB5SHP2RURERIpL0c3ZN7MLgJ8QJPrPAccBHdy9vbt3c/d2wO7ACcCMsN7PzOycnAQsIiIiIpJH8nZk38yaA6sIRu8vd/ffJ9HmV8BvgA3Anu7+ZWajzF8a2RcREREpLsU2sn8ywRSdx5JJ9AHc/XfA40C7sL2IiIiISIOVz8n+SII5+H+qY7v/RzCdZ1TaIxIRERERKSD5nOwPAXYAc+rYbjawPWwvIiIiItJg5XOy3xVY5u5f1aVRWH8ZsEcmghIRERERKRT5nOy3Jdg0KxWbwvYiIiIiIg1WPif7zYDSFNt+BTRNYywiIiIiIgUnn5N9ERERERGphya5DqAW+5jZVam0S3skIiIiIiIFJp831SojWHozpeaAu3vjNIZUULSploiIiEhxSWVTrXwe2X+R1JN9EREREZEGL29H9qV+NLIvIiIiUlxSGdnXDboiIiIiIkUqn6fxiIiIiFBWWsrqx1/gk8lT2TB3Prs2bqakXRvaHzqYvSdOoMv4UTRqopRGJJa8n8ZjZnsC44CWwGvu/nLkXDfgCuAgoDHwJvAXd1+Qi1jziabxiIhIMdi6aAnzTr+UzW8tilunzaC+DLn/Jlrt3zOLkYlkXyrTePI62TezU4C7geaRw1Pc/Uwz2x+YC7QhWH2nXClwmrs/mL1I84+SfRERKXRbFy1hzsjT2bl2Q611m3Zsz7AZU2jVt1cWIhPJjaJK9s2sD/A2wU64G4GlQF+CxP8C4DRgBPAM8DjBlKQJwOHAVqCvu6/Mdtz5Qsm+iIgUsrLSUl4ZOiHhiH51bQ7ox2FzH9SUHilaxXaD7k8IEv2HgD3c/SCgBzAfuAw4Avhfdz/G3W9195vd/QjgXwRTfs7PRdAiIiJSf6sff6FOiT7A5gXvsWbajAxFJFKY8jnZHwXsAi529y8B3H0t8GugJ1AWlqv7Zfg8OhtBioiISPp9MnlqSu1WpNhOpFjlc7LfDVju7quqHX8tfP7E3VdXb+TuK4BlwH6ZDU9EREQyZcPc+am1mzMvvYGIFLh8TvYbAzXuyAlH9wESzcdfQ3DjroiIiBSgXRs3Z7WdSLHK52R/LdAlwfmyBOeaAl+kNxwRERHJlpJ2qY3ZpdpOpFjlc7K/AtjDzJrFOHcicHmCtvsANab4iIiISGFof+jg1NoNG5LeQEQKXD4n+28QLKd5ePUT7v5odHOtKDPbD9idYNlOERERKUB7T5yQUrtuKbYTKVb5nOw/CbwAdK1ju++FzzPTGo2IiIhkTZfxo2gzqG+d2rQ5oB+dx43MUEQihSlvN9VKlZl9HWgFLHD3jTkOJ2e0qZaIiBS6re8vZc6I05LfQXfm/bTav2cWIhPJjaLaQVfqR8m+iIgUg62LljDvjJ+yecF7ceu0OaAfQ6bcqERfip6SfamgZF9ERIpFWWkpa6bNYMXkqWyYM49dGzdT0q4N7YcNodvECXQeN5JGTZrkOkyRjFOyLxWU7IuIiIgUl1SS/bz6GGxmA4C9gA7AemClu7+T26hERERERApTzpN9M9sDuJJg7fzOMc5/DjwMXO/un2Y5PBERERGRgpXTaTxm9n3gJqAFEP0KwmO83g781N3vyF6EhUvTeERERESKSyrTeHK2zr6ZXQ7cAbSMdTrGsRbAbWb264wGJiIiIiJSJHIysm9m44FHCUbsIUjupxFM13mXYL5+O6A/cDxwQqSeA99290ezF3Hh0ci+iIiISHEpiNV4zGw3YCnBzrgOfAac5O5zErT5OvAgsA9Bwr8G2Nfdt2c+4sKkZF9ERESkuBTKNJ5zqUz01wPDEyX6AO7+BnA4sDo81Ak4P5NBioiIiIgUulwk+6dFype6+/JkGoUr8fw4cuj0tEYlIiIiIlJksjqNx8zaEIzmG8Eo/V5exwDM7COgO8E3A53dfV3aAy0CmsYjIiIiUlwKYRpPv0ifT9U10Q89GSkPqH9IIiIiIiLFKSsj+2b2QljsCAwkGJVfBiQ1haeabkCv8BrvEdys6+7+zfpHWjw0si8iIiJSXPJ2NR4zK6NymU2oXEIz5UuGz+Wbb7m7N67H9YqOkn0RERGR4pJKst8kY9HUVD2QhIGleE0REREREQllK9m/JnzeD/guwYj8S8CMFK51BDAyvMZ/CKbyiIiIiIhINdlejWcQMJ8gUX/E3SekcI0pVH5gOMjd56U1yCKhaTwiIiIixSVv5+xXdGbWDNgA7AZsA/Zw9y11aN8cWAW0AXYAHdx9RyZiLXRK9kVERESKS94vvenuXwLPhS+bA5fV8RI/JUj0HXghW4m+me1pZr8zs/lmtsXMtpnZYjO7x8yGp7kvM7OTzOw/ZrbMzLaHfb5lZv/PzHqksz8RERERKV5ZHdkHMLMTganhy6+ACe7+WBLtvgVMI7jPwIGT3P3hjAVa2e8JwL0EHzLiuQ34kbt/Vc++9gH+BQxLUG07cKG731PLtTSyLyIiIlJE8n4aT0WnZm8AgwlW0ykFrgZuDEf+q9ctAX4E/AZoSpDoz3f3r2chzlHAM0D5sp5vA08QTCE6FDiayhWBbnP3C+vRVzeCm5a7h4c2E3woWkqwP8HxQI/wXPmHnYcSXE/JvoiIiEgRKaRkvz/wX4KpPOVr7q8FpgPvABsJRtIHAMcCXahMqrcBh7j7wgzH2Bx4n2ATL4Drgauiu/6a2VHAI0DL8NAod09lhSHMbDowJnz5PHCyu2+InC8h+Abh++Ghz4B93H1XnOsp2RcREREpIgWT7AOY2WiCkevyRDneRlvlx41gCssEd38qC/FdDPwlfPmsu38rTr3vAveHL2e7+2Ep9DUeKJ/KNBc40t13xqjXlODbhf3CQ8fHmwKlZF9ERESkuOT9DbpR7v4swXr5b1H75lhGMOI/MhuJfmhipPybBPX+ReVa/8PNrGcKfZ0bPn8F/CBWog8QHv8b8C7wItAqhb5EREREpIHI2ch+RQDBR5RTgJOAUUD7yOlNBBtvTQX+6e5lWYqpE7Ca4EPGRqBjoptvzez/EawUBPAzd/9THfpqC6whuB/hKXcfU0uTZK+rkX0RERGRIpLKyH62dtCNK5wD/0D4wMx2I0j4N7r79hyFdSCV3za8lsQqO3Mj5aEp9NU0LD9bx7YiIiIiInHlbBpPPO6+w91X5TDRh8o58RCshlOb5XHaJuNrkfK7AGa2r5n9Nlxbf7OZbTKzN8zsqvCbABERERGRWuVdsp8n9oiUVyRRf2Wk3KWOffWNlFeZ2Q8I7k/4FcEHgdYEKxMdCFwDLDazI+vYBxB89ZPKY9KkSal0JyIiIiI5lvNpPHkqOnq+LYn60Tp1HXlvFymfDvwiLL8HPAmsB3oBJxBMb+oEPGNmI9x9Th37EhEREZEGRMl+bM0i5WSmE0XrNItbK7boijq/AMqAnwN/jt6QbGY/I7iv4SiCOf4PmNl+7r6jjv2JiIiISAOhaTyx1WfVn7ouedOi2uvr3f3G6isPuft64ERgSXioG1WXBxURERERqULJfmxbI+XdkqjfPFKu60h7tP4G4IZ4Fd19K/DHyKHj69iXiIjEUVZayqqHn+G14y/gmS5DeaJZP57pMpTXjr+AVQ8/Q1lpaa5DFBGpM03jiS2a7FcfeY8lWmdTHfvaEinPSmIVouci5QPr0pHW2RcRiW3roiXMO/1SNr+1qMrxXes3smb6TNZMn0mbQX0Zcv9NtNo/lb0TRURyQyP7sUVX19kzifp7Rcqr6tjXujj9xvNJpLx7HfsSEZFqti5awpyRp9dI9Kvb/NYi5ow4ja2LliSsJyKST5Tsx/ZupNwjifrdI+UP6tjXwki5XRL1o9/GbIlbS0REalVWWsq80y9l59oNSdXfuXYD8874qab0iEjBULIf29tU3mh7sMXam7iqYZHyG3Xsa36k/LV4lSL2jZST2QNARETiWP34C7WO6Fe3ecF7rJk2I0MRiYikV94m+2bWyMy6mFk/M9s9ejzTfbv7RuDl8GVn4OB4dcMPAsdGDj1Vx+7+C6wJy18zswG11B8bKb9Yx75ERCTik8lTU2q3IsV2IiLZllfJvpk1MbOzzex5YDPBHPZ3gLMi1eaY2T/NbGCGw7k/Up6UoN5pwP5h+XV3fzdB3RrcvRSYEjn053jfJJhZR+CSyKH76tKXiIhUtWHu/NTazZmX3kBERDIkb5J9M/sawVz5u4ARBCvcxEp6+wOnAG+Y2U8yGNJkKte0H2NmN5tZldWLzOwo4I7IoatT7Ou3VI7uHwX8n5lVWQXIzLoA04Au4aFp7j43xf5ERATYtXFzVtuJiGRbXiy9GY7SvwS0pjLB/5Jqu9GG03laEsynLwH+ZGY73f22dMfk7jvM7HyCaTklwI8Ikv5HCJbmHAqMicT7d3efHutaZhZd8/Jsd59cra+1ZnYm8CjBez4j7Gsq8DHBPP2TgLZhk9XA+fV9jyIiDV1JuzbsWr8xpXYiIoUg5yP74Wj5VKANQeL8BMENr22r13X3dcAhQPmdUQb8wcz2zkRs7v4CcDKVa+f3AX4OXEMwT7880b8T+EE9+3oaOIYguYdgWc3zgeuBc6n8ebwFHOLudV3iU0REqml/6ODU2g0bkt5AREQyJOfJPvA9giTagZvdfby7v+ruO2NVdvfX3f0o4PbwUHPgvEwF5+6PEszJv55g5ZxNwE6ClXAeAEa6+wXu/lUa+poJ9AUuAl4APgNKCXbWnQFcABzs7h/Hu4aIiCRv74kTUmrXLcV2IiLZZrneVdXMHidYYeZToFc0yTezMoIPAT939xurtWtOMKe+C/Bfd48uf9ngVZs6BGgHXRGR6spKS3ll6IQ6Lb/Z5oB+HDb3QRo1yYuZsCLSgMRaw8XdEy4Rnw8j+0MIEvpp8UbzY3H37cDjBFNp9stQbCIiUsQaNWnCkPtvomnH9knVb9qxPUOm3KhEX0QKRj4k+x3D5+UptC1v0ypNsYiISAPTav+eDJsxhTYH9EtYr80B/Rg2835a7d8zS5GJiNRfPgxNbAE6ENygW1edwudNCWuJiIgk0KpvLw6b+yBrps1gxeSpbJgzj10bN1PSrg3thw2h28QJdB43UiP6IlJw8uFfrY8IVp45oi6NIjvXengNERGRlDVq0oSuJ4ym6wmjcx2KiEja5MM0nqfD52FmNqoO7X5CsIoPwHNpjUhEREREpAjkQ7J/B7AjLP/LzL6RqLKZNTazy4A/hId2AX/PYHwiIiIiIgUp59N43P0TM7sS+CPBdJ6ZZjYbeDNS7RAz+zEwgGCZzq4Eq/A48Ed3X5bdqEVERERE8l/O19kvZ2a/J9idFoIkPmH18Pkf7n5W5qIqXFpnX0RERKS4FOo6+wC4+y+BE4B3CZL5RI9PgAuU6IuIiIiIxJc3I/tRZjYMOBLoT7AsZxNgA7AUeBF43t1Lcxdh/tPIvoiIiEhxSWVkPy+Tfak/JfsiIiIixaWgp/GIiIiIiEh65TzZN7O7w8e3Umh7hpnNM7P5GQhNRERERKSg5XzpTWAiweo77wDP1LHtXsABwLY0xyQiIiIiUvByPrJfTwPC54RzlUREREREGqKsjOybWRPgJqBlgmqnmtnAJC/ZGOgBHE7wrcAn9QpQRERERKQIZSXZd/dSM1sO/IHYG2YZcFD4qIvyXXQfqF+EIiIiIiLFJ2tLb5pZY+ANYFAaL+vAv4CJ7r4rjdcteFp6U0RERKS45P06+2a2F9A7egh4gSBpvx34dxKXceArYDOw3N03pzvOYqBkX0RERKS4pJLsZ3U1Hnf/FPg0eiwS9BJ3n5XNeEREREREilk+LL15dvj8Wk6jEBEREREpMlmdxpMpZtbc3bfnOo58omk8IiIiIsUl76fx1MbMmgF9gdZACTXXzzeCvQFKgBbA7sDXgROBTtmLVEREREQk/+VFsm9mLYAbCHbTTbQWv4iIiIiIJCkvkn3gQeBoUt8J96s0xiIiIiIiUhQa5ToAMzsWOCZyaCMwF3gnfF0KzCK4gXdZteY7gfOBfTIapIiIiIhIAcp5sg+cGin/Feji7sOB48JjjYHz3X2ou/cEegKPhudKgAPdfVXWohURERERKRD5kOwfGj4vBy4p3wnX3ZcBK8Jzo8sru/sydz+RYOqPAeebWTp35RURERERKQr5kOx3ItgV90l3L6t2bl74PCxGu/8BviRI+M/JXHgiIiIiIoUpH5L9VuHzihjnFhIk8zVG7t19PTA9PD80Y9GJiIiIiBSofEj2N4XPsWL5MHzuY7F2EYBF4XOvtEclIiIiIlLg8iHZ/yx87hHj3JLwuRnQO8b5L8PnNmmOSURERESk4OVDsj+HYCrO2HAH3ajFkfJhMdruFz6XZiIwEREREZFClg/J/rTwuSvwoJl1Kj/h7iuB8mU1LzazkvJzZtYTmEBwc+/yLMUqIiIiIlIwcp7su/tjwLvhy2OBZWb280iVfxKM/A8GZpvZRWY2ieAbgfJvAp7PTrQiIiIiIoXD3D3XMWBmfYGXgQ4EI/U3uPsV4blOwHtA++rNwudtwCB3X5qlcAuCmdX4xebD71pEREREUhNrvRp3j7WITYWcj+wDuPsiguU1/wHsAJZGzn0OHA98TpDglz8I656hRF9EREREpKa8GNmPMrPmQFN331TteAfg+wQ77jYDFgB3hjvtSjUa2RcREREpLqmM7Oc82TezrwFfufvCnAZSZJTsi4iIiBSXQp3GcxXwtpm9bWYn5DoYEREREZFikQ/J/lCCOfj9Cebli4iIiIhIGuTDNJ5twG4Eq/C0cvftOQ2oSGgaj4iIiEhxKdRpPB9Eyt1yFoWIiIiISJHJh2T/OoJRfYA/mlnjXAYjIiIiIlIscj6NB8DMvg3cQbCp1jvA3wl2yP0I2OjuZTkMryBpGo+IiIhIcSnUpTenh8XdgYOpHOWvC3f3JumLqvAp2RcREREpLoWa7JdRM8FPGHQM7u6a/hOhZF9ERESkuKSS7OfDaPjHpDaaLyIiIiIiCeR8ZF8yQyP7IvmrrLSU1Y+/wCeTp7Jh7nx2bdxMSbs2tD90MHtPnECX8aNo1CQfxmJERCSfFOQ0HskMJfsi+WnroiXMO/1SNr+1KG6dNoP6MuT+m2i1f88sRiYiIvmuUNfZz3tmtqeZ/c7M5pvZFjPbZmaLzeweMxuehf57mNkmM3Mzm5zp/kQkM7YuWsKckacnTPQBNr+1iDkjTmProiVZikxERIqVkv1amNkJwHvAZcABQCugOdAbmAi8Yma3Zmp/ADNrBPwDaJOJ64tIdpSVljLv9EvZuXZDUvV3rt3AvDN+SllpaYYjExGRYqZkPwEzGwU8SGWi/TZwAzAJeIrKG4t/CPwlQ2H8Ejg8Q9cWkSxZ/fgLtY7oV7d5wXusmTYjQxGJiEhDoGQ/DjNrDkwGykfsrwcOcPdfufs17j4G+BbwRXj+h2Y2Ms0xHAhck85rikhufDJ5akrtVqTYTkREBJTsJ/J9oFtYftbdr/Rqd7i6+3PAeZFD16er8/DDxn1ACbAzXdcVkdzYMHd+au3mzEtvICIi0qAo2Y9vYqT8mwT1/kUwpx9guJmla/mMPwL9gK/Q6L5Iwdu1cXNW24mIiICS/ZjMrBMwJHy5EXg5Xt1wtH965NCJaej/GODC8OUfgNn1vaaI5FZJu9TusU+1nYiICCjZj+dAoHzN0tfc/ata6s+NlIfWp2Mz6wjcE76cT3AzsIgUuPaHDk6t3bAhtVcSERGJQ8l+bPtFykuTqL88TttU3Al0Bb4Evufumq8vUgT2njghpXbdUmwnIiICSvbj2SNSXpFE/ZWRcpdUOzWzc6icBnSFu7+T6rXiXD+lx6RJk9IZhkiD1GX8KNoM6lunNm0O6EfncWld5EtERBoYJfuxtY2UtyVRP1qnbdxaCYQ39t4cvpwJ3JjKdUQkPzVq0oQh999E047tk6rftGN7hky5kUZNmmQ4MhERKWY5/1/EzM6sR/MygukuW4HVwAfuvjUNYTWLlLcnUT9ap1ncWnGEu+/eR7A772ZgYvVlPkWk8LXavyfDZkxh3hk/ZfOC9+LWa3NAP4ZMuZFW+6drcS8REWmocp7sE2xcla7E1s1sAfBnd/9HPa5TVp8YUmhzOTAsLP/I3ZcnqiwihatV314cNvdB1kybwYrJU9kwZx67Nm6mpF0b2g8bQreJE+g8bqRG9EVEJC3y5X8Tq71K0tcZDEw2sxOBU9y9NIXrRL8d2C2J+s0j5R116cjMDgauCl8+7O731qW9iBSeRk2a0PWE0XQ9YXSuQxERkSKXD8n+d4HGBBtX7UOQsG8GngTeAtaFx9oBA4CjgU4EI+jbgIcJdpltC/QPrwFwPPAn4McpxBRN9lskUT9aZ1OynZhZC4LpO00IpiGdn2zbVGhmkIiIiEjDkvNk390fMLO7ge4ECfzvgOvdPeZceTNrAlwE/J4gyV7t7j+PnD8B+F+gPXCRmd3h7gvrGFZ0dZ09k6i/V6S8qg79XEHlUp2vARPNYn7J0StSHmBmPwvLm9z973XoT0REREQakJwn++FusRMJEv2fuvufE9UPp+X82czWAv8HXGpmj7r7y+H5R8zsc+ClsMnZwM9jXy2udyPlHknU7x4pf1CHfqIfEsaFj9ocFD4gWN9fyb6IiIiIxJQPS29eED6/XVuiH+Xu9xHsXGvAj6qdewV4MTx3ZAoxvU3ljbYHW5zh9ohhkfIbKfQnIiIiIpJ2+ZDsDyVIrKen0Pb58PnwGOfeDJ/3inEuIXffCLwcvuwMHByvbvhB4NjIoafq0M9Ed7faHkB0V517I+d6JP2mRERERKTByYdkf/fw+YsU2n4ZPsfapWZt+NwxhesC3B8pT0pQ7zRg/7D8uru/m6CuiIiIiEjW5EOyvz58PihhrdgODJ/XxTjXJXxOdZOtycCSsDzGzG4Obw6uYGZHAXdEDl2dYl8iIiIiImmXD8n+fwnm1o81s68n28jMDiC4odWpnLITdVj4vCTGuVq5+w6CpTB3hYd+BCw0sz+Y2VVm9gTwDNAyPP93d485FcnMPPKYmEo8IiIiIiJ1lQ/J/j3hc2NgmpkdWlsDMzsQeJzK1YT+Ue38aQSj/g7MSDUwd38BOJnKtfP7EKzscw3BPP3yG3fvBH6Qaj8iIiIiIpmQ86U3w6UypxGM0ncGXjKzJ4FHgXeAjQQfStoTbKo1liDRbhxeYqa7/wfAzPYkWGO/fFvKUuCuesb3qJntT7C2/zhgX4Idc1cDs4Hb3X1mffoQEREREckEy4ddVc1sN4Idc8uXyawtqPIR9TnAGHffHF5nPMGHBA/rXOPu16Q/4vxnZjV+hvnwuxYRERGR1MRaDT5cuTGufJjGUz4//ijgJ8AGgkQ90WMzwe6zR5Yn+qHy3Wg3Az9vqIm+iIiIiAjkych+VDjKfxTBVJ3eBKvqNCNYtWchMBN4yN23xWjbD2gLvOHuu6qfb0g0si8iIiJSXFIZ2c+7ZF/SQ8m+iIiISHEp2Gk8IiIiIiKSfkr2RURERESKVM6X3qzOzPYCugK7EXwYSfjVRDl3fzGTcYmIiIiIFJq8SfbN7DzgpwQbV9WVk0fvRUREREQkH+RFgmxmtwL/U/4yl7GIiIiIiBSLnCf7ZjYC+AGVG2FtAd4APgdqLK8pIiIiIiLJyXmyD3w/Ur4XuMjdv8hVMCIiIiIixSLn6+yb2XKgG7AY6Ou5DqhIaJ19ERERkeJSqOvsdyaYwvOoEn0RERERkfTJh2R/U/i8IadRiIiIiIgUmXxI9heFz71zGoWIiIiISJHJh2T/3wSr8JxgZm1yHYyIiIiISLHIh2T/78A7QHvgHjMryXE8IiIiIiJFIeer8QCYWQ/gKYLdcxcDdwOvAqtJcq19d/84U/EVIq3GIyIiIlJcUlmNJ+fJvpktDIutgL3Dcl2DcnfPhz0D8oaSfREREZHiUqjJfhmVu+emyt29cZpCKgpK9kVERESKSyrJfj6Mhr9I3UfyRURERESkFjkf2ZfM0Mi+iIiISHEp1B10RUREREQkA5Tsi4iIiIgUqazN2TezfcrL0WUyo8frQ0tvioiIiIhUlbU5+5FVd6oskxk5Xh9aerMazdkXERERKS6FsBpPvGDqs+ymiIiIiIjEkM1kP94Sm1p6U0REREQkA7T0ZpHSNB4RERGR4qKlN0VEREREsmTWrFnMmjUr12EkpJH9IqWRfREREZHMWbVqFXvvvTdmxooVK9hjjz0y3qdG9kVEREREsuC+++6jrKyMr776iilTpuQ6nLiyufRmWtbTj0fr7FelkX0RERGRzHB3BgwYwKJFiwDo168f77zzTsyR93RKZWQ/F+vsZ4LW2a9Gyb6IiIhIZrz22msccsghNY4ddNBBGe23EKbxWAYfIiIiIiIZd++99yZ1LB9kc2R/JolH9gcB7QgS9zLgTeBtYC2wE2gL9AOGAS3Cay0GngRw90syE3lh0si+iIiISPp9+eWXdO3alY0bN1Y53r59e1atWkWzZs0y1nde76Dr7iPinTOz84BvECT69wBXufunceq2AX4ZPvoA/3D336Q9YBERERGRah5//PEaiT7Ahg0bmDZtGhMmTMh+UAnkfOlNMxsAvAGUANe5+6Qk210I/JXgW4BR7v5ixoIsQBrZFxEREambFStWcMwxxySs89lnn7F+/fqY5zp06EDXrl0Ttn/qqafo1q1bSvHl9ch+ApcATYFFwDXJNnL3W83sbOBA4CeAkn0RERERSdkrr7zCwoULU26/fv36uB8Eys2ePZtTTz015T7qKh/W2T+KYP79NK/70PNT4fPQ9IYkIiIiIg3Nqaeeyv/+7//SokWLtF+7RYsW3H333Zxyyilpv3Yi+ZDsl3/XsTGFtl+Gz7unJxQRERERaajMjHPOOYf58+endRnNgw46iPnz53P22WdnfC3+6vIh2d8cPn8thbaHhs9r0xSLiIiIiDRwffr04ZVXXuGyyy7DzFJK0Mvb/epXv2L27Nn06dMnA5EmEUeub9o0syeBo4EdwAHuvjjJdkcAM8KXD7p79iY/FQDdoCsiIiJSfzNmzOCMM85g5cqVdWq31157cd999zFixIi0xZLXO+jGDcDsu8AUgnn7y4Dx7p7wzggzGwX8G+gQtvuWuz+f4VALipJ9ERERkfT4/PPP6dKlS9K5lJmxevVqOnXqlNY4CnU1nn8B/0Owzn4P4E0ze4xgs6z3qJzL34Fg460TgW8STEFy4P+U6IuIiIhIpnzyySd1GjR1dz799NO0J/upyHmy7+5uZscDLwP9CZbhnBA+4in/BPMU8P3MRihSmMpKS1n9+At8MnkqG+bOZ9fGzZS0a0P7Qwez98QJdBk/ikZNcv5PgIiISN6bM2dOSm0GDx6c/mDqKB9u0MXdNwKHADcQrLBjtTw2ARcB49z9qxyELJLXti5awitDJ/DmKRezZvpMdq3fCGVl7Fq/kTXTZ/LmKRfzytAJbH1/aa5DFRERyXtz587NSptMyPmc/erMrD1wDDAa6A50IZiu8xnBnP4ngKfcfUeuYiwEmrPfcG1dtIQ5I09n59oNtdZt2rE9w2ZMoVXfXlmITEREpDD17t2bJUuWVDlmZhW5VbRc/rpXr14sXpzUujNJK8gbdCUzlOw3TGWlpbwydAKb31qUdJs2B/TjsLkPakqPiIhIDJ9//jmdO3eucbxFixbccsstuDsXX3wx27Zti9m2Y8eOaYsllWQ/L6bx1JeZNc91DCL5YPXjL9Qp0QfYvOA91kybUXtFERGRBijWdJzoJlmJNuHKh6k8eZXsm1kzMzvAzA43s5FmNqra45tmNtrMjjWzk8zsAjO7E/g417GL5INPJk9Nqd2KFNuJiIgUu+jNufE2yerTpw+zZ8/mV7/6VZXR91Ru7E23vPje3sxaENycOxFomdtoajKzPYGLgTFAL6Ax8CnBCkJ/d/fZaezrEOAc4HCgG9Ac2AC8S3C/wt/dfXP8K0hDtmHu/NTazZmX3kBERESKxLx5wf+RtW2SVVJSwm9/+1u+9a1vcfrpp7Ny5UrefPPNLEYaW17M2Tez6QS76NZ9L+LAV+5eksaQKpjZCcC9QJsE1W4DflSflYHMrCXwN+B7tVRdC5zu7s/Ucj3N2W+AnmjWD8rK6t6wUSPGfvle+gMSEREpcKtWreJvf/sbP/nJT+jQoUNSbdavX8+f//xnfvCDH7DHHnukLZaCvEHXzI4FphGsuGMEm2gtAloBA4FS4BWgBdCJYOOtcjsJluB8wt1XZSC2UcAzBCP5AG8TjK7vAA6l6geU29z9whT7aRxe9+jI4ZnAbOALoCdwArB7eG4XMCbRZmJK9humZ7oMDZbZrKOSDu341upX0x+QiIiIpE2h3qB7aqT8V6CLuw8HjguPNQbOd/eh7t6TIPF9NDxXAhyYoUS/OTCZykT/euAAd/+Vu1/j7mOAbxEk4wA/NLORKXZ3PpWJ/npghLuPdPcr3P237v59YF/g4bBOCXCvbkyW6tofOji1dsOGpDcQERERyQv5kOwfGj4vBy5x910A7r4MWBGeG11e2d2XufuJwIMEo+rnm9mgDMT1fYI58wDPuvuVXm1o3N2fA86LHLo+xb5+Gimf5e6zqldw9y3Adwi+XQDYi6oflETYe2Kijafj65ZiOxEREclv+ZDsdyKYwvOku1efbFx+1+CwGO3+h8rdds/JQFwTI+XfJKj3L6B8svNwM+tZl07MbADBTb8AH7j7tHh13X0nwbz+ct+sS19S/LqMH0WbQX3r1KbNAf3oPC7VL6VEREQkn+VDst8qfF4R49xCgmS+xsi9u68Hpofnh6YzIDPrBJTPa9hIsOpOTOFo//TIoRPr2N3ASPm1JOpHt29L3x0fUhQaNWnCkPtvomnH9knVb9qxPUOm3KgNtURERIpUPiT7m8LnWLF8GD73sVh3JAQ38kLlyHi6HEjljbevJbHKTnTHhLp+8JgK7EMwnen3SdTfM1LeWse+pAFotX9Phs2YQpsD+iWs1+aAfgybeT+t9q/Tl1EiIiJSQPJhOO8zoANVV9kpVz6K3QzoDSyudv7L8DnRspip2C9SXppE/eVx2tbK3UsJvtWI9c1GLNHJ1e/WpS9pOFr17cVhcx9kzbQZrJg8lQ1z5rFr42ZK2rWh/bAhdJs4gc7jRmpEX0REpMjlw//0c4ABwFgza+buX0bORZP7w6iZ7Jcn1qVpjik6PSaZJHxlpNwlzbFUMLPDgLGRQ3Xa9jT2lyO1u/rqq5k0aVJKbSV3GjVpQtcTRtP1hNG1VxYREZGilA/TeMpvSO0KPBjOlwfA3VcC5ctqXmxmFRtnhTfCTiC4uTc6sp4ObSPlbUnUj9ZpG7dWPZhZR+AfVE4vmubuud+WTURERETyVs6TfXd/jMrpKMcCy8zs55Eq/yRIcAcDs83sIjObRPCNQLOwTtzNpVLULFLenkT9aJ1mcWulyMxaA48TrLUPwU3DP053PyIiIiJSXPJhGg/AyQQr3nQAdgPaRc79nmAZzPYEN84eGB4vH+HeDvw5zfFUXwK0LtK6Ta2ZtSPYXbd8P4Iy4Ex3T+ZeAhERERFpwHI+sg/g7osIltf8B7CDyE2x7v45cDzwOUGCX/4grHtGBhLf6Co3uyVRP7qT7Y50BWFmewIvAsPDQ2XA99398XT1ISIiIiLFK19G9svn559lZv8DNK127hUz60+wq+2hBFNlFgB3hjvtpls02W+RRP1onU1xa9WBmQ0hmLqzV3ioFDjH3f+R6jWrbQAsIiIiIkUub5L9cu6+nRjz5MNNtP6QpTCiq+vsGbdWpb0i5VVxayXJzI4D7gdahoe2A98J728QEREREUlKXkzjyUPR9et7JFG/e6T8QX06NrOLgIepTPTXAqOU6IuIiIhIXeXdyH45M+sF9CS4adcJVqBZ6u4fJmqXJm+HfRpwsJmZJ54DMyxSfiPVTs3scuA3kUOLgWOz9J5FREREpMhYPs3jNrMOwCXAOQTr7seyFngAuN7d12QwlheBb4Qvh7r7f+PUM+A9YP/w0EB3r/POtmb2I+DmyKFXgXHuvrau1wqvV+MXm0+/axERERGpm1gbpLp7wl1T82Yaj5kdQTB95nKCRN/iPDoBFwILzOyoDIZ0f6Q8KUG906hM9F9PMdE/HLgxcugF4JupJvoiIiIiIpAnI/tmdjAwi2CVnfJPJ+sIVtxZBzQGOhIsz9ku0vRLYJi7z89ATLsB7wC9wkN/AX7q7qWROkcBj1A5v36su0+vYz9NgfepvDdgAXC4u2+N2yi562pkX0RERKSIpDKyn/Nk38xKgEVU7g77JvALd38hTv3RwG+Br4eHFhNMndmVgdhGAU8BJZG+HiFYmnMoMIbKDyd/d/fz41wn+kM+290nR85dANweOX8XQfKfjE/c/V9J9Ako2RcREREpZIWa7J8L/J3ghtgngRNrS9zNrAnBijVjw3bnuPu9GYrveOBeoG2CancCP3T3r+JcI1GyP4fK3XHr6hV3PzyJPgEl+yIiIiKFrFDn7J8QPm8CzkxmhD6cSnMmwQo9ACdlJLKgr0cJ5uRfD8wniHMnsILgRuGR7n5BvEQ/CV9LR5wiIiIiItXlw8j+CoKNq/7P3c+uY9t7gLOAz9w9mc2vGgyN7IuIiIgUl0Id2e8YPi9OoW15m93TFIuIiIiISNHIh2R/R/jcKoW25W2+SFMsIiIiIiJFIx+S/eUEK9qMTKFteZsV6QtHRERERKQ45EOyPyN8PsTMxifbyMyOI1j+0iPXEBERERGRUD4k+3cSJOwA95nZ2NoamNk44B/hSydYm15ERERERCJyvhoPgJndAvyQyqR/FjCVYKnL9eGx3YEDCJbZPIJg6o8TbGb1P9mMtxBoNR4RERGR4lKQm2oBmFkzguT+WCoT/oRNwudngbHhuvsSoWRfREREpLgUbLIPYGaNgSuBS4DWtVTfCtwEXOPuZZmOrRBlK9kvKy1l9eMv8MnkqWyYO59dGzdT0q4N7Q8dzN4TJ9Bl/CgaNWmS9n5FREREGpqCTvbLmVkHYDwwCtiXYPqOARsI1tV/CZjq7htzFWMhyEayv3XREuadfimb31oUt06bQX0Zcv9NtNq/Z1r7FhERkdw47rjjWLJkSZ3b9erVi8ceeywDETUcRZHsS3pkOtnfumgJc0aezs61G2qt27Rje4bNmEKrvr3S1r+IiIjkxoABA1i4cGGd2/Xv35933303AxE1HKkk+wU9v8LMJgJtANz9L7mNpuEoKy1l3umXJpXoA+xcu4F5Z/yUw+Y+qCk9IiKSFI0ei6RHoWdeVwP7hGUl+1my+vEXEk7diWXzgvdYM20GXU8YnaGoRESkmCxZsiSl0WMRqSof1tmvr4RfXUj6fTJ5akrtVqTYTkRERERSU+gj+5IDG+bOT63dnHnpDUREpJ40VUREip2SfamzXRs3Z7WdiEimaKqIiBS7YpjGI1lW0q5NVtuJiIiISGqU7EudtT90cGrthg1JbyAiIiIikpCSfamzvSdOSKldtxTbiYiIiEhqlOxLnXUZP4o2g/rWqU2bA/rRedzIDEUkIiIiIrEo2Zc6a9SkCUPuv4mmHdsnVb9px/YMmXKjNtQSERERyTIl+5KSVvv3ZNiMKbQ5oF/Cem0O6MewmffTav+eWYpMRERERMppqFVS1qpvLw6b+yBrps1gxeSpbJgzj10bN1PSrg3thw2h28QJdB43UiP6IiIiIjmStSzMzO7OwGU7ZuCaUgeNmjSh6wmj6XrC6FyHIiIiIlnQq1evrLaT+snmkOtEwLPYn4iIiIikmXaPLizZnl9hWe5PRERECpBGj0XSI5vJ/jVZ7EtEREQKmEaPRdIja8m+uyvZF5EG67jjjmPJkiV1bterVy8lPSIikjItkyIikgVLlixh4cKFuQ5DqtFUEREpdkr2RUSkwdK3JiJS7LSploiIiIhIkVKyLyIiIiJSpJTsi4iIiIgUKSX7IiIiIiJFSsm+iIiIiEiRUrIvIiIiIlKklOyLiIiIiBQpJfsiIiIiIkVKyb6IiIiISJFSsi8iIiIiUqSU7IuIiIiIFKkmuQ5ARNLnuOOOY8mSJXVu16tXLx577LEMRCTlevXqldV2IiIioGRfpKgsWbKEhQsX5joMiUEfpkREJBc0jUdEREREpEgp2RcRERERKVJK9kVEREREipSSfRERERGRIqVkX0RERESkSCnZFxEREREpUkr2RURERESKlNbZlzrTxk0iIiIihUHJfhLMbE/gYmAM0AtoDHwKvAz83d1nF2JfqdLGTSIiIiKFQcl+LczsBOBeoE21U73Dx0Qzuw34kbt/VSh9iYiIiEjxU7KfgJmNAh4kGF0HeBt4AtgBHAocDRjww/D8hYXQl4iIiIg0DEr24zCz5sBkKpPv64Gr3N0jdY4CHgFaAj80swfdfUY+9yUiIiIiDYeS/fi+D3QLy8+6+5XVK7j7c2Z2HnB/eOh64LA870uKWK9evbLaTkRERPKbRQaPJcLM3gAODF+OcPdZceoZ8C7QLzzUy92X5rovM6vxi03X73rAgAEp3aDbv39/3n333bTEICIiItLQBKlgVe5e82CE1tmPwcw6AUPClxsJVsKJKZxqMz1y6MR87UtEREREGhYl+7EdSHAzLMBrSax8MzdSHprHfYmIiIhIA6JkP7b9IuVkpuQsj9M23/oSERERkQZEyX5se0TKK5KovzJS7pLHfYmIiIhIA6JkP7a2kfK2JOpH67SNWyvHfZlZSo9JkybVpRsRERERyRNK9mNrFilvT6J+tE6zuLVy35eIiIiINCBaZz+2snq0rev6ltnsSxqgWN/M6Nsakfj0d0ak7vT3Jn9pnf0YzOxG4JLw5SXu/uda6rcH1ocvv3D3VrnuK9Y6+6m6+uqrq/yFPe6441iyZEmdr9OrVy8ee+yxdIUlSYqzJm8OIhEpDPo7I1J3+nuTHamss6+R/di2RsotkqgfrbMpj/tKCyXsIiIiIoVByX5s0RVv9kyi/l6R8qp87UufsEVEREQaFt2gG9u7kXKPJOp3j5Q/yOO+RERERKQBUbIf29tU3vx6sMWaIFXVsEj5jTzuS0REREQaECX7Mbj7RuDl8GVn4OB4dcPk/NjIoafytS8RERERaViU7Md3f6Q8KUG904D9w/Lr7v5ugrr50JeIiIiINBBK9uObDJSvLznGzG42syo3NJvZUcAdkUNXF0BfIiIiItJAaJ39BMxsFMFUmZLw0GLgEYLlMocCY4DyOfZ/d/fz41wn+kM+290nZ6qvOH0CWo2nodLaxyJ1o78zInWnvzfZkco6+0r2a2FmxwP3Am0TVLsT+KG7fxXnGrUm++nqK06fgP7SNVT6B1ikbvR3RqTu9PcmO7SpVga4+6Nmtj9wETAO2BdoDqwGZgO3u/vMQutLRERERIqfRvaLlEb2pZxGW0TqRn9nROpOf2+yI5WRfd2gKyIiIiJSpJTsi4iIiIgUKU3jKVKxpvGIiIiISHHRNB4RERERkQZKyb6IiMj/Z+/O4+Uq68OPf76QEBAIhH0XiezKoihEURaxboAoLq1gjdSf2rpVsFZrtVjXqnVpbWu1KqhQreACiLixqCyKkrBHIAgCShBIiGELId/fH+cMczKZmTv33pm7nPm8X6/zmjPnPOeZ5869k3znOd/neSSppgz2JUmSpJoy2JckSZJqygG6kiRJUk3Zsy9JkiTVlMG+JEmSVFMG+9IUExFPj4jPRcQ1EXFfRKyMiCURcX5EnBQRs3usZ7uI+EhELIyIP0XEAxFxY0R8OSKeMco29a0uqd8i4oiIOD0ifhsRD0XE0oi4OiI+ERFPHkU9fmY01CJi5/L/nYyIU3q8xs/NFGfOvjRFRMSGwH8Brx6h6N3AcZn5wy51HQOcCnT7YvCfwFsz89ER2tW3uqR+Kj8zXwFe2qXYo8CngXdl5qoudR2DnxkNsYhYB7gIOLg8dGpmzh/hmmPwczPlzZjsBkiCiFgXOBN4XuXwhcAlwP3ALsAxwObAFsA5EfGCzPxJm7oOB84A1i0PXQ18D3gIOKh8jQD+pjz/pi7t6ltdUj+VgclZwOGVwz8AFlD8vR4AHFbunwRsBLyxQ11+ZiT4e5qB/oj83Ewjmenm5jbJG/DXQJbbPcAhbcpsDHyrUu52YIOWMhsAv6uU+QDlHbxKmSOAFZUyh3VoU9/qcnPr9wa8ufJ3twx4Zpsyzwf+VCl3aJsyfmbchn4DngKsrPxdJnBKl/J+bqbRNukNcHNzS4CbKv+IHdml3HrAVZWy81vOv6Vy7odd6vmLSrmLO5TpW11ubv3egN9W/u5e3qXcSZVy/9vmvJ8Zt6HeymD7uvLv8eEeg30/N9Noc4CuNMkiYm9gbvn0hsw8p1PZzFxJkdff8JyWIvMr+x/q8rJfB64v958REbu0KdPPuqS+iYjdgZ3Lp3dRpMB1cl5l/0ltzs+v7PuZ0TD6OLAnxfiW9/d4zfzKvp+bKc5gX5p81QDk8h7KL67sb9vYiYgtgf3Lp8uAn3eqIItuknMrh15SPd/PuqR+y8zfAJsA84BXZubqLsXXr+w/Uj3hZ0bDLiKeTzP//WMU48RGusbPzTTjAF1p8p0J7ARsBzzQQ/ntKvsrKvtPoRjABHB5jjxbwWWV/QNbzvWzLqnvMnM5a/7ddfLKyv4vWs75mdHQiogtgC+XTxcCJwO9TG/p52aaMdiXJlkW0wHeVm69OLayf21lf7fK/s091HNrh2v7XZc04SLicRS5wCeWhx4A/rWlmJ8ZDbPPA9tQ5Om/OjNXRsQIlwB+bqYdg31pGomIZwIvqhyq5ipvW9nv5YvD7yv7W7ec62dd0oQoPx8vAJ4AvBDYtDy1HHhZZt7UcomfGQ2liDiBZhrMezLzmlFc7udmmjHYl6aJ8pbrV2ne8jwnM6+oFNmkst9LOlC1zCYt5/pZlzRRjqOYxrbqXuDFmdkuF9jPjIZOObD1M+XTC4FPjrIKPzfTjAN0pWkgIjYGzqbosYRiINPbWorNquw/2EO11TKzWs71sy5pouzU5thmwE8j4rSIaA0O/MxoqJQLOH6NYpG55RTTN+coq/FzM80Y7EtTXERsSjF94EHlodXAX2Zma35jtxlJRtL6j30/65Imyj9SrDA9C9idYsDhQxR3w14F/DAi1quU9zOjYfMPFLNYAbw1M2/tVrgDPzfTjMG+NIVFxHbAT2nOkLAaeF1mnt2meHVmnvXbnG+1QWX/oQHWJU2IzFyYmfdk5srMvCEz3w8cSvPW/9OBt1cu8TOjoRERTwPeVz79dmaeOsaq/NxMMwb70hQVEfsDvwSeXB5aRXHL9csdLqn+o/m4Hl6iWua+AdYlTZrM/AXw4cqhEyr7fmY0FMrZqb5GMVZzCfD6cVTn52aacYCuNAVFxNHA6cCG5aEHgT/PzLO6XFadpWC7jqWatq/s/2GAdUmT7evAB8v93SJio8xcgZ8ZDY/30Jyq8nJgfodpNudW9veOiHeU+/dl5hfKfT8304zBvjTFRMSbKWZKaNx5uxs4KjNHWkCoOuf+zj281OMr+zcMsC5pIMrBhjMzc6Tb+a1T+s2m6FH0M6NhUQ2Sjyy3kRxQblDMb98I9v3cTDOm8UhTSET8A/DvND+bNwLzegj0Aa6mOWDpaTHy6ijzKvu/HmBdUl9FxOsi4iaKO17v6eGSzVqe31M++pmRRs/PzTRjsC9NERHxVuBDlUO/AJ7RZiGgtjJzGdCYS3wr4GldXisoFh1qOG9QdUkDcD9FusFM4KU9lH9+Zf/qzHwY/MxoeGTm/MyMkTbgsMplp1bO7Vypaxl+bqYVg31pCoiIg1lzYZPzgedk5t2jrOr0yv7JXcq9imJqQoBfZea1bcr0sy6pn86lOd/2XhHxsk4FI2IOzRlIoBikWOVnRho9PzfTSWa6ublN4gasB/yW4lZmAguBjcZY1/rATZW6PgPMaClzBEW+cqPMCwddl5tbvzeKGXYaf3fLgEPalHk8xYxWjXKLgQ1ayviZcXMrN4qpaht/m6d0KefnZhptUb6JkiZJRLwB+Fzl0P8Av+nx8tsz8+st9R1OcXtzZnnoRuA7FP9QHgi8gGKRIYAvZGbHKdj6WZfUTxGxPvBD4FnloQR+BFxCsR7FPsBRNFfZvBc4ODOvb1OXnxkJiIhDgQvKp6dm5vwuZf3cTBMG+9Iki4hLaa6OO1oXZ+bBbep8MXAqsEmXaz8P/E1mPjpC+/pWl9RPEbExxQwhrxyh6K+BV+Taq05X6/Izo6E3mmC/LO/nZhow2JcmWUSsoDmf/mi1DfbLercG3kwxxdoTKFYeXELR8/m5zLxwFG3sW11Sv5VjXv6Kope/MVf3EuAy4P+A72QP/9n5mdGwG22wX17j52aKM9iXJEmSasrZeCRJkqSaMtiXJEmSaspgX5IkSaopg31JkiSppgz2JUmSpJoy2JckSZJqymBfkiRJqimDfUmSJKmmDPYlSZKkmjLYlyRJkmrKYF+SJEmqKYN9SZIkqaYM9iVJkqSaMtiXJEmSaspgX5IkSaopg31JkqaYiHhHRGSX7ZGIuCsiLijLbjrZbZY0NRnsS0MgIp4eEZ+LiGsi4r6IWBkRSyLi/Ig4KSJmd7l2/ghBR0bEqoi4PyJui4ifRcQHI2LvAfwcJ7d57dePoZ6d29RzxCiu3ysi/j4ifhwRiyPiTxHxcETcWQZfH4yIJ/dQz6E9vLe9bqeM9n3QlLb/COdnAFsChwIfB66LiIMG3aiJFBH/Vv5tf36SXv+dlc/XxT1ec1DL5/K3PV63d+Wa+yNiVnn83PLY343nZ9FwmzHZDZA0OBGxIfBfwKvbnN6q3A4D3hURx2XmD8f4UusCjyu3HYCDgfdExDeBN2fmXWOstxcvB0YbDPz5WF4oInYDPgQcC0SbIluX26EUP/8PgHdk5jVjeT0NtWqw/2PgNy3nNwcOAbYtn28LfC8i9snMOyagfQMVEc8D3gzcB7xnkprxk8r+UyNiVmY+PMI1z295vnNE7JGZi0a47pDK/k8rr/N24AjggxHxw8y8cuRmS2sy2JdqKiLWBc4Enlc5fCFwCXA/sAtwDEXQsAVwTkS8IDN/Qmc3U3x5aDUT2Jgi0D8I2LU8/nJgXkQ8IzNvG/MP092hEbFFZt49imtGHexHxDHA14ANK4dvAc4H7gAeArYHngnsW55/Xtm+t2dmu/dtMdCtx+4A4JXlfqf3vsEvFDURERsAu1UO/XNm/qxNufWATwJvKg9tRvH39LeDbuMglZ0U/0PxhfrDmfnHSWrKAuAein8jZ1F8Hkfq4W8N9hvHRgr2n13Zf6zTJTN/ExGfA94CfDkinpaZj47UcGkNmenm5lbDDfhrIMvtHuCQNmU2Br5VKXc7sEFLmfmV8xf2+NpHAUsq110LzOnDz3Rypc4HK/v/bxR17FG5rrod0eWa44HVlbKXA8/pUn5/ii9W1fr/bgw/76jfe7fpvwEHtvztbNql7DrAlZWyiye7/X34+T9W+fdo/Uluyzcr7+07Ryi7GfBoWfacynXn9fA6v6+U37vl3JbAn8pzb5ns34/b9NvM2Zfq66TK/msy86LWApn5J4pe7qvLQ9vT7Ekes8w8m6KHu9Hbvhfw/vHW2+K8yv7LR3Fdo1d/JXDVSIUjYl+KNKFG2s7ngGdklzsgmbmA4tb7f1cOfzQi/mwU7dTwqqbw3JaZyzoVzMzVwHcrh3aOiGn7f3tE7EzzzsRHM/OhyWsNsGYqzzNHKPtnNMdCfh24vtw/pLxb01ZE7EozHeuOzLy2ej6LOxv/WT59f7cxVlI70/YfBEmdlYNj55ZPb8jMczqVzcyVrJke8px+tCEzbwL+X+XQ6yNix37UXbq23AAOi4gteryu8WXmB8DSHsp/AWj8R/1t4G8y85GRLsrMVZn5RuCM8tA6wH82Bt5JXexX2b+6U6GKaprLOhQpJ9PVeynSAu8HTp3ktkAxXqLhGSOUrabw/IRmh8T6rJmT36qawvOjDmX+i6Jnfw5FHr/UM4N9qZ6eVNm/vIfyiyv723YsNUqZ+R3gF+XTWcAb+lV36Rvl4wzgJSMVjoj9KNJ4AP63h/JHAE8rnz4IvD4zc5RtfAuwrNyfCxw3yusHJiIuLGf6uKV8vnFEvDciro6IFeWsIAsj4kMRsXWPde4VEZ+OiCsjYllEPBQRt0fEORHxujLPvN11P63MRnJ4l/o/Uyl3dpdye1TKfbdDmR3LmZMuj4i7yxmV7ijbekJEzOxS/y1l3eeVz48tf+YHo5iV6ozyrtBYVHv2R7z7BFR7eh/IzAfH+LqTKiK2pTmZwDfKO4/tyjX+bq8pn28YEW+PiF9ExD3l3+6iiPhEROzQcu3zIuK75e/54fJ39dXoMHtY2Wlxa/l0i4jYvcuP0Lhzd3Vm/oFK7j3tc/kbRgz2M/MWmncZ3tbtToHUymBfqqczgZ0oBsv+Sw/lt6vsr+hzW75W2X9un+v+v8p+L6k8jRSeB4CzeihfvTNxWo5uEDAAmXkn8JXKodeNto6JEBFPAH4F/DPFl8UNKWZX2hf4B+CG6DI9aUSsHxGfpRgo/DZgH2ATii952wMvorhLsigint6miu9V9rtNg1q98/SsLikrL6jsr/WlICJOAm6gmOnlAIpBmOtRfBZeBHwRuDZ6m0L1WIrc7n0oenF3oJixadQDKcuB9dXX7KVnv/ql4sbRvuYU8jqKXn3o4cs4QETsCVxBMVD56RR58xsCu1OkMv4qIvaJiHUj4r8petuPpvg9r0fxuzoeuDwiOv37NGIqT/nFrtFR8oPy8SKgMavOC9a6qKnR65907tkHOL18nEMf0i01PAz2pRoqU0huy8xfZGYvwcKxlf1rO5Yamwsr+0+NiE36VXFm/oZicCIUqTybj3DJK8rHszPz/h5eonrr/fujbV/Ftyv7B44i5WiibEAxoHA3iuDkGxTpFJ+lGDgIRe/x99oFRBExgyJd6U00xzb8kuKL5nspvuzcVx5/AnBRRBzaUs2IwX5EbANUe2A3Yc2Ul6pGcJUtdRMR/wJ8giIwB7i0bOt7KMZnNH7mXYGLR+ih34xibEbrVKzX59imXN2dZtoYjNCzH8ViWtVe47FOnzsVvKZ8vB9Ya/ahNjal+FzuBtxL8WXynyj+3hp3N7Yuj38KeD3FF/2vAv8I/Ed5HRTv+Vc6pNlVU3k65e1Xfwc/ACjvsDR+jt3KL9RrKFMbH18+XZjdZx6q/m5f07GU1GqyRwi7ublN7kbxn1d1ppmntJyfXzl34Rjqn0VzhooE9htHW0+u1PPB8ti7K8de1+Xa6gwnx5THLqwcO6Kl/BMr5xLYfhztXpciiG7U9dwerxvXe99D/Re2/IyLgT1bymzImjOSLAZmdfm9/Knx/raU2QI4t1JuCbBFS5lbynOP0mYGGuBVLe1N4MQ25R5HMRVqAr9sOXd05dq72/0uKL4EfKZS7kZgvQ5tbWznAHuW79ezgJeO8XdyXKXOh4GZI5T/UqX8SmBuv/9OJmKj+BLX+Dm+P8q/27OAjVrKPAV4pKXctcBOLeW2p5j1Z41/G1rKbEXz38hFHdp0QXn+/urng2Iq1Ebdf93muuMr5z/aw/t0XVl2FbDZZP/e3KbHZs++NMTKHuav0uyVPCczr+jna2SxOMx9lUP97tXuNZWnkcJzH7310ldTm1blOBYqymJe7OrCYnM7lZ1EDwDPy8zrqwezuAPyFxRzjkOxPsNjqUjl3ZQTK5ccl8VYjTVkkQJ1DEXKBRQBVOtAw0YP/DpAu7z9RgrPbRRfKqBYwKzVYTQHqT6WwhMRAXy4Uu5lmblW2kRmPpSZb6u054m0X5iu4RrgJZl5fWben5k/y8xvdSnfTTVff1F2GAweEdtFxOnAayuHP56Zi9uVnwYOq+yPZuGoO4BXZuYa6Yflv2PVO2oJvDwzf9dS7g6KO1gNB7S+QBaLAjbu0uzeemcuIjai2eN/Ua658NZIefvVu4e93JVZWD6uS/GlUhqRwb40pCJiY4pAqHFreRlFrvUgVFNm+hrsl8HNr8unh7dL5SnzuhtfBL6dI6+CCUUOd8N9HUv1bkllf9M+1Ndv/5HFYMS1ZOYqilz+hpdW9o+iWK8BikCn41iILGZ+emfl0AktRUZK5WkE++dTjC+A9nn7nfL159FMA7okMy/s1NbSByv7x3cp94VOQfkY7FfZ3zgiPtuynRIRF1PcWfiLStlGasp0VR3H0UvqYcPnsvOA5IWV/Usy87oO5arHt+xQptusPM+hOdbgBy3nrgLuLPcPbzPouzE49wFGXrAL1nxvDuyhvGSwLw2jMs/3PIoBvFDcov7LzLx5QC9ZzYNdPYD6R5qV51kUt+uhx4F/FKkgDf2Y63tVZb81v3sq+PoI579P82d4dmU2kGoP/JkjvUgW6xPcUz7dJoo5xhvOpwh6oCXYj4i5NHObL6A5y9OmrDlAFZo9qLdl5sLK8Wovai93sK6gOcDywHJsQjuX9lBXr/ar7D+BYhxEdXsNRbDZCBrvBt6QmX+ZmWvMFBURT46If4yIH0bEHyJiZUTcV84+9L6ImNOpEZUZb6rbQxGxpJx16JSIeE1EPK5THaNUneVmpNVmq37Z5dydlf2FXcpV7wp0mra0W95+dZXyNYL98nfSuHu0EcUXTgCimOGqsVLyT3vshKjeedutYympwmBfGjIRsR3wU5q9U6spct07TmPYB9VBucsGUP9IqTyNFJ67WHNmjW6q0/5tOoY2taoGVv24U9BPjzDCQNAyEGn0/M+gmeZUHXS4sMfXq6Zp7FJ5jYcoAn6AXSNip0q56peKC4BLKs8fC+LLLw+NNKnW9SX2quy/uU0wu8ZGEeg3gr8N6Nzr+9sOx0elHKzZbZD5KoovStdRzEH/amDHzPx8m7rmUvxOP0AxC9Zqivf9TxSpKu+nt9mGbqPocb6Y4vd7L0WQ+RrgFOAPEfHGnn7A7qq/63s7llpbt/S6asfC0h7LdfJTis8JdA72f5eZ7b6oVL8AVNOVRpvCA2u+Nzt1LCVVdOqlkFRDEbE/RVpDo5d7FXBCZn51gK+5CcUUdw1LKufeMdL1mfmJHsrcGhG/oLitfXhEbJ6Z95SvMYPmbENnlPnzvajmPm8YEZtk5piC9LIN21cOTbW86qVlqs6I5Sr7W1P8HNXgtNcg7Z7K/mYt574HHFnuP5diCkxopvDcnJm/i4j7KAbyrkuRt//p8nw1hac12G99rdHaDPhDm+PLxllvQzVffxWwcY59BdmgWGzrP4CvVu/aRcQzgdMo7pR8JyL26tKr/KXMPHmNiotUlHkUU1seDfxXROyRmX87xrbCmh0Co/mcPTByEWAM06BWZeaK8t+Yg4EDImJWZj4cEbvR/MLamsLT8COKMQNBEew3VhOvzq/fa7BffW826VhKqjDYl4ZERBxNMU/zhuWhB4E/75Zj3SdPrew/xJr5sR/v4foRg/3SNyiC/RkUA0GrQWKjR7bXFB6A3wDLaS5Y9EyK2WTGYl+a73vSew/4ROk133zdyv7K8nEsKUnVerLlXGve/hfLgbWNnv0LADLzvohYQNFL/eyIWCczV9NM4XmA5l2Chur/ed+kewpIO3e1O9jjF6VeVIP968cR6EMxw8wTss0Us5l5cUQcB/ycIlB9Hr2tO9G4/hGKnu6fRsS7KQY9vy0iLsrMb3e/uqNq+sxo1vpo/fsZpB9TBPuzKP5du4Q2U262ysy7IuJKihStgyJi/fJ32xhge0dm9jrlcS8pR9IaDPalIRARb6aYSrCRunc3cFRmXjYBLz+vsn9FHwcytvom8K8UwecraAb7jcVnGukIPcnMVRHx/cr1L2XswX51QOuvM3NJx5KTo9cewmrPeCMfutrbP9I6Bw3VQdrLqicy87aIuIpigarDy0D/STS/sF1QKX4+RbA/B9gnIhbRnJ3nR22C5WpbL83MT/XY3omyX2V/QadCvRjpi0IZ8N9H8bvfk1EE+y31fCSKFY+PoJjjfqzB/oM0vxDPovllcir5CcU0s1AMKL6E5qq5j9I9RfAHFL/fWRTjP66iuXhat4W0Wq1f2Z+WKyVr4pmzL9VcRPwD8O80P+83AvMmItAvA7X5lUNnVM9nZoy09fpamXk7zTzuwyNis4hYj+aA3W+0DmDsQTUX+viI2L5jyQ7KafneUDn0pdHWMQE2iogduhUoB2I20hXupxnsV1dsbR0o266eoAjkG9oNCm/07m9FERAdWjnXGuw3HEqRItEYONxuDEr1tfZuc34tE7wAWrVnf1zB/kjK1LLGIN9eFpjr5t/Kx31bxlmMxvLK/sYdS02uy2j2rD8titWOG73zv8jMZV2urabp7E9xpzDanBvJRpX95R1LSRUG+1KNRcRbgQ9VDv0CeEanKRYH4BUUc5RDMdjxtAG/XnVWnqMpcr43LY+NJoUHgMw8n+YKmLMoVtgc7b+b/0Wzx/sOioGVU9ELRjh/FM3/M86rpK5UVzp9WQ+vcwTN38ndrPlloaGaa/8cmrnNN2Tm7yvnfk4zBelQ4IXlftKyam7pp5X9F7WZBnENEXEA8MeIWFHOYDOwu+HlzDiPrxxaOKjXKh1Dc8api8ZZ189optPM61awi1sq+12/eE6W8m++8V49jeLLbSPNr1O+fsPPaX6p2pfmIN9kzZl+RrJjZb8vA8NVfwb7Uk1FxMHAJyuHzgeeUy5uNBGvvzNFoNvwyXJxmkE6g+bMGsfSnJnnhnEsFvbXNAcBHg58tbxj0FUUPsaa87O/OTN7HVA40f6uMp3mGsqftzqHe3X2ozNp9nY+uxwb0lYZXH+kWk+Huy2X0RzEewTNYL/aq99Y8KuRd/9smsH+5ZlZnXax4ScUuewA21CsbtqprQF8tHy6IfDbPubmt7Nfy/OFg3qhcurdfy2fnp2Zo5nXfi1lj3ajl3nrMVbzm8r+Lh1LTb5Gqs4TKToUGroG++UaE40vCvvSnCN/YWb+cRSvX5396jcdS0kVBvtSDZXB2VdpDoS8Enhxu8F6A3jtdSLi5RR3ERrTTV7FmncYBiIz/0Czp/kI4MXl/khzyHer81qKaQYbs3m8Crg0Ig7tdE1E7EeRh1sNJj/QbmXZKWRX4IwyEHxMOZvSmRR581CMe/hm43xmLgWque+nRcSLaRERmwHfojlg+y6KaSHXUg60Pa98+jyKdB5oCfZLjVSeOTSDxLbTyJbjRaqv+YGIOLH1bk2ZsvQfNGcAWsWaC2wNQjWF57cjpISMWXl34usU0zb+EejHtJnQ/MI31hScalrh/h1LTb5GL3zQfO/uBS7v4dpGus5eNFfqHU0KD8BTKvv9XN9BNeYAXameXgvsXHl+OfDGorNyRLdnZqfgeMcO02WuSzHQb2eKHtZqbvsNwJET8UWj9A2K+avXpzmYbczBPkBmnhERL6H4ArUJxX+4F0TEYooA9A6KOwrbUOTwPqly+aPAP2Tmx8bThgnwCEXP+I0RcQbFgOYdKVJzGnnrf6RYk6G1N/79FOkbR1DkFH+nnKbwAoogcFeKL16bluVXUizi1q73veEc4DjWnLnnwjblLgDe23Ks45oRmfn5iHgWxR2XdSh6uN8YEeeWP9/jKVKWtqlc9q7M7LoOQR8MPF+//FJzKsUXqD9RDNL/fferetYI8se6hkT1i9yUXRk2M6+OiCUUdzAadzF+XH5BHUmj938WzZl0RhvsN1YaXkWRGiSNyGBfqqf5Lc9fN4prL6ZzcLwLvU2XCUWQeypw0qB6KTs4k2JA8mN3NTLz+i7le5KZZ5cLEH2cYixCUCzeNLfLZRdS/PxjTSGaSPMpBlpuQfve3usovrStlSecmY9GxIuAz1L8rQVFwNYuaFsMvDIzfz1Ce35Acx59gOs6zGJ0CcWUro0vdr/LzCvblKt6DfA7ijsvMym+jLytTbkHgb/PzH8fob5+2K+y3/dgv0xL+iLFnan7gRdl5i+6X9Vz3ZvRzF0f00xTmXlDRFxPMTPQvIjYcAI7CEbrfOAvKs9HytcHIDMXRcTvaC6G9QCjCNjLhdIad69+mJmjmaJUQ8w0HqmeRloVs98epejRu4liCr93Ak/MzL+a4ECfclxAtZdwXL36LXXflpl/TrGC6D9SpOr8nmLw8UqK1JSLKFI+9svMw6ZJoA9F0LwXxboGN1H8TMso3svXA/u3C/QbMnNlZr6eImj9d+Aair+JVRQB4LnAXwF79xDoN9KDqqvktkvhaazsWy3XbmBu6zWrM/M9wB4Uefm/ohgjsIriZ/4lRdrZHhMR6EfE+mVbGhb2uf6gmFlqPkWAeWRm/qzrRaPzrMr+eFJLGov7rUdzVdqpqHVA7Wh656tlLypz+Xv1osr+10ZxnYZcjH4mOklSHUTEhRQpT1AswHTL5LVGgxIR/0kx0PxBitSdbvPBN665kOJv4/2tK+i2KfsTisHrV2TmU7uVHaGerYFbKVJczszMXmZ3GhplatzTKaa93bnLqsfSGuzZlySppiLi3ygC/YcoBumPGOiPsv5301zd+P3jqatM02r0WB85wWscTGkRsRfNfP3PGuhrNAz2JUmqoXLq17fQDPRHs1Jrt3pnRMSzIuK7wIfLw/+amWNahbfFhyhS4max5mJ0w+6t5ePdFGlyUs9M45GkIWUaT31FxDyaYxnuov3iZQ3nZuaHqwcqfxu3UQxmhjVn3WqsybAMeGdmfqEf7S5f+zMUwe2dwC6Z+WC/6p6OImIbitWfNwBOzMxPjXCJtAZn45EkqX5mVfa3orlWQTvdVtTekeaqrSspBl3fSDFj0PnANwcQjL+PYsarbYA3UQwaH2bvpgj0r8ZefY2BPfuSNKTs2ddUFREvpZhG915gt8y8Z4RLaikinkgxs9W6wMH9mi5Vw8WcfUmSNKVk5reAzwGbMQGrb09hn6a4S/M+A32NlT37kiRJUk3Zsy9JkiTVlMG+JEmSVFMG+5IkSVJNGexLkiRJNWWwL0mSJNWUwb4kSZJUUwb7kiRJUk0Z7EuSJEk1ZbAvSZIk1ZTBviRJklRTfQ32I+LfIiIj4vMtxy8sj2dE7DyO+h8fEQ9ExPKI2GXcDZYkSZJqrG/BfkQ8D3gzcB/wnn7VW5WZtwIfBzYGvhoR6w7idSRJkqQ66EuwHxEbAv8DBPDhzPxjP+rt4GPAH4BnAG8b4OtIkiRJ01q/evb/CdgBuAP4tz7V2VZm3g/8c/n05IjYbpCvJ0mSJE1X4w72yxz8vy2ffjQzHxpvnT34EnA7RTrPBybg9SRJkqRppx89++8FZgL3A6f2ob4RZeZKirQhgL+MiLkT8bqSJEnSdDKuYD8itgVeXT79Rmb+qcfrNoyI90TElRGxIiKWRsSvIuKfImLLHl/+S8BqYAbwjtG3XpIkSaq38fbsv46iVx/gf3u8Zi5wFfBBYB9gQ2BT4KnAycBvIuKlI1WSmbcBPy+fHh8RG/fcakmSJGkIjDfYf035eD/wsx6v+SawC/AAcBpFGtC/UwzuBZgDfCMiXthDXT8oHzcCRvyCIEmSJA2TMQf7EbE3RS89wM8y8+EeL50DXAPsnZnHZ+YHM/OtwG7AN8oyM4D/iYjZI9T148r+i3t8fUmSJGkojKdn/7DK/pWjuG4p8LzMvKV6MDMfAI4Dfl0e2pbmnYNOrqbI2wc4NCJiFO2QJEmSam08wf7TK/tXj+K6T2Xm79udyMxHWXMqzeO7VZSZDwI3lU/nALuOoh2SJElSrY0n2N+9sr9oFNedOcL584BV5f5TytV5u7m+sr/bKNohSZIk1dp4gv2dKvv39njNSkb4YlDm/i8un84AnjBCndXX3qljKUmSJGnIjCfY36Syf1+P1yzLzNUjF2NpZX/OCGWrr71Jx1KSJEnSkBlPsD+rsr9ivA1pUR1oO9IsP9XXntWxlCRJkjRkxhPsP1jZ7zXIHmkqzYbNKvtLO5YqrF/Zf7BjKUmSJGnIjCfYX17Z73X12vUjYoduBcoBuY35++8HfjtCnRt1aJMkSZI01MYT7N9S2e8awLc4YoTzL6bZrssyc1W3wsCOlf2RvhhIkiRJQ2M8wf5vKvu7jOK6d3WaTjMiNgBOrhz6nx7qq87W85uOpSRJkqQhM55g/7LK/v6juG534JsRsUb+fkRsBnyX5sJYC4EzulUUEY+jOd//nZlpz74kSZJUmjGOay+o7B/Y4zUPAMuAFwA3R8QZwG0U8+O/jObA3HuBv+ghheepwLrl/oU9tkGSJEkaCmMO9jPzhoi4HtgTmBcRG2bm/SNc9iBwFPA9YBvgDW3K3AAck5m9rMr7Z5X9b/VQXpIkSRoa40njAfhq+bge8LxeLsjMK4B9gI9TBPYPUfTk/wx4M/DkzLy+x9d/Ufl4H3B2j9dIkiRJQyEyc+wXR2wN3Eoxz/6ZmfmyfjWsh9feE7iufPrpzHz7RL22JEmSNB2Mq2c/M5cAXyufHhkRW4y/ST17bfm4Cvj0BL6uJEmSNC2MN40H4EPASore/XY5+H1XzsLzuvLplzPz1ol4XUmSJGk6GXewX053+bny6ZvLufIH7XXAHIrZfd4/Aa8nSZIkTTv96NkHeB9wJ8UMO2/qU51tlV8m3l0+/efMvGOQrydJkiRNV30J9jPzPppB/rsjYvN+1NvBOyi+VFwB/OsAX0eSJEma1vrVs09mfosinWczijz+vouInYB3ASuAP+9h0S1JkiRpaI1r6k1JkiRJU1ffevYlSZIkTS0G+5IkSVJNGexLkiRJNWWwL0mSJNWUwb4kSZJUUwb7kiRJUk0Z7EuSJEk1ZbAvSZIk1ZTBviRJklRTBvuSJElSTRnsS5IkSTVlsC9JkiTVlMG+JEmSVFMG+5IkSVJNGexLkiRJNWWwL0mSJNWUwb4kSZJUUwb7kiRJUk0Z7EuSJEk1ZbAvSZIk1ZTBviRJklRTBvuSJElSTRnsS5IkSTVlsC9JkiTVlMG+JEmSVFMG+9NEROwcEfdFREbEKZPdHkmSJE19BvvTQESsA3wVmD3ZbZEkSdL0YbA/Pfw9cPBkN0KSJEnTi8H+FBcRTwHeP9ntkCRJ0vRjsD+FRcQGwNeAmcDKSW6OJEmSphmD/ant48CewKPYuy9JkqRRMtifoiLi+cCbyqcfAy6ZxOZIkiRpGjLYn4IiYgvgy+XThcDJk9YYSZIkTVsG+1PT54FtgIeBV2em+fqSJEkaNYP9KSYiTgBeUj59T2ZeM5ntkSRJ0vQ1Y7IboKaI2AX4TPn0QuCT46gr+9EmSZIkTV2ZGd3O27M/RUTEuhTTbG4ELAfmZ6YBuyRJksbMYH/q+AdgXrn/1sy8dTIbI0mSpOnPYH8KiIinAe8rn347M0+dzPZIkiSpHgz2J1lEPI4ifWcGsAR4/eS2SJIkSXXhAN3J9x5gt3L/cmB+RNtxFnMr+3tHxDvK/fsy8wu9vJBDACRJkqavDjFi92sMACdXRJwCvGYcVdyamTu3qXetX6y/a0mSpOmrXbDvbDySJEnSkDLYn2SZOT8zY6QNOKxy2amVcztPUtMlSZI0xRnsS5IkSTVlsC9JkiTVlMG+JEmSVFMG+5IkSVJNGexLkiRJNeU8+zXlPPuSJEn14jz7kiRJkh5jsC9JkiTVlMG+JEmSVFMG+5IkSVJNGexLkiRJNWWwL0mSJNWUwb4kSZJUUwb7kiRJUk0Z7EuSJEk1ZbAvSZIk1ZTBviRJklRTBvuSJElSTRnsS5IkSTVlsC9JkiTVlMG+JEmSVFMG+5IkSVJNGexLkiRJNWWwL0mSJNWUwb4kSZJUUwb7kiRJUk0Z7EuSJEk1ZbAvSZIk1ZTBviRJklRTBvuSJElSTRnsS5IkSTVlsC9JkiTVlMG+JEmSVFMG+5IkSVJNGexLkiRJNWWwL0mSJNWUwb4kSZJUUwb7kiRJUk0Z7EuSJEk1ZbAvSZIkjdHif/2fyW5CVwb7kiRJ0hjc+/NfsehdH+fei3892U3pyGBfkiRJGoMbP/gfazxORQb7kiRJ0ijd+/NfcfdPLgHg7h9fPGV79w32JUmSpFFq7c2fqr37BvuSJEnSKFR79Rumau++wb4kSZI0Cp168adi777BviRJktSjdr36DVOxd99gX5IkSerRSL33U613f+iD/ShsGRE7l9uWERGT3S5JkiRNLd169RumWu/+0AX7EfHUiHhXRHwrIhYDDwF3AovL7U7goYhYXJZ5V0Q8dTLbLEmSpMnXa6/9VOrdj8yc7DYMXETsBbwWeBWwTevpDpe1vjF3AqcDp2Tmtf1tYf9FxFq/2GH4XUuSJA3CvT//FZcedlzP5eddeDqbPbO//cXtkk8ys2tGSq179iPi8Ij4AXA1cCJFoB8tW8fLW7ZtyjquiogfRMThg2y7JEmSpo7R9tZPld79WvbsR8RTgI8DhzYOlY8JXAv8DFgIXA/cAdwNPFCW2wDYEtge2BPYF3gWsHdLPQAXAn+XmVcM6mcZK3v2JUmS+mO0vfoN/e7dH0vPfu2C/Yj4b+AEirsWQRGYnw/8H/CdzPzjGOvdEjgGeDnwnErdq4EvZuYbx934PjLYlyRJ6o9fPP+1Iw7MbWeLI57Jgd//Ut/aYbAPRMTqcnc58DngvzPzt31+jZ2BvwbeAMwGMjPX7edrjJfBviRJ0viNtVe/oZ+9++bsF/4E/BOwU2a+q9+BPkBm3pKZfw/sBJwMrOj3a0iSJGnyjTf3frJz9+vYs79FZt5d99cciT37kiRJ4zPeXv2GfvXuj6Vnf8a4X3WKmYyge6oF+pIkSRq/33/z+2y01xPHX8//ndv3aTh7VbuefRXs2ZckSaoXc/YlSZIkPcZgX5IkSaqp2uXsdxIRM4FdgfWBmzJz+SQ3SZIkSRqoWvTsR8SsiHhvRPwyIhZExH9GxHaV828C7gSuBi4H7o6Ib5QLZUmSJEm1NO0H6EbEOsBPgGdTrGrbcCvwdODFwOfbXJrAdcABmfnwoNs50RygK0mSVC/DOkD3r4BDgJXAx4HXA6cBjwfeRbHo1b3Aa4Cty+21wFJgL+CNE95iSZIkaQLUoWf/Aope/Zdm5ncrxz8BvBVYFzgqM89tue5I4Czg55n57Als8oSwZ1+SJKlextKzX4dg/25gZWZu13J8LnAjsCQzt+1w7Z3AzMzcfPAtnVgG+5IkSfUyrGk8s4Hb2xy/veWxnduBjfveIkmSJGkKqEOwfz9FHn6rxrEduly7Q3m9JEmSVDt1CPavA3aIiINbjh9PMePOVhHxvNaLIuIFwFYUqT6SJElS7dRhUa0zgHnAdyLin4GbgGcBJwHnAdsAX4mIvwV+WF7zPODTFF8Gzpng9kqSJEkTog4DdGcBvwSeTBG8NzxMMUvPLsDXW85BMSf/H4AnZebSCWjqhHKAriRJUr0M5QDdckGsw4AvAncDDwA/B/4sM3+Vmf9H0cv/IEWA39iuBI6oY6AvSZIkQQ169nsVEVsAB1DM3vObzLxykps0UPbsS5Ik1ctQzrOv9gz2JUmS6mUo03gkSZIktWewL0mSJNWUwb4kSZJUU3WYZ78nEbEOxVSchwN7AnsAmwEbARtQzNazArgXWARcD5wP/DQzV09GmyVJkqTxqP0A3YiYDbwTeANFcL/G6TaXtL4h9wL/DXwsM5f3v4WD4QBdSZKkenE2nhYRcSjwTYogv+sbMYIE7gFekZkXjrthE8BgX5IkqV4M9isi4gXAt4GZNAP9FcClwBXA74A7KdJ3HgZmUaTzbAPsBDwFOAjYuFLtI8CLM/O8CfgRxsVgX5IkqV4M9ksRsTlwLbBVeehm4H3AmeWKu73Wsx5wLPB+4Inl4buAvTLz3v61uP8M9iVJkurFefab5lME+gn8GNgnM08fTaAPkJkrM/N/gX3LegC2LOuXJEmSprS69uxfDMwDHgB26kcvfHm34FaKVJ/LMvOZ461zkOzZlyRJqhd79pueQNmr3690m8y8h6J3P4Bd+lGnJEmSNEh1DfbnlI9/7HO9jfo27XO9kiRJUt/VNdhfUj7O7XO9jfqWdC0lSZIkTQF1DfavpUi3eXZEPKkfFUbEk4FDKNKDru1HnZIkSdIg1TXY/3r5GMBZEbHXeCqLiD2B79Ccr/9/x1OfJEmSNBHqOhvPTOCXwD4UAfrDwCnldnlmru6hjnWAAyim2ZxPsegWwELgwMxc1d9W95ez8UiSJNWLi2pVRMQewE+AbctDjR/0fuBqimk0l1CsoLsSWI9iWs2tgccDTwY2bFRXPv4BOCwzbxh0+8fLYF+SJKleDPZbRMT2FCk3B7ec6uWHbn3jfga8KjPv6EfbBs1gX5IkqV6cZ79FZt6Rmc8GjgTOpUjngSKQH2mjLH8ucGRmHjJdAn1JkiQJat6z3yoiNgSeAewJ7A5sDmwErA88BKwA7gF+A1wPXJKZ909Oa8fHnn1JkqR6MY1HjzHYlyRJqhfTeCRJkiQ9xmBfkiRJqimDfUmSJKmmZkx2A6aTiNiGYj5+MvN3k9wcSZIkqSsH6I5CRCygWJU3M3NKf1FygK4kSVK9jGWA7pQOWKeorm+oJEmSNFWYsy9JkiTVlMG+JEmSVFMG+5IkSVJN1TJnPyLOH1DVTxxQvZIkSVLf1XI2nohYDQzqBwuK2XjWHVD9feFsPJIkSfXibDxrc+YcSZIkDa26BvuPUPxsCfwbsKxP9b4R2LpPdXUUEUcAJwDzgG2BB4HbgR8Ap2bm1YNugyRJkqa/uqbxXA48lSLYf2Fm/qBP9S4A9mVAaTwRsSHwFeClXYo9CnwaeFdmrupSl2k8kiRJNWIaT1Mj2Ad4GkWP+JQWEesAZwGHVw7/AFgArAscABxW7p8EbERxp0GSJElqq67B/q8q+0+btFaMzt/QDPTvA16UmRdXC0TE84FvUgT6b4iIr2fmhRPaSkmSJE0bdZ1n//LK/nQJ9k+q7P+/1kAfIDPPA06uHHrDoBslSZKk6auuwf61wAMUs/FsHRE79KnePwC3Ar/rU30ARMTuwM7l07uAM7sUP6+y/6R+tkOSJEn1Uss0nsxcHRHHAZuWh1b2qd4X9qOeNvX+JiI2AfYC1s/M1V2Kr1/Zf2QQ7ZEkSVI91DLYB8jM7052G0YjM5cDl/VQ9JWV/V8MqDmSJEmqgVpOvVlHEfE44C3Ahyhm5HkA2Dczb+pQ3qk3JUmSasSpN2smIp4JvAB4AvBCmmlJy4GXdQr0JUmSJKjvAN26OA54D/AqmoH+vRTTcv5otJVFxJi2k08+uW8/kCRJkiaOwf7UtlObY5sBP42I08pBvZIkSVJbtQv2I2K7SXjNbQdU9T8CWwCzgN0p5th/iGJK0VcBP4yI9Qb02pIkSZrmahfsAzdExAcjYs6gXygi5kTEh4EbBlF/Zi7MzHsyc2Vm3pCZ7wcOpRicC/B04O2DeG1JkiRNf3UM9h8HvBu4NSI+ERFz+/0CETE3Ij5JscDW35evOSEy8xfAhyuHTpio15YkSdL0UrupNyPi08DfUMw0lOX2U+AbwHcyc8kY690aOIZinvtDGoeBVcBnM/PEcTV8dG2ZC1Rn4tk4M1e0lHHqTUmSpBoZy9SbtQv2ASLiScDHgOeXh6o/5CLgZ8BV5f7twD0UqTEBbECRJ78DRZ78vsDBwB7Vlygfvw+8MzOv7VO71wVmZuZDI5RbD3i4cmj7zPx9SxmDfUmSpBox2G9RzlP/Loo56htvxFh/4Or13wM+kpmXjq+FZcURr6No507Av2Tme0covw3wh8qh9TPz4ZYyBvuSJEk1MpZgv445+4/JzIsz8yiKHvqPAr+jCNrHsv0O+Aiwe2Ye3a9Av3Q/MBeYCby0h/LPr+xf3RroS5IkSVDznv12IuLJwHOBA4F9gMcD67cUewi4hSLV55fAjzLz6gG2aROKnvoNykMvz8wzOpSdA/yaYlVdgL/PzI+1KWfPviRJUo2YxjNGZbC9Yfn0/sy8bxLa8GGKWYQA7gNenJkXtZR5PPBN4GnloZuBJ2Xmg23qM9iXJEmqEYP9aSwi1gd+CDyrPJTAj4BLgNUUdyGOolhgC+Be4ODMvL5DfQb7kiRJNWKwP81FxMbAFyim9+zm18ArMvPmLnUZ7EuSJNWIwX5NRMTBwF9R9PJvVx5eAlwG/B/FegFdf3EG+5IkSfVisK/HGOxLkiTVi1NvSpIkSXqMwb4kSZJUUwb7kiRJUk0Z7EuSJEk1ZbAvSZIk1ZTBviRJklRTBvuSJElSTRnsS5IkSTVlsN9FRHwpIt7VY9m/j4gvDbpNkiRJUq9cQbeLiFgN/Dwzn91D2QuAZ2fmuoNv2chcQVeSJKleXEF3cq0DGE1LkiRpyjDY75/tgRWT3QhJkiSpYcZkN2AqiYidgJ1bDm8SEd3SeB4HPAfYBbhsQE2TJEmSRs1gf02vBd7XcuxJwAUjXNfIlfrvvrdIkiRJGiOD/TUtA35Xeb4TsBK4s0P5BB4AbgK+kpnfGmjrJEmSpFFwNp4uRjMbz1TjbDySJEn1MpbZeOzZ7+61wJLJboQkSZI0Fvbs15Q9+5IkSfViz/6ARcQsYDNgZqcymfm7TuckSZKkiWSwP4KImAGcCLwG2J3mzDvtJL6nkiRJmiIMTLuIiJnAD4BD6B7kP3bJYFskSZIk9c4VdLt7I3AoxWJZuwIXU/TerwtsBRwN/Ax4EHh1Zvp+SpIkacowOO3uzymC+9dm5uLGwSzcnZnnZOYhwNeBUyLi4MlqqCRJktTKYL+7vYBbM/OG8nkCRETr+/Y24GHg7yawbZIkSVJXBvvdrQ/cVXn+UPm4SbVQZq4ArgcOnKB2SZIkSSMy2O9uCTCn5TnAHm3KbgZsOugGSZIkSb0y2O/uZmCbyvNfUsy485ZqoYh4IfAE4PaJa5okSZLUncF+dz8ENoqIA8rnXwdWAK+MiEsj4uMR8TXg2xT5/N+YpHZKkiRJa3Ge/e7OBJ4KbAuQmX+MiBOAr1Lk5z+d5tz6FwL/PAltlCRJktqKzJzsNkw7EfF4imk5nwA8AFwEnJVT6M2MiLXaMoWaJ0mSpFGKWHv91szsuqirwX5NGexLkiTVy1iCfXP2JUmSpJoy2B+niNhostsgSZIktWOw30VE7BIRJ0TEgS3H142Ij0TEMuC+iLguIp45Oa2UJEmS2jPY7+5vgC8AO7Qcfyfw98Bsitl49gC+HxE7TWzzJEmSpM4M9rs7BHgEOLtxICLWAf4WWA28Gdgf+CawEXDixDdRkiRJas/ZeLqIiN8DD2XmLpVjBwKXAudl5gvLY5sAdwI3Z+bek9LYFs7GI0mSVC/OxtN/mwN3tRx7JsVquec2DmTmfcBNwOMnrmmSJElSdwb73a0E5rQcawzEvbjl+P3AugNvkSRJktQjg/3ubgLmRsSOABGxIfBcYDmwsKXsNqx9F0CSJEmaNAb73Z1F8R6dFRFvAb4NbAh8OysJ8BGxFbATcMtkNFKSJElqZ8ZkN2CK+wTwcmBf4NMU02zeDby/pdxLy8cLJ6phkiRJ0kgM9rvIzD9FxNOBv6KYS/9W4EuZ2ZqusxPwXeA7E9tCSZIkqTOn3qwpp96UJEmqF6feLJULX0mSJElDra5pPH+KiKspZsxZUG5XZeZDk9oqSZIkaQLVMo0nIlZTLHxVtRq4gSLwX1g+LsjMeye2dRPDNB5JkqR6GUsaT52D/Xba/bB3sPYXgFsH1LQJY7AvSZJULwb7pYh4JrB/ZdsLWK/LJa1vwn00g//G43WZ2elLxJRjsC9JklQvBvsdRMQMYG+KwH+/8nFfYHaXy1rfmIeBaym/AGTmf/a/pf1jsC9JklQvBvujFBG7sOYdgP2AbbtckhQLa2VmrjvwBo6Dwb4kSVK9GOz3QURsxZp3APYH5lIE+WCwL0mSpElgsD8AEbE3cDzwJmBDDPYlSZI0CcYS7Nd1nv1xiYhnAMcALwaeOLmtkSRJksbGYB+IiPWAIygC/KOAraqnK/u/B84CvjthjZMkSZLGaGiD/YiYDRxJEeA/D9ioerqyfx3wHeC7mXn5RLVPkiRJGq+hCvYjYjuK4P4Y4BCaP381uF8NXEzRe/+dzFw8gU2UJEmS+qb2wX5E7EUzwH9q9VRl/0HgRxQB/tmZefdEtU+SJEkalFoG+10G2FYD/LuBcygC/B9m5oMT1kBJkiRpAtRy6s2IWE1zAayqmynTc4CLM3P1BDdtwjj1piRJUr049WZ7fwT+AzgjM6+b7MZIkiRJE6XuPfsNDwHXAAvLbQFwVWY+MOGNmyD27EuSJNWLK+iWymAf1gz4W60GbmLNLwALM/OugTZughjsS5Ik1YvBfikiTgL2L7fdgHU7FG33w99JJfin+AJwU/9bOVgG+5IkSfVisN9GRKwP7EMR+O9XPj4Z2KDLZa1vygrgKtb8AnBFv9vaTwb7kiRJ9WKw36OIWAfYnWbv/37ltnmXy6pvVGbmlB7cbLAvSZJULwb74xQRO7DmF4D9gce3KZqZ2Sk1aEow2JckSaoXg/0BiIhNaQb+jS8Be2TmepPXqpEZ7EuSJNWLwf4EiYhZmfnwZLejG4N9SZKkehlLsL/OwFpTY1M90JckSZLAYF+SJEmqrSk9o4wkSZKmrtWrVrHk7PO5/ZQzWXrZQh5ZtpyZm85mzkH7scP8Y9n6qMNZZ4bh5mQyZ7+mzNmXJEmDtGLRYhYcdyLLr1rUsczsffZg/9M/xUa77zKBLasvB+jqMQb7kiRpUFYsWsylhx3HyruXjlh2vS3mMO+C09hoj7kT0LJ6c4CuJEmSBmr1qlUsOO7EngJ9gJV3L2XB8SexetWqAbdM7RjsS5IkqWdLzj6/a+pOO8uvvJ67zrlgQC1SNwb7kiRJ6tntp5w5putuG+N1Gh+DfUmSJPVs6WULx3bdpQv62xD1xGBfkiRJPXtk2fIJvU7jY7AvSZKkns3cdPaEXqfxGdpVDiJiJvAC4ABgS2DWKC7PzPyrgTRMkiRpCptz0H7cde6Fo79u3v79b4xGNJTBfkQ8B/gKsM04qjHYlyRJQ2eH+ceOKdjfcf6x/W+MRjR0aTwRsRdwFrAtEGPcJEmShtLWRx3O7H32GNU1s/fdk62OPGxALVI3Q7eCbkR8BTgeSOD3wGeB64AVwOpe68nMiwbSwD5xBV1JkjQoK35zM5ce+qreV9C98HQ22n2XCWhZvY1lBd1hDPZ/B+wA3APsk5l/mOQmDYTBviRJGqQVixaz4PiTWH7l9R3LzN53T/Y/7ZMG+n1isN+DiHgImAn8R2a+dbLbMygG+5IkadBWr1rFXedcwG2nnMnSSxfwyLLlzNx0NnPm7c+O849lqyMPY50ZQzlEdCAM9nsQEbdT5Ov/Y2Z+ZLLbMygG+5IkSfUylmB/6AboAr8qH3ef1FZIkiRJAzaMwf5/Ucyoc2xEbD/ZjZEkSZIGZeiC/cz8AfAFYEPg+xFhD78kSZJqaehy9gEiYh3gU8BbKKbbvARYCCwFHu2ljsz850G1rx/M2ZckSaoXB+j2KCKeBPwP8PTy0KjfhMxct6+N6jODfUmSpHoZS7A/dHMhlXn6PwK2ogjyx7IqrlGzJEkTZPWqVSw5+3xuP+VMll62sDm940H7scP8Y9n6qMOd3lHqYOh69iPi48BJFAH7o8C3KVJ47mR0K+ieOoj29Ys9+5KkOlixaDELjjuR5Vct6lhm9j57sP/pn3LhJtWeaTw9iIjrKabdfAB4VmYumOQmDYTBviRpuluxaDGXHnYcK+9eOmLZ9baYw7wLTmOjPeZOQMukyeE8+73ZgaJX/5t1DfQlSZruVq9axYLjTuwp0AdYefdSFhx/EqtXrRpwy6TpZRiD/YfLx8WT2gpJktTRkrPP75q6087yK6/nrnMuGFCLpOlpGIP9m8rHHSa1FZIkqaPbTzlzTNfdNsbrpLoaxmD/GzRX0H3cZDdGkiStbellC8d23aVm6EpVwxjs/zdwI7AZcFpEzJrk9kiSpBaPLFs+oddJdTV0k9Jm5gMR8WLg+8DRwI0R8Tngl8AdFLP0jDhtTWb+bqANlSRpiM3cdDaP3LtsTNdJahq6YD8irip316VI59kB+MAoq0kG+N5FxNOBE4CDgR2BDYClwLXA94AvZKZdF5Kk2ppz0H7cde6Fo79u3v79b4w0jQ1jGs+TgL2B7SvHYgxb30XEhhHxFeAXwBvKds4GZlKs+HsY8AlgcUT82SDaIEnSVLDD/GPHdN2OY7xOqqthXFTrQnpI0xlJZh42/tY0RcS6FL32z6scvhC4BLgf2AU4Bti8PPcI8ILM/EmH+lxUS5I0ba1etYqLDzx2VNNvzt53T5552RmsM2PoEhc0JFxBdxqLiL8G/rN8ei/w0sy8qKXMxsCpwEvKQ3cAu2bmg23qM9iXJE1rK35zM5ce+qreV9C98HQ22n2XCWiZNDlcQXd6O6my/5rWQB8gM/8E/DlwdXloe+CVE9A2SZIm3Ea778K8C05j9r57di03e989DfSlDuzZL0XEXIpUmc0o0nyWATdn5k3druvTa+8NXFM+vSEzdx+hfPUuwNcy89VtytizL0mqhdWrVnHXORdw2ylnsvTSBTyybDkzN53NnHn7s+P8Y9nqyMNM3dFQGEvP/lB/MiJiM+DtFDPfbNOhzN0UC3F9MDPvGlBTnlTZv7yH8osr+9v2uS2SJE0p68yYwTbHPJdtjnnuZDdFmnaGNtiPiGdTBPFbNQ51KLol8Cbg5RHx6sz88QCacyawE7AdxTz/I9musr9iAO2RJElSDQxlsB8RTwPOA2bRDPLvAa4sH9cFtgD2ATYty2wNnB0R8zJzYT/bk5mrgNvKrRfVecWu7WdbJEmSVB9Dl7MfETOBRcATykNXAO/MzPM7lH8u8GHgqeWhG4EnZeYjg25rh/Y8E/gZzS8pT83MK9qUM2dfkiSpRpyNpzd/SRHoJ3AuMK9ToA+QmT8C5lHMgQ/wROBVg25kOxGxBfBVmoH+Oe0C/S7Xj2k7+eSTB/HjSJIkacCGMdg/pny8D/jLXnroyzSbv6SYoQfgZQNpWRflHPtn07wjsQx420S3Q5IkSdPHMAb7+1H06n83M+/t9aLMXAp8l6JX/akjFO+riNiUYozBQeWh1RRfVG6eyHZIkiRpehnGAbpblI83juHaxjWb96ktI4qI7SgC/SeXh1YDr8vMsyeqDZIkSZqehrFn/6HycaMxXNu45v4+taWriNgf+CXNQH8VMD8zvzwRry9JkqTpbRh79m+lmFLzsDFc27im1ykyxywijgZOBzYsDz0I/HlmnjXWOp2NR5IkabgMY8/+BeXj0yPiqF4vKoPvAyny/S8Yofi4RMSbgW/TDPTvBg4fT6AvSZKk4TOMwf7nKQJ2gK9FxItGuiAijqSY8pLy2v8ZUNuIiH8A/p3m7+ZGiulBLxvUa0qSJKmehm5RLYCI+CzwNzSD/ouAM4GFQGOGns2BfSmm2Xw2xSw8CXwhM984oHa9FfhM5dAvgCMz8+4x1OWiWpIkSTUylkW1hjXYn0UR3L+QZsDf9ZLy8UfAi8p59/vdpoOBC4F1y0PnA0dn5pgGAxvsS5Ik1YvB/ihExLrAe4G3AxuPUHwF8Cng/Zm5egBtWQ/4DbBzeehK4ODMXDGOOg32JWkUVq9axZKzz+f2U85k6WULeWTZcmZuOps5B+3HDvOPZeujDmedGcM4r4WkqcJgfwwiYjPgKOBwitVpN6foyV9KkS//M+DMzFw2wDa8Afhc5dD/UAT/vbg9M7/epk6DfUnq0YpFi1lw3Iksv2pRxzKz99mD/U//FBvtvssEtkySmgz2p6mIuJTm6rijdXFmHtymToN9SerBikWLufSw41h599IRy663xRzmXXAaG+0xdwJaJklrGkuwP4yz8UxFTx65iCSp31avWsWC407sKdAHWHn3UhYcfxKrV/V96JYkDcTQBfsR8aVy+7MxXHt8RCyIiIX9bFNmbpSZMcZtrV59SVJvlpx9ftfUnXaWX3k9d50z0OVWJKlvhi7YB+YDrwGeNIZrt6eYjvOJ/WyQJGly3H7KmWO67rYxXidJE20Yg/3x2Lt87JobJUmaHpZetnBs1126oL8NkaQBqeUcYhExg2KqzA27FHtlRPTau78uxbSYB1PMy3/7uBooSZoSHlm2fEKvk6SJVstgPzNXRcStwMdov2hWAAeU22g0VtH9xvhaKEmaCmZuOptH7l02puskaTqocxrPp4CrKAL06tbQeryXLYGvAx+YkJ9AkjRQcw7ab2zXzdu/vw2RpAGpZc8+QGY+GhEvYs3BtAGcTxG0fw74v16qAh4FlgO3Zqb3biWpJnaYfyx3nXvhqK/bcf6x/W+MJA1AbYN9gMy8A7ijeqyyGMHizLxowhslSZoytj7qcGbvs8eopt+cve+ebHXkYQNslST1T53TeDp5LXACcN5kN0SSNLnWmTGD/U//FOttMaen8uttMYf9T/sk68yodV+ZpBqJzHbjV9VNRGyQmQ9Odju6iYi1frH+riWpvRWLFrPg+JNYfuX1HcvM3ndP9j/tk2y0+y4T2DJJaqpkqDwmM7tOCT/UwX5EzAL2ADYGZrL2/PlBcfdjJvA4YHPgqcBLMnPLCWzqqBnsS9LorF61irvOuYDbTjmTpZcu4JFly5m56WzmzNufHecfy1ZHHmaPvqRJZbDfo4h4HPBRitV0u83F31FmrtvPNvWbwb4kSVK9jCXYH9YuijOA5zH2lXAf7WNbJEmSpIEYugG6EfFC4PmVQ8uAy4BryuergIuAy4FbWi5fCbwe2GmgjZQkSZL6YOiCfeCVlf1/B7bOzGcAR5fH1gVen5kHZuYuwC7Ad8tzM4GnZOYfJqy1kiRJ0hgNY7B/UPl4K/D2zHwEIDNvAW4rzz23UTgzb8nMl1Ck/gTw+ojYZ+KaK0mSJI3NMAb7W1Ksivv9zFzdcm5B+TivzXVvBB6mCPhPGFzzJEmSpP4YxmB/o/LxtjbnrqMI5tfquc/Me4Fzy/MHDqx1kiRJUp8MY7B/X/nY7me/qXzcNdrNbQSN9dTn9r1VkiRJUp8NY7B/Z/m4c5tzi8vHWcAT25x/uHyc3ec2SZIkSX03jMH+pRSpOC8qV9CturGy/8w21+5WPq4aRMMkSZKkfhrGYP+c8nEb4IyI2LJxIjN/DzSm1XxLRMxsnIuIXYBjKQb33jpBbZUkSZLGbOiC/cw8C7i2fPpC4JaI+LtKkf+l6PnfD7gkIt4cESdT3BFo3An4ycS0VpIkSRq7yMzJbsOEi4g9gJ8Dm1H01H80M99TntsSuB6Y03pZ+fgAsE9m3jxBzR2TiFjrFzuMv2tJkqS6aDd/TGa2m1TmMUPXsw+QmYsoptf8KvAQcHPl3B+BFwN/pAjwGxtl2eOneqAvSZIkwZD27FdFxAbAepl5X8vxzYDXUay4Owu4Evh8udLulGfPviRJUr2MpWd/6IP9ujLYlyRJqhfTeCRJkiQ9xmBfkiRJqimDfUmSJKmmDPYlSZKkmjLYlyRJkmrKYF+SJEmqKYN9SZIkqaYM9iVJkqSaMtiXJEmSaspgX5IkSaopg31JkiSppmZMdgMmW0RsD2wDrE/x5Sd6uS4zfzrIdkmSJEnjNbTBfkT8P+AkYNcxXJ4M8XsnSZKk6WEoA9aI+A/gjY2nk9kWSZIkaVCGLtiPiEOBv6bonQ/gT8CvgT8CD0xawyRJkqQ+G7pgH3hdZf9U4M2Zef9kNUaSJEkalMjMyW7DhIqIW4EdgRuBPbKmb0BErPVz1fRHlSRJGgoRa2efZ2bXlPRhnHpzK4oUnu/WNdCXJEmSYDjTeO4DtgSWTnZDJA2n1atWseTs87n9lDNZetlCHlm2nJmbzmbOQfuxw/xj2fqow1lnxjD+8yxJ6rdhTOO5EHgWcEpm/tUkN2dgTOORpqYVixaz4LgTWX7Voo5lZu+zB/uf/ik22n2XCWyZJGmqM42nN/9HMQvPMRExe7IbI2l4rFi0mEsPO65roA+w/KpFXHroq1ixaPEEtUySVFfDGOx/AbgGmAN8OSJmTnJ7JA2B1atWseC4E1l5d28ZhCvvXsqC409i9apVA26ZJKnOhi4pNDMfiYijgfOAY4CrI+JLwC+AJfQ4135m/m5gjZRUO0vOPn/EHv1Wy6+8nrvOuYBtjnnugFolSaq7oQv2I+K6cvdxFOk8uwEfGWU1yRC+d5LG7vZTzhzTdbedcqbBviRpzIYxYN2D5uq5DV0HNkjSeC29bOHYrrt0QX8bIkkaKsMY7P+UItiXpAnzyLLlE3qdJEkwhMF+Zh462W2QNHxmbjqbR+5dNqbrJEkaq2GcjUeSJtycg/Yb23Xz9u9vQyRJQ2XoevY7iYi5wC7AZhRpPsuAmzPzpslsl6R62GH+sdx17oWjvm7H+cf2vzGSpKEx1MF+RGwGvB04AdimQ5m7gW8AH8zMuyaweZJqZOujDmf2PnuMavrN2fvuyVZHHjbAVkmS6i4yh3OsakQ8myKI36pxqEvxBO4CXp2ZPx502/ohItb6xQ7r71qaKlb85mYuPfRVPS2std4Wc5h34elstPsuE9AySdJ0ELF2uJqZXWeVHMpgPyKeBlwEzKIZ5N8DXFk+rgtsAewDbFq59GFgXmYunKi2jpXBvjQ1rVi0mAXHn8TyK6/vWGb2vnuy/2mfNNCXJK3BYL8HETETWAQ8oTx0BfDOzDy/Q/nnAh8GnloeuhF4UmY+Mui2jofBvjR1rV61irvOuYDbTjmTpZcu4JFly5m56WzmzNufHecfy1ZHHsY6M4Y6y1KS1IbBfg8i4q+AL1Ck5nwfeMlIgXtEzAC+DbyovO6EzDx10G0dD4N9SZKkehlLsD+MU28eUz7eB/xlLz30mbkK+EuKGXoAXjaQlkmSJEl9NIzB/n4UvfPfzcx7e70oM5cC36XI8X/qCMUlSZKkSTeMwf4W5eONY7i2cc3mfWqLJEmSNDDDGOw/VD5uNIZrG9fc36e2SJIkSQMzjMH+rRSpOGNZqaZxzW39a44kSZI0GMMY7F9QPj49Io7q9aKIOBo4kCLf/4IRikuSJEmTbhiD/c9TBOwAX4uIF410QUQcCXy1fJrA/wyobZIkSVLfDN08+wAR8Vngb2gG/RcBZwILgcYMPZsD+1JMs/lsitSfBL6QmW+cyPaOhfPsS5Ik1YuLavUoImZRBPcvpBnwd72kfPwR8KJy3v0pzWBfkiSpXlxUq0eZ+TDwYuCfgRUUwXy3bQXwAeAF0yHQlyRJkmBIe/arImIz4CjgcOAJFOk7ASylmFf/Z8CZmblssto4FvbsS5Ik1YtpPHqMwb4kSVK9mMYjSZIk6TEG+5IkSVJNzZjsBgxKROzU2M/M37U7Ph7VOiVJkqSpqLY5+xGxmmJazczMGW2Oj8cadU5F5uxLkiTVy1hy9qd0wNoHnX74rm+KJEmSNJKLLroIgEMOOWSSW9JZnYP9n9K+B7/TcUmSJKknf/jDHzj88MOJCG677Ta23XbbyW5SW7UN9jPz0NEclyRJknr1ta99jdWrVwNw2mmn8Y53vGOSW9RebXP2h505+5IkSYORmey9994sWrQIgD333JNrrrmmbU59PznPfg8i4kvl9mdjuPb4iFgQEQsH0DRJkiRNA7/61a+4/vrryUwyk+uuu45f//rXk92stoYu2AfmA68BnjSGa7cH9gWe2M8GSZIkafo49dRTezo2FQxjsD8ee5ePzuYjSZI0hB5++GFOO+20tY6fdtppPPzww5PQou5qOUA3ImYAnwI27FLslRHRa+/+usDOwMEUM/ncPq4GSpIkaVo6++yzWbZs2VrHly5dyjnnnMOxxx478Y3qorYDdCPiHcDHWHuazUav/Fh+8Civ+1Bmvm8czRs4B+hKkiSNzm233cbzn//8rmXuvPNO7r333rbnNttsM7bZZpuu15933nnsuOOOY2qfi2qt6VPA8cA+Hc6PJRUnga8DHxhroyRJkjQ1XXzxxVx33XVjvv7ee+/t+EWg4ZJLLuGVr3zlmF9jtGrbsw8QEduz5mDaAM6nCNo/B/xfD9Uk8CiwHLg1M5f3u52DYM++JEnS6GQmX/7yl3nLW97CAw880Ne6H/e4x/HZz36W+fPnj3mKzrH07Nc62G8nIlZTBPB/l5mfnOz2DIrBviRJ0tjceOONvOpVr+JXv/pVX+o74IADOP3009l1113HVY/z7PfmtcAJwHmT3RBJkiRNPbvuuisXX3wx73rXu4iIMfXEN65797vfzSWXXDLuQH+shq5nf1jYsy9JkjR+F1xwAccffzy///3vR3Xd9ttvz9e+9jUOPfTQvrXFNJ4JEhEbZOaDk92Obgz2JUmS+uOPf/wjW2+9dc+xVESwZMkSttxyy762w9l4RikiZgF7ABsDM1l7hp6gSHWaCTwO2Bx4KvASoL+/PUmSJE1Jt99++6g6TTOTO+64o+/B/lgMZbAfEY8DPgrMp/vCW5IkSRpyl1566Ziu2W+//frfmFEaxgG6AGcAbwI2oui9H+22euKbLEmSpMlw2WWXTcg1gzB0wX5EvBCoLo22DLgMuKZ8vgq4CLgcuKXl8pXA64GdBtpISZIkTRmXXHLJWseq+fOtufQR0faayTB0wT5QXbLs34GtM/MZwNHlsXWB12fmgZm5C7AL8N3y3EzgKZn5hwlrrSRJkibNH//4RxYvXrzW8Q022IAvfelLfPGLX2SDDTZY41xmctNNN3H33XdPVDM7GsZg/6Dy8Vbg7Zn5CEBm3gLcVp57bqNwZt6SmS+hSP0J4PURsc/ENVeSJEmTpV06zgEHHMDChQt57WtfywknnMDChQs54IADerp2og1jsL8lxQq638/M1tz7BeXjvDbXvRF4mCLgP2FwzZMkSdJUUR2c22mRrF133ZVLLrmEd7/73Wuk9IxlYG+/DWOwv1H5eFubc9dRBPNr9dxn5r3AueX5AwfWOkmSJE0ZCxYUfcHbb789559/Ph/+8IeZOXPmWuVmzpzJhz/8Yc4//3y22247AK644ooJbWs7wxjs31c+tvvZbyofd4326yIvKh/n9r1VkiRJmnK+9KUv8d73vperrrqqp9VwDz30UK6++mre+9738qUvfWnwDRzB0K2gGxFXA3sBX8zM17ecOwS4gCLNZ4/MvLHl/PuAk4GVmbn+xLR4bFxBV5IkqV7GsoLuMPbsX0qRivOicgXdqmpw/8w21+5WPq4aRMMkSZKkfhrGYP+c8nEb4IyIeGwd48z8PdCYVvMtEfFYQlZE7AIcS9Hrf+sEtbWtKFwcERkR8yezLZIkSZq6hi7Yz8yzgGvLpy8EbomIv6sU+V+Knv/9gEsi4s0RcTLFHYHGnYCfTExrO3o38IxJboMkSZKmuBmT3YBJ8nLg58BmwPrAppVz/wLMB+YATyk3KL4AADwIfHoC2thWRLwW+OBkvb4kSZKmj6Hr2QfIzEUU02t+FXgIuLly7o/Ai4E/UgT4jY2y7PGZeTMTrEzdeS/wxUp7JEmSpI6GbjaeVhGxAbBeZt7Xcnwz4HUUK+7OAq4EPl+utDvRbdwG+BLwgjanX5uZp7S5xtl4JEmSamQss/EMXRpPRDwZeDQzrwPIzAcpUnPWUC6i9bEJbt4ayi8iJwF/T3MxsD8BVwCHTFa7JEmSND0MYxrP+4CrI+LqiDhmshszglcCH6AZ6F8BzAMunKwGSZIkafoYxmD/QIqc970o8vKng3uBE4EDM/PakQpLkiRJMIRpPMAWlf0rJq0VvVlCMc3m5zJz2SS3RdPM6lWrWHL2+dx+ypksvWwhjyxbzsxNZzPnoP3YYf6xbH3U4awzYxj/CZAkaXgM3QDdiFhIMRNPAntm5g2T26LRK+f9/6fyqQN0tZYVixaz4LgTWX7Voo5lZu+zB/uf/ik22n2XCWyZJEkaq7EM0B3GNJ4PUAT6AB+PiHUnszETKSLGtJ188smT3XSNwopFi7n0sOO6BvoAy69axKWHvooVixZPUMskSdJEG7pgPzPPpFhU617gSOCKcpXcp0bEZhExdO+J6mP1qlUsOO5EVt69tKfyK+9eyoLjT2L1qlUDbpkkSZoMQ5ewGxHnlrs3A5sDTwI+01JmpGoyM4fuvdPUt+Ts80fs0W+1/MrrueucC9jmmOcOqFWSJGmyDGMv9vOB5wEH0EzniTFs0pRz+ylnjum628Z4nSRJmtqGsXf6dzSDfKlWll62cGzXXbqgvw2RJElTwtAF+5m582S3YbI4G0/9PbJs+YReJ0mSprZhTOORamvmprMn9DpJkjS1GexLNTLnoP3Gdt28/fvbEEmSNCUMXRpPROzUj3oy83f9qEfqpx3mH8td51446ut2nH9s/xsjSZIm3dAF+8AtjH+AbjKc752muK2POpzZ++wxquk3Z++7J1sdedgAWyVJkibLsKbxjGWqTafe1JS3zowZ7H/6p1hvizk9lV9viznsf9onWWeG310lSaqjYfwf/qeM3LMfwPrAtsCO5bEEvlNeL01ZG+2+C/MuOI0Fx5/E8iuv71hu9r57sv9pn2Sj3XeZwNZJkqSJNHTBfmYeOpryEbE18G7gzcALgVMy8+wBNE3qm432mMszLzuDu865gNtOOZOlly7gkWXLmbnpbObM258d5x/LVkceZo++JEk1F8693puIeCfwUeBe4MmZ+YdJbMvJwD+VT1+bmae0KbPWL9bftSRJ0vQVsXYmeWZ2TS832O9RFO/uTcDOwEcy8x8nt0XdGexLkiTVy1iC/WEdoDtqWUTK51Dk8x89yc2RJEmSRmSwPzp3lY+Pn9RWSJIkST0w2B+dJ5aP5sNIkiRpyjPY71FE7Ay8giLQXzy5rZEkSZJGZrDfRUSsFxHbR8R84GfABuWpsyavVZIkSVJvhm42noh4dDyXU0y9uWtmLu1TkwbC2XgkSZLqZSyz8Qzjijpd35AR3Ae8dKoH+pIkSRIMZ7D/O3ofYPso8ABwG3A+8OXMvHdQDZMkSZL6aejSeIaFaTySJEn14qJakiRJkh5jsC9JkiTV1NAF+xHxpXL7szFce3xELIiIhQNomiRJktRXwzhAdz7FAN1rgB+O8trtgX0pBu1KkiRJU9rQ9eyP097l43im75QkSZImRC179iNiBvApYMMuxV4ZEU/qscp1gZ2BgynuCtw+rgZKkiRJE6CWwX5mroqIW4GP0X5O/QAOKLfRiLK+b4yvhZIkSdLg1Xae/YhYF/g1sE8fq03g68D8zHykj/X2nfPsS5Ik1ctY5tmvbbAPEBHbA0+sHqJYCTeBzwH/10M1SbGS7nLg1sxc3u92DoLBviRJUr2MJdivZRpPQ2beAdxRPVZ5kxZn5kUT3ihJkiRpgtQ62O/gteXj5ZPaCkmSJGnAap3GMygRsUFmPjjZ7ejGNB5JkqR6MY1nlCJiFrAHsDEwk7Xnzw+KtQhmAo8DNgeeCrwE2HLiWipJkjQ1HH300SxevHjU182dO5ezzjprAC1SN0MZ7EfE44CPUqym220ufkmSJFUsXryY6667brKboR4NZbAPnAE8j7GvhPtoH9siSZIkDcQ6k92AiRYRLwSeXzm0DLgMuKZ8vgq4iGIA7y0tl68EXg/sNNBGSpIkSX0wdME+8MrK/r8DW2fmM4Cjy2PrAq/PzAMzcxdgF+C75bmZwFMy8w8T1lpJkiRpjIYx2D+ofLwVeHtjJdzMvAW4rTz33EbhzLwlM19CkfoTwOsjop+r8kqSJEkDMYw5+1tSrIr7/cxc3XJuAbADMA/4z5ZzbwSOAtYDTgD+drDNlCRpeDnji9Qfwxjsb1Q+3tbm3HUU6Txr9dxn5r0RcS7FtJsHDq55kiTJGV+k/hjGNJ77ysd2P/tN5eOu0W7VAlhUPs7te6skSZKkPhvGnv07gc2Anduca9wvnAU8Ebix5fzD5ePsgbRMkjShTBWRVHfDGOxfCuwNvCgiZmXmw5Vz1eD+mawd7O9WPq4aYPumldWrVrHk7PO5/ZQzWXrZQh5ZtpyZm85mzkH7scP8Y9n6qMNZZ8Yw/plJmg5MFZFUd8OYxnNO+bgNcEZEbNk4kZm/BxrTar4lImY2zkXELsCxFIN7b52gtk5pKxYt5uIDj+WKV7yFu869kEfuXQarV/PIvcu469wLueIVb+HiA49lxW9unuymSpIkDaWhC/Yz8yzg2vLpC4FbIuLvKkX+l2KKzf2ASyLizRFxMsUdgVllmZ9MTGunrhWLFnPpYcex/KpFXcstv2oRlx76KlYsGv1tckmSJI3P0AX7pZcDSymC+vWBTSvn/gW4t9x/CvAZ4L0UU3YCPAh8eiIaOVWtXrWKBcedyMq7l/ZUfuXdS1lw/EmsXmX2kyRJ0kQaymTqzFxULoz1EeBlwM2Vc3+MiBcDZwJbtVz6EHB8Zg51XsqSs88fsUe/1fIrr+eucy5gm2OeO3JhSZI0Zc2dO7ZJCcd6ncZnKIN9eCw//zUR8UaKhbKq5y6OiL2A11GsuDsLuBL4fLnS7lC7/ZQzx3TdbaecabAvSdI050xU08vQBvsNmfkgRWpO6/F7gY9NfIumvqWXLRzbdZcu6G9DJEmS1NWw5uxrHB5ZtnxCr5MkSdLYDH3PfquImAE8h2JO/fWAa4CfZKajS0szN51dTLM5huskSZI0cYYm2I+IFwFHAutk5hs6lHk18CFg+5ZTSyLiHZl5+oCbOS3MOWg/7jr3wtFfN2///jdGkiRJHdU+2C8XzfoOxUBbgCXAWsF+RJwIfJxiOs5W2wBfjYhdMvODA2rqtLHD/GPHFOzvOP/Y/jdGklRLzvgi9Uetg/2I2Aq4iCIlB4pAfrM25fanmF8fihVyg2LhrKuAXSkW31oHeH9EXFUuzDW0tj7qcGbvs8eopt+cve+ebHXkYQNslSSpTpzxReqPug/Q/Qiwe7n/EPA54C/alPsQsC5FkJ/AcZn53Mw8KTOPBp4NLC/PfyYi1mtTx9BYZ8YM9j/9U6y3xZyeyq+3xRz2P+2TrDOj1t8tJUmSppzaRl8RsSvwGorg/VbgzzLzpjbldgCeV5YD+Epm/m+1TGZeEhFvB74I7AS8APjuAJs/5W20+y7Mu+A0Fhx/EsuvvL5judn77sn+p32SjXbfZQJbJ0m9MVVEUt1FZo5cahqKiHdQzJOfwLMy85IO5f4a+I/yaQJPzszr2pRbB/gDsAXw1cycP4h290tErPWLHcTvevWqVdx1zgXcdsqZLL10AY8sW87MTWczZ97+7Dj/WLY68jB79CVJkvogYu2hpZnZbrxp85oaB/s/BI4AFmTmU7uU+xZwTPl0cWbu2qXs/wKvBK7OzH372Ny+m6hgX5IkSRNjLMF+nbtcd6boqW/bo19xCM0Unh+PUPa35eO2Y2+WJEmSNDHqPEB3q/Lxzk4FImIvoDrK9MIR6mwsAbvpmFslSZIkTZA6B/uNGXO6rXz7rPKxcfvjohHq3Lx8XDnWRkmSJEkTpc5pPH8EdqDNvPoVh1b2b8rMjncBSk8oH+8aR7skDaGjjz6axYsXj/q6uXPnOt+4JGnM6hzs30YR7O/d7mRErAv8Gc18/R91qywiZlAM+E1grSk8JambxYsXc911a030JUnSQNU5jefHFOk5h0XE5m3Ov5AiX7+RwnP2CPW9Cphd7l/WlxZKkiRJA1TnYP875eP6wOfKefIBiIgNgfdXyt5Jl579iNiGYjXehm/1r5mSJEnSYNQ22M/MhcAZFD33LwUuj4gTI+K9wBVAY578BD6Ymavb1RMRz6AYuLttWfacsm5JkiRpSqtzzj7A24EDKObc36/cWl2Qmf/VejAiPgEcTvNLAcCDwIn9bqQkSZI0CLXt2QfIzDuAZ1Lk2Eeb7UzgqA6Xv4xmoB8Uc+y/IDNHP52GJEmSNAnq3rNPZv4BeEZEHEYxm87mwO3AuZl5RZdLlwA7lfsXAW/JzGsG2lhJkiSpj2of7Ddk5gXABaO45JPAhsDPM/OGwbRKkiRJGpyhCfZHKzO/MdltkCRJksaj1jn7kiRJ0jAz2JckSZJqymBfkiRJqimDfUmSJKmmHKArSRNg7ty5E3qdJEkAkZmT3QYNQESs9Yv1dy1JkjR9RcRaxzJz7YMVpvFIkiRJNWWwL0mSJNWUwb4kSZJUUwb7kiRJUk0Z7EuSJEk1ZbAvSZIk1ZTBviRJklRTBvuSJElSTRnsS5IkSTVlsC9JkiTV1IzJboCk/jn66KNZvHjxqK+bO3cuZ5111gBaJEmSJpPBvlQjixcv5rrrrpvsZkiSpCnCNB5JkiSppgz2JUmSpJoy2JckSZJqymBfkiRJqimDfUmSJKmmDPYlSZKkmjLYlyRJkmrKYF+SJEmqKYN9SZIkqaYM9iVJkqSaMtiXJEmSaspgX5IkSaqpGZPdAEn9M3fu3Am9TpIkTW2RmZPdBg1ARKz1i/V3LUmSNH1FxFrHMnPtgxWm8UiSJEk1ZRqPRu3oo49m8eLFo75u7ty5nHXWWQNokSRJktox2NeoLV68mOuuu26ymyFJkqQRmMYjSZIk1ZTBviRJklRTpvFINXfyySf3dExSwc+MNHp+bqYup96sqUFOvbn33nuPKWd/r7324tprr+1LG9S7DtN0TUJLpOnBz4w0en5uJoZTb0qSJEl6jMG+JEmSVFMG+5IkSVJNGexLkiRJNWWwL0mSJNWUwb4kSZJUUwb7kiRJUk0Z7EuSJEk15Qq6GrW5c+dO6HWSJEkaG1fQralBrqCr6cVVDaXR8TMjjZ6fm4nhCrqSJEmSHmOwL0mSJNWUwb4kSZJUU+bs11S7nH1JkiTVizn7kiRJ0pAy2JckSZJqymBfkiRJqimDfUmSJKmmHKArSZIk1ZQ9+5IkSVJNGexLkiRJNWWwL00xEfH0iPhcRFwTEfdFxMqIWBIR50fESRExu8d6touIj0TEwoj4U0Q8EBE3RsSXI+IZo2xT3+qS+i0ijoiI0yPitxHxUEQsjYirI+ITEfHkUdTjZ0ZDLSJ2Lv/fyYg4pcdr/NxMcebsS1NERGwI/Bfw6hGK3g0cl5k/7FLXMcCpQLcvBv8JvDUzHx2hXX2rS+qn8jPzFeClXYo9CnwaeFdmrupS1zH4mdEQi4h1gIuAg8tDp2bm/BGuOQY/N1PejMlugCSIiHWBM4HnVQ5fCFwC3A/sAhwDbA5sAZwTES/IzJ+0qetw4Axg3fLQ1cD3gIeAg8rXCOBvyvNv6tKuvtUl9VMZmJwFHF45/ANgAcXf6wHAYeX+ScBGwBs71OVnRoK/pxnoj8jPzTSSmW5ubpO8AX8NZLndAxzSpszGwLcq5W4HNmgpswHwu0qZD1DewauUOQJYUSlzWIc29a0uN7d+b8CbK393y4BntinzfOBPlXKHtinjZ8Zt6DfgKcDKyt9lAqd0Ke/nZhptk94ANze3BLip8o/YkV3KrQdcVSk7v+X8Wyrnftilnr+olLu4Q5m+1eXm1u8N+G3l7+7lXcqdVCn3v23O+5lxG+qtDLavK/8eH+4x2PdzM402B+hKkywi9gbmlk9vyMxzOpXNzJUUef0Nz2kpMr+y/6EuL/t14Ppy/xkRsUubMv2sS+qbiNgd2Ll8ehdFClwn51X2n9Tm/PzKvp8ZDaOPA3tSjG95f4/XzK/s+7mZ4gz2pclXDUAu76H84sr+to2diNgS2L98ugz4eacKsugmObdy6CXV8/2sS+q3zPwNsAkwD3hlZq7uUnz9yv4j1RN+ZjTsIuL5NPPfP0YxTmyka/zcTDMO0JUm35nATsB2wAM9lN+usr+isv8UigFMAJfnyLMVXFbZP7DlXD/rkvouM5ez5t9dJ6+s7P+i5ZyfGQ2tiNgC+HL5dCFwMtDL9JZ+bqYZg31pkmUxHeBt5daLYyv711b2d6vs39xDPbd2uLbfdUkTLiIeR5ELfGJ56AHgX1uK+ZnRMPs8sA1Fnv6rM3NlRIxwCeDnZtox2JemkYh4JvCiyqFqrvK2lf1evjj8vrK/dcu5ftYlTYjy8/EC4AnAC4FNy1PLgZdl5k0tl/iZ0VCKiBNopsG8JzOvGcXlfm6mGYN9aZoob7l+leYtz3My84pKkU0q+72kA1XLbNJyrp91SRPlOIppbKvuBV6cme1ygf3MaOiUA1s/Uz69EPjkKKvwczPNOEBXmgYiYmPgbIoeSygGMr2tpdisyv6DPVRbLTOr5Vw/65Imyk5tjm0G/DQiTouI1uDAz4yGSrmA49coFplbTjF9c46yGj8304zBvjTFRcSmFNMHHlQeWg38ZWa25jd2m5FkJK3/2PezLmmi/CPFCtOzgN0pBhw+RHE37FXADyNivUp5PzMaNv9AMYsVwFsz89ZuhTvwczPNGOxLU1hEbAf8lOYMCauB12Xm2W2KV2fmWb/N+VYbVPYfGmBd0oTIzIWZeU9mrszMGzLz/cChNG/9Px14e+USPzMaGhHxNOB95dNvZ+apY6zKz800Y7AvTVERsT/wS+DJ5aFVFLdcv9zhkuo/mo/r4SWqZe4bYF3SpMnMXwAfrhw6obLvZ0ZDoZyd6msUYzWXAK8fR3V+bqYZB+hKU1BEHA2cDmxYHnoQ+PPMPKvLZdVZCrbrWKpp+8r+HwZYlzTZvg58sNzfLSI2yswV+JnR8HgPzakqLwfmd5hmc25lf++IeEe5f19mfqHc93MzzRjsS1NMRLyZYqaExp23u4GjMnOkBYSqc+7v3MNLPb6yf8MA65IGohxsODMzR7qd3zql32yKHkU/MxoW1SD5yHIbyQHlBsX89o1g38/NNGMajzSFRMQ/AP9O87N5IzCvh0Af4GqaA5aeFiOvjjKvsv/rAdYl9VVEvC4ibqK44/WeHi7ZrOX5PeWjnxlp9PzcTDMG+9IUERFvBT5UOfQL4BltFgJqKzOXAY25xLcCntbltYJi0aGG8wZVlzQA91OkG8wEXtpD+edX9q/OzIfBz4yGR2bOz8wYaQMOq1x2auXczpW6luHnZlox2JemgIg4mDUXNjkfeE5m3j3Kqk6v7J/cpdyrKKYmBPhVZl7bpkw/65L66Vya823vFREv61QwIubQnIEEikGKVX5mpNHzczOdZKabm9skbsB6wG8pbmUmsBDYaIx1rQ/cVKnrM8CMljJHUOQrN8q8cNB1ubn1e6OYYafxd7cMOKRNmcdTzGjVKLcY2KCljJ8ZN7dyo5iqtvG3eUqXcn5uptEW5ZsoaZJExBuAz1UO/Q/wmx4vvz0zv95S3+EUtzdnloduBL5D8Q/lgcALKBYZAvhCZnacgq2fdUn9FBHrAz8EnlUeSuBHwCUU61HsAxxFc5XNe4GDM/P6NnX5mZGAiDgUuKB8empmzu9S1s/NNGGwL02yiLiU5uq4o3VxZh7cps4XA6cCm3S59vPA32TmoyO0r291Sf0UERtTzBDyyhGK/hp4Ra696nS1Lj8zGnqjCfbL8n5upgGDfWmSRcQKmvPpj1bbYL+sd2vgzRRTrD2BYuXBJRQ9n5/LzAtH0ca+1SX1Wznm5a8oevkbc3UvAS4D/g/4Tvbwn52fGQ270Qb75TV+bqY4g31JkiSpppyNR5IkSaopg31JkiSppgz2JUmSpJoy2JckSZJqymBfkiRJqimDfUmSJKmmDPYlSZKkmjLYlyRJkmrKYF+SJEmqKYN9SZIkqaYM9iVJkqSaMtiXJEmSaspgX5IkSaopg31JkiSppgz2JUmaYiLiHRGRXbZHIuKuiLigLLvpZLdZ0tRksC8NgYh4ekR8LiKuiYj7ImJlRCyJiPMj4qSImN3l2vkjBB0ZEasi4v6IuC0ifhYRH4yIvQfwc5zc5rVfP4Z6dm5TzxGjuH6viPj7iPhxRCyOiD9FxMMRcWcZfH0wIp7cQz2H9vDe9rqdMtr3QVPa/iOcnwFsCRwKfBy4LiIOGnSjJlJE/Fv5t/35SXr9d1Y+Xxf3eM1BLZ/L3/Z43d6Va+6PiFnl8XPLY383np9Fw23GZDdA0uBExIbAfwGvbnN6q3I7DHhXRByXmT8c40utCzyu3HYADgbeExHfBN6cmXeNsd5evBwYbTDw52N5oYjYDfgQcCwQbYpsXW6HUvz8PwDekZnXjOX1NNSqwf6Pgd+0nN8cOATYtny+LfC9iNgnM++YgPYNVEQ8D3gzcB/wnklqxk8q+0+NiFmZ+fAI1zy/5fnOEbFHZi4a4bpDKvs/rbzO24EjgA9GxA8z88qRmy2tyWBfqqmIWBc4E3he5fCFwCXA/cAuwDEUQcMWwDkR8YLM/Amd3Uzx5aHVTGBjikD/IGDX8vjLgXkR8YzMvG3MP0x3h0bEFpl59yiuGXWwHxHHAF8DNqwcvgU4H7gDeAjYHngmsG95/nll+96eme3et8VAtx67A4BXlvud3vsGv1DURERsAOxWOfTPmfmzNuXWAz4JvKk8tBnF39PfDrqNg1R2UvwPxRfqD2fmHyepKQuAeyj+jZxF8XkcqYe/NdhvHBsp2H92Zf+xTpfM/E1EfA54C/DliHhaZj46UsOlNWSmm5tbDTfgr4Est3uAQ9qU2Rj4VqXc7cAGLWXmV85f2ONrHwUsqVx3LTCnDz/TyZU6H6zs/79R1LFH5brqdkSXa44HVlfKXg48p0v5/Sm+WFXr/7sx/Lyjfu/dpv8GHNjyt7Npl7LrAFdWyi6e7Pb34ef/WOXfo/UnuS3frLy37xyh7GbAo2XZcyrXndfD6/y+Un7vlnNbAn8qz71lsn8/btNvM2dfqq+TKvuvycyLWgtk5p8oermvLg9tT7Mnecwy82yKHu5Gb/tewPvHW2+L8yr7Lx/FdY1e/ZXAVSMVjoh9KdKEGmk7nwOekV3ugGTmAopb7/9dOfzRiPizUbRTw6uawnNbZi7rVDAzVwPfrRzaOSKm7f/tEbEzzTsTH83MhyavNcCaqTzPHKHsn9EcC/l14Ppy/5Dybk1bEbErzXSsOzLz2ur5LO5s/Gf59P3dxlhJ7UzbfxAkdVYOjp1bPr0hM8/pVDYzV7Jmeshz+tGGzLwJ+H+VQ6+PiB37UXfp2nIDOCwitujxusaXmR8AS3so/wWg8R/1t4G/ycxHRrooM1dl5huBM8pD6wD/2Rh4J3WxX2X/6k6FKqppLutQpJxMV++lSAu8Hzh1ktsCxXiJhmeMULaawvMTmh0S67NmTn6ragrPjzqU+S+Knv05FHn8Us8M9qV6elJl//Ieyi+u7G/bsdQoZeZ3gF+UT2cBb+hX3aVvlI8zgJeMVDgi9qNI4wH43x7KHwE8rXz6IPD6zMxRtvEtwLJyfy5w3CivH5iIuLCc6eOW8vnGEfHeiLg6IlaUs4IsjIgPRcTWPda5V0R8OiKujIhlEfFQRNweEedExOvKPPN21/20MhvJ4V3q/0yl3Nldyu1RKffdDmV2LGdOujwi7i5nVLqjbOsJETGzS/23lHWfVz4/tvyZH4xiVqozyrtCY1Ht2R/x7hNQ7el9IDMfHOPrTqqI2JbmZALfKO88tivX+Lu9pny+YUS8PSJ+ERH3lH+7iyLiExGxQ8u1z4uI75a/54fL39VXo8PsYWWnxa3l0y0iYvcuP0Ljzt3VmfkHKrn3tM/lbxgx2M/MW2jeZXhbtzsFUiuDfamezgR2ohgs+y89lN+usr+iz235WmX/uX2u+/8q+72k8jRSeB4AzuqhfPXOxGk5ukHAAGTmncBXKodeN9o6JkJEPAH4FfDPFF8WN6SYXWlf4B+AG6LL9KQRsX5EfJZioPDbgH2ATSi+5G0PvIjiLsmiiHh6myq+V9nvNg1q9c7Ts7qkrLygsr/Wl4KIOAm4gWKmlwMoBmGuR/FZeBHwReDa6G0K1WMpcrv3oejF3YFixqZRD6QsB9ZXX7OXnv3ql4obR/uaU8jrKHr1oYcv4wARsSdwBcVA5adT5M1vCOxOkcr4q4jYJyLWjYj/puhtP5ri97wexe/qeODyiOj079OIqTzlF7tGR8kPyseLgMasOi9Y66KmRq9/0rlnH+D08nEOfUi31PAw2JdqqEwhuS0zf5GZvQQLx1b2r+1YamwurOw/NSI26VfFmfkbisGJUKTybD7CJa8oH8/OzPt7eInqrffvj7Z9Fd+u7B84ipSjibIBxYDC3SiCk29QpFN8lmLgIBS9x99rFxBFxAyKdKU30Rzb8EuKL5rvpfiyc195/AnARRFxaEs1Iwb7EbENUO2B3YQ1U16qGsFVttRNRPwL8AmKwBzg0rKt76EYn9H4mXcFLh6hh34zirEZrVOxXp9jm3J1d5ppYzBCz34Ui2lVe43HOn3uVPCa8vF+YK3Zh9rYlOJzuRtwL8WXyX+i+Htr3N3Yujz+KeD1FF/0vwr8I/Af5XVQvOdf6ZBmV03l6ZS3X/0d/ACgvMPS+Dl2K79Qr6FMbXx8+XRhdp95qPq7fU3HUlKryR4h7ObmNrkbxX9e1ZlmntJyfn7l3IVjqH8WzRkqEthvHG09uVLPB8tj764ce12Xa6sznBxTHruwcuyIlvJPrJxLYPtxtHtdiiC6Uddze7xuXO99D/Vf2PIzLgb2bCmzIWvOSLIYmNXl9/KnxvvbUmYL4NxKuSXAFi1lbinPPUqbGWiAV7W0N4ET25R7HMVUqAn8suXc0ZVr7273u6D4EvCZSrkbgfU6tLWxnQPsWb5fzwJeOsbfyXGVOh8GZo5Q/kuV8iuBuf3+O5mIjeJLXOPn+P4o/27PAjZqKfMU4JGWctcCO7WU255i1p81/m1oKbMVzX8jF3Vo0wXl+furnw+KqVAbdf91m+uOr5z/aA/v03Vl2VXAZpP9e3ObHps9+9IQK3uYv0qzV/KczLyin6+RxeIw91UO9btXu9dUnkYKz3301ktfTW1aleNYqCiLebGrC4vN7VR2Ej0APC8zr68ezOIOyF9QzDkOxfoMj6UilXdTTqxcclwWYzXWkEUK1DEUKRdQBFCtAw0bPfDrAO3y9hspPLdRfKmAYgGzVofRHKT6WApPRATw4Uq5l2XmWmkTmflQZr6t0p4n0n5huoZrgJdk5vWZeX9m/iwzv9WlfDfVfP1F2WEweERsFxGnA6+tHP54Zi5uV34aOKyyP5qFo+4AXpmZa6Qflv+OVe+oJfDyzPxdS7k7KO5gNRzQ+gJZLArYuEuze+uduYjYiGaP/0W55sJbI+XtV+8e9nJXZmH5uC7Fl0ppRAb70pCKiI0pAqHGreVlFLnWg1BNmelrsF8GN78unx7eLpWnzOtufBH4do68CiYUOdwN93Us1bsllf1N+1Bfv/1HFoMR15KZqyhy+RteWtk/imK9BigCnY5jIbKY+emdlUMntBQZKZWnEeyfTzG+ANrn7XfK159HMw3oksy8sFNbSx+s7B/fpdwXOgXlY7BfZX/jiPhsy3ZKRFxMcWfhLyplG6kp01V1HEcvqYcNn8vOA5IXVvYvyczrOpSrHt+yQ5lus/I8h+ZYgx+0nLsKuLPcP7zNoO/G4NwHGHnBLljzvTmwh/KSwb40jMo83/MoBvBCcYv6LzPz5gG9ZDUPdvUA6h9pVp5nUdyuhx4H/lGkgjT0Y67vVZX91vzuqeDrI5z/Ps2f4dmV2UCqPfBnjvQiWaxPcE/5dJso5hhvOJ8i6IGWYD8i5tLMbb6A5ixPm7LmAFVo9qDelpkLK8ervai93MG6guYAywPLsQntXNpDXb3ar7L/BIpxENXtNRTBZiNovBt4Q2b+ZWauMVNURDw5Iv4xIn4YEX+IiJURcV85+9D7ImJOp0ZUZrypbg9FxJJy1qFTIuI1EfG4TnWMUnWWm5FWm636ZZdzd1b2F3YpV70r0Gna0m55+9VVytcI9svfSePu0UYUXzgBiGKGq8ZKyT/tsROieudtt46lpAqDfWnIRMR2wE9p9k6tpsh17ziNYR9UB+UuG0D9I6XyNFJ47mLNmTW6qU77t+kY2tSqGlj1405BPz3CCANBy0Ck0fM/g2aaU3XQ4cIeX6+aprFL5TUeogj4AXaNiJ0q5apfKi4ALqk8fyyIL788NNKkWteX2Kuy/+Y2wewaG0Wg3wj+NqBzr+9vOxwflXKwZrdB5qsovihdRzEH/auBHTPz823qmkvxO/0AxSxYqyne9z9RpKq8n95mG7qNosf5Yorf770UQeZrgFOAP0TEG3v6Abur/q7v7Vhqbd3S66odC0t7LNfJTyk+J9A52P9dZrb7olL9AlBNVxptCg+s+d7s1LGUVNGpl0JSDUXE/hRpDY1e7lXACZn51QG+5iYUU9w1LKmce8dI12fmJ3ooc2tE/ILitvbhEbF5Zt5TvsYMmrMNnVHmz/eimvu8YURskpljCtLLNmxfOTTV8qqXlqk6I5ar7G9N8XNUg9Neg7R7KvubtZz7HnBkuf9ciikwoZnCc3Nm/i4i7qMYyLsuRd7+p8vz1RSe1mC/9bVGazPgD22OLxtnvQ3VfP1VwMY59hVkg2Kxrf8Avlq9axcRzwROo7hT8p2I2KtLr/KXMvPkNSouUlHmUUxteTTwXxGxR2b+7RjbCmt2CIzmc/bAyEWAMUyDWpWZK8p/Yw4GDoiIWZn5cETsRvMLa2sKT8OPKMYMBEWw31hNvDq/fq/BfvW92aRjKanCYF8aEhFxNMU8zRuWhx4E/rxbjnWfPLWy/xBr5sd+vIfrRwz2S9+gCPZnUAwErQaJjR7ZXlN4AH4DLKe5YNEzKWaTGYt9ab7vSe894BOl13zzdSv7K8vHsaQkVevJlnOteftfLAfWNnr2YAv+WgAACn1JREFULwDIzPsiYgFFL/WzI2KdzFxNM4XnAZp3CRqq/+d9k+4pIO3c1e5gj1+UelEN9q8fR6APxQwzT8g2U8xm5sURcRzwc4pA9Xn0tu5E4/pHKHq6fxoR76YY9Py2iLgoM7/d/eqOqukzo1nro/XvZ5B+TBHsz6L4d+0S2ky52Soz74qIKylStA6KiPXL321jgO0dmdnrlMe9pBxJazDYl4ZARLyZYirBRure3cBRmXnZBLz8vMr+FX0cyNjqm8C/UgSfr6AZ7DcWn2mkI/QkM1dFxPcr17+UsQf71QGtv87MJR1LTo5eewirPeONfOhqb/9I6xw0VAdpL6ueyMzbIuIqigWqDi8D/SfR/MJ2QaX4+RTB/hxgn4hYRHN2nh+1CZarbb00Mz/VY3snyn6V/QWdCvVipC8KZcB/H8Xvfk9GEey31PORKFY8PoJijvuxBvsP0vxCPIvml8mp5CcU08xCMaD4Epqr5j5K9xTBH1D8fmdRjP+4iubiad0W0mq1fmV/Wq6UrIlnzr5UcxHxD8C/0/y83wjMm4hAvwzU5lcOnVE9n5kx0tbra2Xm7TTzuA+PiM0iYj2aA3a/0TqAsQfVXOjjI2L7jiU7KKfle0Pl0JdGW8cE2CgiduhWoByI2UhXuJ9msF9dsbV1oGy7eoIikG9oNyi80bu/FUVAdGjlXGuw33AoRYpEY+BwuzEo1dfau835tUzwAmjVnv1xBfsjKVPLGoN8e1lgrpt/Kx/3bRlnMRrLK/sbdyw1uS6j2bP+tChWO270zv8iM5d1ubaaprM/xZ3CaHNuJBtV9pd3LCVVGOxLNRYRbwU+VDn0C+AZnaZYHIBXUMxRDsVgx9MG/HrVWXmOpsj53rQ8NpoUHgAy83yaK2DOolhhc7T/bv4XzR7vOygGVk5FLxjh/FE0/884r5K6Ul3p9GU9vM4RNH8nd7Pml4WGaq79c2jmNt+Qmb+vnPs5zRSkQ4EXlvtJy6q5pZ9W9l/UZhrENUTEAcAfI2JFOYPNwO6GlzPjPL5yaOGgXqt0DM0Zpy4aZ10/o5lOM69bwS5uqex3/eI5Wcq/+cZ79TT+f3v3H3pXXcdx/Pl22Yz9kQ7R7z+jsabIDDYVBMGNrEF/bDBSwl9/tFDGIjMw/FUqDNHC0H5oEYl/iAmKmyjGKMn9oDRzFVNza1Oxtpo/ZiZELdbWuz/en4/nc+/O/fm99+7r+b4e/+ycu3POvXdc2Pt8zvtH3NzmNL9O+frZr6luqpZSFfk6rZ1+ellQbI+kMFyaT8G+SEOZ2YXAPcVLW4DPpuFGk3j/hUSgm92ThtOM00aqzhqXUHXm2TuNYWFfpioC/AzwUHpi0JWFu2jtz36Nu/dbUDhp1xftNFuk71v2cC+7H22iWu1ckWpDaqXg+lvldTo8bXmeqoh3JVWwX67q54FfOe9+BVWwv8Pdy7aL2TNELjvAFDHdtNNnNeDbaXce8MYIc/PrLGvb3zmuN0qtd+9Ou0+5+yB97Y+RVrTzKvPpQ15mT7G9qONRx19O1VlMLChkXYP9NGMi3ygspeqRv9PdDw7w/mX3qz0djxIpKNgXaaAUnD1EVQj5IrCmrlhvDO99gpl9gXiKkNtNvkTrE4axcPc3qVaaVwJr0navHvLdrvkK0WYwd/O4AviNmX260zlmtozIwy2DydvrJsvOIGcAG1Mg+IHUTWkTkTcPUffwWP57d/8HUOa+P2xma2hjZvOBx6kKtt8h2kIeIxXa/jztfo5I54G2YD/JqTynUAWJtW1kU71I+Z63m9l17U9rUsrSD6k6AB2hdcDWOJQpPG/0SAkZWno68QjRtvEgMIq2mVDd8A2bglOmFZ7T8ajjL6/CG9W/3XvAjj7Ozek6S6gm9Q6SwgNwbrE9yvkO0mAq0BVppi8BC4v9HcD6WKzs6a/u3ik4XtChXeYcotBvIbHCWua27wVWT+JGI3mU6F99ElUx29DBPoC7bzSzzxM3UB8n/sPdamavEwHo34gnClNEDu+nitOPAt9w97um8xkm4L/EyvirZraRKGheQKTm5Lz1g8RMhvbV+A1E+sZKIqf4idSmcCsRBJ5B3HidnI4/TAxxq1t9z34GXElr555tNcdtBW5te63jzAh3/4mZLSeeuJxArHCvN7PN6ft9gkhZmipOu8ndu84hGIGx5+unm5oHiRuofxJF+ge6n9W3HOQPO0OivJGbsZNh3f1lM3ubeIKRn2L8Mt2g9pJX/+dSddIZNNjPk4aPEKlBIj0p2BdpprVt+1cPcO6zdA6OF9Ffu0yIIPdB4OvjWqXsYBNRkPzBUw13393l+L64+1NpANF3iFoEI4Y3fbLLaduI7z9sCtEkrSUKLU+lfrV3F3HTdkyesLsfNbNVwH3Eb82IgK0uaHsduNTdf9/j8/yCqo8+wK4OXYyeI1q65hu7fe7+Ys1xpS8C+4gnLycSNyNfqznuEHCju9/b43qjsKzYHnmwn9KSHiCeTP0LWOXuv+1+Vt/Xnk+Vuz5Upyl332tmu4nOQBeY2bwJLhAMagtwebHfK18fAHf/k5ntoxqG9W8GCNjToLT89Oppdx+kRanMYkrjEWmmXlMxR+0osaL3GtHC7wZgsbtfNeFAn1QXUK4STmtVv+3a+939MmKC6C1Eqs4Bovj4MJGasp1I+Vjm7hd9SAJ9iKB5CTHX4DXiO71P/FuuA86pC/Qzdz/s7uuIoPVe4I/Eb+IIEQBuBq4Czu4j0M/pQeWU3LoUnjzZtzyurjC3/Zz/ufs3gbOIvPzfETUCR4jv/AKRdnbWJAJ9MzspfZZs54ivb0RnqbVEgLna3X/V9aTBLC+2p5Nakof7fZRqKu1M1F5QO8jqfHns9pTL369VxfZPBzhPZjkbvBOdiIg0gZltI1KeIAYw/fn4fRoZFzP7EVFofohI3enWDz6fs434bWxon6Bbc+wzRPH6H9z9vG7H9rjO6cBfiBSXTe7eT3enWSOlxp1PtL1d2GXqsUgLreyLiIg0lJn9gAj0/0MU6fcM9Ae8/s1U0403TOdaKU0rr1ivnvCMgxnNzJZQ5evfp0BfBqFgX0REpIFS69evUgX6g0xq7Xbdj5jZcjN7ErgzvXy3uw81hbfNHURK3Fxah9HNdtemP98l0uRE+qY0HhGRWUppPM1lZhdQ1TK8Q/3wsmyzu99ZvlD8NvYTxczQ2nUrz2R4H7jB3e8fxedO7/19Irh9C1jk7odGde0PIzObIqY/fwy4zt2/2+MUkRbqxiMiItI8c4vt06hmFdTpNlF7AdXU1sNE0fWrRMegLcBjYwjGbyM6Xk0BXyGKxmezm4lA/2W0qi9D0Mq+iMgspZV9manM7GKije57wJnu/vcepzSSmS0mOlvNAS4cVbtUmV2Usy8iIiIzirs/DvwYmM8Epm/PYN8jntLcpkBfhqWVfRERERGRhtLKvoiIiIhIQynYFxERERFpKAX7IiIiIiINpWBfRERERKShFOyLiIiIiDSUgn0RERERkYZSsC8iIiIi0lAK9kVEREREGkrBvoiIiIhIQynYFxERERFpKAX7IiIiIiINpWBfRERERKShFOyLiIiIiDTU/wFlWEBaCn9a3AAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 816x1615.68 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure(figsize=(6.8, 6.8/4*3*2*(1 + 16/50)), dpi=120)\n",
"grid = fig.add_gridspec(4, 1, height_ratios=[2, 50, 10, 50], wspace=0.4, hspace=0.1)\n",
"\n",
"######################\n",
"# fig.a\n",
"######################\n",
"\n",
"plot_axes = plt.subplot(grid[1, 0])\n",
"\n",
"plot_kwarg = {\n",
" # 'fmt': 'o',\n",
" \n",
" # Style of line\n",
" 'linestyle': 'None',\n",
" 'linewidth': 2,\n",
" \n",
" # Style of markder\n",
" # 'marker': '.',\n",
" 'markersize': 5,\n",
" # 'markerfacecolor': plot_blue,\n",
" # 'markeredgecolor': plot_blue,\n",
" 'markeredgewidth': 4,\n",
" \n",
" # Style of errorbar\n",
" 'capsize': 0,\n",
" # 'ecolor': plot_blue, # color of errorbar line\n",
" 'capthick': 1.5,\n",
" 'elinewidth': 3,\n",
" \n",
" # text for legend\n",
" 'label': 'Experiment',\n",
" }\n",
"\n",
"\n",
"# 1.2157134383410748+/-0.02622973148346536\n",
"# 0.2556310933363963+/-0.009332131323758952\n",
"\n",
"plot_axes.errorbar(powers, ncounts_withpush, yerr=ncount_withpush_errors, color=plot_red, marker='o', **plot_kwarg)\n",
"plot_axes.errorbar(powers, ncounts_withoutpush, yerr=ncount_withoutpush_errors, color=\"k\", marker='s', **plot_kwarg)\n",
"plot_axes.errorbar([430], [1.2157134383410748e8], yerr=[0.02622973148346536e8], color=plot_red, marker='^', **plot_kwarg)\n",
"plot_axes.errorbar([430], [0.2556310933363963e8], yerr=[0.009332131323758952e8], color='k', marker='*', markersize=15)\n",
"\n",
"plot_axes.set_xlabel(\"2D-MOT power $P_\\mathrm{2D}$ (mW)\", fontsize=20)\n",
"plot_axes.set_ylabel(\"Loading rate $\\Phi_\\mathrm{3D}$ (atoms/s)\", fontsize=20)\n",
"\n",
"plot_axes.tick_params(axis='both', which='major', labelsize=20)\n",
"plot_axes.tick_params(axis='both', which='minor', labelsize=16)\n",
"plot_axes.xaxis.offsetText.set_fontsize(20)\n",
"plot_axes.yaxis.offsetText.set_fontsize(20)\n",
"\n",
"plt.setp(plot_axes.spines.values(), linewidth=3)\n",
"plot_axes.xaxis.set_tick_params(width=3)\n",
"plot_axes.yaxis.set_tick_params(width=3)\n",
"plot_axes.tick_params(direction='in', length=10)\n",
"\n",
"if np.max(plot_axes.get_xticks()) < 1000:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='x', style='plain', useMathText=True)\n",
"else:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='x', style='sci', useMathText=True)\n",
"if np.max(plot_axes.get_yticks()) < 1000:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='y', style='plain', useMathText=True)\n",
"else:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='y', style='sci', useMathText=True)\n",
"\n",
"# plot_axes.set_ylim([-0.1e8, 9e7])\n",
"\n",
"######################\n",
"\n",
"plot_axes.legend( [\"with red push\", \"without push\"],\n",
" fontsize=20, loc = 'lower right', bbox_to_anchor=(0.1, 0.7, 0.5, 0.5), shadow=False, \n",
" facecolor='white', framealpha=1, edgecolor='gray')\n",
"\n",
"######################\n",
"\n",
"######################\n",
"# fig.b\n",
"######################\n",
"\n",
"plot_axes = plt.subplot(grid[3, 0])\n",
"\n",
"plot_kwarg = {\n",
" # 'fmt': 'o',\n",
" \n",
" # Style of line\n",
" 'linestyle': 'None',\n",
" 'linewidth': 2,\n",
" \n",
" # Style of markder\n",
" # 'marker': '.',\n",
" 'markersize': 5,\n",
" # 'markerfacecolor': plot_blue,\n",
" # 'markeredgecolor': plot_blue,\n",
" 'markeredgewidth': 4,\n",
" \n",
" # Style of errorbar\n",
" 'capsize': 0,\n",
" # 'ecolor': plot_blue, # color of errorbar line\n",
" 'capthick': 1.5,\n",
" 'elinewidth': 3,\n",
" \n",
" # text for legend\n",
" # 'label': 'Experiment',\n",
" }\n",
"\n",
"plot_axes.errorbar([430], [3.54756438], yerr=[2776453.58029856/1e8], color=plot_red, marker='^', **plot_kwarg)\n",
"plot_axes.errorbar([430], [1.19289449], yerr=[1591103.66003124/1e8], color=\"k\", marker='*', markersize=15)\n",
"\n",
"plot_axes.errorbar(powers, sat_ncount_withpush / 1e8, yerr=sat_ncount_withpush_errors / 1e8, color=plot_red, marker='o', **plot_kwarg)\n",
"plot_axes.errorbar(powers, sat_ncount_withoutpush / 1e8, yerr=sat_ncount_withoutpush_errors / 1e8, color=\"k\", marker='s', **plot_kwarg)\n",
"\n",
"plot_axes.set_xlabel(\"2D-MOT power $P_\\mathrm{2D}$ (mW)\", fontsize=20)\n",
"plot_axes.set_ylabel(\"Saturation atom $N_\\mathrm{sat}$ $(10^8)$\", fontsize=20)\n",
"\n",
"plot_axes.tick_params(axis='both', which='major', labelsize=20)\n",
"plot_axes.tick_params(axis='both', which='minor', labelsize=16)\n",
"plot_axes.xaxis.offsetText.set_fontsize(20)\n",
"plot_axes.yaxis.offsetText.set_fontsize(20)\n",
"\n",
"plt.setp(plot_axes.spines.values(), linewidth=3)\n",
"plot_axes.xaxis.set_tick_params(width=3)\n",
"plot_axes.yaxis.set_tick_params(width=3)\n",
"plot_axes.tick_params(direction='in', length=10)\n",
"\n",
"if np.max(plot_axes.get_xticks()) < 1000:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='x', style='plain', useMathText=True)\n",
"else:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='x', style='sci', useMathText=True)\n",
"if np.max(plot_axes.get_yticks()) < 1000:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='y', style='plain', useMathText=True)\n",
"else:\n",
" plot_axes.ticklabel_format(scilimits=(0, 0), axis='y', style='sci', useMathText=True)\n",
"\n",
"plot_axes.set_ylim([0, 4])\n",
"\n",
"plt.setp(plot_axes.get_yticklabels()[0], visible=False)\n",
"\n",
"######################################\n",
"\n",
"plot_axes = plt.subplot(grid[0, 0])\n",
"plot_axes.text(-0.17, 0.8, '(a)', va='bottom', fontsize=20)\n",
"plot_axes.set_axis_off()\n",
"\n",
"plot_axes = plt.subplot(grid[2, 0])\n",
"plot_axes.text(-0.17, 0.1, '(b)', va='bottom', fontsize=20)\n",
"plot_axes.set_axis_off()\n",
"\n",
"fig.savefig('figS1_v2.pdf', bbox_inches = \"tight\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}