analyseScript/Example.ipynb
2023-05-24 16:54:29 +02:00

4627 lines
1.0 MiB

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Import supporting package"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import xarray as xr\n",
"import numpy as np\n",
"\n",
"from uncertainties import ufloat\n",
"from uncertainties import unumpy as unp\n",
"from uncertainties import umath\n",
"\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from DataContainer.ReadData import read_hdf5_file\n",
"from Analyser.ImagingAnalyser import ImageAnalyser\n",
"from Analyser.FitAnalyser import FitAnalyser\n",
"from Analyser.FitAnalyser import ThomasFermi2dModel, DensityProfileBEC2dModel, Polylog22dModel\n",
"from Analyser.FitAnalyser import NewFitModel\n",
"from ToolFunction.ToolFunction import *\n",
"\n",
"from ToolFunction.HomeMadeXarrayFunction import errorbar, dataarray_plot_errorbar\n",
"xr.plot.dataarray_plot.errorbar = errorbar\n",
"xr.plot.accessor.DataArrayPlotAccessor.errorbar = dataarray_plot_errorbar\n",
"\n",
"imageAnalyser = ImageAnalyser()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Start a client for parallel computing"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px;\">Client</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Client-872509c9-fa33-11ed-bec4-80e82ce2fa8e</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
"\n",
" <tr>\n",
" \n",
" <td style=\"text-align: left;\"><strong>Connection method:</strong> Cluster object</td>\n",
" <td style=\"text-align: left;\"><strong>Cluster type:</strong> distributed.LocalCluster</td>\n",
" \n",
" </tr>\n",
"\n",
" \n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" \n",
"\n",
" </table>\n",
"\n",
" \n",
"\n",
" \n",
" <details>\n",
" <summary style=\"margin-bottom: 20px;\"><h3 style=\"display: inline;\">Cluster Info</h3></summary>\n",
" <div class=\"jp-RenderedHTMLCommon jp-RenderedHTML jp-mod-trusted jp-OutputArea-output\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\">\n",
" </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px; margin-top: 0px;\">LocalCluster</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">4642b3f5</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Workers:</strong> 6\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads:</strong> 60\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total memory:</strong> 55.88 GiB\n",
" </td>\n",
" </tr>\n",
" \n",
" <tr>\n",
" <td style=\"text-align: left;\"><strong>Status:</strong> running</td>\n",
" <td style=\"text-align: left;\"><strong>Using processes:</strong> True</td>\n",
"</tr>\n",
"\n",
" \n",
" </table>\n",
"\n",
" <details>\n",
" <summary style=\"margin-bottom: 20px;\">\n",
" <h3 style=\"display: inline;\">Scheduler Info</h3>\n",
" </summary>\n",
"\n",
" <div style=\"\">\n",
" <div>\n",
" <div style=\"width: 24px; height: 24px; background-color: #FFF7E5; border: 3px solid #FF6132; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px;\">Scheduler</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Scheduler-1a89e1f0-65bd-4d05-8165-fa14c1b0a473</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm:</strong> tcp://127.0.0.1:55717\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Workers:</strong> 6\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads:</strong> 60\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Started:</strong> Just now\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total memory:</strong> 55.88 GiB\n",
" </td>\n",
" </tr>\n",
" </table>\n",
" </div>\n",
" </div>\n",
"\n",
" <details style=\"margin-left: 48px;\">\n",
" <summary style=\"margin-bottom: 20px;\">\n",
" <h3 style=\"display: inline;\">Workers</h3>\n",
" </summary>\n",
"\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 0</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:55753\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:55754/status\" target=\"_blank\">http://127.0.0.1:55754/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:55720\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-yeq8m5dh\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 1</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:55759\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:55760/status\" target=\"_blank\">http://127.0.0.1:55760/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:55721\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-ysfyfwa1\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 2</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:55744\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:55745/status\" target=\"_blank\">http://127.0.0.1:55745/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:55722\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-qy7ydspm\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 3</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:55748\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:55751/status\" target=\"_blank\">http://127.0.0.1:55751/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:55723\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-zml_1qx2\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 4</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:55756\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:55757/status\" target=\"_blank\">http://127.0.0.1:55757/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:55724\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-5dojxxrc\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 5</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:55747\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 10\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:55749/status\" target=\"_blank\">http://127.0.0.1:55749/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:55725\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-51qkvst4\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
"\n",
" </details>\n",
"</div>\n",
"\n",
" </details>\n",
" </div>\n",
"</div>\n",
" </details>\n",
" \n",
"\n",
" </div>\n",
"</div>"
],
"text/plain": [
"<Client: 'tcp://127.0.0.1:55717' processes=6 threads=60, memory=55.88 GiB>"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from dask.distributed import Client\n",
"client = Client(n_workers=6, threads_per_worker=10, processes=True, memory_limit='10GB')\n",
"client"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set global path for experiment"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"groupList = [\n",
" \"images/MOT_3D_Camera/in_situ_absorption\",\n",
" \"images/ODT_1_Axis_Camera/in_situ_absorption\",\n",
" \"images/ODT_2_Axis_Camera/in_situ_absorption\",\n",
"]\n",
"\n",
"dskey = {\n",
" \"images/MOT_3D_Camera/in_situ_absorption\": \"camera_1\",\n",
" \"images/ODT_1_Axis_Camera/in_situ_absorption\": \"camera_2\",\n",
" \"images/ODT_2_Axis_Camera/in_situ_absorption\": \"camera_3\",\n",
"}\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"img_dir = '//DyLabNAS/Data/'\n",
"SequenceName = \"Evaporative_Cooling\" + \"/\"\n",
"folderPath = img_dir + SequenceName + '2023/05/24'# get_date()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# An example for one experimental run"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the data"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: (odt_hold_time_4: 11, runs: 2, y: 1200, x: 1920)\n",
"Coordinates:\n",
" * odt_hold_time_4 (odt_hold_time_4) float64 0.1 0.3 0.5 0.7 ... 1.7 1.9 2.1\n",
" * runs (runs) float64 0.0 1.0\n",
"Dimensions without coordinates: y, x\n",
"Data variables:\n",
" atoms (odt_hold_time_4, runs, y, x) uint16 dask.array&lt;chunksize=(11, 2, 1200, 1920), meta=np.ndarray&gt;\n",
" background (odt_hold_time_4, runs, y, x) uint16 dask.array&lt;chunksize=(11, 2, 1200, 1920), meta=np.ndarray&gt;\n",
" dark (odt_hold_time_4, runs, y, x) uint16 dask.array&lt;chunksize=(11, 2, 1200, 1920), meta=np.ndarray&gt;\n",
" shotNum (odt_hold_time_4, runs) int64 dask.array&lt;chunksize=(11, 2), meta=np.ndarray&gt;\n",
" OD (odt_hold_time_4, runs, y, x) float64 dask.array&lt;chunksize=(11, 2, 1200, 1920), meta=np.ndarray&gt;\n",
"Attributes: (12/120)\n",
" TOF_free: 0.022\n",
" abs_img_freq: 110.858\n",
" absorption_imaging_flag: True\n",
" backup_data: True\n",
" blink_off_time: 0.001\n",
" blink_on_time: 0.001\n",
" ... ...\n",
" z_offset: 0.189\n",
" z_offset_img: 0.189\n",
" odt_hold_time_4: [0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1...\n",
" runs: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1...\n",
" scanAxis: [&#x27;odt_hold_time_4&#x27; &#x27;runs&#x27;]\n",
" scanAxisLength: [22. 22.]</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-1bae38cb-8210-4216-b615-6d70ee154f09' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-1bae38cb-8210-4216-b615-6d70ee154f09' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>odt_hold_time_4</span>: 11</li><li><span class='xr-has-index'>runs</span>: 2</li><li><span>y</span>: 1200</li><li><span>x</span>: 1920</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-be065b9f-ff4c-4ae4-ba64-83e71b057339' class='xr-section-summary-in' type='checkbox' checked><label for='section-be065b9f-ff4c-4ae4-ba64-83e71b057339' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>odt_hold_time_4</span></div><div class='xr-var-dims'>(odt_hold_time_4)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.1 0.3 0.5 0.7 ... 1.5 1.7 1.9 2.1</div><input id='attrs-3aa0ba34-141d-4042-a8a2-d27de7dd5e25' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3aa0ba34-141d-4042-a8a2-d27de7dd5e25' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d0f7ae7e-adb1-4c86-aadf-1130b55e758b' class='xr-var-data-in' type='checkbox'><label for='data-d0f7ae7e-adb1-4c86-aadf-1130b55e758b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>runs</span></div><div class='xr-var-dims'>(runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0 1.0</div><input id='attrs-3d54f09f-c3cb-4d22-94d6-649f8b113d33' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3d54f09f-c3cb-4d22-94d6-649f8b113d33' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-56aa1402-3941-4d85-af2f-7a8fa97b6136' class='xr-var-data-in' type='checkbox'><label for='data-56aa1402-3941-4d85-af2f-7a8fa97b6136' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0., 1.])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-6265b478-01dc-4948-8f22-2cc5cc493264' class='xr-section-summary-in' type='checkbox' checked><label for='section-6265b478-01dc-4948-8f22-2cc5cc493264' class='xr-section-summary' >Data variables: <span>(5)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>atoms</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs, y, x)</div><div class='xr-var-dtype'>uint16</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(11, 2, 1200, 1920), meta=np.ndarray&gt;</div><input id='attrs-232bdc26-4e60-4cbe-9a01-ef17404c6f98' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-232bdc26-4e60-4cbe-9a01-ef17404c6f98' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3072affd-3ad9-4b15-94b7-f7542da888ff' class='xr-var-data-in' type='checkbox'><label for='data-3072affd-3ad9-4b15-94b7-f7542da888ff' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>IMAGE_SUBCLASS :</span></dt><dd>IMAGE_GRAYSCALE</dd><dt><span>IMAGE_VERSION :</span></dt><dd>1.2</dd><dt><span>IMAGE_WHITE_IS_ZERO :</span></dt><dd>0</dd></dl></div><div class='xr-var-data'><table>\n",
" <tr>\n",
" <td>\n",
" <table style=\"border-collapse: collapse;\">\n",
" <thead>\n",
" <tr>\n",
" <td> </td>\n",
" <th> Array </th>\n",
" <th> Chunk </th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" \n",
" <tr>\n",
" <th> Bytes </th>\n",
" <td> 96.68 MiB </td>\n",
" <td> 96.68 MiB </td>\n",
" </tr>\n",
" \n",
" <tr>\n",
" <th> Shape </th>\n",
" <td> (11, 2, 1200, 1920) </td>\n",
" <td> (11, 2, 1200, 1920) </td>\n",
" </tr>\n",
" <tr>\n",
" <th> Dask graph </th>\n",
" <td colspan=\"2\"> 1 chunks in 70 graph layers </td>\n",
" </tr>\n",
" <tr>\n",
" <th> Data type </th>\n",
" <td colspan=\"2\"> uint16 numpy.ndarray </td>\n",
" </tr>\n",
" </tbody>\n",
" </table>\n",
" </td>\n",
" <td>\n",
" <svg width=\"374\" height=\"139\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"25\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"25\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 25.412616514582485,0.0 25.412616514582485,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"12.706308\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >11</text>\n",
" <text x=\"45.412617\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,45.412617,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"109\" y2=\"14\" style=\"stroke-width:2\" />\n",
" <line x1=\"95\" y1=\"75\" x2=\"109\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"95\" y2=\"75\" style=\"stroke-width:2\" />\n",
" <line x1=\"109\" y1=\"14\" x2=\"109\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"95.0,0.0 109.9485979497544,14.948597949754403 109.9485979497544,89.9485979497544 95.0,75.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"215\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"109\" y1=\"14\" x2=\"229\" y2=\"14\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"109\" y2=\"14\" style=\"stroke-width:2\" />\n",
" <line x1=\"215\" y1=\"0\" x2=\"229\" y2=\"14\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"95.0,0.0 215.0,0.0 229.9485979497544,14.948597949754403 109.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"109\" y1=\"14\" x2=\"229\" y2=\"14\" style=\"stroke-width:2\" />\n",
" <line x1=\"109\" y1=\"89\" x2=\"229\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"109\" y1=\"14\" x2=\"109\" y2=\"89\" style=\"stroke-width:2\" />\n",
" <line x1=\"229\" y1=\"14\" x2=\"229\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"109.9485979497544,14.948597949754403 229.9485979497544,14.948597949754403 229.9485979497544,89.9485979497544 109.9485979497544,89.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"169.948598\" y=\"109.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1920</text>\n",
" <text x=\"249.948598\" y=\"52.448598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,249.948598,52.448598)\">1200</text>\n",
" <text x=\"92.474299\" y=\"102.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,92.474299,102.474299)\">2</text>\n",
"</svg>\n",
" </td>\n",
" </tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>background</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs, y, x)</div><div class='xr-var-dtype'>uint16</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(11, 2, 1200, 1920), meta=np.ndarray&gt;</div><input id='attrs-842571fe-eff0-4851-96e7-ce59c6d4ffd0' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-842571fe-eff0-4851-96e7-ce59c6d4ffd0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6b43ad73-6c4b-4cf5-bb85-dd701a9f7bc8' class='xr-var-data-in' type='checkbox'><label for='data-6b43ad73-6c4b-4cf5-bb85-dd701a9f7bc8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>IMAGE_SUBCLASS :</span></dt><dd>IMAGE_GRAYSCALE</dd><dt><span>IMAGE_VERSION :</span></dt><dd>1.2</dd><dt><span>IMAGE_WHITE_IS_ZERO :</span></dt><dd>0</dd></dl></div><div class='xr-var-data'><table>\n",
" <tr>\n",
" <td>\n",
" <table style=\"border-collapse: collapse;\">\n",
" <thead>\n",
" <tr>\n",
" <td> </td>\n",
" <th> Array </th>\n",
" <th> Chunk </th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" \n",
" <tr>\n",
" <th> Bytes </th>\n",
" <td> 96.68 MiB </td>\n",
" <td> 96.68 MiB </td>\n",
" </tr>\n",
" \n",
" <tr>\n",
" <th> Shape </th>\n",
" <td> (11, 2, 1200, 1920) </td>\n",
" <td> (11, 2, 1200, 1920) </td>\n",
" </tr>\n",
" <tr>\n",
" <th> Dask graph </th>\n",
" <td colspan=\"2\"> 1 chunks in 70 graph layers </td>\n",
" </tr>\n",
" <tr>\n",
" <th> Data type </th>\n",
" <td colspan=\"2\"> uint16 numpy.ndarray </td>\n",
" </tr>\n",
" </tbody>\n",
" </table>\n",
" </td>\n",
" <td>\n",
" <svg width=\"374\" height=\"139\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"25\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"25\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 25.412616514582485,0.0 25.412616514582485,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"12.706308\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >11</text>\n",
" <text x=\"45.412617\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,45.412617,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"109\" y2=\"14\" style=\"stroke-width:2\" />\n",
" <line x1=\"95\" y1=\"75\" x2=\"109\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"95\" y2=\"75\" style=\"stroke-width:2\" />\n",
" <line x1=\"109\" y1=\"14\" x2=\"109\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"95.0,0.0 109.9485979497544,14.948597949754403 109.9485979497544,89.9485979497544 95.0,75.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"215\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"109\" y1=\"14\" x2=\"229\" y2=\"14\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"109\" y2=\"14\" style=\"stroke-width:2\" />\n",
" <line x1=\"215\" y1=\"0\" x2=\"229\" y2=\"14\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"95.0,0.0 215.0,0.0 229.9485979497544,14.948597949754403 109.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"109\" y1=\"14\" x2=\"229\" y2=\"14\" style=\"stroke-width:2\" />\n",
" <line x1=\"109\" y1=\"89\" x2=\"229\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"109\" y1=\"14\" x2=\"109\" y2=\"89\" style=\"stroke-width:2\" />\n",
" <line x1=\"229\" y1=\"14\" x2=\"229\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"109.9485979497544,14.948597949754403 229.9485979497544,14.948597949754403 229.9485979497544,89.9485979497544 109.9485979497544,89.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"169.948598\" y=\"109.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1920</text>\n",
" <text x=\"249.948598\" y=\"52.448598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,249.948598,52.448598)\">1200</text>\n",
" <text x=\"92.474299\" y=\"102.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,92.474299,102.474299)\">2</text>\n",
"</svg>\n",
" </td>\n",
" </tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>dark</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs, y, x)</div><div class='xr-var-dtype'>uint16</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(11, 2, 1200, 1920), meta=np.ndarray&gt;</div><input id='attrs-9882db2d-d9cb-4719-a3a7-904c4a1c383d' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9882db2d-d9cb-4719-a3a7-904c4a1c383d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-deb513af-bdf3-45cd-aecd-d7f4289cd895' class='xr-var-data-in' type='checkbox'><label for='data-deb513af-bdf3-45cd-aecd-d7f4289cd895' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>IMAGE_SUBCLASS :</span></dt><dd>IMAGE_GRAYSCALE</dd><dt><span>IMAGE_VERSION :</span></dt><dd>1.2</dd><dt><span>IMAGE_WHITE_IS_ZERO :</span></dt><dd>0</dd></dl></div><div class='xr-var-data'><table>\n",
" <tr>\n",
" <td>\n",
" <table style=\"border-collapse: collapse;\">\n",
" <thead>\n",
" <tr>\n",
" <td> </td>\n",
" <th> Array </th>\n",
" <th> Chunk </th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" \n",
" <tr>\n",
" <th> Bytes </th>\n",
" <td> 96.68 MiB </td>\n",
" <td> 96.68 MiB </td>\n",
" </tr>\n",
" \n",
" <tr>\n",
" <th> Shape </th>\n",
" <td> (11, 2, 1200, 1920) </td>\n",
" <td> (11, 2, 1200, 1920) </td>\n",
" </tr>\n",
" <tr>\n",
" <th> Dask graph </th>\n",
" <td colspan=\"2\"> 1 chunks in 70 graph layers </td>\n",
" </tr>\n",
" <tr>\n",
" <th> Data type </th>\n",
" <td colspan=\"2\"> uint16 numpy.ndarray </td>\n",
" </tr>\n",
" </tbody>\n",
" </table>\n",
" </td>\n",
" <td>\n",
" <svg width=\"374\" height=\"139\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"25\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"25\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 25.412616514582485,0.0 25.412616514582485,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"12.706308\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >11</text>\n",
" <text x=\"45.412617\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,45.412617,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"109\" y2=\"14\" style=\"stroke-width:2\" />\n",
" <line x1=\"95\" y1=\"75\" x2=\"109\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"95\" y2=\"75\" style=\"stroke-width:2\" />\n",
" <line x1=\"109\" y1=\"14\" x2=\"109\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"95.0,0.0 109.9485979497544,14.948597949754403 109.9485979497544,89.9485979497544 95.0,75.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"215\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"109\" y1=\"14\" x2=\"229\" y2=\"14\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"109\" y2=\"14\" style=\"stroke-width:2\" />\n",
" <line x1=\"215\" y1=\"0\" x2=\"229\" y2=\"14\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"95.0,0.0 215.0,0.0 229.9485979497544,14.948597949754403 109.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"109\" y1=\"14\" x2=\"229\" y2=\"14\" style=\"stroke-width:2\" />\n",
" <line x1=\"109\" y1=\"89\" x2=\"229\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"109\" y1=\"14\" x2=\"109\" y2=\"89\" style=\"stroke-width:2\" />\n",
" <line x1=\"229\" y1=\"14\" x2=\"229\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"109.9485979497544,14.948597949754403 229.9485979497544,14.948597949754403 229.9485979497544,89.9485979497544 109.9485979497544,89.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"169.948598\" y=\"109.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1920</text>\n",
" <text x=\"249.948598\" y=\"52.448598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,249.948598,52.448598)\">1200</text>\n",
" <text x=\"92.474299\" y=\"102.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,92.474299,102.474299)\">2</text>\n",
"</svg>\n",
" </td>\n",
" </tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>shotNum</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(11, 2), meta=np.ndarray&gt;</div><input id='attrs-a20e5a79-0996-44d4-9409-ae53e674b40a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a20e5a79-0996-44d4-9409-ae53e674b40a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a0fcd018-5e0a-4461-8cac-0fd14c833aee' class='xr-var-data-in' type='checkbox'><label for='data-a0fcd018-5e0a-4461-8cac-0fd14c833aee' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
" <tr>\n",
" <td>\n",
" <table style=\"border-collapse: collapse;\">\n",
" <thead>\n",
" <tr>\n",
" <td> </td>\n",
" <th> Array </th>\n",
" <th> Chunk </th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" \n",
" <tr>\n",
" <th> Bytes </th>\n",
" <td> 176 B </td>\n",
" <td> 176 B </td>\n",
" </tr>\n",
" \n",
" <tr>\n",
" <th> Shape </th>\n",
" <td> (11, 2) </td>\n",
" <td> (11, 2) </td>\n",
" </tr>\n",
" <tr>\n",
" <th> Dask graph </th>\n",
" <td colspan=\"2\"> 1 chunks in 1 graph layer </td>\n",
" </tr>\n",
" <tr>\n",
" <th> Data type </th>\n",
" <td colspan=\"2\"> int64 numpy.ndarray </td>\n",
" </tr>\n",
" </tbody>\n",
" </table>\n",
" </td>\n",
" <td>\n",
" <svg width=\"91\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"41\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"120\" x2=\"41\" y2=\"120\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n",
" <line x1=\"41\" y1=\"0\" x2=\"41\" y2=\"120\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 41.59732749150097,0.0 41.59732749150097,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"20.798664\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n",
" <text x=\"61.597327\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,61.597327,60.000000)\">11</text>\n",
"</svg>\n",
" </td>\n",
" </tr>\n",
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>OD</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs, y, x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(11, 2, 1200, 1920), meta=np.ndarray&gt;</div><input id='attrs-4183fab5-a825-4ecb-b3fc-7c1cb447528c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-4183fab5-a825-4ecb-b3fc-7c1cb447528c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9ed73333-8b8e-4839-8e6a-45ff0d97fa44' class='xr-var-data-in' type='checkbox'><label for='data-9ed73333-8b8e-4839-8e6a-45ff0d97fa44' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>IMAGE_SUBCLASS :</span></dt><dd>IMAGE_GRAYSCALE</dd><dt><span>IMAGE_VERSION :</span></dt><dd>1.2</dd><dt><span>IMAGE_WHITE_IS_ZERO :</span></dt><dd>0</dd></dl></div><div class='xr-var-data'><table>\n",
" <tr>\n",
" <td>\n",
" <table style=\"border-collapse: collapse;\">\n",
" <thead>\n",
" <tr>\n",
" <td> </td>\n",
" <th> Array </th>\n",
" <th> Chunk </th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" \n",
" <tr>\n",
" <th> Bytes </th>\n",
" <td> 386.72 MiB </td>\n",
" <td> 386.72 MiB </td>\n",
" </tr>\n",
" \n",
" <tr>\n",
" <th> Shape </th>\n",
" <td> (11, 2, 1200, 1920) </td>\n",
" <td> (11, 2, 1200, 1920) </td>\n",
" </tr>\n",
" <tr>\n",
" <th> Dask graph </th>\n",
" <td colspan=\"2\"> 1 chunks in 220 graph layers </td>\n",
" </tr>\n",
" <tr>\n",
" <th> Data type </th>\n",
" <td colspan=\"2\"> float64 numpy.ndarray </td>\n",
" </tr>\n",
" </tbody>\n",
" </table>\n",
" </td>\n",
" <td>\n",
" <svg width=\"374\" height=\"139\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"25\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"0\" y1=\"25\" x2=\"25\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
" <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"0.0,0.0 25.412616514582485,0.0 25.412616514582485,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"12.706308\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >11</text>\n",
" <text x=\"45.412617\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,45.412617,12.706308)\">1</text>\n",
"\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"109\" y2=\"14\" style=\"stroke-width:2\" />\n",
" <line x1=\"95\" y1=\"75\" x2=\"109\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"95\" y2=\"75\" style=\"stroke-width:2\" />\n",
" <line x1=\"109\" y1=\"14\" x2=\"109\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"95.0,0.0 109.9485979497544,14.948597949754403 109.9485979497544,89.9485979497544 95.0,75.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"215\" y2=\"0\" style=\"stroke-width:2\" />\n",
" <line x1=\"109\" y1=\"14\" x2=\"229\" y2=\"14\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"95\" y1=\"0\" x2=\"109\" y2=\"14\" style=\"stroke-width:2\" />\n",
" <line x1=\"215\" y1=\"0\" x2=\"229\" y2=\"14\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"95.0,0.0 215.0,0.0 229.9485979497544,14.948597949754403 109.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Horizontal lines -->\n",
" <line x1=\"109\" y1=\"14\" x2=\"229\" y2=\"14\" style=\"stroke-width:2\" />\n",
" <line x1=\"109\" y1=\"89\" x2=\"229\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Vertical lines -->\n",
" <line x1=\"109\" y1=\"14\" x2=\"109\" y2=\"89\" style=\"stroke-width:2\" />\n",
" <line x1=\"229\" y1=\"14\" x2=\"229\" y2=\"89\" style=\"stroke-width:2\" />\n",
"\n",
" <!-- Colored Rectangle -->\n",
" <polygon points=\"109.9485979497544,14.948597949754403 229.9485979497544,14.948597949754403 229.9485979497544,89.9485979497544 109.9485979497544,89.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
"\n",
" <!-- Text -->\n",
" <text x=\"169.948598\" y=\"109.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1920</text>\n",
" <text x=\"249.948598\" y=\"52.448598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,249.948598,52.448598)\">1200</text>\n",
" <text x=\"92.474299\" y=\"102.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,92.474299,102.474299)\">2</text>\n",
"</svg>\n",
" </td>\n",
" </tr>\n",
"</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-0071d0d1-68e9-4e65-b615-5410709ff74f' class='xr-section-summary-in' type='checkbox' ><label for='section-0071d0d1-68e9-4e65-b615-5410709ff74f' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>odt_hold_time_4</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-f12aa88d-de67-4995-8b51-b23a21473e19' class='xr-index-data-in' type='checkbox'/><label for='index-f12aa88d-de67-4995-8b51-b23a21473e19' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1], dtype=&#x27;float64&#x27;, name=&#x27;odt_hold_time_4&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>runs</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-6a68582e-273c-40eb-9900-17b4fefe3d9b' class='xr-index-data-in' type='checkbox'/><label for='index-6a68582e-273c-40eb-9900-17b4fefe3d9b' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.0, 1.0], dtype=&#x27;float64&#x27;, name=&#x27;runs&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-a616f241-70de-4de5-81af-1b7c8932a296' class='xr-section-summary-in' type='checkbox' ><label for='section-a616f241-70de-4de5-81af-1b7c8932a296' class='xr-section-summary' >Attributes: <span>(120)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>TOF_free :</span></dt><dd>0.022</dd><dt><span>abs_img_freq :</span></dt><dd>110.858</dd><dt><span>absorption_imaging_flag :</span></dt><dd>True</dd><dt><span>backup_data :</span></dt><dd>True</dd><dt><span>blink_off_time :</span></dt><dd>0.001</dd><dt><span>blink_on_time :</span></dt><dd>0.001</dd><dt><span>c_duration :</span></dt><dd>0.2</dd><dt><span>carrier_amp :</span></dt><dd>3</dd><dt><span>carrier_freq :</span></dt><dd>nan</dd><dt><span>carrier_offset :</span></dt><dd>0</dd><dt><span>carrier_phase :</span></dt><dd>0</dd><dt><span>channel_in_use :</span></dt><dd>1</dd><dt><span>cmot_final_current :</span></dt><dd>0.65</dd><dt><span>cmot_hold :</span></dt><dd>0.06</dd><dt><span>cmot_initial_current :</span></dt><dd>0.18</dd><dt><span>compX_current :</span></dt><dd>0</dd><dt><span>compX_current_sg :</span></dt><dd>0.0</dd><dt><span>compX_final_current :</span></dt><dd>0.001</dd><dt><span>compX_initial_current :</span></dt><dd>0</dd><dt><span>compY_current :</span></dt><dd>0</dd><dt><span>compY_current_sg :</span></dt><dd>0.0</dd><dt><span>compY_final_current :</span></dt><dd>0.0</dd><dt><span>compY_initial_current :</span></dt><dd>0</dd><dt><span>compZ_current :</span></dt><dd>0</dd><dt><span>compZ_current_sg :</span></dt><dd>0.189</dd><dt><span>compZ_final_current :</span></dt><dd>0.264</dd><dt><span>compZ_initial_current :</span></dt><dd>0</dd><dt><span>default_camera :</span></dt><dd>0</dd><dt><span>deltaf :</span></dt><dd>0.11</dd><dt><span>evap_1_arm_1_final_pow :</span></dt><dd>0.35</dd><dt><span>evap_1_arm_1_mod_depth_final :</span></dt><dd>0</dd><dt><span>evap_1_arm_1_mod_depth_initial :</span></dt><dd>1.0</dd><dt><span>evap_1_arm_1_mod_ramp_duration :</span></dt><dd>1.15</dd><dt><span>evap_1_arm_1_pow_ramp_duration :</span></dt><dd>1.65</dd><dt><span>evap_1_arm_1_start_pow :</span></dt><dd>7</dd><dt><span>evap_1_arm_2_final_pow :</span></dt><dd>5</dd><dt><span>evap_1_arm_2_ramp_duration :</span></dt><dd>0.5</dd><dt><span>evap_1_arm_2_start_pow :</span></dt><dd>0</dd><dt><span>evap_1_mod_ramp_trunc_value :</span></dt><dd>1</dd><dt><span>evap_1_pow_ramp_trunc_value :</span></dt><dd>1.0</dd><dt><span>evap_1_rate_constant_1 :</span></dt><dd>0.525</dd><dt><span>evap_1_rate_constant_2 :</span></dt><dd>0.51</dd><dt><span>evap_2_arm_1_final_pow :</span></dt><dd>0.037</dd><dt><span>evap_2_arm_1_start_pow :</span></dt><dd>0.35</dd><dt><span>evap_2_arm_2_final_pow :</span></dt><dd>0.09</dd><dt><span>evap_2_arm_2_start_pow :</span></dt><dd>5</dd><dt><span>evap_2_ramp_duration :</span></dt><dd>1.0</dd><dt><span>evap_2_ramp_trunc_value :</span></dt><dd>1.0</dd><dt><span>evap_2_rate_constant_1 :</span></dt><dd>0.37</dd><dt><span>evap_2_rate_constant_2 :</span></dt><dd>0.71</dd><dt><span>evap_3_arm_1_final_pow :</span></dt><dd>0.1038</dd><dt><span>evap_3_arm_1_mod_depth_final :</span></dt><dd>0.43</dd><dt><span>evap_3_arm_1_mod_depth_initial :</span></dt><dd>0</dd><dt><span>evap_3_arm_1_start_pow :</span></dt><dd>0.037</dd><dt><span>evap_3_ramp_duration :</span></dt><dd>0.1</dd><dt><span>evap_3_ramp_trunc_value :</span></dt><dd>1.0</dd><dt><span>evap_3_rate_constant_1 :</span></dt><dd>-0.879</dd><dt><span>evap_3_rate_constant_2 :</span></dt><dd>-0.297</dd><dt><span>final_amp :</span></dt><dd>0.000155</dd><dt><span>final_freq :</span></dt><dd>104.0</dd><dt><span>final_pow_1 :</span></dt><dd>0.1038</dd><dt><span>final_pow_2 :</span></dt><dd>0.09</dd><dt><span>gradCoil_current :</span></dt><dd>0.18</dd><dt><span>gradCoil_current_sg :</span></dt><dd>0</dd><dt><span>imaging_method :</span></dt><dd>in_situ_absorption</dd><dt><span>imaging_pulse_duration :</span></dt><dd>2.5e-05</dd><dt><span>imaging_wavelength :</span></dt><dd>4.21291e-07</dd><dt><span>initial_amp :</span></dt><dd>0.62</dd><dt><span>initial_freq :</span></dt><dd>102.13</dd><dt><span>mod_depth_fin :</span></dt><dd>0.43</dd><dt><span>mod_depth_ini :</span></dt><dd>0</dd><dt><span>mod_depth_initial :</span></dt><dd>1.0</dd><dt><span>mot_3d_amp :</span></dt><dd>0.62</dd><dt><span>mot_3d_camera_trigger_duration :</span></dt><dd>0.00025</dd><dt><span>mot_3d_freq :</span></dt><dd>102.13</dd><dt><span>mot_load_duration :</span></dt><dd>2</dd><dt><span>odt_axis_camera_trigger_duration :</span></dt><dd>0.002</dd><dt><span>odt_hold_time_1 :</span></dt><dd>0.01</dd><dt><span>odt_hold_time_2 :</span></dt><dd>0.1</dd><dt><span>odt_hold_time_3 :</span></dt><dd>0.1</dd><dt><span>odt_hold_time_5 :</span></dt><dd>0.01</dd><dt><span>operation_mode :</span></dt><dd>SWEEP</dd><dt><span>pow_arm_1 :</span></dt><dd>7</dd><dt><span>pow_arm_2 :</span></dt><dd>0</dd><dt><span>pulse_delay :</span></dt><dd>8e-05</dd><dt><span>pulse_width :</span></dt><dd>0.01</dd><dt><span>push_amp :</span></dt><dd>0.16</dd><dt><span>push_freq :</span></dt><dd>102.3</dd><dt><span>ramp_duration :</span></dt><dd>1</dd><dt><span>recomp_ramp_duration :</span></dt><dd>0.5</dd><dt><span>recomp_ramp_pow_fin_arm_1 :</span></dt><dd>0.1038</dd><dt><span>recomp_ramp_pow_fin_arm_2 :</span></dt><dd>0.09</dd><dt><span>recomp_ramp_pow_ini_arm_1 :</span></dt><dd>0.1038</dd><dt><span>recomp_ramp_pow_ini_arm_2 :</span></dt><dd>0.09</dd><dt><span>save_results :</span></dt><dd>False</dd><dt><span>sin_mod_amplitude :</span></dt><dd>0.00519</dd><dt><span>sin_mod_dc_offset :</span></dt><dd>0.1038</dd><dt><span>sin_mod_duration :</span></dt><dd>nan</dd><dt><span>sin_mod_freq :</span></dt><dd>nan</dd><dt><span>sin_mod_phase :</span></dt><dd>0.0</dd><dt><span>start_pow_1 :</span></dt><dd>0.037</dd><dt><span>start_pow_2 :</span></dt><dd>0.09</dd><dt><span>stern_gerlach_duration :</span></dt><dd>0.001</dd><dt><span>sweep_duration :</span></dt><dd>0.4</dd><dt><span>sweep_start_freq :</span></dt><dd>nan</dd><dt><span>sweep_stop_freq :</span></dt><dd>nan</dd><dt><span>tf_meas_ramp_duration :</span></dt><dd>0.1</dd><dt><span>wait_after_2dmot_off :</span></dt><dd>0</dd><dt><span>wait_time_between_images :</span></dt><dd>0.22</dd><dt><span>wavetype :</span></dt><dd>SINE</dd><dt><span>x_offset :</span></dt><dd>0.0</dd><dt><span>x_offset_img :</span></dt><dd>0</dd><dt><span>y_offset :</span></dt><dd>0.0</dd><dt><span>y_offset_img :</span></dt><dd>0</dd><dt><span>z_offset :</span></dt><dd>0.189</dd><dt><span>z_offset_img :</span></dt><dd>0.189</dd><dt><span>odt_hold_time_4 :</span></dt><dd>[0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3\n",
" 1.5 1.7 1.9 2.1]</dd><dt><span>runs :</span></dt><dd>[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]</dd><dt><span>scanAxis :</span></dt><dd>[&#x27;odt_hold_time_4&#x27; &#x27;runs&#x27;]</dd><dt><span>scanAxisLength :</span></dt><dd>[22. 22.]</dd></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (odt_hold_time_4: 11, runs: 2, y: 1200, x: 1920)\n",
"Coordinates:\n",
" * odt_hold_time_4 (odt_hold_time_4) float64 0.1 0.3 0.5 0.7 ... 1.7 1.9 2.1\n",
" * runs (runs) float64 0.0 1.0\n",
"Dimensions without coordinates: y, x\n",
"Data variables:\n",
" atoms (odt_hold_time_4, runs, y, x) uint16 dask.array<chunksize=(11, 2, 1200, 1920), meta=np.ndarray>\n",
" background (odt_hold_time_4, runs, y, x) uint16 dask.array<chunksize=(11, 2, 1200, 1920), meta=np.ndarray>\n",
" dark (odt_hold_time_4, runs, y, x) uint16 dask.array<chunksize=(11, 2, 1200, 1920), meta=np.ndarray>\n",
" shotNum (odt_hold_time_4, runs) int64 dask.array<chunksize=(11, 2), meta=np.ndarray>\n",
" OD (odt_hold_time_4, runs, y, x) float64 dask.array<chunksize=(11, 2, 1200, 1920), meta=np.ndarray>\n",
"Attributes: (12/120)\n",
" TOF_free: 0.022\n",
" abs_img_freq: 110.858\n",
" absorption_imaging_flag: True\n",
" backup_data: True\n",
" blink_off_time: 0.001\n",
" blink_on_time: 0.001\n",
" ... ...\n",
" z_offset: 0.189\n",
" z_offset_img: 0.189\n",
" odt_hold_time_4: [0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1...\n",
" runs: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1...\n",
" scanAxis: ['odt_hold_time_4' 'runs']\n",
" scanAxisLength: [22. 22.]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"shotNum = \"0002\"\n",
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
"# filePath = \"//DyLabNAS/Data/Evaporative_Cooling/2023/05/12/0065/*.h5\"\n",
"\n",
"dataSetDict = {\n",
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
" for i in [0] # range(len(groupList))\n",
"}\n",
"\n",
"dataSet = dataSetDict[\"camera_1\"]\n",
"dataSet = swap_xy(dataSet)\n",
"\n",
"scanAxis = get_scanAxis(dataSet)\n",
"\n",
"dataSet = auto_rechunk(dataSet)\n",
"\n",
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
"\n",
"dataSet"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Calculate an plot OD images"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAC4gAAAJOCAYAAABPtciWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9f5wdRZX3fy5MhAEmYUJICBKYQEAiBgxEMCIyaMTwKMgPFQkbiYIK7voDHsUf7AqoEWFV+K6uoIsSHhajLoIrKyCyyyCyETaSLHn2CUiQwQDhRyAmAYYfA/f7xz2f7s8993Sl7507yYSc9+uVV026q7urq+qcOlV965xKtVqtShAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQbDZs9WmLkAQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEHQHuIH4kEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBK8S4gfiQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAErxLiB+JBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEASvEuIH4kEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBK8S4gfiQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAErxLiB+JBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEASvEuIH4kEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBK8S4gfiQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAErxLiB+KbCX19fVKpVOQvf/lLy/fo6emRSy65ZEjlmDdvnhx77LHJPL29vfKZz3ym5WcsWLBAdtxxx5avD4KRSMhwEGz+hBwHweZPyHEQbP6EHAfB5k/IcRBs3oQMB8HmT8hxEGz+hBwHweZPyHEQbP6EHAdBEASbA/ED8c2UV8vg6xk7J554ovzxj3/cNAVyuOOOO6Sjo0Pe+MY3Dvuz1qxZI3PnzpUxY8bImDFjZO7cuRs0Jq+99lp517veJePGjZNKpSJLly4d9nIGQydkeOMx0mX4vPPOk3333Ve233576e7ullmzZsmdd9457GUNhk7I8cZjpMvxvHnzpFKp1P1785vfPOxlDYZOyPHGY6TLsZVh/Pv7v//7YS9vMDRCjjceI12OH3/8cZk3b57suuuust1228ns2bPl/vvvH/ayBkMn5HjjsTHleP78+fKWt7xFtttuu9LtG2tcmychwxuPkS7Dsca1+RJyvPEY6XIca1ybLyHHG4+RLsexxrX5EnK88RjpchxrXJsvIccbj40lx/39/XLqqafK5MmTpbOzU/baay8599xz5cUXX0xeF2tcQRCMJOIH4sGIo7OzU8aPH7+piyEiImvXrpUPfehD8o53vGOjPG/OnDmydOlSuemmm+Smm26SpUuXyty5c5PXPPvss3LooYfKN77xjY1SxiDYECHDzcnwPvvsI9/97ndl2bJl8rvf/U56enrkyCOPlCeffHKjlDkIPEKOm5NjEZHZs2fLqlWrsn833HDDRihtEBQTctycHLP8rlq1Sn70ox9JpVKRE044YaOUOQg8Qo7Ly3G1WpVjjz1W/vSnP8m//uu/ypIlS2SPPfaQWbNmybPPPrtRyhwEHluyHL/44ovy/ve/X84444zS18QaVzDSCBluToZjjSsYiYQcNyfHIrHGFYw8Qo6bk+NY4wpGIiHH5eU41riCkcqWKsf33nuvvPLKK/L9739f/ud//kcuvvhiueyyy+RLX/pS8rpY4wqCYCQRPxDfBLzwwgvyqU99SsaPHy/bbrutvPWtb5X/+q//qstzww03yD777COdnZ1yxBFHSH9/f3aur69PPvzhD8vatWuzXb/nnXdeqWc/99xz8pGPfES6urpk9913lx/84Ad155ctWyZvf/vbpbOzU3baaSf52Mc+Js8880zh/Z599ln50Ic+JDvssINMnDhRvvWtb5Wuh97eXnnooYfkzDPPzN5DpHFX3XnnnSdvfOMb5Uc/+pHsvvvussMOO8gZZ5whL7/8slx00UWyyy67yPjx42X+/Pl191+7dq187GMfk/Hjx8vo0aPl7W9/u/z3f/936fKJiHz84x+XOXPmyMyZM5u6rhWWL18uN910k1x++eUyc+ZMmTlzpvzTP/2T/Nu//Zvcd999hdfNnTtXvvzlL8usWbOGvYxBjZDhGiHD9bQqw3PmzJFZs2bJnnvuKfvtt598+9vflnXr1sk999wz7GXekgk5rhFyXE+rciwiss0228guu+yS/Rs7duywl3dLJ+S4RshxPa3KMcvvLrvsIv/6r/8qRxxxhOy5557DXuYtmZDjGiHH9bQix/fff7/8/ve/l0svvVTe9KY3yete9zr53ve+J88884wsXLhw2Mu8JRNyXCPkuJHzzz9fzjzzTJk2bVrpa2KNa+MTMlwjZLiRVmQ41rg2DSHHNUKOG2lFjkVijWtTEHJcI+S4kVbkONa4Ng0hxzVCjhtpVo5jjWvTEXJcI+S4ntmzZ8sVV1whRx55pOy5555yzDHHyGc/+1m59tprk9fFGlcQBCOJ+IH4JuDss8+Wn//853LllVfK3XffLVOmTJF3vetd8vTTT4uIyMqVK+X444+X//W//pcsXbpUTjvtNPnCF76QXf+Wt7xFLrnkEhk9enS2+/ezn/1sqWd/61vfkhkzZsiSJUvkE5/4hJxxxhly7733ikjN6Jg9e7Z0d3fLf/3Xf8m//Mu/yC233CJ/8zd/U3i/z33uc3LrrbfKddddJzfffLP09fXJH/7wh1Jlufbaa2W33XaTr3zlK9l7FPHAAw/IjTfeKDfddJMsXLhQfvSjH8m73/1uefjhh+W2226TCy+8UP72b/9Wfv/734tIbWflu9/9bnnsscfkhhtukD/84Q9y4IEHyjve8Y6snjfEFVdcIQ888ICce+65pfKLiOywww7Jf0cddVThtYsWLZIxY8bIIYcckh1785vfLGPGjJH//M//LF2GYPgJGa4RMlxPO2T4xRdflB/84AcyZswYOeCAA0qXO2iekOMaIcf1DEWO+/r6ZPz48bLPPvvIRz/6UXniiSdKlzlojZDjGiHH9bRjPH788cflV7/6lZx66qmlyxy0RshxjZDjelqR4xdeeEFERLbddtvs2NZbby2vec1r5He/+13pcgfNE3JcI+Q42FwJGa4RMtx+Yo1r4xFyXCPkuH3EGtfGJ+S4Rshx+4k1ro1HyHGNkOOhE2tcm46Q4xohxxtm7dq1sYkyCILNi2qwUXnmmWeqo0aNql599dXZsRdffLG66667Vi+66KJqtVqtfvGLX6xOnTq1+sorr2R5Pv/5z1dFpLpmzZpqtVqtXnHFFdUxY8Y09ew99tij+ld/9VfZ/1955ZXq+PHjq5deemm1Wq1Wf/CDH1S7u7urzzzzTJbnV7/6VXWrrbaqPvbYY9VqtVo95ZRTqu9973ur1Wq1un79+uprXvOa6k9+8pMs/1NPPVXt7OysfvrTny5dposvvrjumH23c889t7rddttV161blx1717veVe3p6am+/PLL2bHXve511QsuuKBarVar//7v/14dPXp09fnnn6+791577VX9/ve/v8Fy/fGPf6yOHz++et9992VlOOCAAzZ43f3335/89/DDDxdeO3/+/Oree+/dcHzvvfeufv3rX9/gsx988MGqiFSXLFmywbxB64QMN5YpZLjGUGT4+uuvr26//fbVSqVS3XXXXat33XXXBssatE7IcWOZQo5rtCrHP/nJT6r/9m//Vl22bFn1l7/8ZfWAAw6o7rfffg3vHrSPkOPGMoUc1xiqTV2tVqsXXnhhtbu7uzowMFAqf9AaIceNZQo5rtGKHL/44ovVPfbYo/r+97+/+vTTT1dfeOGF6gUXXFAVkeqRRx65wfIGrRFy3FimkONGWmnfWOPaOIQMN5YpZLiRZts31rg2LiHHjWUKOW6kmfaNNa6NT8hxY5lCjhtppX2r1Vjj2liEHDeWKeS4kbLtG2tcm4aQ48YyhRz7rFixojp69OjqP/3TP5XKH2tcQRCMBDo2/k/St2weeOABeemll+TQQw/Njo0aNUoOPvhgWb58uYjUwim/+c1vzkJ1iEjbQmPsv//+2d+VSkV22WWXbPf/8uXL5YADDpDtt98+y3PooYfKK6+8Ivfdd59MmDCh4V1efPHFurKNHTtWXve617WlrExPT490dXVl/58wYYJsvfXWstVWW9Udw7v84Q9/kGeeeUZ22mmnuvsMDAzIAw88kHzWyy+/LHPmzJHzzz9f9tlnn6bKOWXKlKbyW7jNQbVadY8Hm4aQ4dYIGU7L8BFHHCFLly6V1atXyz/90z/JBz7wAbnzzjtl/PjxQypP4BNy3Bohx8VyfOKJJ2Z/v+ENb5AZM2bIHnvsIb/61a/k+OOPH1J5Ap+Q49YIOS5nU//oRz+Sk08+uc5LS9B+Qo5bI+TYl+NRo0bJz3/+czn11FNl7NixsvXWW8usWbPCw/EwE3LcGluKHAcjn5Dh1ggZThNrXBuXkOPWCDkuJta4Nj4hx60RclyOWOPaOIQct0bIsU+scW0aQo5bY0uT40cffVRmz54t73//++W0005ryz2DIAg2BvED8Y1MtVoVkcaPnfyhE3mGg1GjRtX9v1KpyCuvvNJQBkvRx9mNhVfu1Lu88sorMnHiROnr62u414477ph81vr162Xx4sWyZMmSLCzLK6+8ItVqVTo6OuTmm2+Wt7/97e61O+ywQ/Lehx12mNx4443uuV122UUef/zxhuNPPvlkg1EXbDpChlsjZDgtw9tvv71MmTJFpkyZIm9+85tl7733lh/+8IfyxS9+MXld0Bohx60Rclx+LJ44caLssccecv/995e+JmiOkOPWCDnesBzffvvtct9998lPf/rTDeYNhkbIcWuEHBfL8UEHHSRLly6VtWvXyosvvig777yzHHLIITJjxoxkWYLWCTlujS1BjoPNg5Dh1ggZThNrXBuXkOPWCDkuT6xxDT8hx60RcrxhYo1r4xFy3Bohx8XEGtfGJ+S4NbYkOX700UfliCOOkJkzZ8oPfvCDZN4gCIKRRvxAfCMzZcoUec1rXiO/+93vZM6cOSIi8tJLL8nixYvlM5/5jIiIvP71r5df/OIXddf9/ve/r/v/a17zGnn55ZfbWrbXv/71cuWVV8qzzz6b7T674447ZKuttnJ3YE2ZMkVGjRolv//972X33XcXEZE1a9bIH//4Rzn88MNLPXM43kNE5MADD5THHntMOjo6pKenp6lrR48eLcuWLas79r3vfU/+4z/+Q6655hqZPHly4bVLly5N3ruzs7Pw3MyZM2Xt2rVy1113ycEHHywiInfeeaesXbtW3vKWt5R/gWBYCRmuJ2Q4p50yXK1W5YUXXmjqmqA8Icf1hBzntEuOn3rqKVm5cqVMnDix9DVBc4Qc1xNynDNUOf7hD38oBx10kBxwwAEbzBsMjZDjekKOc4Yqx2PGjBERkfvvv18WL14sX/3qVzd4TdAaIcf1hBwHmxshw/WEDA8PscY1vIQc1xNy3H5ijWv4CTmuJ+S4fcQa18Yj5LiekOP2EWtcG4+Q43pCjut55JFH5IgjjpCDDjpIrrjiijoP6UEQBJsD8QPxjcz2228vZ5xxhnzuc5+TsWPHyu677y4XXXSRPPfcc3LqqaeKiMjpp58u3/rWt+Sss86Sj3/84/KHP/xBFixYUHefnp4eeeaZZ+Tf//3f5YADDpDttttOtttuuyGV7eSTT5Zzzz1XTjnlFDnvvPPkySeflE9+8pMyd+5c10vXDjvsIKeeeqp87nOfk5122kkmTJgg55xzTlODYU9Pj/z2t7+VD37wg7LNNtvIuHHjhvQOYNasWTJz5kw59thj5cILL5TXve518uijj8oNN9wgxx57bHJ35VZbbSVveMMb6o6NHz9ett1224bjlqGEJpk6darMnj1bPvrRj8r3v/99ERH52Mc+Ju95z3vqwr3su+++csEFF8hxxx0nIiJPP/20/PnPf5ZHH31URETuu+8+Eal5Xdtll11aLk/gEzJcT8hwTisy/Oyzz8r8+fPlmGOOkYkTJ8pTTz0l3/ve9+Thhx+W97///S2XJUgTclxPyHFOK3L8zDPPyHnnnScnnHCCTJw4Ufr7++VLX/qSjBs3Lhurg/YTclxPyHFOqza1iMi6devkX/7lX+Rb3/pWy88PyhNyXE/IcU6rcvwv//IvsvPOO8vuu+8uy5Ytk09/+tNy7LHHypFHHtlyWYI0Icf1hBzX8+c//zlbs3r55Zezj3FTpkzJPDfFGtemJWS4npDhepqV4Vjj2jSEHNcTclxPs3Ica1ybhpDjekKO62nFphaJNa6NTchxPSHH9bQix7HGtfEJOa4n5Djn0Ucfld7eXtl9993lm9/8pjz55JPZOV6rijWuIAhGMrGtZRPwjW98Q0444QSZO3euHHjggbJixQr59a9/Ld3d3SIisvvuu8vPf/5zuf766+WAAw6Qyy67TL7+9a/X3eMtb3mLnH766XLiiSfKzjvvLBdddNGQy7XddtvJr3/9a3n66aflTW96k7zvfe+Td7zjHfLd73638Jq///u/l7e97W1yzDHHyKxZs+Stb32rHHTQQaWf+ZWvfEX6+/tlr732kp133nnI7wAqlYrccMMN8ra3vU0+8pGPyD777CMf/OAHpb+/v1Ro+U3F1VdfLdOmTZMjjzxSjjzySNl///3lqquuqstz3333ydq1a7P///KXv5Tp06fLu9/9bhER+eAHPyjTp0+Xyy67bKOWfUsiZDgnZLieZmV46623lnvvvVdOOOEE2WeffeQ973mPPPnkk3L77bfLfvvttyleYYsh5Dgn5LieVuR42bJl8t73vlf22WcfOeWUU2SfffaRRYsWSVdX16Z4hS2GkOOckON6WrGpRUR+8pOfSLValZNOOmljFneLJuQ4J+S4nlbkeNWqVTJ37lzZd9995VOf+pTMnTtXFi5cuLGLvsURcpwTclzPl7/8ZZk+fbqce+658swzz8j06dNl+vTpsnjx4ixPrHFtekKGc0KG62lWhmONa9MRcpwTclxPK3Ica1ybhpDjnJDjelqxqUVijWtTEHKcE3JcTytyHGtcm4aQ45yQ45ybb75ZVqxYIf/xH/8hu+22m0ycODH7x8QaVxAEI5lKtVqtbupCBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEMnPIgHQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRC8SogfiL9KuP3222WHHXYo/Bdlqme//fYrLNfVV1+9ScsWbJmMRHkZiWUCIcPBSGQkysxILBMIOQ5GIiNRZkZimUDIcTASGYkyMxLLBEKOg5HISJSZkVgmEHIcjDRGoryMxDKBkOFgJDISZWYklgmEHAcjkZEoMyOxTCDkOBiJjESZGYllAiHHwUhkJMrMSCwTCDkOgiAYHirVarW6qQsRDJ2BgQF55JFHCs9PmTJlI5amxkgsE3jooYfkpZdecs9NmDBBurq6NnKJgi2dkSgvI7FMIGQ4GImMRJkZiWUCIcfBSGQkysxILBMIOQ5GIiNRZkZimUDIcTASGYkyMxLLBEKOg5HGSJSXkVgmEDIcjERGosyMxDKBkONgJDISZWYklgmEHAcjkZEoMyOxTCDkOBiJjESZGYllAiHHQRAEw0P8QDwIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIguBVwlabugBBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBe4gfiAdBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBELxK6NjUBRhuXnnlFXn00Uelq6tLKpXKpi5OEGyRVKtVWb9+vey6666y1VbN70sJOQ6CTU/IcRBs/gxFjkOGg2DTE2NxEGz+hBwHweZPyHEQbP6EHAfB5k+scQXB5k2MxUGw+RNyHASbP0OV4yAINh9e9T8Qf/TRR2XSpEmbuhhBEIjIypUrZbfddmv6upDjIBg5hBwHweZPK3IcMhwEI4cYi4Ng8yfkOAg2f0KOg2DzJ+Q4CDZ/Yo0rCDZvYiwOgs2fkOMg2PxpVY6DYFPz8ssvyx4dHbKLiCyuVjd1cUY0r/ofiHd1delfZ4rINnTmi5peYK6YQX8PavqApus13S/P8vpjaun/s/dh3qzp7zXdVdNHKc9nNP2dphM1vZ7y7KnpWzX9P3QOZcK9f6Pp7pTnz6ZcXzR5RUQWm2egPJ3SyED9uW0/k596/pf6x/841xVxlKY3Oud21vRJ59g7Nf2xpm+mPP+t6YA593sp5mhNr3fOoX7RFr+jc2/UFP0Fz+L6tXmXatpF59DP9pR6TqS/U/0N7fqSpqhPry32S5yzoJ7X0LF1mo7X9E/m/yK1d3xBRC4meWyOejk+UP/2yox3R/veSufQXyDXeI/PUB7081T9Qm2ifXAf7nejNO3W9Id07ginbHxfkVwWbB98K/39hKYnaJoqM8qxJpEHfFZT1hfXaoq66zD/FxH5kHkGywaOWRln/QRw79HmGpH8HY8weR+gPJAf9BlPX6Lt/iTF2OFx0Mlj9RJfY+tKxwq5nfKsMXkBjTFZP/fqvIAdVA6eucx5FtqJ66OIN+KGmj4nIh9ogxz/WEReo3/bMUck17M/s3egv9ebc5DdAefY6zRdSufK6D5rJ3h1hzLBdrjVHPfK2iqoI+gXq0NE8vELOviHTh59rwn638cvoXMD4rMP/f1HTb06B6nxHED+oWs82wiyfp9zDqCuUc/vpHO/MXnmaPp953rQqynrX/SF75pnsc34tKbQXZDZ+yhPmb5g36cMPP5g/Dte06WaQt+1Ph7n1/xIRLaT7N0mfKaWPp4ah96oqaPT36v1+68P6fFVlAf9y9ptXPfQI7YPeTYwroPsc//V6/c/pZbec0ktPewzeZbbr9Q/II/efdBvUV88Hh6gKWTTm4p9QFO0Gd6d2xnjHsYf9HvWC3a88OyPN2oKew7P9OQIQB/8kY55dnorlLnPxzXFuMblWFpwzWfo70s0hT64zsmT6stgV/N/jJV/tBklb+fP0bG/1xTt5I0x1l7pFpHnReTcNtnUU+lMyiZqRS+BL9LfsF21/++o5/7C9Y1nYZz25mwzzP9Rv2xLfLPgmsVSDJcVZbL2As+Ji8bMFG/UdKlzDnobdvfRdA79BOMq9MF/Ux7o1/+r6UpNeU5p7R7ux94YKyJyKv0N3dVlUr4Wc4lbND1IU2vXieQ2GsrIdgNkHW1p64fB9WM15XZGvUAX70XnVOdsrf3j5ZTso3/9QdOD6BzunbIvoVc7RORZEflfbZDj+ZKPGfxc9FPoa7Z7UB/oU9DxR1Aea2N6a2c4hvEI42w35bF2IM5xv9O2631DLe3jZ+Ddflaft64NvbUWkVzHi+Rjis3LZcWYArmDbPGcuMwc0pLSn2ifsXQstU5lseM69yeMKf9orvHGd9TDDHPcw1tP+4yml5i8O9Pfdlz35hYW1l2oc7Sr16Z/ral951TfLlqb8bBz9Hatcf1A8vdL1ZkH5PmNmkJ+vL4N0M5sJ0OvptaNrI3GYy50INp1jcmbYDqNvUtQfqvvU+/jgXZdau7nzY0B2xbQa3iW10/QfnZO26ythLLhupT8pSiz5tfKuiDbU9AfmLN5sos+gLb3noVynK5pGbvbA/oAdf87J0+R3ka7DYjI/26TXY1vTnpswt/kGR//uf5RpO88IGOsCzFvwTjIc2usNXr1UEC2dsg27SUFmVlnoGywwfs0PZnyYB0E9/bWhj5uztnvVkyqjSA/1m7wgMztQMcwpmEtB33c02GpdTCME3gP2BQ/pjxv1HSpplaH8DHID+sVbbPX6n8fUX21A9lGz0CPeN8WQdGaHdsJqJcim0KkeD0upcvsN0e+T2oOaEH/WS8i+w9xjQsyrPppT9VPmeq4nK5Cv0h9PzT1sC2Ndc/jD6zZQyc2Y186vFaf8UgZnUrzu9eOL7juePob4zHey5ONpYnnoU9DZ6wxqUhzY1QrfIj+vkfTQzWF/K2kPE+bcwxsBuhn6Jwy9grPUSB/kN9e59r7zDHM99iWxjcAzMl5/ciWx9ryXh7oB25n1TVvUtn4L/RfntehbJBj1I8nI0y7bOr/kJpu99YLRGQPksOHluofeGdbzyLF+syrM0+XF+Gt/eGeWB9B+/Ca0IbqUaRx3avZuUURLD/2myL0CdddQRs0De6tfTxbjvb0HNqA59aoV9jwqJ8DKI+dH6TWDsusK1o+S3/bdcoyJH7PsrX26Zf521OZum+mv1reSH8v1bRLaoPbV9tkU59HZx6pJduq4fM85DHVBql1ObuuxzIGXQ69Bn19C+WBXrP1zPYTxjrIH9v/6HtYb/LsHfsdEryO/j5EU9hmXj8pqofP0N+XaJqyb4tg/WJ/57CzNII2xhjFa5m4DuXHeMZr8Po+r9W6fgTf6OxvkRi9Zttj8kPPQ3+8UdPUeA9Qdn6vovkl36uZek302+z7SZn5nvaFrWkdLFvrRj+BbrTzgKGNx0GwqTm+o0PWi8jjInLPPffI/vvvv6mLNGJ51f9APA9Hso2IbEsndNGnuq25Yjv6G4MS8rzUmGfr0SaPx/YmT6f5v0i+CIV77+DkwbmuxLmiZ3lltM/kPPY+3vtV68+hTuvumaoXi/fOwKszHLP1sT3lwbGqOZcqV5lyePex75x6ls3LeZx+JiJ5exXd0+az9ylTjhR4nxfo2KA5h/rx+pS0HB6oXo5TZca7e3WPsqHMMMqoXiuap0EvMFCbKAdW9nhxGT/g9GS1qF+wOi7qg9y38fwyOqgZQxT34/fBvVM/EMe7ot95P6Cx7+VtPEHd2ffj61APti24TGX0ZZl2tvdlrF5K/UAc7+7Vi723Jz9N/EA808Xes7z6KMKOK3r7IcvxdpL/QNzT20X939OT9lzVOea1d5k+YGXLq7syY6Yta6vgGZARr+you1Q763tlUaI4T9GuSq9PenVuy1FGL6VsIzu2ePezNppnAyD19KW9p1d2e503Tj9vjkFmm+0L9hll8N4Z7+H39VbkuF6Gt8vvuVWZcSih00fhGPrtOsqzVX3ehvvxuaI+xcdsfXD/1fzWtu8Y3ZinoX65PvEenp1tZdObiiGP1SvczvZdPdvCjhcp29XOebw+Za/xbKxm7H6PMvcpsnNT13m2hG2LsnY2sDZMalyxm984H+q+jL2SP7O9NrV9rqUVvQT4nWGL2LljmXGVsXMkjIupNmxm3Od8qTlbK54IUuWw4w/b4kUyyvcp0vupdk6tFYAuJ08z6xopmyS19mH7R8q22M6kXr149aH16PZFS0onp2xOe/2o7MjQ5XhbqW8fazd574X6eMmcS+h9d+3Mzhm3N/937uOuFWj+jlRZbf2mxijA9fLcBsoj0jhf9fp2K2tcKf3ZzPt4pOYfRX3ae1ZqjWtDz0w9K6Vfyow/Xh60q9emzbyzPdfM3Lg+/9DluFMa26JsmdBf7bunNjNZvetd560bFdmefMyukZV4h629sTe1blRmTcvqwjJrINy+th68flKk95u1lfCur5QoY4oya36trAt6c/Mya8xl+lKZsTdF0ZzJK09KP7XLrja6eCvu262MH3gvzw7T+/F3mGoz+kzM9aPoYNH1XGcoU4c5x++Mvr114r527bLMfMQDcldmHcqumYk02pFl1p+8eYBt52bmd97cGvLDesWu5+n7uN/kUvVR5ruDnSen6sOuxzVrS5SZA1pG1/1vaGtckGGt+61Gm5ze+JyqX/MeFXs/vmcr+sGh1LocoP5feJ1nJ+C9nnXumXou3hW6BnaC5+SllU3YZfBk3s5n2BYwaxd1FMlYGXuFy2H7AMrDa3n2e2xiTptYPyq2aVLzIW5nzddh9bZnH5fRQY0MfSzeQf8VPG8rb4x6UVOv/xXpI6/OmlkT9caGovlYam7tkeoDQ9Exni1iz72UyDPU52rbwaRw7+/1SVufdo3Ku1e7fksBml1rtiTGxYrVYWWfMZQ1/NQ3wnbZ1Fxn+o0oe9cybVBmXS4lY9auddavkvaT/W0In0v9fsXmSa2h2Dxlfq9kr+VzKfu2iNTvHLzffdjyeGvetm8677NVmXHIXFPx3hnXpcb7omu8/J6+baZeE/22UqbfSH0e953tuq1/n1blOAg2Jc8++6z8h4jMltrWouMPOEBWhBfxQirV6qu7dtatWydjxowRkS9IvrNcJFfWl2k6RdND8yyVnlpaXaAHdtJ0Od2nlUmreiaUK51zs0352EvA/Zqqt7fOQ/JTA982+Vv19AbvzHeb46+lv7Gjyr57anKE/x9OeW4z12NHqOfV5XRNL3POoc721vSndO4J2TCZ2wVNvQnhuZpih/l15rhIvosXu1SxUHqT80xcd75zDn3wjoLyiuR9CGW+pSijpBdYpmm6zPxfJJvUVdRzeRXeEh6RRor6DXheRL4ha9euldGjvUWxNLkcr5a8D8yiHHh/+6Nc3jH8tMmzr6bsPfE2k7cM3g937THSKzO03IvPr8/bdU6eZz1knb2MiMhc6m9XXap/zDJ5vR8pW2bT3+ifkD/oJb4W+nGFpl/S9OuJPFPoXL+m8D7xuKasA87WFD8MvEtT7lMot5GpKVQveHwmW+OlkdM0RfnRT7jMd0k9eDbLGvoO5IfrHs+4zJzjev2kpg9rep0Ug/pRXd9N/WVN0fVeP9ZyTNTrVzk66CStz4U4d7Cmz4nI+9ogx7dJKS9tHVqOQU9P2nE0NUaA4+hv1JUdKz2dYUl5B0ebfse5bg9z3ybH53FaH6tRH944n9LF0BXowzr2TTstz7IM90ZZ4Tlp3zxP5tHkauf5AHJ3hqYXaco2AGyYBZrCxuKyYyc5djND5lg+UzYV3vlOTdG+EygP7mXfuV2cQn97ZbQUjcvcHzEOQ2/zWIG6L3qP1sfjepuaPp5l9gXKQ3qyc55mWVBLu+bl59b36R9YONPr3kc6/Rr21CT0zBVSjGdj2TGqTHt78jTNpPc6eSxsQ+Oe6JOQn8R8Ypa+zy2eLgQYYw6kY3YcS9me9j5ktzTY6xgP++kY6sGzrXbTFGMV7OUSG57q7Gxbbs++RdkgP57NasF9+J1hp6C/2D4uks9X4G0E7czjEMZP2xbENH3HTP+yvkX/4Pdol039Ban32JjqF0DLNlXnBsvvz0916zxsDepK67C7J8+zBs+wbbdHnieTSdiaGE9TYyZsJJ6LQmd+x+TheSLs0oude2KMxVil+mkG9cnFmH9b74Bev0XZoIuWUR67cI6xyuu/dp7I/eVe8fFs4TJzZE/G7DH8n+0nW+5mxlf2qGbmQVnd8YdHe89mx3LI6CMmZYpsK543o7/Z6zkPt3k75bjMRz2vn9hxkdrwTLVnL0b/9eZgeLfXOudaAWUs6scimR05ozc/lM2poZ/RN23/kdy+uAZ2ZUI3Z/XB9pe1pe1xkbw++jXFGOp54OnVtK/xXhX1clKFZ6p+ylOkDw+mv1FutK9jL3dpfawvsv9F/HpoBcwBbjP/52NKNi568ylbDtY96KdO2zeAd+3xy1CHlRWR3EvaOW2WY9YZsKXwznhXzzMuxh3Mz3hdo0g2Wd/iGcibGjfGm/+L5HPgfk1h67FtlVrfBObeFX2vapn1AO7/sOPmabpA09TYkBp/wNn090Xm3JmaejYF7ASsJ+9G51RnTdE8K9CGPF+1dTdFGkH/TNiek7Q+V6I+UYfct58yF7FO9treYmW9VUrY0A3jM+SadaTVGXau3a7x+B7JPYzi+dz/UVbYTdDtqTltgonalqu4H6LOUPepfgJ0bJp4Vn4I6ujBfv0DZeV6td9vUt+gynyfsut5qW9HHpDfMvo/BXQp6tX7LgT5UZkfR/1mtf02B8q8D9sJPZouc/KBov4vkus6a795a6Kpctj3QB9juTrZlAPl4r5ZtNbB9pNdH9lDGsG8zI6D7VjjuktqP5bBPMN+H+I2zMIxasr2P+xAtB2u99oHQJ64vbFGZvU/j8/Qxej/qDv2MgzbQfXRZG2fB3lOfK/JizKzZ0/U+WyTRyTXK2VsRdSD15ZjTerpx9SaezOgn/doirpnWwI63BvXgZ0bcDtb+fFsavydGPMyW6ivlk7traXLU+s3Y51jtn28Zxatm4o09lvoE0+XwCZCvfKaKH5Xwc8drrnxJ03Oe+hvK6PAWxcEzaxDO9+Xpmqe5egvLN+wFfFdFPXk2Vxl5mepPAXfV+vKUcZbucXr/z2aQrd645q1E1LjUAnqvhNDV6Ae0CeupgtQV1gfvMgc5+uVzA5LfXfgNRhg1zqg00+mY5jb2Lbj++m5in53q7JOhH1vdZe3no13RJ0fQ3msnk31G5Hhk2OsDaNe7zb/L0vRb27OpL9RZ3aeyX1S5+jdR9XSNSld3C6gb1lvFn3vOJ3+RvlTv2HD3KhXU7Q79xfYJLDTodO5XtBfUc/e2GBkZBzJ6mrYJVZGyFbs1HsPNFPnsN94Myx0MN4deo9lBseszcnzK+g1++4i0qF2TsPvGvi7HZ7fp2mZdezUb8esjcQ6A9/d+zX1+s++Uvv9x0daluMg2JS8vVKRP0rtl1kDIvIPIvLLm2+Wd77znekLt1C22nCWIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCjc/jjz8ud4jIkVKL872diLxNRD505JHyyiuvJK/dUtnCPIi/LT/RqTu8Gjxv885S7LTBjlrs3OSdM3anDXaX8c7Yr5s81iMmP996HeGdy9gh5u3Www5N9TTk7vIs8rCS8siRIuXx+7Xm/ykPfilvUdajGu/iTXnNBtjRhfJ4nhpwDrvCsHOS2q3Bu5LnUS21c9qC3XV4JrdB0e5Hry+0izLhPz2Pd+Bwk5d3uN4l7dtBepWIPJDICa8JeAb3O3jFvM7kZQ8j2LUI79zeLm20M3bpYdcf111qh7nd5ed50IQeutTk8Xa0toLnZVz7V5fqxvXchkWeGbz7aJ/upt2Q2U7alMchq9e89ina/Z7ynuh5v0JZcR/PIzqej3ad6uSxePWhz/873dH91T7KgzEFehs6rYwXeH5n9C/TlnV6wvNgviFwDbxArxORyW2Q4zsk965UxtOQ9c7C4DrooH46Z3fd0q7mo9RD0o3YnYw+yX3L1uNsk1ck37XeTNQOz+MKnpG6T5FXJM+zQmp8Bilv43bsZf2G61A/Ka/toIy3sTlOHivrKS/NKawnjzIe4srcjz1O2LHb8zKJeoVsed6RinaLs11lI56wbYS2sjvJoTNa3wmey/BaqY2zzezYd7yLZzTjtR3vwddgx721jXhXPvRtM2HXz3XyGI9h6P8V8ijoejm0WHlOeWr0ZB+2SI+mKZvAG+M2hOdZxMJeKTCnQb/neYjKMSKlZFEHU/WEMrMH+TIej9Hm1vuh08cO0/a9vUx72WhDTMozO2QdstasB1Zvztcum/oOqekDAJ3hzWc876ki9RESMD8oI2vAG/Mg4+pto6tHs3j1i7rHfL6XzqEP2rHcm+t7YI5mvf57NgBIeTRDvcJrKHvBhvzARkM/KzM2JLwrfVjr5wquuzJempsh5TEVuhn91PNwYj0WH03nirxWlYkI0yzoy/AOk+q/kEvWBzbagAePMcPtQVzt4o7eWurqW+ulz/NmV3RNKg9j7VHUHesS68GcbRoboW2IXqwzT1+e1zb0AdVhFZ0TZ9EERfJ+am1htptVFhoiIXmy6o0fkIF+TbUcddEPUA7IAvRvs160iuqV7SdEirCy1WyEnBSwJzDXg57lyI3N9EnYIv2acr0U6UBuHxM5IoPr5W7ZeJEArEdmz3uofS+OGNdvzgHWt3g3bx3MzuM8z4L2WGqssfcro1d47cObt2+IZnWInSd7dtDB5ph3bzsf9OaHtmzGDhKRRhlLvQ/KBd3B+qVo/n+wNOKtOaPt5mkK+yXl5diONSKNeh/vwXOvq03eBPAUuaIVD37tkuNrRASeqWATpeaSgHUPvhWlvHJbr+BenyzzvQD3RiRW7hNFdr93PaLRYc7WrB1m3xEywn0b8zB4VeVylYkWBVC/GPtZT6LOU2tk0HOwb/s1LbOeRO3crWuRa3CgTL9NeVMtim7iXd+qnQzs91GRxj6EZ/GYWeQ13YtEDOyYy/lt3nZGyQOY40AXlfXia+UHNg57oCwzFpX5PlW07svjO8qYstVQZqy9pyJ+4Jk8viM/nuWtYaCfelFQLKkokQDyjPvxGi/s5DKRS0AZvZewfTMv394asS0r0a3XDdkDLZ7Rp6lnY+G7FmTU8wLcrshBIPVtDxwqIs+IyOFtGIsvlJqeQPmtzcnrnOjD6CdlIqDARvOi6LTShvydFzaVtZ29b55loo/jOm7LMmuq1qb3vNH3aFrmG02Z32a0i4SsbdD79YYoisjBdgjsr3bLUYqE7so81qNvelEhUvZgEWTfTtJ05fky/HNj9E21Qa4mr+snF3lpLvE+XfQ+2bozZBP2LXt4t/ND9GnuC7BXYAOUiUTB62Aoh7W7PDvO9k0vAgvGRU934HuWjY7lkfoNkV3bYhtPv41kNnCRt3CRtF1rn9/M9y7+roq20zX44/SZ19E3qJk6x1lk+xbXL2QckZg4b5c5h7Uu7zu6XVfnvoBx7DpzztP/XnQwgDHhhyavtbWGJsdBsKl4U6Ui60XkJDr2koh8V0SOEJHrXt0/hW6J8CAeBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBMGI495775Wlkm/XB6NE5B0i8h8iMjBQxpHVlkX8QDwIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIghHHsVOnyhtFZJxz7g0isr2IHL3ddhu1TJsDlWr11e1XvS40SfcF+Ymi0E1uSBGEnEAoEb4WoSkQQhzhOlLhq7ukEYR5QigahGDiMA42dCWHdENYPzwrFe4caCico/fPD12PUFh4Z4QmOTvPI/eYc+Z+decQUscL+2dDFnkhSvAed5u8Hrh+Fh0rys8hpRBWw4aP5zxoV4Q2QRty+zQT2tCSCheYCgVowwCJlAsFZEGIxFRoUA+E60FfRNgbDhd1rtRCQY5pQ4ihu0TkhhJXoC967Y/w7TbsOWNDtHA4L8jLtZqij8+jPAjJw9cBGzoHZeVn2tBn6KMcTrhXU+iO+ea4SB5aTvXDNA0XuKyP8qCtrM7gEGLQLyjjndJIj6b9mnI4SOguhGtDSBwOpWbDcXshZW0IHVzPoXCKnpEK5YR+y7KD9y8Tfi2BDRd4GI0xt/eb53ryhzBRGBug/znUEOQP404qTJMNG8XhhHFvGwoToY/aGSrsDXoU78FtaMvojZllQqPiOjyDxrpSYbMsXngy1B9CcWIconB2sCvWI1wg2tLT+9AZvZo6Yaey0JXfdsqIdsE730jn0KcxniGUFMuz12eKKBOmFuMqnsUhvxDazoYtnEB5UNfTTOqF8dWwYt2j8kNrcG87LnI4sF5N0QdRjsMpz3VSRxbGmtvA1EOn5hl4mA5Cl6fCHoIyISMBh6+2dp8d34cj/O6B9RkrFNK2ivLosemUdwnksJkdvOhTXj+B/GGsHMyzdOk4tj5lF1twH25bW1YnlPd0bY8lC/TAQ7JhptHf0MGQMW8csvo5Bd4DfTsl55jPDCbyDBXo+A46Bt2A9rWhu0XycqdCGgLIOOqewywjrB/azJsz4RmYj9mwzWXLYeuTx9wy4d8xJuDdPyC18LsHt2ks3tnJ4el02KNGZ00+K//7wTKyZdvFG0dse9hrUnghU9FOaIup0kiZtoA95oVqTIWiLrpPq6FtAfr043QMf6Ou7NyWSY3hmJtAt7I+gK2Ifp8K3VpGRlAc2EqJcTUJ1i4wdnsy683fMdaivzQzJ+Y1B7XFD9Ox5nYcL5KLdtnUPxKRv6Iz0KWoB7SPF6LdhjzmuR/qEzaVY4tkIYth53h1DlJrU3gW+jQ/C7IJ3XlU4j5FzxQRuV9T1DVkhd85VX7ghUkXqV/7w1qZDZ/9Jfob7YR357aAjoD8lCmXF4bXhiq2a5uM1WGptUwP6AzYy7D7eR6itkw210+04RGa59ZUfymjdw90jhWtlfHcoGi84fvdLe2dG39Ej1LfyuYbqAeMxdxfbjPHvPa14x/K2kN58AzHhm5Yf0B6LeVBe7C9JVIvY1YP4Ryva9j1O5SnzJoMr71ZW7dMv5lDf6Md0Ob9Tv4mwsZP0rZciXpm/fSSpqnQ2EUhoD3Gmv9zOVHXy51zzWB1oVP32ZqFN0aUaI9xev3qdXoAZfbsJxNyvg7zDLs+11Y5xvzYez9bRm2nKUflWVaYeXMmD6x7ntLUrumI5DKdGiMxnqKfePXpzG9FRCZTv4Xdn9lvGGdZf1rbAc98iY6tN+fQJ3kcwjnvvZBP17QqWp9VzosxCu2LsbLMNxyeo6Mcd5n/833s2NunqbUJhoLtX2XW5RwyvQS7xVunR3tY3eONmbA98a5s9+A+aPuUbXOqc2xDttBwrHFZUmtuHnaMS33PBPzt1a5Z234skrVLZpOjXKdTHtQ5rsO3EV6XQF/CmIu183soTzNrxXYcEmkcb1JzA5Qf34VYH2DOhjKn5qKQFZSnJ1Eu6AW2o1LPwD2x/uCty1m91iq4T5lvPvY7JOexY0uzFI3dPCe+RXw8G4tp11h8m4jsIE294yzti7eUkWvUAa8poX0x5qEN2JZGndk5k4dZL6qQ7tlB02xde3Z+LhsDUt8Q7DdS6Fv6jtLQl712t8eamZ8x3hy2CDwDOu1EOofrIaNcL/Z7KmAdaH8H41Ekx2yHod+hf6Av0Bg2UdtzVTPfJlLP1TWDDvpGknU9O/9PtU9q3bWovUXy9lgvtXW/z7fJpn4/ncF6ItoAtjB/F8Lz1B6cpGvVKxdQnqI5Pts0O2mKvuTZWHZOjLWlfsqDv8usY4PUN3qPMt8Wi/T+NJtRcj2AdSjWJdpvK/rfauq7emr997UmZXsBv2+y60/OXCf71II+nrKflJmkSxcVfY9k29XqA8/OsHJTxlb0vlugPuw6rEjWzybqf13dgevx+0WU9RYnj53/dNLfs6T2zenwluU4CDY2t99+u8x629vkU5KbSZYHReQnIvLwk0/KuHHez8i3TMKDeBAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEI4ZqtSonve1tcqgU/zhcRGSy1LZzvGdnz1HWlsuW5UG8bic4dsw8bf7v7crCzmXstOJdNnYXVpmdW8DbUdSMl7QU3n2wSxTbCOHRhz2PNelxQETynVWexxPrJY13p2GXH9pguqbs6t/sGOumOss8fiR2i39Y81/Rpwc8rw12h5W3y8w+w9txhd1Wdgce169tV9QP7wors8vZ1it7b8cuZOtls4xncd4xCS89ZTx7Wk8R9p4DIvKJNu0gharn3arYEZ/aeTze/P8MTfvpmPWKgZ2+O+WHuvUZDVEIqN27jq+l6y/VA57Ho5Q3pCIPnqwzcO95mnrehM8w/095AEuUJ9vdPL/xXEbK26i9N3aoc1/v0fQQTfF+fF/r/cHz+Ii6Qz/zdnijPHhmv5NXn5t5Pjq//v8iIlXspPW8aKGMt5k8vPsWOhleMVA/ZbxteOC94IXI8TCVeRZBW3L9YqzD861Ob5dHh3+X3LUidmKfRjnhyQA7hOFlKeHhM/MExX2qjM5DX0Q7sQ1g9b7nCRPlh+7xvECU8YiAvo3xosxYnPIAkPIa2ozXkD2cY+iLKCPK8VrKU+QhyfM0BN1pvdaI5B4hUjvTUx5jIK8LNIVspLwu4xrWlyhTymuO9bTVjD3HXsGsl0sboca7jr31WXvSvnM7vCudLzWbGrKAtu/RlPWc7W8pD40lvFdn3rm5T2g5Mq+UOMfeyVAPKAfauZ/ywC6GLk6Vx3qZJU8P0/RZq/X/dbv74TkHcgQ7jj3WQxagD7znf8Dk9Tw8WGx0BpFib7mpCCgYz+6nc7A38HzWdzZKB2xejqJQ5Bky5Y0o5UUd/Q7XsN62+hF1xx4niuYY7LkC0RfKeNNSHTKR7LIGrw+w5Vku4LULdX6bDI+nQ48y3kuoDQ9TDy232/dKeYtK6e8y3pVSetbeGzLPthrqFf2jjGdODxvphMfwMmNB0ZjNc0rIaMKmaPBQ2iqp9QzIC7wilbG1irwui+Ttgr7O+k51TKfaAgPee9loA56ntjI2FeQf84/UNSmPd6gf6CcvgtFxUvPKcugwyrG1SQ518tjx4mAnj41gx5jxPfN2zH3TRhmDXLKNZccEXhfpMc8v0990PJ3Ymx/K9C3aDvfhOtBnZBFgUEauF7SVlQ3rWVqkuXVBBnY1noX7kTfILCpYGVkv41kU/QP9dx2ds/a5N+YVeSUm22Zmby2Furumj6638wbIMXvng57u1xTvxbq1wOutC57hRWMo42nuLmnfePyg5OOPN2aW8fqGNoDty3Wga4cn6TrLQu1TndRvG/Sr543bRjUhm75rXi1db2WN7guvXYvU3u5Qe3mQ7UnYxam1D5QDHk7R77gNYMOjb3nzX/s+CTIvyawzoOts1D+al1W0jqu2fst46Wfvh6gXa/tyHvSP1FpZkTdTWn+aqWVblFrLLIOJCtFJ72z7WzaHY91jx8/U2AvwjNS6p/X295yIfKxN4/Hn9OgCTXmObm0glevOk/NDA3Yebz0zi+Q6UN9jGkUTzcYE6McD6/OKSN5PUmOTtaFT40jKxrN4/Q/taj3Nc98GzUTf8aLGprDv2Oq3OazxQj/YsVwkH0/tvXk+gfVRyIFnZ9jrvPax69BjnXPQoegbvF4DmwzyguhRl1MeO3/BfJmfhTbv09R66BTJ3mOiPqNurgxZQj2gv6AfPy8i57TZgzj0LeqA9Yq3rtIM1ub29DXaB55SIes8jhXodHzDEXHWHEroyWzM46gMxtN2nSdOPAO2L67jNaaiSA8p2yZl1+Ecrud1GshNyjZqAjf6DXQfbIh+50K0T+odkQdrHyl91UxUFQ9bn9BXbIfDfirjvdZhhtbV4mbXI9q9xtUu7+0gdT/bFzVvF43v6zEm2PX+RP1mns056mvRHKVsWYsgu3+mrr0swroZ5iHeulyZyKdYv4K+L1Mutp9wb3PdONJBq3EOeo3HTNiW1vs197N+8wwvypd5fvYdkg+i3zcTEdaZjzREu/Gw3uA9yvSFom9HKbxICyLtk+Pzpe6nfkepXXDjAj0A+4m/F/SbsmGsYX2J9QTUHWwbHldxT8wzvQjndm3LqzNrJ7CXZvtbG9hxvBYKO7BMNDdrB7KNgXf07C6D/Q2Ei/2GxO9l13C87+Ap2Sj6BuCtixeVh8tk1+O83zih/5f5/ox65fJgzEZ799E56OsycyWUFW25hM6lfpcAbOS8MhE+MVfidnpCanJ8bngQDzYLfvazn8mpJ54onxKR12wg7xMi8gMRWX7//TJlihd5ccsjPIgHQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQTAieOGFF+T0E0+Ut8uGfxwuUttmub+IvHfvvTeUdYthC/IgvlbSO+rKeNbxdunosS7dJbTe22GFXUXYiQcPhewRB7tBsQMO3hJ4Fy92eWMHHO9ug0cJuxuad4xZzzzYaXk1HbM7VzfkGVok7VEBu5/s+4nku0FRr9jN9SXKg536KKPn7TzlQdC2q/c+7PWUYS8I1sOpt1ML7fNLTb16sXVmPYEzOIfdd7x7bsDk4ffBjvLUzsCUx74iUl5wU7v6p0nNK8vcYfSShh3u2PmDXbdlvIZ00N/YqYn3QVn5nVG/2FmInZzkrWBcTy1d7ekDu8MX7cvlgIfJ800e3tmE9rjI5PE8CZTwYJx5iLjUOYmdxvDujd3XLzl58HyWY/Uu0qXvtR7Xs07G+5+j6U81PZHyFO1g9dqwFdhTFvQz5A67WFnvHmrypnZZe55ooTPwrqg79mJqd66mdtpaz1hn0jn0Uzzfek0TafScab1TtGsn+P2S6eap6gFvOXugSXlMBtbrCXQr75jF9fDQ4Hn0RH14nraHEtGDy4HoGFYHpTwpA/IWmI1/dic16wXti936/FLeBrgvWe8CzXhYYU9oj5tzGN95lzWe4dX9UPDq1Y5R1gOgB3twQt9Bu3p9ClibhO9ziDmm9d2xW54l80qT0ts2UgnvlLfPhy5GOz8rIu8Zonelv5XaWGz1LXQGe6eAHYdysb2CfoI+AB08gfKg3NCzKLPnvRp1p8+q0H2qyI/69MYqRE1I7e6HfrJj7gfyLLO0rLegPClPETjHkWDKeGCzpLyHpDwxa7mnaJlXYI7Bnp3Qv3AftBf3n1SEBNuu6AMcLQD1OBTvxHzvMnol5SG+6Bzrdtt/y8AeTmBDaZkz77ust7Uc3WobrblH2ud5eL6I7EpnbOQg1l29mvZpCt3H7wO5v9+cS3gAzzxe9+XHZumzsi6VGseKvMGLNEad8Tz4oZ0xR2e7FvMo2GHWQyiReXfCvctE6PAo4/kSYKyj8SPTl2W8bAK2fdGGkFXULy+eoWxlPLyXwc6FvbHX2L510XzsO86SRqx+Yr0PGwBrFd64bqPdQM+wnkQZU7pQ26x7nkh1nchfxmzESABs6zTj0Qp4NgnurfIzSf+7kvtvkbcqnn9gXoixpllPb2X6u31n2FG8Hme9qaY8bllPX/w+Rv4zr4OpNTcP69Wb16wwZ2smigLyUmS07FxCvzVFM54NPc9jB9ef6yLdsx79CnXtRXyADl1n8rAXU+tdyXqVEynXB6dIez0PO3IMz3jumhIo6qdcv9ZTKexMrhfr5ZI9DpfQFVmUMtgQfZqy7vmSOZbSl2X6UjP91kYTJLI1KtZd6Eu27j2v3gD2KNuOeEfrBZ7bB/WBvgnbpJfyQA+UGddL6K6KrrFlY2hqbux5k8cznHrKoj3ZsnrPsLYE9zs8w+jUo8gGuLFMfRgvyR1a5mzO3U6vpd16FHLAc3a8P+w2r+zaBzpVz2UexdmDuLXRvLkf+hLqkGUNc3KMuWhf7s92boNnsYd39HOsXWI9j6+189PUdwP0BdhWfB/YZsYrfR1t9hLb0E9Esnrt1nJk0Qt5bmGjWGn91A15tu0T32eyqCb8frBZbT2yB2WMf7i3N9bZ53trXDZSj/WwLpLbFeinaG9+aTsPs98K+T7e/B+6F/0fnm1hJzwnIh9sswfxFCkP4tbzLFJe20XbwTs47Dgel2F7l4lEA1mD3HjX2DGT9Yr95ot3YJ0MvebdO/VdFkDXQAcielRqnIe+v5GONbFG7Xr+BkVjZcJT6TQaf7KIDamIQQU6r4Puk5XNzmdS36cg654tXCaaTjMRdzwgjygXj0PW3kE9c1/y1kraNRb/QGqRySE/ZbwhAy/ajI06gnUjb70mZX/Zc97vAewY59wHc4OX9f/uNx977yZt+lKUmX/biPNeRKSiaD5st6NeWokGwgx1vmu9I6MuPTu56FoGehP1w2M4dHlqrpTCPs/2O5FyUVlQJryrZ0Nw326XHF8l9b8HQB2hL0O+y8wD6FtNpqdh90AX8jdMHZM69RluFEOLjfghkvcFJ1pkGQ/x2e80UnNRtEuvphinnX7jfm8A6MOw7bEu3uz38DK/r7OkvIOj7o6nYza6kdePcR3aObU+jzm2F90Hz0AfwhoKfdfLvK7DTjkkP5eNE3YtMhUpN2VT4DrUGY+9+h4z1D5tOooHMzQ5DoKNxexKRZZIbTQt6wl7vYj8g4jc9p//KTNnzhy2sm0uhAfxIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAg2OX/5y1/ktyLyTmnuR85dIvIWETnxLW+RV7nv7FLED8SDIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCINjkvKe7W3aR+nhVZXmL1GJe/OIXv2hrmTZHKtVX+c/k89Akd4nIDU4OE15mCoV5WuGFiysCoblsWC6RPOxDj6a4rxfW3pSnLoTypfqHF34LYTAQxgLhKWwoe5HG0F/0jCw0ixdWyWJD83QVZZR0uGabh0PV2VDXTiibLPTqt/XAWXQS74MQHA9ryiF/bJgPG65GJA99hlBoC0yZPfB+R9GxMqHhLChPPx1DCByE0/PC2iGcCuqQ+wLCnyI0CsKXcNi2onfz+os+a5KG3l5pw5i0M2znO/Qoh8VCGNZBqccraxlQP+hvXtg1hPSxYWNF8vCJqHvutyirDTFkyy6SDn8FmUcfQGhGL2xVmTDPlg76u1fTx00eDtFsQ+JwuEL0M+hC1AuHCIJ+Qz3g3VkHafhfma9pj6bcp6y+dvpGFsrJynUfXWfCGmUhgzgP9H1R/xNpDCP3STqHUEMI2QX5Y93zY6kHst9Px6Aj8HyED/XGI+CFs7P3szrxWRE5duhyvONakb94oXABdCfCtkH+OIwW3lXlaHJPLX2Q9UKqT6JuisYhkbyt0E6QWQ5/hfqDzkC9eGEM0a7oExxOtUzYLugzhKj3QrupHjrs5Fp6+8N0zuoRvDvrDLy/DWXohSQsE5ayTHixD5j/e+Nk6j4I77rc5BXJ5Kch1DXnKSpbKuRqKoQq7g1bpM+5jw2n7Vw/Sa9facZZEWkM+8ztA32EZ9nwo62Px/lY/A9SC19WEH66clp+qGrHXg4V+YQ5hv9z+F30RYQRhuy3Or6jfmAvsxxiHLdhITnUI6638pTqLx523pAK7T5CmKF1noWq47aEvkaf6HduAHsY4aupnrPwiThnx74Ux9Hf+2tq+4QX9tOGM+2kPHb+5IU+RV/AnMmTZ4B7e/My3NuGDhZplI3xeo//3Sab+lg6A90OuzIV3vuJRJ4URXMTbkPUFcqDd2S7zNrQTtjOTKZgE9kQn3zOC+1uxwZvnos80BHXmuMijXYg9DXLj7b5YSoHt6fGecNk0oUP2n7vjFUTNf+qy/WAF2bW2qzePDNFKuw1SNlfwOpJrBF4YT8xNkAePVvCu74InuOgL9kxn8de9B0j43VrOdw+7Zwbv4HOFPUZtvXQvhjzyoSQTdktSja/4oMF43NdvfTpH73pa+rg98F7QIfi/XgOqc/LpmxlngHdvD8du8ccw/+5LzxtUvTfVPhp1gdjC/J4IC/kgO13yJSdz5xNeYpkO1VW6BWWMTy3TLjx1BzU6MsO6ieDZfQi5LbflIvXaXC9zsvO0La71Fv3RHkwpzyTzl0s7ZPjlZLrDq4X+7kDtivP7yCTKb1r1/7K4OmMVB70wYfMOb7WhpoHqXmMV3aMDXiG1kEn9ZdS4cCBtbXK5PXy2zmtiByteul62LeoDw4/3a9paswEY03K8oD+iXkEr4sAyLYtB/d/jHk9mqbWsJvoW+OofVa3Evba61MWz54r0jm434CIfL5N4/FeehT2KK/9/VJTjB9YW03N+7DutI6OoYxYW0qtq3lAfrQeu3RNtiGEvcehzjGvnxUBnebpcbs2lbJJmp13l6Fo/OLvU7ZM6P/cJzGPwTvCxuKx1Ju3iNTrEIwJaPteOocyoj1Qd6yT7BwN7+HZCRZnrWyq1s9yzHV4zRp90PbXqZQH8od7Y775EuWxY3YzbduONa4LRaRTZKrK7XLUM75NcN2h3w8656zOwfVsQ1u7Ce2VskXQP7w1SJuX67VoTsvH0ZdRZtj9vOYFO6NfU24fjC3HaIq1WccWz+bLY01ekbwP6/Mrqi8b1hQZ1EtqrIKscL1A95b5/p0C4w7uw98hICdDGfNEGufEnn2LYygHdFBKR9t2F8nfB7qM68XapXgGr+XYuWKZ7wazpfa96R1tGItvE5EdpPX2tKA+oEOduTDmtVvr/7N5Jreh6pVu/e+aBfoHy6F+x8naDHrBs8mhb/vzU9P1G8IS29/GOn/b+WoZUvNDLc9E+s67SsuR/W7DW0e2tjRkxn7P8+D1GruG6IF+insf4uTBuYTNma154H3KfJtIrPdn35v52iJ7KfXdwOsnKdu5aO5I9VpRfVLF3BP9n5/FZWznGte2Tg70e7T3BDqHsa3MfBfrId5aCJ6B9WfnN1/TtM2WpcZu7xsCaGbuaec2bJfi/e8y5fL6obUDPRvQ9juvv5VYF3TtDIxNGIcx7vD7gB5TDmsvc9lgLy9z8qCfYH2B5mXdo2ppJsepOUrRfUVyWfDKCHsf7YQ2ZN01XVO1t47QNryV2xB2Duxqr33tNyc8m216zGNgE91i8orU3mNochwEw81DDz0kU3p65CMismuL91gsIv8pIo+9+KKMGjWqfYXbzAgP4kEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQbFKO6emR10vrPw4XqW3N2EpEjn3Na9pTqM2ULciD+Hyp3ylsdyRi1xF7BvW89orUexLE9dh5gx3LKY8G2GnF3oiKdhgeTX8bryNTzshPrSi4vmUvKrrraLLuqKvzSGZ32aV2a+vuq6N0F+yNfB+74ww7mrhe7ijIS/dO7uyynhm8neF2h5W3ww/3wU7Yp0z5RIo9XLBnBfSXlCdBew59iXdF2n7Gu0ZxnXromaY7YJaxB4l+TdWb40R95qoyfYQ9e6JMuA474Hgn6S3Svh2kvxCRpbWDXdS315tdu5P0vyv5LkVep9hTtvUA7fUx69U75QULfcnro3gWdA+3D2Sg31zj7Ph1dxpbUh6uW8Hb0W29FPKO8HmaQmegPCwbtv6Qh/Rc5vmszPug7VC/vIO4aKcw9wXoeegKb1cv9BI8XnA7F5WNdTrurV4bTlIvKgub9Y6h8tahO2EH50sx1rt9qv9bLzrtkuO1knuZgc6437ki5XXaktKpdve3B+q1jFdvbkO78xmkPCukQH9FW7BNYnf1e16OrD7yPAggD/TMLylPj7keePdB/4dssDeRPk1RhyW8shyt73O91/+LvCxtCOutBHbGPMrzHfHhukffKdr9XRb0U7RBasd9M/fzIkegzqGT8e7Pi8g5Q/SuZL05WBnj3ee2HB52HOT3aSUChofniVmkXp6vNMdS7WNlbQ6ds9FZ2CsS6gi6F3LDu5Uxp0jVWRHsiQDPtXqR5yiQDdQHZNbr/6CMPPLYgjHXeoz0sB5+uV5t26F9yGP9Ydp3brd6JOWBP4Xp24XegEXyduNnwbss7IOU3eLZk54nxHaNxddIHkGFn4s24CgvRd4JvTmOknmF57Ljb7SB5xkR74z2TY3vFvbkYfpS19lOeZrxLOWNuXbO6LWXvb4J7+AMPOk2eKTiNijynOZ4P4Tn8Qe/Tedgd6EPQ7Yul0bQhqmIGpaUx6NUpJCiaGwijR59oHdZDrX/Zt4P+X3K6AO0K8pYxqMh5LmHjnEdtUuO/11Ebi/OiOh4K3gcgh2nHmg6tC8N8roG7HJrC59Kf2MujD4IOfY8xJXxHueBvtujab/5v0i59sBYi3eHhzbSPZP0ng2R0IhMryGP6oDuE/M8a36qf1j7n+cGKIfq4C6yRawX1wbZZ8rUq5URx6bPPLvBOxivg9rIUlrWbrI3ntd0wOonXrtAftgHZfqC5ym+mT4EfcDjU5GnPNaTO2kKXY62szZpuzwPXyMi/9fJofZOl66HrEff4giFdhzD+3neolqlyGMkY/tZmfk3IM/sE7UeV2F+hvfh8QMe/xB9rUdTbme7fsy2L7C6I+XR0MsD3VfGU53VQdQPC2U8YWMly4aye2t2VjY9HZLyNliwBj+R7ONVKT1ggV6ALmY5wjHb3zxPmMiDfs91hz5Q5CF6OLwd4lksn9Y2RBl5/alo/Suln1LfnlK2FbzoYa7ijaWwpdBPnLnxUfquN95TnCebz6E+mlnn2xD6joep59SGOSCDNV7UOY/TRZ4eWffA63uZiCuYV5WZv6TwPCu2otOt90GRxoi7np6x51CeeZSnyIMmj0OQrUfMOZ5v4j6pcQPtgfdoZ5Q8yLC1eyDPXD/NeM5PyaFd+/D0Pt4Z0VVOzrOUiohj8XShsZcmqn5wvxF6ut2sY2RzLs8jbspzcZlxA0CHYY7D7YPxcKpJveg3KdA+Vu/SuVnz9PEL9DjLp9rMFR3rsvUj1ts2Ui90EK9Toqx4V7w7R4G2drL2pQp9S65iXLVrOzyu9phz/M54LuaJXlS5Im+3nt5C354gIs+IyOFtGIs1EkCG9axOeio5x7JgHMN6HvclvCPmg81GXwNanmz5q1n5Rt3jNwupsaLMbypsW/LvYaB7y3gTtvDvCtD/cb3nWRnjM/pFai5YZm7sfYdEBFhb56lIlLhPmXkA2RJTdR63HHOdVua4Ivn8CWMmR3nBe3CbiZSLVpQi9RuIKSLynIh8rA1y/BNxv6U2jC1elDD7vYLnbljfhB7w7A3UaypCT5l5bmpt2AKh5+85sDPQhkXRbEUa5x38TMgb+hf6r2eTtCnywkwtz6Kr6aCJ4tbwfiLSoePVIMY2lJm/C+Hd7FjZT3maibJUpp1sRD6mie/Vk7ReVnI9Qwfa/uqtRUDGUVaeo/RoijnOOzXl8R1yw2OkSONvQ54XkXPDg3gwIrn77rvlkIMOkr8RkR2HeK/7RORfRWTVFtzXw4N4EARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEASbhGq1Ku876CA5RIb+43ARkX1EZGcRec+YMW242+ZJ/EA8CIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIJNwk033SSPichb23S/iogcKSK/F5GHH354A7kb+e1vfytHH3207LrrrlKpVOQXv/jFBq+57bbb5KCDDpJtt91W9txzT7nsslaih7ePSrVarW7SEgwz9aHC3kJnikIdfZLyfMfkQSjPPudJNuyJF2oeeOF3bDgLhIig8KGTNHXD3iI/QpsgvAaHPEqFqAAIMTHWpByyBeVGuA6EuOJwFAjhlAodiHqA+34vzA3CGCN8CofOQN0UhbNjUL8oayrMn4Y2mdWTH7oFoahtCEsO1QNh5jB6In4dIA/CuHF4GBuyD+1NYTvFlofDhSA0ZCrEiQ0lgmfuTceuN3m9OivqUzbET7vCdn5L8vrkEEEIS4g2QF8cpDyQScgjQrpxOCD0W9S19pdOCsM4gLB1qPNEv8vCUM+ngyiTDdXLIFSRDdHF4SURVhD9H+GdvPDtOIa676M8KAd0GOqFw+0h3A1C2UCOSO916rsOXKoHPD2DdjlHU0+X2fDEHHrMDpi2Tb1nDZr/i4icrSlkA21IYcY7tIzJUHPjzf+9d9Y8UzU09HIOAYj2sXqWylEYQu1s+ntBwfO9MIEoM+7H7TzW5EH7ou6eF5GvtTn8bircoA3rxXoL+ghlHaWpp+8w1vC7Qo+kQkgVhVqdRn+jrfbXNDUOpULdYUzAuIaQUF69NBOym/VMkV7hMQv1ojbE1AOlgeWQf9Q1/u+F6EyFUwV2nPdC+KGfoI+zPANTdhHJx37Up+rJCo2n1WbCNqKsaBfuG1Z3pcbgohDGCcZRmVcjZCXqhe+DYxgXrfy0Hiosk+HZa0VGjRa53tYdnsGhiyGjGKNeS+cwtvBYbfmSprB7ytiwCHvIfb1EiOwyIW2zsQ7v7oUfLCOjdozywszupmkqrDyej2tS4S1hc7LMo3+ifVIhI0EJu7ByRn4okzGM52Umv14dQpejf33duc7KnSeHOIb2dtoJ8rYaZffsjTJhWdHfejT9mZOnzPwM89PnpKbrXt+GsXi+iLxEZ9AvUC/Nhi+HjrpWU9Qr2yuwgaCb+5z7lJlDFulX1i+pPgDKhKC1dgrbIqgr2OTQzcdRnqJwu7xWgD5ky8Fzv6vr8zboIpHiscUb55UOekaDzZuy0VJ6wHuu82wXbx4DUvoJOhR1yXbC3iZvSqem3tnirRvZ8twmPu2aG39BRN5FZ+zz0Cd66RhCjf9UU/QXbq8yegBjiuq1LGTqHZQHdW3DevOYV1RHTJlQvylZLwoLyzYjyob3whyB1uPcsLIivu2KeTPq4wOUxxsLLLB/kDc11gC229GGqf5eoAOnkV5YhoVy9BuM4Tx+4Bz098HmuEhrIa29sNEWry/ZMZv1itVZmEN6c8IN2YXtlGOdG0+iul9pwyvbconkdWTXqlNyheu5/19pjnlzWtOnu6msaxboHztpatfbRRr1SZl5IuB11x5N8cx5mnKoeLQ915WI35apNaV2YcfnlJ1QxjZJYdeInfWeiWq3rNJxn+fGb9B02fn114hI3geurz83ncbDJdCTVpfy+6A+oLNSdV+mDS1ev0M7Qyf2aPqciLxv6HK8w1qRZ/CO0DOsw6DLta6zqQ6/T9EY4+k5u4biYcZpEcnrBs/F2MnyifKjnTCu8niIe6bGOugwyDjam2UV56xd+SXK8x2Tl+1j9FPoCIwVj1MeHDN9qYv67XprA2/IjhNJzgWhH9d4a02Qf9izeOdZlAf1mlqrsjqU68zOk5vRtwm9nX3j4DEitaZq75myK1HnVo487Pu0Ph7nY/FVIrKd5GvwdxRflPVBtA/bGVjfSdWLJ5uWIhsk9b1Z6SIZaejbdn4mUtwvTqW/ra7xbDTUA2TdW/exNsiddM7OYa1+Ecn10omaoi8m6jvrt5484T1gs6ba3SM1Py2xvtgAdBnbzSgj6hX35frFdSi/tsks6gu34P2tTcI6FWOkVw9l9GIrecdKTd4/3wab+jYR2UGkonVVtbZMqi2sveHlh/yMSuRJrROW6W9ajk4do+rWe6DnoeNZRqE77fqmJ6u2jJ5dWvRNjGlmjbdVbF9KfU/x5jGqlypqw1Rhg7D+LGNrQsauT+Qxz3RteTt+eJTJY5hCcrzCXmd/d9QsGMPtnF+kvp+3aW689VqRl1k2bD06Ns1kff8H8e0IZV2e58nWppv5DlgG2NK8PmLX9731Iou3XqQy3qHfh9zfKSTWZidqvWDOl8k1r53bdRrIEded0WdsZwAswa5BP6N+UtHnNnyDLbMGSWvwXdqG6/GuWIP3vgUAzwYtWvPwfntgv0+l1jd4Pa5I3vgZ0Cut6FCeH9o+4NmiKbua79P6d+MgGC5efvll2bWjQ6aLyMw23/saqamvJU3+VPrGG2+UO+64Qw488EA54YQT5LrrrpNjjz22MP+DDz4ob3jDG+SjH/2ofPzjH5c77rhDPvGJT8jChQvlhBNOGNI7tIr3C5sgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIJh5fiODnlJRN40DPd+h4j8o4jcc889sv/++28oe8ZRRx0lRx111IYzKpdddpnsvvvucskll4iIyNSpU2Xx4sXyzW9+c5P9QHwL8iB+vojwq2JXzaHmCt4VWbS7jnckYQcRdjEebP7P2N3w7LHFelbALqxvUx577iI6hx1wKCt2gvLuI+wSst6jefcQyojrsVuPd7bZXVN6vynkIa5hpyJgb8DYVWd3oXuew3Rn1rh5+anMq1+RRygGdbZAU97dVbTLjnewYbcUdobDMw63QZFHBm93f5lduGVIecqy7cS7yno0xQ5B1M/llAfvmvJIYvuiekHsmpdnWX++tM+70h0i8t96lHf3YkdiwsN15nkMHvg8T41oK/Q7b7e33XXu7Yofb/IMOufgXbNP037Kg53oqKvDnTzY0Z3ylA1665/VdU5+aj10Dzxyet697DOgu3jHsNn1XuftFrKK++B69uinfQjei7IdpdZLt0jWdpmHz0sbzzW0C/cXPN++K48H8GKBesH1XjvjXMobMHYKc5/q0RReqFG/XFbrCdF6jOC/oU9QB56XAOtpaDbl6dfUeg5HudokxzuuFfkLdA30Jet9vE+Ppmin1E7XlLdZyArrdMgfxg3IPus7q9M9mwC6HHXleQ0p8g7LYzGehT6oZT6O5Og6bd9s1zU8+nkRKKBDePe59byEZ7Ic4j3uMnkOoTxlxq0ijxns/a0JT4JTtR6WwzOtF9UEeB6lAPo76yu7Qx3Xl/CKVOeJ/B5THozPHBEAukdtAXhudT0AIC/6D7ez9Zjh7VBHHcF7FtrwWRF51xC9K90lIjtIOQ+YKW/aOi5XtBxVtMs9eZYpKquFdiWT8sRkI8lYPSPS6L0F8sD11GPyoH15PLSeRA6WRuDN4nonD3RDmUgHZUh4L2kYcz3KzIfwzl4bWE+GKc/qZbzEWjiqA941ZbuClOfuojpjG+tAkwf6m/UT9Jzn5aaM9yA7RzlaRJ4RkcPb5EGco2vZuaunS1tpHwbjMvqS55Vb33WmPn8Rns31ir8x5pbxZu1h29nz6mL7P9ultu+k5mWoT+g3XnRaoCnkCLYne9+13o0hY56tZyPT8BgxyuTxZD/l5c/aRqh71mHoS2W8Bdo8Q+131pM4c7BzzuojrFWw50nUFfRKyiMa2gfzqyL7qV1z43ukbszM3s3WmReFrd2ek8qgdflh8tp5Raoctq699RbIHfQz5Ig9vNuoTdAVLKtlxlqUp0fTMrbsrMS5lE2Nstr1Rsba26wPtA9POquWulEIAfoH+r0ns6pHutU+db2iQn5T3gdLkHmj956RWvvDGIPy92vqRcxCXsg1e4JSGZmoOngV3ucpynOvtNeDONw2pzzF27VrkVwm7Bw0ETkixWFa97c7Uc+yyBV9etyLxKdk3nP76GC/pmgf6Fse69DmVvYdT11ZedDPhrq26q1D2/7G8gx7oBnP4463teydbd/kesG7Qd95651Yz0BbeBHjQBnv046sIbrAspQ+seN6ymsn6tzxcpbpAfRFb05Z5GXdW/szXlUzhiESQFN43gJTHmmbiSYHPXAWHRuKN+ESnotLwe+M55eYu83QPrGY7R5PFkTqZbVIN7DHVNQn+kcZD8/2O5NIYyRY3Kef8tixdpqTJ7UGCdmEDW6jy/G9jd3USTpoAOWGbPYkysHfk0TqbRI7D/PsfxupAe/MeqHI4yPfq+i7Wzs8iEOGoTPwPo4nzAbY/sLzU3Yl2gH61UYr5jz4NgH9z7ICXY75XRkPlKjX3egY9COeAXuDy1PGTsZ34Yucc0VrxGW8qjIYe+1aTDNeukXysv4y8eyU11zMO3Bdyms02hf1ynoX6/EmWlgddhzD2MlerLFWAN2HsvJamZ23ON6fMz3rrcHgPeyY7UW5sGzoW0C7xuK7pbZWXTRGedGjUjTjeRy6uSgCkEheV72a8nwGz4AN4HnTtXMr/p0F+tBRJi+vYRaty3jf2EGZ3zCUiYqIcYDK0KH3zj6be9+C7T0hu2wLYEzwItxaT8GpNrU6zKuXVGS0Hk1TawR4Br6LNqu7ygAd0asp5rCerWVtTk+e7fpikf3dLjn+idTrN2vzetGf7DfglL0MWYVseOuMKS/u0GewW+CVfifKgzaALeH1CeN5fCZFYl2E3zqkIvtBNtEXYY95UevxO6wy4yz6BHsQt8/HOMbfhaB7UA62SexvdyC/bM9ZGw/vx1GKUSbYRoNOHjzDrhd5XsZb+ZbAcwwtT+W0Wup+W0N/XWbSFPyNxK5je98brEzAtuJv/uhLti/y+sTlUquLT4UH8WDE8Oyzz8ouO+wgsyVfNW03v5aatfE/zz8vL7zwQt25bbbZRrbZZpvk9ZVKZYMexN/2trfJ9OnT5f/7//6/7Nh1110nH/jAB+S5556TUaNGFV47XGy10Z8YBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBMEWzQ033CDbiMh+w/iMw0TkARH5whe+IGPGjKn7d8EFF7TlGY899phMmDCh7tiECRNkcHBQVq9e3ZZnNIvnajYIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgmDYGBwclO1EpDKMz9hOat60P/axj8n559dHAtiQ9/BmqFTq36JarbrHNxZb0A/EByQd7s8Lf4pQSTZc9MmUByFEEIYC4TJOpTwI32LDLHGoOoStsmHS+P8IFYyQPmfTuWs1TYWoQGgKhNlAWIk+ynObSb0wpvYZ+u4rODQTQlMsNynvkEAoEIQPQRgVDkWGkC0a+mK1F+4D4cC8kEcox+VSTFEIEa57hCtZoin6hheayoYr98JalQl/inA3v6klXSdS0aCkvJAiwIYlu63gb5G8zjlkJPqtlmOa9pdlfZQHf5twN+tT9T0Urpdcjr2wVTakGofNQYgv9DMv5AvkF6F4bBg3kcYwSqhLDn/Vq2mf8wzUFULpQCa8MGxQ0ehvHBrOhg6HDuFwRriuX1OVpzo1g3dGeBkvLNg5mv5U0+tNXkaPrb6WjiGsZp/UF4DkoEtlNevb2oYTSQc9qemg5lmN64/K82TvYeuTQ3YhrJKVVW7nQ51jllToNAv6ohe62OKFwdY+WdF3rV5KeWw5EEZoUBqYiTCSWt+LPDlAiDq0IeTpGRH5RkGZm+AvF4jM0J13WdhCrgv0c+g3T0cjD8ZnL/zudeb/3PFtGFbodg6rBBlFObz2KtLlXtgqYMM/i+SyivfQNryO5Uh1enWd/h99ifUC9AnysJ2hoYWzyJff1j84XLoNGebI6jito9VoOxvGjcqanUNIKx7fv6Tp1zX1QtFq31uOZ8FeYDsEY+UCTR+WYlC/HCYQz0MINTyL2xCYcKxVHutsO0N/c7+DPaDvMejJH4Ce9cI+oz7vTeRBG6DMaMPnE88sy7VSPoT24+b/PPVQGahifHb05AorY16YP4wxy6UYyJgN08x1Z8c/6FCWVfxtQ7xxn7L3W0fH9J4TVZevwjyCQwAOJWQ3AxsaZUNb9OZZ3PB3lnsKjnOfR7uivVhvP23SFLBpEmH+OrQPZPLDIbiKwpNzv0O7Hq8p+kLRmCzi9zsbZhl2A+s59IF3asp26QqTYmzgd4ZeRfmvl/bIsEhNN/XS//s1hU5cQOcwzqB9rP5mbMhVxo7LaGcex7QdFtm253mN1SvI683LMEYgvCSP8+iTGFOOp3N4NzwLYwLrDAoBKiK5rHCfRNtZWbN1weBdOUzmFOeYSL3ugS7E2I8+zeEpbVjKL9E5yG9KFopC3vc7eYtCGIs0hrJVPFFtmMdzf0E5UHbY/8dRnh5NvdCxqBusq8A24rEb9Ypwu96cDf0C/QXtwuNSK+FLN8SPxR+PbRve5fyNMqI+U++F+kjNY3A/DiHeryn6u8rcFRzuNRWSvVdT9DO7VsbX2/KzfkLb4X0gI6wPWH+I+GsFeEZqDcZSZt2HQznjHWG/Xefk6dfU2iCsD/TcyjLjfErmgQrnGm2706juLscagX0W9xeEp0V98HrpQ/XnVn5biknNzSFjdnz2sPYC6ysNh7wK5cdc2Bvz2kG3+P3fknp3AHl4iY7BPvHmy4bbvf6i48SAPcf9zejHNd48xo4Jl0kxneb/fK0+dwD69s764yKS9z2M85gje7YJYDlA/9T+/mHt71dwHbCuE8nHNdbxKCPsvwWa8vtYG9OzZfE+mKN44cFxT/QTu9bF4Bne2h9w7P9lKGNKb8/TtF9TL6Q6wH2cuc9K7cNH65zpejyb2/mT9ce69b9ruJ3wfMhxGVlrFdjyaB9eT0Dfw1ob+j+v1wArq3wf+z3mQPq7SPelxgHIBn/7sW0GeaR26tZ+u8baaDzfgyxY+4dtWVxv7Q2HxWXGM7VpptL7LC8ah+l4t66VrYH8OO2Cce9yrNHh+nmUCeOXtTcY7Yvdet0aXQvpPCvPkulbr02/4xwT8e1uU58Dng5De6e+J1obi3U7vpFinL+oMU+3rl+twQHIMT8T3zjQJ/h9cC+s/d/p5GkXsN0xKSmzhsFg7Qf2tVevti9763nazl2q59Z7/Ri63FuLstj1Vq47O6/z+u25Jo83nqLtvTGiaNzoob8ht+hvnr7GeIWxTdunQnZptsaVaIMu1Uvr7XjKtiv0I+qXdSPm0JAxTy5xHeaSkBHWm6jP1Nhkf3OQsufQl9BfeHKNOsL6K8Yh6j+ZnsVY1U/Xo59Ye5jXMvfX1NYH2bBHazmuh6zdLSLPSXv4mdTmxngnrbPsO8aNzjXeWh9AnZv7ZW2KZ4rkdlOqLdG30Sc9/YL2hU2xzskD2JZGGVHXuK6X8hTpzJSes2tvHqnvoxhrcB/qC4Ped5cN3Q99usS8RkRyXZVapwTok5jXcPlgA/EcS8T/vQWuhw5hncrrxSKN3/dFGr+zQa5Pozze2haAfkRfhA3Mv/vA+1i7y1sTQv/Afb3+3052EJHFifMoO7ePlbuUTQMdDH1/Jp27WtN+TVFnPFdBP8G6L+TK+84LuKxoT1ynOn4RyzpkAPfE4iivodh3xHuwjrY2uPcN1zD5kFr6oFOHU1RfroC+5DEUz0B/Y9sGMoHvmfh2S7Zvw+/bYLcU2b0M1/fBBXm8NTyU2bsGdW6/J7I9pnZG9n2Y51PQybiP1yftdwadI03aP8+SrefZ9RFPPwH0Lfo9mRTdh3lE2vfNKQjaR0WG/8fMFan9GHz06NEbzNsKu+yyizz22GN1x5544gnp6OiQnXbaqeCq4WWrTfLUIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCzZyZM2fKb37zm7pjN998s8yYMUNGjRpVcNXwsgV5EBep31UDD2FldiDZ3UXsnRK7reCxdZlJRfIdy2hkeAvcm/LYXWX9mu5Bx6xXvX3pHHbRYxcjnsW757AjCjs1UR+8K9N4S58K7539lAf1gR1nutNwGu2QWragln52Xi39JnaJshct/I2dirpLrIN2fTd412SvudbLE3aA0i6oiZquwi417MTgdi/y5uV5gEV74H28XafWQ0vK05bdpc+YHbrrvZ3MgHd+2Z1v2PmZ8iyi5ybtlh9aiffX3dXLvB3Q1jMPaMarVquwxy+7uxO7iFnFYUfjnVJMj6bYgY37cBtiZzy8ZGCHOHtrtjugPY/Q2Ak4X1Puz3eaPI5Hzg7dyTRoPNrW9QXbv7CDk3fMQzZQV2hn1i94vvVa6+3oxu7olCdXx4tp1r9R1/rMVbwr03jFOE7f57pLpZHUjli7q9LzFo6/US9oX/aajj6QGkewexd1nvLQ5nl/A9qGVVzPO1JtO2ynKe881vdYNF82DOoc90V9tWsH6RGN3n9mkDzjXOYlFuPpLLoAZUQ9YJzlHX79mqb0kfWe4nl5Arqbdybtbm7wwA554jY0nk2y+uQd9xgH4Xks5VnU2hlcZnhj0voZR/UKj98Q8ax+2UtfkdyQR5DV9p1Tnh3sfWbT39jRfq7Jw2MfdLv1VsteDyB/0IXsdQ0eQaEjoMO8Mdd6n2AvKGg79EG0V8qTn+eZw3p3tRFqRPJd472aenaG9R7EY4zVZw+Z488692uWXaU21uC5KU8EkAXrlZvBmAL9mtKT8CjAurgZjxVoe4yV7O1A66hbvQKv8ewu9FdrS3Ab2KhA/Az1nrLK3pvnBBh3YMvDOx7LKo6hPjG34H6MMvVoqn2hoyfPMmi9leD/PH5Apqz33E9SHsgh7A7q01NVDpfbd2Y7w0ZTsR7n6Nig9VSXsjdQZu5TqDPYep908uBv2GZeX7B9GZ5guG/CW4NnJyBfj6ZQzp73HjzrYGmfd6VOkUn035Xzamlm9nA9W08XjjfIhkgwaDseD9GvIBtoH9alGM+t58rT6W/oQIx56HeeN1LM23Ff1p+QVTtHFsnHjwWaQodxv8e7oi9DZlPeaoBn0wD0AY4igjqzfZH7rfXu9Fonj53vsncZ5Ed9Qq+wV6Euc87zzIaxrl9TyChH/LFjm9r/O9Khp7RPVbG+gbLys4o85tGcNhsjvDEKfSgVFQXlT3kDQ3um7De23dsxFouIHCEii+j/1nMYYJumIMrY0WSPXb9A/9C1k4rqwmTUCTzb82ZlvdSSnpuuMrXEufcMTRerF6Os37GN5Xm5Eqm3j28zKfDeZ5b5P3ujR/s244HWibg1Re2MFRgbuFwYd9DvDnTyWFCf7F1fy9ip9Zt5DWW7W48dpcdutLLGmDHqcq/ujA06lWS+wQZgex1lSnlbR/9CfXrrUJhjpbwbF3nIYw/teA/UQxkP60OhW/zIApg3oczWC5xIow2Mfs/9xc5JvMiLAGMfe7cr+ljBdanjz8xUlLIC3PXfhBfhrJ+nPJDbeR3GaW5nux7O9WG8eGeew3kOqrZQ5kkZx/nd7RjlzA9hi63EAa//emtAnFekUe97/Rb1YNfz2Bs6bDz0Ifaqh2eU8XSa8hyOvp2KmqTyd7316Mb9DjpU63kN9Ce3M96jTDSHodAljfPv++l8ykMpgPxhnok25LUCjAnoW6n3ghxx+8JWhIygT6XmU2hTijqTzZNhF2LtOuWdD3MDLjO8YabqxXjVqyur1RXaX5Zz3RdFh6Rr12DdCfWDa2i+ejnm4j2aYl6TiLyQ1TOvP6nuWWOi1gz0SCPQdzxG6Fg9cV4tXQWbOhU9A7qL7W/IaMp7e8H3sm5aE11T9Hz6BtWwruKtCd1oznl6Cc9i3ddubPQz6zlYHA+aKZ0IO5K8QWKdc6Z+U1gEXUZrxOO0v69G3+SIzMCuLwIaezrUDkxGL4TunG7ux33ifJOXv1dD58G+gD3J6/PW/kp9s0Hb4xq2pTF+mZ80uHMUyDHmjtRvsGYBz+NVnPDugzGLx/QyUWWs/Qbdx+tgeB+nn2XgOtRLaixGfXp9w9oFGJd4rQrlgI3FsgZ9pm1X0T5dvdPJA1AOWte73tbxHKlFrG0H7xSR7UVm6twR9mjDdwzmfvN/z4aw7TLW+XtUQV4mZQtYG61MZEmWw2M0RXti/PC+Kdgoe/ytBmMs5Bryw3PIu01e1AH3MfQd6G/u90qH6rlMP+l9KrTmVrXfc6AT+d17zbPK4MyJs7mBV2eoo55aktn/TltWtDzVnzaeQ710qP4f9MZuoxcrOuYm12K8aIoAuqLfuQ76BPU5j86db86hT7D+TemuFnntYSKPpDyIg0ecvyG/6JveN0sblYHXvq0tBDn0ornZeV3qt16pb9MY47xvW9ZeYr1g1w+wDpeKag1b2ht7VU8/iHbn3xLp+6+ArebNV1Efu5n/07FxOm6sRrvwmrddW4Y+8WQ1tZ5h1wi8NWuri3E/lh3kh9d2rA+cTXnwfNQz11kqWgHAdRgj1dariwJY9Ns1r0/ZddfzE+e8edknpTa/aUME+SBoI1tJ8arkpuKZZ56RFStyHfjggw/K0qVLZezYsbL77rvLF7/4RXnkkUfk//yf/yMiIqeffrp897vflbPOOks++tGPyqJFi+SHP/yhLFy4cFO9wpb2A/EgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCAKfxYsXyxFHHJH9/6yzapu5TjnlFFmwYIGsWrVK/vznP2fnJ0+eLDfccIOceeaZ8o//+I+y6667yj/8wz/ICSecsNHLDirVarW64WybL+vWrZMxY8aIyD+Iv5MNO+Xh3YZ33ugOulJeULAbv8zuTuB5fbbeF6z3NJF8Nxp7TcD1drcf78LCrifs0sauXs9bDfA8LWDHJK7HLizeqYid1NhRBS8ML1Ee1JXer1t3967hXUt2tymD3aQLNMWOutT7FO24Esl312FXfsr7Au5Deyym6m7OzFNFmb5g61Ikr0fdZZbtZmfP9cajTR3YAYfyoz55P0iRRx72iIOdhAOmHCwHqDP0W+xytl7TnxeRb8jatWtl9Gj2IFCOXI4fk/x9PA+9Fn5n64Ui1adSHqH1nkecU0tvhUdm8qCReVyy3qf5mN1p6XnQAMjLOsx6+eCdrKDIC/AK55jK+pQezcLtDJ2heqBDvZ4N8k5oyA3uzfpAd27+nfahr0JGeOcm/j69/hrP490kvc9KtBPXCzwcaT/5sEaLuIL1CvQZ5A/y/ISTJ+VBHH2QvcOKyddbX546r6ypNgforz3meGo88vq49QzkeaKBHOF67MrHePSciHywDXK8VvLd2bgPj71FXlDYeyj6B3QQ+gl7S7P6/lQ690NzDLub2UMv6sx6kCnjNdAb3y1eeXAddhxzfwEqK/AOnvSE0Swp70FFQN9zf8b4U+Z+ZbxpoT6e0vR4Omc9VfL4YyOVtPJ+jPWg7GH7HXtzLPIqW6a/lMV6HbG0Ph7nMvwtqS+z9cjAu+kXaAr5OVkaUV2VebXnqBC4N+4JGeWxAXax3Z2figTjRQ1A/7DerFPeF4AXpcXuzhfJ7IwOHT9cT07GDkx5JsnwvNE3Q2oegz5l7RXP81GrmHfOKFP3ZP9M6q2lK6E7oR+4feCBG2V2ZCbzpmqjvKS8A3vguY4n8qy/4xj6C9s0amtmXrAfkprn4Xe1YSy+Q0R+T2egF1N9SeWnc14tHfAir0DGdjLHU3hemlLgGZi/o72d/ttQzx7QZ6yvYRNZL/uM52nVgjEJ45HOF7opyxrMk42nk07ylDKA66FfPFsE/Q36EXZUqn5Zl1u7B89kb7Uqo9O1bJ7X50yXAm/MRRviWb2a9m3gOpE6D5YN3ttS3uhASq+g7KMb86A9Mk/MXC/o57Ch0U5Fc9Q2zY23Xivystc3U56cUt6Vlan6rsuNd8tSpKKnlcHzdm7nhx4Yxxydk3nZtB5PyVMjIqll3nrwHol3aIicIFJY94eRPN9uPdbzup4ZTzN7n+co1mMS2ofHun5NUZ/o9ywb6K/QoUVe8hhrR4nkdY9jWPPz6s7rf6bOjtB3vpXrFe+MuTnWz1Le8QHbpSl9DcroEZH2rXF9QUTeokd5DdL2e69voZ+mopCAMmvWXr8vkgX2ro++M838P/UMlNlG3xPJ+yTqlcdnyDgiC6DOeK0Z9oFdO2S9jfHD8fLfpetdDVEceQ1S6zqTUTyf1+BBGTsZfRljtrfmW+QJWaQxeiDsW56HJDziZuAc1kZT9lNqPLH9xos8ZK6fQnoyuyWej3rpp/v0aGr7G+mFTp17Dlj9D73ZTjneVo9inZF1u+M9voFpJoWssqxZve+BukJfaHbtA33gpUSeontylDzM67C+AVlnOYKsltHNKUzkuAqtz1exrolO5a2XFuk58qA/XfvHEnyn88YIzPkgj83YUWXXhNCH8Yx+J4/tb946mDeebwjtWx29+aFB6CN4Efbe1Ub1Sr0fdBd73IYsYT3Nrrm1Y42LZVgkH4M9m75ozZqxcsiU6Q/alzq0nTMvs2zrWf3srQWWWW+13ya9/mI9cHoexEFi3bTBdubvkKrzGr4/ptadhuq9NvWN0OoFz4uphXRgRT21Zu+RKmuJeUcS24be+Gy9oKbGcGsLiORru7rO06F9dNDzIF60vsfg3n1SW6Ob2+axWKScnisjzylQj5BNjNMpGwvnuG/Dxkt980/1oTKyXoQ3h4QNYG1qfj7kF32I+6/VRykbNkXRdWxvtNp27aZIppwItd3a/9d4Y4SVmzJrIWXKwbRiA2xI3w6HTe1hbQqRvC9CfjwP00Xfy7yIJRa2xYvWCHgdFPNU6MceOlci4uRklecH8U0CvnPZfip6H/5Nho1AgT7kfWPXdzxf7a+llOW6gjXrOlsAegTf6ProHPTIUL9h2+8VqHMeq+wacULHwyZBEIu63z1ZWxPP4oheNmpGCuho9lhfFBFzKv2Ncls7zJs32N+6cF/DOpr9VmPX14cmx0HQbhYuXChfmjOnTsqHg7NF5I8PPCB77rnnMD9p5LDVpi5AEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARB0B46NpwlCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIKgvWwleRyFoH3ED8Sz8B4IV+aETViEEA0IxbQdnURoRBum0wt/ZUNgcHgZhHtA+C4bpltERMPeZiFSHqdzuCfCwtjwawzOeSHd8I4aoqWiz6ry+6AcCBsC0eQQHBrqpVvDWaxBV+OwLgh1oeVZM0H/zyGDUEcIBXIjnfuObBiE/OjXFPXU2ZhVTtMUoQ05LIy+K8LoDSJsKNXvcoT/4boSkW4KQbYG90aYQlzjhO4G1T79o0zIdZG8/KmQfUX00N94f71PFe0yO88yTcPlLEPbo15bDYm2IX4pIo/q3xyCpShc7qBzD4QKQl9fQudsn/JCvPXUklsRphLP8EJi6rnjqA9ch7pCOBcv3KwNcYeQUFT3WTinebWkov+tC4UD+UFYGg5xCiCbV9Y/qi7ULkInaT8dhBwfRXkQ3hzBPn7a+KivzjcHuA0R/qhfU9Q9h63S91+ZCteGdtFwRld4oYvQ9pAR6DAvRBTat8xwyXU2T9NvmzzcJ6eYc17oL8hdUYgrBjoZefn+uA/eo0dTb4ywfRvhzp4vUYYyXCB5qDCMeRyqqyiUrRdKzYZX4vDT9t28MH0IBYX+xiE00S9U/qepHC+7h/JgTMF4jDGYw2RizERfRBm5PDZs1VOasn7gdxOR1X3SCPQ2xhQOdYX+mQofh/eHzkJbcHguG4YO7z6P8txv7ge8kJy2XvopD3SEDbnnhe621/Dzu0weLxxqUVhVvg/GYS8UX1E4x+Ppb9snvfug78AmulgawbO88V77TENYVoSPWy8i33Du2QrQwdAr0Dlsn2KcgF5aR+eMzh309DVsKjwDeollg0OvifhhYotCxz4ijeDeqRCdVn8/7ORBWD0O7a52xii9d6cNsSvSYAeuuVw2jGffGjtwhj5rMT8LoeTsGMEhCdFOPMaJ1LUBbF2Ex+ygEKWDRXYp2zSPi4/XPhayBVba8IuAdQh0DfoWytqbZ7kR+dHfUAdsC3g2pkh9PWHu5/Shhv4Ovc1hD22ec6VehoZCl9TraPQF6HvqSxUN2w59MuCFS0e9Yi7dTOjYXvobNrfW9Yc1RHydPQedCbsAbXg45dH7NNSzJyPQj1y3RXMZHj+s7e+FrkRoUTvv5TxsM4hk488Alx3PPVlTGzaTsXWfmpexXEIO7VjlhIZeYu1bnv9C72P8wnh6MuWxNt31Jq+ITFW9sty2offukLXrzP9F8jm+De8t0qhj0H8du38A6xDWXmAwxqBeub/huWX0WkleZpuasXMk7reYb0BuoO+p3zTUOSgTfvcQ+rvMmoANVezNhy4ryCuS9xnUK+bY9+dZVpm841Sv7Ey3WY51ALTvaJOK5GtZagOsd+ppss6FHzTnbu9rzOvOPaEP7DhG+rZLw/6ux/VdJhXJxpTpaiMtQXm8+eGK+mvq1uxsnY8yx0Ua12DwDtz+Jqz9DJoTLDZ1datTrxVd18vsWly/IFFW9HteA9HxLHt3b6yC/Wbrg4OaPiW1WMTtsqm98OKoP/RJ1P31Th68O8ZB1oFon0GTl8MjQ/+jL7CsYz4IneGshWY6s8yapdULRWHKGXrWOG371egLaCeaD3TpO65HmdGG/GzIAuyXHnqGph2wb6HTedzXPr1a1706Tqylg8dQHm+NsAg831uzACnbyo5b3noj+jDWGtA3vLDpqN9T6RzKViZ0vW1Xb65k8qxg2dc2xFxpADaa17cB3qMnP5QtYaGfeLLWDt4oeV3DPuCyoi/i+XYdi/9GWaFLd6M89t7e3AQpxg1v7SMFZN6u5Thkc0C0nRO+PQP9ppeOQffY9+Fy2jUTb00Jel7LXC2yY5jT6W/YGVbv0xx1CfQA+j3sfp4/3G2OlahDd00I47nXhlgnKqFvszUh2ESsD1BWMz4zXVirgO7Rehlk2cV6F47ZtTeRXCZTZUYfgKxY+eZ745ll1slbxdqezJ2aeroQYzbsYbyzdx+M2Rjf2f7S+hhE38bYz+MArsczvO9LkAXUa7+m3Ibo29aOYhlBOfDMXjqH/g7dc7U0oveGOvM+TyFP1dqsPLeAjYYyujcy1z9tUpHGtQ+8O9vJOIaxhfVK0foi6cCqXTP05jGgme+oY00qko8N9vsolwEyjr7wlBSDMtI72zXmQegQtiHAPfX/nUR6e6XV20dJ+9a4AOoGthBkzLNbUuOWxVsjXmFS71tyESyzPQV5Dqa/7T35XJlxzwKdyms5WBsw4/pUasNsrcDqaV6Pg17RPjhJx9eVrMOwdoo1c09GimzfHvob9YDrvXWaVmAZg8xjjQvzKC4f+sCZJq/T71Dli3C9J0fA+x6awv6OAPXB79OrKeraWY/LbBA71ngcLe2bG+8nIrvQ/7WOsjkBjnO9WhtGx9CJ1G9Xme9jE9WeWsXzNWufo6FY9lAfA+Yc23zGLnW/v1tIDh/E2iPGVayl8phn9QH6JK8VQJ7Rh/B+ns7VufS5qCde+8D1tk/x9y7MITG+cvnMN+1SfcrLY21MrPXyGrHV09DxLGPa79fje5u3Rov2hX2K8vAaHmQdz+D72G/93rNsX9rf/J/zpOoKfQf2Ur/zrCnmHOBv7J2S/8goCEYOFYkfMw8HW23qAgRBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEATtoVKtVqubuhDDybp162TMmDEi8gUR2d3JgV1O1ru3R2q3jt0R5Hmotp7zzqa/v2PynCqNpDyJWHBv2gGX7bLDriDdcc+bgho88uD/7PkCoK68ekH5nzZ5uX7h4QU7vxwPSpk3ChzgHU26S3Cyvqv10lQHym89iDF2BzV7ObOe07xdf2hzeJzANeRFsSlvJdZjhPcsr7+V8Rxud7Lies+jQUomsPsPO7FRd7x7cKyW6VOydu1aGT3a8dK/AerleFc9yrvg7Y5J7HBkj5RFO8I9jytjzTl+nyJSO7rZO5P1xI4dlx+gPP2amv5SOSf/e1+TFQzwNfASAk9+1mMcA4/f79SUd6SqF4tZKo/wtsYOpa+DdwDIseeNRWnwbMvA2wG8QrDXcbQP6g7txDvW7e5zzxsKroOMJ6IRwMvBSnjAmEAnPS/PSuZpxXor5P5Wpl9ZPM9H1jPWB8z/RXKZQHnQX/sT5bHeUJ4XkW+0QY6vkjwSAGC9ZcdPT6dZD0ytktKzqXNFeGM/+mTKO1qPphhbID8sO9j1bccj3j2NPg0dtIc0Yr0NzqNz0BnQU828O5fDevTxvKugrqAf7zT/F2n08A69xGOV9SR1J53zdEQRKD92W7NOh45AfUDGuL2H4r2I2wlyiH7vRciwNivrdG3DinrHrMIOhM31nIh8sCU5rh+Lt5Vy3uPKgPug7bkuoTO1LSeeUUtXeeOH9TLu2UY4hvpgHeJ5ACm6D8Bg7HlrsuUSyd/Vev5ir9NoT7TvWJNXpDhyCqP9aua8WrqojEcZjDFs9/doivEY/d97NsYaHleNd+ZpOr4v4/Jg3vJLTVP1qWXs0PZyPc+X4RTz/zIy7NiM2fxqfv3xOtBePC4X2QBsP8GDH99zvYjs3yabei/nWbAZud/Dzoet1+/cGbrYjp1eZA/0L4xrHDnkLpPXAzrTeoLiiEyoa+sBhu1tOzfguTl0J/JDL7AdOF3TZuboqB+OfIB3huxjrGPP4kXP4PED4xfeC+Mi9zvoPOg7L2pLGQ+wnrfDDeXdiY5B56FeUXaylaZo/4BH0QavsWUpsp9EGuey1lMvlwl114x3fKKu/O2yqb8gtcg8wHrcg2xwX0L50Xawd1hW0d9QH55diP4KOcCYxR670AdRhy+ZvCL5GOfpYNvPUnbHbPN/zoM6RhvqfafMo+yoO8go+gDbWNBdNnKRJ0eQa3uNSO69SOvZ9cgGUJ6z6Fi/pqgz6D7ymp7VGeoXcsD1XMbDnc0D3cFrBdq+WR+Hp2Bv/p2aD6GMsLVYdxXpHG+tzXqAtR6rGHjPYv3Ur2mqrFOkZlN/rA1yfIfkkQA8PQXwHjw+o12sXcjzGLyHXX9lOw71O0/TlJ715NBG0PAiahTBYzfaHut4eGcal7rU1vQ8+DeUEff2PO9Z76FenencOgvIx33SjgVevUC2YT8tc/IA2CDwLva0cy7lkdy+jyczkDGMwQn7JVsH8+x1tI+nt+36G+qA+zZktYxesLDMQ36tR+d+yuNFbxPJ5wHttKvfr0d7NPXWGSGr6NMszygr6gc2udd/Dzd5RfKxro2RSkQkafNN1vbNvsewdz7kRxkxT2TPsmj7fk3hOY/ly84tPO+W6P/aF2aQnW2jVDTcV/LIIqvte7DM95jrnTk6og7Y+anrwdLyJfobfRo6lO191Jn1Ls62azPrM9YbI9t6+HaEvpX6lma9CXtRUgD6L5fTRkTjdRc7n0OZx1LeT7Rpjauov3vzzFRUoSIbViR/75SHa0uZccAbh4psPZ73attNVBtvFb5/8H28NWpgdDn6u9vXjb0+mbyDN3zXxX153ebi+nOTVK+sLGMTsL3eq6kdx1LfcKkNp6t9sAReXiF/XlRsOw8pA695lxkjoWMw7kBGvLl6qt+h3643eTlfM/rFelG3z8P/2zk3Tslxqn29bwpFnqi99sGxHuf+ts7BafS3jRbgRVPXfpb1e7Yz9N4N45BXVvu7AMZ+U8TYzR6Hoa8xRqXmlDZaGdcBymbs/XE0Zq627+HJgx13+J1txPgUdo3Mex9bDk+3AxtRQiSXUdgpNoqTSOPvcrzv+Fib9sroebqX/Fu1yAbmUdkFyGyOF71zO+W4m85Anq2NWOZ3XFwOyBb6C+R7lpMHeL8Zs2uIKuvJNR3+xlJUbi+ikxdxqAiv3Q81aUoObMR1sm+nqBytwHpT6luUpw+KfstU5ndMHDkIerVPU/RN77udrQ8vjx0rvG8CQNtiJkWKXoTImvhmw17Xcb39rQpHWrBr72hvT8+h36Cf8Dcla4Oj33s2G3Q8ZJd/PzVbanX6+pblOAjazcKFC+XLc+bI54f5OaeLyB8feED23HPPYX7SyCE8iAdBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBELxK6NhwliAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgvZSkfgx83BQqVar1U1diOGkMcQQsGHAvBBoCP2BUDQ/1ZTCtnVrSAncOgufxeEkFmiKkBccLgSkQq8VcSj9jbIiPE0qTAzCa1yrKYeKgJjhHRFOiMJxd+ozBmx9cEgZ1BnCMiH0DL/nbHOMQ3oChCLxQqmhjjXcTZeWoy7qDeoBdYX34/AdNpzePE05TBNCf9h6YRCSpMc8g0PI4B0RnhxhPsqEQSkLwg7hnb2wligT2gVl9ULmIW+Ppl5YbRNGtINCvwy2M4z2hZLXD5e1Dw/TFOGeOAQT3sf0JTdsFUK/9GpaJjQu918bpozLgbZGH0BZvZAvZUIzaqiubn3GGu4v+2p6rykj152GoJ2p9bCoT4+zjNhQOKmwXqjfb+eHKufU0qoNe95P1+Gee2taInx7t5Z5jSMjDSHV2ITQ8mSylQg9P0XvswIh3ZoI3VWH9wy9LosCCZ16L+VBuVVuOlTvDXL4H/SlonCMInlb2ZDbZUAZnheRr7Ux5B/DOtCGTrujMU+n9rMB9DMb7kykIQzYZJL1B9EOVlbPpL8xRqJ+Ee7PexbAWMHyg3CYfZoiJBr3hVRY13ZhQsNVtD6qqX6Lsnvho8uQCotn6z4VnjUho4Uh7/h5T2nqhddUOrWsWZ/am06ibBhPvWd5bb8hvFBxeBb0LWT2asqTCr9rsXXQjvC7fys1GUbYa5QHbbovXcX6rJ1wSDaM/XhuIlx6BmzIS537WLx+i3aB3c22FnSmHWtEMnu6Q6+z4add0M5s9yPkJQYQvDOPdXifc+tPDV5OecqEIMdzoYuzG5W4limyPUWK5edwaQTjH9rFC21oxzqax2Q2nbVtxlMeDtXH8BiBNkc92PuJNNbV6XQOdh9CzUPnOH0i00/ttKkfk3rdntIjNgQn3sMLSdsKHDZ9nqa2Hnic7NUUY4K1d/kyrbv1D+sBRz/AZuyhYyvw/FT4XVAQYlREyoUpB+ivCbuyIWQ3zzMxVqJvWf0vkvdPr72LxlNuH2vD2BDvIsVjrTfftc/wrk2dA9BTCH3c7+TBe3nhXXEMYzD1E9iPDWHPGdR1ag4IHXGIlnPMMNnUG0L760Rdx8r6ErdzUV0fTX9jTIB+0Dpz59Ygm/Q498YckusQMmHXUHieqONpRWUK6uBJytJQDpAK345xg9cBrK7x1qhmSz06d+z+pDSwJjW/tPNtDneLOSP0SMrugb6GXmg2ZL0tjxOmG22e1bNn0+MYxkOei6bWForK4eXFOdgO3hpKqg8CGxbZCwv/tLQ3jPab9KgXPtrW3f10DrIKXZMKN25huxLXq20zkeR4lZUfyMExdAz9YaxJU/XslQN6CHpAZa2bytOw9oPycBv0atqnqVcfuA7jIodL1/wNa0pl4DDYuM6udffQ31gzP1HTVOjvZmQFcP3aNbYyOpnLY3VgmfLYeQTjhSAHZe79JU11TTP1Podpu9xu27JdcnyVSMdf1Q4Oos48W8sLVW+B3sYYkbJ/eOxGXe+mKcrh9Ulch/pN2XGp8PapPoQ5DvoLdBfbmUW2J9sb1uakvJldjDUcrE9wv7H2NeC+YOecmJPadTqRxnmIh1m/OomevRD1gDpD/z81z5PZHmXWBYtsUL4n7sM2je0DyDON8vSb+8EG4HkRno93Rr1y3aFdMBfAfbnMGOMgN3Zd2HsGaF2Ocxm+R8uMtQbM61DWqXQV9HZKNmFH6v06evNTDWNKSk+WsVvKABmH3r3JOYcU9ezNf+19RPJ1DKyPeHNZHOurJZN7a6k7v7L6n/XTceYc+hSPIz2a3m3y8jiP+hxrzvF9EuPQNH2fZefX551K9v5ycy67j7cmlKLEN6fs21XKXsE7om9Cp7MuQ7uifryyWhuP1zUgG9An6EssP31O2Z4Tkfe1YSyeL7W5sdWd+LbB74r2gC6EzPPzUR/ePMrex8JzQvudI2XjwLZBX2Q9mbKJyqxb7WH+n9Bh2ToadKLXV+08k/UC9D7mrahXkrFCO9uTVZD6dlSC4/SZ1/EaPnQwxi1vjRnPRT9BX5ri5C2jr+11qWu8/pL6TgZgA8DmpDpr0Bne2kcR3M4Yqy+TttnU+68VuYf7sZ0vQM/yt43UerYFtjjq07sWOuNniTywHSGjKZvNW4NM2deoV7w7vgHx9wZt+6xPe/YXymS/OyygPFYPYFzlbySHaAp9gLbgekG7YO29zO/d+HdyNj/momwbqQ4bp+/hrvOZes1+88J5UR+oT/s7KBHpVJv3ef1/FfMq/i4EfbBA0x4618z3YQA55LVzfLexc0ieu9j2wPU8ZuE6tJP3mzGRocpxELSbhQsXyrlz5mTW0XBxmoj88YEHZM899xzmJ40c4kf3QRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRBsdCpS57Y5aBNbkAfxH4jIo04O7BDETq/UbjDk/Tqdw44b7MrxPDTAkwF27GBXFu/atJ55O0xeYpLeex4d+6r1AtGrqef1E7uv4I2SPVfovSfrf7Od3LRzf6buUPy9/t/1Poq60vqcrNc8uJzyYPdwf6KsxmNdF3lOWo97YSef9Ywuku8E7DHPmkB57E5hb6ek3UWJcvF90HfwHp63M7vTy/MeUsYLaZldomWwOxU7nTx4L6+sdscZ7md3vT4vIuduBC9pJTwrZF7gsIP5KDqJ3anWCyTvT2L5lw144fU8Gno7i0XqPXOcrCk8xngemD5p8jxtUpEG76HZbsg7KQ9kG/0fO/9T77OTpikv357H7vmmXLQTdeoZtXQ5dLHXt/Ee2K2qO4XHnZNnWQ1vsMb7Z4V0ctZWKTlCfs+rt82D/s91n/JCAbAbGbqsV9NfUp5mvO963ktBkcdX9syDcqCfWU/Gz4nIB9skx2/To6gX9jiM/gUvkN5O6jLeJK2nXvJqn+2gtl6IErLeFClPEQ6ZHrHjGt/HemVB2blN0QdQL57nJaDj2Nz980NXYfyEvvfKjl3W1qOCN35gp7v17iJSzrOd9bZW5hqmyNOK5wmqqE+kYO9KXj/dEF45MCZBDqETh/os0A7vSkVjsRcdolkv05bX1v+3ojv4q9yfrbcs6Dv2mIc+WKburM3H/RZ6u4ynH+B5bwApb1EAeoDtQjtfgU3wUzpmx4JWPX+jjPB2Bq90npcyb1yFvoanyT5NU23hRbuAfYzya501RK1pIw2eg3msgt00FHkUSUeLgdyrp19ppwdxK8cpjzGQAci4985zTN4Snu/Y0zBYDVmFLWS92okU2wCeVxYbCcPzRoRjXJ+wNXGfMpEscL3nFTLltRCgDmEHsbePor7N+sXMvzOdwR744HlmhckrkstYr6Y3mv+L5DoGNgnqrhmdKNIYAQPvQTZJphdTaxfAyhHbD+hDaNNWo7SojExSu3Ilt4n1QgTYazR08NelfXL8axFZRGfsGoXTLg0e7wDXGfqHvk/m3etGylNkk7EHzCLP1uwNG+tnjk006axauhJtb739URkb4PvN09R6yWHZ6C+4n+d9147dXB7OL5KveaW8AqfAeNhPx+xaB9qd7QSU6bX15zpJFw1gjLV6gfttGd1zlrmPN4eCfoH89tA5G9kK78z6qUR0sYa1oJR3PjtHadYz5ywReVZE3tWm8fj9ejS1vud5ibVrh/Boxe+DetG1rlJeJlN49QpbFXNZb44OGwqesr01lBJkHuvRP1S3H9aT57kd90ZfbvZdUWdYj4DXNFrjmqzjVTK6RFGfZJ1ho4Gq3na9pqf6tJ2jJ6KrZOVCnyrjLVAcu9jKER9DOcrMdcrgvTuehfFd+13d3CC1vijS3vH4ZT0KO5nHGNiukFW8Tz/lMd+M8O2nzt7A3AD939Nddj2Dx/eisZs9+GGuNdTvDbY8NmqkSKO3WdgQrP89T54AuseOx6l1wqFi69db+7NzlVQbeOtPOIa6Yr3fikdplIfr3npWv8e5b5l5rl03vtscF2nO06v37WlDXvXbucY1VJ1VJvrB0SYPdFgz0U3KPhN2Qr+mWFfwvAyjL1i723sG27tYh7brGTz/xT21PBN1TWkVl9na6am+nrLFTzF5sc7NkU+wtlWmb+Le7AXbi1Atxs7G+9jINkP97gB5Zp1hvaR7Nv1vNMV7aHnqosbgD8+2KVoP4Wh9Rd71uRxe3bd7jQt9ADrMW7sEsJcw7nDfTo0/wPZF79uc53lcJP0dEeslXB8oo+rvqdR2z2ia2QwoB19vdUSL0Ztgi0/U/zesK4jkY8AKk3qgb6EOuVzoX7DJoQO9qOF27U9o3pPyhF4Ej91Y/7X2NUd4BvZdeX0EctuvqY1YxdenokCbaO4utt9xvdrfJ+D/3G+ha6C7UmPNqVJ7t9e3OYI80fAbjFSUpBTWzvB0svWO70UltfBvvbCmCznmCGBFEUv5eoxXdlz0ojKqrHXofLVt30U4OkRBJPIu0kHr7XO9stp1YJ5/3GTODZVUFNuib7/slbsZD+Be5C37rt5ajvX07UVOsevfqagi9n5logYzR0ttMDk8PIgHI4aFCxfKeXPmyJeH+TmnSHgQD4IgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgGHYqEj9mHg6iToMgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIg2OhUJI/jMZzP2NKoVKvV6qYuxHBSHEbbgjAQHI4Ef2t4mik9tbQuFKcN6QnOpL+9sF0i9aFcTOjXwtDZVB4Ol9MQ9qRVbHhxGwpDJA9jgfrp15RDbWl4ne6jaukahFHhUGgIl4P7mTBJIpKHKEUoKi80L0Jp4noOUYVjeC/sieCwZ7OdYyL1YXMRlgOhFh9x8qw3x/B/DncObHgPDouUCnsF0O9wby/kFdoO4ZBIhU7WEDzJcKhFYVg4vBJCdaGe0U79lOd6aX+oMAvqD89NhciyIVtYDrUPT9X7Lb9WGunVFCHWERaIQ78g7BVk4iU6Z0O8Qlfc6ORBODCECffCO6JPe6H3cAxhje40x/kc+ktByCBmusrsEu4/KOsZmlI/nqT1ubJfD0B3cDnwfPRTlMMJfzXx5Frao4cX3UlZNJzSikv1AMInsm5E6DLUOUJSLZdG0L6o50EnD+DwiXqv6doHlqA8RWGkGN67VfS88fR30T25T7YaXlkkl/nnROR9bZDjb4mIjg1Z+95DOVFuyIEX4tOOTTY0s0jWhxD67i90Kgu3hZBs0Mk8fqTGYQv0PsJv8XhynHOMrxFpDGmFZz/t5LHlSo1D4pxDX0A/uzzPUtEQ8Vm4Ng5vBkx9HKb1ezuX9WFN0T79mnohriE3CzSdQOeKQiAzkOc+TW1dMmgf7kuwAfCs0zT9NuVBKN4uk5dtI6uDUXc8vqPuUOZ+TdmeQ39BfULWuG97ttAGQDsNrhNZNGaI4XfvFpEdJG/PMuE6kbdMiGsPG1rRu48X0q0ZoGv6NYVe8MLiWdv1O04ewHYg+kMiZHcmU5BDzxaXEufKYPXrwU4e2DTQ2yh7KkRos3YtsLrPC4eKd03N3VAvkGduH9snvXkVSM2vbJ/0QslCvzQTVntDtMum/jcRWezk0PeYeEZ+aBVkyoTd7aSQkwN23PDGToTuRNhOq79FchtA7Tk3fCfmfrCLvTCMsCdT/c/O2bywrkV5PfDuu9Ex9EmViYq+c5VDjNp5XKrf2bCUZUJgHuoc69eU39le74XAbAaMZ/tryjYoZBRtifkI62/0L7TvU5p69ZsCcy3odO5TeEfYRN64BJ2BPt2MvuX24fWEoYXtzOV4vtTPM8ug7zxF++IKG7ZWpHEujbJPo2O2v6RCDlu9y30SNiP6CY+PuOeh9ec6aM6VTZXwHt7z0ZfuNnlSMm/LUHRvkfz9OA8Khmfwcrbttxx2GvMF+6yUrKf0btF6pUhuy2BOnOr/aDtck9BhnZpngGUe63Fe6PlU3ynCuwZ1DZlAnafsFXA6/V2wpjqO+t3qh6V9YbQ3tFZt4fmZbXPYNLzeCDsFOhl2SjOhuEX8Obkl1d+K8OQH8x7IEYdvR3ti/EC/5TUUO+d0QjFDjwx6IefRH1B3K8xxzo9yQA48vaL10tGrz+RxBDoQbYa6855l+703H9rX5CG7NHtnHPDWhlK2K9YR7jd5ZlOefvN86F9vzTqF9rfJev2DXjtZPL1g7XVLO9eq36ZHm5njHk1/2/lhGTvsbPq7aA5cxlbk9SN0EPSv/lpSmZdnqXp9R6R+PPuhOZda4ypDyhY3a8WreH0dfadHU6w3sT2I+TrkUPvfJJrrrLTvrG1XoXlv1c6ZANevrrk1yF9Kt6fqFUxzjmGu5H0vaIWUveG1L4BsoX7L9G1vndO2E975ORGZO8Q1rrtEZAdaw0fZIJcsqxgHUUZeq+vRdKjfZ639lQLt+7RJRXI5bkYvpZ4NO6OHjqE+UGenmeP8t/3+wmUtsge9sa7MWIW5AeSYZQSykFiXaxjfW6WM/WQZ6xwz86EkXrvb78PQjfysu0zeQ+gc6hP5y3xngqzzmqgt/ywReVZE3tWGsXi11PTN1XrG6qrUeOjVme2T0APrKE/RuMrPgowW6e+ylNGdkF/Yf8fRuaLnn+scQ3vj+lTZ8X7H54dm6XrPLeebPCfTdUVzUG/+DTn2fmeBtVzIeD+dw/ccW2feO6PfQD9w3aE+dU2q48RaOng15bFjLOa/XJ4iXezNH0rMkSv6HlVe0ynKn6pXu05SFp5jDffvP/As/Cajl87ZMdfaCwzWB2Grcd9A+1ib07PREuNrth6iax+dpEuzNRK17Wbo+uZinqvgO7m1eflbC9Y8YOuhv/FYg3FDbd5pWq5lrLeL9Io3N7D27SxpBO/B39LsWhDopb/RhvbbyimUx9qR6Aus662tmvpuhrzQE1x3yG/XN7gvPGHykn56n9pC1+Ac5ggpe99Zs2jAsymK7GPvt0RF9wPPisixLctxELSbhQsXylfmzJH5w/ycE0XkvgcekD333HOYnzRy2GpTPnxwcFD+9m//ViZPniydnZ2y5557yle+8hV55ZVXsjzValXOO+882XXXXaWzs1N6e3vlf/7nfzZhqYMgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgGCrwID6c/7ZENqkH8fnz58vFF18sV155pey3336yePFi+fCHPyxf+9rX5NOf/rSIiFx44YUyf/58WbBggeyzzz7yta99TX7729/KfffdJ11dnofMeup3nn2GzhTtSOId4diFhd1TujOwzgsddivBo9UxmvJuKLvzDN6RPI+pZmdThbxBVFGer0sjyOftmrIkvC5kuw5RfuzE/gBlwu5O3rEmUr9j1ngOOEI9JNzK76wcofVxK7w1szhqWWf01tI6R3fYdWW9g5NXsYmarkK9YPc7e9nAOVxnPQEwqDPb7iIydV4tXW69W/LuNLub0dvBhl1x2LGJndXeLmfs0uOdXthhhvugPLxjEuXHjn2UldsQ16Nvot17KQ/ex+7e5d3AF0n7dpBeKP5uP7Q97o0yN+sdw3qRxH29HbbYOel4B/6wytEVaAvelQwPQXiG5yHaPtfzIG49IqAcXFa7u7tMpAH0Ka5n9BeUHd4xWIegf3h1Dj1r6+5oJ89ok/KOSd1ZO0llNfPgwt6iUDaze7aDPHoM2l2YaB/W7chvvVzYna4ifhvi3SC/ngdyeyzlfdR6xirjiZw9OZXxXmp3Ptv/t0uO/0Ead6R7HnqtfnTyZDuycTy1w9bzzmR389N7TdI2X2k9x/DuaNWvk7UcD3oyX+QR4WhpBO8Ib0Y8Dulu5sz7qPcsHIM+oP7WrXK8xtYRj+94R+Mlts5j/QqTIi97fxs0ecAn6W/PY2URqCt4OOG6LOPV1Y6VXAfWS3rKfrJRVubQOXiVwf3Ql1K7tb0d3dC38MxWxqsW9yWMAcYbMrwEvLxO5P8N1YP4hVLrq1aO4fGC+xRs1g5pxI4FKU84ZTxloz5Vf3eR3l9/Uf25zAbnMbNIrzq6Z6bW5yLPS5j1VMc2kvVKntBvDXB/g72G9/H6NsqBe9vxSCSfk0DPeR4wYH9ab82M9bDredgaavScZjwgpPoL6uruRJ4iqO66z6mlf9H/ZzrZi/Bho6yISLb33doQG9KTw+2VpdM5hjpDn055CLWe/D3vGCnPRxi/8Cw79xJp9IKHvsEeV5Af/Q7PYg98qD8v2heux/y7X9MeyrPM5EXdcR/AO+P5KDvfB7ZlGX1vxyH2hKblyTyEetFr8HzoPpZ169XFvhfnt9enoqLAQw9FZuqeV0szm8S+F99T5aZTyzHAET7wLPTJfk15LopxCP2YvTOZsTKrO44iVaRzWM/hueiTni5lXdMuOb5K6nVIkZe0lDdfb35ovVVhjszjtPEmltnk7LUToB5Q9xwtBusRaG9+B0QdQNlSHq3MexxN9vH1dm3Lo4x3v7Em9eZlRWVMyQijY0BFn1GFXvPKhXdENCCuV+gG9EnoMpbnIi/wDPoQ1jrQt1kn63MRk9P1LAsbBmt9XtSOlKdfjC14D8ioZ7dDz3ue7mzfttERRXKvgClvm11Sk+Nz2iDH35O8D3n9pJVoDlMaD3WrXmyYC4rk/R82Kz1rml63zFw3jWRsmZ0vA7ZdMZfV/xZ6IBbJ2wl2bkJvN+WB3lvXa8azp7MOUIoyNizsJUTU4GfBpkLfRj2XWRPitWL7jqm6a8XjqUg+NmIu63mghV7prSXd+t+6vllUNu4LuI+Vda476GmMwVbvDbddDaxnN1tPInldYXyFDmJPpYnxo2FNythRIlIu0lbR+oqnn/AePZpyWfG3tekZ1Av0nLfeY+z+SaR7Vtr+AV3k9VvrYZu+PXXqe2ReHVEufme0T2qeiTkxdJeNIihS7JU4YSd00zu/VdPrm4kOmfL8jeciWhjb4qh7juIg4s+HUtj+jzrkdYleTct4R7a0LscblmHPNrEywhEfUH+mb06kNlyFtrN6ju8D+w3zyh+b/4vkso37Yc7FbVI0VvH67b3mWK+mPDeA/Qdb02sn5IHsk/6H3GbfcVqN4lZmbgNZ79UUaypfojyYH2Lt5ZeasoxAVjF/4PEU72+/43i2NOrFm4cUzXV4TdWLqGYpM2aiT6XsSvRteIJm2bflRxn5Gahr6BM8g78NfMAcu1vaNxbPl5ocF0UdYGxfwnjGur1IfryoDmgD9ImU938824mCW6qd0BdprW2K2tkrvDUgAB2B9a8yNrS3TlOEY2dn6ys31h8XkXLf7dG/8M64hnUY2gDtws9A++I9Ut/EoafxvcAbw225mv3tgbWvp5hUpFHWvG8mGJugb1NzfA/bv0r0hawti+yPdtrUn6EzRb/j8igzf0E7F0V9KQu+u8M7uPetEb8V47X9Zr5t2HZKeZ9uFeu1upnyeXh6F89oIsL6mXrNxTR3maJrQisKovqISC4nZSKoWJ3I2G9H0Nee/eTp6aJ6LPP9j78j2oipXgRVYMc6rheMMXgvjO+2fEOT4yBoNwsXLpSvzpkjFw7zc46XLc+DuPdrjY3GokWL5L3vfa+8+93vFhGRnp4eWbhwoSxeXPsVcLValUsuuUTOOeccOf742sTkyiuvlAkTJsiPf/xj+fjHP77Jyh4EQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQetUZBP/mPlVyib1IP6Nb3xDLrvsMrn55ptln332kf/+7/+WI488Ui655BI56aST5E9/+pPstddecvfdd8v06dOz69773vfKjjvuKFde6e0yrqd+59lJdKZoB6Dn9Q3YXWEi+c4qs3u8zqOB3VWMXXzeDiG7Y4vBDrEeTXlH3zKTBxxDf2OnWhlvmxbabTRJd66txAEta4XeucEbjO7YmnpUfmi59cygeabvn+d5TNNV2IX1Un6uW9sh8zLieTPCdbpT7Agt4620i7BTd01lniJQh+R1ZJp6LF4GD1f99fcVkbxesZseu7B4pxV2cWGHuO5Yn0F1t1jLAQ8Ra7ATlD2ro+/gPcp4E+Ld58abY/as5ZSnzM7gMhwqIs+KyLFt2kH6fj3ailcJkWIvySL13k5E8rbknbfY/Wc9aHhYj9kijd6ZUM88xMHr3dXmevYij7aCnkp5Z1WmaDtz0dfDYw08FUFPsAdL7O7Ebmbdle56u0F9et4BUB93m/+LyER9Hl5j5QL9Y16eB56FttZ0tacnIVvax+f21tKrOK/nzduCPHhn7BL1PAkgD3sHwG5S1APaPbWLW+uuQnoy6VmrCJS9xzlnd7Zzn8I4AjlA/eB+z4vI19ogx78WkaV6FPLk7ebFmIkdsZ73BevNpaSH6mzX+7fNiRLjYt34bnekl/Ek5ni1O0zveTtko09T9n5l2wN2jOcJ7WDzf5G87THGQb85dQ+vi3idgT46iQgnOgZXVRd3kp0wYGUDniLYoyc8AECmPK8UsLvgPaEV+4WB3uUd1Pb90QbsvQflh+7z2tl6fUOEEc9zq7ZFt+58X+N5QwXejvdWdvPD+80zInLgEL0rXSMi20mjR9CU5wzHk2EG+kVC32URbjwPD6h71DXqrIfy4O8+TSG7npcByAZsNpZDXAfdeVN9+URIb8MrQMrbIMYWikiTeYGwssreZWAPLzMpM978X9t7HMnharwPygWZ2zvP06BL0Zb8Xv2aWs8KIuW8l9g+7XnLQX1AF0L3HU95bP/wZMXY4K4XEozh9ybyWKwXdQZ1xjoZxhjeFfLI0ZbgFYzHmmdF5F1tGIt/JCJ/dnLAXmEve9bLjlevqCPoMIzHbCuiPct4OjG6LznPBOzVC/Vq+68TmSMbV0tEp2APfmvQhikvREX343Jg7mvnfDyvx5if8ohjPQs5UY4ycB/WPXb8gRyz9xKsv0D+y3g/R1vwPAs6DH3B3k8k9zyG6zyva0VewRzP6m5e6zHG6gcGHozRpxKehjIvnpfTQTz3dKnV195t8iDOesm2g+cxEv0Cuhn10kt58I5WF3uRU8pEmUAevCuvOViv6wxkEv1VrxtH9n42H0Qeb06M52H8QBm9CG3NYD3FiaS9xVm0/42jPrAaOhP1C13RQ9fhb7sewlHyEPnLRslj3VHGa1wz3plTWHvWW7M73fzfmx+mvKCq/HaZAKF1YoH+Yjy4dpBuz+aHuNCrg3Z6EN+Q52FQxpN4q+0FvQBZKdOP2YbGdam5gJUXzJm88ayM3dVuPG+QZSLwpbx56bEswoL9fiCS9zPbtzlKGNYFrUdZfpbWZ5eOp+s9W8nO2Vr1ftgK3prFUPNgrE9FQ9iQLLTT2+HbzNnU/D01/7CenD3Pp2VIrJ3Am/GqlC2bWntR77+TemrpSq+/2evLRA1r1nO9/X6DOmt2vchGRQU99DfaB+Nzai3TRlRiGwd1XmY+hDrkPl10XSoKbhlsFCd+rn0mez/E2IT6QF8qo+c8tG919dDlVndi7oR+0g4P4neIyA6StyfkLqEn56oc1X1vQF9EfWCOkfL6mYp8AmwUWZHGNQvgRZlsBk9WsV7bpyn3STz/dJPHsyWsjPPcAnM9q7fZZoSdPKogL2PHZ5ofduoa0gDsF+8bKOQWvwPwvjGgrvAM1l1aH5N0PS/Tk+zJvEyUJIunJ1GP6L/e/KpXU+glz65M/S4B2LUtfoZdu0cbUBvOVPldxN/hB0TkE8PgQbwVPE/zqShHRbCM2CjFHkVe9ac4f6PuU55xrU0hkrd1r6baBp2kMwawxmEjjnhec4GnM6x+8nSp9Q6Od6c5xlHad7IgZdbLsUi+xuBFhS8ax5giHcx1j3V524a8BglZMN6I69YQiyJIMAVzPndNFPfpoYxYP0Nd2+jUIg3R4JJzngPN/4vmou2yqa8Rkf9LZzD+wFaz3xNTOP02+76EOuQI3BgTykS/BFhT5PJgjEpFT05FOCjj/RqUKGPDO3vATpmnaSpvKpqOjS4k0lgP6Mvz6ZiNsK56fCKtca3C+irkBudasXXKkrLRbARWpz6yORci4NHv2zL9iL5g11ZFZLLaKw8u0AOoJ+43dp6Zah87zvMYfpeEB/FgpLFw4UL52pw58s1hfs4xEh7ENyqf//znZe3atbLvvvvK1ltvLS+//LLMnz9fTjqp9kPuxx6r/Tp4woQJdddNmDBBHnrIN+peeOEFeeGFF7L/r1tnf/AZBMFIJ+Q4CDZ/Qo6DYPMmZDgINn9CjoNg8yfkOAg2f0KOg2DzJ+Q4CDZvQoaDYPMn5DgINn9CjoMgCIIyVKTefW7QHrbalA//6U9/Kv/8z/8sP/7xj+Xuu++WK6+8Ur75zW82eAavVCp1/69Wqw3HwAUXXCBjxozJ/k2aNGnYyh8EwfAQchwEmz8hx0GweRMyHASbPyHHQbD5E3IcBJs/IcdBsPkTchwEmzchw0Gw+RNyHASbPyHHQRAEQbDpqFSr1eqmevikSZPkC1/4gvz1X/91duxrX/ua/PM//7Pce++98qc//Un22msvufvuu2X69OlZnve+972y4447NvyQXMTfeVYzLmxoko0JwtogHBjCLXEIO4SYQ9iQ2SavSB7mA6GtfuacM57Vj6PQM4hauhAhOBDCmUPE/6z+WEW9t1cfpjwIp5EKN4jQLzea/3NYCoTBQJglDUPUQWGEEDED9uFKCm9U0RAi1T49gLrj0Lo/1VTf+ZMaqv07/D4IDYT3WGf+n2Ai1e+qgnC1bvjcEiDM7aC+8zh6r9UaTmXcafp/L4wKQosgHBKHpME7oi+VCZHlhSYpEUZFRJoNTVIsx18QkXfp0VQYaARH6KVj6K8Id9WjKYe2skEVBqURhPy6uj6P2xfsNeKE4EQYIq4XhJpBf0fbc7hzhJwx9dBF5ViPMD0mRM+sM/I8t0AfoH70fuNIL6xGebTfTdHrV1xKD8Z98CwKEzhp71q60oQpY/103eNSD/7P7YMwOWin403ZqfzZdQgNx2F3UFYb2pRDh+F6PMvrCwhTdUjjqYk9tTTrC16YPhsuCmHBpuZZshDB0KXYK3dnnicbW0wIMxern5ii8FUYX5oL+ZeW44/rUYw5rDtsGaFnODyfDb9VFFpTJBmWNQvz1K/HG+2KxvGVQ4MiNHZKtxeNlRTCaZyG/MvCyus7H7VbnudGlBHhztBOHN7byhG3ZZlQkTYs2WvNcZFMbqBr1qs8d9IYlYXPRhguyC6XByHDECXGhswWycOaFYU4bBa0HYfwO0tT6INEW07Vd17u1aHtJ2h3trGuM9d4MreHyeP1OxyDbLDusuHNKSyZiDQzHqdleFvJQxKi7rywdtCdKV0K0PZ707F+TU8zz+IwgdAVNuwb1z30KsLRoU8dTnlQd7bOGNizGBchoxwuD3KD9vHCttv+wnMC6DfUL8raQ3kQUhHX2fB6IsWyzuHj0HdQh2in0U6eVDhsGy7U2ocieRuk9CX0FNqp1ZDqAGEyebzHPb0wzZZUKPSiELApWL8hpDz6lBfW2M4Hz5SaDT+pDWPx+SKyF+WEvKD/p8Lfom9yO6MPoV76NU3Z62jvBXTsRE1V32djDfdnb54s4ocyt6TCe/M5jE1lQnrine34zGVCeaAnWebRvyCby6UR2LyQHxtC0v7Nz0jJEdkQHVq2QdQ1ysohMPEMG2b5dMqj+imby3L4aAA9D931lKbzKI8tB/KkwgOnSIXZTGH7KeSO6xt9Eu8FveLpdpH2zo23Lbwuh8c6K5PeOlJRGG0vZP3Y+nTayXmWZXYc8kJL2zDpbK8XhVsf6xzDfbx5gxcqWaRujp7JoQ0BzvaG6oXO3lo6gHGR72/GjXFaZ+56TQptl455tXTwcjrXzNgIHYQ5JNcpZKvfObcBDqO+cDv6u+kLdboQ9knKlrd25HF0DjY07tNXS7oobPp6O/+APejN8e04wjoMfQhz6yJd2C45vlCa00tcL5BnlM1rZ4A5tqdDU2M+bBdt16knNmZZjj6Q6kOqhyq9tbSKtVqeG2Cd8gkpZnxBHq6X5SaPnR/xMeCEIM/w1lDwvB5N0V9Y36LvQH5hC6TsFfRNHj/Ql204+jMpT9FaENv9vZpCDj2dnOAIlftbsZ7uhdq2dm1qDQLPRxm5fu27on243XFObfpZes0t/KyCsOtZqPV1IjKmTXb1O/Roan0d7Yp376dzXshwS+o7TCs495ukdbMS4yL6NNfPt811RbY5Az1bNCZTeSaflR96MDV+2vV0rJuyfJv+nb0f3xd6BfYP+uI0yoO/0Qeddu7We6+xMkLr4+5arKVMOxd8BxSRxnmqlmsGZVlsdSD0OL+z5unQtRjY9HXfHRYkyrEh+Fl2HuOtJ+C9rtUUbdHONS4AuxL6KbXenvruV6CDRKRRz/FaDsYN9E2Mvdzv7NgN++cJJ49tbx4PsS5iZY3tftznnsZn/J3m+yrGdYyhNM/s0npYX8YeRp1DX9p1VOa4DefJ5qT35Mcq+9fSKvoS+p8312kGlnXodIyHtr35mPfttgi019V0DPe0a96eDsEz0Tfvp3OQY88+8MrPx0WkomWror/gGWz/o31hs44VkWdE5PA2zo2hQ9EHbVuIpOdIhmw+h/diOSywpWZSX1pkZSOFXYPkbz44Zuc6HmiXTzrnUB6sZ6fsFnxX/Xoij/dNDuMzdOdsaQT9XecxR+jYf2tK9tDH6dtp1s/RPp4c29/V8BiD+YfRI9PpPktsmfA+PXSsyL5hvQAZs/qb5yHbaWrHjQ/Q32hf75ll7C30K8gBbBNvrpRaswZ7SPu+G58vIt5P1lCPkOc+Ooc+kJhTd2p7DhS1pUhuT+JdUT/c32C74Fno99xeKTvOrOVCVyzy5i+trIGWWRfn/g/bF/ol1d6vNf/vob/Rp1O/PcA5T+fArijz/Rqkvut4a+bgUJMH8wf+Hmm/sXv3QTvBVvPmQXgG+hbLftE3MKrnwt9/8TdPrH1gTSi1lmLhvnCoiDwrIu8qLcdBMNwsXLhQvj5nTvLrbTt4p4jc98ADsueeew7zk0YO9teQG5XnnntOttqq3on51ltvLa+88oqIiEyePFl22WUX+c1vfpP9QPzFF1+U2267TS688EL3nttss41ss802w1vwIAiGlZDjINj8CTkOgs2bkOEg2PwJOQ6CzZ+Q4yDY/Ak5DoLNn5DjINi8CRkOgs2fkOMg2PwJOQ6CIAjKUJF8O1/QPjapB/F58+bJLbfcIt///vdlv/32kyVLlsjHPvYx+chHPpL9APzCCy+UCy64QK644grZe++95etf/7r09fXJfffdJ11dXRt4Qm3n2ZgxY6S24+gkOlNmx75ymu7kudzzZldmR5Pd+dmMJ+ZzpRHrkdZ7Ps7xM9Tb72G6G3OpHl7f7zxDvQzAqwZvYmzwnIkd7rQTO/O6Zj21cN3p7qnTdCdS5hSpj/Lors4OrZ86x5MoB3ZUwbskeTXuUE/Hmecy61VbJN8BiJ2w+s51m+2woxw7SlEQ9hKAd4WnCHgzWkd5bL/zdrnZnbn6fp2n5VkGsPMa7et5o8C9sduNd/2hT2K3XspjESoC7+PtHsT9tJ0qtKuyer40613JksvxD0TkUScH3h+747BbjnfkWa+l2A3JO0DRVrq7+WjtC9d78m13QvOuPa3XzNvsT+kcnoddyZBVzqO7FY/S/nUjvEX3Ux7sToVsQQ54N6P12KqC3EVenzLvDfDEgd2uE/I803RXJZy3fxOeyXlXca+mkHESoNNUji+HVwLsxpyf58meDy9Y8JTIXhRVh0In/1wPr6EsaAZ0+2V4Rg9lsh6S9D26aFd9tsG2zC5/rZ8zqA9cWhRRIIW3mx4yCvmzXnxEsjrLdkJj1yt7noASR91DNlg/oc6h7/BMtOlzIvLBNsjx+SKyq7k3U+S9h8c8DBiHmzyM9X5Y5MVRpHFntkjeZ9An4eWCZR3toXIHrxJ8m2qZHc/W+w+ewbrZ7lxOefpSeZrekx9agrZG299Vn1dEZIbmX7zAlIfrDt7jtL8sx9jPu6RRbtwbOsyTI+vNjt8ZOgMCab0lU3m8XdaZDsS9PZsNugpjbBlP/IBttwFzzPNQDU8VGMMh8zxWnWHyeNEi4A0Csr4/nfM8HTOtj8e5DMMrC8ZBjDueBwDrucLbm2rH51Ppb+MRJfP6z22Ie2pfmKx1+KCXB88q41GjGeyOe5G8PjzPS9BzTrSZiWpTrYIuxhSYvVGg76D/ezoQthlsXvQN0h3wiLLEjpX9dB/UmfUMyh4J8Xw8i+vDekNGHpbjMt4NrPcHzztymXlZkedJBvUL3dPvPEvfsUPnQYNo70Mpj/WUyn0b7YFyWC+6Inm/xbs+JO2zqa2XtGn1GSvH538XjmP8rlrWo3trqWs7NwPaEmMf9yPIAtoHZe+nPPac5+0D5yAr7BUJx2yUL4+UBz9ji2S2Gutq6xnIKzPug3mm40UO0X8yzyJoHzZKMA7BJuAxF+M45BeywrKKek15Ay7yrs+Ta+gR1JlnYxV5qaJ+V9H8DX2UFi/GaV1l9eJ5kS9ar+GyQi+kPHVZPI+0nVKT43PbIMdlPQ+z5zHYbSnbqAjW+zYCEtrlcSeP9axWxks457N5ptiMdG/M8WltqlP7QIO3qDJQf+vU/pZVuedJE8+wfYrXjWDf2ugoItKpHtgHdCyo6PNdPZyKcgHKeAhO5Mm87A5VpzcDdAXXWSoaBbB9EN7snbJn7+V5m4XtDe9tCzS10RDbNR7fJSJvKi5rkmbkF3MuyKXXJ8p4t5xgjovktgvyYDzxotb0mHLQOJa1C8bFDc1rRHI5YDvB6hrHO+txquevw7i6U34uGwNQr3gPauep2t+WNxPpCuM7e6M363oduiY16EXxBBiPuJ3KeB21YIziNVHrhdXzXJnyLAf56TEpR8Ar8jLNdiXqCP0G61jU190oMyJpD67WZhsOuzoVsaRMNBOzblvn/M++axlv9IzWvetFu4jUvNmOQ1we6HDob9Q9rTVn7QO7FLKbei/2soz5stX3fL2N5gv9koqugmv4PrBLYR+jv3rrYADX99Ax2Pcm8u5R5DX9RtyHPQSDoUTYStVrykusnaeyvT7enAM8LyqaK81y8qTsbFsOzJEHRORTbVrjgp7GGgxsCieqYhK8D+q5iSgtdaQi7cCOxPp4kSdwkXztzlkTKoW1FRNRN7KxPDWOeY/Q61boN9JufZ81/ZSpKHobtw/GbOgsL2pZUSQx7ztvygYtirrk4cmY1dPe+IjyQx84bZetk/bpAZSZ+wvkxVtftGWEbuW2tREwzzZ5RfI6Q79Ff/O8jPO3+udEZG4bxuLvSW2c9SJ+iaT1vmcD27rHWHMj5cG7om+inrgtMY6izvEMbktrz7Y4d8uepXbPSfStc2Gf/lFmXgXwPvwslB/rPhiXUnKAvk4/8epWeVtTFHVMJLdR7RoGY/Uke9qGPYkyqk6fNi/PkkU9S8lzmTmXXetG6q2hKFmEA54bQHc1MW5MofWIFehnRREkmKL1FpHGfgaZ5/VF1u3tsqnPF5Ev0xnbPnivVu1s5Pmk+b9Ioz3bjKw4vw0pBeSon44VPdf7DtkMeC/2lI3+ov10ov4eoO67G8bIeZriHMuanRemvsOnsN9s+J2hRzBfTa33gzJRx1Ef3riI51ubSyRvA+d7Tva7IMgWfmPC36KKfhPoYW0I/taIfgub1atv2IE/S+QZr2X43+FBPBgxLFy4UC6YM4d/9Tks9Ep4EN+ofOc735G/+7u/k0984hPyxBNPyK677iof//jH5ctfzg2As88+WwYGBuQTn/iErFmzRg455BC5+eabS/04PAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCkUlFNvGPmV+lbNI67erqkksuuUQuueSSwjyVSkXOO+88Oe+88zZauYIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCDZH4kf3DXBYBw2dcXkqdIw9h1BU0/NDXbvV0vWoboTA4DDjCMeCUBEIt3M/5THh492IIgjdoWF35u6f5/mFhqu7HSG+cD8KJ3mlhjNCZJNqfy1dziEA8XwNY7GL/v/YQ/Jzl+B6hPdAmItT8jxTNETFffr/D6OcvXmeNfoegwjvMa+xHFk4DKedBhF+CGE+NFTKXAqPcVVB+67ncCEIBYKwKT2achgtHEMf+I75vzghem0YEX6WCV1UF2EE/0F99tA5hFb5jhRjw+UgPAuHv0LZUH6Ui8PD4BjaR59d5XB7B0stVFg7+JOInKR/c+hT9OUpJj2N8thwmAinwuFY+uuPXe/VIcIFIbyYhqnppHCoAxpGaDlkjcM0oW4Q3gYhpDjMjfbPG/F8XM8h/BCeCnKneSfR+6jqkd9r+lZNb+eAHKpzOlTnDPZIA8s0/+vO0GecU0vfRXkgx7fru8+iEGbP4g8bwnKQ/kZhEa4N705huBCa5/I+PeCEW7oFfRkhsvAMDiMHOUYYYK3fhtC0fB30JIfnw/uobr/UCwO0oj6PG24K+sgLJYjr7jfHnXdPhk3HWACdBbnmML4Xm2ugP/GerYSuKgLP98IZaSirhnBc3vvt7RwDuB5tyOHwoPvwbgiPxn1S63i69rslCBNF4SDH6bnVOtatXlBLO+bled6keRbZ8nMYLsg4QuU1E4rMCeM7rqeWLuHQWNA90BF45uN5lsUIiXicphgHOISfjjvLUUaEA+a+jf6KUNII0e6FHkMbGhvHBbqd+z/6EMIx8jtzqHARvw+hD/SXeL7Fkwl7rJf+Rn3YkJN7UB7VS93aTmvwPmdSHsgqxvt+pxxlwuoNFYyDTyTyYOyFLmMZwzhhx1on/Cz0fz8OsO6CbKqtiujedWMmhbEUkXRYYOgn2Ds8XUK9or/a0Hciad0FObHh70iOV2FsQtsdLI2g31sd6NloqF/UPd1vCfok5AflIns9aw8bJpOfBVBXHJpX/57RU0sXI6xeD+XBODjWpDwuYhzG81EHXI75pjxe+4yuP5aF9OR2Qhumxqqx5jrozYsoD/oLbD0OJ2pDedqw3CJ5m3lhVNsB2Wo2lGI1ZVMALrPK5PUIiYs+5ISBbpgPeaBeoEM4/DLKjfE4FU4S57zQk3hGv6Y8niJ/SlcUhUtnoKu0L2a2Gs8/bBhLlJH1vg0D6cwlV9s+5PUpzDfwfM/egO7x3kvrpaLPreL5HAZY9UqF31FMe9s5AWwRrm/ItpU/eq+qtY8BlX11KmQw2vweqYf1Pp6fCo1u59IoO8/veJ76rLSHo6Vel15UkC/Vjxckzlk9dZeTB+ecEOLZ32qDd2mf2IayrE7pAdQZdCHGKg7BjPEd94GskM4YsHaGF+K9CGesm6jpKk3Xc5+y4aehJ1jOMbbYuZeQjrDh1z36NIWeeZjOwQbGc+do6oQ7P0nrcCGeRTZA1coP3od1KZ6P90H9cphh1GO/prw+An2A56LfOPWThU3Hffh9oBvQbzx9q8ey9SovjDDmjBjX0V7NhJhuhmtF5Ab9m9cs8Dyt+0lazyu5T5QZq2H3QX69cPRWJnjMRX47R2e9gj6A9kDd0ZrdFL1+Ba5zdHLVrn95oH9AT8Pu8K5BHvSBn+anroNewfux7rLPeroxz3L0NzuOeuv80F2ezYdzOr4Optr0wPr/dh+V/70GdgueibKyTY+xVucxnSfW0gYdyddzWdGXXpJCOnv1nlb+vLUuyCr6PY+zZvzo1DnPAM1j1tu8PZryfPNOqWPyvFr6IN65nXNlO16wXYk5W5l1HrUd1i/Q/3N4b9QV9IO1pxjMf1jPaXusTNkFlqudY5hn2/twefo1tfYyyyrmd7ZP8X3Qvs5ca4a+z476f1Rv11l0K2sze3MUa8ct0JRkrOH7DfTbcfmhcbruuhoHUPdcT9ZOUG7k/0MnH68py6i9Hv9nWW1mPRH2gTceYszFfAx9nNuwzLPQ9lgPhNzxM3Gf1PwK74g5Pmz050uUoSzob5AxlMdbDwC8XmNtZdQV6299b3y/WZmwVxrmc946GJ6Ba3heBp1hbSoe81A2tAHmoPzO2v+n6zebJdxfTZ90bVeUG+vHj5jjIrKC7VgR+Qv+4P52trlPv6Y8xqBfwc5AeaZJI2g72BLXOXkAr9vq+JnpI9Qz92noMSuz1D6d+k0v+T3HnnNkZNWC+mP4Zl93X9QjyjrFHBfJvxlhDsv9BH0b13nzzqJ5EOn06rfNNWOlfnI4FP4stQVhPFfH4Q4dEwYXUF6sKV1dnzezy0Ty90A/gU1Bcn6mjhMXox4x9nLd2W/S6PdskxeMy/yddyXGAr1uCp1bgbLiWfp+C7kP8LtxGbkPoH1RNm/+DxsA4+ihTh77TLwfydGaPv0DOkjlZ9rJeZ5lCzZwP5FcF6INaQ6aycJ19XmWebYNdKD3rcLIobumaedYdg4mkte5lmPw2+a4SKNNZL9hSt72aPcV/ZS/yMY708mDMuMZ3JbQqzp2H6bjwO1sr5dZE22WAambs2WUsTdSdj36Duoa8sxjpmcLlcWbH3nr0AA2VTM2W5l5i/N99oh5tfTW8+uPi0j9fEVEVpm5k4iIHKPpOnP8ZzajuOsAhXhrH3ZOz2OvXW9dZv7PwM6AfrnXyWN/F8BrIJhPon283zfhuU6/WV40rrMtYr9vqe6ZSPog+0aIdZqCecQG8dbWROrXvp+Q9trUQdAeKtL4ZT8YOltt6gIEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE7aFSrVarm7oQw8m6detkzJgxUttR8yE6Y72ZlfG06O34wo4seD3AzkL20mGfhV0+7H0a99RyHKU7om9kL9bWizfvTLK79fT/U+flWbAZOttdjV1t7H1wgbkP6uXs4jyZB1Xa7XaS1stC/T82NF1Dt9lR09vFQO81RXd4zdT/X8U7yHQnFTZ1slNkMKjtmXk50+sn0y6sv2i6taar0S60q/Z9Zn/KNZ4HcOulcLw0MGteLb0FXsqwk453jqEvqMeIGfrsxcspD65HuY7PT1U0zXawOrtMi7x2dtLOY3jgXJPajYZdpahPeKQhb/Jyo9R22H1M1q5dK6NHs/eTcuRy/LeS72rj3W3wjow2w05H9iDg7dotAu+j/XgWedm/BfVhPYzwblPIKsrBHmyUzGNlvx7gHZiav0P7/yDanndlou6174zTZ65mvYDn99aSir5HlfRch/ZhyMoU/f8LdBts5NfbyBGa8kbQBzQ9SNPLySvxNC1bpjozty50g55aMtF4gH2Qd616XodE6nZZd2rfHrhRD8DjC3sV1WdN0h3pmbcO9m6MMqKedWfttBPzLNhkPQBdyl7oDjaZ9JnuTmS7Y98bPzrMOd4Njusg10U7QhmzO19EGr1JWk8lz4vIN9ogx18QkXfoUbwXyyWOQWd5HiTtmI2+xB5+fmbOsccWtCt2J+Nd2ZuC3XEP7znsZQBtZ3bKd5EudT3Tc7lE8nfFzmnodt65b8cd6By2SeCxDLv56RmT1GPGSpWpLtXT69lLC/orngvdxWOd1UfYGU4RSzIPhugn/ZqS0vhHraO/xgHsiCZ926nt0eCBjD0JoO4cDzRZu9r+fjrlsd6QUp6BMFbjvVh+MCag7aCDUl69oHO8HfcW3g1vy+jZEMB612hdjutleFs6g3ZBu7Pda71Ws4yiHSE/ng1etDOebSzbz/BMrhfrCQoeT9jDB64r8z4Wr0/hGLcJyoH2gPywjQevBtD3qBeyE+aq/F5l9QJ7HcEcBeVXW76T5HkAYzXKrPV63Bl5nuvwXIwt6Ov90sBEHSNXcXsZL22ZpxW+EGM9ZAq29JcoD2QLcyPoN27DsSYvZMXz5qjAHtuZjq0q0tuefrEeMFOyWvdg8/9B57g3rrdzLD6JzqD88NZjvRxtgCO0Hm+FBxzMBTxvKJhXOh6Ysv5uPSQyqHNcj3bn9lHvmBiP12N+x/KY0vu4F/pkao3A3of7G8oPWdM2m85RjpQl+oz3qYxeQ/0w83yE+8AWYS/wsEOth12uQ8gNZMyLToH6xbN4/o16wbilXgc7aT0hG7NRD2hfnuvM09TosEm05rASso7ypLwKl1jLyfoC1evRiBqFY7AX2HMMnod7e/0GYwpkEu/Mayiwc44WkWdE5PA2yfGb6EyRN332umNtopS3J9QD9BP3BTunSXiymaXnbvEiSBTN7xjr4Y7LgXezupjfC/YWxguU3dPpwPOoZvG8I9lIPb/UlKPaWK/eROYl13gSrxtzy3h+Rfl1njpZ5wF1c2v05ZR3/D3M/1Gv3riKdkIfo/WABl3OXjKt12jPMxxkDDaSFwFP33mi1hnG8vfRs66x/dMba6yMwI7hurtX2jce/7vki6K8ptSjqZ0vs1cwO4ewXv9E/LqSXP+JODqQ5du8/yS19VbeSHlQNqsH2C4t8gbm6aCUDQCsXuihc0Xe3xyZn6hlXsVro5Bt9O1EVJQG7/zkTTgpW0D7+wyt+8WeDYqx2nr7Y6yswhb28tr78riKNtP6nUhzN0RNaGhf9v62v8mDPtVPeayse/22SM/xnMvOt1P62oJ54nMiMrdN4/H79Wgz3rkZ9CXraZ7XE6xs8DqN1Z1oH7JXMo/FsCO1zjtIH2Trz1q/nTp+DCygZ9m6QpnZ1kutg1i0Pabpt41lnhxgPORnaFl/rv30u3q4j7JU8f0E60ywl3l9UOWnS/tvg9dxkdyG7tEUdcD2g61zT5cVzT84+pn1clhmful5YUyBe2Lup3YqfxcasB7QvfUrb9zg4yK5Z8Z5msLG53dB+VGvvN4DXWptPeQZEJH/PcQ1rrUildEiVbu+n1o79/op5NhGSGQv45AX6LxZ0gj6OcZXlIPthDLriJ5+FakfM+w4DBvPm8fje1fq25r3TDv/9/qo5ulSuctUCI/P1gs2ZJS/21odDN3YR8cK1vIbxlLOwzYN5vJYY4Ac8VwUYxTaEnXHa4row6hPvJ8XfdbitaGWsUP1ZTIqiedB3ETvcLHzn1RfSgGdOlpq9fapNozFF0qtT+CdsJ6IPkQ2TaeOCQM2Ioz3bRD1omXrpm9HmRfs20zelFduD9jrti94lLkf4G9PKHcqqlCRDe7N/eyaNeskWw9WB4jk74H7QU9yH8AxtBPK5Y2L6Is9dA7rI5CpMnrTw+r2EmsF2RyDvrt1aQTt9Xgf6AfWC3Y89X7HYSMf0be0hnUNb+xGXcFuh950ol2UYrbUouS9ow1yfJWIPOrksGt93lqO/TbCdoaNmIW8vKaKOrbtm1oP1vlUN73zGvwBHezZaHg+ZL+Mx+0ysD3Zq6mu73sRVDE3eI/+H7+x+jDd5gr8AfvNqxcbZYbXVPFudk2Hv39ABuxvrNgWV51R0flC9l2Jf0NXYCdzhMuq/e0D5pesE5EHuovXc0FqzmejlqQinwJP/3qRMC1WR6hsTCVbYjka1kaBtv1/aGtcQdBuFi5cKBfNmeOuxLWTg0TkvgcekD333HOYnzRyCA/iQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAErxKs67IgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIJhZyupjxUUtIct6Afir5N0OLBUmBCEXEFIm346h7A4CGmCsD30rMn6rAcX1D+zLmxbj/7RV0tuvF//P0EaQXk4TAdCo3yyPusM+htRArv1WWsQ7oPC3CDUUpc+NwvnxeF/NBQOQtcggs1fKGTFQvyhodlWq/j+Dd0Gr4hoqojOsQ2FsvmVpld54WG1/Is05EsWBvGePA9eoGrCGe1AWXbUdIk+Y7o+Ywm14TUIMWfD93CoEKioh0xKZb7FhtHTUEydPXmeAdSjhihd/Jz+n0MMIrQKQppRWJiqGNCIHMbXhktUVTBAfWEAIVJt+EN+Z/RFhF/xwmCNFZFtbaFaZFBEvqx/c+gYtJWtKw6pg7JB7XHoJgAZ105d6amlt1zq5EVfQAga1i8IT4Pnn0jnNHQUqnEJgmNwvWq4nEH0O5T5FMqjIWy6tb+sRggZ1gFos55aUu0zZRfJQklVtC/srIcXUZ96QOv8u5Vaigi0c+k2+ghB5PAjSHdBxpF/lpb5FAoNOklD1qCqvon34fChQHVf5ZBauhedysqP9kYonNMok4a7XmlD7fGzTFjuqVqwZawLnzZ5v0Tn+jW1ocw98Fz0Pw7XDD0PRYt+y+8D/Y+G0f5z1Ml5lhttGGAbMlukMTymF4KsXUDXeOEHMY56IdQAxmwbHswLj4cQglyvCNUEvYj7cUg26Efc8zLn3r2aQv9r31rvhZiCjCOkFOsgLcd0/e+Sfv3jp9II+gTCwFGIqsk6Pj+IcNFkOvdoulLlBkPDF3fL81ymf2eh0FAODikFfWRD3nNZIch2zKNx6K8hPxiz0QYUnnKgr5ZmYfm80Gw71R+buHd+KguDbcPrXS2NFIXq5TLZMMKvdfJCXjqdc5aXEufONf9PhQblMGUYk9BfIesYj56TobOPiGwn+VibKhueqzp5JoX0XGRDJ3s6B/dGGFPYJhwSDW1u5b9M+DYODYdxAwYq+uRZlEdDyk3T9snCX3OZVZdntjSf4/CeInmYvbPzQ90qP7DTj+ippbeSjXaVqfMuvX4920awL1RmZ2mfrItK1ycu17GM6POztsQNOLyx1v0qXHccnTP9vIqy8zQUYxN0MNr365RH63Wyjn8Pev0O10F+UNYfUh5jByK04irKUhjCz+oSkcY6fNzJ44F3Rpmh22+iPLYPHyjtkWHghbD05p4AurdXU2qDW217pMIf4hz0E4erteG4ITPz6BjqDveBXmGdotetR3ugLlnmMedEqEheD0B/t23uhXvG+IH7cX9DXzRz+yVcX5Al7f/XoBw0Jx4o0rMsq3g36P9DzXGRxjHqYjoHO+UW838G18N+fK1TPoyNaEtvneUe83+tgwbbXCTXZd64ine0IWX5mTZMOdkQ119bnyfrk6yrMTahHLPM/7kcaHu0+0V5lhl6bPGd4s9DW4Xf1fSl7D1YruZpatcsnHlmpo/wft58BrZ4InzuLbZd+f2h+zCGc6jgK805hHYmWy97LvqtF+YZ/Ra6Bu/h6XToFx1zOg6hYus4PFHt5cUv1NLXsqxgTapHU7zPTpQHz7f6Tqg50R7ePAgy3W/KzO1j6iEbM2kd4Ay15S/F/Zz5S9e8Wroe19tQ4HxPtBPsZS4P5ibQOTzvtm2Gcnj6FtwkjWj+VeZdr3nYyQts+HSRXF/D/veCmR4nIs+IyDcS9y7LPpIvmLAti79h2+OdU3NztIUX+tiEyq6rUq8PAfP+K2HXcbthXmjnWJTnaNWB1+t6ShfmpDxHhy2OdkmFb0c5IGPe/Bu6WNfzuqlPrVFZXYW1PrJLT1MZvxxyiHsfnOfJyqRynM1XuQ6sPan6sbuXyqH9dTGHdLdcbP4POeT+ArmDvQP9b9ewRfKye3WGc1aePFAfbE9amUqtg6ENMSakwnTjWWRnj5tXS1ejjKhDfmaRTQ/bLfUtqFlwT9gN1Lc7dT458G090KMp2/pmTOjWPrWG28DWL5ff6gaUh2yaBjtLx6/Bb9Ox9fVZsjLzcdQ16veX5pki+XzQzjc6nTzaZq/T/76V1kIu1XNz0ZepT1/TU0sX6/9vtSHjRXJdrnm973bQ++tRVjy/j/Kg7vHOqHueE1v5g03M3+9wDHNAyIE3rgFnrQrfFLFmVtc3DjeZ8a7chhgnYKtqXxhgOTTz2klqX6707g2mFRwXycdXvA+vp6H8uJ7XCmD/QT/xtx6R9syPfyNS3U7q21Mkfw8+DtvMrr2JyFy1Ua+y4xf/rMGuUXvP6NG0V9OLTF4R6dA+MJjS05jb27WyY+hvlAPjyJJaAh0rIrIa/RT9nvsGrsO76nt00DeJQfsH6ofXjdReW691mC3bkPxM0nMrMdair9O6djaWWB3E9vrxmvZpCtnlbxQfMMfYtkJ7QBfCrmV7peg7cRm8tRTbp/h+xi4YdOz+7DroN+874vkmz3I6hzHGvsc8+hu6V/VuN74xeGMMrvuOiDwv7eF4qelfvDdkE3qbvvk0rK/YuYpI4+9H1C6sG5fVPpmkeVfiuyHrdG2Xiuapou65v8AG1rbE2vkiT769b18WjH38jJSdBTD37dcU/ZjnfmYuWumtpVWSsfNVxlANiyAjbPdYGwzvxX0SdQUdBLnmbwIYU7zvf3j/HinG2CKZnuKxFzYadA6+yfFY1a+pjmerUGayg9ZbuxR91SsfznljHOYo6K+87q59qEt18PoFetxZp2mYY6Xs9hQ3Sfvk+H+k/rcksBWgk/HO3loO+pSZz4hI4++n0LdozS4j9Y0QzKr/b51e2MOkbKPBprFrQWwf4z3Ga9qrKcswbE37TYHlyswFsrGY1txwLPv5i47vV3DZoEuhE7G+wroI74j38L43PG3yeGvw9lsh59G+UEVhn5BGxptz0LvcPtoHTtI2XJiyo35p/t9Pf9v3YDsD/VZ1XvabM+9ZuM5b8zD2QDbWsKziW6BZ11vuyQjaHja5t94YBCOP4f4xc2WY7z8S2WpTFyAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiBoD5Vqtdrgb/jVxLp162TMmDEi8gUReQudsbvhsOOKvbJiNxo8VdwlxeiO4cN0l87tvBMIu7ewawn368uzVNRbYLaTyfFyMU53B63G7l3aoXWmPvfiBXoAO4GcHWOVo8yzeOe97tBi7+Yi9RsA7Ub95bqrDJ4SRUTep+lfNN1FGsFGx5M0RTX1O89drSl793uTpj2aXtqnf/RSJvVoOg3ef3U3ZTft3F+DOmZvMCL1O7aw81TfsaK7YOukBzs12duhGE/xdic2yszeYq41x7Aj9X7KY3cYsqct7KWxu/ZSnlGsl3DG7rj3vPyRx1cRadzp97yIfEPWrl0ro0ePlmbJ5fg2qe0iFan39IvdcKgHvLvnOcl6EB9PeXA9ZGyU+b+IdJyjl9vd+N4OP0DeDmbqTmzsAIcXUnZstQZe9fBc9AF+ZzxP3+eTWq/fYS8OuruzS5+xox5eybsHdVfx+7Rvz9fDvAH0s7Xk4P/3WxERuevOt9UO/CPlOU+F4Z91rxU7JvkF7tmnRe6tpYPcp/WC07Tfo5kX8fugf1qPHlT3E3tqaYOnI9ZpqFf0Begu3sWOMQHPVP0/iyMC2Gd4nvcAdDp79bF9J+Ux244J7IEGXvTsdZ6nCOshjrzWZrrHehCDrLRLjq8SkQfMWdYh8EYBvYT28Xaxw8MD2jTldcfxdpsBPcnjAJ6LutO676A+kHlamqcp2oC9yWNMsB7EGbQLZAJ1wF4TsKMdbY/64N3S+o7j1EvAO+kUInsgssiOmj5LeX6ibX2QykaPHp/Z+Aj5NLw/oBzkYdF6ScvemXTpJLW3Mn3keUixY1NqPEPbkYfqLPoJ8vdoyp7w0PdQ55B94zlrg8ADAOQFss5GE2TVyh95K8iizsAjO8ZTHucxbnm78QGei/dAHbYux/U2tRcZBO3NnhEONXm47dB37LjseYlN2TC4HnYTZI09nKAv2cgrrLeNh8Qp2hYreHwv2lnveeJIkNn0KkcVaoss6o3qgxkqW5Po+l8gr7Ur51Mm2AzQL3g/fh+ts8k6xjwIHeR4IT3pjFq6EGMFeyjRfpp5uuPIK3ie9RbF5UAbwt7x9H0qAgxAf/O80xSh9+06Jz+03o7vsIVZLxR5yD49/7Oi40gV7cJlT40JwHpCHC81WfjfbRiL50v92JvyQmR1Mbzkk77NImfcXZ/HnT9bz5ds02DshQ4t49kRY+UCOoa2snqWPdVBbh0vvlYPjdP7rPa8fSAv3oP7BuQQXnx0HOAoX5n3dW2PifNq6bspTxYcQGV0qt5nOZcHeh/jmeOJPHt/K3MiIrBp0K887352PB5rjvM59AE7J+Wy4Rjkhj122fHZ83JsI8l4XmfwDNSD50UFMo53Z3vd9kEbCUIk728os+d1im2YdtnU/8+UFe8P29Cbn1qP3UjZBk6tewHUPbwJoV4873jGK3cd6F8/dM4pM3Vs+b/6//U8/lg7u9c8UyTrM13ah9ZbG4uBfoKM9OanMF9eqv+/UNPv0uXwYoqIdeM0XeZ5SfYikaE/2DGG7RWMG7jOWTvMPNRBXp7S1GmfzLOzp99gX+BZuB+vs/SZY55OtaTsJs/jr7XPvTHURuKAzDtrDpYKze+qkHnrTYxlf6zUZPkTbZDjIrsaoF5Rrn4697RJYQc9RXmgD2ADL6gllTPyLFUsRiXkEO0yV59xFevSIpuI5wGYB2IeA/njMQo6zPYhlmera1A/7FPIzpHwTF5P6zXlIr3SpWMjVPkA+hD3H8iCXcPx1mCyGzfep8FLNPSkZ5fh+h5NU3MOz3sz6gp17sm859UV4F6ptU+L58l8vTkH2y819hR5AhdptA9S6z7WbmjXePwTyft0mfUE6HSef5a5rsz3KdQVZJTtGKznw3ZoZs2D9GRm0kB+8KyUx0VcdCYd0zX37NXV4O2kb3MDWv5f6/UcuKFP015N0dwcNXa5naOo3dFBzxhcoH/o3GaS9smVKTsbNp9nS0DGEmNvEhshh4E+w/cKyBaNhw3Rzmx5uEzoi+gTPC9DP7PtyuuU+H6R0kcY86E7UFbWM9eZvJ5H9KJntGON6xcisr34dS5S/00BYwLGKtZveKfEeJrZXZ4X4WawEUcxj2IdCI+r5ltltn4pkq/lqC7NxiPvm5qH9bIM2eDIZOhLmJtjcst9AHUGHaFrOl3kHTyLOmK8LbtjJs6hT/TTOYz5/z973x5eV1F3vQIFDFLaQgUqFFMolyLFFqpYLpoqICj1BUW5iQapIiJXUW5qKXd4uQkqilWiKIVXbh9VqlJssEgBq61ULWKw0QABDKRtkHAJ5Ptj1tp7nTmTQ1qCiMx6njxzzt5z9p4987vN7MxvyQYmssEX/Zt451Jkb2/hgVryn7L3qwKNQ/T/ABXvJvg8Q2gXeuMM60C1/4yZRxzylS6b6pt4ju5ZdGW7Yuah1Pg4g+Rg+eIVYW21L76/dNR9p87FsbRB71O7I/9RISfxnET3clsq/ZHdTrwjLO4Vx2Zub29nKdZWZ61RH2vMG1n69dTWhqhdDsUJ1MfCn9h89Sj6lCt1bbbxGLOFV8Qf2N/jbQ1xSSoOBSr7TvKgQEF2wucPA8l6nWJsFGKZVj+1WZ2Y6WcA6/7FONdg+Srg80zZpYH8z0Gt3wsv50MdKbakWH99fief+XEEdq13DYIeX47KZ47HTrbvJqszkLX//nyV3yvuO8mCP0/ElJBc+xNSDFGMxcY3hXIJ9XC0+dwks2J/iN+VpGIr2RHFL/bMe1AnW/j9Fyzfb3Pjw2m7rlafxzEoUJtFVIjf69ZijFPdFFNPP+8oAPQ/R/I6skPqD907lZE8jg9qtdneBxVMK5Lb1WSt6tc3OPpjsbZ7FpnHdR395uNWf32E2GvMautxRsZgY9asWbjkkEPwk1f5PlsDeOChh7DFFlu8ynf6z0HOIJ6RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGR8V+CIS9f5b8F9ajcrcdddbufGMoi47dnrRLijIap3T689nyWY2wX7zJ9iDPR2G4uJYzp0THtdLLMbp3x7ram8tylOscddV/l7uazLFundlYVWa+V/cB2btZzB6oyNBSZACy72FLu/HzkuFCezx3hnhTphlBstjLsMHz4+9zpNdzqqDuPjL7fZXWU0IHXwwQ7dw2f7WDulB/RGEpP1vkYn0cZyEdyd1unZREay11frdytpx3zb7IdUh3a9c5dcX3cATbadsO3x7tuuSu+x3d3cYelsrEu0M5N38GpXdrasaixSO2GVad5Fog4e0Uqq4V2syWy0VddO86+syhRV9kKEtlM66cDfSuBZ8+vPrfKmACA2auTuxK1g1NC4GOiLBvaCZjawR+1X9nfeywTZq8EvdbOY+1I/H1UAligHY7U9SWpDPayOerXNpYrrU503ysox6NsF28Hd7lKhLqZGWqa1ZnJk9r4qQxoX7BrUw/v+3Xo+5PfE2T6ghmlnRu3xWIAwNLGieGA6/HZLA9qDGUvd6kO2aqsczxLba5cQDtT5zvlqW+78Wtht213Zocedu/K31RkVY2zmKpfPYtiC8sGluzfqqzhQJnNwXfuKyPXrSw9u5+g3bpqv+QslSErytI/wrI1d8VtSmWbYRvruXO5R7rhqetlB6QbA9mBvzr4E6qzpHlGnXjnfmI38BD6rd5au2fjDEwb9FcR6Yxs1L/RLNtpL3vdr+rayoigsfTsLP1lhveMLZLTOJtXc3VT6zj2fZLj8eW5sfRb0mffZK1qMu1vCcXWt99fVHnwWOqAum4hZXSo9V3x+LqJ/JfLi/pFuqGxM7vdfj/S8AyJGnvZQv3es5luEJXX27nYHyq28t/Hu6F1nVQ2LY2ZMgVZ3xfH4mxrfv0464PiQdPvZTomPdYzeH/VynITZy+Jsn+8KkhlqBP6y8AEVGd9UNs9JiJjS6E/GjvfsS8/Hmez95376qPYZrTZ5ygDQREaue5q6iQ5UUzhu/Wlx7q2Z/JQHEqfNJ5Zq/9oVcbw2svoI8XKM8rqtOtYlFV1mWeolt5I7qRPPv1j/LhM/RJnfAeKvp4l3VLHbFxdtYvlaMtK2S69lSyksp+o3f3ZBaD0x7p/Sv5ryVuMKJtRRTYGZa3SvFA+0/s3zlSsfrX2FHOuVKZT9cMA5pevCrpRO2u4Q7IUsap0e38ou4jkXefMpg9pCKXcR4/Gy/Wnv8xaXocZcIZS1zV2FRlgFd9I/tQuz0ZUi50iGo/OOMsGUPo22RzFfG6fogy/3bzuPJP1IpMHzynjcEUCGj0Pfc1SPav7IclXnCHI2XhimfL4S88R95nrepwV5wVUQ7aUAUNVdlSH+lnX9Qw7iiH0O+mhj0GcDS+VxVH3UD/47+V/Na9KsbAJtTJ7xplNNQbeX7rmpv1cf3XQhcpgT89fyy+r/bH+DyBr+AGmYzfIN0bZTIdanQaWRXYw1qm3+V2Pz59QZikDykxlYt5KshcUlaPS40mu/XSTWaZY87KYcQiP7cfvz6l9dhkd01qO5rhNVkfz1FtYNrLssDZ3qq81B3VbqnUqxpx1jAX6fM7WhgoUGZ3Nv1cxjMjeJrKYzhZ7gHyfZ+OSzZDNkn6nMs7FjInOLhTPg9wWxWwZqXUe1Ykzn3lmRN1fzyzZcp2lDxjCtmku2ecDHWcOF+x5huwa1rhe/Hw/dQcDijNqZXsWZAe0Lmi2sMgmH2XG6ktdL57rAFUMANesSkazVFypyWScxQ0o7azaoXHxdRrJZ5w12teNJMvSrUR2b/naoYxxltkcvzuyORWZxwX1eSzbbpPjzHsJ/9H11+iA7IMzksmuURaKRHGpTIB6Rs1BfR1JzxHH2x4byR9Kn2pljSUONrs9K5YPPfNH7FjMalQru7LkP2UXxJ7GOp0DaGuRXVU+ohuVKalXExvsAzyltsaMYo54juFQX8VZ8VymamXN1VjHayYei6hNsd11GY/jAenlJeWhnnhtrVbmcLVD422MrtJ/PfrulKX5LWWVUY2h1PuhCfbz/VhuyHI4y5tNXqbRVsyUrlGBet2vSga15peY58oejea7HsXtRSZXh3yu+jfFPqM+TMm/bLl0y9e4Yoa4RN/3m5U1da84HvTYUXZ1ZlQnxaqmOYliG7+X+jO2Wam5ruqk1nIEzzw8WBiBytTzgsbJ+7QGq2mx7hZn+7f17AZ9cEbb+DpxTKb+dBZQyWBs+3xM47lSnDUZKMahS3KXyngaw9mF1Tfy3Qn2ArGxKpaer3617ODCOPqvbVkutHOFG+X1Cn/o4yOfpnsopkmxS2hcJEu+Tq/fyWbZMxeMuJLXVKZfzg/3bwjlzak1ofj9R/wd9h4nmnen3of0Ki7WvNfnGHF25BoZd4/iM1/pOqb+U2wnX+7+OfbVKcY4HVNfjQXwTP9tWRVMRpCJ+fG9hNT46pj6x9YUi3iwVibnqB+n0G7OczsZx39t1ZfpXlp9DEDlP1zoeVI2Xn2sMX88USeeL6feHyr+Y78ou7GYuIDy9eXh1MNr+N2XmguCH/bHzWyPr31XxUTq51rswIL7j9T8RVC8p2dUP3msoxhI/aHruC1si+okdLXqmH5Ti9XtvkQd6XEca7l+xTJVixFGdsqZMPrL8u/9Et9fdVPr7itRSVH8SvB2VFKoxuOqeLTBjg2ENVCxjGIy2fZU3yl2TdnJgbCBxkjEO0vkI6ksyazh9FHJ9+Dx/7pIbrxdGnPZA61nmL3ZJyqLkM/i9av1gTJwKufm53lbJZ8xSyRQ+thdo+8u03EW7ASDZL/ZtFNrmfE7G6/TxlIyrn6pxVZJ1Nn6Rl8c73jfxzKo9vh7YrWpBmNu1bMqDnTfoFhGYyZ7Ys9TJV9qs895rkBg9MjI+M9CHSpXEDIGBzmDeEZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkbGfwneQBnEMzIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv5TUIf8z8yvBur6+vr6Xr7a6xcrV67EsGHDAHwLJd2Gg9QvI5pC2eV0qqJWEdWEaNKMHrY4Vov6RlQ2ol4SDYlRx+xBrry5oosSvYTTjYlORVRqTlMRU8qRvqfOqGB+ylI0ITeLRsLpO0hbtz8p8sTy8bRV2ZLld1gewKu0dRVVeppHhA/DeWCTUKy3W2dRZ911A33UE7dtHg6oCyfYvcTeVTB/Gy3G10kzIsamVtJkjDK6nA6O5yjSWXaILnZaWaeg7ttKN4luClRTN4nKw8ZgD1KHiU1nQYoWhm2eSrqb2ak6uq9oiUSDYs/F7kVXiv7W6auBavp0oGz/jKiu0xkNhPo6poVNUezUI1CTTMeKFSuw/vpOozIwFHr8phXAsykqTkH6orFM0QmpzRTu0UYD3y6OrNhWbItqxJRqRrVVUFNJgZyqRTR0oqE8h+WJVseoOwGUtOVOpMFnPYB0fGJHeizR1HtY7sTSzYUuLVaaH4VijYaSFuqAjW8AALxIN/wQjcDi+99dXufhqHRGnHksRcf9xZZQjm8s60xieXVbKI9pCOUNdp0OfRAtkuy106FKhkWto4b8wOrILn4uqtNmdRRyyDDF1wVKSlvKW6dR9daTaqlH4yu5dx2Tjov+SpRWKfrcmKrbqOrqKdM9OiZZ9HtR/0WhXNATuWzL5x3KMqJ8x7MAzn7lelzhjyW4KTqvFO20oN/JH9eiFtV1nM4rpnSXffS+j9o2hNfpbbY6oo2jLNVT13tch2WPdP8B0NAVlFlu4+NnlkwbRWI97/V2fj+qPLXeQcH/Pj2NfNrUuY+fWOrG/z0Y4pVhDcGQrNiVznt3a4ZM8BSWovu8zOocoUCDcjua+tDuNjmma5POOQ2idFvUZwlK3BHsqy7ec4T59y7Jzv4snS5XGB99F/21609MoSt58d/eF52TXvv0RbR+Mc1ZiuZPSOhIofOSY6eilI3QdWJqwqcB7Lpaelzq8CkA3gQLzgbwa1FHel8mqNMAlI4JKHVSsbTu6TTD6mPZvtQ4q8+lj+qPVNtlyx9InKPcTqWczdYYOFWd7HWqf+kTxp0eyqXUiZOMou5Fluqek/ihyWSpkeUZLJtZfspo6kfxWTskC4r9bi3rjGYsIorsoezfbreFT6IS/I2LdhW97aaohig0v5c4F9eJ5dgxJKpjdmV/6sbN8e98PpWaDwKlHQZKfZMdkD6bn4/9emGLWqxOTHP4cfusPlZQFtNDOnhuyFFA30rgxWGD4IulxzFSlN3xMemoyW0hhCnq8hiiJm1g6b5BOlkrPogRU5oDpQLpXK25empurbGXrYipMIFqKlvKwEir0hkFxvs0hPIuq9PEsoXlZSy/YnUWNIeyjpX7dF3Xp3juJ5voviqmGfdzS6JjbSx9jnJTVFfweZDaEdPB+1w0nm/Hc9MUpCPuI9T3ug7HZITRlRfz5Vp0s0JMB18LKfp1yYvk1/2Rju2IsGCw7yDo8W9QqcdaK1E73oVqSBfY/iEcu16Pk2Oq+gQOoLzfEI3ZEItpejWX0BxD58xXVc2R3P/IVmg8Ysp4oIpyuIjXE7I0iecW6l5O1c621lHeD+Lhd1iVj3Hp9I91oVyPx99vsesJnAtIReTTtyyrYCblv55y2+Nt5TOP4HxMw9uR0g31h/xGW6KOdFN95msp6l/1h2JGl9uUT4gR22vNsWMbkPqNt1G6KR13+ybZUcwrnfc5fn9wPdC6zOzo3EB0PsazAM4fBD2+AOl4VLGzdPPORJ0E9TKAciyB0lbF62ifss/qe+nqWDunY4qltY7leqz4+t7oN61WRzacbR5FO+2yXeivdFM+y5+nIXFtACPNN3QyHpjEcZG4bGP1Z0Z+yJeUJGby58tZ9l5plZpYRmuy9WYDxdAs+unRjCWSFOIxjbvRco/jOuBSxaGShQRlfR3vvyG/d/rcK45tUpT3cWzjsqDf1dKXeE04pnEHStulmLGWX961Rp1a52JMj75rDAZLj68C8BkebWbp/Sv7yHc1xZzi94k6aqvGLjVO6leP0WK5kk6sRDU0hgOJt0Wxbr5uKPW3W8+Rmn8L1PlxtEVL2+wcY8YplA+tHY+yKpNQie3ts9a6F7Mcnri91sgbWOr2PSk9lN5Jpvz9n55ffkTj4/NMybR8pwxL6l7xfMrr0P7XUSb7UjFavK7oMX0bS61tpV6pK1bWGMpQXpuoG8Pn+vE7J9lWW6esep9ZK6ZYFb3WMz8D4LBBWuPqDz7XkV1MvZ+KYquJ1PlFPr6xvZeOu19WP6qvUna7vzVzj3tie633GIeWhzolX7Xi/9hWnGbndEzzRNl4m49pqDRFl0iai9nspuDXH/782Mpz+9m/Lmwp3095G8t7PGfNadf8QxfQb3ztoiEUWtdek+Vcj8e0rp2ywUI8Lj4/VL9qXFtYbpioI3uQeh8U30O6/xGro2fUGErX/Hr6fTzXH8h6i6FqrpWKGWO4zKf6c7B8sfRYbZL/01ypVlslt64z/Y39EfZZ/q+WnMSQ7vp7Nz337/HyiNe3gTJ41XPVmuPo/s0sXTdkryVnuofLEn3UwWzzvjy8m63x30Ilb4tuZa+Si3fRhX9V5cTand6T6V6zavlwjznj9zmx/QWqx07zjtTcK77OMXZM7wKpU8W7PY/D+vu/Bl+PbojaFcfUXqctcS3FhurglAzE8pHyvf3NF1J69C4EX3zAIOjx71Hx3mJAiGMQ2WKP0eJ3i1qDTP1/TQRf41KMWsznJHdz7AfSG8p2vdnrYn7I32vu5rpR/F+R2qjnc7nXs2mcUu8YCYWjHOb9vntdcerWx0N889Kpbw4HGnniLPu9VEoxuURgeo312zprR59iTen2QN4jxuvbA8VA4sj+3mf6mnUcQ+h7vBY+GJBN5/vzmnFyCooh/hod9/9Jiv+nJNUHr/z/uDIyBhuzZs3CZYccsspeYVUxGsADDz2ELbbY4lW+038O8j/dZ2RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZPzbUQdgrVf7v5n7y2P3X4w30D+ITwLwvH3XbhpmA+hK7XaKs99pR63v4NHOvSgr8UTLXrLIs80ByV1Gc5v5QbuIlTHFd3CqPeOiOkC5K5s7gEZz59hwq3IKy8tY3qydn74z1Xf4A9gtcSttjGzgDu45IYNSz49GFFUuO/ZIAMBZL30NADB1jbCD+dqnyut/eN2w52P0B9sBABdcxz70hLZ3sGSWcvTYmOiRW7UbjL//pz8Ax7dDO6i1A9T3m2hnlrLdaEucZ1/QLk5ly9GOwIayylyNc7wr03ftNYdi9kZRHR9njYd2/XGn4GirUmS6Vhv9ntrFH2eI852osbyvyk48vw7bqh2BfdpxGWdDfRaDgmfno8ykVCuTuGTCdwVrty6z5Kt/2z3zarwjdkhlXcDur2xV8hy+81z3VbYR362sdiiztH7vGTq101cySRkdabsY14rKq1Opu/ls4/apqLvGvDI7+EuHc3fonUy3cPY6AIDTv1XKz5kPhM8HbBvSi2+JhwAAu+xwd1HnW29im9mMzT5f9sfDO42tfMRfNIbyA9bUwhtxZ6IYD1w1lIHt5hZ+UAYAz+QRZ6tK7eCPM9Q1hGJ3Sxs1Xz5C46WG+E5MHuuUPTB5K7J5xxksffe57L2yDUi2fFe+djx75hqgwlAWWcoF2cl77RhluFu/UzYJl3/thI0zsem51sLg4CMobWgq0+jnou+prCgpfxxDGR10L9/hLp9QK2OSnpv+XOrXnWozbXBPnP0DKGVHcqqduRYb7M5dvPJryizabTI1lBmLuyW/7Jf9yyq4mTvTG7hD2MzB07NDCrTGa8Nu7QZmGWi+rezvLT/4JwDAfpTJi9/J9KUHoIS66hZ9p44c4bKtLN6UQbnOi0y2T2L7L5IMqvSxkE7SBhaZU63viviNOtbVZr+X/mhcNN47Wx21Kc5e6pnqYmgsPb5TPyrGkx/yWDLOHC7ErBHe1u7oOyxDveIX3xUfZ9qIM14Mhj9+K4JC9Jdlw1PwKXtkbBMd0lVlijS7NI5yslQ6m8qmoh3xsqXxuPsx9acytZyeuF5sV3wMaUdmKzuSZMEzguja1P19dihP/VaZw5tD+b2mUDbbz5UVbTjLG+gg3WdKbB8Ovvujbw10Gzf2WiaoI5SFRe3ndaYdWNaZqdiBcWB3A7+bTI3kGHRqXKgjvYmsFMkMD++Njum7ZymIYmcmZ0UFz5V+J/+eyAaRYlEBUJnNXbGDAg+12X1cnE1VeuT+KcqMWtgizyYU65/79zjbmvyGZ23TtSi3vedg0GJqbI6KeUwxBnOqqxbyHbNt+PP4/MAxNHEslVk0Rq1MtBoXjZOysaSy3QxguWMIbVav2y7NaV6ISh9f2rMiezx/s/zLVof9Oo1tVCgy3Kr8kaUymx7J8lSrs7wplEsZh57KjDQ/MT1slZ2UbMlHpbLBpfSXfVbXGEpltKmZ1Vsxjo9znKly036OA9W+17Psx9mwn4pKoDrzPn/T5Zn4JbeSD4uhp9AezpO9lJz588iuSkfoW+pt/tEjvZGvSWUh0nW+jcHT49lIZztUH9ViY+BzFJnD97ZzcRY7Ca75mBvo1/egLM2Vb6glLzqXygJPVLDBxddijDPF6syTfLDs1fzHMxtGt5/Guv7I13Eu28Tv8ieWxXTDhkcBAGtuESalT3w6MOFt1lfGrg9/KcQkJ98ebjbzpRATP7mxxxLMSNgj++Z2hZOBLj1HipFDUMynBTqPe+Ls4Jrf+WJbHI+mMsAqJqqVFTyeR6X0KGZU8t/E2Uold/7sbVF7mI0xma05lhv3NdLjeH75cpkN/Tf+u8FAF9J6rPUuyUcqi11/2T59jq/fSSbkF/23T0V1Un2QWtsSZF/jebIv5ui+vPallPWDbG20X/txZ+LzIZXfjTkLNzDu+x2/D2fpGcRHB9+wxm/D2thLmyywkxE7ZJHR3GxggShL2ZvtVJyhuJ3z1fEmS0ua+YF9VzBFmT7L91cxLiQy9Cp27oyz2gFVfiwZk8f62GCf1Y5amU7bWE6NvvvcQPfQ+pd8Zy3ZEuyZh9KuFOZE9s3ZB5QhMZYtyfoziXuuBjY+EHhc94izbgJln+sZ1fce96jdA7EvemhfR4jHRe+nTN4WxdfWdVxXFa9RXodyjtRtctIt+xEzePl8IIrblmot3uaiavKfWJ7E8hZU1xGzrbsx+WoxeqiJThqrKd7JLJX9cL6v98TsN/Jfvv6rOb36XL+39RfFJ/MGMoZtLO9NnKOuFoxBqTVIHVOft9k5yV68tut+OR57dWyK8SdG6h1SXDeViTxeZ6nF8FEDxTsojcVgxNUfRxAktTuef7gs1GpjlL23Suf8mrqHYlbvw0ujOqlMrpSd3bVmxsOdteSP/VyxvB8/jzJe2xrKWN6/VXrs9rqRpWyHbJD5zCVqN59xZEMoTVcf/tLYyts/xPLAurLSMZTtdfj9IvWZ+YohvG+x9Ch9aLM285nnpdhzYtTKxKzf18rATz0s1tUS4zORergowVA4mnF+ka1WPtNjI/qYw3iPa1TXbbv6qC26ub9TU6ymdW2XN34uGKIkk7XWdP7d2BMhEOuHPe4wk8lrYp9dg3GuKmu6r2tzfMS8Or+G/tX0EYpvamQQ34e/n6PfWzb6Oj5bH8dnPOP2JS638dqcZClh04Y0hfIt/H6QyZL8qLpBJvhZW3ujao67ZBEAYOniiWy7vUc5in71Stn/1LNzwt5NmzNrj0QdoY2lj2X8Px0DyBadZAMV4vcNngU+mhN3R+8GktCYuJ/vj5XR56ttUXtcVyP5Uhy4yO12nEldcbHH3fFa6tioBMq+ug+Dt8bVH6sB7ewQriH2+ljGMUitTPyaG+n3KRbbiPGk1/qlPVqr2IPyO9fHrYklx6LH7STbX9jr5lAuSLGJqo2KU1PrEfod59TmMov3zFr3Ygb+W+4+qKzDZYjG7we9GY3wv1rXbPaZso5i8OUsG6n811l7lrbwA31Tn6//xj6Wc4wDLLN6wUyoZ6VMj7Z7VLFwpf5nIJrHFP7MWVrol6tYaF2O9Lt4flWLGdNtrGzO7Sw1j3BdXRkdi1lbgTL+lHzpOTzGj9fPFKc3WZ3+2GZcNt+LMNip9wUZGa8d6uqAIfkfxAcda7zWDcjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyBgcvIEyiGdkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGT8p6CuDlhrzde6Ff99qOvr6+t7+WqvX6xcuRLDhg1DoFBw2k79b7woS0Q302B17ozOiTJlSVmloGgRFc/vo98A1bQwX0Y1REus+4tm0ylxSItxFKmCnd2sjeVzLNtJM3bAzmWdySxbWM7WBYz2cApLMcI0snRWC1JmrtEQ+DY33jjQmEzAoqJKN+k0PolrAAAzyRn2v/hSUWcJn+cX+EBozmkfCye2t3s1sBTL39N2Tm0Um5dYe06yOqIZvIHlplFdAOjQhzae402dSaOVlKKjycEm5qOFKbo9XqeolKDJPIAXF5Ngu1PAir5Ux0T9a9SrQ8ifWlDppOjbRZMuOTYO5RGUi64reSBFYRPTsOje1jG9oj/RM6aoh+sRBms6VqxYgfXXr0XTlEapx98H8A81xGqI/0F91FDjaqJ1ks46TWyt/ugP6lfTtYKyRTSBayXOkcppMqnIFjxsdUQRw+cqaOicmkfUNaJEFx2p0zzx88/YNurMsH0fK2qsmLlJ+LBbKPbZ4SYAwIG4vqjzJEYCAE685FsAgHknBmOy+8qShvfM9U9ja8IYLC94fMvf37HnhwAA424nvdgvJ5ZN/QCfbSzlQzq3j/WdukhUZlfrxDllneL5SbM2icZroVNLUV9ETXgF7e/Qfcoq3VJOUXWJqsdpgETDF1M/AqV8St51HafUjCmBYpoyoNRDjb3stdP5Su90/3PRP9Qu1XW5bWMpGqKYWvpZAOcPgh5fg5IrMqLsAlDqlPyfbE6L1ZFdU//I3rpjlK5H1LYAynFRP9Jnj2gqq3QNhBZWDkixhGTaaY1lnykvdRzDvjlllTGUvU/w+1k38YNRbRU+gX0lakFncAssYJjw13sAAIv/Vo7v+7e4DQCwP2m9zscpAIDDS0UqcMFTgX931AaPAgD+fprx+Er/vqJm0Q/ubhRb8zUO8l/6vdMsN7NsYil6WJdJXnPMjpWXsa4rx1B0b04VLDkXlZl0zCnrJRf6vZ7DbWnkB6tk1KHfKz7w9ki3BouCU7TcN9kxxZxxO2RvugHssFp6XOrwKaiMqXVt9ZPbMPll6aPHO4JoMRVszixPTSLn7EIdYx8mKeZkC2UPXIdje6t2ub/XWKmt0usXUI0Wloq1/Dop+l9BchbausZjIVB96SLjoyed/WXfOhIAcPyD3wEAbDi2pHJ+8i7KMF04hnA691vjEryI5ULFO7JFpmNjKCdiF5TKOq3WbI7ZaD5ru57BKaFJWzqGfbcsZT8lr/KZid8XSr4ny5j2Eih91ZxEHT2A5mEbJ+pIb6XjsgdO0Su8t8a5jaLvqdhxf5ayQUfYOfkJ6ar4lRPzhuJemwF4BsBBg+CLfwrgQ3ZGYyY5SdF66nnmJurEVIaCz1Hk06SH6l+3t5IF6WFK3tR3umdKTvR72UDd83NWR9f+SPQdKGzVFI7LPFHhGjXmGNqhQt45liNsri9dknm7mfHctHLs1jg7KP1LM2gHqAbrTetEjKc/F2Jq3BJdt6JpeuZa9LkJKs6hPNatY4pzUzTq/cwTAZTj0sDyN4k6gvpKbU3Rdda6l6iYRecd+z5gYJSgiM6l5vjxOV/vka2Jqcdd3iSnP+A1jh0EPY79se4Rz3cPsTqxb9L9703UkY5LRz1+kU7qXrVsey2/GMNpzr3PgILCuyIQjOdjgtsV6ng9x3A/Hr7LqmgItU4UwmRsedOfiioTsBgAcDLOBwC86x9hTnv85hcVdS77BxejnuacSyJwvt2rhaWWTFzcOtv4Qc8sv+FyIsMSU7x7/8YyMBDILjxux+ZEdZpYpvw84+w6jkmft0f6Izlrs3OKXRUDyJe73GqA1J6Uj5L/kd8pDG+irvpM/tUCn9FcH2pXPKs+dJ1vQAjY9h0EPb4fZSxvcjuU7eiO+9p9mxet6QABAABJREFU3kB0Snqj+Zn0MvVb9ZmvPXL+1qv4RL/bsayDJ1k2sUzJh2RZMZXWJR6wOnp+PWNqXsYYYHfK63z667Hjyir6KJP1jVBs2FjGKFPXCOPaXEclvcNu8U+WUm0tSe1rdU7n4tRocncX8xGPDxlzj2BffZSHZ7aVVUY0hLJL4yN/5uMc+zGtYXrMqLVHrQWtit1NQff0vpfRko6dyLLF6kQx8ziO09KUTMT+vZZsp+i0BwK1XzZEi4qK/VYCGD0Ienw5+m8zUD5b7KtSYBw1gjFo1yV2TravVn/E/erBonRqAL6hWIfWAR9D2udibUttTNlmgb5hlNkOvY/hK45iuOy90Ml7hfte8PvQnmHb23r2ojAZHrXzsnC5L40JJw4vfz9qu3BuTbwIAHh4O95kuTWtQ46Y7wTqKNu+ZlfYTsm/bGub1ZEMyT/X6g8hNfeKY05/QaX7yW/onjYHm8r6s2Uz5M9S8W085xosfNw+69qy+/K5Pm/UGpt01deN4vg6bvPqr1X3H1MTI9iXA1ofNozi7zri98UpMHYeYu8keuP7Kb62eGUkdapzVdqmfvaYXoqndZKEfZnM51lQ616yPbKvNoby0VIb6fg37Od8tM/fGuzJ9S8dCADYaI1ynWXpvVxzf5EHGK9jvrejjaWeUXLn/kk2Wc+udy6+phPZ9Mmmh1X9kFojTr0jBSrjJ903Xpvydwr9XcehMdMz19JnjZN0xevWsgeat8s+JWShWE+gvNfxWfs8XlG/+nrEYL1v6kePC+ya+FxrzeSVwMdZ+i+5kz67ndM6rb8fixHPye1d/8X8/RdjO+/vC+L3Y6l3cmo3Y/tJTaH8S1ljWGfwwzuvHWzz81gbAPB4Yb+BpQ8GXT1i628CAK5dGeKGngkjygudzVLvwmQXlvj777ZQ7LFDKOdS7g43fbw6XkP19QTZYPW9ru1ypv7wmBcAzCZXyXvqHe5AzvWHlLzE2DtxLPVeanVQa+0vPudrXLRLI6cDL60Enho2SDH1eDujGEATvFr9WmsN/5jou+TG16z7i7P9PaJsR6yrts5YR3vZJ7nxd4Nqm9oj2XQZG4jd1zUbWOrd1WZllcNDm9Y4j2vO3wtrznuddmtRpQEhTv4ztgMAHMt+ObeYWwKHcH765fUvDwf244lGa84R9Bvj2T/r2LmFcdvlY+bGJ1CuuXCN6ADT9RtiPYzqJpF4bzCGccoyrU3J9/s6mObb8hHxOgVQzrVkd11HY93UGoHrRryWqfUS18OmqB3xGnoKemaXu2tTFRN4Zf44I2OwMWvWLFzxiUNwR/3L130lGPYv4IGHHsIWW2zx6t7oPwg5g3hGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkbGvx11dcCQ/N/Mg443UJf2AMxUHRDv4GlimdoJrR1EiR0zi6KMhskMV9rx1ROVnpEwziYZZ1wEip1DP90ZVWjXtbjLbRTr/M7qaAOUNjKNZKYHTx46j6WyLbSwfLfV4e7uHW4KzzicaRfGFhlhgZNxAYAyO/hopjU9Dl8v6hyJkBHxMGYZn703M4iPtHtpE5m60BKprbEzd77tyWxrB/DEZfZ7ZVZUhtWno++OuoZQave573LbnyljlHyovZkffHeaOpY74HZnxon5numBuCGRha6AMic1huKwsGMe19gOtiJzuHYa+o4x7TTTbnOpucl8F3fdFjthVcd3qGvXb5StrSqLgaOFpWd7uhbpDl8dPIhyJ7int4x3uOu5UtlUtMtUv089j3YCxrvqgVJvpbO/j74DpSxwl+dY26HaqrZyh6OyDlRkZtdOQMpdp+5pWTOKzNh85iKbg2XT/hl3OspMfSEUKxZuUta5hyU3l47eIejqpx4od8Hev+3W4cPmoZhyPDOH24bhMy8OmYp+PCOkRboeBxbn5j3eCADY6PaQ/X0X3A0AWHqLZRDXLltt2v1/fHbfYTqHz/o59uHVsqVmJ0eGe6Gzhb9XJvSyPcWYt6rPKS/dnsVd+iLbHo87kPQJVecoS0O4y9nFFr4j3nGafY6zgdPmjDR56VTGAclHnJUFKLMTSDck974jVfeVPdk/qjNYIcM2KDOIU87q7Hn6Yp3UOPtu7djOpbJKfpildsi6P308qssMxl2eWUG7eNuiuv5du76VdUG7tD1Lk3a4c1dyn9pjz6xLnhVlXhplGcSX8zo9nlUAFZmPRv21MjvSRlu0F+e0E3xLyrAyiG9YZHwD9v5DCwDg2ncEGz6e/fr3tjKD+IRzmZ18CAODL1B355ssDWXfdcuPqF+tTpGVqfJxigzEQJmVdRmfeZlOeDYTyYX6s7k8NaIxlF3ytX+NSqDMDqBnlF93/VZMVsu3xFkPBc9aMJCtrnEW3jhjnEOZBJyZRvoTZw3RrvhnBtCGl8NbEJ5F8bEyZCUyBRVIxTsx9OymnwtT2fhgWfoMIyhvXT+uPleMmfRaGUIsQ1BdYyj75AvkB5xpRD5FcsLfTNqhrLKc5cUsbyhPYQ7Hc3QoXnqR1D8Hl1X22/E6AMDd2AUAsP3WvwUAfBefLeosfs8EAGWcPf+l3QEAT15pdvIClh/gM/dK/1rKOsso55dR7wqxMR0bzXPt6rO5UWlYlpJT2SzZAeqqJY5Bl+ykxkn228dZ19EYPhGVQFW2kPFNoVySyoAkf57KAqFnjdmkPO6Xva+VvSSWe4+z5WPVNsm9+zplFRfDTRvSmd9WB0+jsn/j7EGJrDBVz5PKgkJUsWwB5fgqvr4zKlNYEpUO2UnFUz6G6k+Oc5HNyu1/HIcl4gTNjYtrWza8ZS3RMV7vC3YZism4z5I95x/h2d+2eekr/v5oyHa49tnh98+fHPTy6ctsUsyp1HrfDpPhp68JdgE3m73coymUW9HXXKn5mPuzaD2i3mKRIkutgnHFfSYLx9DOXtHMAzGTC4CR7MdOz3iJaK6jD82VdSrkW9euxboRZ0FJ6Uec7b+WDumcz2UlZ5LTBBtDEd+ozW0sY1Yt3WOw5sZ7ojJlnmxXrcyg/WWZels/x4H0GMh2KtuNfu8xgOYfevZaup7KDh7ft42lZQou7h/HS/5b3r+H1/4j47l2swedXBtT9wQyHfSi5LFciJ0AABvT7zw7MsxXby5SKAHbbx50/UMIzD3X/TrMQSfZwtyN/8O4QtkPLckTOtVuzXVk+5yRTH5DsSdlcY+GssrclD+OofGRfVP85HFPnI0pxaoSMRL0yS+msnHpWEPiOtI1+XnXbx2T3sXzX4fuJX3Y386pbf1l/UcixkzEAEOagL6V5Ri+IlwLgGuh9TbPK2xynIXOM1pSD4dwzFJrdXUc376YnSuVzbGNpclPYa/1u1Scrb6pFRNRlieyrYtS63BxFlPptcdPtM9/5NfxtAfbWBW6xt3+fDsA4O7HQ0z9+TW+VVQ562th3WxCX5jbdpu8PnTJ28OHNh54C8vr7B77bFbZZK0tzXEdod7K5M9kv9bbWoGy0sofFy7K4zDF0LKT6jtj+arybRpTj41kO5fWqBNnl0xlrpOOxRmME1j618TBONt5fG+gOgNgrczhtGWTaNv/ZKd61FeyrYrZ5DsGyx8/inKtWrKUanP8XP6+QG1lHFVkLE7F26lrx+ww6mf3h6vAZNYZZ7X3bI6MM/pkkyUTziLSyDJiPu1oK2ps1hcMjLJ6rzGd73naSnYtrW1tv2OIfU8pJrnA3J2DLk3iwvEXDuDi91eKKph6U8iSeNUlx4EXCPBlm/MZJ+ym9zhqo8d68hd6Vvksi7nq+fseMefRJo6wcS7GNc4E6/3rPh+VYc/SeOzVHptDzm7jB5XyI6k5cXxs1xrnUpAdkh3Q/Mp/GzNMpaD60lH3z5LlOBOs5G0w1riEiH0hmTk8xawj8H1Qx6qwf9Am99Z6xyBnbH62eEca675nwY3b+FTieOwLFCPZvHeBfL+u7evSHN+R9G2djLdlkwHgVJZa1mgIxWdvKt8Tr0s/tiaf9bQ1zuXxcnzv3jn482v+wRfXZ3O+6mbyDl78/ZTF0Vyra0+t8Sq+4LOfZO/vLpJfpV1ZkIqtY8Y4z1AbM/2o9FhJ+hPPzzyGlh9WPKr3W/4uWGP2g6iux/HSbb2TPjT6DpT6m/r/BmN67A/dmsdRf/v4HHXWL8U7H7/vYGEEKtfdI10bb/HXEsXBY9N1AZRjVst30j5Nod2ep+fz+CdaSxrH8Vrqa3+SRb1TbmDp8hIzd1m7vkgZGkt70Kqx9CzYGh89ayJuH8U5F0PhYn3blqZWXBTeK794Wpgnfx4hvlYmcQB4Zut1AQDtXPxed72gxz3ftoVgxfIKeWUfKt67cb23UD/a/au9f/U8J7B0tpaYUScV+8brk1oL8nvEdlZ9l2JPqzUfillDUjFxf1mR3U7sGp1zWYp9brReCaCUnXdFdVP+Q9dTn3nmbB7rFBPAYKARlex2ssWav3B86o2luIj3a603pdg6gUq2Y41d/A7J19fUjpjtxeZiVe+2E+2azL5boHFxv/rt6JjaZeM8ojGUXbKl9HWj7DLHh+Klh0JcvcYRIc6eiEVFlfOeOqOiWY9vMAwAsIulB/8OAsNt8X8ki1n6/5VJJsUAsL/53IUxA2zKn6o/JffUgxt+k6gjpNYKYjwSlQCWyWeqHdIDW9euytAtffC5W7yW5LrX33tirxOtqwzl+kK3v+eK25HKHC45lQzquWplDU+xwG6EwXvnlJGR8Z+ON9A/iGdkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGT8p6CuDlgr/zfzoKOur68vzt34X4WVK1di2LBhAC5H5U5Q7ZzTDpmB7IoX4h16sF3S2rFlOzjrmFGxr4UHUjvZtPOojaV24tlu7eKYNOFEO6eda9qNpV1D3VaHOwDP5+6tIgGgZ3liP0xlxrrzUVkCWON/w06zgzYOWRSfQdgRehrKzMVPcLeVzg1lO/b+TktR52dHvh8AMB8h6+FfmPLl1senFnVe+kPY3bbZXqE/H/6+7WJspOh+oi6U/+Txr9rjKBvTLSyv4A6oU223mbrzLMrHCO5ka7LrXMoUNKO4i6xDnee7nfm7uqbKe0+wKsqG3KEMlMoKkcqKp51rembffcqdZ2MoN8tSGQ0E7Yr3nWfxDsfUjjHunh1N+S0yR/a32xIod8bF2ZqfBXA+VqxYgfXXr5URIY1Sj5ehlHVPoaFdndKjONMJUOqS+rG/7MBAseOy0CffbR33dZyZ2evEuzwdsc77Tt9oV+h4CpNnRWLS0aI7lrPsvLKsc/FRobyM35VwoqWscvLWoa0fZJazx6m72+HPRZ23NzLbszIysHt7bi2vU89z8342GUCZ1RQAbmB6/wOYRvWCW/nsfyx/j8dYKnGrNsxbsnP8D2VwJHVtAo//xeq0S7e0O1Pj7jugaRfHbVB5arbvXpWOSM60w9XGv8hGqQPuR3Qt/U67gRusjrI16KGVcSKVtUCIs1MA1bvYJXf+zL672+u4DetFGqr7DICDBkGPT0GZXakWYrvkGXXkY7VTWDrjGQD0/DUyF49n3y1R9quULZZdk732Z+d9d2cG5/kc5ylWZ57GV/1LObnDsvO9XxlAtUP8U6EQswVQMnmcFJVlknBMfiGkOt2GSiGmDgCYTZt3DC4HAGzy6xXhhIckn2ArxjQBAE55/jwAwPfX/nRR5aNrBVsx6oWQzrvjfWMqH89BsgH0sp/G2m74ySyviX1LGQOgjvX7pD+6icnt2MZQSjxubrYGaNe5skgo44nFRspeX2SN1th5BktdJ2YtcNsuWZTtiHUOKP2F5KwnOg6Uu8/7yxiRQipD46bROdnE1ffH1TocZ/xOCYEybzBLf53paJ/8lWSgPxsEVMcyqWxr1JtiB75n8t+5n3OprHhxZjfP4qAxZ/A45PRQ9l5vdVSfvnuaxZxMEFm4SLLf7PST0n+IZUPZ/o9rvwoAcPjo0r8fwucQi08LpgAAznzma0Wdp68bWdHUIhZus6YqMepC6ZR8nmcxUGZ4jpPsUnIGqbE4wo5pXONsZz6zV59J/jXeHk9Kf6UvqfmU7AfbWKSgMTaGogNk06Ujno2lv8z9Lnea9+j5UuwdQipzhDLFyP/UmhPI9zcgxBOjB8kXO7tWrUwrMcRa4HMC2bN4jlELqfmHID2UbHgWII2z9DH1e9nQJpaSzdTc2m2oIBnYODpuMVo99UXZlNrZHydYhizFs9uHwH3YyC4AwDprP19U6Xw82Md16sOxDdcPzB6egem559eu+N0T3yetj0/jL2JJt4xlzYnnamKp7N6eGTGWdz2Hj7P6Sll25HxdvzVm0lXZE/PvNTOZCPK1YjqJMskAKHW9LfqekmfJZCorktqaykYcZw2qNb+LkcjEP2J6iGuWDxsEPb4AaV1T3KNr+/xV4yq/w+fwbPI98XxX4+7rT3HsGrM8+H3jucqqQrFDA0v3H9JRjY+ez/zY7jy2Hr8rI9rP7DLMKFq/X9BRZTn7+hrHFVWW8f5fuTxQhCw6NtiAx81OKAbXOthchDUvZU8DgIv/xtjhSq5jXYRqFC7l+upz4+gb2/i9J8pwCAD1fOZCPKLMtADKbOCyA7XWeQaCWhk1Y3uSssUxK1yqjiA/lMqgpHgwlWE3ztqme7oeyWerHalYfDzC3Piwf+PcuBZka9pYpljPZEv1zG6HZTMUgzjzQpzVsoHlQGygQzKgtTrJnfe9xjNmdzG7PXarystJRU8oqxTdwDWm998dlP1wS3N2DoIebsgUrE9bLPAc6SR17q66PavvoTm41qLEVrnMs/PRLinDuzK6NVgVkUDEolnhk31OA5R65GsfHPNxtLdLZTt6q+sUiHXOr1kru3iMgdTxTP5an5GuyX94Br/+/EVq3hz7cL9Xf9ntJVPPAPjsq6THn7LPurbGLhUvx3NQCsVh5nuviVlsHXH8JRvotlTHdH85G393FAljwVaZGhM9o+Yz3Yk6VJw69sGs8szbDgxzo6dfCvfs+udwAMDOG5fx2GgEJsoDyeT1kV/bOo1cK/Xxf98TDMOtFovsz0nwqU+Fta3n92U7TkIJTRljVoh77HOP4gzpTTOq0RQKrVkXGZ697/j7Oup1n/TP41vpamoetCqI5lpjLNYr3iPFce7eZZ3C/rPOULanu1Y8p3s22DE9G9sxuTGUFTIVr3/5+m9qfuwYzDWuGNIft22yz7XY/mJ9dkjH1PfqZ7+H9Lg1Opeyt7ViIkFt1fj4dSRfcSblWu8mHFrzE3MX34/5Oywxcczky6zjgp/d5ycli+cMzhfm4z1sTbiex9Bbko10n6vC2vdunw1MIXddvmd5rwaW/yP7Sjs30TLzL2rhB42P+sdtsnRTfeUMO7ez1PqO+s7ZSmUP9b6YgUtFZlmNXTNLf3crSDe4plo1N3bUkkkhmpdV2IWI1bQCCrw0f0itpUpua80t5KNdj54GsOsg+uKYZUA6FjNeA9W2x+fvmn9IF2ST3U4q83Ocdd1tuq6tNUD1762JOjH8Onr3rHbZWvUo+paO+L2o67r8V8Q2VsH0pszN7LOvT6/6ydTbfwIAOJt0HTuc9SAAYNFXy3f1E38VFqrmvS+8/BEr15SVd5WtWT/on9a9Fh/CF1/7Wtt+xHJOPJf1hbD3Rsc8nuSxOupvn+TOY1/a4j3Yn3NjZj2gXAeRLKifUzobz4n9nYLGg89RzPkHsk6SWgeTDUtlEF+FNZjif0zcdqiv5VukG15HzzgUwRefPgh6PAPpFw56HrUnNX+P3995vzwVnau1dj2Qde34PVXKvgip8dHEUveKmZWAwq6M4DuNClYT/Y7jNJGl/y+FCHm+Hnzv2m8K5c83KG3YlB/x5W00PVt0TqnPP8MHAQBvRQcA4Ihvca3taIsTplC252nO5X1HmSnmqXoOt6Xxu37NBZ60OgN5RzoQyGaoD1P/Gxj7QdV1mzoQhhzpTcpnEvofE7GRnldLZyXr3r5YtlPoLy6Ns7I/C2D6autxRsZgY9asWfjmJw/BXcNe3fus/STwwEMPYYsttnh1b/QfhPw/9xkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRn/ftShTHKWMWjI/yCekZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGR8e9HHfJ/M78KeAN1aVf0XbQeorwQNYPRYow8KpSdRtUKIFB7C6ST/Ze+78Dy5rJKn2hlVIqawSkOHw5FQdsuChenRRVNCWlLfPTGkfJjAkvR2E2yOqLME/PF71h+p6QLwZGVzdlou0Dlt/sP5xdV1kWg270buwAAvoozAVRSfu3/VKD8qzueB0R1baw7H3zqDgDAh84M5XcvOwwA0LZxQ1Gnaa9AAboxf3jcp79enHviPaTWJjvHsG0Df+iKo41H5XssRU00gpQZ3i9iNqojPcgn+N0Z7HbnOIuds4P0LpOM6lP92kFKkrEcwza7TkczP4jqXj9yqs9pLNmeyfy6wKlpSEG2TLRPKZpN0eCJdmrbskodaYkLWrMUHQo7oL0WlV9M5Sn6KqdB+RQC5cn5Na4zQGyxAfA36U2KAly6KYqV0+zct6M6on0zXdXz1FGP+0TdVYs+VzbDqGhGkxam/RwecCqpNpai1qVMjjSqu07WH89jYoe5oa2sg3tRgbEc006TSbEjfiAUW3/3fgDAg38rqRq7SZe1Jrk0ReH39h0eKurMoAhMF1NXYMrGhYXdA3Ab67wt0BJNuXhBcWrUAY8CABZjIgDgsg8HQ3P8tt8pfy893J7lT1j+payCw6gTogefwNLpRUawHz7AcRnL37TeX9YZx/El5TAOYFnBsDY3KgWjTe+OaMkqKNkkM9LDnsq6AEo9iWh8x9p1WmNKIcmrUzDp2vQxY9jGZbXoiNQ+p4+OadF2xL8PKRsW2yXTkTrawL7fR3X9Ny9HQwpgSdxHTvml54/p1xP9Ol/H+Pt5Pj5yRBwX0dq93y/glGwA6htC2WOUeQtoyz9K+didx48sqyzHcADAXNJxfeO5o4tzk55bDAAYciYPLGPpDMyk5v3cd5oBAG89P+ju0fhmUWW9FSHA6LiKjl12ZqRdR/osxr1b2JfXWJ3WtlCOagil9Kfd+rdPz684RXq8YVlHNMAF+/nO5bmCekxxl3yD0QQW9/i/6JxTdZneAyj1x6m7RMn1f5VVK+yCArGY8stku/DVm7GsRZ/28cQx3X8gNGevFLqHAlLpcZvVUexCW9PndkZ6IvpH0Y96gKvAq4Glfu96qPuKbloy8HOro8+KxdVGH1sdk7xw7CZblU1Z/4Za9pUxo2LOmTa3kB9TODs8FL+7ateiykafDfHJ5e20cytCMW10OR/ZtZ1BPCm6z/3y6QCAD69bUpT+oik4/yePpF26mf5nWnkv/EIfdkAFRjaVn9VFzetXtLliaiWK7osk7z53iuU0RXMpu79pVDdFSZuiaRZial/FRK6Xki/Z+Fg2gNIvF3yfLC+xOr2oRPzdofjYfW6KPhLAeLMZhRvT81yKQPc3GDgJlXZO/Sr5sHiyyu+l6DZjSt2I0rwCMbW119F17oxKm8eM4Nh1RdS4FXTAivvpw0exXztSuqtn9jGM/YfaavF3D+VqOa99DmmXndKTInTxWwMl7S8YlN/7fBn3XLfxwQCAgx4PCv3N9YPvPtHk7Vdr/w8AYG/J6xE8cZQ/B/tjE8WBm6Ea0in61aFmD7p5THPiYp54RFnnO7zmkTqn53AaeOnSt6M6Pl4xnb3kzanMY5pPyd0DduyBqE783X/3rsQ5gTZI1J7dLiexDCsGcCpOyYfiFc0RnPqYct91L2zx6BWiC5UczJJP0bVLfp0eObarpCru8WeOYyGVTps+B5X4fVQC1XMJ+X33zxGt90izgZ1clCp0U/3p6wBaI9MY6DcmS1rKUsyrae5+ZZVRnwyBccffGgAAG60fnrXb+u6E5y4NH2iGJ17I9jxq4/zhUPRNCOWSDYJunIvTiyqNWwTn23KR+sP7rCUUu5PGeh7ntj+2KgXDvdY1tGZoMU1Pf3GK23ZdVO3XeHl7YopsdaLbf51zut0Ykjv1Z+zvgTLOF1zHZKs0vqKWdtvTxtLXUGPEVMEpOmE9f0xP73OM+wGsU+M+q4IRKPvVdUN9JX+kPki1WfZ2/6guUN0fcR94HcVsRoFcR53sk71W/3gMHftjwe0uZWAfXq+Nh5deiCqMoJAXNNomWxI3hZpqxsKyyka/DuvYO/HgHghrzvVcywaAP/8uyPs9O00AAFxbQQseMJ8T7o/3hf655aly4vz8ybSvS2gXRzL+r+gL2iFN9dpbWCbmmd3xs/p6gvSHccYIlhWvOag//9T3BpYbWx35KK1FMrYaanahu9YcR4jWr4o1bKBcO1E/aMBSc9oHonIAGLJP+blX7ZCPkDD4XEFtjHxN0a7BiquB6jX4lC2qpcfxHIdyck2tMXH/rnmGfLXs9E1WR3Y1jru8PZGNWKDruP+Qb9AYpOyK+oM+po/jdGdpn/7+zm0AAJO3aAEADN04XOeXfyvty5FbHAQAmKSXWL7+28ySc+IDHwwLUNvYQrLeXU3bIBiNzrvDWtL//fBT5XX+FDVdLqpi2Ua2T88uub/U6rA/OhWPpeaZ1JE+1VEZrz0DhfGos9ioT/FX/E7kGPssmxGNU8UasfxnW3Sd1Fyb+tzdn613pNZmFa/wXgt0D5tjFOumjEVGm4+pei8VzyNeTUifGu1Yf+8LHJLzVH9KX66NjnscFY9vbF8cWng9gaXbHgWNkgnFem1WR/5P63KKD1Nx3VNR6W2l4jTx60+tCsWzfr3gh8f/JMj90fhWUWUo++XE5nDsOT5y75prFHWeWCf4tGc/UQcAWPfxpwEAE469p6iz+NZ3hw8zaO+ms38eO9AapH7Qc2icXdYoZ1NYd94L6Bfj2M9Lfa6kWIr3KObWbg+eZKm+b2DpfS87EvvRlP5E7wqT9S+pPNzuX9SO1HtQyZDWZVIyKVmQzsvOerv8PSwQnusZDC5i3yZf6ToXx9mCjfMYCm5hO1PzXSG2Ux5/aQ6h/qllO+J+9fcFckp6vrbyVIfO6X2J7IH/H0s/7wl63TdQTr5Jv6PhsvDrQNqcYp78wVBM3KOcEz8yN7RjyuV8P0zVOOmcs4o62+HPAIDmy7mO92ae8H8haNAHro+PpF53/tUqaZz1PzOm6woR+6Sb0jlbX5QvmSufEse5QLEmqnc8vbKtPj6c00zmuQX8TZ35s8IOUAbW0vUwANR6P5RaU60VP6pNnD8sa07cI45VU//HInm9F9XvulYXR6LCv49gvNXF/q2nLLzdfrIwflaNrwluEa/F69m+LqFnjP/npdazqS9Teh2vk9uxIZxL9mou7Gsfuh/nbsWc2OtwrjiE73P0PxVueo7qAwBMeOsiAMDJuAAAMNoNP98Pz+B0YfqEUE4cUurzn2dsBwC4l7Zsy8+HwPmhBhsE2Yr59JlnWzu+zpiomPdzDJFYB5hI/VnExfSTmspzitfnsD++Sv05y8ff+wgox8d9lWyy7q95Yvy/EUD1+wuX/1iWfA1G+mPrKgAqbQ/nwJp/n6fjtf5fo9aadwyX7af6qeOyvSkGT48zMjL+0/EG+gfxjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjP8Y5AzirwreQF06ApU7b9p4OM5MYujUsfey1E4cz+rC3V892iGmjMW2O2cyd3EtiHd5+q4dbhPsa4nO+a4j7mCb1BjK5d4M7gZt484zJZI6y3bbTeJuqSu4a3cyd0odaTuHv85MRdyA9sSZIUv3ml8rtzF+HccBKDOgLWYa3/Onn1Feh8m9e78Ryj8zw8MO3yir1DHDw02XhZ18n5kTUos+v8/aRZ0NuatzHnfqL39qeHmB5rADDj8Ku8ZXtDJdm2cH35KlfqaMbj+yOtpkzsvhCu4UnmI7QNtYFonYuFPsX7Ylb7k+UBbmcSfriCa7mXZhxhkEbJzHbVB5zwXayeY7vlpYahejZ5cRtCtOcm8ZV4vdqgPJ7qdz2vH4EaszkIyCP8CgZWX523ko09UaxnG3oDY2DklkPq7aiatd455lnNkc+9r43XeZxtAueO0GtN3jm3E825VRxDNpNrBkH13H3fkHWZWxlL0lzDZ7ANMDtprN2J27oeczE4I2Qo/dqqxDJoEzvntKKG/jFmzL4tD6rZC5YNcHflfR1BnxxncAM7Rhkbrr+bqK/ehfZHmxPc4BIU3btOfCxd++Ttju+dGty1Ro87cO2ZmeuJbGQwmLzWYUG3Gl40+zfMzqxNk2W+OMfiizKq3JUowLEy0jziLq73j2/RJl5DA/Ukc5U+aXXt8prHrSQ7Zj7KFllVY9v3aectd1VdbwFNx/yIZTyJdpF30qC69shdqa2hkraLe0droOZnalGClGgNieWHaAPj1zA0v5ac/ioLGX3U3sCFeWwk7a2RGW/apL19Ku4lo7aLXTuDEUoy1rZ4eyAXBc+xKZK6ayzmxmElHWv4pMQfTh8llMCrPZyeXO5aXXhyz9jQeGOOXUdcq0C9PeFHZny0weyAwPnsR2Bk9Opxn5y/kho9MUzCvqrLluSNn9+GeDjM/5Ln3CKeV1CvHyBC1ApdHYviGUs5p5YGNU4SjqixgFOltCObqprKNM6MqMNcR8VK9kONYpz3AVZ+BJZb9SLKXMCCmfmcoChigTh3aJ6x6SKddVnVMnpvx0P9nKk5Bu1Mq6vKqYBGBdlHor+yJZ7G9XOlDpc2Ww42ymns1azk39kIoz6IHqaK+LbFwOZemRDVYb7d711Lci6yavs6CGnSyywnumXmal6Ob1Rlj2H/l66cuEUGy/w2+LKifo9yH5IWbsFsrp439X1Ckyf4fEw/jJyvDBEjxg/M5hfA75brA1V7z4pXDC3GERnigLsRJzzrb+bWafK/xSVor5drM2XTTlv5S1TnZSN/HM4hpfjbdimRarMxAZjpkAUpm7NZ5xRiyP+SQXcdaQRqsjuyD91fVMXqZQBuapX1y2+8kaVMVs4dgVg5Z5ePJawIJUZkPZsr8mzglxlleg1CnFxzdF34Eym5nsmeyTB51xAJqwgV03IQ17nqHTK091pGy07InGzJ75BM6JNUxir1lgGXXG8B7LWkLZ2QgAGHVa4ZiwfOVwAGV2pSMZUx2+9tVFnY/9OsjSx37BmzAUeW7MqUWdRzEKAPDwn2nLxEJwmT3ONMYJEpGnGdcuMVk7ilmwbuf31jIWL2LUVs8yBVT4miNjH6kY8W12LPYBshX+W+mPsh1K5/w6cbbPWnGYxjL+jf9OeuzUKQIzbHW3Jc7FGcNpX6ZY+vZ5LfygZ09lRJcMN2DwMohPQqUt0ZpCG8v1oxIox0EZ99VG7zNdx9e9gMrsNyk2CKAyw+hAslfpvsq6maojmZSv8XlDlH1xLO1sq82J9fuT2A9f4GE3N4qHzw5rS9O+Hxzk55qbiypzD69oKXZkgkLYrWaQIWg6w9GDTrsFAHDvTmX26f2ZXunovrA+88cT31le4FL6K4XeU1hWJNuTPRPjHPVogfezxkc+V2tB11sd2WBlHZTv9CyksouK8eTHYsY4oHbmbkHyd2mNc4LP6zRYyoZ3aXQ8Bem6d148Z9S4uB7FmUk14rdanT0S7V1ddKE6iyhQjgfLkdStzn7mHACqszICRYauobRh3Sl2FtkB6bitp/XF+quYOpW5VecUPyWea478TooJiSjW53U972va9CY+zxfZ9t+Vcd0T14c1pTlrhfLoj4RspG1lGsJiDvnuJxeHO+1VzqlPZ8qzCQjnmu+mvdzMFhWLeJrtGMWvnZ5VbNeKJuMHjaH8lPcp5W0SdXahZNP7Lsqg36X41mWBfdVJGdiD15tbizmFup8U5RTjgxAzAbj+yF57P8SQjqmuYnzPqqrf71FZt7eWP1Fdt2Gqr/X9mBVhMDGQubnGLDWn1SmO3XB+T7LfaAya7JiyYkZzpvEnlp8LkzmQNUfZAc6JhzaWp9S29igTbQXUH4wFxtAx3m5VvhB87vMI74EmImQ4fHSLUUWV58nWsPkpIV6fcUH58+lybYEkAJufFOpsvtEvizqjvxyyJN5Mn6DshwUjJVCK+9W0Jx2c342z+Gmpsu9K/2QE/L1d3K9a+3AlUwbwWmsm8lW8R1+zndPvYrYXt+1xfC14jCa91cNLOFIseauTTdCzGcYMU7KlKX/GuKO91lxU/kd9P1hxdQKS+wp2hajvK9ZtVa8ftrAkUtlqNS6yXbpnagwVyygO8+tIBuL4yd+baS6s39E+jrLnkh0q3r95f2g9hONxRbDX7+pbXNR46KXwgvbJliAD094X4uwGy4C87Yc4J6CpWIfqs87sl4o6Y6Z2hA9UkZ/vH/rp2pJeB4tPCQH6GvOCXLw0nAvTx1m/nMA+vzSOI12fKWcL1Vc+D9KYMW4vlsY8g3gMsRbbulOfxkf3lWy7P4zXpHTv71mdeA5Mu1tn6+NV8RzR62sr6o9U9njJpOIT2UKXSfXx76M6tTAUwBovW2tgOB5h3tvG7xoP+UWX+/7Yoq1fi2WdOHZIZYmthZhtKZV9fcfEsfhe0nGNRYOdi7PUygbXylaemMON5do2XwGOuz345Sft/wr0/xpimS/e2VhTN20OdR47NvxTyCbbrQAAXPSRr5a32umPAIDTjv0aAGAJ5Xb2Gh8rL6R1OGX67VQfpuarnJT3PmznpFMxM6z3q15eSUc0Ft537PMiDpV9bLE6nHMtiNbT+kzWxBipdd8k61c8F52eqKPfpda/pMfSzfj/loD+fZSzMsYs7qm5n8vrYL03vgwYdV75tYiD+Tzqs4U15pKF7YlfTALVTJb+vk39KZtRH5VAKR/Sfb2D8nvpHrKv/kKUPkBuvUs2PvXOI7Yv/kKHdmV3rs9oHe2AssZeW4Qx++XdgeZuwi5Bn8cuK3Vkxtcq7zBjcSin2yvyQ0+/MZS73VjxCNd/sGQyeuJq/k/HW3jA3xMXekIdKf5lxn0dHfuiSCcu8nc1Ubb1s1IyGcesquPvJuLM5U1RO4FyPKTPqXfB0hfZ31qxq7CnfZacSqYmsvR1gP5Yc95rnxVXazw0f/c263Mc27tsv4AKFo2MjIz/aryB/kE8IyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMj4z8K+b+ZBx2DtT0zIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyPjNcYb6H/uH0UlPRPpOboa+H1blk59RKqZusZQ9onGwWkXRMUg+pEEPcsC0cfxOqL9nGb0MDNjehrSj0w0miY1rY2lMdHicdLe6RHFNDTLaJp3Z/kiqceG8/upRjco9okGlvuFohslXciI9vDMB916CwDgA0eT535MeZkfk3631ahIAGCH79gXsv585Gb2z1tDceA+Je2t7ns9KVq22+DPxbnWN4WHfbphZDggyvsGlHia5emkTZlKmiRnvxL9ymMs+0i3MW/jss5YjvkCUmxMpGwsWlrWEcXLWI5ha1sol1uVoh9FcSXqLaM+WapzrdG5Tcs6oh0ZSoqV7pgWxSE6MachEaVKikqHGMLB65X8itbO6JVG8lk7Jb8yKU7btAEC7d75Ndo4QGx6KvCI6PCM7mxpRAFVML9uZD9mX09hm+eJJilFqSR6PVHIbJSoI4ofjdOXy1ML1EdSSKOiLaiAeOxwHTcKmoeoHONJXV6waxpV3XyWdaQvkqx3Gw1MZxizW6jIG+4dxvn4D5aUzl954OLwYSYPXIOXhUiRUoTOFx4Xyi+/vzz2oV8Gvs979poAABiNQPF54+9LCkAsZNmCyvZ8xS5+EMtdqc9nUCd2qyvryJTHVL8HrVXWufT+UIqC/ErJglHN1bPvl7TxwIdZGrVTH2nnhlKmvO/H8X6FPpNqqNX1ULIjqlJRgzrlnWy46KIp9/VGr9TjNOtAmqKaGE37356iCo4whDawt3a11UNM+W06Npp93y4hkJ10WtaY1v69iTpxfyboAwvbRVqyrmY72cTSqemASro12SFdm7o/3Jzfviy/yzan+lNiUcc+H866XVZnNJ/jd/xOfVgHzxVV/nZgcKS34YMAgKMvN2pE6uQONG8zbku0g5hBczT9m6S7NNa2I99yWUXdzX4b5PjhqyzGolvGm1iKiXBhWaU0IPKdlM3xJtvfZdkrKnL5JW+B6Nro2J21bQmv1SsdeReqoXPyW7LfTkkm+UpRlwnyo2pAQ3Q9oJTJmO4sRSMXw9se67wjphAcyLVXFQtRDi5Qrc8We1bQHAKVPveQUOxOeZ9/JY+7rirmvhn9g+Pcx68jKEtdbufkz9Uv6qcjyio9MfWmbIdRS0teFe703puoQxk4jF9PKs+ssWGguR2y1osAgOfvCr87ZYeSK3vPjrvCh8VRc9YsP17JmPmoL4bySbryje8p65xDB/o/94Y4fcvv/wkA8OjKtxZ1elpGhA8asisV1xptofzqUvbPYvWdUUne4H4LqKC6m9QYyoW6tsbFg3Fdi/Z+KGOq7pSsSybkc50aVPWpjyNkS1O0nTHNa0zBncK99jmODXUdizfmncMPEpha9K7CtvY5puT9DQaNtvM+oHJOS30s7NwTdo59PI1jNlOxzQlWR5SKRk8bfy9icI2H7KZRPY5tCGVrTO/qyxaxPYhtEIDuFn6gPTiYzzDLKR9ln2RzTCYlDr2K+/j7ETZ/F37TGErq6Afwi+JUw/ptAEr63XXwPADgI7+eU9QpfONEVOB5rF18vp5O/xvbBT/4w+0+CQC4b9/dyx+0MB7+Br+PRDWKmLeFpcVN6vOCOlz94XLfX0zltv6p6Fw3qkEdr6MM9mmO/GGrozhQ5+T8zdFXzYVTNNaaQ0vebk6c09xI13bKYgmD5Ix+dV7KrkQYZ/KyVH02iHpc5Y9jCtqpieOyVdJZ9a/Ldn/20HwmFJvFMuFrbpcijb3tc0yX7pDszI2+p0B5rbIdAL7Ofvgjv+8UikO++/2iys0rw/gO+3ZYFNqBgeo/mkpbv8d42kUur8ygz53+ZHmr6Qpzrg7Ft3dqAgBsWCw6AZfj2NCcc8OC3rhLFhXnll5KHm1RAw9n2QyD+or9sgd99gIfw7ZQTGwIpVSjx3RkFNcROmiD61m3x8ffaYxRiku3j1ds9zW+HocNjer4WMarCwpKPmJ12lj+PqoTx5lA9TzR5U1tSlCqF5AN2yAqG63O9zB4egxYx9qxv1ee62wewHXiZwcKW9qt55JdqOVXzcbX85oFBbriL9f11n5KtxmCxlnKkrqO5j0p+0B7/0XGIA+FWHbqFj8pasweGfT585tfDgCYwKB6qPfvmSzpWkbu9XRx6pzLQgw9k3PPu3aZBAD4Ev63qLNg5JTw4RecAxRLWz5n47NpSn6ZjjslNPV4ocfFEfReIKbcTso247k2Hfe+k2+LrzOQOkC1fEkPbV2vmHtK3iTbHjck1mUAlOMPlHIh+5+axwvqB/n06/urGN1jMLEnykVaYX/7HOtYvB7gp7j+1CPf4HNryYmEyu219C2iEF+SGsvY7rqNlp5I1zmm3eYPuhXHbhD9xv1QSygmNoZyUXMoT2qqao3WiEfhUQDAd/HZ4ty7/7A4fOCyz/Qv2g/DUjPmTqh8ip1nllV07Z0Zz25JGWhabnNIzbNH8XlkDpZavK41B43lnzgWb3fZ5DxuCN899cbrlUApg3tH3x1tLKUrrqP9xUIeuzb3U8dlSfM4xWox5TyAyYzXF+g54pg6BcmWvxdqYyn7oHZ43K76moum1rU1wg0sFeutrK76isEx606NYbTG1mc6Noo60BHrnfeHnvGE6LvPoWJ/Sow1HWuVffw/9I+x0Xf22TRrz0zNE6L3BB2+/kl5L96/uUzy3coUroO8O5T37fKeosa4u4M9e3KTIEOKi9/e+FBR53F268ZfD+U5XP49/Q67lUzpu0PxnmfC2tk1637SnicUL+355vChWD8233BpYyjVn2/h8QXun6ij3T4XLp6IpWIp9UvKV50WihHsn+TalGRZa2buV7V+oZgonmsD1fEwbXuft4f3qOPYF3Jr778L3VZ7/Nnjeabg/iN+Hyr5dfnXtXX/OzG4c+M3o3odPBUfrwrU5+pPez9b6IJkIn5fDFS/H+B7pVGmz1U2Q/1k/w8whvWXJfTwHJ47Xecoy0PtHt39PP8+Vodur35aeCF1Nk4HAJyIS4oqyzlB3fujLQCAtptQhQaG5XfUrQAAHKo69rrsu4s+AwC4n35j3jNhjoxb7EL/w7J4byAdvbKsM5nvEbUsMm8zu4B8veyZ3ul92+pEdnIyf7PA5kp1XFecwHJRC483lnX6ZGP0Eiz2swCWSHb0ok1y4nqksVeba8mtdN/jL8VvmmttEH13xHNQe7dd892T8Ep1qx90uI7pHlpfV/zUkvihYhmNaep/ZuIYxtfF1Z9xTOLvHaTjcUyUWkNT3O7Pw3W0Lo1zrTWusVFptm1/9ot0SuI6tq+osg3+AgDYZZdTAAAP8Trb/qb0GZKOKs9isfRji4YBADY5JOjz8n2G89ZlpXMbOLnWe+vDUOJHjaHsa+G1+X2K+brif3Xi9UWXrbjPNU4+j9aYR3Gt1roA4BT23XRdO7VuRIzi/87pVc08lynJh06ua+cYG1W9B3I5kVxJplJz5P7eRQ/kfW/q/xjVZ5LJO6M6g7nGlZExSKhDxXvxjMFBziCekZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkfFfgrq+vr6+l6/2+sXKlSsxbNgwYL0VwNP9ZTACyswOO9gx7RzSbj/tSLeMnNoFXOyy1m4uz/asLZLcmbUHdyjNbSurjG8I5RLtNOTuoX1sx2MLS26AxgS7xVzt6FW2N+4uHmnZwT/D8jxmo7iO1/6DXYeb9+ubwy7RA9cP7TnQdln/BVsDAI775lXhgDbx7Vxe5hJmJo33v6X2LH2Zz1OvbKa+k/TBsNXsRW4P+SDKlKdbPRWe8fkfMWOLsq95ZlFdq42lEmocbnW0iUsZHm9gOdzqKHvEPO6KG8MLL7M63KxabGCdzNKTes1jWWxgizPHA6XcKfuDdoqnslBrp5fvJFMm6xaW2gXm91Aj1ZDUblONuWRQ2xB9V9m7omPs4JEmt51PIejOGKxYsQLrr+9ZNgeGQo9xFcrMTb5zXe0vUnrWuFq/+yIN2i1IezDWJLe1nx2xU63vZmu3rXZRHmUVuUtwHMdXTW6zKhNYLmcpZWm9v6wzgm1ThmFtlFxeVikyj3Fj4HnbBVtWzyyGjuNOoT5T3GYkdn+vCjyX6FTuGm89IMiFMi89Z5kR51zCDGEyodIbH8qzWT4cnbPsrMUmx4Po2rbUbmfPhMGbHMVdqldy5+4M27U6nR0wiu3q4PcplslM+pxK+FVkfVBHyiekspzFGX8tXXNxjPJalcHLIWGS4fPd8Mp2Eu8u9QyoMuKyJ7peA8tnAHx2EPT4FFQaxrgd8Q7bFMOHkNiNXwXqc505qSLyUT/WukecXSmVGTfOTmwZbEY0hbIrzrbhO4glA7JL2jF8Wlnl62tVNPWQvULWw/VM8K56MKTwX7p1Q6i6dylvM8qEpgPGdIrLX+2R7+v7KABgS4RML3s/H9JLrLhrk7JSM0upgRhPXCQ1Btq4rKQJSy1bwcV85pP5XUmbPBP5cpY9UbZ+AKibXnmvZFYXGRLPKgtUZi2U/sbZFlxXtXtdY0c9HGEZPZKZYoB0DBBnNPeMRbJnNTI49Zu56FkA56+WHlfrcH/+1D2A+kNx9t8T56IsjkOsP3qVIULj0cLSsxtLT6SjyvSVigVk12TvPTsGs3yM5nO1697GEFLEXbo/7aVnFW5guZilyz1v/9VPhywsP2RKhf+1e3ysPVxzzubhe62cHZKSHZmZ4U8/3LI4dya+Gh4D4UKLV04AAPTsO6K8gMK1WQw0FO9YEuxCxzo4zpJpT3StTMWz1WeewUzjof6lvdvGqqhbl1Deh7BOb3864zjEPiullGSqhaXLgsZctlOBx0Cyozj0O2VcSmVUqpWhtD84DQLbKraYvpsQfPFhg+CLZ6CglgBQ2hrJsmXkKeRdNkf2qAZjSRLSVfV1rYzqkm6N11Z2TrGVbJ+E0QW3jaXGnjJ+sOnqLMkX+7ze7H4P7zuV15zNmH6iTVQ/wXJ5KMadGTKjLb27TAW+YJfweeenFgMA6hbzxL/KyzwyNejGpheGNMQt9HmNzupD23HrQXsBAK7mZLbNqLMWb85UamIukYh+0f2b4hz1r5+TDHO8R9MutbdYHcmAYkX1WUrGlR1QMY5nz4z8RsHAVUvn6xPHFITrHqsqk6sCxarSB48l5H/ijKD9MQKsvi8GXI//ijKTdwLFvMHXCjTmMctYrblxCrLzinlTMqA6msNGawYAKtfWgIoMXpqr/ZTf26+orlPYk1oZpem3pob27HfrdQCAe20BS5lFL0FYPxtzfAcAYKUx4K3fFMrf0K/XsmAa+QO/Fsr7Z2xdnNth+oMAgJtmhMD2o3/7WfnDk8gEcLMmvPSdB5v8k2gE7RzLUbSPby6rlEnrqFPSsTar0yv7qoBddtazIsUZAOWjXG5lO7SGQllyVqAlzdHvUlxkMWox0ij7m/vu/rJOeQzdFl0vMZEv5g+yR4ozYvsyWHr8LWAM14uWeeZjZaBSkFQrY6sQj9dA68THaq1PSg+N/aPKjlDHv2rrgmfJVo2LfuNQX0umNE6u8xzfH4TrTPhkSOW/+G+lPv9oi48BKH3l3AuDY5xxMqqgKx96cfW5ZScGOrpb6TPvM5vRyl/e9xlmSJ2peNds6UjaMLEMaLrc4XeRDY1tsH9/PDqnPkzZXfbPKPr5jhY7JxscrX0kM1hqnue+7ufROd5jSENZpTf+vebLPiEiRvO+7SnfH2cnT2U97G8u6nO3WmybwODp8S2ozrjmfj/Ozpxaf5Kt0tyiVlbg+DdA9Vqf7Ftj4pjqyq6kMlyr79V2Z1CN66Yy3vF3YzgeSqh5gFXhOtGP3hcOikX2c2c1l3VGs/xRKGZ4NmGimBMzFK4YCoU7JKk5/R1hjny5MpUCeLqFk1mxVn6A5Q2pGIvPPInyu9BtWdwPspMrE3Ukt3H2QKD6bZrbZNka9b3sQczUAZRjp3umYiQh5Rskp2pPlJ0eQM1s+P0iZolwpOK55KI7Srn9F4B9B2mNK0ZqfCLU2/j0NEcna/W5+kF97rYsjmX03dev1PfxM6f0kf26R1Mo56bsbmz3U+MTs6zYMWUq5i0+enmpP8o4vDYZML+EiwAAU1oXlJdhaCcdVyvc8pzIKfntR+wGANizOQTFf2oq18Heh18BAJ54lLa0bZ1QumgXIYxiGumR+zw+l3xcxdqU9EVzUPm41Fqo/OBAbLqua+2YzPh8QTxmtex/CpJTZYJOZa1VnZTtU9sUC6T0Uuu+MWvGy2GwfLH0WHqrOWjqWeP3ZCkbKHskv5zSifh3tfQnXh80ppHxfBe2RD6FOjbCMhd3Uf/P4RrV6W5/YxZevS/zWDHWX8b2ThglheMa89Y/DH04yV7EHEb66b2/1wIAmBExyDumk8ByxqP83mQntwjF7V8N+nwU9eihf9hi8be5EKb/ZylgcwxlKr5Gs3OzGhP5jDELT53Z7T7Vj97BplAVu/r7TL3/r8UgIXnRe0zJhP8vkexSrczSinVrxbkD0cf4nXSKUSZGfwy3g6XH3wewnZ2JWbAVg6TWCqgTxTsx+weHEQwI+303B5Rr1hqfVIyTYFypOO7nNE6WNXoIj+3H7zdoDGvFU1pn8XcbWpfR/yw0hXLfssbaTSH+/P4GnwYAHDr9RgDAjDPxsvBc2rrrrlyHumfXCQCAbqxX1Nn3qbCm9fx1HHsfNpHpLVAsFb9/MMiezEzNOxpYykfFsbRfW8e4ZjbE/j+n6EbJQsKf9fte1cdZ+iOb6us18WphnJXeUev/EvpDSt4G8n8SQvz/DsIr0+OMjMHGrFmz8M0jDsFdDa/ufdZeCjzw0EPYYostXt0b/QdhyMtXycjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMgYZNTh1f9v5rpX+fr/gcj/IJ6RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRgfe9733o6+vr9/y8efP+ja3JyMhYXbxx/kH86Zn9nIjp0pyWRXQpooa4H9UQzaEoHUQH4xTXTSzbQlGwSxjF3BLR5Py9spzz8bKOqKkmkQ6lxU6N2rny9qIGcmrqf7LcgxQ8B+lZjRbmm40AgNPWDxTxN5L7b7xRTdyNXQAAxw27KhwQW82Hy8t034YkUkQpF5Jie3pBH1KeexSBh2j6Hy4AAFzyjs8X555vIcUFmUze/8NAY3LvMyXt59OdwwEAa094JvxmMX/jrD1i7mhjKa34qdURFehhbKTYQz5lTzSJMjCZ3xeI6sSoqQpqEtGfqCEud6Jcvp1lA0unVdFnyabTqDwVlYLrQEwVn6ojWjTRnpAyaYzRdS6L9YqUW51GvTJxOvDikLT6rDLeipK6yGn6YlowDaLT7oiyZkZUx+hlCqpG2oMRHNMKhl7pi6hjyJcz+xyrcyJL9bNTs7Efl7Id+1RS8AEAbmC5hJ02lDRjM3aoriNGrZZQjHthUVFl6WkTK+r+5WuBosv1+cQHvhU+BGZePDIQVroBwAkNp7JJVx8QKH6/hsBj9Geji/rkicFYfXrl9wEAPT8aEU58wS60PctmljELFlAyc23JLV8n0R48UtoF/JbllaQ1Gkrq1OluodhHbxYfKSnA5jmtEGWoW7LwhJ1jQ3Y/PZTzpQBbWR31kmRR10nRDooivi1xbqPou6gNnfJRFE4xTaVTBcUUR6oryqFa1Gargq1R8sSqXU8k6smvHsgyRQE2EMok6mifU4JqHGRvpTdmE+to7wt6cVGZb1zWWSjhc8pYAGOays/LmkO5D4/NiemrgGoqN5aj16quQlyLQA/20b1K+3LI1kF/tr082McZv0AV+iNiTuERmtatTA+H4G4AwEJMAgCcv/apAICj/nh1WUmxx/ksxWjYYBeXX52tB6NC19kzf1E+hmMxW3SqTrPdWlmONnqy9ohataCMv9cO6n7qGZ1zGsapUSldcV1VMCQ7Qi7xLqORq6LL1W9Sst0SXS+m/ALKUfRYkbLTcW9c+VVALEUywO7zZN8imkwA2J3jMf/Kysu4647touh7e7zPFIvH1HQuJ4od5AvUP2aTR2xVWaVdwbRRJo5jvLWUYyiZ6jIb0MXY7Bz+/rflqc9+9+u8e7jJ0y+F8Xp0jVFlpduq7tov1KuzpXPXPFScu35JEwBg0vaBA7DnseBXD/n194s61/4w2BHMagvlOLZ5pN1ETKKPcSy62K9tZgtF4z2ZPm+By4b6mLreTp/V7j5ng8qyVz7TKfM0HhHN8lAbw8JNRTT24002ltSik4zbI/pPja8HhK3RuRQloNsRoAxcgFLHo2dP6XqfdOQJVNPXry6ORnpmpjnGPuWhKlrlaxO/01iJiPLm6LhfO/KZSch2kA4y2daYMtXnNQ2hGM04rr05lLPcLghsT4/dYyLbXUy/aP8XzSnr7M0+4tAfi8sBAI/vUurGbP7uHZsvBgDUi/72r0UVbHpr8BdX0uVpSn3lYWWdo3jww//4JQDg/ccFfZq5Tsnne/w33h0+/E+LrszS9PFgPscsjeXY8lyhq6xfsPi2oRo7R+c+ZeekoxpnyXQq8qButorq+nN2jr6knvOqwu77OOv5dU6UsOditTCE7amgEI/nkIq7U1Za8q65qfOqykZsCOBfq9e+KnwPwAT7HlGSFn3mFOQylLF9SlDFV8FsaTHdvqL/OmNYtjWGso8TzTFGCb0s+vnBh5af9ThVq5aJvh/fFErRco80KmdNAWiebrnpIADA9h8pHbTmx89h7XCAse/6fywvMyNyLbVw4Oah/D3pe3d874PFuc4ZYQHrInwpHHjMUpVIZPZhHy3n98fs4g0sO6izHfzu5rYYH46rTF9StmvRTsvXxTHW9Ym6ajypbZeYvRzdFErZ4grsEX3X3ODvcUVULwCkaOAj1DWWn/viGCAxv+2T8ZNOyOelaKwHA28Hlqldfg/NxTX/kX/9Xo1raW5/mh2L7WErqqFjh7BMLd7F/tPiwCrKevbPZabro6nbT/N7l+JAt0/qa625cZ422ezCglCM+2SYvy++IPi+j59c2rT3Uz5Goz0cmBCK6RYyzqAfLnpjVvXjjHlvUC6tfX977PNlS3/FGJrM9RjOmOAis5+dHDvN6dvbeKLBbqZ263fTo+NA/zN410uNGe1shwyfx5X90NF3RHMxv9cQW0frpY4fzoe+mr67N7VOpLam4jfGHu3xcbcF0vFYfv2Z+4vpf5M4pj5sYPn7RJ1XgqEAduJnrdO7T5ZP+r/EOUGLsUMT54R4DO05irWOZh6QnUpRmQtaD/N4hX1VT6dSDKGvfby3su5Q3rvbx4Qx3TLKQmeou+GXSvr1C9cIz/NWPAqgfAdU8YpDj/qP/p+imBNzXdt1Xdd64B3Bvp78Yni/dO7MM4sqWx8b9OfBU7jm/o3UXSKadb37+Z3FG31PVtaZ1BDKhZfYQR4r1jkjfQRQxrqqaxOHindDQGmb3X+k5mp+XaCU03iNK/XCTAFGiro+XmPW732+F9uItVAN3UOD535Wv4/X06QzgzE/HgrgTXav+D2TI7LJPf3ZIgBTqBvzatTRel6d+dWqeEUy4H0nW1HLnnF8D+A46V3SGLOl72f5M5Ydit9qrRqbko7ntRWPci1J748B4PmXQnx9+xp7AgAaEvPLGXdUfk/NtGZo6jctrHHtyTnymU1fLeo88X0G4VpX5BIVEuvj5TNyvKdY/87juV6tb5quF30vuxCvG9k1i3Usys3oY8oq6rMiPtf7F9PhBfzdARyzGzT3Ssmm5uTSZx/DWKbY5lEWY3WojuLBa6vrF0j5fsmwnkPv1OzeVfPtI3it8/HqIbZzAIY2hrJb+pOypXrGWnE/+0/Tub7Ue3lFm4rtFO/YHGyJPvucHEBXc/lZ813JNHzdn8oxkra0eDefiq0IibHPtRnODpsZJp8bsV/+UbzHA/b+ZwsAYKW/s+0HMx6t/D6n2W71k1A+RNl66P63AwA226Gcqzz8c8md+pP9NNZs2DVtfA4+64v2zMVrctVnbN7naxi6Nm3ZOOroUpPb4v2Fyy1QGWfHOqax9Lgufo+Z0tUYWvf08UvF7jFqzfHVRy9Exz9inxUAtrG8LyqB8n3U4xi8Na4HARxu3xWjxmvuqVia6NBahc1j1hzIveN5h2ITt3/qoxaW6g9fy9Q4K8Yzn9nA8gb1r8rUWoZsz8+rT43mNf+3KZSc/mx54p+KKl/l/2Ac+qMbAQB9x4Xjh5QhcL8Ro99x+hb8QJPz7sWLAQBjjy4Xy55/OPjDxs+HX7a8ae/iHL6iD/G7StcZyuT16ivZAY9x5Fc3jkrXjVSsiuhdY6yr+v8gi8kLf6g4V+sTvihYa44lPygbMbe/ili1tSXJWWpxMvW+Q5Asx++ZLe4fOg3oWwk8XdsfT5gwoeL7v/71LyxcuBCtra345Cc/WfO3GRmrhToM0IZnrAreOP8gnpGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZHRLy655JLk8VNOOQUvvBBvOsnIyPhPxRvoH8S7UPm42jFTa8eZdtNvUKOOMkhxh/Eo7Zr2XUjaLRRnVfGdZ62V5+q569OzJszlLqPl/L67ndPuCW1I1IY625SMK7ijaQx3ze7OzBO+e4rXXgchM8phTAN6iGWDnPYi05tFj9ViGcRXB3/lZvjNPlgem35byOzQx8zBJzz1rbKpHxkOALiWu5oXvzQBAPD0/1jaw4ZQPP8kd3TvxuOeXGABd00tjrJj+ObODmYR+gQz4CipUJ2laTqC/TuF/avsV9fZdZT5qZ7j3KNd5DtaJe2K06517Qj3zCu6b5yxFAC0A1ZCEGc9c8QmwHeragdctDtzWZvVUfulK4lsbYtmYPCyHf4DZaZhb3ucbVE7+O15imRTX47qplgDuGOzi3020nYldzbwQ7Sj27+P5vi0a+e+Z2lSQ6hTSswwxzJs7cHt2iOYvaSLuj/ds5HIHknJg8Au/drEskogAMDUHcOW7Juf3w8AcMLatoNyw1C8sDiU/XEtvCJ8JxTnHHYWAOCBbat3xB6HkFV16Pphd37Phswg/gmr9CGWSkT1RZapzZHKuvhNlp4N9QMs30kDK1Fabvo8m2NX2AHpo8nPKNavyrAAFFkB5uu7dlT7btEoC30S8hPSa2WjOCRRV3t+5Zcs43zVTnTt4rWd1IWNiHfny74Mlh4/iJrpf4o+0g7WlFSq/W0stdM2laGKfVWRZTbOQim9NBkoMo7LPqs/fIeu7KN2LLPvlvmOaPqCOTxWZP3wCZPGl22sox9pN7vQznvMpt39RWirMwKMV+YwZmycflz58xlfr3yKgaDoecugNP1jIcVJ+3uC4j0KZj72DGAiVFACWmVq8QQjC9i/dex7JV+YaZPMnzFr6IeUJYm2dLJlbvkjDUJ3G9vhGZVaWLLPhvPrmib3nfpAmajKCgEUMqDnmSMZHWd1lJlBMvEIqiE5ldylMvgRY/jsRUbBVCYxybtn85LfkSyrPZLjpzF4mVniXfmSRQ8sZY/ku63P5qfiEqAyo0DELtCj8XXmBO70r0oK4/ZAftwzMQMVsb0yY79FA81Ad5LZjmJY2Y4+6XFjWedgxiAX8ftXylNXXR+U8sIDjwUAXLdGyGI64kJra5wUbHVBnfzu9p8BAOw5NjDTLCtSusKmIg2V391VqWmMF5T9DftZnSuZnWM0M6HtbjHRfGW7oi0+hjp7hWeepF0dyrEsbIVnPIkzaFLOugcQuSxxmZKOyBqqfanMOqpTQ1cLmVa8fkJ5aghloVdy12K/k04y20g9n73H41J1vuR1I6T93OrgLgBvThynPambnjgnqA89u6XSecXZhL2990V1Zae8f6VkUgTZa8vaV9/IS2vsZed8Mkp5KXyT9DiRZWNUUyg7brKDzAqzXN8prxM9szrLxl5WHc5bltmVZv6aaZWYmW3lN0L2tN8PKbOQxrm/UhI9+9ZQbvX/Qgw9kiwV8/Geos7WH2b2w4sbwwGFbadbJrNZkmnJqUUFdQ2h7KP8Kw7avamss5hlt2IkLVaY3R/CvuuVLOv3di9lKitYtaT0FvfoWJXIu39tjs7VyhwumfbMbvJfzLbbm8puH/sqyVKK/UaNTWUv9bWkwYqp4+vG0Ph4AKZ5WBPLOOM7UEplnKnR+qJXc9A4c2RzWWcZfzeZfa8MeMusjtYzNO/1LL5CMY+TvHh2ZPZ5zA7RuW35eRuO2R9CceMOYcHp3DL9Gs7soOxw6J46OJS3V2QaGjhmRFOdTd9fft74DqZQfl8oJu9SUrAu+GNj+LAl051NY//OtIzdh9PXql8035xgN5wrXeI4kXUP3cYeWIyndEMxuGenVJ//OPq+v9WJ1yWkV7bGVdjiVHYk+dx4fcWhODjOvJTK6h3doy/2S0C5mCm4/Cv20LPGejDYmIOQtRSo1NU4n5dsn68dau1H/lUxUop5KF4XrFgs7ueeQDXLmeKlVNbbKGtit8Vf3fL5WqOQfXIvqDb9uPK7mzk2f+m3+Owsum2u9GX8LwDgh9/7bDhwciiuiJL7OmYsrD42XdnVjg5F+9jSv497X9DRpRdMrPxRvcmxzFAx34wZHIEyCxhlW7F4q6/3aAGsmWXMjARUZQkcy/5tdZ2JstgN5Vh2u45oQkVjmLKBV2t8JK8eQ0tfmOl+TEMol1tc2aVs554VGajUb62fSe7UMan5YzQnHWLt6ZU/7o9pc7BwO4CX+DkVA+iZ43WnVOa5BpaJzG5Vemc2o8g4LPtG/RllMtkR9d9Iylanv5+ifPVoPBTwHmF1xGRA+dVaTAU4Hntw7Lls9OSPyud54pNhTr8OngNgWf8tceRf6U/7y3AIJKIVE61t6X9349nb+vYDAJx8bNkXPwSz3Q3ngVNYHtdgd6E9m8TnaePhRqsyTzpJH1xkDnd7GzNJCuZXh9BO9upB/OnjRQ+NrzE2FJBdlJx4DB37BMqN4nggkdU4ldM5XqdKrYPFrE8pHdF1lkbfgeosvqm56CtFNyozqaayMwu17Ij6qi0U8wbCVsD5ad+OiXM6pvUvf3+gmE79k2pXSyhuoLwoe7OvWc/kNYv5v8bZ/ZDmPbILZrtGso1nhGKnj4TxfdFS/S2+J7B9TPwax5ehfIvFx6uCworQd/94ZVNxbuNPh7Yqg/nv5A99ki1TLPYDPdY868PRDaFs5zrERLOli2JfFPssoF+/VcF0GY35wZoPuU/ndW6gPaijPalgSdUD1GKwi2NorsF0pNaXUu+p4mO6tvtyzT+kq4l4tDfOIPs9DN7ceAKAdVFtYyivvsal90IFS6VkOpWtVpBdcH/I6/Rpfqp7+xqXrjOQTLJxvGKMoUWyXrXR+5dy2ikbKvlLZSVWnM418A5bm+XyVc/T6wIA7moLWf+v3LF0zK1vCf6m7dmHsarw5e77PhbKKX1/Dud2aAAAHGz/TPHwBD7HIj0r9dmWXXE05b6XNtHX7CRaygaud/ydJRNfYSfr+DsZGG/sfMW+0llNTtwvvis6Jl/lmYwPieo0sKwlE5K7VNb+2M8nMELMp66r/UVVLfZZeqzn0tzN/bPk/AUAz/TfhlXC1kjH++tG32NGbaD0VWq7TSI76+PKCcQMXkuiEsAIxkld8Vy21nsDs/VFmBTHgam1hhosLzLBWiby/6EgPqAXsnyfc+aG1XUGghl/4wf+L8b0plC2Hr59Ueemq4P+fPQtpMV1cmH9b5Xi4SFcb3LGn6WcKymcXSoF9HGTXdM8hP+nMcTeExdzVxkJ+WWfQ8Vxqc65T44zhqfiuTjDvNvk2P9F8SGAUl7Z1nHsF2cvqMpEPjs6DpTtln+N38X6Mb1b0fVMn7vn4pUwARxxxBHYZZddcPHFF6/2NTIykqjDG+q/mf9dWOO1bkBGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGxn8u+vr6sP322+cs4hkZrxO85v9z/8gjj+Dkk0/GnDlz0NPTg6233hrf+973sNNOOwEIRmXGjBm46qqr0NXVhZ133hnf/OY38fa3v30V77QWwJ3DAUodEu+ytp2147nzJs5GBM+6E+2qVrM6vH60w7HYbWS7ykZzt1O7MmXxnnNtp+oJ3Nl4D7/Psyw3I7VLlL87gzsD/1hWwRVMX3IQv1/G0jIbYt9Q/AXbAABOZxrQ96HMavTnr7NftMv7jlDU2ls/EDQMC+Xzj9u+hfEhA0cds6D+6egti1OXPhN2Vj19EVMnTQsZJ/CD58rft6wTygn83sbSsqHiN9zppQ2FGsMVVucb3Lqm5C7aNL2l1Wml7GiD/CyO8zTbeabd6j01MqXUc8dbsfGMYzredjkv0YW4y22snWtVxgrtslPWwk+VdYrsZrqJtvT5TsV4d5p2xPlu+MHKYjhQbIly55unslGmJO1+TWRNmNvf7n7PkKg6yuaoXcX+W2UMiBkBrD3tHM9xlImlDeW5OpZ9OtYWism2u1nQrs4u3cNsz+QDK+sqO9Emdmx4HwBg9vfDluzPfjqkEN7h+AfLOhNC0b36mwNfFo/Q3Jb5oIMtW1xkvAKe+P3m4YN0axnLdexC0smzWUp8J1udH7FU3/VwG227ZUH5HXdjLpINVZY035FK+3xGQyiPGFd9r9my5bLTvvua+nMU73ulsii429XvYt1y2Y4zB+j3qR2gPFdkIXU90A5S+Z02lp4hLmILKNDAcjCFRP6Q7RhiO/eLLDXaUp3a4a3MY6nsaAJ3wNZzO3J3s53TzuIGlr6tWZB8MMvlZGZUWOB11FdqD7P9TbKdyw+x3Ju2WUwSo6zvlzNbtJK5KsHQt80uTGD5jaDX79ri1wCA7iIlILAD++MFZtCf7X7sFcCjHhKL4Ob3hN3Wl/2e6ZUOsDpKmKGkGnIn61mdPSkDbfyufioyWqIqEVrBgOIh4AL6uv35u5st++gJ7NdLOTFV5oiKearkjT6yyPr/OatDnztH/ly+z3ePS06VeaOBpVMcNLLU7nPps8mLdoIvi+m6UhlCZUM8AoszxvDayqDftzIkER8UKAuGbJD6wzOQqY3a3e9tjbNryNc11Lin7IKlGVAyv9mKpRRjNdrvlFLBs1YDFfHCEOqbwibtql/YbPW1015t1859e+ZZvId03NmA6tWa4MO3wV8AAB9+4pdFlcf9dq8EjEfPxNcAACevEVh5Wi14XXDQlPDhYDbsePqfkearpDdnKfakTH3b+5JOV9mQ2j3TnRw7j82UvfcUTszeULA7WJacAtI/jYGyHfq9lM1bGRDYxjrLXN8nWYjngJ7tI86oRjke2lhWKdoaz4AsO0yvYm/5bM/CpedQlr7+MuoDldkfBiu70j2oTDerfqSO9Vl7irBEWTZS2driDK3Sfcv8XegLr62MXd3eh7KlGp+Gyt8AQI/aIXug75Zh98dNoTxU4zs+KoEiBlIW3g7LCjaB5SL9nu1aZA7kc+HZ1hu5HABw/vMhRenym0aVdd4ait/8v7C2ocyIdyazT/cPWdep53GuxkQtH5x6W1HnxqsOrTin8AXTbAxmMh6cxphkpsWcfcqgznFhBmXM8kwrmnPJBmrsLFvzWpw390qP5TPNHyoWKuxAQfVU1inko5kHFFR8r6xTyFfMaOGZsuKMd2aUlUWskHfPBhZD10xlPYxthvrVM9Bobj6Y8+etkWblkSwrU08qG1EzS/ZhRcZIjWutDIl6njjrs9+LsdQC2YehiTr8vFyxtMdW7Ot/MTBW9qvlVqVPWeNTLH2EYlS6tuc5wWy0Na7nuBa1zl28GtfcDjRighmPVl96oNjYWH3Ae53PFKWfxvfLc0NeDOVDnCcXmaBs7s9YHL2cv4ylss+1GFgZ0CTbHdJdl8mGUMjsbhKz1zhk05XSKVUnzhrm8964vsfZ0k354TijE1DaCB2rlT1Uz6r4w+VY2f1qsQ0IklcJQbOdWwuDq8ua/KWyncdZKT1G0rGYmSyV4Soeg8S9imz/Xpc2s2p93LNSKvamHtezbo/3kWxnS/TddVbX0ZhxPt5l8+bZFNgbg51t2jz4EWfVOpDxwF8Zcm44pPKqLwfNzGaQvWM6RfJwXF3UeQ6BEeShz4S4+vnL1q9+HIUy7ezreo5zj43PCPaVnrFV6xKetVK+Uhdv4Fezv62U+6H0760aX5+I/KayHK4M4ikmSWEOqhFnyPOsh9JNMavFTAVAqcdxZk5H/LqqVla+tsqvVdlJgTIG1xxSPmyw2LU+jtIGVtFaoYq9tog/vI6Mscajv/U5IMlsoPcCrbpmcyg6PKuk9Ja/70zZcsbKI1hXzJoVc3TFgZTbEZxzdXkcRX8hk861oLX3Ld9lPcpAuZXycorGolQ13DmADMO1+B32IUHD+jT/e1BeNyxT+2MZn+3/th8TDrTojOnPSH5+J79fSTm7zjL5L+acU8xkhdzaemNdUyj72nhAY2nj1Ku1IGX796y3sX3X06dYHXRNyaRn9+6HhauCNUB+UOs1qbXZeC4s/+6sTf1lRvV5vNpWiwVXNiOOFwZDjzdHeL5YmuJ3QEDph9UOt1exrVLclWILiDOyp3x3xOpQEXfr9zFjqbdB/pM2uVc2PWZSgc2HNAa+Tq578FnHmtxreYfraL+jrhzxnm8WVe6ZwJcpF/AAXXaKEHYgKEaDyyRDzJ0cu+hy3iI845bv+xMA4KE2W0gu3tGor+i79rH+nRPJ4GL3Y/LHWhv4P1ThcPbR1YrNdG1/JxzJxSzdc287qDbynVPf2Oi4Iz7nupfKJA3YAiiq15hd3rQm9UB0zt9n/jg6l4q81B/ensGKqRcjsPL0c/++xE+KdbgUU28DS8031Gbve91Lzy4/6/oc9WfVGoRfO7ZBZrf79Jn2YLTJZJGZXm1L2eKIMXh0vD6OgtTo+bYQ175/x58BKGNrABjxzTBeqTdpLwePSKZzGflI9v0nOcndBXcXdRbPDewDOIbzXbGNHW13L7KCsw8WWd+Ppg2uesefWDPQeDwyPVFnIOySsreKkS5N1Lk2qpNisIuR0iONr3xDjfejXZoT+HViHUmxIPTnj90WyoY9gsHT4/Z+jsc+staaaup5ojXvZHvjdz311XW79CFeT0j5+QSKS/H3YvbobbZKerb4mmYPrubY38NYke+A258qGa+u2SAw5HxpSZCB+C3cquIYhgBL2dRN+sq4cDbXTIY9EhZ7V5xh/6QyiXOChS2h1HpjBYMux2ypZFo+xwNT2ayIkanX2UClo/x/u/EMUir+x0+yFK8jO92Y7H5CBgroWIr1KWbU0Xsp/18MjTNlIckoLB+re+g67t9j/U9k1x/SFMri/y70XPE8c+DvnJ599ln885//xEsvhf/hW2edddDc3Iy11lrrZX6ZkbGKyBnEXxW8pl3a1dWFXXfdFVOmTMGcOXOw0UYb4aGHHsLw4cOLOhdeeCEuueQSNDc3Y+utt8bZZ5+NPffcE3/5y18wdGhMY5aRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRsTp44IEH8OlPfxr33HNPxfG6ujr09fUV/zCekZHxn43X9B/EL7jgAowePRpXX12mBmhoaCg+9/X14bLLLsPpp5+Oj3wkZDT6wQ9+gI033hjXXnstjjzyyH93kzMyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL+K3HEEUdg7bXXxm233YZRo0ahrq7utW5SxhsBa77WDfjvw2v6D+K33norPvCBD+BjH/sY7rzzTmy66ab4/Oc/j8985jMAgGXLluGxxx7DXnvtVfxmnXXWwXvf+17cfffdyX8Qf+655/Dcc88V31euFE1LD9J0wIIoFYy244+iARMlyf2hqDPqpD4RcpAWYy5pYuqNaqWgKhJ1hTKf23WKkRCFFGkyjjH6tktFlfEuVKGT1BlTeV8xx/zO6vydVHlnqF2h2Oi0kpb4iQc3ZwsD4U87AiXJn68zKlrR+5FB837Rbh5cVpkxC6uMpaRB+fubyh1GU0nLLbaddVCO7f7rBlrKm08KlHKj1w30M2ON6ucXe38AAPB8Ext7PE98xW6sz9zwtOHTgf7jyS8YJYjEQgxsoik2xnrUc6zEj/Y99pmzchSMJBtWHtjfaAtvYblE9ICk91qSop1iaUzmaG3hB8mmxq7NKonaSnQsKUJGPb8oSgZCEyTKXqcRSdEC1kb/ejwPwJn87DQ+MV2haFScaoi0MgVXpPSpgj+RoEKKfc5p5AoaFtGuNbA0eRnL51+qdptd6YuoqA7gtX9hx8SWI1mazDE09nZcLSXnGD5MYdze6twVgrMNm4JMFxRdHyyrXB9UJElaOlgQceX040M57efhyHKMKOp8YMfQAV8e/vVw4J8MLI+yC8lkHs3y67qw1ZHNa2I5inTcHW1lnf0aQrmI4zOKNEcNdp2R7Nf/0e9ov2d7JVKKTmUjZzsPEPXmShkNGQsncRK1rmjBJItOYSZ5kd0X9ZfLvGSbHdQjesBaVFuyObXor2Qf2ljGtOG10b8eT0Lp9Ei31Ov0pvKRIp5T3S9bnZg2OEWSxf4sqK2b7JzGSpRqDSw9TpCOk45vgb4bJXo9lbUwj2xrW3UziscYzrLDbSOFuIftmk57cvj6ZZXFLO+hXm8RKHEv+udXiyoPvCX4hLXYnUs+hkGB96quffY3TgcAfJB0g3vdP7+oM+rEZQCAjmcZdyi0+YBdSP5Q9k7MqfMsNH0LyzrqzzJS7b54YllnJM/drLGz1l7Km3y9MZSnRNcFgA59kC5Ix5zSM0UTDZRUZEDpU+6MSme7cWpHAFAssCmqIdmUHqTo5NsSv5PPV5vZrm7doxsDRf86HCO2Ne7n4mfb3z7LBmrMdf24nxzSQ6NQbmdfjaHNWiZZMCpBUW+2S+9I8Y6HyzrSVXXdTymcfU67GccM+r6ZHeN8YY8dQvml8kz9TwMXYTfl4nEpwC/LOhvLXSSp5VYBvObNbw4B+g92DTJ0L4wOuJ2BxiyWw9nmK+8v27wizAV6zhJ3MMfp3Xavx9T3otg1XRHd53B+b5WueBDNuGk86xYxr+uh6PlkFyVbh1odtVu0tdSbPqeilA7ICGnAXV5YFsyWHIxu9xGSW8mA/KrX+QEq4XJyBV4eqXh21VBbj1c1+pPOyq7tYOfaWCqG0Th5vBLNE7pnRMeBMr7XdVTnU1ZHdlpjqHvZfOZQtmePBjaDMjDO5rT/ZLlcB+wcf4bRtC+ShcPLufn7Pxv8Xyu2BAD8DPsCAL550BFFnaM7vgcA2LWVAeo0rBam05/PZldN/ZuaPryos99nrwMA/AXbAACWfn1iOPFzGKj/MyUHL5SnxocN+YX+bUt9HG3x1zosWzUu7LPRJtvt1PGhvF53Yi7YpzHUuEpHLQYuwsCmUPZqYuR+VfNUPs8+bHMFJbjGTPcwHS0oURWvf4+lzc0Lu7JhVDrldhyXKjB0GyajvilWlX63fz1+EMAuVlPPqP71Ngpqk9rAeKXXaUnVHzqmcXKbJt2WX45/A2AMfdwy1bkZ1aD/WI9fu40OdSR99Vb8vkB9mIpHpL9ql621/SsUo7YL8al88DZ4sPoybGoPywv/lbjVK0Vgz8Zfdtqm+tyQFyvLp6l0I6yO1uNu4Di3atxt3qD+3IY6sTC1JsP5Uw/93zKNs8e3otv9HvrH3v3UqUVe3GafFTdKXlM+L5ad2L8CJTW8jJ7msuOtTkwFnZLtmHK8P389cPpdoJYeT0FpH3ytV+1Xm2WXasXJ6kuPtxVvyYYuYjnV6jBuW5DSLcY7T+u75MNtBu295KVHcWDpD3E4n+dqp4COobFT+9nmiVuVVSaHYr2RywGUa9aHo0w8s2kH6aHVVdS5mq8EDGq9RmDp4aG8q2lKUUdra7dt8KFQZwh97ki7kLpoKm3Z7L9W36ygKZc/1hj6+Eg3FPtSH1obrA71rVvzFunltVZHC4qM/9rpBzRPAmyuFF23AhtEpc9T1em6f2rdST4h9lEe60XrpsXcLaWPsg8xTbhD/aB2SdYGS4//BOChgV+oj/08yvq+Q75b81P1gcc9tPNFbGRz4latqWnOpBjH19Gsfr+gHeqK5dUnp40sKbdv0nH3A9TjszlfOCMUTRuUunrFr8JE+f+9LywUjXru0XDi9PIq07h+PeO2ATQ9gUs5xNP56mvkMcGYLb5iYlFnDH3SGtsEp//SwjfzjK0VdHLOd3tDKMczpj4ocdOJjaFcpDUhiwf7pAvyNRp3jyUl77T/3R7Mx2zK8n3XJuoomK617qu6Mlhtdi5eO0rFr/KxklfZjLdZnfidk+7p/lZye1NUx6F4R+2SLRl4sNa/Dv8DQZAVT8YxdaodsZ0y1FG3pevJdX5Bz9Fmx9RncTsarM5fo3Op9ugc17GP4jz8SrP1k9nWBbqXruvXk21X7GlrSo/xMrfPAwBMwkIAwIv2nxynr3sWAOBDOwVFnnL4AgCr/y5KkvjUH0O5wQXluec4Yf0uwv8XbHVmmMhv9rXyeR7+EecJ86Tj1JGRvrYk38Z+6XP/SP81mrparBtZHaldIQttPGDv+osekHxIFmrF3YoV3Yc28DKM+Yq5+iFWR7FUrfe0jSwVS9gaWSFL74rOeTu0PhQHXC7/qi9b8Smsyjo1UEuPTwXq1gf64lhBNvjHNa4qG+oxdLwoq3UAXytQ26U/tcaOSNoF2Z7IXo7eo/zczntMpEwtarGKd6IS0tnUGjwxieUn7Fh41YTNdgz6soQ2/nGUc/QRvwltTK2ArgpmMlz/znnHAwAeODX4jbt9fUO6dXxfKGfxffH+pqvFY7ElRx1TnitsXfT/NPX2+545/MA4dGlKRyS30qmUf9VYxfLnc1H5Wsm/rmvjXKxnxHGCr6Hr97zeWIsnW3X/OM62PhhFG67pR2dKN+Ln0PX6syGDFVP3wALLASL23Zrb+3xK/bhrVMfR3zzb1qiK/3Qo/tFnAO17vPx4MPtxFufJvc08kfr/HEE2zNbg9+H9FT41hOKQDcp4sJgfh3/5QiPD2/tWc43rCobC09UdF5bPft6Xw0vX1rXD+vhd/9yk/CF1HWMaQ7nM1q0KSN67o++PWJ14XKV/vi4h3NT/qaKvNWccGh0HSr1tq6wzwt5Jd0kXpH82byh8ivpIbU+9AxZS74Dqo1Ly6+9a1FbJ+CPRcQC9saVWuzwm2REDian/8Ic/4Le//S3GjRv3snUzMgYFdXiN/5v5vxNrvJY3/9vf/oYrr7wSW221FX7xi1/gc5/7HI499lj88Ic/BAA89liYYW688cYVv9t4442LczHOO+88DBs2rPgbPXp0sl5GRsZ/LrIeZ2S8/pH1OCPj9Y2swxkZr39kPc7IeP0j63FGxusfWY8zMl7/yHqckfH6RtbhjIzXP7IeZ2S8/pH1OCPj9YltttkG//znP1++YkZGxn806vr6+vpeq5uvvfbamDRpEu6+++7i2LHHHovf/va3WLBgAe6++27suuuuePTRRzFqVJki+TOf+Qza29vx85//vOqaqZ1nIbhoR8UOTmWz6+Qun1S2qSLbIHdOj+FO22V+x3jHHHcA1Vl6sD7tKmtgqR2Btgtd2cm0C2IZdy6Os8xHy1lq81Wj3fZSbffjNq7R3PnTbnW0ebKZpRJ9+abXU4M4TNgiZC6YwJSlB+CGosrOzGow8g8h68IL3Nx87gq8apiuTbDDymO3viNklv+fm5h6+fhQrL24zHozdYOwi2w+dgcAvPhS2L3+5P/aTi1upNpwb2YOP5nnLrMG3MFSO2onsPSkTxfxvlO4A244j+9rdX7Ech53t9Vxt1ufZYoYyR2cnbFsefYEDVq1DpTQDmFto7WdpIexvEbZQxI7HYssjszYmtzNrTZpF7p2afpOuEcQdpCejxUrVmD99VM7BCvRvx6fAuBUHvWsMP1ld7WMRYX+K2sOM0tX7LaTHsU7c32nr/phTlTXdqSObwhlsUMxtbM2ynA14pjqKtJ1JRRway0Tcz3Lk1g2WB1t3OUjP71zkP/l65QpyJTRYZ26sDNR+4891+ZgQdkPlYThkgM+X5y7l7uYb3kqyO3zCyknttm0YABQBn8l7XTxldi0sJzA8lLLhnUYr31NWyh3bwhlmQC5hPp5prJyW5aMqdydLFHotd3AhSxtFn23rGWFjzlHF9CF7TraLatd29Ifz2ISZzHl7+stE2aPBGUgGdqizFIFBlOPlcI5lR1Zz6O2xQwBDum4bKHvKq5H/1A2m+gZk9mz4h3hlkG8yD5BuRhP2+x2/7zo1sxAZkk/gUspO0WmRc+oTvwuCOO7dvw1AKCNyv74d8rMPM/Rtv+JO8Jr5QlaXUw/LpS9JHO4Yf39QlkoJnDjuczE0MTx/yOzH/rePtmn61iK/WCO1SkSvEh/KXc+tNpEf7P0z3f7x35QdtZ1tSE6ph3dnl1CeuhZmYB0Fggh9o9AmYlH0AZIy8wzgjJY7EKXbnjmFkFt9KwjuqYyLynDiaz6wPW4fx3+CkI2B6X20g75AWRKWWUok5x0TXbOM2HQHu7OvpMt92ybXbGdFTxO0Dg0Vl43mQ9FdjKWCQBfZzsWh2Kf75eZEjemXduY8nb+9DPCCUtMM+MnidutBk5gwo31mSD1f5nd6MxnvlbUebpzePjwNike/Ycn0lDGyPNZLmfZ7dl0mGF3GmMrT4C2hP7zcLJtKItjr2ep1PjGPsmzqOh+tPND2M+9nokyzmArHfleoo5kSHowO1FH14l9jbWjqq4bqLHRuTg+duyBasT+bywCm8dnX7kv3mEFcL/H0vJ/zaEY2lSeKjJA61mVKdT7LI4cVbfRjkUZZ8S41ZOKk4XYjgPlPEhxTiqbpJyDYnnpt7W5uL9ky3R9JANAhWTMxrv2GaXcPt/C/qc5+NV2IdPR/eYbjptzVfhApqoL6TtXLX90ib2j7zuby/v2kU0AgN1pBLf/B2Oc91uahTaWqRBJIZliX2V5ufn+6kqTOAYL42zuDsW+jGnGWqaVVvrccfRZKdalQs6ibJcVTG0aM2VaSdjkAtIx1ysNsORE93L/3sayVmazOFNjCorX/o7Bjam/ZjXZ/mKtS/3qRj3KhFjogWeNirMqSQ89o46eOc5W5hkjm1hKxxTL2BxFtkNZVDvMN0xm3yyIsuDVW2zVo/hN8U+cxQelTDNO3uk9QW5OwkVFlYNuvqXyMRjuz1h9Aod+Mf3iUP7kxCB/H//1rcW5X74nrFvt9UkGM3fxxE52ATFmLZMss8/3sH75E8tGlrMS2dOGcq2xYMdIZWmSHktHpKOpLJW6tvTHZePQqK7roXRTsYjWQN2vSG4pd/Wce1X4D8WMan9boq3yQ6mMoP0hlYn/KQyeHl+A1fcKguLSVJycYvQAKrNKynb1VNcdQ11apr7WXDiVYU33lQ2xOcoMtmO6ZErjaxmqh3Cu1sjviiediUIMfBeHZz1k85Bg5sftHtMHzBsd0o3/um5Boq0Dx/QtQvmTh8p1Gq2Ln4iwXnrjryjjX7AfLqV9mkL7pEylQ411o3g26YFsqMeufGZ1Z6vk1+227LTkX/3q64zqc+qx7L+RiaBXMZUMp/tg6Tj1r47jncqqKh0r4nXXZ9mROJt3AoU/0+99/iG7LxumTNm+lhLresw892qscWnNsNY6VpzpEKiOU1JxiyB59+dTrCz901jUmuNIbhLMTmILL95peYZ3jYN+J7nxtQ+O71RerykU+3yknLvddtZHAQD3fHUCAODdH18MYPDmw47pahr12Zk15x0bbMXh+D4A4O9306aWS1wl85DWtdsSN1mgZ1P/Kqu9y1YLSzGvcnyHWtzSHV8nBclHzGIDlDY9zu+aiL+KGF6xtMd6A9DRivjW7+HzXhqZEdSNrhpzvyrmN6B8DhmrmNlgMNa4rgKwLvrPCv5e+xzHvrXQ3/sqoDTqcYxVAxVZYjWGsvv67uOs9wP8WoQbbjukv3G2Wp8P6R7qH2MmuJEXbwvFV08M64S3mZJpfnrpr/hOj8ucM57EoOPovjBx/ybpZ8/4x9nhxF02Jz5Uz6xn1fNcX9YpZDqRpf9gjkMRX0tX7J0RCTXL/yMYCMMyY6wRliyv0Bfa9LH0661+vSJAiK7n8aB0PM5a7vY/lsFaTAC10F97+sNg+eL+9DjFOhvbR+nWQMYp9Y5emX1TTB3RmpbsfQXTmvq6iWVijUvvjrviWA0ofYHsk57Z18Aj1jZl4W6xKotD/ambh7aujecBACcXC8LAOw8PqftnNFc3cXUwXcs+nFqc/pavFufOvYkLaFqX/hRj3/GeAZyl/r+4zS6uRNRF+Jh6dySbKbllPw21exTvoBWT1fKrcYznlOC6EHV8CH15r8f0MZu01kf8HabiQMV+rutRLD6Oz7HU7xH7nVQ++FWdNw+WHl8HYE+rGetCHHcAZcwRrbNXrB1K32jvR9F3VTA8x3FPzDgIlH0XZyD3f7JiP4pBYks71SphlM6mbOv46DvjwRH2PI0sdwvFep8L6f+3W/fPRZV7/8DYhetgM2qFlasARaC7XlMeW3nw2gCAHdcMcv/Qp99enrxaa8rSCflKn9dpDNXnste+jhQzp9SKxzgeQ9naFLNlwWaq/9ewde06yklf/LsUM1P8nsnbFt1josdxLLtjFiiPoRW7RHListAlWdLipWxZ6l3yy+Hl9fiOO+7A6aefjrPOOgsTJ07EWmutVXF+2LBhyd9lZKwOZs2ahW8edQjumvTydV8J1v4V8EDrQ9hiiy1evvJ/CV7TpOyjRo3CdtttV3Fs3LhxuPHGGwEAm2wS/jPwscceq/gH8SeeeKIqq7iwzjrrYJ111kmey8jIeH0g63FGxusfWY8zMl7fyDqckfH6R9bjjIzXP7IeZ2S8/pH1OCPj9Y+sxxkZr29kHc7IeP0j63FGxusfWY8zMl6f2GuvkLh17733Rir/8EsvvfTvblJGRsZq4DX9B/Fdd90Vf/nLXyqOPfjgg3jb28IusDFjxmCTTTbB7bffjokTJwIAnn/+edx555244IIL/u3tzcjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyPhvxbx5817rJmS80VCH1/i/mf878Zp26QknnIBddtkF5557Lj7+8Y/jvvvuw1VXXYWrrgpUzHV1dTj++ONx7rnnYquttsJWW22Fc889F+uuuy4OOeSQl7l6jIgiqfMSfiAVwxxRRRh1Uoc+kEJqGapRRQlEGog+p2MR3Y8oMNpCMb6hrLKkOZQjm3iANBD/LKsUtCGilHUG44NJ4/BHlj/i8fOtjpgqlIr/aJZ/sjpzA4fggZ8NlFqnLLssHDfGut8czKaSKezCFXjVIHKOGWRDmf718tz57zgFALDXRwIl7zMfCRQgdz++S1HntpWhkT0XjQgHGnjCWS82DMWT95C6Q0xDTVbnDJakbMFwlhcZF+ce61de+2ZSjCw22pF2feC9+kSjYvQjVfRqoqHawY41x5VKVFHASldMB66JaeCJyUZNskD1yfsmitM6q9NHGuCxpAFufSX0JQPBVJQ0qtsmzsuknc5yRuLcxpVf6/coq1RRzYje2KmUpEgxfW9DWWVJT1TXTa14szQG7N8uo9QZR6qi4pDoJUtKW/yLgjac30l9udt2txdVOvBWAEAjucLe3BF27715UilkL/wrlBqxgZK/rQoKa/3mUPz2gO0BAKNLhcA15DrqfWHNcEBMNH+0C4mO6d0syRJYYQsPi25+D8t6o8RZrA9U9mkNoey03y3lGL5F1EKSAaM9n039n8KxmOc0QjIkvE5BW2XUx+3n8INofy+N7uXH9DtRDTttlSjHpBvU3Z42qyMaMsmi6LD8XmMr6xZ0wAOh11sVbI2Sr1ZwmyHqJdE3yi+7DZR9ksEVBVOK2i1FPabP8jLUdZeB4pz6iNceawwmreSpHcHxWMLYYonZlTFsdxu/S16vtlv9ideUbO/DuGETq7NfKJb/YzgAYGuEDXb/alqjqPLNNwUdfzWDu/vph3d4fygP6r0FAPCX/bcp6ow/LfjnM3YJQcjaPw16M2qDR4s6f/8wbfi+PLCQZatRrE+m3ixo4wGOd49RYN4sP6xxcgpM1RPlnvTSaXgle6KI1O+delLjKao52ROX25iOUgNtsiCZFC1s6yWoQkELJlnWPT5ulXRMz2xUp1VYFRrQgaKXf6JSkw2KKasNoj7r8vhY4xHXd/rqmLKP0j3S6NI72efzZ1TW6TJ61wpaTRhdudn0UY2h7CD9e0HnbXR2YymDBZ0r21Fv9v8ilpTtF00jnyFd3fm/PAMAILbMBgw+Ln02lNNJdX/8nYGW8drl5Rxq8Q00OkMZX6ipm9mFzmDZyHI/lpc5FS0/38KvH7NTux0VSjF49mk+5HTpsu+i0WN8WcgWgN1pZzXOvYm5WyFLNaKZKYzD5snWpChgY5lcxNKfWX6Y+qj4uO8mq9MQXc+pqWO9TdHHKwaRfLUi0P0NAu4/D6g/r/zeo5iV/qh7adVPyueQH/xrok5MTe39IV9N+99Ti6qUNvkEysal5htOpW6fF9WtCAhZ52J+/WILP+xdVlFTl3AMnaJRNPTy1btXt3DD/cLzrLdGuO+Ufy4I5aMLykonh2KwqDxFdFrQ8JpITmVstCc4F+igQj9kF1ByD60RHN1iJylnM3nREbR3h1n8pWG4QfpH2zHG4q9iDkp5H3ViKFtdphpCsTSar440e9sZx5/0MT1+fCgGjpS8Kp5sYSlf6/5dx2SXXM5Q4xhQChlQ2rdB9Mtbnwo8eFP18U7NCdSfbrvUJvrXYr7gdlO6+anKujWRirclMLqedKzF6lDuRO27j+nhXfog20kb0rNVWaeggGYs3y1ZnFNWWYvnRobiVy++DwCw/szniypP0VduwDwUM57AoMJJgmd8MZSjTwzy+8X3nF2cuw0fCh8UF7Ndaxz6r6LOSwdzUv1RxphiZn43ShzKWOZZOXTFo+ZX92NZUAPL1zjltuRFsa/k5HNWR+P7OCrhNj7W548nzu0affe5tc99YXbA6/wgOqZY0e+tc9KJmFYeKOVTtMBaz73f6tyHUr5fKbqAPejQ5rbZcT2P1oCiNe0KbFWjzgZRKT/ocYjWHDWvMjmRTS9iedF8p+bdkpfZ0XcA0xVkal2CYzrCYvou2um5in8kv7YOdlIottw8zIUvJM3zT0aXdT52TLj/u68O/vjXeGWY8bdQjq0r+/fRvgkAgLeC81ut3X/Cfng6daJFcROfp/vhsk4xL5T+aA7q8S37/C3sq8Kf2jxzFK/dEbGtjrTPnYrDqH+FHrn8S29T8bH0n22sThiGKhr6mmtJP4++uz7zOlWxgNeJ4/1b022ogPpXMv5MjbqrgknAiI+Gj10DWT9LxSTxXODeRJ14jSAVf4xNHBPaWJ5Qec8pFutpDVXM8AtlA39c1on7fjRjPV+I0js0qTHX2m677qNlHb6fevdZi8OHWkP3CjGDXV6Yol+U5+qPDfZ8Gtfwv3rSRaiCXg/MagvlqQ2hPM/G+yjq0pUaA61Xmr8Y0hjKXl8XQeX8e+k+led8HbqYX0peUvGXIH1RvJx4FzSE76x6m6PrDRS6r3yL9NrstmR5ILrRnpoTq68ot7uzf+YPRNcGim0ArIdSf2L75HqliV1KYPWuSoFkak4ttEZlLXAsWz0WkU/SmMVrkgDqOQ6FCPLcSLP7nfH7BtnHO8s6xXg2sLR2fILzbsbt8ouKtwHgiTU3Ch84N76k6t3n4GHkUU8DAEZfGd453bd5SDr3rk18Qi7/2RCKYu35QKsjP8h4yd+ZzopjXl7H47Bl6kfF1VqH8/hL8bDknvF2V+q9LeWt9cfVp+o45yvW2iS/LqP9GdhasaPbFerACN6r63oef6C6zoBkWnUPRbBx59eoO1D8DcCbEsfVHp9PRDa4aq6CMkbTXKtdfZ+aN6fiJkG6xH4t1trc3spfXFFZ1+/VwHJ7xoPzry/P/Ziye2j8LsKfUzLMe2zPr+5//hic5JWbh3XcTb8TlPWRIzcsqsxoxqDiei5nHMhH7vxueS+tuT15PNdSDqb8tdgFvsLypywtzMBFslUNLKVr/q5GY6jYijax2+d6bOQo3r9DftV9RWyDo/krgHI8OBetGSffF333630vOlcjgCpis1R74nYN8JoFVkXnB4p9ULmOrP+toY4NaQplr8fJsc+mblWsHWp+SfnviI/7deTzZFMfsTr9+fVEH/bRV7TaPyPVceyHsyz+J2TTss5Q+oLuOZXnXFepJo0nhjY/h5CNvcefJ/xrCOYO0np00TyWvR8uj12w5skV7cA29oM6zjP6GkI5js+31NbsxnCRe5liXvV5m13oZlRCMdcDqMJk6vgC2Ul7HzO2MZStsf8zne+LdVPjc2H1sSFse8WrR9n9cysvs8ivSzndn3Otm/Xsl+JlUTOmrvWfAZIPPauvVA5MUN7znvcMqF5GRsZ/Nl7TfxB/5zvfiZtvvhmnnnoqzjzzTIwZMwaXXXYZDj20fDH45S9/GT09Pfj85z+Prq4u7LzzzvjlL3+JoUNX5WVgRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkYt3HnnnTXPv/e97615PiNjlVEHYM3XuhH/fajr6+tL5nz4b8HKlSsxbNgwAHcAmG9nEruqq8BdvCO0m0u7gzYqqxQ71uLr+D+wM3NekW2BmZjqbedYj3aKaQcyd1UdYNkxmLlbu60rNuZpU5v+5X+9UAyb+VhRZeTaYcfnQ+cyDUQDT9jOs93eEzKO3XX3ngCA+3YJO4h6sG5RZ6fnQjqj5cxUuulx4fgMy+79SuDuI3Y1B/aVO2uXsI8+83zIOD9t7ZDp4eIHv1L+gJkvJnwyfGh9JuxqHLtu2XmLT2OqJWZgLhIE7YYST7PUBlZlYlvP6mjDW2dbKEc1hNI3pCpRzHKWi7hL7WDLrDBLux819qnMoNrppawfvntcu7trZJHwDHlAmamnYheedpVqt6jqfMTqaGek5FbZOn3vyZ0I2Q6nY8WKFVh/fcvkPECUenwKyp3gGyVqDiTVV7TrtGL3rKRPWRSVickzA2hctJufzzzEBloqr6xnbfbzLmaN3odZzudwF+M0y1IwmeURtCvnKNOpXUcbCU9lqY2St5RV3v/Sz8Kl+TwH/ZInPWkt5X2GZ/scZEzfqvL7Aw8G2bwApxTHhlMpFmMCAODP2A4A8Mwzpe15eizTHzXxgLI0vdMuvi+39R/H3ao3UOm+aoZOyWCUZU163JJoPC9T9r1nM5EsUA9SGW2ncuyKDameKUi6Tf0fymxA3ZYBYA/KRZFoV1nHPaOMjI+2qQ6JvgOF3BeZzK9ENWL9ia/zLIDzB0mP9+PReId3CurX5vLQ4cxQdLV8b61NY8qe4JkZpG+yA/HuWQBf5didxXuM4/elxhwxmX58AcdgJMfFZVIbjG9h2Ul/f5Rlc7yS1xzC6/W2hXL3hrKOkoHxUY//fsiuMaHIbAtMrAvZDuL91K8GpssE08/+661lJvMN/tUFAHj+niAn9buF7z1HjCgvoESIk1CJDvs8k5kejmFMdAX1eZLps/xxl/TAdaM5FKObQtnewuNu9xkPjOd4LOF4DzU/2a3fye5L/j2DgAZaesN71owzJbdNdmxpdE6j6Vn65KvkCDzjdpzJQN+lB6uvx6UOfwtBZ2TclTFC2S1S2W7kI92GxnpHHVVsDVgmK9kh9bllAS6crJREcUuD1YmzAkiAze6dyjE/T3aacjbEsi8Umb40PpRNT87Kpg07P8Tgp69dZgv4AFOV7fDHB8OB40Mx4w4MOtTCE5nt/x9zwzMfhzJgl6998F4+hzLjeHfpmHSzgeVFNpbnc3zloj5gv1/MUlmiutpCObqhrNNOvzeatrldPioV13GcZE66ZpanxjOoKZIeSP9OKOsUeqNjkj/PmCodi2Yi480uLIkz6KuuZ0tTR8rmpLKyrCoGyRe/aQXwrGfEkW6xzRU2UDot/5fy3bEfln3wjHf9ZZWZnjimvkplkYuhbFyWNWTy1MpDRRauFvud7CrbNW5aeertUXVNtcqpNbb8ZKDhugQhJlEsu8xsT1vdq8OqpIimyZKRrPzy2gCATf4VGvnB9W8DANxbzM+Ah/ekvV7MA5q3AsCNDaH8KHVqCPvDMxxOpCwvkt6xjk/9enVOdlrZjVw39AP5uFQWeEE2uEj5buc2jc6lFqpj2fTMxbpfPE4W0xdC0MZSst0PIxeA9FqTs2wMZkz9VjsT++OBIOWf44zFyi68qhEm7eMUxmbzUjGR7k/Z8jBO7rjwH/q9ZTeuelbK3WHGIqLw4Kiw9Dlui8UAgD//02IrERgx4+mr4ZeF6fKR9Jk37VQ+9LlkQvvdiewPc3EFFDtLFTqjNQMAOL0fG1rhx5RRTetFbSw9qFEcqdjK9Yc4mPVnKRbnmFQwz8WsH6lMp/E6TQoDkUUNpuyB+944w6mu5xnS2LG7KztfKlsgMHh6fAtKdhDPXBlnn0vFEIl4FkD5XEDRV/Ucjx7ZLg/2pFNadPAs1FrzkE6pXS4LumZrdC/L/jaO64gFc4Sy0LstjRn81Pfl3K1+xRgAQMP6bQDK2PrSs04t6vRyjXoImzjDMgWvDiQ1O59mB7k2/JMTg70UI97sT9rCWgvLdn4Y2siG2XWKtVj6lsId+vjE/ob96wltW2Md0xjW8gd6Ml83ks1IZQTsL0ugN+SpqBQ8Bogzzad+s0F0TDLq83jF9Kvro4DB9cdcqz6A43ODx9mxXdNAe7yhd0Qay4FkZfQXDuoz2e21UA2NQ8QEUxEf65pRf1Sw4PZj08eZ3V/Ka57fGMrDwqTyxreW9ulDzwS/sQ597gzLRDjYOI0sleeSBXe6v9pgkz75ifB+6ZrvfyYc+JHVUQyjNV5lRrzIdVWZDGMGCl+E1zjJ3st3en9r/qQ415nR1PfxWoplnhzB+3Y180D8nggodUuxcA02uNWCx9/9xc6+xqVnlkwOIHtigcFY47oFgfb0lc7XtcYgFhD5Os8gGWcZrxW/xywgzqKgMZe8aUwrnANL9at+kxpnzfXjNcQE/L0imTMmXz4PADAcYf33fJR+eYffhfWvNsawA+EmWl1Mp1vdY2xIJ3wsLgcA/M+3LBjQ6yi5yrew9CSkXVGm7tHGdFUQ4kofGSBUvOuP5z2y95YxtRgf2V0FCC4LDSylPzEzAFDquORP8Zz7d813Y4YoZwXyNbEYsV/mdSY1lFUWxlnFa/lntfX3CC8I9h2kmPrNKPszHgOPRWLmlrhdwKrZoQgV62myK7Jz0jGPpfWeI26zr5UxRhvF5+u4ws5pXOK5jv++mWVTKPS/EIejCh//YJCPc5iee2zBtAk8zuWHWtKyOjiG4t/xwpbFsQv4jzDXvId+WTp7i/2wl/2wP3XM9Xip5iK0fePpT5dYP2usuuPYpsxkXtrt+P80dkQ12lhyLOrsxfhwlkX8HzM+A6VM6trSfX8PMpD3qUKNLMsFajHH9bM+XoH9Ef6BZtdB/v+PFDQncPsWxxepmEY2U2sd6mfPIC7ETGGeZfkjlT8rbL3PUaTrqUz+EVvU1KZQznbdl6/WmOs35TrNRn2BVW5DLpZNIgXd+23951N/CHZ/xgQMKtQ6X5Vbsy/o7fa3Br+29m7lu4DnD6A8DOeBNpY+hPofjIX6nXxW6r/FaMtH0iB0+jxLeiOfpZu5LGg85YOl8x73+Dtfh9vUgTDZqLd0vUPsnOYQNeKtAjHDj6eTj31erTW3l7tHD4DP19TjNddcE319fairq6s4rn81femll1bxvhkZ/WPWrFn45tGH4K7JL1/3lWDtOcADrQ9hiy22eHVv9B+ENV6+SkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkbGfzu6urqwfPlydHV1oaurC0888QTuuOMOvPvd78bcuQNJ8pORsYqoQ9hH9Wr+vQHxBn3sjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjAxHKrN4Y2MjLrzwQpxwwgn47W9/+xq0KuO/GvoH8YxBxRuoS28HcKR9F51TTP/r9EykmOi6l99F32m0h70x5WVJt1NCvxedBH8/1mg71yM9yALWqaeRXWyXuYFUX3eSrqrFzok/ayopa8g+suKuTYoqK57l57t44N0sny2qYAovevougfrsDtJTfBC3FXV++6ZAESEipgdKpvpBQYqsRr277T9LWox13vI8AGCXte8GAPRg3XDCNikd//nzAQCX7ULuMFKZLR47sqwkqnCx+53NcrJxnHyBqvKVQJOBp0mf8Q6jTZ/IMXuuIZSiXlpodB9LOfb7k+KklXQoFaxAkhPR/ohq935UQ/LnlLKiLGtheQRLk9s1WXaKZkkUK05PKYjGhVQ9+zSUp+bEtENq++N2bCNU0/KsJjY4FehiP/c5hYt0U7Ro4mL+stXRMVHO6Df3Wh2ZxEaWDSxvtTqi9CEdzGjq3DpWRTKo7li01E5SruaQU5o00ji1r6wi+bqY9umLpJvZx6jQJMLnsfwZS2ObuuMfgb/6sM1/iApcXX6c/Va8+jiMJVm8tv1Q0OPTf3ZOUeU6KmDL9XyAF0Ox2yG3F3Xu+2O4wPPfpgxszxPOafY0B+IG3Zv6t9zq9LSF8tmGUE7g8dmmz6J+epo0x+fz8CnmI04gZdG3WVYwUpHScTbtwEi2ozOmsAcKOqGCcs4ImuaKLk76K3okp7aSLEsfRTfl1EmU4YNo6MSSN+SoskpvTIuke+l6/0q0fXVRiwotpnKTjhrd0tX9UThZnVHUn45mHnBapZjiVxSc1mdnRTR0Szk+U4wyTDSze/Bec0kde/yJZZ3rWHbSDk5jf17517KOhGcy5WQ+D7vpmBCKrS8PvuBFGvJPNZcy5eSCrzZm0O1MZ3jw6aO/X5w7e51AQfjl9QKVZ89jI8KJiXYB2SGZ7WaWFpPggB1C+Q1+H8v+WWx1ekXXK9rdZjtJWzGBX9s1du6j+HmJjtFvdLuMKVZUhKLxbbM6sT9UuzyuFI9xTGHmtkdyIX/M3482+9+utsngO1Wdri16wFq04quLfyDQ/UmnZJ+WpqsDKB2jU6LFVGf83mCHWpv4QT5c1IgpGxLHTbGeA6WfZ5snGzUcaadxDP36Qn5fkJIF2XZ+/an58Lbgw1c8EOLuu3fYpTzFh/vmrC8CAH58R6KJgwRZw9m8xwvYCQCwe2FggMfJz7lGQ7DvL50QKArxZruQWGE1hFRnHGMx4ymMRw8j7e419ntVaxVlMXWt3XWG8t3Ir9eIEtBp9tpYkra2S3VeKKsUJjymTU/NLuQIRe/n02I1JPqd05AW1xYloK4TU1sCqGMn9PnBmL66lty+Cnj2PFTSdopKN6ZXrYVj7HPsgdQP70IVhvAeRdzhtkPjKYGTAJotO5y06Ver70XzahS9C+hzz6F/PV2xkvnnQk74O++OG6I527aM39tKOXno0RA7zH1rGN/L54QxfM8sayvDtRmDxdZOFNbTWManrxme5/b19wQA3Iz9AAA3ft7osL9DIdySznZEQ3nuo4p7qFu9klGbXC9SsBvRdfa63Is683uhGMnx7jRdLWjWNb7yXdYeYSjb0y3dcGromNI3pesxXafTAks+dU22sc46tk+DJ/maHX0HMJKxXafWglL6M8hCUMDGt1gbUFwb08oDZftlcxT/bFtWmcp+na26WrdyWnvplNYhGJNMMQrleSrj+MDHjbIziTGas67vzvI5ll1al7AXElMpX7P17Izb2+w6nwjFYVuEWKIdowEAy94yqqjy6MwOAMCuJ/PAIPtnJxyuiHUB3I0yTliTk+BxlywCACy9gsHzxfaDM6LyOOrRIquzP+94s+JQxtRLbE1oJI/tx3Km7LivCUlvW1EJswuzNBeJ9LFivWZoVCdFdzs3qpui2k342CqcG3032S7iR+l+ivKemF/LD26AQVvjwj0AtCiTuidt8WjKeruf66+Niefqka7HcQtQTZfufS/pje/VZp8j+Sioti0GWMo5Th2fo0/jvY/9UAaAc6MDGGcst0u3hPLAD18AAFgXz4QDFlYN+QVbHIdaqwlJzc7OcP3NUKx7Yrj/n7FdOHC01dGa+08bQ/lHfm//sVWSTnC9t9vtbFRnCm35PP6+1XUuopKe1BTKhabzhT5L/zh/tuVxdOqDbLyPrV8LAE4LRf1a5aEe2RE9h34zG9WQH5ob1U3da1O8MsRx+6sB+t4btA5g73wq1gSAUsfcpsXzW/W9/1a/09jfW+OcdP5TqMbbKusOMVlS/Ccf0cl7LPG5Wxxn8B5LPdbjmHHqtt4xoX07pOIhrunGkcVg4jcrQqnIE7Yc99gnwkLAbS99MBy4iCdc7Oppu9bj9zE68aRVkm5p7OO1HaszijF1h/rjBKujtY82li4bkgetf+ke5le7pFMVi9SVdQrbLkOZGJd4znYOv58+kHmiRT6j2NYOybuewftO787MnrwsdJ1V+U1/+Asq+0t608Dy5WICQXqihc44fgLK9mqtXfqYWruTLZQN+03iXGwvx9pn3V/CrLXHxBy9iK/Zjhm2Vja9jZdu4GWvL05tdHngfH8IWwIAxlOWhloscdJOZwEALjr3q+HAaYnbDxJmcCoy96Z9AQDb7P8HAMCGn3ukqPPkTuyPC3jgZvbhGBtLvX/UHKci/lI/6p2rxqXR6mi9lmOwB6891w2L1og5z92HfT7Hx1n2Q/oSr8MCpd2/FJXYH9WQjOpZv52oI3nze7BNWkPVOulCJKBrp+Jsyafa8XGkY/7VwT0IizpxACh75D5TnobtqeOc+gyrMl16rD5aBS+VXE+T3jWx9Dky106K8ZYdt8lxPWPmDh2w8Z1KGzqbdraIt70djKv1bmY4y02sysiw7nUAbgQArI3w/xdt9v44fvvxSjFdywd893Nh8SIZeCseDR/03l3rdLubrs7n+uDNjPEm+tqHdIz9soR1hph9606s7wCosN/T2Mjn+Ltr9BuP43RNjRnnV74O3NVP/JTs1XhOsEHis8rWxDnJ6wN4edQa1dQamyAdeQGD44tTkJ2Vjuj5ar1bZkxTZ+Nc6ELsa32lRnqn54rftQPF/9xoKaB4/+y6JienOZ+t2e2xT8VlMFvyknpfRnk/nHJspvKJ94Vy7V8FHZXPHeNz9MMqr5xagVkdyJvuYHPj2xHW1vb7cHgRfsu5B5UntRxzZXQhf0+stb/l9L16hzTK1hc34edFLaHslB5+rqwzir/vkL1PrcPKLmjMqCP1Ji/FUo/WofW/GD7OfLBJ/H+Lhan/V3oEFfDn6Wio0UZB/j1eB/O5RezzBjLSklFfO/s7qhYrVwEjR47En//859X+fUZGxr8Xb6B/EM/IyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjI6A9/+MMfKr739fWho6MD559/PiZMmPDaNCrjvx9rvnyVjFXDG+gfxOuBqQ3l19naaRbvvLE6xS5O7kI8h7+p2CmvbVvKzKAsAbYrjMmAy11q3HG2xDIrjNAOO+5wauLXfe1WH+Lutot2rW7qUO48OoDftfH+LqujDAhdLJU5+/iyijKSXoCQOulkbqXe4boHizpPUWqusATbrzb20IarFeWxE98SsnIsYTYkZRCf8Pl7ijqXPcoMDI2h+Oi5YdfejbfZ+Kj6BJYayoNMPfh7zOVgKhn9MZa9SplW1K87cxDm2m7ggzn22rgp8fGEIPX8XY92etVHJVDuwNYu0zY7J5mOd8LZDvUXmQnkMNYpMj16BgHtpox2ks9J7YBW5hdmEBjXVJ5a+nO8kp1nFXjq7wC4C23o9Orz3dqGqCxEcfYooNy9J109KlFHz8h7jD6wPFVkbmU/D6HujbafK/HxDcwiN9p2mbZLrrT7j9k+Wnw3JEtlyL6DO5+b7R5KHOCJIYAyAz4ADAv32nnzeytu5VkPBpKD6xVDmxi5E7z18SDjYx8oGReGbhuUYeqBPwEA/OKpkP38vqd2Luo8vw317Q9MI/cObh/3BJa+6x0od9X7pvwhDaGUShQJFmy35WGUoWu4i/ciyZT12DVsm7IktTeU5w6njVEmhSXKpOQ7jiUD3CU6hOPc6xml4kwgsl2+K1v2QNdLZR2hfF0a6W9vamerbIfuoWceLKP/SWAs+6FV909lOJEN9B3UQpxpNZFtoiNlqwTtPlfGu9RO3TizitrsdZitYW4Lv3P37gdM4EZozGnDVXWS6XwjS2bOLxL8XlBWwdOhuITZT0dLkT9UVjmG9WecjFcN05XIgcmV8H59LZlG5uM94YN8i0TpAJRQLCLVKBIRmh6OZbzTxx3hz0lHPGOfssG2sPRd0pSTIruGxiWlI49EdTzbYLzFXbJ1DPqH9MXbGmdkSKW1k18nK4pku70tUZe+vCK1lTJlxJljJPPdKCkRVhdvZ/tkn2Q7amUQFz5in+M20g60pnQ3zoTmUJYP6nMdda3P4wRlODJ/DgAL7HoLFBe0hGJqY3RvABDzBftZMdtudWWVn4biXTv8GgAwrcgABnzol0xJSvX13PGvFqZKZ48P/uySyz5fnFOWp5f+xJThCtfcJPN5IIY4mbQ/Wh394BrGG4eVvhvXMCPieGUvTWUH4pjN0nfJtGf5U5YeZYZgtuOxFse1qr4yIRR51O06isOko/dF34FSxyXbkpvbrU6cgVC+2IN6+oi+Fn6vFXU9mTim2H+wspTG8LZKH6lPo0x/+vWnqaWEOCOO21ver7eZ32MmL4d8v+yc9V0Vi4iuYxo1Q5nD1VTqaoX/oCyNpu579t3DOO9vCMWwTcJEb8VuZaD5t7eG1IGfBhk0FEoUGQWBGZ5NfxCh3vlX0xrFsSlM1/wXbAMAmCi6DSOzwoGyVYyf9rZx/jntc5cy2Ej+3JZGfT+Sv+lMxVH0wZ2JTOSax6ltS6U/fh3KYnfscz3FdJQBqmaoqvQ2nnlJWYeirGJ9HmfHGYvU+21llSqGoFSOHvn3FxCCulfqi4UUf0w8f3A/JtslhiwtTFjcM1t9riw58pV+3Tg7LPtynmdU45gXmY9lH9wW8piy7Rxg8hbHxZMbQ+nMHspyPo6/W8pznXYdZvucQJ1QdqV6ZR5GOU3edSChzGpgV2fmoP/s2ino2HYWP138Nxqtk6irDTzhCbIk51KXacoA3lzWGd8UymN47go9YTUdLP7Eso465pnmlEWpR2x2ipXcfygOizMQeh3Z8jgrl/+uVuZwYXXyXnnWNLVV7YjleKB4CoO2xtXv/aWTjaFoT/lKyXnMOpaC9DiVLapWeySfcfZSz/wtGyPf70xZAg1+IV+0rb6Oth6v2cjv6mITpQ33DXO2ezlHv+3yj4YTniTzzMTtBwEzPlB+nk42rN1fDAbqhDVDHPWF58q4v2g/M3QPaw2LxSvWsYxfQ6lT8dSx3px3D+MbsTKov0fa2lKnYjLqyELKRL3NV3u0zqTs8bKXPqc1X+33AlDG520sb6psM4DSb8hAyYd6kKXfx6w57p8lg4wlivldSg/iOalDPimO2yUwg+WPN0d1DOx9F2URLthV/Hmi349nnSU+JtI/+dEUE4CvYwBpXVecwmznvTZ30xgWbYuznwMYwnVJrSfe2BDKj7aVdW7kehffS31w3UB7+UN8sqgy41m2jWb6qAk8vjjR5FcIRbU7SEw+Vp7b5DvhZdOoI0Om0icPoqxPN+E+lVeQXusdW/ECwO5yMXVc63J2L8xizNuhdUaO10h/vySd5HiPbyzPLdHYa/2qCdXguEyiDC1M6U2cXTyRGTdmmTw9tRYTQ1mTLXDpiLN8dkelf65F/RDHCSoHwx+PQFjjkh2SzZDd8/lQLZ+rY5oDxzYVKO2j/Kp0N37BA5S2Q/1i95xIOVmkcVLb3fbQuexBXzNX82W3SXzWo/iMy1lOt/EvWDN1/5Ih4YlPbw4A2Oj7/wAAHE66yOFG/3FRR8gcPuNVzBwuTBd7B0VZ7DxP3mXrpgtY3qID7Jd280NjOD7L+N3V4RplONVYsuxpLOuMoF3t4hi06IT7uicrj82hTR5irGe90bFCLz2W1sVjH+wZvBUDL43qeBZSyqsYvJwtWayoCyT/CV0vUCselexJp64HbE72yjACwbbFLPC17Arbo/hiemqOIiju8vluPJeQbfd1MF1T+ic7nmpXbDPMN8glTWY53GJFzd+L+EJrJh4TcOwWsc6iEK9v9N1yoPejzHTT3oqpZ+SH7TJOtD0ImMFpw3SK+kf3uqE4dwWODR9aQrH2kyHefX5a4kIXU2e/2Fwem9IUynlR30+1LOM3/77y3Bj2T5vF2TOld4qftF5kMVKx1KyYSj7T568xq8S96B+x/2m2czGDhFGKFzqpZ2yIjqcQx7AOybhiZ59bu44M1tx4QnQPrcPVWj9Guk6fv2NP6SZQOQb6vdgVpXSuq9MqjxXr5cb2PYTy0auxt/eBczVWmhtp3uxCrazt/H0r11Kc9emkUEzkdRZiEq9ic9GNKq4y6OgxBok9LwwB/16bcPHO3xnpfXD8enWR/X/cYvaZ/h+utTGUT3t9XYBzjFHsM3810X4TKhEzQQDVtpdj12N9V7y/lAy0sfT5Jm3EwhRDlXQzygBe8X6lgmfQ4O95+3uP5H5WfkPzwpgdzqF1aS0+uO1oxUD88Y477oi+vj7U1dVVHN9ll11w9dVX9/OrjIyM/zS8gf5BPCMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyOjPyxbtqzi+xprrIGNNtoIa6+99mvUooz/etTh1f9v5rqXr/LfhjfQP4j3WCYkR5QJYbJlNiwyE3F35enaSefZTLlTZyh38XZzx9nuVkU7ux7jDrQF2t1jKa428yxV9psPWbaCIdxRpA1JE61+N3ckfoq7Su9hJoBGq8Msn9AmzBHVzVAG8buf2gUAsPd3WsIJ26m1AZuxPzeyaT/bqubcWSVoY/q/ykO7M5WUsqhuyR2Ov+NuOQDofmsY34dueTsA4O5zw3Md8sHvF3Wu/fmnAQD7XX4dAOCWuw8KJ3zD2HUstZFPyQo9S1kTy1nc9deR2AXcwl1lRTbTtlD0NJR1hrPskWwqq4rv5tKOTe3g9Kyk2umoEdFuUVP3Lj7cNQ1RXc8somwS/N1YXre1xepo9LX7nPsRbfPf4OJahMwssGxyKWiXtO/oa2CpXaLa7e078rST1nfPI52tqZ7ZJJcpe7Rl3elVplJmEmn/HqrwY2ZH+hG/W6KIt70n7JL9ex13eUvuflrWwVdYKnvwl1g2l1XGvc+z9AC/PTqkJB9eV27hlCTdjFcPM34RSmVxaFgZMoffv+3WRZ37EHZXX4XPAADmbxAyEH/8TNuWTvUZ9daQ1aXjG0zRaBt0iwSY6vIvsPQh1QbuYkM67Xa9ZcEqMj5SXjolN5Y1RKwBRbY125V8dbS7tKhzTlmn2EGqrMiyGf5A2rktXU9lCaSOTmT7F8mf+A5oOQ6yKkBt9awHyk7Oe0xlBrvZatdg7QR/Gmid+fLVCtCujKjOBIh22UllpTO7q+yUSVuxbuXXIvOk19X+atlHaonrepERl991ync3y08osy5lvbD1AHAZyyaWkxtC+c+yypYn/4mtCFo7859BuGeamXvVTK9B2VCnKwtSUyge+llpxHroPzb7bpDf7ufDgK34hqX4/x1LulycyvL9lnGuVfEWs36K/eAYy3Z0BRV6UmMoF95ZnpOyL2yInmJqdZ1ioKQrnnJVkL4o60CtTA/S2UfsWJzNJZGNq9j1zXh0CmVznmfiUwaQOOuaQ0ZP15NRHAw9/hOANyWOKyONZ8SJs4TH3x0bJI7pOaTbyuDh/apj3AUvO3vY6WWVa5QBOrYHiRRGxzSGsjnVRgWA9PPttAtmn766Y7jv2ghsF3/GdsW5D80MGcRXUszcAr9a+DF19tAtQjnxsjI2UGaJX7wvpET83TcY5HvyKoUMmtsoVPLw6QDaNSZIxzXu6ygXcouHcUyv8Zswm0uv5FWZlMx5j2aGiHZlT2DGsIqM88qW8JvKOs46U/gE2ZdUhpQYcZYkoDKjCVA+oKdRjDN91UpvnMrwINnWM4/F4GVXAiqztqk/GEN3eEbk/jK1rKxRR5kwPNNc3Ne1Yvk9ojomC/VNoeyRvMg+Wv/OVKYl9l2v7K3Pz+jD23XM1gEmsGTWw56nQ9ywxoblZPTtK4NffmYJbRcz4M9dXPUwgw5FKG/+1UvFsca9WgAA16wZaAOOeDDEevVf6Crq9JxO2z2N4zXT0yUzipjGeFJDV5EMhTMHxT9ylXMsA77sYRfHrsjsbAFLN7MRv6D4LZU5uAWVUAZjlyP6495a/lC4M3FMfjnO1OWxeJx5U73v2TY1T4jl3rMNijnpBxi8mPojKOnQgNLWKEuObIdnThI2jL7HNg0oI8uUf+7Pdnpfcnzadf/UbxSTcW7gCS2v0f3ZvwvcFgr0MUujZ7SQc9ikkLVXmcOPweWhSmNJT9f0tVA2v0qZh+u3KD/3/C2UI04P/uKTJ5f2f/oWQW8evigwfOA8rlI328WaWL6FZUHKZStymiu16EDCx3RS7zqpd2KO6DC57ZEN1rxVDEie7ei+qI78ia8wSKdkb92w6FoD8cdxRv8UC5XA9ky2uH+B/IV+l2IV6g+ege8pDB67h7Id6rrCA1GZQuxH1caN7ZjsvHwkbVqdjXMf+2Usx/ch+3kf44I69mef9NLvTd8g9qdiKJw9Te1Q7E19Tq2VKXupljDNrExbI9iK8284IxwgS92VNlX6d8TXWpa8fs0wx7iU6yz7vee6osotX+FEd3goVlwa090B6NbDUW8mcwwWPGyV5GwVd1FOnrMqRZzM/p3ENaGFZhtHc72nWN+UHhgzR5G1Wgd8nDUgMVvlEVZHeqGJgsbXU7y3oRKKr12HpQv0731q6wlWR/NKyZbmaSmWPMm/7JTs02D543+gkLwi7qnBHFRk506xeNJmLUllLYyRmj/Iv8sWp9qhWEbxlylZPfW4kc8xRzGN2bxG/Yz9+VGeG9FQ1lGSPzcDKBlvAKCOa8Qz/pZo4iBDU9i5HKbT/Z4Mm9bVM8qHHmBByecoQ+dTD5axz8abjxFT8BfbeIAyPcvfI3JtawTtdBc7qNPnTMocTl1b0mbn5D+59qE1SJ+bn6LM4S08IB1NyYt8geyAr4Np3ik/FGfTTWHjl69S3PMSOyadT2UxjbN+DoRxZFXxN1SucSk2kf75+lMcF6feiD6cOBZD8hXfyyGbJ3tn91bm8Kr1bI+xKEPD+XUMfYX/b89k6vGVarPmTCbbhYlg3+/fWJ6jq2ugbZ/Jl1jjjRnq8reWzNSvNpZyavTCgvDO6VeYAgDYdJtyDF+6gdQ+jTzwpoZQOlHVsijGuszipi75nTh7tP2mK1qT7eX68TjLDr6U1xHbh+LuXl/db+Ix6Yt8puuj4r8lUR3PGCwbE8uvz91oV8Ro7KxNRSwfZckfbf3SrnZLlmUPYrYtoJK1b7Bi6i5ea1X+S0E2R3r4SKKO+rc3qguUz6qsrDFzKFDNXLRWok6MeM5j9y2YMF0GOOad0mOth/lcibac7D1rLw7jsx3uLmpc9eBxAIBdtg7x7chv8gXXXnaZQc4gLhTvj9vL99bX9B0ePvy/UDz/BT5XBYEdbell+m7MofMkZ5p/0L7d7D7Xs8YDWKZ3PTvYwSgLcBHXmq8qbLDGWQ661rqn1pRS872ULMWQP0ywhNX8ffw80u8GqyO5VSxNWZxoOr8T7dzMWs+4qlgMYBf7rjbWusfHozrUh3G2Zre0v997LBGvfQiPVNcp4n31kwnlULEzsl9H2Vpzh2RPa6h6H+/vyyQ7zIY9X+udJqu7hTE/8oPfAQDszHeUI5vtpTT1dvqjbPkgs+XVG7vWoi+HeHY//iPVLQ0HlSffy7W+cfwnF02J55ktHM6yaH5DKM6wG36Ruj2SOvZ2Hp/bZpU0DnHmcF+bpY5XxU8W99fzHlXuyVcaNJ9MrZfKX8gmyxb7WrN+H7PHpvxQf9d3KP6TXTC5G9UQyiqGWH9H3oqBzI1HjRqFF198EW96U+rdcEZGxusFa7x8lYyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyM/3Z86lOfwpe+9KXi+4wZMzBs2DCMHz8e999/f41fZmSsJpRB/NX8ewMi/4N4RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRgbuvvtuHHDAAQCA1tZWnHPOOfjGN76BHXfcEccff/xr27iMjH8jvvWtb2HMmDF405vehJ122gnz58+vWf/HP/4x3vGOd2DdddfFqFGjcPjhh+PJJ5+s+ZtXE2+w/4t3vjVRJ0T0aBXUSTFNueg/nHaE1+km1clhpC1psSrzxXUpOlbSlJ9vtBankP6hntc7i8cnGq2F2B3IJrTXd0s+n19++MPhAymgNnxnoKF4cqY980lRKYb53csqv0DgBalfL9DInXLqGaGpp59RViL73RIy8qwKadPq4n4yg+xgbDlHPhfG7tR1zgcA/BnbhXYZTYdohHF2KDq2GgMAuPbGMeWFTgm8nLfcT9qT4Nuw5aN/Kqo89B7ylZC+FJNYzm4przOpkR9IAbJ7Uyj3swc5Wx8kS6TecuqwTlHmiZrkyyxn2oVimhGjixrFsoNyVlCU7G31RXslypWYHgkoKU5IadNai8ZH9CVvG0DdV4DhpwLLda+j7ITaLy449V2KXFYUb9rN5lRqG0XH3GYINJtifBl3TOVlAeBK0t30ikLGaWZIUXQoNeconruirPH33m0rrylKTjc9shHLWVJundnqre8L/EFLSIn1scvZd+8t6zwl85ZipRlkvEAao7V4/zUXvVicG4c/AwAOJg3RcvEKHYAS+4Wi4x/kQhML0S1llfqLuwAAPTNHhAPnV9eB6I9mqtNJ1TvPaKfe3cYPtNMyK+vYdUTp28Gy0yiCDqbezSJlUV+Kniym+pJfMjrIEbx/l6iBRSucGLBFssZP9l+nOJbSDfUHZXI2B2wo29C3Enj6/KpfrTpuArBNdMzpE0WjpfbQdnU5VWN8zY3iA0A3lXQs21/BOh5RhhVUUk43JeWgfd2H1IhzWsoqSxorr3eF7LVxXI/gmI+hfElu/mK30rCIznsB+35BW1HloYn7AAB22StQ/817y2QAwLTFC8qnmoB/G+5l2LEzQ5GTnytl47PrfBcA8PDvQ9+t3UC57UCJs6NyTlsopzaVdVpYyg5cw/JH3hLqy0LRyZ1m56Rj9Jn7iCbZ5a0/anmnjLwiOic93DNxHcliig5MPld+WUbdfY2uTT2c18zvf7c6ThHZH2hzxvCZY3rUV4RTEegLdU09ay36QtEq/71GHfXhl8tDdeyrvpVRHe8z8lePYVyw/emhvMaeuZ79EFPDDTE6u16evII2dH/SK988FdXYoPKeZm7P+vQ5AICdvh9syMm4oDh3+//tBgDY8513hQMLE5ceZBwq10RG6efMkX0QtwEA7iZ946ibAtdwx3YWJ5P6G6TqxVL2k1NuzwrF254KtJh/r7M+G8n5j6pfQ/s22vjGO1lOYFnYPgv82xWbycdJDzwAkx+UTFLXNU8DUFtHY8Q0nU7Rq2m0Yrx9ojYAlfTO/hsAoJwWeiThtH5FvEgwMLq/1YN0U7bUaYAVw8Q0pE53K9/9uahOhfMlRKGpuL3BzonSWteWXzZ97iHN+FCOfbfmSBZvt/O+mltLXDSBrWgj4wzvejWb8+bn96UsvLussvsld4QP8m0bhiJFDj7YEMkx/lYeW//bzwMAjh4S+u7Y/b4OAOi5ckRZqWAp51x0d9NDrVkoPtG61tCyCj7AmOYG2uQlss1m27tIgyr/U4is6wbH4TnFxSl/qBsrZtX41qJ0Vrxca2KzbY1zuqePYjyX3ixRR36Lz14I0Ks0Jy6wHir1R30se6l2xLShAFCLX1Z9/UBUOrRuIJ1KrQrpOnGs5XEMfz+RdOvX2Kl96KPnUFcn0s4sqtGvivvnrSwOrXggcNjesEMIKD/TypuYqwNpd2tFKa8EM5ZUH5tO07p8/fWKY1MwDwBwTRP7SMN0r/3wFpYMf9ApW2oxjXx2n8e8QKXPjGKrDsm069jbUIkL0T++3H+d/TmPuvldlfcEgHpSDffoIeWf3fioTfINWtBwm94PFqTkRWu9/c0DUoj1YLD8cRdK21drdVVt3qo8xGURtOsZtZ7hMbn0LYpJ+hL90qrxSfluROdcjzlmrVxDHEU9/IJVOZ2yeBTl9K9s61q2BjOHbZJf1dr1N8oqv7g8LOacP+aMcIBz0qcurtHkVwPBxeIz/wj2ZGxT6Jf3/eruso4oss+PSrc9vdTJdn5frBObWaV4rNi/vj7YrTq83kLFOB8v67THEUrCRi+RPZEsug24r7o+gMo11diKyle4TOnaur/H14LkqzUqXbalE5zkyCjW25pOT9x3siVak38mce/VwVQAt4ePorCvs3b06X5x37m91bnZUemI+yUVE2ntQvf3eZDGx+0rULFI3NMSyocbQzmO9nvpTWWdubRZ+zC+mPP/2fv2+L6n+/9niFqRaum0RS2lTE27djpVlHQ6VlbXbq4lxuZ+N/eJuLPOZRg2W0NRtk5NN3WpNdNSttJ+FcFiCUHUUqmmk6mQ3x/n+Tzv1+d8Tj56SWp+zvPxyON83u/3ed/Oed3Oeec8X1WuPKY8qyNz7aatsJxj0NH/l81fSX+xBvXXR4hbmp3U1dFfdT747027AQA2uLMpq3J3b/fjH9wxnrr2hL36lSypN4PLXfmWqdLMuLZZYz8psumnkTxvrv0OFKLUFTdJTqwsVAV15Su/le3qxfp+njVMbw9E51k/EysyJyR9MPbfBzqL0DEC+R9EGf9kKfBaZ8xVGxSzf9ti81iKrTSOiuhqCb8Ledtsv7dJV6tZhmMd+5vtEZvPyosBOB4qKc3qtNCmP8e5Cq8AJj78mH5Z818LOVb/qrnXAuTe33bd9m6Sezm6AQDOpbMbcu1rvsoQhi6VZqq8qzDoUld+9KG7f9N6bpD+6SdmLkZzygrB/8Byf3Ohn7PN1c05eky/N5hjk4XqLxtnS6c1PyJbGom/WuWrJW/15uC9iMPaccWoOj/mV8OY+RiWdt5H3yLU0TYG0GBG70pf3mDfR+PsMGY2PsYL4WJTt5PnuIrZd22aG1B8G2nLIsq74uJi47vbpNtyVrFxkJ9gCfbbOFn3p50tpq612fZVn8lWaFxnrjOM5XzKVn/7rCz9/wMo1jJxoLDEFctvdnNcgy/OBqo7bDOPVXq6HRwu1thPLZ0MzVR8S0Mco6rd13c+svU+zmlpyPQPGFBey9i+c8zEXgvbSNO1Q7k91ZwucVUbtkhu7LdTzQXZmAqIjpuL+CLtuo617XrbO4PS6oh0VS9baO5aMUQh3ykbZP8PSu+huKCUZSjHQJ4+27mY+egCbIrcdtbza4wSm7EJ/TDnGa291fi0MbTBx5vfaqMwTjYYrfmm+4MDZp5RsZW+qdvvofK/ihG9+tkJab0/+15jiv2zGpuf6WKh2fznrlkoAwBM3P1nvs5TjHXtSK0zca0ZGpzzf85//Pybjln6wc0Pzg6ecWzuiRKzsWbfApb+f1zYHmfZ8SvtWhN91UyNBetNHcm0ZOIM5IP2tm1EsH/H7GfeGFL2YJPIvtgcTvegjranmTqyH+EY3c6LS//DeWk7pgy/M+s9TEwuGRxFWZqt9ilkO+JYtGgRBgxwExp/+ctfsPvuu2PChAnYaaedsMMOO6z09RISPhNFANb+vB8iF/fffz9OP/10/OpXv8Iuu+yC22+/HWPHjsXLL7+MLbbYIq/+nDlzcOSRR+L666/HuHHj8Pbbb+P444/Hsccei2nTpkXu0PVIDOIJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCejduzcaGtzq9ocffhhjxrjFcWuttRaKioo+z0dL+P8VRXCLx7rybyVx3XXX4ZhjjsGxxx6LQYMG4YYbbkD//v1x6623Rus/88wzKC0txamnnooBAwZg1113xXHHHYd589YAe1wH+BIxiHcHcKDZ1sq9kJXsFFNHKy61RDLGWshlUr3FeCRWYss4p9U4XMEjRth7TBWtHmzlaqP+fL7YKjwuEnrsyn2zfSQiFOvB4pP5jEuyKv2WkhXwB6Qr0cIis4Ss5VS3Ou6ubkexCtk0Hjb3J7PJivDudRY2p6S+v022r/pjxxxz05tuFdhhW9wFANjG0LLuRuqzew50K0nrDywFAPQ0DVPzVy6/7csdZKd5/YFvZDc7neVFLMUeN70+q6M+GFzmSq0sP6vavAmPnc1V47ewbLUMXnzZgVyiXkvGiFFmpd1sCY9WxJnV3n4VJOXMk0DYVW9akaLVqZJ7uxJaJ9rn/yxoZWAhZqnVwJL7AezKjRgTlPRZ7WmlVGwU7JgSsn6axYy4I7ymVsxbpgctZ2YfvMWV5jcZRRpMxoCFYv0xqwhlddvqXfkMdX0PcwvJmbpcsvWJqaOFrDe599n4Exd8Lb4os0/vYFMAwNpaAk0msUpDGmD4Q7ocV37gygquXr3fNP48uNWFG5NBoEk0jNXmAsyQgAWuEb92JJlKf52t0G3dnivKtfBerBDnmev8meXVlPtHuf26qeMNNP1GH+pjT1NlKn1Eb+mPYQefcgV/iCFUBiG2+lysAJS/3oYBwBPWFGDz6sV7NIsBhDJabITbM2QHbj+HXUnBC+2S7IpnpuosRocS5K/2ttshW3OEi9OzQei9ZNPsCm/651q2WQ6DU8heJ5YPawMCG6qF6pYqRafNVCXZHqNZ8i3rs1zCstbQjxxKWyHfUuvkba1/ZKsNd+vzCJ/QPdeTSv/xTMbApLe3ZGJdhRE/4A+K1I/W/Z0/NlDKRHaY5YqJ+iODyD7FxnJ2qSttbDSUZU+WIlp4xtTxhpIrngeY+KtOPkDM4bTFJYa9wTeWOnNc/rM2cN8g9muUdFN+QveUrpvV5z42DLNUWDYJIfRHx5jfouNSj/cxx2Qj+GJ118UedjVxFYCvrOQ5IXU3gHHsl+nV3CHnZGKI9vAktvNIY2/FDFnHeKlOQmXsXWvAvjWY97ZN1596PJ366EkyqrM6A8p4Dx5cwv3nZlXKznW6egGcHxi9dI4/Viwy8VgSh66CyAAYv8/ePksdNJXUDA1LncC33kwfur85X/70CJZL2E62S+nG3igSBZOxQk204U2yk/RVDZalgCwdc20WByDHH+TZfWKgGd/VioZCBkYyYJmuw7GfD8yQj/eD0iLMVlOILU043PzuiAHXMtCEPB8VcBQ+ncGQ9g3kBD5iYKuJGTjFvhQG+dMc9tHQdwsx5qSQeszawJDZKtZOFLiW8Jhl7GIM08px3sKQkRwAxPjCGGQnw9Yp1hLFYRStPUb8xVRxtEO3jS8HABx/UlXkWbsGGg15AmAgV3QA9OnjZLOx1FCV6vF70/jNfiE7Nop2NcyIN9T8FtNSMf2ZxjM5zFTU+bpgOydbDGPgBnN/ALls2CHFnHyo1VW9tMbCsSxSsj1i6DIMSF7udV89j9V5xfm6Tkwm5c/FXC+Wv1jdHdFpjKUHbwbc//vIgXC8EKPrU3+EmQGAfHZXbufE0gErktdHq889gn0F2JFjwauPvanb8/UeNiZSLE/7WkuleD0bE2y+pWsP6axPzGaYnCofxZoHifN6/3WZ3/Xyd1xWPG/ORGK1wJwnEyrT3ETqJUs61RqyAKvNLDMJ46WR7MO5jBkHGmNSW+5KP8gIWdMsqjs+NC3UBcPk1CobofmaCMu4ZUcHEGcOD9kbY7qhuV2xvKpd7PXV6B2xIAJuHu0/kf2rCumsnXcSnZj6UKyHNltGOJujWOQos+9ZxGEy9ngWRwmX9d1iwZOfl3wY9qxR9J81lMVG3vNCM27WHKhuNVMyYe41MIgD2Rzdts2c3c5wDN237VAOADh+cZW71ZTstMp30PXgdHwbw9Cfi+58fVNHc3yaf/LzyMb3aUzTwLbvSUUenlXxflmZORSTX1ZvKqntZCcjTIfj2T9TFV+Kts0MiPpRpvy8ss1Eqf7ksxaxboyN3vtF3csa+RiTYXgvDUBCH2VlPtQJdkbU9wo6prhlWUcVVxLPIS+zQU67jMmt7mNpGxuFmRGkGzbGqmepFFHWpoeZ+Kpd0b08q9JaxR+af+Nz2EQjkk+fKVFtbwNN2qXHKTv9eY8HTZWv5JZf17cak/1G8zoVh7qy0uhxV0Ee5vmLs33foghdfyh9k0tsiWWP9M4qaXpVyUz1rM3VWR31q9yHZ4W0/RwE7N253dPsV0bB4ZzrmmfHzfKZ9SzloKtMHY2Pw/GpuUeHzOEx1nA/8Rk5FkK+pdrsGxzU0fvYuFA2IsamqHrylfTdNZpT7cwZUOphOOeQM6+n54lkwNNcVt441Y5fJExqB7VrLE7mPVrDOAhAQ1if/f1140vn8fw6tp0YrxvM9ebxWefpPSivY83c6lzuq+R5V2SHUOKyA3x0oisPfIUxqJlWuI6uKTbq6AzY3llE3X75Zy59wUzJ74smJax0VNPpR7NcYi6kufzptKkTzP8M9OTvWepnya3VEfUP33qUxt+WzVT2XjEr7X5/ky2mQWPYcpayJ5YlfGV0VND8iNXPjjKFAPnfXGMZ4xQnKHZWPGpskcaOCj26Igu1skP6ZytlGZl7FyNlG9u+pznmv8kV+s7NiaLhfC/pU0676PcPcx+n1uo1pbgXY+rmSLvMr+IPtnODnYNTDKVvJBrwWpnQuJ06Wu6yot502E99jYPudR9lJv6VLMTM8BEbVXUW9J8z31LcYGyHsmO/PoZz1TL7/bI6+IR+bDINzSlGf27iGKKW9kyZRnsZO9lMW1wsoeT/+eS0XTh2tHPMAv1Wu1iNZUOtLJRGzgNyGZDDzBUr8LWvpCz73SK7Es59mxhaWT99rCp9tmPIMIZQfFBu9hWaI1tVvIPcb04aL3QP6lnmb9lbjT80HjL9nMccHl7fgm0Yy8o7q5o/NH9MezPKfIefzefxsUAktlrojWDudQBk3ynUT9TnBdn/B731S2ezSk+tB5D9HwhezK6yC/+na+be+bfvDOR86eO49/gm154b9M0yoi6byXhar0x1zsnMoTn401i2RcYf+txXw339aNPXN3P5tbIoYdal2H+zaUyugZCdN5EsyedSn4vNd528jORWxmjvB5byMeq5307id8QabN7Z/4+Yri3fbyOfcG5M72qzVNCezNZ1YnZlF6zIHNdBBx2E8vJyfPvb38aTTz7p/yF2wYIF2GabbT7j7ISELz6WL1+O5557Duedd17O/j333BNPP/109Jydd94ZF154IR5++GGMHTsW7733HqZOnYp99tlnTTxyFF+ifxBPSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISOgI1157LdZbbz28/PLLuO+++7Dllo4NcptttsHtt9/+OT9dwv+XEIN4F+Ojjz7C0qVLc/atu+66WHfddXP2NTU14ZNPPkGfPn1y9vfp0wfvvvtu9No777wz7rnnHhx88MH473//i7a2Nuy777646aaOCLe6Hmt9bndOSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISPifQbdu3XDllVfiwQcfxH777ef3Dx48GN/6VpjhLiHhi4PbbrsNG264Yc7fVVdd1WH9oqKinO329va8fcLLL7+MU089FRdffDGee+45PPLII6irq8Pxxx8frb8m8CViEP8mchNYaRWA8r2FqfiAvDRrw5jaYb5NFcG0K02Vuds5iXeU+4IpL5qrWNrVBcqdwxQ4TUprYdPQ8Tmu53ONNGmImM0Syuy+gOXVWQqzxjOZXnokdyjdiJGCd5a6VCS39TgOAPDwjIPcgSrzFLvkPM0awU18jWPNvhamwZiwxSQAwBLmgHr60519nYPXcqnD5z482u3Y2BXdRpg0sWqHKpZKbWIzQDIlaLc5Tm6WX+JSigxq/6avUsMUo16klKVjQll2HTXaRJY+4/egrI76cGGQ9maO3fD5VFja9D9KJ7wo9545aWKZMq+I6Vd8OqGcvMQsC6SC7s30KUu4rbQq3U36ntYqdJ60NCN79+9Fjus9JNQ2hR/TCfem3ihN2F9MlcF87oVKOV/N0ubbVBsxPY36q8WkP1zI3z7l9pDs2FCW81hnewZNE+uzOqNLXamuVHabs8xjKBXPtq4PF//cbW5zZZaudgRPvJcptw/cyV1wE5O2s7PT+hWC7zFmedobD/tji5hqqep9l9dv+W1M27M2MpSyP+e4/n3jHSqQzfqs/pBNlCj8N/JA57Gtitg/Pe1B6Uu9K54dlHt9APn236aVvJCl+kOyON3UkR9SGiAanSaTS82nMwv8iE0z69PO6ZmVEtOudlNDSKiY2qrV5oWUHYmlSetMtCA3VVgIpTfU8ys96vVZFa/aSvek1Ek2LZJyvzIVYPt15phSNSnVkgYvm5k6bFdvvlTH2IOZ1fyhftG2aftlZa6UDEoRSkz6K2Wu1XsxLvz0nixH9XZnvgwAOA03AgD+9D5l4EJfpVMTq34WKv/gyooJrrwFJ/tjQyT3t7hiw5lu5eQHj/T1dfCRKzZ+0PXd4kvY9o33ZHUa+Y5v0W7rBUvNgyxh2cqOajLHRtIG/4PbbQ/wOjatr6yg+pXy0mBTT/JYjXQtTDMGZKnpw5RlsdScCjAUcFj/HF7nqWA/AChdoa5tUw4LJcG27vFhpO6qIkyDHYMGOQqO3ssOTVd7botcGD3sz8ivIYhT5toYSX6ZbTaO50yPpHftR5lQyuxSU0X+himucQjLXUyf+rSCtKHN3DQZI1/GdgCAiXBpOmf32M0fu/hcl5byj1dijeFj6to6k105auxsf6wblgMALplztduxKw/cgXwo/a7Ed7E5psXRf6Fd28fYwHH0X4q3d2D5hDm/mXKi2KZZhtfIgk8TS/nvzjFT7Yysjpcl+VrFsDZmVB8qHZ/kx8ix4lifol72wOqV5ELXiem60kjqHjMidfjuR3NcOMnKdpiE+VrEA5pVwb9yN2t0j1jcr/Ex/XP7ikSPanOb+liKovdiQPizM7Mql4XXUZvbUaDsIuOW3qWutPa/iDGZZHoE+9TG/TXqQ5daFzuZY/IbSl1L0Xririz1251Huvtvdh6V4ZPw2bsOUtGKN81Ourazd3ONOBTz3Q6T6bTxDsbO13DHRDNGmcdS7kLvbtVHccozLPvz/LNNndN0garcB/N+AMj3G2EqWAOf1lWpnU1677x0z7Exp/b1yD9UE46BVdem2tY9Ql9lIZvDlMOtlZE6AyP7VhP339zBAY3FYzZHHSp/LH224xi9s+wBx9HtVaYO7WKL7EOYwhXI4uEDWEqAbNxCG1HLmOrYA7NDdzCeHEg5q63mASs/ui/fYzDlw6SrbdncDeDOL3YTuz/+AR3inuYyj2KNoYKu4dYFrjzhg+zYKDgf/Vw5U4cv4BjOZLIFY28sY6lxhB3W3TfWlbPUBxpH2X6m7ZqryQbepNam1mV/tqidZb9tLK3+lLzF4kPuO7/MlVfFdET2XvbA6mF1UKclqAtkftk+P5DJH5ClBxdi416921PBfjtxvxC5c02rg28gS1Ft24z6V0R99nN2du7vgQ6uWWp+h+nBdb61l7qv4h0zLziK8ZZSZefMZxCb8xl9yuLIRw513US26zCeM9+M/Wp5j7F8DoanWz30uq9Sx3e75TlOjikL8kf5t+xScE6tmLbj4t873zujxNiwJSyHsVTKbDtenMv27cc2l6rNNjoymm01i9uXyW6XmgfSPvaP5mr1jQEApoZ6J10xsVrjC0EdG8cdk3tee0QWPPS9I5bOW6ncwxi6JlJX7yXbY8d38md6R8mSmY/2zkC+SfZK32w6K67uhew9ZLts3DMzt7pvO/vO0s0wRlrRgaPG+RW5u3NeUfOK0ucqV9SXmzpMQd5Uym35EWtvua+N79ygfjJB41/ox+pdsbYC5Y3NZagulXauu4uhXrKJ2dVld27k+uDMf7m5w8bvDMjqKIN0f5YNOlCW1dG4Q99vFB9PjPWhYkb6oVY7zuTYaJ7sdH12qIiN5mVIbW99Zmj3ZdNjDGVh7PxepI7kV7GwnYSXj53G8qFInXCcHNMRzc3K99q4mT5Bdq1Jc7tlLJdh9fFdAOsjszXSFbWdHSOH7WvGI95nV3GHbKGNKQrZTkH+WPfV+TbOVrwSxODzqrIqA/k8tbT/C6XP9nuBbEYwT/Lg2PzH0vdMM77c8Fg3GVS/tBQA8MK22wAAhmz4mq+jMPY2dA2shI1g6Lzzh24Cq+d6SwAAV3/zXF/n039yrv0M7lBIt7250HH1rtTYot4ck65vzLZT9zTaOWL1D2Pw2RW52wCyyTX1N/uwwY7hSlnGYmdB33zCbyQxhPr3foFju5tjsh/hfJH9Z7BwbjrUFQAt/Oba0if/2GqjF5zOhnME7welQVvQrk31ZiPUwwKYp3eXdzHf+n07sH+kj7DfHajHzeE4xkI6KfmIPNcA2qx6ym271XXJJ/vsECc3mz+d2RV9S8am3CER6GjI0Qnw1l7h3IbZsYPh5OXKpkvdDs3b987qePGvY3vksHFy38dBbNR8v9mgAehOS9WiOSkbKUjJrd8CstgYyHyl5p3kn+24KNRjfd8dVKCOGqbAPKz9vwRvB64LKpl/AvLjymDcPrI0qzNXBlI2S88R6hfgvpstgx+8dQnCeMV6FMXQelb1nfWZamv7f1tAjg0r4vc/tU9dVX4dOYOR5a7UXIodu/nYiH3Ry8xn++/40mfppbWJGgtIbjmBdIipwuoLabdvqWMwbUThn9egS2FnWTTNdCMHvMevd6s/NOdwzrlP5Q6NTex05u7V/BHMOw0zdXxoyfHT+vSztbbtJbfS1RUZr0qW7BxX8N1Bdjfn/y0UI8b8M+1BbWinrRzrm5Fib8mZkdtaPb/eS/JbZq6jKEjjMJ1v5iX8M2q80ScoATduXpP/9ZeQsIJYQwzixx9/PC67LPfDZMgeDgC9e/fG2muvnccW/t577+WxigtXXXUVdtllF/z0p+7/BYYMGYL1118fo0aNwuWXX45+/fpFz+tKJAbxhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhP9vse6666JHjx45f7F/EO/WrRt22GEHPP744zn7H3/8cey888559QHgww8/xFpr5f5L9tpru1Vv7e3tnfQGK4eV/p/78vJy/OhHP8Juu+322ZX/p/AMMupeIFs9oxU8EbYqrZYZxVV/s7VU0q7K14ohsiqJ2aG3WZXYFLJgxFatigGHKwFbuXqo14isSs9cBs1uf85WKy3/M59RK5152uZb1Ps6bzVx9dXJFLabSXV/UXaLwT3cyqrRZOi5ZaxbBTm8KGPWGZIRmq5xbLZ39nsIV4E9hr0AAM2k/x28VraS8yLSKI3b21GdLuKKqL9fmslvv4vrAACNz5IZQiSdlkH8dFcsP5jtzEXBNQ+ZJWzTybQygQxXk7macoZhaWpinbGsM4MX6mdWldQFDGRiE8oh3OVqslKWNWblWjFZc/0K6E1yzwHgV8C1h6tZLKOUzi9lGVl9LubkXpT3UrEA2ZV5b6DzWFnsc1k2iYFBqRWYdsUwV841aZUcV2I2mnZp1ApbLUcUS6tdhasVvWyrb+hc+4xiDheNl6H41UKgE7iSewm3R5VmdcQMNJ5lT5aWQPZCtsMveK/bXbHVudkKQzEHHo57AQB3nupWyp6wKFsp+wBNVrj+uSsg7qERR7hyU7zjjxWTTebujdzBHw4n68iLyFBNlyVxeoXO+WTjQGfSronMeB+209nGJi/QD+qhmGAs6cgJpMMQQ6JYJW81ujaI9qBG185WxmZ6qBW/WqVs2QHY6p5hRL6i3tTRSm6t0pbbjtG7qu8l/xGmRC/bYn6x7DDySbIZumfIntYZKMRqIWnUKtzrI3W0Wj1c1WoNt86PrRDXsTeC6x2WVSlmv3hbylXEvbIquKTMlbNZTuV1hpVldcQsJP29lfHGKYbN6yb2/Sm0L1pBbYgIfvXmqQCAPbZwNGVFe/CAITXKYfRdQ7iO2TOWtJ/q9/Whk2zc3z3ciG5uJfNjM/fNTnSuG4v3oizUc/84Q5EoxuI6uzobwDpGtlu50l4Msl819eZKdgNW+jGGmWGmVlczxhsWsM4CwE0h64KYCKZlu7y8qG4hPnf5Kr2XuY6XV8moVohb1gPpjRhKYvcKGSb0zoXY+1cWYXwrf2qZ57QKvxBzqt5N+leaHWpgv+SxJ1rQDihrx3SxqViGEMpJI1fw96KtmG4oRrsz3lJczOwx6GVpOwnP+MCyZ3av9x7YAgDw2EBXXj3kPH9sUQ9HmXbwL5yyrgm2tCvFTEqmw4oLqv2xids7WrPt93Z0yS8++W13YHh2/ga3OVrmZTNJ0SKmFksoqOwa8pklRken6340gjfTlmaPAS/LfRmXNlPG+xuWDc9Mp7ES6xQZZqt2yZ58nfyZfVhBzBC1+YdaJRfS9XqW1meJZkp+XX7Vju9iDGwhqCOTNss/VEL2kha9+y7IqDJXF72Q+6y6h97R6o9sqRhxYgxKIQNzhHWiIz2+LJKdy7Msyb5ZNkUxrPC5mthPg8uyKl9nKfEQO3aNZbXitcezD68ytmsUY0SZMJlpI27XwLGQnXr1LwEAA/9AuVmTvtg2CxPzXPwvx3awz9rOiDU+ZgKFapbylfub8xVfq5vVhReaeZJh9C0KvRXjmPkEDFbAU+6KMm7Wm7jHDxXln+9FPsQcHtp9w8KZF6uFLIZANr6NMR0JyhinsWzM18iuyVdZZkTpD1nb81iOgVxb01lj462Qq2uKa6uCbTv+kP7Kvsn22PbR88tOStDeQMeQn7dM64wLBlEmauq5345R1D9swztMzNddzOHaofcw8bq3s/Qfl3NzXlZj9G7VADJ27rN3cDpyctHPYi/S5agMXYOZX9P4WPN4b01ku9opyJ4sNSyUWzjOsA0OpLEqYlu3qy/NGLI75yP6Mv7xumbTBiguFSuRMu7E2O00dykdtWxpHIddpawFlpFNHSzZ/FuwbaFYU37AypLGgfIfkkVrD/RMHTEY233hGNiylG2LzsvK0wvZO5ssYZ6lOWR8NXNtg8pdWaN9YmC15+h95MDUP/b9NgpKMw8tNjTP3CqfYOz2lJAJUW11QVbnatqB0ZTFWTxngok3SO6PGTx2hjtWc2o279ryS9onMRvyNarW8Di4kplwKsggvtNvFwAAyo/J5KRqMOVNbMLKUjS5NLvQ0YyfJpHJsFFtb/RnFvushDLumQ2tHpaxZB9o6Dc7xhgcsM2WmD5oKcRQGjDu+7guknUgZ04LyJ2PlkGT/sqP2QlP0UzLvw4LtoEsvpf+ymbY51F76rnku2UTOyuufgkAx1ErNLsaY4EMuXUjYxRvnzUOt35ZMYfmIygE7Tb2Dfx4fzJV23lX2ZH+7B8/BrN9qGeV3ZXtMj783dwq8zjA/M+I7MPo+gs+BQCcwSmK6zvz08FnwFr9sdTnT3ZzH2kb3yRNeKmpNIplvXYw7i82mQFn0yD1o3zdogOWhVcXkD6FGaOArH81h2l0tD02FwzkxnpCwAY8zlxnuuRCfal40Ppe+Xw9h9VRQT5WPpe6m2NXxNSqa1uWZUFzhbJZVv7lf9RGknVdrzP0+HG4ubJw3kB+NRID+6yxZl87ZaC43JVt8rUrwECcA72//GhNsB/I/Ljsgu5hHqhW8xqUj4HU61pLB6z6QbzQEPEHLbzXf7I44YO7XabI3//I9eGQ58gcbkxxVzGHx6As1BUXu/KAie5dh/VZ4Os8N4o6KjZijWlvMu+sLFZhZgAgyzamd/S+00zij2NbTw9jZxvrESMZk8+t545qc1DzkZqnif1fgeRWdkDjK/v/DtLVQj5KxzTWsmN06XSQsSTH3+t3LNuAIPp5Zv3oXwF8uhR4uzOYh5sBtJo5gmruDxmdY1DfxbILhUzidryr+PrOoE4sw6C+b8WyFWl+UQPFmO2RJkmGys0x2oi88ZyJ6f39eH/O+w7zcxjAQ7T7g7d1svDxA9V5b9HZkFW7jmZp9B+zbzbK0OlNYE+W9eYC/vE53/Q3885yv/Mob348Y+ZQxjIWnxGy5NvvGNSJ/rxHg/rLyovaXA8nubHfTsKxp/xrLFO6ID22cyDSVb1HkKkGQH5mWSuTGmdIJihTc2PjgHBsHGNZno7O/f8Pm+U+nM/TnJ+1T2G2gpj+SdLCrBnGLvhv87qHZNFejzZ97se52znPI3vLezXb72SKzdRnsu32/3Q0L653ZhsYk9r9PJfSVtm1nhkwFACw038X5D1FV8Fefwj/d+I9fodZlxlrAWBz/r/KWy9RpzRXt7uR26s5YLiR2/o/jfk2ZlT/cF+t2sfKi+ZVJKeKs+14SDquNu8elED+3JJgdU3yoWvbb0a8xyD2XSl3V5sq+qbtfYNk0c6VKYNm+K5WVzvyX7GxwWdlJFiDg7GEhJXB2p9dZU3izDPPxIQJEzB8+HCMHDkSv/71r/Hmm2/i+OOdfz3//PPx9ttv46677gIAjBs3Dj/+8Y9x6623Yq+99kJjYyNOP/107Ljjjth0000L3arLsNL/IN7S0oI999wT/fv3x9FHH42jjjoKm20W+aCdkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkPAFwsEHH4zFixfj0ksvRWNjI7bffns8/PDD+NrX3AK/xsZGvPnmm75+eXk5WlpacPPNN+Oss85Cz5498Z3vfAfXXHPN5/UKK/8P4n/84x+xePFi3H333aiqqkJFRQXGjBmDY445Bvvttx/WWSe2mjwhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhwaAIq/DfzF2PE088ESeeeGL0WFVVVd6+U045Baecckp+5c8Jq9SkG2+8MU477TScdtppmD9/Pn73u99hwoQJ2GCDDXDEEUfgxBNPxNZbb/3ZF1qj2BRZygcgS/WiFBNKi2RTpDDNgk+1x9QtsTRpg5gqtYZs6k02dYzSuTDFg1JU1cXSHjI1RD9u72Oq3MGULWPdMy5/xqRTVfZ6ZWJnSo+3XjCpcL7B8uQiV5ZzuzSr8ve7dgMADD5yIZ/GPetmE7I6lZPx+eGs7OeTzO93M04GAPwSpwIAHsbevk4L234+01G+9a+tAABDL37G11lwDRvrI1d0O9mlRFw+07RvT+bR3pxtdzL372eebSxlYDJT+wxk+hCbvUTpypXhTSlKGm2KIMrdQKanqeX1Wm3aZ8qQTytzfXaoTWlqxOwv+bNp8pT6JkyZdA/yUSj9FlOaNFNum8N0Y52NZgAb8He92a8UQUr9Ekuj+nxQV2n6bIogpXWSHVBqoE1MHel2qStmMn3nYGMXFirFi/aZtFXTWf9nF7pS2cHaTZ0r2K6SE5mKBeYxlM71LKaiucItzpnx/IG+ym7fcmm0a9m/R/2W72csv6RkRZKgdhYqz3Vlxb5Zfu1Ttv0lAGDQk/UAgKF7Oh1d0LZTdqLkXRk1mQptrfWz9M6fPuJerttXnEIvH812mmgeQCqhdJ/KXnuIfUrqxhim4rlVfWrSyP2bafGU2af4hOxYi9INMSXQWKYsmmHdLu18X242ykf9HvkI09nZlIS6puRV+ZWtPrchF2zMnBSjVwT3CtNqdybe/uwqXm9k08rMMel4mMHEpr1V+i4lvLKp1ZTeXKn6ZANNyu42pdmkXRm+Uf5lZFZn0L6Mo92fbq7Tn/ZWaSnHMz462z63UmNxc4fgsQDsv8VUAMB6TGfexoxZxcY/fx44Uxlwqq70+9Yrd8/YfGZPAMBjP2W62NPNiTKln7DsybLe1FnC8gD64yZuzzap2Y5mX06ijjZ9LTs2vNyV84IUeTPt9hksKe/zVdpUnDZnLBBN0uZTV8oOyIDbhZOyC7K40ksrx9J/db7OsWnO9MzPR45RTospd+uwbFWbLUPnQTZcNoj36H5hVqVVbS3htmnS9I56Z5uOL8D29G0L5Y8PNgdpD3xaV9lHmzZXcQ/7t5llf2MDG/j8N1OmGpUK2aZFVVurzxgv3J/V2OHn7toXwNnUV/F1f2wTttnHl2KNo0Jit3G274n7OdAY5Xzmxrs627x4SSaTyw7p7X4oDfWx9Gd3WB9BOV2f7WkybXtd78+22kcybXRVJ9SoD9nPDWNMHemkYjTKTfvfTB0brwGZjMZwfYFjSssnn18alECmf2Ea6lWF/Jfxjy1hes+PEU/JvSp4By6NtqDcq9JDmzaxg3ig2OhPm541lp6caK/iD/W90iXbuD1M3xim/wSydKi8R+8yV5pQGlNZKiTyga6NP76VW1f+BMjG1PLVp7ti/yH3+SqzORb95XTn+//5L7c/lnC1q/C2mXLYjLp9T7FL5Xlkuxu0z7n7u1klqYvc2HBzsdNZlrGsZjnMzOvM185g7NVi4tuFsulnclsHYulqdTCWZjmsL/trArE2DpJ8qmDFX9av2nkZIEsXC2QNQfmfr3seZepIJv8elBeYOrIHupd8nbVPXYEFAL5qtsNU1LHU1GH6Ub7HcBOvzON41bej6h6f1fHpWPXO6nfr56/MrZI3nkE2t9ZSH9wTQCvt9AGs8wh1tNXKhtIxU3b2G5O7DeDZM92Ya1O8AyCb4+pthpl4Bp8b7t8r+31c2+0AgFvW5iRzPQ80mRPoljFfYz222aixWZ3ZjENL6F+XsV2GGr86n/pTp3hUx2qzOvo9kvZ6ria37ByKJrh1TP7jNuRDPiyW9lkYGKkj2alnKRna3dSRrkrHY0mV+wTbeneb1rtHUEfXszH988gfX68q3kGWMtze442gntrA9E9N6GX07DZ+km6Wsox5Jl07tHPmWFM9txUnnGPqyD6rDpW+xLxPC+Xtv5r75nVzMqJTtzXXRRexwZ8yBViObgCApZu4sscuzueFrbWmUEn9rXjUldM/HZcdlGvUsFBTmePNt4lJim/LXDGcMjrPxkan5F6vmOOg802Vy3idEtadPYMHbGppxZq6J1stJ96Ub5M/tTOF0nU+W7vOM+/s78exWz/KRqOdm5Kufiu3Luz4OxwXhimzgUz/dR3F9jY212/7jEDmmFrReVBbyc/GxrYDg7omlvapw8Nnik1AxaCJY/WTbEUBe9tAezDKRK+zOffRoP7VM0fGTuN53lTKy89MOx/H8qeu+PBKJwvrv/NpVoeEWT225/Y8fD5QM8DNoaOYk1Rnm/hWzziF5U/pX+283gZsj2Oof73pl1utX6He+fiH/V1s2q5tafCAYSwL+DGN7GW71WPJVRVLzqlOt9exvh4wBsbsC+emC3050JwJfWaOXZGP09hcfsjOY8W+4wjhmCD08/8tcO7qQt7Fjg2qXdFSxW0zwSIb2BY+s5nDH0gfUBvWGZj/ewz96Ey+6wBjM+rCZ6Wu9zf/eNCgH2wz/43SjlgVU1EmJAJt1j7Vs6S8/jk7Unavs0u/gotdf7CFswfPm9hao4NC0V+n4zFX3MW+u8MP8IHntuX7380dfkxs25fzgxp/1L2VHVsoO13KUm9oJsKmV/Ha5a6cJx8X8Q1z9UPxqJUp+U/FsPKzVl50TfWl/YYsbBRsq67VefkbzZmcYY6F8qq5sleQjzBOt2NiXYfP01CJztPh0QDWj+if4oTYPEDwfxtRSHY0uWTr6v2lU7KzkfkwP2fB4LefkbdGPnMv7mumHxlfntWZyjoltCE9zbVbuW9x6BOs3de3Tj4r5b7ZXGgI7fyoj54EAKy/hdv/fEaC2WXQl5dhz2XPXL9DqfvxOndUByWQ/e/OLMrU7mZwMZZjohm0b03yryammUFdGknb6ce7dtzIfVLxBvlsq1eaT5T+ye7PMHXC70vyj7H4Lpw7ubfAMQvdVz5cYzYbi4fjdPl3+11Vc1xqD9mnzpoD7wjfQNbhQDZYlN0t8O0oD9bXyWZKN2QPrGcKvh359rU2LPymoRjPxjR61juQhwG0J0u43awD1m7pmYJ/JDR+tfXuXgCA5SeuCwBYV//cZEx6Z45yPhP8v63RxzuHdvUxn/hDb53Jtl8QnmT86nnV/FGWe+wA41cfpI61B/OuxWVZnTbpH/u+iP3SbmNa9b3uab9PCer7MOa0Y0p9C78g2AZ86+s7Vw1tc85/ZNr6QGYP7P9WhWMA+WWrh+F3lPD/JSzCb8n2O9rKzag0NjbimGOOwcMPP5zzOyGh0/E/+g/iX3SstTonNzY24rHHHsNjjz2GtddeG3vvvTdeeuklbLfddrj++kIf3RMSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhIS/hfR2tqK2bNn5/1OSEj4YmCl/+f+448/xkMPPYRJkybhsccew5AhQ3DGGWfg8MMPR0mJW3F533334YQTTsAZZ5zxGVdbkzgA8ZWg3YNty6bClUPNwarTFsNIeCiZO6aoDlfGDhiEPGzFVUIztTLKrELUwqNS1tHC+f7m/HG5qztzmFa0gEmL0rTw9gZT5yKyYL9BFmyy1m6467u+ytndHM3uunAsLC2iOHlisa9TwUVFlYVI+boIM/fIfp+2768BAAf/qQoA0AC3pPVGnObrXE8qtKmLxgMAdt3SNdqcCwyTWjlLdsvyk7nqL1tYDpzLNruR21p+N8DUOYJlT8qUCOYsA4aIfMQYfChXcE6xMsaVb36RnaUgF1i//YeRYyETm1bAHWjqaFWZVoRrxbJhZfWrKrWyNcY0pFXWAQNrDrvxs+jc9Yoxpiaumi3iO4u1I4exQuwYahetJoxc71B21BQxsBg2Lr9qTys5S12x0GYE4D1EfLzQ2hn2gxY/iv1/gamjY3rkq1kahgYcxLIn2SS4YH3sBZl9WkQbs9OzC9wOyaIh2hox1JWPLMAaQ8XFrpy/bWYnD9cqZpLbDqYcL6g11G4PspTn2s/pxqdHG1tKlubld6+be9PB5vd4lidxJegpWnVtWFrEHF6tHWQBGm5Wrc7TCnCxdFgmTcvaBWCGLmRYxmXEG6kfIykDcw1LuTq2mCuG27R69XFTRzIsXdcKUrtKWivAA4bD6ZalRSvd5aPEEiiZ6op1x2JXsowTIZuMbJplx5Dt0ep1rR6PZUFgv1gZ0Cv6VdqSxRgzKx3sErbneHPoPN1vYO517bOKPFirvMX6V2quU8e2X8LteeyfykxHunEluHxc8S90buSR1ySooheXZ0yaa9OBvXEkZflyyuhZJuwU87nc0PdZHnRdVkfso7KFnjyuNKsiJjYxJx2UHcrcp+RFelBmKsmmS/5lyy0LBH1aP/ZHo3Tfxnoha6J0za5C1/uH/tTqqhokZI2yLH0hG4rVzVJXtFEY26QbYrT5DzofgR9tjbE/yfHYdxeroNpR/WPkZMDmebsc7Gp62QHFKyGrqYVW0fOeDaadlQlmBpl9Bh6c+5hApuMtkgEyEIzP7P9z17n+PPlMl6biJZ/CB+g1g30l+b858ohdhErawL3bt/f7Jhz8GwDAtA8dI8LiZ9g+l5gT5/OZe7Ndv839Txm5/Zi/FbtaF/jfMld6W6WD1ZGnFDOX4lTLhvJKUKqulSkb6wJZrGcZETSAkY9RzGrjuPBeRA5jl2RJg7AYL5YEV74/lmFK54up0T6r2kpMF39D57ErjYPLsCWozXV/264hAw2fPYeZKYwz9Oz1pk5ZcK+QLcNC7VvFW5q2l8lro12Rb2gytnA4+/cGbn+TOltkYvp22uujORC33S3x/osrNt/TOaLt8LKvchwc0+8/mSRjZXhsOguWj2YTDtdPUNj2f45B/CeX/y6rdBFlstQVgw6c7w/V3OwybnlWFyWc2BUZFpa50pt9Xsjq8xj67pmhr7LMe4rtwqxThumkOwfjrYoLZOMjrNxNTwV1bNA3PagcMgjHrmlZnmQrKF+jKIuz7ftJ3uUkupo53KIl/7dnJwuzWgF5rG3SwyhrZzh/FmOEFhQHRhilTtEcl/rb9I8fr4uZx9oenqcY2jOHW7ZnxW8SSvr1X2Q+ajx+DgAowywAWSa6A9e1/bzmoXk1H8sCOGNt945Hwunvww+57HjPrWV8rhT/FLJ6i/0wJxzjnJbcUDt93PwRWZUS/vYiFDJlAV5O5mofZSAnq6KOaVwUkwX1vWTIjuv0kDLC9KODzD1qFFvqXpJfk/nBZ2VUWhf5WasjlqEYiI/9rgu2Y0zkQOf5438BZLfHGPPOM8N6evdYNh61q9rS2kAhZIK1eiThCeMoIIulKEPd+YytdtzNwZq3PdTDFiNLg9k/mmftzfmNenOZdwPWw5+67WXTe/sqBzB2fW9tp0A9HjDMY2sQYb6UJ/d0/XKuKJEBnFPqsuR55mGJeF8YaOzHKOIlyYDJ2FAU3FyJPS5blL/Ti3uMp1UxUDg2tjIuOyA5s4zB4fhUsGNi+Vze32fLLDV1KC8ljL9apIexSErPKhto7yVionBO147jJXAhm6pikqUAzo3cd3Ug32l1VTGq2pPvZacHb+1ovi1km0Q299hgYxH1bxhfWxa5IJNfd82h2531rshjprbf+BhsTpUG0MZfln07wuhyV3K+aJneuSGr0s7muNSS5X4OqHzClRU/dOPEzX/vHvKtzUzb3ch4kOGyH2PY+ScfY3Ge049NrEzS9rXo+wvbrs36Z8p5i2JQGxsFEyPt+nGM2SkHIh8pvbQ2PmQQl45Z2yFjIx9eiD1UNiuMu2PXicm62vrwSB21X8jALF/3IVYf58PFToo3NH8lNkXbB7JDbIdB5dmhGtll2Uu1p/HBvulDBtjDszqSpZnBx9cccyc/rAsyJmgwAcRAjlEWcV5NcXdOJj3GTb15/yU6YPuSsjiK1zOu98lFLq7+aR+mbiXTsLU832JX/X0Npq+t5L0qTnd9MPWG8fmV9L1NmQD+ZI6VUn+UkbZuPXMwzK4U01X62HnhPI/1DbLbsh0x3QpYuBUr5oy1KUvDaF/mh+NwIM40DOROeLYEZSECQAU1dq469LWxMbFiD/mLA3i/qyN1Vxaz4LLkhXNT+seL6sg5ER+bh0KZsqXHmvsvkEOuKRiHN9q6jEuapde0M1PtgECZJzR3afxGOA2yUPGTzWDBOe6ZPH+QO3/5kdk3VM1xrf8Us33QfFeYW1X+AV2CCj27CSXOpgIecTfbZTyf1SaRUkJknT/VTEjPCPzNMLZHi7GBtZynnSu/HLLtA96W+2+2su3Wl9YH58QyRIcoNIsonY1lVSyUWVIyo/M0D21jwDFBXcGOLcJsdDFdsdmJ1okcXxW8BAy8Ktus1dhebNrqH6uXYeyhfrI6pt+ad1LflWZVBnGusEbOSvYtZsvkn+mYexlb6P+fTG1umNnrWfrxoCZ3bIZCxfK0qYeyL+0UCudpn/iryww7rJgfVodGHnUNYCmZ/Jcf4wYVT3+4c3ZQ83mXsDxIemkYqweWu1JiVMPBwTQj92qHKZzHm6C5Z/MgQ9kP+l+MnmWubC70XVXGw15IcXGYBd3KuXx/xHcrQ0Sj5pZ4z5zsLMFcs7cH1sDVs5RMSzbsdaTP8sF85mLzD25KRe5ZyvVe9n02R9d8N05IWE0UAVj7836I//+w0v8g3q9fP3z66ac49NBD8fe//x1Dhw7Nq7PXXnuhZ8+enfB4CQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJK4qV/gfx66+/Hj/4wQ/wla98pcM6vXr1Ql3d501pGSJcwRauzomxy2gFk196GZQApoT34SqzushK3TpdR6uDDVPddK3Y4Uq2CVzRVGrOFyP1JSwNy9muIxyb7JxryIwtNutnsjq4m7QjIl8hK9gHp2f0JZdd7qh9x23kVt0dTPadGe9klwnXTK1JjCk3G0e74v7/czvHfNPRK3/3w4xZd+h6jhVtfJ+pAIDfP8vVuGbR+NBtXCN128axpv/99N3cAbsAVIyIl+feO4dpTqQ9Yt8Si8MOli2QF23mCrSvaMWjZfjhSta6alcWleVeD0C2grM02AYyxgGuJvNs2IjUkQyKPave1OloBbVdwablw4UYAIFOY1fa4HxgWYz5ot4VYjZpkWmzK3616lZtpeXIthO5mnNKqL+WHSlkp9HSTbtSkPdfKFYAyyDO5ziOK30PoG2KEZhpYeAcllMM41V/LuHWAnuyJ/Y3dCxncKX/nSMc8+M+Ix4GAHxUtMzX2Uwspgsi9+9k+LWybIJhR2a68fLe7uh2h7jVvw8td6v7x56aMaLPGO9WxOJkrhY/gvbWipcyLFSxVPfYOsp2cwXlQyJwqFlVv4TlyOCceZZxIWAOz2HvIbuOVqZ7gkZTxzPy3OrKuWJVsav7yTDRptXSYioxBqrfha5srOIOMZXY1dPhSmqtMrWyHa7AllGTHHcGKwvgKIQW8LfsTIyNQe8qpof7zTHpf8hsaD2UdJ2rZxdatqlxQSk5s3QmWn1LyS3j5nn1pg7bbAxt4UweKzH3ejV4RIUdlih+FnfOlY5TBrbNDP9zFO7eddRfLuitXIMMLFFQ5y6ty/zAdgNcf25yl6OOee9NstQeas5TfCLm8HKWRWdmddqpb20Bu8Zow6IoM9LOY5Zd43axfLI9S8pc2WKZASWDYhBQv1smNeqm1zHZAcv83QEby+Dy7PfCquCgrKJlNJC/EBOB2M1CJhYLK0zS/1A3tFK8s9gOgWzVudpQ8mspwGRXaINyGCdDXythNu+zhAwndfXcoXjesixLqaTzagOrHGrrYBV9m6E+mkGbV8kYvELsIYbRII89izJgiHW6LXb3b3zTpQHqtdQwlsi8R5lauxaSpNInX/T7Jvf+MQDgZ9s5P3JZG6lXTMYe7CC2KG6rWQ8xdS5heaH61Ma1GvewPQfSXr5dllVpZbsOYD/VKY6z2TJ4zf60/w2iiTHXydMTPYeNxUPOxzvRMQKmlpzxnWRKdkBMK6eYOmIgk27k0YEik2UxvNlsPiGbTHfk00iuKqYD6GW29a53ROqGzDevROpIN9QusXcNryMfbGMAjTOCd2+xfaj6ioWk+/tmVeZR74bSBhVTDtvM+HsgdX0St23T9mPJYfI7i7jDkE//CicCAH5MJipJQgHOqC6FJ3Uim/Arf3TtsitZkwFgzumcK+CwpebpYf6YHwZuxVLvOsX6TLZn93JXxggA1fWKc8Xy0BaZH/E6Kh0x8VOrWpIyNaiMDx27TjhutfZfMlUWOS+E7INldtMYj77JM4dbXrxQ3sXiaH1xwP7WKdgCWbxg0FQf7LDxvvRFvlrewbZZ8D5icq6JMAYX85jvX8OOJNzEY55FxxzrxX3NQR0AaFS2Jc3V0b4WmTF+e5UrS8r5PNyfDXdx+/vHAQCO3sgp+1afvO4ObJHVUW+uybkuZeSrMHZlXzwEAJjECafnNqJlOcucOJGxy01kg1R8bed7ujPgaA6VtD772SK/JQY09V2MkSzI0tRi2cV0fph5zlJcyW6HbJlA5gsCWY7qesjoFstaI0jWjX0oYkzfHrIXWvkvQRx2/4qwDa4M2AYzY9lvBMUXD5l9Eh7FpfKLseyZIawNk12S7kf0WEGsMgUVmXhHSdYaeGwQjxkSbD+1IPOo7p1u4x5pIMcYP+fmR1mNuoNLAQDzOAgduOXnwyDuczFSpJopQ1fgwvzKmoM/meVV9iDnFzWnJNvVauKxzU/IvY6fW6o315GODcy9XqmpouoNmnyUr7O6qhM0aLFpgULdlrxZZnGN4xQrSkatzvP8vLFgLNvFmcF2jF01fC47DtHYILQ9GnMXYmBcXVi7En5+ow251bZB7LsUcjJVYSrr+7lHa5e6B6Xaoz7ybDyvle3xiLWt/F6geZrpuofJpqt47WyeN5HznyVmLnMW/cTmTgb22vdRAMDPd8tsx/5FhWz4moNi+Pm/d+/11l1su6NNpdPoT/uxfWOi4+d4uS33Nt3KgvyOZJHt0d98t2wIs9rZ6ITxZFE57yV/bL971rPkewznc82zMX1p8PCxLCIhYvonKBaIRVLSQ8Ukcg72Q4jmXGTLYmPJEGrXzpjjugqOeZgo4ti8XfOCNhOS5g8YZ+TEK4r3wywOh5nfake1g+ZSY1kaJES0aw2Rb4x52yarb22QAUBZQHI+bTH+atJ3gxg7K+8vs7IgO/Lps+sDAIbuy50U8T5mWPd5zFtfsCF/0C3f9NBPs4OaEtP7iCV8P2uT7JwjsgyDALBITM5V3CH5tdlZpAu6ieQ/limabd6P9qDRylQwdvTM4TZ7M/tqPp8/L5tUIRg50nxtnn8GMh8dZveyvkHvqjhS17a+iu8zjNebX4nOnacG8r8x6X12CSsinyU58i25mOe1aTxkr6NYqj64ro2fQnum9rH3kl2RXZDSRFjphRZ7z1KeJjlT/9ixoL6rMXjlUODvf93N16j9jpsMGrLFawCAZ5lho5D17zSE7hHAbXDjeFykb8E8cLf5R4mDOZE3j/1cZOKmB+mz9+M3H8+ub9qyP+2sj614/sisCuaGMhXGwkDWn+H/A9SbOuqXkB3cykg4oxhmgIvBxvJ6ppBp3v5PR2DffJYYmzVAfkuyLMdh5tB7s+2a7kHnfTcGUGvtZDj/LF21sq3n17vHYhl99+soOxgiiWgfitUK7k9b32wzldGWj1Q2NnOsnWPfRsYZg/h9qsaOaYPvBFOqedmyrIr+J2SiGyi3MRtQ8YACj9yF6EHdvBMuA17Jetl4ZtnZHMS+yx3F1I0fGF0N/8/uaNaZZGT7z/rBsfFk6aX5v4fGYGavmXI73Nhk/02O9yjid6b22DyydEL+PeYfI//X4P247iu9LuSXZZeM31cm27r7g7r2fz3CTI18j5w5eLVLaVDab2Jvo/P9cUJCJ6AIq/DfzAmfhZVu0gkTJnx2pYSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhDWO9D/3CQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCWsea4JBvLMSNn+B8CX6B/Ew9a7S9TBFRC+mLWy26UeKc+t4xNIeKmVMmDob8Dk0xzDv5n+4e66513CmsShliiKlurJZapTNrIxlS3b+eocxpclw7tif5UXm/HKWS1iuH1wPwPK3XDrAcRu59CmbLnXttsWCrM7HzK5x5QdY8zCpRcH7P7CbSxm+F1y6woXrZekkD8CDAIDrlWbmL67Y49K/+DrrMf3N9MN+AADoPqcZANB6lkm7riyZ41lWs1w7q4KeLGez1OlWpg5l2h21/YM6YPKuSYZ8Wi+l7hpn6ijdiNKHbGyOKV0J03dNUXoam6qdqWt8uhKmWM9Jc6bURmF6QJsmT+8WS0PUBVj2BjKlsKmXpH/S2ZxceQGU/qeMpUmB6fuhPjjHpgUL06iGKf0An0ZI6TWtpW2u5o8dc281ytRRlsWhLKXXH2/tq3ztNy690hsXUDj/7Ypf//U0X2e777wMAGjFegCA3o0uX61N/rZ0cuTxuwhSI4ny43vu6o9dyZx/m+IdAEBJN5eG6Dn/8sANm54KADi99nYAwNAHngEAtJhUda//6Bvux0ncoZTb30eG6ZSBVyk3zFKWk4l2KEulS+7DH1OvMJXC1IzbmmPs+wZtS1dMOq/2MKWQUtTFUl1tHhwz6SmVIahRKbYKpLD3KU9j6ck6SiUqne+sFEPPADidv5Vr2qbJk137Z1DaVLs2/RGQ2QDzPsXlrvTplGy6J/1me/SnD26w+qz7Mn5QlucTjC3+b6krJ8lO8/4tb2R11uU9vsrtR1luYG71Rz7/K0wdphjg9KzKO3dvCgCYNcDluBu9y1x34Bf4XKAkjPPPd3bzB/iDP7Y3HgYAvIqvAwAeq97CHWg0F5BIyz4q9dYBJsaaxvZUOu3u1JEdzHUmSm7VXxdkx46TteN5LfRxw8/M6swL+s77U5saVMkUaWvG8HzrMhcq5VmQa3hhLG2ybJaU1+awk49S0CdZ746OYdPt6bkp06hiqXayqYdXF4orZLv0HDZlvWISpsdrsXZGz6r2lTCY92m+lT8Uxysl9a1ZnTyfr1R8sTTAOoXyNsbI20zWX6AdtLc2PWVf6r+6W+WSrMry25z9H3nBLHf6vz71x/5ve+cnhqz9GtY01AIVJnbddbvHAQCXXex82w6Xuv56bqZJmTqRMv1byk47t283slTPPtiJbdVoZHokZXcu48lPuN+q2DQGPg30Bd2ZB7jV9jNT1DdIr9XvNh6k/yspc+Uy7s7xt7G010CujkkPlQ77mMi5fwvqCmE6UAD9mdKzIZaYVTpRzdLKs1KTKuZ8BZ3ni4ci13aEMUnMLwsF4gxfV+0Zto89X/bStivbw8crstE2BbmNBwBv14abGGAen6Od/fFt6u5c0z+16g+mZ24392g83JWXO7lb7273HtcvPcNXGdfDjZdluSI9v0bxrWtc+fa5rjwHPwcAzHnou1kliVczy2zYkIVkj7NUqu1Hjc/ci3LSqr6LpXBlnb7sQ+lhi01pqzGXxmFK12xlKpChmpi8SU7H5NbN6Q0Z6kKpPGWQQtkCMj0M7x+LmxUjyj5auxJ7/tXFRsid55KPDGOP2HhViI3f1R58/hqlL7XXYYreNjuyBKLpVTX31qh+Ntf5HuVkCv1OqTntG+xXpVLvNyK4DuDT7m6OXAzNf4pLcTEAYNqVboD4n9+s5Y+9PfnT/BO6GBU/4I8rs33nMVdwA/q7HRp/HJvVwaF82fu43ZflaFPnPJZ7SSeUWtq2HftB9nYP7n7VxAAaJ9eG+nOb+S27qLGw5P63WZVijZsL6aFseEdjUiCzuJL7r0XqvBGUhcbfPwzqAj7turcrigWsfShB58bU0rExBerUR/aF76N5PTsBpb4K23W++S2dVHsaGfA6XcpS8aC5d5NiZaXI5jmnlWZ1+rN/NQx6Rgds3KP3Z1xAM9PvxDpf42JcCgAYoPbIhqCfC6o5BC2rdbq2ZGDP7KBerYnl2SzrTOzai++8Pbd30oVPyOrM4pxuA+O2UTxndn1WZ9zBrpxOHW/gOK0BHeNnjHUus3PF6gP5BpPWu5j18/TY2gOlb9dYVANmGwNLXtQO8tk2Vbage0k234jUEWqD0kLjQr2XDG9XpNGWkMdiCrWv3v0Uc0xtpXEUdfbV2D1kZ+099N6ypUqTbsfmLUHpYlm023Zl/0yvCurabxLss+7yLYxxWsyc6G9pS5kOfhDc/PQyM38rS65Iy35tWJNob3dz08Pq5rgdpTxgm/cWtrlMp77t2eadyLHEoe47FaZU8UA2l49ebMfmIH5qqMp+9y53ZZP05nhTkWPi9vCbhJ3Q1tiKMwCvs08Hmpi+9jrkQj7tQLNPshjKbQxh/BcbW6ux5I/s9xhB9ygx+2K61NkYDmA9+GfyPk7SGc5BA5mgWP2pD+porGJkwM+jBd/vojG56qi/I23mvx+qDxaag7LhtK+ttONWbsfQDineHsjr1e6Y1SleJ+cy9luy5ran8WP0IVs+6J64Dp8LKg7M3a78KgfHQ028Ucw4ScN/3z0m4O5FGZb6PZMdQi1leHi5K+fp26uJfWWLi2gPNNXcZCeSNY/N62le3PpeH8faawPR/0EYxb6bXc0dpg9lO9SJY1l3hvHpmnv3Khf7ZhTqY8znSk4j33P+yPsepPseBjdhcHXkOquL0B/HZmzeCOqaeNmPX+4Jjtl3lq2T7fpasA3kfzfXMdu+6ivFVPq2YZ95sSt60fc2m/mrwaWu3EDzr4q1YmOvcgDAxj91vmLx6ZlBOOc7bg7pvYFOXo5/tAoA8Mhekct0NuTGzDBmzgucyzqCOxRLv2L+k0vTXaV8Zzu9uN/9ruzHOLmRcwe2XRp0Q8aK/bg59y3kQ3ZW8yWR2Mj3aylL6yN0THPMse+zIVT3t5F9Msqxf/N6JCjt+O7eoG4N8hHWiYxTm6wNi839rgqO/IzjsftQt/rpm4TaNefDA0vprHTV/l+N4li9l50zD6G6ioVtnMAx+dwqbtsYQPpPu1SjfrHtvUtQl8phTc9tzqf9bdPdAABXwPm6Pj0yH1PCb4JdFUVVDDcbbqrNj9H1bRgAfrs9/1Hjcu5oo7z1Nv8Tpf+N0bdjP79nvrO2hP+LJ5nM5ul9m/WjP5cszLNPTptXwjotMfm/MtiWD7XfStTW8g0x2SwUO4eIzKXWaUJQ81a614eR8xdG9gkyjOF7JSQkfFnxJfoH8YSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEFUFRUVH0d0JCp2JNMIh/CVHU3t7e/nk/RFdi6dKl2HDDDeHodcyKr14B82tLbAWpVvdoFWWMcU6rMbWSR6s9LTsGV6qN4QrFmVpZZFeVaWUw7zWSK896miozuAJpLFdIWWJELob0K6vKWNqFjlKg7/Ol53HHu1mVXU90lGF/f9/d/08b7QcAKEW27Pv+IrfqsYILvCpjC6y6CBV7m42bXTFigGOqGI+pAICJfikpUBqs3H8HjoH1AMPQO5MrzV5dtA0A4NNdSe/9J3tjlrpcGcu/mDo1XL11Cld8alXa+qbO6yzrKG+jd8m9HgBUcPXvWK4w10q8u02duir+kACbFe4jWc4N2Q7sCjKtZqMsDeCqxpzV/VqBqpVrWhFrV7SGDApcOTngYPOslXCsLFfjgw8+QI8eMYaIwsj0+Bqs2GpU6ZNdVqkVo+Ik0ao7y3ajfVqFf3ywDQBkW/DMbFqpaJmLqRx+hblZ+V9E3S7ltpg8LYGAFiQuYSnGoTcM28FW1F+uruw21bFJ9NvonewxSNO5M54GAFwAxxC67e1m5TKJXiqnoMvh9ZfkBzuf81d/bF2mB3hykXuhT/9CxdkJGcRkWM5SJt2yRslM92T5FZZ2qewSlmJ01kLUkVmVbX75AgDgtaJSt2Mg5bbWrvrkyn0x11kfUUy58F2mm1hfIyZBsQY9H6kjJtwwC4ZdtS0d1wpQGfvY6vPwOueY31odredQo2llamfp8XnIOkYMDYbJJo/dIGRSBjJagfqg7hDzWyt6X2BpbEd/2tcG9YtYHGx7iFFH7aB7Wlsa7tM97ap84gD2h0yrJUuT2xIbtlhQy7IqG1Q6Q3Dxeo417TCuLN/s6MW+TmVV/m27Clonv7R9AgDgE5NSoxZbAQB+8dpF2uFgs5qI9VAmWPGLjSmkk8dQJsezfaeaFdXdua+V/VxsZKBNhlU3kTO3LN/qO3VMyGoNrBijoRCym5VE6og5IGQIAfJZlaTPY00d+STKX7GhyOmQmVHP1QrgxFXS40yHK+F0WO2o9qF9GWYYt+fXu7Kk1JUt1tkpdg4ZwC0Dh/pFErd1sB/ASN5vbqjrNl4oY0lG6sFk5bOs9k2qL/nSs1oKIrbvAN5TcZM1yU4lsMF4p7M3rmcpeh1+RKa+yovzDnUZKuRyDPNR0bscBsrMVbG8P6vjs91MZn8PIntUjLheiUEuNIp8J2Oio3TxfVlaHyX/o4eULbXMY8+ylB+TnNgYTdk1xACie5gB0bE0NndIx2Is/yGoq0VGDz2rmJhb9OwxBiXFk9aPSd70zIpPl5o6oc8uhvPFl3eSL7bpVUJWC+vHOuLGtqyHYq8Qq436zrJf6Xnrg2O2jt5Zto9jtqONXVETzy7ERMv6mp9sV3svNnVke8TgZ9+HMXxluSu/zt2GnG/Kdo4l85DDHgQAvM1Y+g6sOVg+HGld+QJXnvfNSwAA80w2niee3Mf9kNjW2r6ln7iROlLF3ZZQpydLjYFLWdabOq3SNw5ohtFmzLf9RZ0oEgtiob6krg+jXZhvGZA1Lit0fjgutAY7nO+RX7bZfMLMXTFIX0Jd2cT8tvrcWTH1o4CYpt0RlrInKy7F/WMAAQAASURBVBK3CLZdwndVLBNjPhIC1nEAmXNR+8h3Wz+vvgsZcQD053nKulPDvp9weFZnshwW7fMVbE9LCjvUFT870GWn2I4spoec8mBWh76xModZaM2gwohG0bX0y0u4Q80515ywgOWPWVaxtGGPz2an9qHTHmRsaY3VJSBj9q/OdhVzjNYmH6z42DISyjfqetIZO38q3eBEQPey7FCrzpPPlvzGdLUAFH/Olw3SdWwcF7THODHlGhuibEbTtE/yb+OWsXDyvfXq6/HaHwCfaCy6Itm9rK8KYxjFFCHj24qC/TrWxDszqlzZvdyVraHOApnt0Tis2hWDzXXULVuxjOmal1v2932UAZNJsn1HOvazuIOPZ6dEKx+KXLsTYL9JyWuUU3+v/urpAIASM/F08l0uIuh3pBswND45wB2oNxfSMFBDnUn05iWGUU3v5sllpQ9WR9QHimnEBmzlSL9lBwJ9yAFlob/pw4ZCvlaQz30/KGOQL1AEE4uhxZxaxtLaLdkhyXtsHlgQs5xicen1qo+NAeuPn0Im3OrUQrG0mNbt/FXYvgo6Y5luNddwgDmm548xHXcEnl9knqO9KrgHdX28kcmpGruFbW/swtlOBkf+fBZruH5RFgAA2Op9ZxgutbHmGoLVnp7tru/Ox1UAgOknMsWHTVIhm6UYWN28rqnzbfrwrTQA4fedAUaP6tTPtOXdafdb7TyJ+lAybuMyzZ2G8mLnnUYE+9SX9jpBRqj+tAs5ei4drXbFIN67xtaRPZGMK3CxGQEUIyouiDEcFspQpYGLJg3Dd1/1uDo+T22xS1ACmQ2WHtiMImG2AulGqakTxNkllIUW+17SJcVfkewJ+rbdrLnrMZG6shm0iwN4LzsF10DZG8lx2VzZWevnWWcc+8D43A2/5z4sD+hWDwDYkc98+19P93Uq98Aah+LrO7/q3uMan14HqNlomPuh70yKs/+DDGGCiQfNb513ViiLNo5TPLw0OGY/UEnv5bdifkxM0uHctZXJIPNEFIofNY9bzdKOUWVzNOazAVXIIC75sDG63lH3iGX9iI2tO/t7U0dZtWLQM38r2AbimeLDOkLsf0JC6B7SS2v35Qg1X8W2KzFjN9mI3tzXZPtb9p7XLKKuttv5RR47g/17Og3BzCzC3eRHb7qa0+gAmYnmHjOtXSg3WWdgvfZsrKOs8I1DGENLRWz2MGXhVSxtu0CZdMpYzqRs9jJ2uzmMaeSz+mR1vF+W3snePmvqFGKqFxS3ydcV0tkVGdfJPsRYgcM5KmszNJIJZdwGPqH+xr5vCVvDzQkf0kl6fJU5Insim1FIxwQJQyEGcOGwyD7NB8ayBevdNNcQY3gX1M7Gad7C8qTwm4RlpqZM+rmYKu4v9zVGtrv4ujf/ceShOtpkI36VEyKP1Imw0lJOkX58N/dh6DT80h+ruZI+90L/ZK7oZ+ybvo0r3p6i/rZtrwkv6aaskfUn0jHKSX9+62+wdeS3dD2+ycjyrIrPProi/yO4MrmQYhl2hG8hH/rWIn0s9L9R4TdpO+8qWyX/HmR8BuDigdXzxwkJnY0pU6bglvMPw5zjuvY+3X4GvPLa69hyyy279kb/Q0j/c5+QkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCw5lEEGG7ChE5C+gfxhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhM8H6b+ZOx1foib9KnJSijQrBZTSWCgNRCwdi1LG1LMsM8eU1qmUpdIu2FQPTEMxkyn7BjAFRp1Ny6r0E0rnxfMHmpQT3flbqTltFiKldH+Q5XiWNgPHFSxb2O2HujRC5VtkibDvWuTyjpzRx6VCa2DK4u9dWI0QD9Tk7ep67Gp+/9UVY45x7fsqc3+/98IWvsreQx4GAFQ9zTTWvV1x07s/za6jLuzH8gnXLkO3yHKeLhi7k/txDFNxdGe6PpvX+2Oml6pHbtloOkHpiyYwpY+yoFTYzmR6GfXzDKaKU0oZABhQ7so6nmczS8+91pXDKdvzmD7lBJPS8FbJP5+5jufkyG2YNkjpVGJptATqWF2hFNyrgwORpRS16U+ULkWpfGLJrupZMt3fQOpqrTWDSqukfUr1Y1Mw3cpbsn0XcHeDSVu2NVNveh2pz47dQNk5TR3M5+htUrbo8Y9mOZXlHPOsI1m6TH5YXu7Of2Nidp09tnG5L7fBqwCAO5jOaOIHP8uuk6lLl+P9x1y5/h9c+RufFxu4CJcDAAb0qQcA1O1TCgD49KX1fZ1uE11atOXv8h3/zAPXmJtIbY9jmhzpmhVtvf5FLOtZGpv22jo21SuAWumMTc2jtD28+CCTpLTmAeSgP1NbN9jUYUrHp5R9So90jKkjvyW9kx7btJvSX6Uhkm7EUm7pmFII2ucsZak0RDJwK5K6a1WhtEbXZbtGU7dmaZ/SKEZ8ZhHrtitNkm0X2aEgXRQANPC9i9gv7Tpg24Oy048625e759t0T/TLvXmdpnruN/ZAqf+mse9HsS9nG4FbQJsxnMdO4NXHN/sq/ddzefGexs4AgBM/Yk6ynbLLDK5yZSxha2fDR1RFkwFk6TsB4Liv3gAAKN/G5d2tupo+uCGr4+1cmEnzJVNngX6wzafKn5k+eFzXody22RR4TGFWzD5oU5tbnyvdknxI3s8xdWR71bJKr2zTVap+FUvFl7FU3JJNxXiDzTHdQ6nLdG+boldgTNFm79FRGj21S5gndVXQCqc0SgOs9mCe5fmRd27J34WBbKNaxaGKO2aYSkr1pzZj3w8wMjBXdlVCSJ0fbez1LKXVZN0l3Nw6q4Im9kcv6r5SVi4076P0d3ofvfpMk7bzFOejlr3lgs5fbXOiP/Q7/Mj9sJla1xSU0fBmsy/Mosxs2lnaPwC/YFlLeXuG2zaT7MksS7XDtMdRjHf6lbuyUfbaxoqHs5RuKsWnkWNv79kfgxRr2XgwTL0pvTTpQ++QT5Dc6XwTh/Xn8zRUc8fA3HsDyHRTafnqg/2AN+bet8RSAYYpemNjUdqpolOYIvbySJ1Vge1E6ZT6wKZFVTwgHVPa20Ipe5UW9lazTzGM2oE+u6gsq+L9cZCec9IdyIdsEJ99sOnDoSy9OaF+jzW5aCezP5WeewNz6RHlrlT1kW58eNgWd/kq87ADAOCQcx8EAGzyMA98EHnUToaSZk4z+9Qaf/mmy+FdS7l94ul9skp0x8zUC8wxY5wp1LsHua34wnahJhcGUKdqXuB+G98qrT3HbPN1bPesShFj3nbJQsRn+tTJ3Dc/5gcVK9LeD6Is1FhdlS+gvI017zxD8q5nVIsekNXJaWWLkg5+W5RG9rXA0V90BmYh35DHYFPEy/bKgaldbSwiG645KsWw5VmV2ap/fW6dnLSqiq2srQFyJ1EolMWUCRvTDGVfTa/nDtrCydXm/Lbc57iDcmOGL3/aZi8AwN5L3WC0WKasPKuzyPrGNYQKdsHPv5ql0d7k5y6t9ya0xS/+6NvugB3vagx7CMs5LEtNHd/kelm2S00sLtX95b/MHGSbdEQNyvHYMDO35HVT817y8zYm1z2qXWHFtjWcu9GYz8qNjNb1QR0jb/M1T2TjfCA3FpcRZHwxPZgXA4BpZlwKIPOP1s71QW564NXAJ7ORnwI8Bj37s5Fjen61x1Hm2J1BXbWdTZuuMRLPn1FqjnGOo1X9W2iMQzkZJPttDmkOfl54vhlzbcA23Z/3VAru27IqRWu5QKH9DtpRNl3lP9HlaDO/y0/jj4tdcfCt9wMAtvzlO1klqkbjfwe4H3dz//isih+6TZLdpWEoM3Wup68sYvu0L0YeujMG6lvuyroZ+XXGUA9nUoYGHuzKWhPPDWKdGsp7Tjpu+Ub5D8asJSY9eEtMLoDcuRzJa9hp1vf+Lagbu+77QR3dw6bD1vMrHbjOUWwQG6SuCqbDG7bubI9WG7dIfyXMeq6OYgwgmxcoFJPY7V3w2QjSow/jvOcSU6Wp3JVyCZqSmmpkoTvtoh/a0CeUZGOuCT//DQDg4U/3dlXXcvI78O63fJ1WNsvKJGbvLFgPMwxbAci+K3l3Zpte8wbDWcogVJk6U4ty6yxiu5jhB1pkHymLvg2NodOcg57DzzMCmS5IhiVnp5g6mi9l/7brbY2u+hbgOLfhHuRDdfiQ0RiCfmsA5a+umvvN/KuXZQmV4marf5qDl+6bcYMfFx6GrsP5cLZDtljxxlNBCWRxNecRSkZkh1pkTzcKSitxgcS31HN7YFalP+2sn0PdmOW2WR351QHs1zrJgv1ux9+9KYv6XtfdzKf1YjygxwhtPAD/nWI644W5g/yRD+50k+V77/0rAMAVr1zmDqzB700W/s0YOy+e6Oblap4cllVSc85lqaY/z1xI393m3s86B2fHztKPMKaxdph2tj91dQl3R/2k4lzFbKYPB9Ku1sogaP7KyKSfK5Mea5xmJur999TS4JiNbx8JSjvG1dxWNcvfIx/vR/YBud+5fttBnc4E9VDzPM2ReN8/q5/UXYnrW3ura4fxROz/PsLv5XaMHmtPAC0m7vdz6LzneGPTp2r8w35tj/UvZeZ6xSTU/XezGu/t5BT3oQP2BADs+5wbP8e+tHc2KijaL+Fhv28SP443LmRcuyttWb05cQfoRAcbsLfxvJmlrixmf/e1dejgWygfg2jTc3yeZEdxVGwutCP5twjiOD/ndb/ZqXnwcH47hg7kBkD2zyVCoXGmjGCsp2UH+O0zR47l3z/kX2fBtr3iiTeCOjZO+FtwTPoY+94Wxk+2nTW+5z178Z2b7Xx0+L1NNs1+L5ac1LM0bX+SZCnsO9OuXtf1zZ9j+/uyKnN/Ndr9+L4T+CMH/BoAcPmAi3ydi/d2duDSjdElODj7tw28u9uGAIDJOBIAUHOx8bkSL/nVZXy/hca+jZHeBTcZZmKs+ZTpExhY3xqTf8kJbbD/Xww7LgvnXnjO3Nj31QtYKiay/aw+s0ZHkAyovnyM9Q31wfmF/qdKsrlJsA1kY1/N7+h61q9JX6QrheZ0EhISvgz4Ev2DeEJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQsL/DIqQ/pu5C/AlatLHAfSK7I8xJwtiXdHqXa3qrDJ1tPxKK3a0asmuJNLqHK5SqtMqMbP6ya/uYTmB1zMLw/EiS60Us6c/ETy6iAcMoa1fJFfmirXW/QgAULXb8b7Kjk8+CQBoxXoAgGPfd8yg2Cu7zG5XuKVe/yhyy6z1NiuyRnJlofWB5Vzc+Y/zt/fHepO9bigpRn/4pmPn23NIRsu4FVc9dtuWzMPzuJpqQ3MTLjztNpR1HnF1FvQ0tKxVvF67o5Z73TJOCrVc3vZVPmwjW2S8WZ08lQyCM7j6UAvE576d1ZEMlGmTzOEzDRP5ErFy8H0ars2OSZbnaR9XRd4aWyWq+4q1x7LMSGC0ylsrzuxqTcm2VkJLjyxr0/cA/AfA1ZH7ryx+i4xuakywPwa7cl/sNPWuqNWqQcuupDbSSlDps11tylXi08PVdZkeoUaME7IDhgXiBpYDuNKxjtuWmFqPphXcYsi1C/dnBwwGYhCbn1V54itOcX+3hWMs3aLBrRp96Jw9fZ19z34MawobUcxu5erSF9szVtVS9suDP+WL3M4DJ/sqWL5ArEjcIeYlY59wPsu/7ZJ7vmVpKmcpFpdGli+aOmuz9AQnYh2wy1hlCNgX9tAE6vjkalc2SF6s2w2ZsUMmP3sPIWRNA7JVofUstdrUOhD5qtAO2JXh0ufi4JgM1VJ0jh5biP3KMC3MUlvJAxRYPduu1fAxlnPprfQxXGkOoJ194FklbNuzrRrZvn1lTzYzddhGTbxOdzGsmf4R28+wUld6hlKz0lf6r6anKW7dNYtblvRYAgAYhdkAgPXf+dQdqPNVYD1JV6NiAn+QXfierx7kj71G5qXq1xxDZL/fuYdsvGBAdgG5FOnfSWQhPcCw99ezpO3b4F3HZLEsCwWAOvkdtn2JadcW+iKxUYrNrsYy5slHS9d0U+tXqRuDy1zpGaXNvZSFpFFyVp37XAAy/QuZhy27krAivSndsKwJ4ap1+fDOZGnpDueLteqcZX+2b4NlVlDsrA43/Pa11fxR6F3VV/LLlJM6a7sCphS17yzrNAM2iQbajrcsnRdjtAdpvxdw92mmfRXbqX/XcXW3aa/3VV571snwhG0ca1qdofQc8tRrAIBnme1CrVOI82N1IRYWNcGp/TLZ7kcD0vhL6mZPHigzF9idNvQE+mCFo8eZOrWU5ZpByMMZbOPreWIRBzDt1m6HTFtBFg8AaNeN2b+ezcXGaGJ1EmP3oqAE8v2F5MQ8e0MY46nfLUODbI9kM8b+yffyTII2S4WuNT0oYwFhqSva/wlgGToPlhZPz6M+sM/BsfB4BnJTxa5qx7uyddcGpYXGGQG7Ug4zO33sGLbZTN6r6FhTvz54ZsZGC40tPbzclZODqjZW876ffXauGTfIxDA23PVHswAAiwzj6o5icSVj+Dp788AUdDn0GhUHmp1UrbdpvBaRWWTznTN7+dbNHJNUc4cNS4fRD/bk9gKWxnVjW45BZwSZkCxbpzKg1WpfWX4dz2RI++IzsZg+bGLfh0ziOQxkAfN3jXTGxmqKnXmdGVbeOrLCsbhSMq4xpY0rO8q2Y3zeIOpPTSU6J5sHAGyJXHsZMH4XZIUJU7hcb44NDOqSsXG23ff3oG6M91M6JfsaYzITczj1SXoJZDHiwFI+MkvL2DWcY3PpuEKQYp+OwPvhH/VwrEp3zfsJAKD5O5lN77E+bfp/Iq/RVaDNmIAsM8EVy8lQ1I07hrKcgwxHsAyHbpYkrCfL1iBusfBZm6iP4yjj003MVExf0MZjp7BPq+yFNJ5TP8f0QQ/3ce7zARmbqmePl65ZmZJ8FmLaDhnPYsz+0vVQN2KzmbJHISMZ4HS7s/R4DrI5LsvuqmeTjsmHRsa0nslQ7HOGNXwYr+kz/MR0VXNiaodSc4z+3Mf5MXtCu/xHxnzncndPU+W/8rnaob408cJbrCNbo2lPM7wZu52Lpd6kj3v5te0AABVjqn2dynB+vJNQYaZm3ie7+UaO9B/TGFMNOjWbkKtpdcxpGx/rxjqLH6FvOg0Z1FWl9JGyYdMNm+8gZrbRnNZlahgT37bSntXpWClLMxadyb5TNsTpEdp1H1+H7Hp2X5DVpRAJt2c1tbF4PUvF0IV8VZgbzfqnUOfFAGgZQgM/L2bmRt2rs/TYoLVQBjEhpsfqK41t1M4xlvEYm6LsYsgQZxGMuyWu9nOZ2G19LB4ytSMbBmmMU8bt0qzK5B7MGMn4tOzxagDAwUdU+Tr3b1HubrWv2/77GsjCI1xgvgv9hPorf/yzoye6A382JyijjkKHhVX8YcYPA2gk6uTz2N4NJpuVj+Ipvz7b3QVZFS+fmtM1/eyzxQZZK2MZ59pDWYwwyXpoXGjnmsNrxnSVQUidxuqSOztOlN4WmvUI2Vg3i9SRPdA3LL1DZwRvVyE3vYn6VTGO/QgbZOZoscd0XmxMIoR+OMz0ARPTqc/qWVpbwjb27L86Zuxkbz5Pk8ZeyrJq+nBbxQk35daxOID+XebodnNsiSuufPpSAMAV6zoG8Rt3+Imp9Ov8a3YR1ArjyGC+M552P0pNMDGYcivGYSbsURJKAMA/WPbnHFOYoAYANC8+mXGQzVY2g/3jWeCl+5Y1Wv2rODdi22tD3YjErPrO0CK/KLmLxcsFvuCHWftsJr68+R3ZCuuLNwr2ya/F5qMVp5eic5mHAR+XNsf8cYhCrMqxWAjItYF6R+mY+tC2cyF25gCeOVg7THbGWhkG+oapMND9w3uYuZOBfNZPuK0MNT/LxsQ7bOfa4x1s6nbsjTUHzqNNN3OR9UtL3Y/BVE4lIrPzEhIluaEGw8Y9mvo7S9+H2J41Zm53MOV8Ib/t12jMZb+1KH6SHyuUYT3MfGX8e5gx0s9xWburcV0VS81B2u9LsnSFcq/EYk0hzBpdSDYV6OudbWxux+ZdEFMDyH+PMCuPRfh9zT5rOAcfQzDPLxui8QNgYrQQ1j/L3sfaTNeSL1Dbmzl4n2lX5+u7jPmeqcSiNzl/NvkEN2d+V4vxvXt08KirCcXQ60zK9r1NRZTPnbx5ljleCXp81o6jWQ408dM3OR94NveV0Iea/3XxG7dKJmTfbHypj2D0+WPZhjNsPBbYfR+L29haNlwxmvTYzpv6C0T2hczlsXiwnGUoU/Y7l64jG9QaqbMwKBUn26xj+t8QXU/s7bHvXAkJCV8GfIn+QTwhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhYUVQV1eHd991KxX79u2LAQMGfMYZCQmrgCJkhJ4JnYa1Pu8HSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEj438C1116LTTfdFFtttRV23XVX7Lrrrthqq62w6aab4pprrvm8Hy8hIWEF8CViED8fOekfBjBtRJ3SNzBlxUiTymOujilPDVNV9DcpRZRe06cOVzofk1KkN6/ZpNQtSmk1I6vjU0Iw3c1kpr6wC27q6l05qNSVO5nUE2coxRy3h7I8xqSMrGSqu9Gu+LT3+gCAtf6RpWJr4bvetsjljR/aZwEA4MeDJvs6o691uUCe5HZXJp7wCWSYMebbT73oj72yi0sZcy9THm+1xasAgAb093X6MI3xVhu9DgAYsadLnXH/0oN9nY9aXf7e5U1M6amMcjZNJjP4vP6db7gfP4s87BlMqSsxu519eJxJKeXTZ3P7GZa3mNR7J1EubgpSiwwycldTxR9qIZOebBifw6eQVUobm9pK6X+UQkRpwmyqE8pkP6ZHa7Tpq4VYykogyy8JuBQ4hXKOriyUWieSmtCnIFcqqcX5dXwKGemhScU0lnIxQ+erzWweOZ0fphkzaY0Gq68oUwtN2po2tr1Pzcu0SJNM2raz+Y4TmT7oXV5nf/MYt/BZT2Lqm3rKlsnmtP/BU3kHlwvz+P4uB+C+Rz7m69xB1VZiuEKJqVYbTKt3wo2ufAaZXZnMvHz9fl4HAGhcTON3bJYeHDOLXLk9t5WBaaS5x1kslc3LZPfz0D5lZpM+21S/bbLhtP/NvFnJ2KxOi3KMvoc8TKbs/KLMlZewbLF6zb4fxPRQNXogm6ZMshOmeDQ+poTy1qK0g0oNavVOuq20dkoj9Iqpo5xN0g01sIxaZ6UKKwGwM3//zewT9Nyyb3ofm1o3TOGn1Ek1ps704FiYDtGgWXVNu3q/zr6cz/7pboSqN+3tWyx9ms4zsjrjqL/Teey3vO4hpVkdmo8NZjrnsOyt3m7H17MqjX9yOvHOvv0AAD8f4FLO/fQ/WbrJAokiOx//csV/eri1htb3Vr/GeGeDjwAAjc9Tn7dFhp1YKh3qKPqYmaaORJFpE5etz1zeA40/9GD/WrH3KcK4XaOI5eOsDpsaTZIPpaOzqXWZxmthmPLLREB5KeYk26eYfTMRR1sH+y1smjzmYPa+qVCq3lgqz9VFK4D2/N0NsmFWEsPUazbVsGyMUsLpWW0sEqYVpx3ISe8nny1bfCxLmxpONoPX7k09bjL91ovXVLje+oIr+5dldWRCv0+fe5aTpde2MzHSfa6YvJ1Lp3fVy5k9eGQXd63vnVYNAKi8EV2OejbLC/32BADUYit/bAR9wfxTna6+sS+V1GaXPIU2rJrbMoHzTGw0lj5KLqXBpAlU2tJixpxtsrcm1ekJvOitSqNYytLKtu4X6stGkTq0yT4Vs02ZF/oPyWShNJOSw03MPvmWK1jKX9vhNZ/V+4bB+cdWCNKt59F5vng0cv1qmArXPiv7cGowbs5JoSkDXyiilIEeE+y3tpFKNjOwqVuZ37X1/BGkMO9nxvHnsc1KKFstfId5VhauY1nuikfNIXX5V10xp/S77jFOfclXeRR7AQBOq2HKbKWYnoIuh3rgbWPmNqMalnzi2nnI2u4l5uz23azSeSxLWd5sLtrMi82XTpWxNGmNS2kP1PYDDnel9b399HC0kz253XidqaTrMAaWLS4xtl19pmPDFO+ay9QqdlWcrGetN5Uky1UsDzDHpPfhuM7qulrb6gsQj11DmDih5oEO6qwO/gXgHbM9MCjfD7aBjtMHH5X9LCp1ZTtjzMGcR1poU5yHKcSFSIwms9hWxR82HXAwbrapwOex7UvUP5XBOQDmVfMHY7XTKZNLinyV0493Y+AdjqSdftMVDxdl/fNDpsmNJHbvdPje4Nzduljuj31Q3deV/3UlhvOAbVaZIe/OOOe3w9ZZnZlhW8mPmLTEs1iewgvN0QETsLdpPpF2+ibpmPVhai3pQWzsJXlhvFT3ljmm+E9pvJl6OyfWk25qrFcgtXQRz2uPpX+WTqxIyvk1OrIibors03PIdsVi+wLvM/+FDg5Yu6DUyQqC7TluvhUN93Bb6ZVt29M+HqQ+ZD+fb6pcxfFXCee9WhiTDzb9vJD33Z/n/9EVOw550leZcaXzLddcUA8AqKSM3/8EugyStkozvV6h35xOfxXbAMjm1AEA/+eKxcfyXTX/CyP/FzFOWZfbyyIPILG/LPj+sL+pM6WaP9ivhzIWnmK/O/CY0nvjXlfk+N4wZo3FrvKRlMXepormulFID4lwrB5F6GOMXo7m+bMU/0smrQ8PxsmdFUbnYSgAjX/uLFCvEPTc4fj5MPObfebtrtVjtYONzzuC/CrPaY7Y0pnSeer18NLsmL49KfyaISF9Nquj+Jqx9Nrs6N0wO6tCf/zeByvwyKsItZ5arkLNvEFW52C4+YSj2Hfjdv4DAGB62w+ySrWSPepU/3JX2i4Q6hjTjKV+zzAxcP8zXdlAm9gWiW18NGLna4l5Gi9rzLVRfp28eVb555iPUR3a8Rx7wJjK65ae1c5NPRKUwvOR3xqH6dntNyU1JHW+u4lpfLimAZr6grFfpyj2D+GEQpISfvsppNeFYopw/FAIRpja6/lDcZfmFW0fUob8XIPatTSr4ue7FDRS563v1fyOhlUa+ww3c3fTqviDsnSQmedUE13CkmPB06b/OqvDYVDlgehyVFB0ak91L+bnqheYeRqJUi1t1r9pv2tNXx7KNppCARxp5hHmUgYnBzr1FavHsqHqF/kjW+fjoM6VyIfkXQZX3zpNTN+iOVFd2/r+EOpXtYeZt8nz2ceb3+GzSV5LzT7FjxpXSm92N3Wk97JLC9FpznnM+cA6PYAZeg/ZRz1roa+emp+0OivfpusoFrfz1OF/Rsg/W9usPpQeqi8jY+ta7ptAHSvukVWp5+9ZnOTNib/Ur2HcZL5hKUw4m2ULZXp8VuW5X7tnu/Mn7MNP0GWQO/ZfVdlMh3k7DJx/K2OihdSVkzmOaDQX0jPqM4W+7wNGFgjN+zebOcga9Yvkg/cYV5bVmX4PVhxhHGflLtQN4akOfgOZrnQ0j7MqCH22bIeVScmtIqnuwTawcvPaKwP7XUi+XvePxbl6/mBescXOwUlvw9jIfqeSQ+N5o+m0ZtWbOuF3avWp/Rag8fqOQV0AUBwnGy4/YGU1fB86th1MFf4P0+Y/d3IxjE78BY5JAWDjxa+hK3Al4/YK801r4FA3vq0YMMrtWGBOqGep+qdxnqjfOaYS+3ci22PcOrnnAsAy9k+d2lADchMzetmm3Z+hfjnW1JGOUc7aNG9l7bnmxBiLD+bzLLR1JJMx3xIOECR/b5t94f9W7R7Zr3sEMpGDcLSj97Fz1qUsQzti/ocBd2BF/tvv0ksvxQ033IALLrgA3/3ud9G3b1+0t7dj0aJFePzxx3H55ZejtbUVl1xyyWdeKyFhhVCEL9V/M68p/M8wiF911VUoKirC6aef7ve1t7fjkksuwaabboru3bujrKwML730UscXSUhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhYJdx+++343e9+h7PPPhvf/OY30adPH/Tt2xff/OY3cfbZZ+POO+/Eb37zm8/7MRMSEj4D/xP/c/+Pf/wDv/71rzFkSC5D8bXXXovrrrsOVVVV2GabbXD55Zfju9/9Ll599VWUlJR0cLWOMAs5zBdiDhcrcw23537PnMNVPsdyxbwW6E6zDKVE67PBDsOM1qTlmWS9KeFqpZbIsmm/YJ7XW2IY+MaXch+3jzIrjs/jaqmjt869fW+zekqrSklGhMtd8Wn9+r7KXn0cdVqfPu6Zh4sW4g5fBZUXYM1DWSmOznadhl8CAPbGXwAAD758CADgsO1+5+v85Hd3uR+lrqi5ZJj7cYS5tshb1K3qrn1MHTGcamHhRJYLDaPaFVzF+wtun6QDZsVwExvyDLtiDYatCUB3MhS3BivPSs3vmtLcY2INB4D59bnH/GpPK2+SV62yk+DZFWz87VfkhiyehWCf4Vl0Hs98MeJMaLxfU7iCLsLimMMmA2QrQwH8m2UJVxq3xFbkhWzRshlGVz3LrJSlOjvWwPsrE4FYS2qMLC3QD/bB9ylbRg/9au9fiMWU22aR8RJS9ql8gTZw34UZg/ixFJ3KiFlbHVScbDYeZkkS4f8ctxZ37+2r/OodKkzb2q4cygMvZuxvXg//zJIsrTnMSTdwufhVPE/mzZDU+EWl08kAPl8r9+3q/oBJ9Gj21yS7UxeSTFiWMa4uPWtR7nZvY7clr77ttTLVsAN4lpDHWUbcdstbQd0IG3YeA7mYaKw+hCuwJdvhqvLVxTeQv0LWMi/qvlrRGmNc0Up/rpDtzdW0TYYZ2q8Al/2xcYPaSgwAenfDGu1ZWLQSnKuKDbMCJle78ugyV05S/xr5mU4bo3hDrGCnGbt4tHv+ZdvTUddRliYYmRzqbNhepDgdTJv8kc3aZJlAuxpkNFx/3qcAgPP7ZaxI3Xo7e7Z82XpuxyU80NOc/0yw73oZr8jq5kusTgD4tvn9H/Z9X7bvu+ZYo1hTuAJ7IOvWGkPZxDqeMT5m90OGLum1ZRmQDIsdj7a5JcYAIKWPMX9r1bfkXowtloFCjA66nmXjlQ7UB8++JqB2tezrga4XG5/bpna4N7dOji1Vm8uG1bui0TIOs778aoN0y/pr1hdbiNjtuhub7FlLua87xyUNkcdZoB1kEKgx+nwe5Yxdd/4LWd+9MYQMEV3IwiLIkpbSB79ChtJhhsbhytcudT+akItDzG8RzigG0XhigGEsEuFPHcurzfn3dM89b1bI1AvgVvWn4uNYxoeQ4Vs+08jYGPadF4+Q8RrI/J5YGB4JtoHMb+wSlJYBWdcO2M6iDCq6p42ldT9PrctyeqROGcsXAHwYuf6qYBZABmyH0C+HrDcWGj9YXe+IOcOOraXbYTYF0z/FZa5s0/MwS5Jl8xKT9Hzdiz680dgXxVItVdwuZ2mzAslu03Y1mfNFDK/xHF+jm2H6Hc34/p7jDgIA7P+Rs9sVB37q61R2BWk0MstupXYzEtn8dG2nP79+mKlxLPGX9PhBljuZY8X0W7PZ1r3LXPkD44P/wbIf50c8C7CR7dm0iyPpm+ZKXg7P6vh+0PwP9cj3lwVlYL70z/o8xUmhTJ2BfKhOLK7UWFr6Z32nfovFSHJi42Ydk0xyDJcT96sdVmZMvbJQG4cMV4XYpvTuhsWqXc9NnV34fu52zm+xSJazNDHWobSdGsY0xWKS4Fktc6VMcQvv5XXf6LGyNZ11f+692rIxwa5PVwPImLrryh214eF1hnqMw+M3nkGXwPLmlXHjD9VOlt7xtPvIT+C0hOUocwGJ8E7SPzaUjY9nyq6qHXjSKMP4OJvx5BzuUwa6MaYPZmqOQr6Oc1WxaRY7r5KHkEUrxrJUxpL2/yuRKl7uxGZqM/XwfQoxFudlwCjAxFRJlteK2PV2ROf5YyDOXR+OxWPjd9nAjVnGsgd2lPXPgvNW/cTKZ9njQpZaXdtkMfT9IeFkjHiV6eeBlI/64NYLrQ2gDZtI5znM+aW/P7abr7Hxec6+Xo6LAAC9fujk/2BD9HuFI//tNE67CLdyNsfF+/7xUzdJsLjKMN59nHuKn2N+wrA51qkS27VI8bWJjRRDj6S8TmfdnIwlf8st/bEIg6VPXkhfGZ33DHUNyGNSE5piWbIKsZdSptrC+1pW4lKWofyadpml87cN6hToec8YqXbprLnqBchhc+0QIWuhxb0d1LFjZc0VyFbYmEhBp+b+w7EKkLEzsx1bZTMsG6TmOStzz5ln52kYG85U3CGnUJZVodzucK+LCwZQ+XfG01kddtVmypYxD52OcKbhCk4RXDgh2zf6w2oAwJL/9gQAbLwRPwBeZM9k1H0G31lz+ZcZ+R8XZKp6N/Ldr4G60Zv+tElMlNYWBvFSLJOxt7cxvRQTriih5Tfs3G4HOVNa7Fg0ZP6mLBWZ92pXfC55jc0jyy7qm9Pfgv1AZjD57VbZ3ABkvn5GULcz8Xu4wCMc2wuW5VKxrmL7E8yxkLlYAzHDvuwznUh2dD07Z6G4nP5ZmVPnWv8uP1zKMhID6F57cHsm6yw07dum8Zj8Pdt3gcl027vclfqOYU2P5o4ogq98y8nWtm2ZbH1svud2Nd6vy90ukWxa0a5nOZLf8uRn7Thkik6gPZhbbi6g+Jj6V8zviNNshhz9H4J8g2TI+p3YPHgI+uoBtLt1+qZr9cfOcQBZnG3nayTThbJMhNn2YozmQugrgOw7aHjeisSinYCZV8HpcWjfViRfcixDT2gP1F/W3o4L6qoNjf74OXz1fSzuYj/3Yj97dno71pFMUseX2MfgmH665kH0zEYmW/jc1XxGme0/ZlW6L2gGALyM7QAAffh/LdsWZSluIrktVgmasfdRCk3qgTYbqDKM9F8nt3KDsWEltGEt7J8ZNu6RHpa5olm6a3SmjW09kG1dSxs43fYTbbr/X6IgYyFgMjuHWaiszkm3NMccjAMAoJJxhh+DxvxqOC6z6MC/22y8taEMBln7AGC+4hLdt1B2rV3g0yqtNo5EPos6kOlPTJ+DsUiL2tzOvUk3NNESm5cI7OMsnW/nOcJxj77tWdsuf665VDtzy2vpm0pdbBwVZGzRWG2x6R/+W8NbbU7eL/yJm8Rez8xRbKYpgsXoVHjvY8bf7w5wKfneVNaO/c0J+vTgm5E62mj+H6YX9Vjfl6arL+zEk2RRbR3O0QIYIJZx1al2xdlZFUyU/lWxDH0fkFk63mNh7DuV4uvoDH3wzDG91HNI3iWLsexR4T/vWNkOdTNmM2QXw/no0F9/dkaP5uZmDBwYS6HksPXWW6O5ufkzr5OQsMJIDOJdgs+dQXzZsmU4/PDD8Zvf/Aa9evXy+9vb23HDDTfgwgsvxIEHHojtt98ed955Jz788EPce284vZOQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQsDoYMWIErrzySixfvjzv2PLly3HZZZdhxIgRkTMTElYRRQDW7uK/LyE+9/+5P+mkk7DPPvtgzJgxuPzyy/3+uro6vPvuu9hzzz39vnXXXRe77747nn76aRx33HEreadiGLq/bAV1TUjrZZlSuBLvjmpua7WrXR2jFb5ajaNVXFVZlTFcCTSTK+W/zv2WGYHMuqjl6sV+NKCG1MgvPJ3JFYozzUrUkVy1K+ZMLSiqN+eT3WCTf70JAHjvq1u4HWbB4PQRuaw/w/6PF+qf7Tu23S092+zbbulZ5WoyPGhdVYy3w69zJjnB2qOy1apHYjIA4MxFjq1g6HaO7mkWRvs6W/3oJQDA69d9w+34OQ+8bm5ChuGt/sC632Fd+17q5p+xFAHAOMOodiHLW1iqXS0Bn5jDLxTLgFaR12d1/Go5MQrwQj3NdcLWmm9XfYqfiqu2i9bJvY57EJZaXabrGW6rYspgWyhM1rlrVZ1WwGn1uGWLacGKrDxbedSb3xsFpVb4WeYYrujrTWaHJq00Nno0T/2i5ZXSB7sSv5Sl3p0rtC17whPsu57cbh5rDnKBS4OYA+pZGrYZkWr057WXcNuymJ7GFcb38fnVpUuyKvM+dDQs2633MgCgEZsCACrnn+vrDCyy9MOdh0rDZFxxKH/QFH5n3VkADIsDgH6bvgMAWLK0JwCgtYoLhrJHBb7PUhkAegclAOxF5vB6brdRtv9mVnCKbX0QZUH6bMmRasgCMZIsEJO4arq/YT/ci52+DstbzSrT8bz2X7gtVuIclnu64P40Hr5/rzB1tHJUKz8l03ZFqlhhJMv1LO1qUx0z7IAA8hnxzXPlsE11Jp5BRgknxbFMaFoEJh2JrdAN6nr2W8tU+nxQWv+m1bEhS0chVgmeM9mm0Sh1Rd5ib9N2IsEXu0A12QXGmz6sZrk/y5ZI29/t+uX7xzuh+ugptzIb72RVxD0U48bsLFQwdNDq76N3cUvW9/A0asBi2tAFw0lNKt21IZYYZLzc651NRpbx9IdTuT2AtvVBcx25r0bqaInR0WLaXqmNmMOHG4P9nK4jJg6x8Fh2b95X4V89yzzWM8DLtGdiM6v7fWBgMtq4hza/5X/0YoVYfHW9A8y+ruz9z4JWwe9r9gVMMW1VZkPxhPpDfWBjHK1sfyrYtvat3hUN1dxWbGPtCm1dc33udVoNO8Rw9tU81ulbymfOvxVmMYY4nzI6x+hzmJxleHboDjJkX7puISaezsGIi/mDNmLnTxxb271rZ2231oaO4ePT/zIYLuWBG8yFZFZbGXe0WCYcopqlmuFP5thCjbV0nuTdUFiMLXflDMm0ghrDbDCIQUQNaTJ8rHdMVmem+nN6cMyyKYSME9LHWCqVp4IyhkLMvILiQOuDdX81WoztUHXqzXZnxtSFmJysXQpZDhWzWp/Zkf+0jBXf6qCO0cO2kK02kmlB454J1NnJsWtqjEbdly9uN/0sBp1aOvGFxvb8k/3CLE8bbO4CjZr7h/kqrx7sdEpMiOuf65jDu4o13GKMSJ9/YXZyrP+J4jiJyjJTR3MFmna50LLzcRwnW6jhz62mzUbyxp64T+1s50cYm80Vo+HW+VVqpZNiHbRjpRChDFg/p9kCjkUHlvP6hRiELeQnbipYy0EDtCiXrMNott0sxjI5cb/YYY6H0ymbamFVUYJcFkXdT+0SMolbyD7+Nti215G/kF5GmGi97w8ZEwFMCRmyYjg8d9PKa3vA0KghDw7O6pyleQfKpqYjjsh81cLlzs737+aCzomkD7plwlm+Dh4q8IidAOthykiu9SHt/9/t/IqGSI8yK9ZAGq9pZj6iljZ4IMcU32V5g70j7cAYtsNM9stsO2gRO3/AODTTxmHScfaTJ1eyss1AwbNbUu6ONjHwJPVTOLYFMj+hOpTfOpu1I2QmVYtWoWNI7oydK+J4sF1+p4CtqAjjbGt7/o7O88dDkQVg1t+GTFCKm+z4Xb81bpbORBiDC4L9ogw9Rabv8hjZdW2TrfIA1p+murJLxr/Xyo5oTC7bbmUhvBcnguuzPXuv5cacvf7q5PSjKrf/UxP2dxZzeIgKmwqAc+TX9TsRANDyPuOmb5g6+q35KzVZnWFLO4M6tgH1+jLaO80FAtl3Ac9+KmY4KyN8uEFlrqyRX7PjTsZhjWpnsVJahlHZo1hcLHkLx8uROLmjzJgAcjPmWcSyd+j5/QcRUydkXROszEuWq1mGse+aiqtDljXpuvWPeo8+QR2LkDDJXjcynwIgtz1oxDWHKjZr67sPpaB6Fnr1gWWcEyvejMgxosnpxHM/dtkYPvpNNwDA1f++xFc5utyN6yZdeALWFC5U9pwB2b6d1psLAFg+z8lmlSaJrTEZw7FBNbf1IbnYzC1N19wl/ajP8GrspXTDZ5bZPCiBLCihHjRY2zgwKGMZH6Uv0m3FrnYspjg99DX2+4eyKWpww35ut/0dZgeLZcrRPfQ8Gv9anQmZDa1dClP+Sjc0Xo3MT6w0tuBzSV+kE3yv7qbtPPO+3sv2D9vVZ6aNjDHaIzEzgDizM9/ZM4fH5hcLYCuWM9U/0mcz1q9h3HYCY71b613ZZv5toIl2W2z2liiW4jX0SfddVhmfbznAp1bGwH9yPtx+4+lEVNisWOyCIsZNo+G+QeVk5VVop/aZqLjF+Kx+lG35zJxpV7bNAPazWMuHGT2eL/lm/KjMUjlZN0L/pe+rZWYf54SXqO/lp2P9H8qQtf9hRmaNwex1Qv9h513DZ42NMzXPKd+m99k4q9KLct+seb0yuAFgZ4yNeyH3e5nuL79q5xz43uOtTgGYeqvZkDyEY4FYFs/aoDTwWbCqgwP2OxXnCptDm2z6p5jXaWM/txla/FpeazB1daGO2TiBsaX+50EqvkFWo3Wm+x676YFuIrn3NDc47yzW8BgOd5+r0UaTUf9paXZQN9Yz+uY1dl/HWhRf29hTPkUyQP0bYPq9jm1cK7Z1xanWRjNmrgls+lCbnUt2VfKhODnGvB3L+kRUhD5Cfr5jxt5cxLK2Aai9Lr7fYn4Bv+LnT20dOyborJj6LgD2f7/Uh6HPLGRLq1naWCIcf8gfFvoWLDkxYzcf78guBBmFAWTxjWyyzbzF96jTHIViamuLNB+juJJ9v8RUkbv5ngtW5/Hj03Z42VcZeABl2vq/1YByvm5GnbX/znIO//FqznXfdTvOMm32C9f2XzvTKfQbRRrnmrneNl69VfGx/JHp99Gc85il9pEMmLavkx9S/9DuT7RyG/5Hmp7H+jzNk8pXxv4/IdQ1O48WZqtVXSsL4Vy3zrfzTqpfzVL/yBL+j4eF5M/G/eH3YulGLE4ojFtuuQV77rkn+vTpg9133x2bbLIJioqKsGjRIvztb3/Deuuth8cff/yzL5SQkPC54nP9B/H77rsPzz//PP7xj3/kHXv3Xff1sk+f3BR9ffr0wRtvdBDkAPjoo4/w0Ucf+e2lS5d2WDchIeF/E0mPExK++Eh6nJDwxUbS4YSELz6SHickfPGR9Dgh4YuPpMcJCV98JD1OSPhiI+lwQsIXH0mPExK++Eh6nJDwxcR2222HV199FVOmTMFTTz2Ft956C+3t7ejbty+uvfZaHHbYYVh//fU/78dM+P8JRfgfoLv+/w9rfV43bmhowGmnnYa7774bX/nKVzqsV1RUlLPd3t6et8/iqquuwoYbbuj/+vfv32HdhISE/00kPU5I+OIj6XFCwhcbSYcTEr74SHqckPDFR9LjhIQvPpIeJyR88ZH0OCHhi42kwwkJX3wkPU5I+OIj6XFCwhcX66+/Po499lhMmjQJDz/8MGbMmIFJkybhxz/+cfrn8ISELwiK2tvb2z+PGz/44IM44IADsPbaa/t9n3zyCYqKirDWWmvh1VdfxcCBA/H8889j2LAslfN+++2Hnj174s474ykUYivPXHAxGcDrpmaYIk8pYGIp/ASlcbHpTMIUJErbYFM6KY0EU2D042bjjKxKf6a60CqIUpY2w9yLLPX/9N83x5TK6o8sq1jarBYC04BtXO7SJA9aK0s7MucFlwLkkiHnAQBGMJXH9/6vOjufmS+uY7aOQi22MlDr5iSDvNSVr/zMpYSqwtH+2EPYFwBQv7QUAFDZw6VhOeehX/o6a41wL3tkH5d7/N73XZqQ5UtMKrVzueCAMegGl7sU4ssu7408MM24T/FpRUrpzJRrRalbxps6ZzFNh0+npQP/zOpMYOrBydWsW8a6No0JO9anljIpAA8g6/60IAVgDpTGlalOevE6zTbVitJcKZ22Utrua+oorVKYQim854cAfoIPPvgAPXp0lE40Q8d6/ASyxreSopTYUpgrIlftKNGsTTWkawbpD3ubFGRN1a70qVu5nZMaMVjOVHJh9rtFbXwBSyrScJNGaJ6eX2njfC7nrE5vm84MwM9YDjf7mHFm7AtOFnbG0wCAIaZ/9j3sMQDAtUwfGjMZqwLbAhe+6cqX+rvcfdMpW3d4ZQFef5j5d5/hDnXXi8igTF8Lgzq/MHWUKVxuYz5T3g026cvVza1M5VQyxJX7m+vIPN/M8hD1m8krPK7MldOpayUHZsd8PyudkWSqUNpZYrCRhYV66d9GqxbGyqaWVq+pYWUnZAM+BDChE/S4Eib/2wo8VyHfq7aqYmn6QGkYvQ+2ui4fHaYltucrzmAqp+5MN9Vq7SSv2Ys2opm2+HyT/eQq2Ws+xw+43+bnC7OwyZ+YjGobDnOZVS7udhkAoIRt19PkF/vBfi7NWeVD6BTIytgkk2fuwR9U358f4tLp3YITfZ03fs2cnnzH7pc4Z9e6R6/sQmUs1T1XsZxgbibxmBqk3x1sUkYu1NPRXlqfO5V6V0TZaa/igXJTScouP8oUobBpJWU/ZHxoO4rPzKq0SYZop6Op98LYU/bB6qeeQ/IeS+SoWFOGztoH9ZpkPEwP9l8AV6+QHnesw+chC0YtlKbY6rXsh/TPxs1BKk/cz9K+c5hCuZ6lTZOmd5TevR3sB9CLMY1P18n+7W78c6t8LPvSx1j3Ix+Uk5HctMmQLmep7jXhR/vsopxbvODC07xEb50Beatv/9etB3503b0AAAc99rCvs/EY11aLH2FKw/14wGY67cvyXZbTqI+jTaps+W7Zsj2yQzlZHwFkKVJt6lfaySK2uR+d2vGUYk2lVrfnC2FqauReFwDag9TfHpHnyfOLMUgWlR7SNp5ST44Ntgsh9hwWK67DQCE9fhTAXFMzHMOasdIK+WqlYtQzK52i9b1qxzD9p9Vn2UnGViNpZ+fac8gsczbb9Zbg1gAwiuW6LGd21O9AZovMWKsfx+1l3KZZWmtGlk/700+cfPx109EAgNH7uPaszFSsy1DBuB3G3799r0vd/CP8DgCwNtt7xl0mtjmK7z+OcrZLdgjnsZRrkUm3mSEl3pOClMX9B2V1GthXRbz4Dtw/rz6rM7DUlT7NrfxpIZ+pFNE2m9xhQZ3YuDfEOea3fK5iPqXrtHIiPbsjOPY1U0fPpPOVcrsj3eksPT4PGHBVVrFOMVEwR3WsSX18h9pYcq/tmO2yKYOB3HeW8NyLXJixUt64R/bAxib6zeuNNfZAfqee5VCWs8zpPjvsU7k77HXucG03YdO7cp5mKzOZU3H6NQCAyhvRJaiw8a3GrpxeKVrLTMnKdGpMr+GyzVisaZlDWN7Kd+9lFLpZaaulm9zO0VXJC9uqN1N1WzfUwLFof8bgMuONsfTTMhqlkWOPBNsXmN9XIg7rPzpK8W5REmwrlrY2Q3GC7GIsVXCIo1iGc9CdqMfgxGdOW4QzpHofoz/dqcet4VyFtWFqu9iMawj1YaFE8nyOEmNXWmTzdO3QdgCZzaFM9aJMNZuR5p0cz13EbU2Hma7d4GY3X7t2sRPGJX9xE+zPG1e3ItHWqqDirOz3IxPLAAANnEj+ycu0L/XmhOORiwb9sJU4bhlL/Z2h+R8rt0o9ThnUONOKvE8JH465zjCVrkccto4Cd9lQK/fhteU3TIt7mdRc8S75dfKg+Vwrm6H/2L2D/auLztTjjsmP8nUzpofSUcUmUoAw/TiQdX6p2SfmRcmOdM763JuQg96s02TjbPV9aB+PMb+D+Uk/bra+gbbzj+4ZN97fyXq/td7xNR7hGGmjDZxjuzYLszsdF2zoynU4/r5lXPY+j8KNk6c/yck6dZeda17CUsOnmYwLR2Xz2n4u6rRq/qC97DUkq9MsXVCcG5u3eRsdI5wfVRn6WSBfTmL3UB3GB5rbBIBmxelhPBuLgQXNIxtdPYWx900aL+ucTcx5eo8wrrTXDL/B6n06c44rnCNeWcg3agCl57HPLh2rZymfaec+wncNrw/k6XMU4fdu3mukiQf9lID8cWnkeQh9v27IfHe3xe5ay59x7/qnvZ0+rY1PfJ19Kp4AAFReik6FWm7Qxmbn3q545K4yAMDYezlwsFM6s1k+wVIi1tPU8UMsxTg/NAcZM3vfVu+KMaZ/Zsomy49KXrfN6uA9luOCugb6RrRQ8+KSjdh4KowV7ZyrnkfPLJ9udS4cH1pdLw+OxRDen+/a6+CsiuK+Yvq4tkp0ni+eCmA9ZD5W9lJzxVav1Vea+9dcurWl0pPQHlhZkI+WXn/oin7mnf24SfZFfr5QTB6bQw/i6xLTv95M6xuHzrPjKWPfgax5Bpt957ribyNc/+w2xF2nckWmWVYRFRe7clilM0bbIftflXsv/pH7odeax7YrNt/d2updeX6pK68yMjqebTRV+9SG9eYJZBxo8wbwnDpbRzIQfmMJtw38dyF7nXCe5bbIiYrLJR+SF3sv2QzF9lbXr0MuNEiK/z8VHza4ZwyaR6sy+2TDxsD909FenaDHfwYw7zPPjyP8ThzGKDF81hw8kM0HAH6u2uuTbIDtA8bQvdhmzS+YY5rHkC+IPWPwHP5bSXW2b1SZK3/uih1HPAkAeHZGNh/XPNa9W1ORu14swloZyEruwv+RemaXof5YPWOHQ+/i+/U0J05luYzlNI137RPJJms+mXdrf8DUkZyqDTVG/p6pIxmWXuscy1Cv8+nj+pe7ssH6Nz/RyHLHYD+QPy7dzPwOY/nwejHo/Ng4IDg/x/6H/z+itrRxotpIuin/Zt/5h3CdtOMK63FCQldjypQpuKXyMMy5pGvv0+0I4JXXXseWW27ZtTf6H8LnRsq+xx57YOHC3Mjy6KOPxrbbbotzzz0XW265Jfr27YvHH3/c/4P48uXL8be//Q3XXHNNh9ddd911se6663Z4PCEh4X8fSY8TEr74SHqckPDFRtLhhIQvPpIeJyR88ZH0OCHhi4+kxwkJX3wkPU5I+GIj6XBCwhcfSY8TEr74SHqckPDFxHe+8x3079+/QxLfhISELwY+t38QLykpwfbbb5+zb/3118fGG2/s959++um48sorsfXWW2PrrbfGlVdeifXWWw+HHXZY7JKfgZdQmM1BrFVV2a6x5a6coVU0i4IyBq2utquF1MxcKdZYym2z0rGB9x3Ne+7K/Q+aywwNbmVID/3CQjGUXMbyI1NHi6XIRrT4dPeMc87LmLI3GOjYWB7mcuuKf/Of8TfNLtNO1pRxJLfROqlC/AaFoLVP9Sxt777AFaRDdncr6a7uf4k/ds3abIBHXPue8z23OnKrfV/ydT7EegCA6Z+6VZXLq7nqqae5iVjSyMi+bP1X3Y+zDYP4RMqAVm2L1cIS74lU7BiuLL+FjKMXmTpaRXwyV1RfJnkpzarcrR9c+iui3WbLdsZVYW2ikjIr4KaRHWoCV4dO1kIMu7pNrI/stealkTpama7VZHrWQmZDq+9C5rCQHndV0Wyex66a1eo4rb7lCs5xhjlMfdUUrnRfx/wW84eYECjdTRHmhppgO2fVXj1/cMViqalXz3qnc/sGbtebOgMo2zJZuld/wxquRZD/ZinWv6HmOlyM/zqVv5GKfN5SQ4PC7AOdxRwuXGhY0mrJOPb1pY6l7aIe7sEuN8px1E4uoFxeSx0Vu9KfzUWPYCnXIUb/BabOoyyrWM5nacVWbKh17Puvc3uyte08dkg1t9W/ZsWvbGpv6lqTZZnlSu7BZIpZKLmzDCnqRLuCFcDCarNRlnusQwYzIFvJ2hFzMJCt9tbSe7tQS88TsiZIj6yurC7EKiGKA0uvpX6QPdHKX8uyIRYUtat8rmVXEgUCfe1ow6o3q4w/pOsnsLSrkgNmhu9RBqZF2BfEVrIV73WVyQohO9ud9xTrp+33oyn3Yg5vCh4LwAcbOMFd/mQ3ANnK7CtmXObrVJNJVFL2HlYPecS/QEbcR1MsJvP1rBXh63vm8IvIHJ4lAQFOov86gHLVRnmdZJnixXrAvjiAPmqabV+9Zb0rphrd8ExW8pValR9jPJEMVrO0LEnSl7Lce33VVGmUkaFs1sZY0iQ70ruY5ZWehcx9djU8dXMg7UwOwQOfbQBXi9cVyibSWdC7SxFirIPyozY+6IjR1xrsUpZatS72LcsyIP1nu6jfPzFVfIYU2oWj6Wcn2YwjZa6QP28JHT3g31Gx41CWc6uzKvPKcm6FbTNm0FOPc+/8y386W9yZVjWE4vNvcsJVzGhWlBYfwrYLST9tNhLFIvuzlGm2KtKqtmJfzrQZLKjbx/Liipdj7Ffy85MlG9YeWNkx98qJvyTvlCExxOdkfpC86BnVUta2l7EMM9JY2Qx9uLatPIv5L2YPOmJCNGxe/torkgVkZfFMsK33lw8uNLKTDzZjWa+TdBK9GW803WHqKC4JmcwsO5l+M96ZG7PXZPmYGGRusLIwOzxPsYyVKXk51h0dYWB6kCWHhZ+ebFIlMivYm7907KFLH3oOAHBY8XJfZXUZWkJ4LahiWZ4d2+xJx77YfzcXRP/2hZPcAUt2M4F+VOOikyM3kR6eJX0y8dMz6vPnc8sGexP2s0yfRHqeibFqFWuqoWP9HGZ6E6w/1JhWeqQ+tLlPFCfoOjbeV8wQsLPm6PEpkX1ALtOPrn1bsB1j4t8ocq3VQJ1lhemAweqOWPuGjMP2XMVEin9CNncg0/8w04e9jvRNbfhspI5+8x5LzCGN49Rns2gTS0wGixZltaCcznor99EBYLLzg5NH/RgA8JOdHU34eR8a4okuJgm5dXL2+4RyVzZ/x+nj9iYNyYsvftv9UBarniztvJNc04V8yZc4HvmGpRmXjkoBS12xq6kyRb6F5SjOX02LMFwtU2yk/THmPMV/Lishio299ayN9Sw7Yg0HMr2xczAhW1QMIWN4S7Df/lacEbMZvG8x5bYtpleD4ef2OgWx9vhhcEzPYeYTWsM5BtlCaycDn92b/Zw3LwZkfWgZ0MIMP+yLFmt79KzKusRrdzfXaZXd43M0S0kNpacYupvqXbl5qbvMIz71ItZbz7X7YNkjjp+/Zeasp2cExZ2LN7Of3zuvGgAw/mpO4GpuymbAE5uwyP3CBA4AfGzpbZZiRsNK7H0L5bc2cqG8rJBkRx5smL+8Cads387rHWf7UjZD/tDG9NJJyVckvvUyqZl9RUKRsayH5nO/ho6xqszhHcyMSDbblwL/vXoVr90RIhkgve1TRk75UDuv0RFjsJ2nVxspe6a9R+iPC7G80i5o3mmwifUWShjDPpyPfFD32+RzrHC/lfOIGxzobPJyn94HWMyxdfePXAy7IjkMVhXvfeDKl8c5R3jSvzMW9Cu+yjHjQdwhYk77aU/JTH2Ts59nm5huDvtKc3/Sh+ZScyG2VX/epKGe++28cCEWX/kxyZmdwyT8fEaYJSbma+QrOZ7f2DKIB1VP4XVvesvslFxIBjT+Ne1yUyiLatgIQ/Ug3qPG+uUYOzqQxbCdST3fEXO4sWG9+Y7+G4AdE8ueqg9lJ+2c921BHbWPjVfC+ERtsCKs4RE99DaQMdtcM/cxmH2+UO8hm2Pin9H072LeHjDCH1ou/7e9G/y10L6M8pWR/w1tNSGNGKTPWwPMQer6bKYUG3mYYxCf++TorI70WV24hOWttn1pFwfw3evsS8hX1rNkey6wTxl+Y5HxsBaOvrpYmXpkBa1N1j0sTTqQO54Krafsd8wPyB7EZipC+RpR4Jhg5Y06PZhzL/oWlpOxmn657RGz3Vlj43nI/f8P+UPJv20zPlN/Pr9njrXfnmQPpJsaa8UyeyzNrZuTbUnf4sLMHJF5096M0eSf7axxEeVO8yx7mdOnao5D8hZjmg9YZmt1f5N1meZ0HieFd9vBXecME65cvxqf+e0I0lv5Q12xN1wqviuvzFINlF3q5KR6imxwvSvaLPM2r3pVNbdNu04NdaCUZWw+gnNadSELO8z3JerBwFNyHgeAnx9EA5/Dx+s2bZ/uZU8Ecu1/yAoey/im/i6k62yX4lJXFkqMGZ1zDjMCsF2GmY+VPoPRTHTe/3/MQeH/44oh+E6cl2WrEFbE/tjv8MG3+bwxmEFzFX9YJuZwPlzxgZXJ4Lv/UJbzjSwpnOaU+98/2Q0AcN3YLMPzmXW/AgD8Mv/JVgnyYoN3ct+mP8Ha/tihj03Lfa79rL1TG+ujsr7tWZlWfb5juxz0eqbOtNw6vWjvms13hxKOoWUGvIxa6xNA/5sXnb/VPimQHZOGmVjfLnAsJmeKh9X3hb7D6HzanpZCsi1/bf6XyPtznSe5s++8CCsSU5eWlqJv376fWS8hoVPxuf038/+/+J9u0nPOOQetra048cQT0dzcjBEjRuCxxx5DSUn4kTAhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhYXXwu9/97vN+hISEhE7A/9Q/iFdXV+dsFxUV4ZJLLsEll1zyuTxPQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQhehCDAJC7ruHl8yFLW3t7d/drUvLpYuXYoNN9wQwHnITU2i9CtMMVTCtBQtVVmVonJX+hZiKql+JvV3o1LzKL0fUzTkpDsP0z8yJ88Akxq3Tmkk9D/7TBPzW1PnmNbcYzbX3WimG1rAbWVDspkeyliexpSxg5nK4xJTR+cxy9P+Z94HAJg241BfpZ3ZKH7LzFZKfHGGad5VSTWkBCljJpmdbJb7ztzfPbJJazwZEwAADzFF43ufuhRVi1807VLvim67ujRPy99iOhebclhZM5S2dyTy6yiNr7pbKX9t+6q+0pf0Qz5Kc5/LZ1uzdZXmrBdLn4rGpplRihO+ay+TfrT5Ov4oZ6nUt7EUvUofpAdqMXWY5syn+zyDpU11opRa4fUsjuJ1h+CDDz5Ajx49InUKI9PjBqCIutZu06hIn5WyRdL0W1NHKVVsymQgN9Wo3kPPqOvZtTRhPialxom9u2BTmZexrA7qmPRMSo23FcslLG3yhPrg2FCWJoMflBlSqX3Yhc/vvJ2vMuxu2rVbXFH5DFYLSkR4jsl8LLs0n7bzQlwOAKhemqX3az2GAj9VD8bSOv5XWV4dlA1GNwYz/dVCpn2TbWxCPk5mqXSI88yxGqXpVIrFapY29RHv1ZsyGU3TrHQ9t0WOKVWX0tBF9GgUU53OvpU7JMexVICCfM39Zp9SES5mKd9iU5gF6avy8F8AV3eCHp8H4Kvc2xKpGWYJCVNuAVlSK6X3Uypx2z/SX/kEq7tqaxnuyHMozeD23J4Tq3oPS/VZpL+LlL5Y12Xp01cB3l4rvFDmSpMBExNdsfFQZ4NvXOs0AMD+H2Wp1h/8yqc5T7O6kCU1UQ82pQj9aCMnk7No09543qRh7M22foW2s14PaC60gGWj2lCyWJbVGU2LMotpHU/gE91aZS70BnJxmPnNdK4Tzsy958J7TJ2wtYJUcbF9A9inddeZOmHqMW1bmVR62cF6EORDaRODNLo5KdpDubMph3VfGzNYrLoeZzr8Szhrr3soPpWvtLpmU2LbukCmm2qP94MSyN6RfdC/1JUN9pqyvbqX7mFTqUm+dD31i0lDl/c+alcrY5Tzfge7cih325hRfvQHLG/IDn1a5kabLRu6dHw9pix3bzABnY4LNnTlsiWuXTZ61sWDm4/IZP6tN0vdj7nsOzWlDXskprJHC1g2Zyl2N/iPs+nLzuvtdtxk/Q9xLNvsDqVptSnRK4LKYZ8CKGZa1jalHVR6QJt+WulXQ/nvg3zIf+gFbSpZpeYNY+EYwvXWVv4L6TrhfUSYPtrCynZn+eL7kCvbYbrDWGrFFYHeWekUTfpd9aFep0UyZLyMwuFb5cNlN236XcmwUmNrjHNGVmUQ2+bf3PYxmrULgY6PNek6ZzAOPPZAV/6R+83Yr9/LdQCA7fAyAGDmkd93B0x3Vy5Ap6KCmdSfrHbvvltFNr57qHJPAMBJDOrX4xjwtQOHZBdQOHgH23Wg8VG11MkxbCMN+erNA7TKZuqgdMTKuAYgkqlqV3Q3Kevz/JhwgPmt+IY64tXAxNvDeWye7qVKVeY6+7KUvFlZUrzGdhhGuZ0fi+kFxQQPZLv6M85okNzqXh1FZJ2lx78G8F1zJIzlmX40lhLc2x7ZwivNwTCelT0wKa6lS92pv4XS9/q0uxqHZ7ErRvPYLPkEq6PPIwdjvoU8zJS9l5+nbBcZ2d7VFZs8+SYA4DCOo66fdn5W5xNXVP4AXYLB5veBp3HfDX/Pq/fizt92P4ZyRzgEBLJ3Hsd31jyWmTrEXPWH2kVtZ3zvGLb9TLbZFWyzC227K584/eLPeM7Npkqz5OuU4BzrO6ajY4Tpq3mP4abKvFC+wnMAb9O7l7tyhVJKx66zougsPX4X8bkCjgkGcgK2lvoz0Nj02lhMBeQITC/6tuaO6gKZXVMsYuMmpVGmA9LcVvHBWRWZ9+mK/zTHZlI5F/Gal3P7wlj/UE6lv5rzm5DFiUPvcoH23TgCAPD1pa8DAK7YMHK5ToJGl1v/Idv3h/HuGas5dn0Zbo6t+sffyyrdIftK26lwck5WBX7+m/1yNPtuko1vw5TQ6l876SYZ5vjKz5vWZ1VGlrpyLp+rhM/VsjSr49PaSzdMbATJkO4VmwdeGZ1S7K24+wJzTD4plE3r82R7wng9FkuoFyX/h7NcCqB/J+jxB8jabkUQa6cwrhVOMb8Vh0nOjD/NOz92vY7uYcdiYQwemR/xMUTgI3LG/pJP2iyGC9u//A9fY+G/+TwMmyp3R6fjFA7VNuJnrcrJrqwwGeJv260cAHDCD6iQUzW4N/JfSfm4hNs+frJzS5SrYdSt+ezfEjPv2kJb3p/tohA2Zz451C07LtO4SXbgymAbiNt5IHfeiGMcvVeF7m8jlnAMG5sf0bNtFDlG+DhQeqyXtnGCxtTSCWtXOvrmJB+zDMCOqznH9QHctyB9v5EeSFeMLHRnW/s4w4xB/XlqO73Pt/LrDGO7zK935ajSrMqLLJs7in+AzDaojp7xKVNH8bDm3qpZmnGZf0ddW/1j5YjPfzSvN8mMLc53z7HWae4D66e3rw8AmHJxZos3xTsAgFlF+bHvqkDfoOv5/XmICaPePc4FBPdSHy9a6gKP1iN6ZZVk3hRrDmX5urmJvnPLvL1rjrWqjTQ3Jd2w8ZN0VbZTcmxio2Laijb1oYygMVB5kL02fVBEWfDfSmM6o/NCG28hX1nom1N4PTsZujL9y3cdXgZ8shSYv2EnfW/6CjJfJ6gdCsUmsn0fm32a2+vouwGQP/7eKFJHbR2OWwvFT9q2jlGDPel4jTkme6D+KGNp9VjvqGtTzs4242ZeequnXwIA/An7AQCmFlnl6BzIe5x5livnT8z9bgwAMzair5I+foPlTGMbvS2VTtj+D+YPBlDn6iojdaQbah8bf90UHFO/GJ33cXWhMajautDYOIR0zV439u1K6EiPY9+nQlgfsyKxvGK999C5342/UqCmfIuNgdVG1Sz/FtQFMn1WP9v/cRGkI+sEdS2C//GK2ksv3SxN3/mYSPorGbL6LJlUXM3YcZiZB1CYwemjTZ52c11XIZvj+tEM92xVe7vtSIS2UvD/v/WQK98et7E/dgimAADmvMyx2kXmxGlsxwP4XtP0rlbeqoO7sA9KjI5pzFpE+WrXnGyZuY7mHIM5izarPzYeBrKWseOhcNytZ7Z6oVhAMVZMpnRMdmlapM7qYgW+PfmxI2WqhLKUY6+Oh4vNt/5MPZ47dy5uvPFGzJ07F+++6wKkvn37YuTIkTjttNMwcuTIDs9NSFgZTJkyBbdcdhjmXNO19+l2IPDKq69jyy237Nob/Q/hf4pBPCEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISHh88EDDzyAQw45BHvuuSfOPPNM9O3bF+3t7Vi0aBEee+wx7Lbbbrjvvvtw0EEHfd6PmpCQUABfon8Q3xWA/c9/reziqqAWrQbbPKvS3sFqv2V2JVHIKMeVhS2xVYhagcoV8jkrFbUSSaum+Dy9LQ0Ql2b5Vd6GwWkWVyuNCpgaF5jfIpk+xa0O2uBqR6m77PLeWR0yZO965uMAgJ3xNADgybHZysvdLnSrgY8V+y7ZiSt/gdWC1htWHp3tq7jRlWWYBQDYdvkr/tjwbs8BAA4jW8Oja+0FAJhTn88gvtW+bpVrzcGkJc4I0YFRLLWISot3zzZ19uLy2aO5gk2sxjNMH46jXGiRK1e/ekYmAOjNlZqeqbjKFY37ZnW0r5myUFLuSstu7xlkuDqs2RzyMhQyOdkVZPqtVesx9gateJNsxthQtBpS7CvhSnXAsautAqV8FLcD7TJbli3n3mCf2Bcti4NYPbTKT6tG7UrFcEW4GG0sy7jOH5xbdeCB2W8tqm5Xu9rVplzZOIjM0DVa1WgYgur4bGWUN6n1AnMZqW0dlXYJbZchIufCzYy0wCUEQNPO2erO5iPcxdf+sXvWCprJyn9hleD5J8/K9n1ENqcl6AkAeOJ9J1PLq8wqROmbCIHElmHME253xVbfcqvYX5/HZeMbmz5URoCBtI9imbXiP54luwCPsrQrW8ewP2+STHNldvfSrI7YQprEdGTZR6XTYpOIMYkHbB9+RathufeLhyWDIRuvheRfJ21sjunZ5LMk65bp1K76BlaOOWJlYNlvtHrdMjSEDFmCZeaRvmmlvOxUbAV8bPXuP4PtcOUwgAbev4G2XWbN+vfePNZEhoZKrmq+2rI98926UyaXcf+x5VkdT/5Afe5OfbYmud4Vi+c4H9dyqmvH6nUzmvHDj30CAHATiaVWhQvPYoxE+x2zk7p584iTAADfXtc5tH7fqvNVGu9nGgSynnsbNMPYuZHs56vpP5ZwvzXDyn7wjJjDxeYTezPJVUReJ1+Xu93vzOx3I4915z7pdZHpQx8PUk581hfbQbz/cF5nnu5pZTJkeFB8aPxJcakr2+THvpb7XDnQO1uO95B9uCOWsNXBO3BsDqGNkD2JsCNFId3kMw5ifFsTi4/p+xvETGjjYyFkQLYsT6rCthJj92RrH3gvn1WItlQZhYAsE4DCmhliYzExyUVchd+Ttx6TBWnX9DgdAHDeUzcAAJ7nc1QYEagstOB/JXDHB64sgvMtB41wNvSPjx2eVRKDIZ/Vjwx3NRcSWYOaSvHylEy2lw0nM3RNdXAS4OMsMTAPYvvWWCYb9rm3qWI/NBlyPNuDYtcYM9rAYDtk7gKyAVHIqPuK+a2xRCHmcP9gwbb102G8bdm86Mc6Gm/mIJTtzsDryPW9gjrYspeErCcxxpaQ7aqepdHDNvaDZw6XDTM2Wmy5PqCtZlUjt94Py67JthqmrRqlolEf0s6cYZ7netkn2ixrPnuxfxTTK4w7IqvyCQeEH8FlBFDzVHYh2cD7YnQS+9pD2bE6pqoSQ9u8RTu4A2Z6IyPWZntYn3s+beDd3PaZGgwrmLJWeSZo6Zb1MTRog3njhezv/1qmOvmJ2mA7wvYvNyCWqFHGP88OWXsUW5ebC4QxQ4ypl+8zvxCTk/Q4wtK0RD8UpxTI5dKvAvh0KbDo6o7rrDD+FTyPxkSyhW+hQ8ifjWF8mmNSwzZSvGNtLB1Ga6Fok53n3SBlYoDpw1myB9RNQ+6XMR6zX2fKbltGNsaWxZSvNraBHdf92RVNi9zY6I4SJ8fDD8jSR43/0DmpQnnRVgcHmoQlxx1zAwDgaCrkWT+9JTsoG3NSvSsHlboyp3+ok9P5zofynctMlc3Yxn/hdivbyWY61DX7izm8I2Z/g8uCsTGAzG8UOr8Qq3C4jw82ryavZuHrUU59zKzYrCz/2sWUqbYV8cHeCK1A3VXBDQD24G/L5EynVCvnRNtaa2NgPVPog027KPNFc6Hnl66F83oWCgT5jDb8mR7Wl681fdjO3xcOCupalj/6knbKVKWT1w3Py2g7X1jk2uGXfVwf7ttDdvuJyDN3DvzXAzN9NQzz3T62Vc2JjDvs642lfZUbPUY2zNpSncD5mkka61jGrtCWqy8NC2k4h9LO2HxCaVZlssbibOcWsRvbDKjSLelPIb8oXbdzs5pLCplKbQws+dScmdjorRzRLvUrdWWjYuFIRgwfb+s5norUCecINL/dSXPVX8Nn0PKFY5QYM7QGhNIb+V77zpq3irHPhTYzHKMAHc8J2HuE7KdhxkMA7UEWuEHsrxr7DIzpNP+6wBW9fVZD4KSvug9Jt5xlJpA7GRuJIZhz3Bfz9rM2ypjtTniSzOH6VrSI/vUGc6EdQvZr6a6xt0XUeYbgmM9APScZE9vFx9nqE8tyqXusSFQimbA2PswyIPk3QjpYzOHS0RWZN4oJ+QpkmmqWXXulYLXPBvWliGNTP47uDD2+Cm6Oa6Ngv/rA2JXW8HO6nVOSH9Zkqhje7TcktrnPWMSB5uwViUmsvLFUTO/7O5ZFIYyb7PcC+uxizmO08V17G98ghvtJ9dxhmGg5bPj6la8BAHpevARAls0KAHb7t5MrTlFFZwlDDt9C6EGXN0TNbLqnb627y1lP35J7Uqnd4F3W4V3voA3sZxiD9Z1qho3NiO7UH6lqv3JXWlEU+ztjGVRID0zWJm+maW/FIj+7zFwojL2fD7ZhdCE2TxNCfj0WS4f6f4z5rZeVPVkReY1Bcspx87xKdN53YyFk/ldpvwWF9ujjyH7Z0jDbpR1/h+zOkiEryWEmy4H5dcaVuXI67zGa/TMr0s7KeNtgv0Py+YvHBpWNrvpxD+We2XAw0cw3jnd2YG88DAD4xi/dhNg3TPK0SvMJfHVwpublyW6sLPEznjU3eJClMmb5z0omBpYtPYPtYsOfm4JsPv7/cWz2Wcm0rJDGVZYdX31/VO62vvUBEXe4Y25dAF7/PIv0iujRjMg+yWAsC618dZhNLhbTyw5ITmKM5Pr/itj/hrwX2be6OAa534BDxFiNO2pHq4cad6gdwiy0QDamCL+/Wx8e3kuxvFUMtqNPtGv8abPmDCXM5SxtHBeM20fyfDsk1GOw6/fiPzg8iP19lWFj3Xh1BMcIq8ogXqH4WJ9T+P9bR4y729dZuJxtJLNZZq/A9pxGZz2BNnmymSQbxIvrc8zMale22jliXifvO4qJ3QbxxjX0ufo/i36mDxo7Yn+31/UPEtSx3zx1ndj/HtAfD+I3wpoV0fVYph7JonTUZGn1WJEPicFcQUtsnHgbVsQfX3TRRbj88stxzjnn5B077bTTcO211+Liiy9O/yCe0Hkowpfqv5nXFNb6vB8gISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhIeHzx7/+9S/st99+HR7ff//98frrr3d4PCEh4X8D6R/EExISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhKw1VZb4cEHH+zw+AMPPICBA8PsWQkJq4EiAGt38d+XEEXt7e3tn13ti4ulS5diww03BHAesrSdQH7KwVj6ho5SBNmUebsEdXQdk2qiF9NI+JQxSsti0qEMYLkTyynVrhxWltWZr9QqShVk057p2nrmelf8pTSr8n2W7VWufLTcleeZy3CXUoCUD3F5wrbDy75KLbYCANz+w9MBAA/8we2PJbIolNhKx4bonZnm722T7WlT7vvlRj8BACzHuv7YJOYyqXnYpfLccIxLO/rBI32zCyhjzHMs//yRK7+fXcdn4nmQ5bbBNpClB5zHfEqHMmVMqalzldL9MM1gdx4caur8m2Wt+lIyYNPdSIbKWeolxmRVBjG1iFKTnG1SpEx8Frmg/HU3qXFalTpHedyVStb2olLnKMW00uUca+ooRVJrsG2foQUuNcnV+OCDD9CjRywNUGHk6vFXCtRUmjK1Vak5dmVuVWyLjqH3iKRJUoq9ptAumJScxUFKq2HZIcxXajqW3ZlqO5a95RKWFWpfk9ZuFNPrNHFb3WJTDTG11a6/eRwAMOfh7wIAyvbO0k49vtTZk2Jm9KlkZs/vIYNNUrWiqHgm+/3QiD0BAEcud+mVPniGOmpM8tc+dinc3niM/aI0pD0jF1dGHC1EtCLRm+XXWU5kOqHbD87qnBRc+xqWl5vr1FW7cnCZKxey7Qcb+W1kSbOCFpsqKEwPe6ErbIaqMP31ASe4ctoLppKsp01lZa8LeEErotzlpVmyWCGrzFL2QXrQWXr8BHx+We/HViTJlU2/y5SieWm9jJ2UH4ymYw39e7gN5McFBdK7Duf5yjI7uSo7NrrclbNoFwdQgOtMHdmcA/hes7nbhip/ZkkVeWzvUQCAFtMuB1Y5P/RkuUtjN6uoUHrYz8Y567vyhf9k+0YwS+4z44YCAEZe59KVYX8TTl7kcp12v60ZANB6ei+3P8sODvyD5bdZzpDcG9lUumul9qxQg9j0XkzH6v3QInNMeqL0qWorm/dPqQNl92uCEsAY9svM64Lzd8/q+FSyQiRF7yC+T41igEKpggXpiM1XrnZYkZTDIVZdjzv2xfKDSt1oUhIWM91Y27XcYVP3CfLHK5JyOEzzZ6+pXFPrBPvNeUV8Hi+u1aaO2lGp4RTLW3vLdJKD6INr2BfFu2RV2njNQ8sAABvfnaWa22MtJ7tHowoA8LUiV9cmjFyBJM0d4gzTLT04tmijP+67gQsQFl++WVaJ7rj7IdTVnair/86qoIn9OortqrjDhNuYRb0rYru0mzY7lLI7JbTXNh295Ft9F6bwswjTQMb0kKlwRzHGmn2tqcPz8nymlS3pnfpus6AEsiCvUBLkIFFyLE1zXrpAm8I4FoGtqZjaIkw/HLOlIWSbbzP7vpZbpajclQXjFp1j07LqvsoprXZabOrw2t6vqy9M/N97a1dqaJ1lxwTaKfe9KZNlrtjgziZf5eD1XIz5MrYDAFzBWG/0yLm+TqWJh1cHavEz93LlXx5xQfQ+//eEr9P/m24Q/dbT9A0LXLHx8ZkNWjyeMjyNA+47t85ucpQG4doXjikBP1YcyIFHbTX3m9S6Ps2mUoHKD0ZGF92pE95cr2yq6pJguyWyn/G1j2tX1cpSD/rT5zWsalrtHwJYBmDHLtDjMGYI57x0fyA/NalJqd6L18lLeWx8Xd61T4nsD+zjYPb3QnNdxXotsn22PegLejO+/4S7S02VDYLHmK3B8HrZvpF8H453R243CwBwJO7yVY6fVuV+bOiKpfu48vrVzHheoUzDe2f73j3G3WR3PAkAeO2wIdnBKfX8oXhWfWljEerWH0tduYS7zzVVvKkK0+eadPTep8mGSn5s7k49j2Jp9e8Fpo7mWWIprgXdV+8RG6PomuG8jcWKxIyhz4pB417Nf8ViacXy8tP2I9dv0Xn++Bpkvm5jU4NtXXCMf4x5no4Qjkm0bd/ZjjOAXF1XDBXOI1hZUhvJ3yjGs/0kueK9NJ8128r2oNxbXc3S+OfNL3XPvTPbp56T6c9ea+LBOldU2hBkNVCxKX+UZ/seuMIFD5NxJADgwccOcQd+bk7sz1Jj+++ytM+lzMtTNT5U25s08MW0r22c2yrh3FaLsbGDGOfUhDG0jY00J1bIf+n+csz15lioU4pdbcp6pZqWTY90gvf9mkMtpKtEL56T45diczifdZ5ks7PnuD5AplPVkZodxR42XiljKftP3eh1ZlalWT/4Pr3M2KJZ9ll2X/bEyoDmtmQnNc9o51C+ixz0Y91Gu1PzIooZdZ3SrMoolrMpS6NpJ8yU3YwLRgMAdlyn2j0Vw9pKO7xbBdgRR/m+/HEaSzbLI98s83XGXuPiAlzBHS1sw14mTvZtr5G7bOph+Q8wiOd58/axOSgfVxEcs75PbyB9zJlIdkV/3qNBfTHO1JHPV0OGc1X2HpIJdYwd75p5neg5hWB9pgZbsnMxHyHIr9nvU2rrcP5L47sPARzSyXNcant1YsxOKSbZ1+y7NqgjXxm2pYXey8pJR21s/bP6Sv71XuRDuq6PRno+2z96N+lx6AeA7Pl1PaOkV2yec8cLLrgYADDNO3PgIbbRwJEuTl/dMXLFoa58YIorp7ff6o+diFsAAPfT5/3izIvcgevNBUazLGMpPz2z3lRinOK/wZrvfn7cQ1tRQn00n5407sh8lNrVjpW0T/3Bdi4xtt1/a5Ju6HyrPzpfsiAftwL+NSem53fv6FhS15ScaKwfm7srFNPH5ok6e45LuqlnlA20c5CRb76rhHDcoXu0mTqyAxJCPZ/pn+6cs2iVzQnH6va8iO0cT5mZqrGw3tnG+IrXgjHbaCNv27vioF86ez31oCMAADc9kFVZEanqCHb0UEozMr/aPeM99Ke/ePairJKmu/hZFdR9PG4u1KQYhrJ49OHZsUnSH/bTYOrui+b89rDNqWu9jW1rYgzu217xbmjzgSwuiNlkoZBv6Ci+tf/LIPmKjWFDOeG7F5v5nraVmcsK4/3YHPxGcD7j3E7S49PNEdmK8FuAjb/U1oxTCs41B/P0sRjL96/63frkMDZTaeyLZMfP+9vIVNeiHhbzO3FOn8h/al6FetzPxHoKWeRr6Ff7XVDnq7xz1ZbuxwfcMdkVle9kl5FFV9SlVrXW/3DOka2j7n7UFWefc5mvs5D/T/DYTxkTfYIM10t2dLeP/VkZ9FvxqJ7AxCIDqRu1oc7a/5uQTVbsyP7qbuKn1lAuJBNGFgbyOWpDHbfyX+i/ZkJ5DeUOyN5VfjQyJ9R9XAfPHHsmdZDmfO33Jd1fc/cx2XwPzh9XFNTjP/3pT/jhD3+IPfbYA3vuuSc22WQTFBUVYdGiRXj00UfxxBNP4Pe//z3233//As+ckLBimDJlCm654jDMue6z664Ouu0DvPLq69hyyy279kb/Qyj+7CoJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCf+/Y7/99sNTTz2F66+/HjfeeCMWLVqE9vZ29O3bFzvvvDOeeuopfPvb3/7sCyUkrCiKkP6buQvwJWrS7sil1hW0SkerjOxyYq2i0SpcrRS2q2pCVletqjEsQGKqGMMVTjOreMCsPKvjqp46ruoZXubKl+y1tSJQ72FYIE7htcXoUF3qyn3M6vMirg46pdyVp7ui+zOeBgGt3ydzIBmHqm5yq3p//ZsjfZ0+WmErchc+xkKzsEnr0u9Ax9iazKR3cHXbsWRz+OSGbLXdVFIFH0A675Nxsz/23qesN9TR936wE6kMbzA3ETM72U933dSxNM2Zaigr7nZMp76b9R5bmeuICEfM4WKSWmbqjCcjwlS2eStZJeYaNnkxK2qVf68yV37PrP6bwnW4npyPq8qKTJ0aLZfhquuJZgWZGIbEzD6XK+pa7cpjrRRWO2iFnl0bGLJDadW31RFhRZgE1wD6c7V1Q4yBQ9AKXa13tmw30metNIysJvcrP2U+ZRfMaus26SiZnPYwx5QJ4Gg+6yStRLUrunn/y7RSWdcz7CWz1T9cJX1WmStPMZkFerpizo/JAONI99EdH/oqV/RwVGMVzzga7Ypyt396FfJQQXZxrd6uXBCpI7n7RbZv3x8+BgC4evz5AIBf7nYqAKDmuYxa/Y1vcXWz2PolSvubiw91xSZnvgkAeK9oCV/C2FuZSU/EQ4U+zrBy92Z9mdBjqvmjzNyM7esXspp7CE1iP1maf8yvhNXqbMpNDnmuVndyBes00dVYlgHq6CDWqTFL9kO0XxHssMwvMmLrBHUse4JkKmQXLw7K1cXjyDr2/aAEss5X21UF+4GOWaIMc0Ue279lSLF8vcherW1Hs5MrjT2zofZXmTrlrpjHjl2Hq4MHlmdVqvWDwrkxV4Y3mDo/YKnV30283tVm5bLYt3mZyXs7v/zwpxklYWO5e9aTTne2ZxZWDfI2T9F3Wim5bZx77gr1wSWu2Pj0bPm5GEpbj2FMMZUHDkUGMUrVawdt14B85gpUPJBbx6+Ethdgu95Zmh06Sj431BubgUWRijp4XH6dmdX8IRYKsRdkrKz5UN9lrDk+60dBhP5UumH9c4SdfI1iOBwzp5igCrxXQVYK+Vy+o3T2q6aKb7MVYUgMWC2KrV+mTrWHjF8xFmvJDW3GcBN/zSOjbo36fpf8xzqKtrenKxY/aGwxw8jl6Obu+DDvbEgTKi0D6Eqix0nZ7/kT3fss4vt0w3J3wLKt3ueK1tt65TyzjyEBYG36jSput7F9a2zbUV7bIyyBU8QQJJ9X5ooBpo7CHTE3eXttr6eYleOw0TxplmWelExxjDVbHWOZVmgr2uuDB7UZchjbeftfxf1W5xTfF2KH0Xswlm+yzBMhe0SMIYiy49maV5WxuCNYprnpwTHrM0NWmjKWlmlFz69xcoy2k/3imSNDdm8gYz2kDe5d7somm11FCqM4P8ZmVx/cm+3c37yzwq0HWcbYZZo4Zlrg5GbZfb39oalHONrPM7rdAADYhOOGf8zd3tcpLnox51YrAyu1Bx+Ye0zM4e39s33rKqWNmFbZlItPMv5spH5wTHGU7feQDV/+y7arZFEBLRlKBhp7W8v+PIXy4cnWIuwqrfLPesGY3GncKjYUyzslm65njDGzBYwvReZZfZ+HLEuWnS9gDlwh5nAxDt1q9lm//h90DnaF6VRkja3313uZMaTXVbU1fV+JkZPm6g7uZ9s1ZHHUvTeK1OG+hZG2k09q0RyDjcV57aaArbzZ9KGPkxRH0jfUmSqKrymCc991tIEt38kc4vFbVLkfZFdauJrM4R7HsTRsJ43HODri1+7i+LLM1J9T6spylpfJJtqxEt/1IGUk4xzkN0wVn6FHfa8shnYwqmvKLqoPrfwLTwV1zTyLz55WFZxj9VnzpEoFZux+d8ZdrZoXkb+3Nimcdw0ZASPwPvx+s1M6rvFuJPWt7JnmCjzzsL3X9+D0+GqsPr4BYB5//zD/cMEsG8F8lcZRdfadFbsUYluWrZB/NXZT7VHP7Ta1nWU6JfvdGax7vWTJxopiJeYcylsa6/cxdegTptEniAl/dhYDvHOSm6idypRz9/XhAPNoc5mz0CmoCEPYh7NjmheftbwMANBtuNPH5TPNPMPVpBKV2IntcIesCqayP/7Itjso0j8aT/XTvD/b8GrDkHi+fqjNpd+2fXVtzfFKr8tMHT2/YqtCmXLE2BhhHy3mu2+tDFrGhnldDzgoxxvbPjXIHNb8T+SjI90wctccZq+SzsjOdZY/vhkoYju0a+xnY2HZGt1X8Y+d4+ogFs9hTZftLIkcQ+4xP1aPZfPRfWnXjjVtf0dwTc8cbn0vZa835ctnVTT9NJu2ZwzrLuH+sqxKNTf2WlTtdtAHW05IRXixnCgh/Hy0dWMSB449axknlNi2/z+WPmCnbDZbGZXNow8+ge3xB1OlifX98FRtaVg7/Twt56GGMbaeb8dDegFl8zGxVYnmE3Vt9YsdEwvyuTFfqfhALax7bRapK6wIc7hgx48hC7d8XYxBXON3G+/Lj4VjUjnqWJa61YUkrhALu55/rNmnOFbfCWqD/UAW51wZ1InEJB46FtOEQpT7anPq5kjKy1wbJ0g+ZZc0R2piDJ/N5B7k4UL6gt86e/A0dgYA1DybffNpG+Fyt9851/V9xbc5HjFTMJXHY8XBOfwDyWI62xsYYF3Oe930vvv25NPGZ8N4YFa1KxeUuVK2dLCxcwulz5rzsPYgYCVuoT7lTFeqDvunN++VM65R3y3Kvf9C+51J/SP/HONvpgz5mDzmZ2UMpft6DvP13rNY63w7RyZ5VawoubcM4tsGdQU7PgznicQ83BnoBTdHJd0sYyn9XZVZGSCzR/LTsQyfegS2YbNhnC/hOKhF7cDns98/6sIsvrGMSLLpej+jNJ45PLSX4RgKQD9ep5E+fJb5n5mbnY9czO+p//ijm9s61Myv3VJk/yFixaCZpdKTzU76/PM4nvo5fgoA+MUdhkHciyfvX1zqyqbsebK24vtMMllRxrKNZ9DHiTk8Z3xl5RPAQM4n1JoY+FjGtT5G0v1jGdbuDY4ZGfHjU11H80bV5jpBHJY3fxqD7WfpaDDHZb/PeCbm8JqxLGGU+7xntzgWzu+txgcNj6HItRPSP/WT5o3sGCeYE/b9G2MZD8c2Mftzf2SfoP4Mv98ZfW4K28jGeHpuXqdNMZLNKqTxtnScz5yTzYf32Et2vx4AsPy8br7GH853czc/ODp3jGEjvQMnuXIhx9Jb83+03r4xq/MedXUzlpXnuH5+zadwBxqUOkv/E9IeySyo+Xgfw5pvCufzPa7SPIR0w3zT9WFgOAY1/+8gVWgrc6WatzX2/xvheNfEarWafwi/+VibLB8eZiQG8uUqNqYOM3CE/6sFo/clQR37/xvycYUyG0gGNZ7RvN4LkbqfjeHDh+OeeyIxYUJCwhcGX6J/EE9ISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEj4n0FiEO8SfImatBW5q8qCFfJFXNHXbpil/aqakDncrhLiylO/gk7LGu0qse45RRxcZTSKK3e0cLO1KqviVxFzVc9gwwQlYu2JLMW+uL5ZPfVjlvuwJGNp61u9sjp8/YMudqt//niNY3p43dBp74Dn3A+SupAYDeesn12muyNFQsWl3MEV3e/fndW5lkQdFWJb+JcrtngyW6G+RX+3uu26AScCAF7Gdv7Y4pu51k0Lqi5hacjJdr3SUbTM+Zd7sTmXOtaarS7OqNlfr+jnfvxMrM06UoCV+zyWduVZP64GPoNtfj1XUmcL5oH5Vaxb7spGdvSDmyMPLVwJdyjvPcXKlFaAcjXlWLNCUSthRS4wVyxh52R1tHRuEFmroqymWpUWsrXZ1X9aHReulOxshkNhHIAG/o4wTTSEq60jbMDS32Lqd5tdQSlmKy0t1Or6CJN4HhO5he5FhZpYbY6VueJBbvbiCuRmy/7M1eZtIWOYrUPb8wu2eYxsc1eWsj1c4F29dLSv0qeHe7fHf+8qfx2vAQDGbZG98zgSA1/LFaCyjBWbmnvtiRy8MGkb/3tIo7vmElKT1jxEpdjfnHAIS7EKazH+Vfnv896QLdyPMSxvNnWGs5xU78ph7IMlpo5flS8mBMm0XTF+IUvKclGZK80CTu9TSsiIY1dQF7FfCzJ+qV9DZgXLLkP/UyN3HWOF0TH5ODFJGaq6QWJu0vNEGARyX86gLShXF8ORGepjIsfVLjcF+232DrZvoRXdTR8HO+z6aNk1rbKOsZgSLfS5w2kv51mdl+zIF9Du1xrmsEHcV0OnKffTZtiVXqQ/VxccTaWdZG7FR9z8Ymd3py51rGk9eyzxVXpS0GtvoE+5MZY55bMhiRpDH952WnbsVbL07ECmuxkXOj3MYUmW3k5g+SDLKc9mda4gY4VEYSSf2bIf3sE+LGLbtUv+bd9KbynvR51pjnGV+Z3cdwN3z7crqbWiW0a0OrgukMWMIWuQZTDiivKB7MtaXSeWWSPMzGFZAlYkE4dkUD7O2gU9t545xqy7umiFG5lJbxQ7hyvfDcQOvsTsa2M/FDM+EcNCU8wuhGztNqgWK8eQ3DKHvZzMmf2oj41StoNNHbESUAMUky8wVQZSbhVnz6WOTbVxHDNXPMjNI7Ijvak/g6XsIhrOCPh9to5K+ly1br25gyxVjHNaeBR7AQBmYXTOPRtfNNTdYlUVKcVx7JO5hrFLzHAiCBrKdllibnYT21rMJvubY4rz2ySb1a7YtiyrMyP0bSGDHpAnX7N86gezU/IuG6E4zjL83Bm5NpDvc2AyBYXZN4CMsUysDWJfsM8Z9tD3zG/Jq1gkZEOtrPN3pzOHC7F21jPG2Mmkm7InNpaQpG4S1Ikgj/nGMmmIgYM6XsbNqTaTi9pcmiD7be/Jfp5AmZzMfik1VU5n+SDLDcx4qip41qEjcusC2PlHTwMALjnRMR69/CsnZ/fXlfs636boVcbCt89AzkhHLC67OfvS8yOXAey1dTPGltdfdg50rQo3yP60L5ljxhp76WVaMeIJkTtLttnmg0zbiwF0lPSZbTbbxEbDeOzP3B5D4zHTsitJ9mgLS+jnW6xflT4rUND5hhHK67b6Xs9uWS6l23zGWGw+jL5gvo4Z9tFelO08lk57D8mw3kvxqZ1/Ikp2AdqX5mYiW2W8hIx52EIcXdKVGENjbW7ZUhM5ViiGCFkcBdvP6iuOjTWn8hVTpVGxodgkLbOP5Ep2Qb7bxNC9GXeVcnuefHlZVmcMZZIJ58AMdhd+JxuDHbnDrwEAd03/iXsLZszCHtllwihH1jLCjY8KjkkrnSvGGW0Zk9OzYn/ryR027d66LKu1Q/GF7QPNA1K2FcrmjFHEqM5x5dqc56i1dl++UtdmPHaosRlTVF8yJZ0z92pjyxSXc1u6YmUk9LEmzm6VvklOS1naMXGgmz5znJXbE3Lr+vDAxmjvB3XD6yPic8W+3sPsa0U8i9iqYBQygxCL7OTjFPfY52D/dMgCB2SSKoYntbeNn0R5qX4xOSz8NRUsyvZZtinGB/XalrxYKk36gsHs14WqbOVWNoMxyK60J02ZH/qUROSDXpgPAPgBZfrtgVlKy83eM9k2VwcLWLKp7rtrf39IzIofvEjDornu7mZscR7fR7G0VHeuvQljbhkYz/5pGbNpZRq1j3p4Xqy/1YeFGGVl+1i3qCw71K65TMW1hTLK/D0oDdrYhzWx8aFkUjpPPzvVvI/aoTtlwM+12VhauiBdZNw8zKRdmR+2UcjC21npIpDFFz6TnaXD1URtKctCY37NDchG2+9U2hc7P8zsEcvmE85fcz4hZA0HkMXZlLvh5tB3KdNXyefSP19tYqPz6Jxm0k73dnK7yc5v+irX/MrVbzrRUfveMcVRi269ZXaZrcm4/5Rl6ibyuDmVWeehrE4bw6RXe7jvWtMp21d8eCHyoCZUuHGo8VWayxKD962KpcvNBWQXFf8xthljrjOTx4ojcw0ekukylmaspGecr7cv1HeFWAFD3ZRM2ZhR/SkfLrtiWQvlq3Uv2XE7/pYf1j0lm9bPV7EMs/bFEM4/dYYeK0ue7JnaNzYPrrhALKZ23BzaUOmsHcuqP+lrB9Jv1NpYSTKjOb8w6wuAE9jPt3JOanCZK3My9uhZ612h+auc2Ci0r7ShVufnsc5oysQsI1sD+W78NlN9h7vOhtXv+irfox97Sh922L319h5EmNfJws86c2z8yg5urHL5R5k+H7XuXQCA5UtoS9U9Q82FZpa5spm6Jrv9dVNnofrOjj0Jz0qsHey7dlPHZ/3gsaYgCyGAzF4z/muVzpk5q2LqSVvog82cnViVpXYL1XrWZ8ouhfNh5ptn3jyN9e/hyKcK+Qh7LcaCHX5rfR+d54t3gktPpfFLGFfb5wi/Yctu2uw3en6NVwsx+ROxzB55jMuMm+tiLNbSgPVY2mcuDa5j7SSfux/HOJrz7m1sTxPPb+R30WLWteb6cldUj3f9ffKB7jme3SqLKyuof8+SYTg2Fg79s7zGkA+yOu/etSEAYGc8zTocP9isokUst+Kzz9GBUlNJtpO6crY5NFHjH/Zdu/ku5aG2p2/xqma+Pfk4STZZsmWzMiKoo7c3Op83ByQ/FmMX5tg8yhweshrbWFFBjGTHyjQRjhn9/zYZtuZe3CeZjjKHq+1q0EkTXAC2Qe7ch2yXvuUpTrZxjHy1vISeK5Lp02fEKDTPHs5/2fZVvypu0pxZ7Hqx/5WRHZFuhhlLgOz7o+Q3Jme8r/63ZZyrs7g8q/H0XS6jx963/QUAsP6znwIAjjUJlO5hYuoKE3sDQFkWruP/sff2cXZV5d33NRjBQQMEUjFiZILxJdZQoqmIiAx3qUpvsWJ5tGKpUWmttGjBPr6hpaiIeitqEfGFSiyFSKViobfRQstgsCkWDSWtQQ1lNGrUJxBIlBEcnOePfX33/p3rrL1zJjkRX67f5zOfNWfvdfZee63rba191vW7amH1w48J73t+K3b1p/+fphJmfGal/yMNYazqzOGR7cjMzuVcjCt17YM69PmklzJeiP/C2Pe6fgviOA/C1Lw72JyRiRJrstuPpS6D61cX6oCYOVwz6GMPsGtt74OGxa6VSAwZD9pxlcTssMcD3YBEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgMB79CGcQTiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJxM8NRix/zbwbMDIzMzOz42q/uNi2bZvtu+++VlHiXSpnoKGAfiRS15uVqb7NemntwVThWBsiFZpeE04faGVOlzpOp7HMP94spx7mJY8z5c+6+CVNnZO9hOELNomLJps6p431XOepH/qCmTX0mWZmH7SK8u+Ndq6Zma12iqnbhHryyP/95eqfF/sB6INUiZ2lcPovq/Kr+zzOzMxebh+vq/ydU8v9tvfVt781Vp877NEVT+B2qE2+XtFq2xVyjyd5CdMQTOjjUmcylPt5qWzNVzvVy2Kn9ICx9BlaB3oPH9+lTkf/bamz1csFXkK9slUoi2o5HfMSShmlQXE6pHlObbhVbxKpSKCmEsqwmqqlg0pn1O83Bf2Id+KItKOVikdpb6626kHfaXfffbfts88+Ld9pR6PHnzGz/yrUgI6mRI0SASUaNEBPlXNOfVn3q1NumehRTSEIDXaJBtipRBc4BdJmpXWEPsj7c9THYkrpyQKd9kLvs01CKzbHqZLu98/QXyvz3XqnyjvKv++PdcC7Gpt22B43m5nZv3yr4r+++6CHmpnZXvfeV9fZCz0+rCq+89aqPEhYhO50rrANP6n4P4/c/OX63AkLVpmZ2V2uXBMn+Rio/rzBS8wj55Q1B6rvGR4SPu5Tmjpv8T5/GzYUijilZLvGS+SGm4xLnYlQB/ogHadI4aoGDmOMfJXoKbmHcx+d4Lp1pdKdRQrAl4bPZo1Mo+O0o0R5VPI/g2JYevxJ66MdnC92ZUu0K9BOKY1uG6n7k+V/5GRpS12F6/MC4dXbDGUs96WNKgPQPCNf2NZ3WD/oe9ootE9v9Guf63bhNL+OMjrjux/i5WFVsfJ5DY01OvY8t4WL/npz833Y1f7Zy5u91KGEydZtxZaPVcHF5+3ZdZUD3AEe967rqgP/aP1tvcRLbAcsc2NSB2ptqEqhvRp9bFNnynXzONfD1TRQ6eR5gAML5yLQrS5KZ+KxF8oxtydLnGp1AzKgOo98leQVcE1sjg/K8hVNlZui/HcQrHbS4kX7RLt+bGZn7pQeNzr8BmsEcQdY4m3cUGhjHWfEc4W+r58DHbvI+jDX6Rfrrp+Qk3w/joH260GhxP5r+7AD6L7Lq7INXusx3TKPA/+sObXn8ysZvu97Vd9vfuJ+Zmb2iE3Cs7myKi70+Bjrot7jrN+xXsBgLrHrBWdXtKUX28vMzOzLb3I/pCyzMBge5eUafIPGlW5jjg/zny3yP11WU8ML3S1jON/1B7a6qXOkDvqL3GKLlTLVaVjnOx3ylsv9+JjUQQ+JQ93enihVrkB2iIUiRbRZYwfi/E6oQU/xQb8IGS3FoMEejIqvm6J+kKUitSg42Nt06hB88b+Y2ZqONh9XOAY9Z5yvmjW+jTGkDzVOZlyw5R63zJV5w/Y4Ptz7DLkOtpzxdiraWo7MGt/AvXx+tUyusy6O3dLm3DKX13XMf9z2KBs3eucx+DMOr+LLNS97VlOHJt1cFWd/3gbGCTOPq/8/9Iqvm5nZXv+rshVv3//NZmY2Vk9gzV74z1dV/8CwfZM/3zslNnpDpO2UicMyH1f65UT/3hUSryxxO7shUoMe3tRhvnybf55hHqR09BhNfDbjrQaKcyuqorZTSpvJHMCfve7wDtrPeaKHW7EjbXTYZo0V7iI8B10xgNrF7WZ26BD0+A3Wy5eOjWI9gGctUdZHmvISuua7LSjG9H5sPsdLtKjon669MY4+Bov8OkrHHedPc1wWp6XO6V7nz6qlz9cfUk1m33Ve09bRU6qFmnP3qSalzxr5qJmZHSih3vnqiM3srKdV5dn/Xngcxx/OVAs//2ZPr49d6jHv6q+4nfmefIEm3RT6Tl3wFL7JdeRlrqubpA76chZrS96Hi09r6mwM9wA994p1iIEnpVKMOSkPljrohM7JQYl+3qyxU2aNDEda+idIHXST4Ka0jsbzcB1s0QFSB7tAuzyeU5pxu9WGNze+25oYpEQtHVF6Ho+RirTEAF+A71O68VeF63XgWL//taW62HDGUuKm2t+gSNj49VInrnX49f5BfIyb/YPvrMZ78svuuySUNqe8P/sq2yWchZ+vlsjsgve8oj73VXuimZkt9fa/6jcvrk58TS7wdi9f4yVd9h6pw1o+4oX+aZxd6yHyTh+qzvA/coteSt/VesQ5vqO+l3h00ktddxrEJ3gfjXjAVMcAh0qdGIsgC7pGFXR9scvdxoLczfVz24mp1Y8gdzyrroubDU+PdX5Mf+q6UYwL0EfVkU97WXo/BYgz+J7e48BQF1tciq0YD/zJXKmDzWOcibNlrax+HmTK5e4EsduEffh+5oB/0lR51HlVGxe6A7vunv9lZmYv37uxZZf+tcuUD8/KlzXfX+Ex+ISvFY9/IDTZzMzXr6/6WBWfn2HVOt9tb/31pg5TCtf1RhRFx+aHNfitum4L0D/mTNi0g6TOpJf4HZRf4zJk+ZuFezBW9QvAQp0IYqz1HXWiLy/d059jbrMGadvRyejLdRCuDHUo9X0Mz4qMqrypnJv1y//O63G/Drf50441qjnil6fRiVK8E0E/MBfW54zjEO121z2kX5f6nH4940Tf6QIWMuiKcLy352ppzwlH9lTpFTtvxyf8ed7vhz/TBM7vfXTlCF/kMdZBK/3F6gesgU/bz/6fqjzrg35c49tHVsVVr670+SZb7k/T+I/ft0+amdnmJy8yM7ODv1LFC998usSMrFGv1zmSmc0TG7Y1+l71H/Q9Bo01Bx23jaGuX2eB6M/mSf8HWUD+S+8v4nuQV8i5tvivFEuD0vshfC/t0Xkvx5gcoaO6Bk8fcZ1x/4rocz1Hc7s05wVmM9vM7t93CL74XVYFUugUfV9aq4sxjb+T6HlJwjlsYMEms7awlfkt9l7XExgfdBM/qzrPeLp/Xex9Vop7imvpLh+jhxfOtbXZZWKJyMkfeOnz29deVQWzy+SHKC858B+qfx7tB9yd3fkvdZW+eTMe4dAVzbHnXVz17+M8eP6BxzGXPPqPmkqP95J5x/He9qsn5Oo+Z1rq53r0WnXArIlBdXzGvMS2Iwuqh9hOZKm0jhwR17f1+xE6v5v08hOhjs57o/1X+4TPx7aX1q/a3quWcHT4fH3h3PW2e+bGJbSt1xfqjL6uOTTFew76ruDQ6vkGcRj30jieMeR7rHnonIv5R9d6RIS+WMV/0L/cS9c5nxqOvcnMzB4z8/W6xr22l9+xuv+ky/pbT2reW8+4rx3B177eS52ifLcqPnnh883M7F1e6Yn21brKZX/48uqfS9CjCbkAaw381gb7q/4n+hRvwEJ5T7wJm4mMIydvkutgfIjTGQNdm2IepmvUbcAeUFflDsvGeHXE2bV96lpvKc3vuD9zi651n1KMFxHjQbWFc60KkJ6803qcSAwbq1atsgveeZLd8NHde589n2F269dus0MOOWT33ujnCPmb+0QikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCLxs0dmEN8t+BXq0q+Fz+yqY8cPu/40I+GSULKjSbdPsaOJHV6ThXuzK5SdRKUsA+xs9YwPI/65Jyuk7zJiE5Tmfn+89eIuz3j8Izl2ll9r4Vk9t7Lrx5o6Y37xN1eicfOdh5mZ2X0/3LuuctxdVdbQFYdWWf2mrDp3kWTxPfL1nj2YLC6+qWvdbzQ7Jr/r277XeHqjU+1DZmZ2iozB+fZqMzP79lur/v27v2xSAP7B33qq8Jf6uCz07A8r5Jk/6SWb9o7x8nelDrtbY5ZxyfhoT/MxPxN58R2YN5V2UfkOvPXs5pJUc/O83MxOQ99RN1d2EW5nN3Lclaw7Q30X2VZ2OoasT2ZWy9Ri3xGnO44XernJAuQ6ZDef57vIyH7emjVcMUgm753BbWZzPS3edm3HIPfD3NFn7LpVZgEfzwPIIE6fl3at+i5yspZpxvlNPq6bCxlO6x2AcfetwuXtNG/P+f588yXD4mFeXjvpJUIuuyoX79/bNk8mfMd3muwl//bhSn/f9ugqWxoZ+fd50x11ndrk+W5RnuqsFzRV3vH3bzMzsz+xj5iZ2b37NucOd5v3xqu8H/32Dz/1W3WdH8zxbedkUPOMbPaI5jp15v2HufG6wWVB7d/byEjqO1HJVnO/7IbcqhnCzMz8QRY/uDm0kd3V+ArNbALIrolN3ybnGAd2GpNJQFNP4j9cNmsZksw/88a8zRxg97juBKXdIWv6ItHn28lG5PZyOXJ7YVOn3unMddym04c/3WZ25zttOAi7nPuyhivI9ql1XI+P8ucgG/W0ZpXEXiPAsmu8zt7N7mEfuzp7h1mzO5w63F8zMLmdnhP8s9pS/M517Nz3e+j4kDmceON86opMov5X+/h8s8r6tOK7f1tXOeARVaqxuXtU6VA2vbrJXvLM//S+JsMDmVokAcG3zqmyfJARDXtwV02tYfbyO53lg6xmfP9isaXLPAYho+LthefxzE21LJKJ6flS5SzX29Xs3Hdb+CrJAHshtm+ll7rzGT3hvshCSd7mhs+6I9x3gG9YH+rqvSI4p7YeO7C9t7xJ/VBEKdOD71Cv/XEpE8EgmUGHhZiRULCBsS+w8kxF3834KOsGz4EtxYdq1kPXw+3YVLK86DQHGeD+bmePkOw92JH6OSjV/k9UxfLxqiTD57WSUep412PswUObU3U87cN6/hOrOPecu9/WVPIM/EjQq8jIf2ZTZfVnq/JIT1S3j7MEkTVc8eVTvV+f6wfe01fFbI0/R52Bb7I5917v+9eiE8irzocA99cY1gNrksCcGzNImjV+z/vuOP+8WjNoOLbg5/m+6khtKHtLZReq7QKywHP1pExtuZ5kcbgoZjIrIWQL1MT7U1FfujKHgx9YE6DvKq6xMhMAbdbskGTFoF9KbY16g3yornJN98fLvM/XdcUAxFPnyTF8ADE9WRC/0VR5o8vQuYyTP9c6uc6Jfp0rPAZYON6c03pmzbz72XLsh71Vbvj6b/fVueD3K5148YOr7B6nuVnav0nqYmd7coKYe/rQ/2wqferEShZ/tK0KsJ9p/2pmZjd+v7FPS561zszM9nvWXWZmtnbEA5B3SSNrHWddQ+LJdS7nZHS/grGU+AmRIf5aE/rJzGwjfU5cjM5r9kSOfSec08xHzLM9ZruBdqh/jpnQSpkWA7Z2xQC043lyjpgxpMHqyVJDBh58DRZcstLX9mOx9S7S7ApOsibjqFljD7FdkelG/6f9JdYbQNyCbdcMOy1ZC7dolmVsuPf5r7ncbBmXOj6znO/zqi1i0xcGRp3rGDuR2yv5vs9btrhsvUpiI9aEnj9iZmbvMqfomGyqnLhP5ShYf3rNhz09iWQHP4spH37Z57v76/Tby+PcDrzSsysdKtmEFvmNH/aEKpj+4VPm1+fqofvAWb1tXyv9utxt500uUxcT/0js91j/PoyCrAVtjDpj1sSO3vopiW/rLFouC0f5OK1RP4DeKpWZWa8++oPN8ZixR53iHAvbXvI1tI34rfQ8QTZ7knExcSHuuMzawXOxVjwdzs2GRbIL18j/paxTMTuYrjmgmzEmKWQgW+5jALvE6KuaKlOsCcQMVQKyDdaZw5/QX6eG28Llsl76Zf9/hnu9qreumdU2p2ZJ8uf6PalyRFXccU+lN//+lMP8as26xrpHVpVe52u933CTW8oRxkxtXH2li9Ct76zWAVjrPlyytv3Z1932EAvcNFGVJ44312G+DHvIs5FN0ZWHeezLUvka7PZYU2eZ98c65kj4TmE6rJPp+fiMHtf7uQdxnqjjHeVNETOHlzIOey/P8Kz4bpVRfGNkBlCgo66HpQyafK9eG44MA2aNTMeM/NQdlh7PtSZIwoYpux36wpwCydO15phtuuSfuabf4xTxdRdFdpeCn0e3WBItrsNh8xhfxkLHnzHHJnt/KiMG8+bfHK/K1T7en2yyeX77GdU9/vIFVZrvq/au7NS59sbmMmHoVjxNPvi0aNxvv/XVlSLMu70Z10s/VhmQuR5h3/ZZf3f0SWtA6FG/Z3M7OUfGcAtzYNe7ub5+ul19DvaZ7xGjyZyw1mfv+5pxTXVuhZeTXmoW0bhOOUDsW4/luBxD/5CXrvUj7um61fM+Bh3XtVizssW9M5SleyJTpbl2jK8HmY8Pij+3au7Bc8R4QX1vaPe0ZsCM8TEZppU9B9uNTnE9ZQHADjB2KEIh/uY97yayo0rf38U/oc9GJJae4S2Pj+/VBKOy3nPlRP99wdnjVYlOrfPy2mY97v6XP6i6tMeDL3vhSjMzm37xHnWdh676qZmZvRCWAG/qf1/2mLrOD9zWbPEXFbxvOvqrzbv2g5/oCv38qvjmo30sN+k641h4iPDu08yavo8MTWbNGmzXOkaMH/0922aVJfw5vkHnUREx06+2p21eV4qTAf0hPnjEY7OZwpyrRmSklXnDEf79tXzf5yjTJeYRj4XiFHuX8Bgz29vq/pzr/qa202Iz5nrgtT0yP5SAzhb6s15b4DodTGaLPDa7fdIP6Fqz2/ml3ub1cV3NrF7jLv6ix+VjihioYJuJAcgcjj3ZIP1yZmVHRu+usvS/9+sVc91pj/s/dZWXfLbKIH5elcDfzvC58BdlLM/yd09n+6vfQ/3zty5u5O2q/69aR//Ur1V24YU3OvVPbcvMbBNy7v1yNf19elMH+7ieGFqZwMNa9w+ZY0iVWu/o2Jj936z/twddGa6DfThG2nMd8/boD0u2JDJzyIv4zjUc5hnRZyrjO9/H1/laZo+M8704f9G4vY3xalfw79aT7Xnuiqrc3mVvnxw++3NNyVrZid5/V6DryJD05UbWN4l7mGDpu+CYOZzFIFXM2C9da5AlNmrOcZ3Foa7Jb3bcrvjPpm7bXxhyJqriB4dWY/bW/6zuMS1krXNY+vT3xDPePTft/6S6Dtn9eU9M1v/LPvTy5kKXrPR/iEv1PetEaD9+RHWM3yVgw7whm0rvarBZjLv2XWSTAxov49tKc0dAHBbYdHs+0/74vtisWevw+G+g17TonMYrkYWKe5YYQngu5E11HhuGLLXF0MN655RIJH7e8Sv0A/FEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQi8XODzCC+W7DHjqskEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUTiFwEjMzMzMzuu9ouLbdu22b777mtmb7BeGm3oJ5zeqUjJRh2oVuCBEJpMqJJqSigoJl5YqBPoWJaf0VS5aWXvreetqMqtQqt6rLenpvRUygroI6DnODAcN7Mj/NhaqDi8fKdQQcEUA5PEQ708/d66yh8/suIg+VP7kJmZjd0/aWZmf/Cgv6vrjNo9ZmZ2+dX+HE4jtPU3GgqOeV+o7v+Xz1R6ZrMn2lfr/9/llLw3X+Ycgo+SimPOW/SGauvIYZdV/L83f1T4Bv/Ly4d5ea5Tjp1yeFMHJjVYOaChV1bWNXSMUw4d5Q3ZS+pMWi82Qm+mFHHe1/NdhqBzXCy0kBvj+Eb6QLNGlvzcHPn+dKTCKdF+Ar5HW5WurI2OpQMn+PWuvFQObrRKoN5pd999t+2zzz6FL3aj0eP3WkMjrzQoUAI5vVNNn36h1NFxMGv6RWkPw3XqbUnKd3ZCuB5URSUqGv/+3DObQ2NeYhb283JLU8UWernJx3mhy82TpM5qxgz9dTqjr0mdD3qJGYDZ8O1NlT3+d8W3+9OJStnf9qK/8K/8S13naZtvNjOzLyyoqM+eeaPTpX22uc5fnP02MzNb6pQ664VSfeVPK37AO050ap5TQnvMzJ7r5We8vMvLKRnnE5xWLbLZqdgeeU5VHuV9vsap+xaL3E16Oc3Y+bn5Yi9hOoYF7D1Q9ZzS1KnpkaAHFEr0GlAVrfBS5Zb/3xQ+q86hh8g97Xip1FG6Ub1nh0zWNEdKHQZ1EvbO6fbmOwXXT7eZ3bnvEPRY/TF2Tunf/P7z/Zm3QMWpNH3RPtL2JVLnxlBHfSa0bJHyVYXS/dVp/qzn0w7xmQgftLA041qlhXSaq/le5/l++KIJudV4VT7CP9/ufmCB2HbOYdbur4rjn/4paXHle/d2/36mnVOfW3x1RdF39vGVXz3rD51H+7XNLWbc9oxsqsoP/MYfm5nZHG5mZp90SvcbPu70c6v8xEJrsJ+XN3FzLy/eIJXwY04BePqKqnyf0m26LaZ/oSzW2AiKrJqqV/0PN8aGc3+lnoNiC4p2pekEXVTbES5nIx7jzSiNHNchBkH/lKoOIcIeYFc6YoBOEI9C6bnz/rjR4c9bFSBGY1xzmxe+TZ9/pXAOlKjq966KE5wW7UrGUClK8d1cGxtaoFsjToFW+yKlQmZ8+D7Pc7TUwa56OxY6bedzpQpsmDd7+SI596pq2nXqIZVsf80eb2Zmn7L/p64y71zvv2f6AafYnb6prmJz7vZ/nK7zqiMr+s9Laxp1s7tsnpmZPd4Dg/NHXlmdWCLj/udeEsKvcbt5gsTJMOXV8Sn3+E5TBxs2xdh/vzlX+yhkm/58bFNlgZebJ/yf60NdPcY44bOVShB59+vMc1+3VWglF7r9J+6a6qKpxAYjJyLbdczb9f0Ygx8k54gjkdvo19qODSumvt364wfFCfK/x8rMV2razeOkDnYp2oWl8v962zGQr0jx+9RY0RrbTr+qn/9Obx1ivD+SKucydoyTPg/wuOlY7+v/llOEhOdWxcN/UinkJ+336yrH3L7WzMzOPqT6fBZhhrjD77hoj/qtprzJB10i97q9Kl7ylspHXfbdKm469ZEX1FU+9K/ud5j/0j0r5Tr7eYmuzxNd3+oVl6+oykk/vkUuAL0r157CZ1/U1Im+CSrjnlUn5ISYlWD+JKmDP8bGE5xfLnWQO2KzcS9VtpEL6DV1TszzFyjZI4jJNkdbaNbI6yB042bD0+O4xsX9sSvohnDI9gHfe4Acw4bH9QONk7lmtHMlGtMTQh155he7bq4iJpJY/mV+7mKnWB3xuUGPLNHX+HxkQeRkuTti3A6P8eamypO+8B96Ufuc24Pt9UKS2Vz7YVXeX8n4PgfeV514l3zR/fOWM6rvfdWeaGZmV8D5a2YP8rj6/X/5BusDa1Eb4jqjUrzzzIxdSYbc9h7h61ZrV/dXmeM2b3rSDzB30sDF71XrcVgXMzNb6PfYFOVe2xx9wyBQ/8H9iIsZRI0HsQdQqrPWq7F92zy5FG8sDXWiD9tdegwCrfjLfAwuLtkXZIH+kTmk+dxogc+3NzOGahegr/f5xzz5/lbmVh28yKNef4ox4DtKQe4KeIrPCS6CBl79Pfed9NLjrleJXfiYlx67Pu5FlX14uv1bXeXtrtwHPdFlwKmzfyKPfKnr6orlfqCZNts5z/Zrz1T2jDXqy0U30OO/et47qwM3+4m75HG2ux4f4e1f63bpBNExunV9XPPQuAdZdOc7d8yvP0gMq3UWhzpjhePo1LHhcwnY+2/IMeJb9EWpw2cB1k5+zT9v6JJ7+rOrP+jD3anHTAixd/peqKsfgccrx3k8t/q8Qh1iLOycrjvhN4ipiJ9K8feR4bOOIffABnEPfW8Wacn9XiPShzOMPf6dWEDW086p/Mf4m6o2/5b33Zv/5r11lR/9QZXb6qFf/Gl14Mbm62f7UuoxM5W+jLntePTtjY1/+qJ/NTOzZbaup8UfukXeyf2Gl/O8LNo9l0mdbpiZbZe+WO79Wr/jK9HAc236M8ZuZs1Ysk6q6yvMS/Fb9PnVtmPExpuZ0Q8rvdQXb3Gco402a2LNd/RWLa1ZL/Tv98ULJnGGn5srfmj7hP/T9n5qGGtcbb64C8FPm1mjm++2HQPbi93U/kZHWUdDbuResc9qaAzgfmeB28nNJTsZ3//hu18ldfieXtvBawbUlseS91xP/cMvmJnZbT99jJmZHbBH5Z91Hewun6jyXmnPe6t30dv3auT23+zpZma23t+RnP/TSrfu+ANZZ/kLL2/w8jUToWFmdumjeutuZt6g8SF9XVoPDu8P63mivmNB790nzHO/urU0Bqz3YhdEV49wHV3L92jPg5s6rbqq7WHdmQlRnE+YNbKILOh472h+q+DZub/Gg/QxccZXrLJxrx+CL36XNeu4CsZS7RJ91hHftkLfC3HtGIt3fY8x/FyhToytSjJZsj0g9r2u6+Fbxnu/P0fi7CO89JBzjyur98avPrCRpSv9xdbkv/r3fK36i69vLvPUfavySx5vH+lLsvc+u6lz1d7Vs6L7f3zZ31Yn5L11bQpZh6Nbtug7f1+Ym+86sSX+LsGs0X/6Tuep7+g9t9T7cP2k1GlbO1W/yrWjHne9u9m/cIxx7fhNR/3bh5JeEvPy7pM68i7snS5nb/h0+I6s09fvTAdZxzUbXkx9tzW/zTBr2s0c9ju2c2jT0dKaBffcPxzvgr63QwYK/oN3nBuI8+krbQfyxrtKbPILmionuK37jH9+hpd/JZf5p6p41HmVDH37K5VMLXlyExO/zC42M7MXebzw6HdXNufjr2vWOyfcZvB7j5v/x9dRPzXS3Ism0r23i2ye7s886Z8736PQj9g+jYEHWG89yuusmY3PKgHbSTsmvdTfhrAOTiAkc6VjvB3XxTWPwjpNreNhTab12A5Q94HaQvRnR++Sd02PE4lhY9WqVXbB/znJbvjb3XufPZeZ3fq12+yQQw7ZvTf6OUImZU8kEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSP3uM2O7/NfPIjqv8suFXLIP4b8qZuPNtkB19Meu4WbOznh19E15qxuGYXbyUWRGw05ydRbpLh//v6f/a8d6Oq31nFJk0x6XO+8JO4ws8Y5BmJZ7vpW9+etN5f2lmZu/46FubOv6oz/pfV5mZ2XLfJrpFsk6t8bSHH7eXm5nZE++vMq7c9qDH1HWu9V1x+3mKFXaBKy7fVu1wn/p3T+Mgu0wPm/GM4Z/2jOFsHNWNwgzDv3tJRmVN1sQQPi3UHZM6JHxiZ/lTvNTN2mRRrXew+c7LE2Vn3xU00nfh1xkTNRMamYLZOcbu3i65KWWBKGXaBl2ZUuM12UXMjsmuLON8Z1zq3GJV20/djdmV8A5kvmBHnO7upa20rbSLkF3apCRh16xmvY07sekfSWNiZAyf8FIzRrJb0HchHuvjdK22hx2KZLFjx6bYlYV+X5KaPd/LlXIZ5JZMZMj4pNTxJBKHvb4S/Df5rulr7bfqKl/y7Hp7WpUl7Tzv5xvrrHtm33VhfrZ93szMXu67T83M9nab9fV3+LN6kiXbrllqvK8/7x/RVbVP57r+HOf6w45UfZ79vNxaykgFQjawOa6j05I26lgfw2sZZ2y8ZnUhm0tpF3nMPk+mBtUfMk6cH+qWQPYh3709R7LST9MmSnyOZiWOO525l/ZF3FkO0J0fmdlzh6DHnzczUnWd3/GN4JdHZIdtnSElsmcoYsbiUma4CO0zHysyqNVZProyaGBDru4/Ns/bg2p9WarcPlGVC8ercj8/rswCmz2DwCK3xZ4M2F7cyM0ee1UZVg4/sNqZ/jLRw2Psuuox6otX+JLo8bQ9yMwaf0ymxO/Wzsps0haZmdmGEZTTx3CxZGBCrD7jJZHmyXLjSzzr6DEuS9dhQ8eaOiOevaQv+5T6POK2mEHMrBkf6j85lGbNLn5iOxz7ZFNlnj9bLQOlbNhtu9g1+9txLXVK6GLxGCQbdxuGkV3pq1b1KUaYtsasUWaN/+I5NNMDfcaOe3y32kLiFWyn26m5kmVju2cW7cv8+jr5nwxOMaO62MBRv/ZUzPakWWZIPejf+xf/zm/Jrvw6Q6O3a/mhzTnPgveKz1ZZf//mC39aVX3mfnWV+91/HPRfLpM81ormMu9c+OdmZvY4zw5eiqGv9nSJX7/R709SO42TOUbGYdT6U1LnI17+3kr/h8BZs1tMeDnupWYTjhkIu+JZEOXGrLEN6Cryq5mcYmbQUmbDmIG/1J6Y7fzKjrrIx2T4rrStlgntl5j1ZJB54kF+/tVD8MXnWG/WQRB1pAsqTAOMK9kgt0z4AfxPKcOaZw05YkVVri3ZTa+zwOts1nOTXkYGoVImDp7jFjnnsf8X3acc6fc/R2KAM/2YZ8N72K2V0z597ybbzVv/0+2izxOnPdNhzQJg1pgVRJNzEpYS77/k16q520aPS7901TPrKnsc7qxAj6gyLdpSfy41qYRfl/CsmnXK9W2RP+Ptk36dsaZKvYQSGatKmU7RX5+zHCe+dzW6EPWgK9tm13pN1B9tDzaii1UroivzPRltnifHYnzCs6oN0+xBuyvz8CCZy0BXJpq2TP6DoJRlvAMwoUFWM6N6yFycTPU+FvPE/2z17O+j7pummLdPyD187vj/+mfY8rSbPlwpyjMeXcXLazZWzBx1VmAz+9yJ42Zm9pwr/Nr/typuv7iJk8mq9H23Pfe4bF4uzAI3fr+ShZ/+gdP1jUk7LiK2cxkqiq3bnjprs8cgS4WRaT1xNTqOHmgWU3wA40RspVn+WONDTkoNQrZ1zcRsMKYbs2b+xTV5Dr0e9iBmzCtk8PsH75ff4/lK8SnPQdu1rW1ZWCNrwO7QY83kTH/QRuxcF8NfzI5n1ox9jInUOewf6naBtSq1Ha6Tc11nt7scLxO7z+3Ws/YZs8FLOxb6fOyHfljN3J9VxZ5/UtmF+/6i6vt//XgTCz/Ovm5mZgdd4DGji/HqFzeXOdKvuQ/hxaPlHv4YX3xKtfD7VqvWxf/5FrH7zOm3+DrEQu+DTSWb6nZqrscU29XOeYyJLRzzwxs17kEGGF9so66B+H3rWAv90VgPf8acdKWXurCNbpXmotheZJG5m8otfiMy6ZXYhUDJd8W5dSFrbX2OeyHHg/hAsDuYeQaJN0oZaYkvOtjC6qyD/rlnWSTGZl2IMZUyuyJX3rY667N+P7LweLlImGluj8xfxFYqb1UscurMSjMz+4IdZWbNuyQzs9/882qiuvX9ldzN+1eZc7h4Xnr275mZ2WHutH+/eUFTs2NefN8KMzO7+0qn5hN2LnsPbfV443h/jqsLulqPHfImz8zrgQ34YK6r8xGOoYewB8h6GnOSxT6P39gxD6qzFZ4u59A32kxbS1k3Y8ZrFSra7THjkrGq1Iz+L3b5WNW1xtXFcgmiTswmnhzGGtdHrWKvQ/8oS+t8Xdl721Cam7COgO3QOAM7zxyDe3bZlY55AD5mmutp2wd5HvqBjLLjcm6yKt7iPp93UO+XKk+q1qqf8cgqk/gN/1YxUp779EZuV/j69X1O13yxU+n9oTUpA19uHzczs6NsjZmZve1fqwnzU/5X43u//Dsur5AD/aOXDfG12YVu545xv3ZdZP+W5zrC49K1pazEp4fPihhPluZe9D0+l3mAtmPMyweHOup7o3wQ7xfYTfugMSNGDH+vcj+bdeiuLK9Rln5i1W8dXj4EX3y9VQsn9HGXTKNvrDXXBlzqzEbHWcfA/mr8RB8zxym9C0N/47vBLp0vjZ23f5nLwI+lSv1o4d3GOcIAxjtb3suOV+05+NFNO/by98P/6OshTzjL/ZC+8/E15e+8sQrCWbP+gcwzmS+/Z1v1g4sD9qni9m+PyG9fjnM/+Af++SW0XZ59vj8rj3GxMmcxhrSfeaf2M34Pn1l6txeBj1L/FNdSo41X0I6xwnUGAf2Ir9A4m2eNelhgWa3byHcGyVKsMSPrej+w4cXU/2S9QVobC9DuRGQiUHvb1o5B4xbiAfqIufk3C3VngY/4eL9ysjl2zpiZmS15U5Ux/Ac/reTmz/do1qw3OOMd74SP8XU0fgdi1rwXfsuN76kO/MhP/Jc1eA360uUjWEdAL9VO4mPi75xKc1HmKvhgtdXoGz4XtsgVUgediOvIr5A6kVED3VDZwO6Wnpl3Qx57L/XxWT/bzObI3lhVLPDn6mGEGSTLOHV4p0ZMrn7kJ7arv+NKJIaNVatW2QXvOcluuHTHdXcFex5qduutmUE8kUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCR2L34WGcR/BfErlkF8npxhV1DYgbZYslJsZEtC3M2l2RjiLiN2/+mueHY2xUy0urOJrEjbe9uxUbOx+U7AeWNVuVUyFo96xoIp3yE5elzvZzOzET9GxuHHe6kb8mjH9f7MR/sOq08+qqnChkTP5vIPb/odMzO7S/r35V+osob89zOrjOFvtHPNzOyq25usYJ9c9HwzM3vx16vdmW95XJUR921flXRpZPNmt+snpal3eTnuJd36XBHpJzkvwAr/POmlJj1c6+V3wudjpM51/sWRsar07BbNzisz+4Dv2HwNfY5sSObIvh3C7BjU3cDsAGVneGlX4pPDZ81qT5u8rbWc6c7FmC2ktOsVXShlGALsiI2ZKxTDzHb4cTP7VnXwWNFVsm8v8GObu3aox3Myhq277HQnHbp6ipeT/dWPdX282T9v0XtGT3am9QMd8D5f7m3/mlTZz8tNE/4Pcia7LN/rMgQzAJuCdcMwmyjHrKfNf/WvTZr9v/pu1f5HPbJKGfMiV8TN9si6DpkMt/v9N3x2WXMP30y850We5emvXAY+I+04zMur3eaNuP4cIHUWerluMjRaM4OyY9MzZtQZlGQMsK9kqrudrDCqq9QnowC2WO2/7xKd4/IxvVLOkcU4ZsVUWULvyOLQsbO8zhBHxi21GXwPRgBsiPqYtuzkklWb7NVk4JyOujKsneBfNPOsXo3NKGWEng1KWSVjBhrN6kp97KyP5ciSpkqdpdydy3LP9HDTeU2d2g6w89qvO1+z/zi2hIyAVvDPbFRmA75uSsY8v9QzgFzgbX+E1PGmvuLQKjvxE+2r9amLvK2/4+kOyfY/X/zHGZ4RdKn7nfO/++rqxKa9mnvgK2HUOMxLTd58lJdkfYO94ELJwHSU69saggoeUDIRnOLPeJGPRR0b6Rjg0GlAyaajI/gszSaPj43ZlFRe2phgSlnp8TUxhjRrfPW4l6UsEhFd2XyJYTUm2FHWh2FkV/qMmT3UGntL1qlJL0vPRX8WMiMe5Xq0huMlVhVkh3i0xBqAf0WPS/ETslD4/oi3ow4j/Z4niG+40u3qUfuHNq9s6pDNGN1c18jrw2cqao9xz+j/eLeF94iyk2X0311xPu/0OS/f1J/J9WMLqxQt6POkpCE9+k0+TyBT0mFe6qPXmVY9e89HPCbRDOJMN7a7ri7zLArrJBvRiOsqt79dW4lBU/9n1rBWmPVn+HHZOkZivetg4YmZxzTDA36QrBSMnWaQacuOqRmDsSMh68dCac8msmPwPWRcr//FUEfOwYox05ZJ2awcXw/LF3/Iylncupg5QMHXbYlxk8vrEumzDWSJGvOylGWDOJtsfLRDM0eiU2TLiZkjzZq+jhmXNLvep8M5jZt4No8xl/u9bpL596u8jZ506oCN1RjecWvjP2Z+MtLTtE8ufL6Zmf3+f36mrnPVb1SZip937j9XB1z8/vKZjT+837O5fOSnFX3Iw/ao4p1vPvgJdZ1aV9/u5ZWMiWaywdYgO4U5E5lNiAd75jFRPiKzklm/3BJzHSd18GmMXVdG/1KWzTaU4kFkEnlX2UausBH0i2ZgamOe09gav4Mfwra2xbTDzDz8SjmDzUHuC3OLek4RmOfW6TiHLDXRNptZf5Y0+kDtpl9nxGPomVLWwji+Eie8zL93cZRTkft5PufayoGo12a25AW9X8M/a8ajv6qKfZ/xPTMzO3PPan52RU3JZXbjl6u479VPqeZ3J3js+V2ZEz/c+2Nvl+Vn/E+VvvCIQyb6mrX2d3zB6Rly8M1e/p6XTFVWSZ06mxm+qsQ+2MYCUcpQHTPWqa6yWBBZWjT2vMPKKK0NlXQ0Zs19cPg8KHgOfAP9pBnRx0M7fLFhgUy66rWkroz8p1vlrxYOQY8/as2CZ+mZYzbihxfqRH+uPjPqHb5yrHCPmPHOrD+uL2WCbbPTMq+b7+O6BTt/lfUjshPhT6Wtn/DreCbxek3poU2V8cMrx3zdlytZ3vqUanz/bqTxMb89U8kdWQ+/cHaT3ZU59PwrqsnsmSe+xczMLhemqtue9+vVP4hZLdqlbF5+cpnHDeuUfZB4x21pzaClfmjSS/rD491RGWds+tyzCu1oQ8xeaNbIAA8kelxnoI3ZGzXOYG3rTeHzCVIHW9OVmREMksURP4/tUJklTmF+GXVldzABxIzvZs0zdzH0xD6LttGssZ2RddJssL4CzN+JV1TeXI+P9/GGqXbWa3bRhhKDS/qvJRXDx1u+Ws1ByTC6XF5UPczv9eYr3mtmZref2LB2HHB/5X/++kHVOP+Lx6mn1+tzZr/7WaephJ0Pt6Zslb8bYweyBur6PVlm6XuPe5ZIRvQNkbmCOaCuUU16eXjPZXqyvN4eM7SXMsi6PVjqaxg9GQmxFbQHuVffELPzR5ZGs+75YESMOSUjbc+avZktdFu6Sdf1okzp95HptkzXw1jjCqw89bsEDpRsKjKudiX6Wv88V/p+u887WAeu3zFqbIVuIwNkHi61I8qJ2tsrwzHWLXXezLqct3EN95AxmOtt2+66slDXcgI2+ff/QZ75z6vicd+6pafqQqEm+KpnMf0PZwC/y1983VwvZJn9wbf8xfCHXTdZa55vDZiKjHn5tkn/R9Z40dsNxAWToTSrbSEMYj2v7+ijyCigbAGuC3XWUPyQziEZs2j/FSELaW2LdQxjzF3SFT82x/3idGktBp8Qsy2b9TLimjW+V+/xpcIxC/If2SWOtCod7fOHFFPvLe0fwC/WzBzYO80gTj9iwwdZw0eP1X/QnkHmNvGe0vaa6a1kB44Pn31dbc54c2iM5uDzSmvm4bctnl181Zsau/Igf6H6Hn8x9AF7jZk1DPJmZlc8qJpD8w5qpTMCXCs+5l+e+b+rf3jlxBCoPpOpmDi39J63BrGNMjfS58RU28NxRbSlpfdL3g8Lfa1507amyjyX3a3YOext6V5xTqzjh10awAcX4/5o77m/vuciPkGv0VGdo9APfI9YUZhTsJmLxs1+us3sm/sOKaZ+jJzB9jHfuDocN2v6k/e0OAJdX2xjQdB5zGRVLPFn3FBiuwRcm+/rdbGFyLu8b651nL5mnJRNkWdDBng+/e1CeO9XkoXT/Nj53tZ/qebEK/9XM6cldr7X9qy+7ve6QxSxZq7kt1p071aNn5GX0nqPP/NxPj6rw295zFp+zxPh/TnPdbNmei4xUSK32OLS2lRc3z6yUGeQrPolBsaQ1bv+3ZJeb5Ds8ZEFDv0bkzr0Q1yLV2blb4dztEPnd6+yync8IjOIJ35usGrVKrvgvSfZDZ/ccd1dwZ5PzAziiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCLxs8GDHugG/PJhjwe6AYlEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikRgORmZmZmZ2XO0XFw01yTnWmzAdCpBIu3Ca1IGKM9JlCk1mH/UTlHlKvwAVid9rxCk8ZpROgnuUqKQAdBJOEXea0Lms9fImqEwmvBTqb1iQXurPtVif1QETyKu8hGXm+VKHY5/x8k+9FCbaV5xxgZmZbbKFZmY21ylF9rZ76jpQB972PxWF2J77VXUes/9tdZ0N363O2Z8415DSeTlLoJ1yb1UeBB+R9OuoU3ns559/6KUyPa5zmp1TnOoEdsALV0qlFV5CEQSdi9A8zfXx2Y5sQbX7N02dmuKHm5QorhjnSD0pVMrHuAxdBx2fUgByfwYqUpG1XNPMeqnQkKVI81fSEahIoMtResoDzeweMztxSBRDv+VHlaIQqqRp60WJfhfKYYSgRA8GLQw6/1Q5x7jEex3d/DsyXpW1dVVqK2gXGQ9kQPsVGki+x7gozZnL4JLjw6lJqeP0ODXlpNNezZcxiGYAM6ksVn9X6dj7H/lqMzN747Z3mpnZufu8oa7yJae3ueyWl1cHviff/z9e3u8lYqcmWZnpzcyO8HLtT+Sg28eaGt1lYN5jmyrQC0JVVN9EqbIZex/Dua772yekDuOLbNMhr5I6NJpOVJpkfEqkhlstdaIMecfMbWie2qmBVecnWq5XIgnBb2AnRW5rSqtIG83nKTN77RD0+EPWT+07W0T60i4whkqBOekl41LyvdBcUZc+U3rXErWjmdmj5H/v48Vu9zdCISb0jH/j93oFtuyaqpgvsrBloiqPGK/KtdBTit0+1s+93T/f3Zxa8qx1Zma24U3LqgO/URV//KIP1HUW+bOedWcld/jjDZ9e1lzo96o69vmxqny2U1QtlGeGJfQYL2EIVncC69tFgdpWWdfw2Zvoe/TwYKnkurbQv79pEEqyErUudgG90YYodbNCKWAxbJeFOoW29tH4KqD5Q6auL9SJcWkX3XPUld1Av1sjxjhmjc/ETkZjb9ZPvfxhOQe95WT4zq3yf7RZ2DXtu1Evof5zKs2lQh9H+LRxpZ9b4VXVbnt8s8TP1b5XxxK58JPHCqWbh6y1CR/38r/k68+vKt3wyKptz/huJf/HPfL/1lU++8XfMzOzlxxZxZjTvo367//nD5vr/MVIVV4JrTG+Tp8H30hMhY6JX61tn+vIUU5vvEaeuabKO8cPqAwopaNZHWPNkXtMr/R/GA/0aLSpU18njq/6Q2Le6BvURqMv2M4vWTu4P/fWuHJ7OEf8PiF1sCNd95gNDvb7nTqkmPrxcqaL0hBEqkidUEXq8zb6ztmCe6hNjvOnEoVlBHb323IMGUCWCnTC813eiWG3SoB8nMse7pz5+JebKr91aqW3R9kaMzM70a4wM7MzrKFUh3b3Nf/5UTMz2/akitrzrQ96S13nvV94c/XPXX6AEPyl1oDHwJ5smqzKxWNNnY3MLXx8Fokfu51zxCL0ufqYcS/92vWcReeQ7/MSu4/+TUgdxhVdb5v/mjU6zj2jrFkTA3DZ6waJBfS+kU5b58j4myhn2i+RxrtEFYzcLrZqbvzHQ9Jj9cf0+aWhPV3rVzGG1e9FmuXS9+iHkg1B72gPcnKH1MF3E9soBTM+asLLcS91rQFqbOQEHRc/NN/vu2WyKo8Yq8qnNVUed161zvP1L/gc+2Y/Iczq735cNRe+ysf1rf5819UBr9mkU71+1ap1rC9fVfm1A57brMXcsZf7KlRMTc80NNUuF4v8o2ZL2ejPeIzH3hN+fEbkvo9+G9lYKRdy+1b7ftXjurVeogeMu9p/fNwTQt1SfFqy18gnslmKkwNFb41XyP+suy21dmCzuN7ftFW0/ueJ8+adj6nNBomrAX1ODHJroU5sq+o1/5f0eDagX9E5pXLG10cbqr6bNdQJL68Pdc2a9ru8HudtX6301aDyXw+fqfLe/OB5j67PvP6qSnZGPUY766x3VSdObr79H4ufZGZmX7blZmb2Wfud+twBLvesY19hJ5qZ2eY3LWougKlBf3/EZ5nrnOzPgYrV1Nk6P2R9Bv+3fyjNbJ7r6lZsaWkseRdBDFyis0dvx6pivuvBFtG1mp6cPh+X78d5XPR9eo/YxpKuRqivuiic61o/Yg7KnL20xoWPYE2f6w1Lj79hjTCgD11zdGRA+w679Dnb/YjzoVKcTRuJFXVN5PhQF6jtwWb4GLzFZettMjec73OtLXz28j/vrau8/pHV+vOedl/19S+cU597+DO/ZWZmp3vsyZz4Lee9p7kHfpxDd3k5KU1dh7zhq5HXkqwy3+RZ18u5+I4RuSv5TOTE+6VHXJgn8E6vFNdGuVdbyv3jeqX6D+a56Eucs5uV16LawKSktG7KOxbi/q61IaDvYeiz+MxgGGtcd1sVe9HXcc2ta97bBfr30ObQaT4e56/0A6UY2u834va/jvFUx9DbGBtpnRjTI5O6XkNspOtwAXNcTus49X2tVWuZ1lcSvpT1jGdVa903fOW3zcxsdPHWusrj9/mamZnda9X7XebNh9m6us7vfeiz5gcrsLz3fLkXPncta1z0gdrWGHtGGTVr4hz3z0tlHXk948H3uLb0/Rwfu+movyfJ/9yPcbnWBof6VfoIne961xGhCwpxHU3X2vCf+I311g+eDZ+HbGpszjxO7dGwY2r0l/Eo+dVSDGNWjktBtAtmjZywzoqu3yJ1QgxQv7+4UA76O6vF3r8bSzqP7eScrGfXCPZgVOT2f3t5RYyrZSxf7PX/wz+zJPXvTZVHfaiygdvve5iZmZ2+5/vNzOxDdmpd51v3VP7wa3s/rrqlx9JXy/rIzU+WybhZEwvo603eC23HX9Qvk6TN3i+rJvqfp9YJeb9mZr3rgi4DCzwm31yqQzzQNidVBNuhYzCFjsfvd8WMJVmNcz9F/H0S413SWVCS7a61oBKGpcfxvbH70eXjVXkTfXej1OlaCwb0MTqKP7uzUAe/TNwR3/VpXf+twAJ5f1HP+TimdrbD19Zoe2+osRFrZcRvE+G4mf80qxHl53v5B3IZwlq+jhv4c6njr6ntH7yc4Z76zqZNts3sOH+e1fhlYhD1OSU/HO8xFeqWrkP9xaHObN9N0DFMJJAT1aNBdIO5wQFe6m+akNuu9yfPCXW7bA/Pjg06SM7hBwnOeJ74O4cfm9mZO63HicSwsWrVKrvgvJPshtKS4BCx52PMbr31NjvkkEN2741+jpAZxBOJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolE4pcEv0IZxO+2nt1ZR3k2vzWlXfggZo0DB8eKZh9ZUZWvZBdsx06web5jaut5cpDdt+zYYWeQ7nBl55h+D7B7kl1G7DqalDrsjgtZhJbJTlQ2IrGxis2YF8tl/t/QtOWhCWZm/+Ri9b0qe+Hok6od4VPvmVdX2eNPqxQrP/3Hh5qZ2cP/uMr88INHNplf6m7g/rphbHEo2Qh6utShbeySG/PyEVLnQs94cbLvYGWX6irdJcoOr0kv2WElu7BO8YtfFGRqgewS3cyufHZwswtRdyrSAHZXD7KrULJT1hnrQSlLU8wWgtxpljPf6bxsRVWuK+02jTvg2L2qO9m+acPbQfpR681qCTyrRZ0pix3Yuts0Zoxhx69mPIk7chkLzRjp507zdPZk6evJVMcuRu+rEclcPEO2k65sz+NesvMSfdZd4yGrwHJ/9h/JsQ2+k3a574C+ye3TYskOtrGSyYf9qEo1/MMneMqWP2mqHPamapv4V++sMqHd92PP1n/zXk2d36nqbPV0/d88Q3bcvw+7iEEhC4oqNP3nMjjizzyjGeJcdo7z762mD0rZ5Mn0zW5ilbuY8aWwY3LU5YWd3Uv9s2Z5JYPHMu/7dbrzH9nr2lnelqlb5Ra5QF7Q9ZIfAFG2StdxHC/26WoyUsfd59TZZmb7DjlLGs+jditm3ekCO6eRac04z7gOkrmVzBva9yEb0mLvh42q67TV7z/iu7Q1g1+dmYTsO4Xs7aPjVTnFuLq97skywPMwljhq1SPPKna6Zyq5SU693XrhfvCPH9dkEP/otypKkD32qjI2/fQ3H9r/3Xd6SXYnMiuo+3gfdpZAAYOiWWbcWS9xWdpAn50gdZABnrGU+R7fRvyjGU7oM+zINusHPiXu0la/Sra2yMihzBy0O8Za2p6YDaYr6+0gGU+6sswQDNHn3Gvnd4L3xNQj+4ice7+MeiA4pfpMDF2yQbE/vQ/nSnalPhaF4F/NrH/Hfin7VQQxlmbLRE4ILEuZ48PcYMR1dOZSqUNGzpVeigyQ7fMh4dRr5euemGTfP6ioOF60Z2WbP/rPr6mrvPBZn/CWVln+33HjW6sT2gx08wqy2flznSLZoi6a9H8YH5gANC4lUwv2yH3FMsnAQow46vHOVJPZrRlzMmaQWUeZPWKmIvyhjk9XtpMI9KeU8ST6hBJrAPdCj+jY2bJfxLmkBFf1M5fYd0CJ/WdYMfVfW+8402fejgUrmlN19pNoV0qZ3TrsWh2nx6yQ6seImZl3MHalrG3ci0xKmiGrLaOOZuah75FFtTc8m99rkd9jv0IzOIbOfUTqjFdz4tMOqdIWnv/ZaiI9/juNTT/F4+P1bpfOvfOvzMzst/f/p7rOv22rmLemnuNz6TjHNTO7kng4zpW+X/g/Zs0xa+J0dJaJ+JjUcZmZ58e20mfKqIE/DZmTioh+YLRQ54Whjvq8tkyCCtoWM5GX2obcHCDH2jK0lDLAIhQ7yk4zxCxpS85tTmwg/sKGleb4xLex70p10C2eR+NsdBK/ge/XGI12YGuIaTTW+5twTuFjP8d9wTQCr3YcmcY+u52ZJ1VITli7BG/P6XLPT3qJf35GVYx+sMlsePY+1bXfes9fmpnZ0r2r59tuD6vr/Ne3nHXnDZVvefhlvsb1alnjehKVvawzSFpje/8//1yHTTovCVlH68+q6zHjJc+qGfy6smdHREYayVg3x3VrmjYiAxr3d+kqdhnbhV3qYo4AJT/UlU0bWXxp7+d5YsO2ImdRNvU6L7HdMzfuQimzW1xroI0ab7CeiI4zhqXMk8iSPisxGePRZW9nA2yyZrbyth3lss1Q3H651PGxOsblBea6htzOHnZilYLwQXMqBbpyzyq2GL9zbV3nQ/tXz3+ly+ZSiTN/4M982RecHW8/P/Eb2v7IcOVtXiBVNlsZxTrE294vc0X+6/lQW2a1WaKPYaALJf8OBskCPBtoJkzsCLHdsO8FhuWPLzEz2FBLLHNta1tdmVtLiLGVxiJjXh4Y6pSAPWB8dRLpsUPN3EifawxAvE6beVaVF+r7Otgiv97tInfMpVf4Z/fFT7rnP+oq//U/HvS+vXq/9NqPN4tT772lYth5+KHua89zX/t6acZ7vZz0Ete0UOpswjd0yFc975/wA6zvzS1UjjGN+jPm5sTiNEzjMHRtNtnkhfKk9XsaA8T3WqV100Fi+ba5XxeTRWmOfmyoW7pnW0bNYWQQf5dV85CYTZhx0ePIdtdac3xGtW9x3k+dUrwC+L6+/4hrE3xfqWJDXxXXtQcBcRxyrzJN25jHRfYaM1vqbTvMP/+dl+K793hN9UJr+YEVHdeeTr+3/r5Gbu/+pC9kM/0gq/GZqrtR3ljD0DkdY1d6JwGwz4yXrGXWDBzErKxddL3HiLG0Wfn9f0SMQwfJWBozpAtqW1xiJRkkO/IgiBlXRVf62D/PsuHF1J80s72tsScw/TLHaJtP7AhxHqNrU3eG0m3iiLC617++uby37nxhKd5yfu+5LkYZzO20rov4mNXsjrwPFQb6EdoT9V/n78i59yHvgHSJyd81Pe4d1drDPbZ31az7mjnx3D2r1N/f/X4V9D77wIoKfvW3ntdc5yJfi2U5g/h4k8YkwOUUX6zsWtOsgTA+am+Vqsusn1VBrt33PlKvE3UCfVaZivNM7j0mdbAnkaFDYwBiqWhLB42B27Lj7yyYM7JGVrKX+1u17v36Ia1V63sd/ifeQEb1txSDZGIuzaXNyhmqWU/4ZjhuZktcBuv3mLRrhVyHOAG50fcZs8nMHtmOdX2b50FO4/s/s+Y3GOE3a5c275sPO6lypDd/yDP6M/+ebw0+UxWP+cJ/m5nZbb/569WBmwrM73Xfqf60Pau+8+EZrw/nSmOJ78ZWlN6dtLEddaH0Dhf7OBtWHUVc4+56Z4n8at8xnjzrIL+X4J4aq7WtUUf537W5cSIxbKxatcoueN9JdsM/7t777Hnwr14G8Tk7rpJIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEkPGiOWvmXcD9nigG5BIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEonhYGRmZmZmx9V+cdFL2/mbcibSlEM3VaKKgJYF2g6lfQrUDEudnmO9UvVA13ZKVUCXs1nq1NQkUEVA/3CLSaXQxhc2pz4yVpWv9PqLnKpO2K/s8b1NrZk3fijHNjk11vFOH3G1048cJ3QfMJlA5QnzhjKCfNlLmIV+30vputG/q+h6p57r/L97+YkXy3Ve4e1Z6O0Zk3NOZ1Qfg2Xw94Q25FVOJXIhN/VySvr+CO97hukKqFGE8m2+c5fVFJz0vdJ0rPQS6qYbrR/wMV0bjgv1y0KnftkUaISWCqXUer7PA+n1oPGiHfTHHVKnjYpE6Yzoh0hzppSED/YSyqQSRcpzzOxHZvZbQ6AYerOZPdKPKpVe3D4EHYtSBkU6sNKWIxQGmprzwnGzpo98fKED2yJVjvHyOg6oPWijpdF+xT5B5/uD/joXOKXnnwYd2aSUV9iPF3npHEGjhzZVppxuasTlC139sVxm3Mvnurt4tnOSHSZ1sGvP9XKrnPt9KBChoprT22azhh7Q2QJr5qFoqs2skXdolpSeDxqvsao42T9eIlVqSjWo3fxmc89s6myHtot7IEsqN8gFtEwFarfaf3h7RkXHprD3UBJC/fW6pk4fpe6El6qrF1kvIs2kmc31Ntb0xAX5n+/Pv+WccILnHBb97hvMjnH+uOtoT4kGO0J8HnSjffTIXRTISl+NA4Q+DgemNqONvlQwx+tMr67KucdV5fbzpBLXRvf/Jnw2awSdfijQwOGHYdvdgl4pxbS3x92q/ZWc8mEcPcV977VeSSnDVlbFwR+vHP0PtlX3nBqb19SpdRt5d7vy4hVNHeKETbR1pfVhjtefdv+xyP3p7Ur/h/7gx+iXh0sd/Bl+9AVyjnGmr6Do0j5DLvDn2Nn3SR3GCvnweK6mA9Y28v1t1g+oFCMtoNK/RWpeIPTRc1d41VnQwhJn3r/N7Os7R93ZG1M/xPr7BbukdMB14OVlyddFXTtB6nBtZKHoFFqgNGmML1R3yIDqIfJBbDNZFXPHmirbsdvIGWOp8Q92CDmVOKqmpvbPR3n5JPn6/N7yWa+uaFH/+esNFedTHlf5mLkuLxMf9dhP2QZrEe6Qk3O8PWdGG6p6yLMxTvgICfxHXSemnGpysfgxws+t9B1jqTaZ2Iz7E4OrLeyi4YuIsqnfxa8zgcGHaqzH99HHEhUffpl4Gd+lfuip4ZzKZKQex16pf0YWiW1+4m164pBoO9X2RL+j7YvzBmThPGsHcx59nkjliT3Q+RT2o4sOso0aVOxk3XfIEvfQ70CVil9+qZzDhl9pvWioOOvhXO7lDV6ukOo0/x+89O44+ekfq6tccuMfVccO/5hf9h4zM7vZltV1vvTqZ/Y243zv+1GhLp6CC9SffdR1dErXE8a8hAZ7XM5hX9FNb/wJ8sxXoi/oCAG8xMD1/DvGeKX4LtLSFyg9a7tZsmW0Ff05ycvLCnXRzefIMexztNeFmLOO+Up03BGRnjhiiDG1PUTOxPluF2ZDbVtCHFdshvpw161jve++5oc36VhGavfT5ZzGYmYNXbraBbcHIy6LMxN+XOfaPp6Xuh14CfcX6tYTXPaudHv/ZZeXzzRVPvjWytf92ZtcD04pLKV+zyearJX9lZfPlTrn+rxhkc8bHiPnrvW2zfM+2+p15x3X1OHYqB/DDU0rHTfPpvNks964hz7qklf0Ja4Jqb1ED5El7K2Oc7Tpp8m5lV6id9jkp0qdaNMjnXsJyKTOm70/lnn/riOOUxrftnUw9Yt32vD0+G7rl/XZYoB5607VNatj5xFfU6ptceyPEsQeLPQ1qE3My/Abp0h91j7COthy8UM3MWZ+z4V+7s39TV7yzHVmZraX3WtmZn8u/bziC5f31Nl0z8L63BP3/qqZmX3p4+57x/zE8+UerBeNuCzXa0sajIMYb5Ro7dE1+rIUJwP6Q9b+FroMb4rjquOE3abvYxylmI2PKNnttlhN29SlvwCbRYyic8m4pkofalz5vnDO9Zr3ANPbzP5j5+bGZl3+uA1xPVhj17aYocsvFq69cLwqN+ET5N1GHW8REzHHEZs8x8eHNS7s46ukf4jx0M2bkDvR1Rqcw2/IOsk8twu/559Xevkq+fr5vvb+geodx75/8r361LI9bzYzs4l3+PiiKjrl2s/Lw7z8jJfrfyKVkK8JL+knXaec9JJ5MuOlsSvznug/dM7FHAmZxKaJn2eezXsgnU6ti3MjdEKfhzpta0tmjV1i7sX4fqdQF8zWfwTUsU3X96NsFtC3Drzz/rhfh9tsl9rS0vvhHUHjjC+21JEYrdbj2FdPkP/d3yzw/tgc11vM7CiXqzVdfY7+I4vxXZRZ034Wd9TOonjIB7ZdFdHXYy71tmHK1KQTK/MuGffzjKbK6JivZ4/7GvUYTdA+dX3Dvmzt8s+AtmsszTP6teeIneS+G+nXrliaMWM9793Nqc55Lgj+uH6/o22lI/EtjIHG0sh09O+vkDrEKSqvgD7GJ30pHDeZL/M8XXNzcJZVfmF3+OKuuTHPiA1HTlTuY5zCXEXtJM/vfb3EdW6DjGnx9yIR6C36h7zqO0L0j74vrY8vDec0hpj00udVC13GN4lfruXC9XeO11koVf7JS3fHr/1f1Y8y/kX84c3frdayDnhE9cL8YXtU/uibfys27LVejnt5hZcnyr2uwBcwf6BfdL3G64y8xPow49+b575366X9dWqFZrwnq2Kh6Hxti5lXxve+Zv0xM7qm76nQ//1DOUi8rfrMtbt0q+seyH+bPxq0jt7jHjP7459BTB1lvAu6ZsEa6Fj4vti7OS7Df+SfLyS2eoftGBoDx98Q6e+E+J2G+IIdXrMUZ7fZE4lLl/qzreediOv1MVL9uuoZnzqz1szMvvRkn/9+T+qw5n2zl5tW+j8ln0cso3NZ4lJvzxH+u6W1E1InzuviWq9Z41PGvCyNC/KBvPPsGovzu6n4Gy1tM/YEm4HOlX4/WAK2nLWOQWRoAPT5WUVYX58j8jKNvMV3fCqHU7ara1yJxLCxatUqu+ADJ9maz+7e++z1CLNbb73NDjnkkN17o58jZAbxRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpH4JcGvWAbxw+QMu+jZIUnWOM1KucJLdiqWMphFsDNVd5iSYY9d+ezkkV2IC33n5qZJPxAz/Zj1ZWLQrJ9bfBfaUt/9tJ5MYbILqs5M7bv+TvYdW5pZl4QFq3133FJvl+zWrrNx03x2d66QOtd4ea+XbMrSneFkeIkJwzTBz597OePjNCK7luoMLZ5dYI7vBB2T729cWZVk23y+H79kZVPnKD93l39ez65Izb7ARSe9RCYkaxs7aQ/z8mqyuGlqdXacsQONnWOyA3SOD0JxFxiIGTlLCLspF4j8bI67Dncxe0PdHnaN6s6+E6xKU3/kEHaQfsnMfs2PahYUsjawK5pUBKVszxGF7At90AxXCDeZBNB13U3r5070HcJXSN/N9f7cPukH2M34Danj6VLI+n/ThdYP5MrH9zQfy/N1LNmlGrN66a7V8ao4ytt8sx9+pVR5T7g1yYT/rtAsNkVulvE5wdt65WRVLhjzOpPyRWTIM7LN82zWW/XZ6XPfsfkBzxSnyXjrzdD0+YZ4wnp3XJvZQte5TZo5G3lpy6RhZnN8nNDVuaJjdWZf6iMnkr299j+UGL+/kTrIMLtUkdE3SZ1oR8gkoLJN1rWu3dXPCZ/RK9r1QzM7ekg7wZ/tR7t23YZdr8X+1d2/UtfMum0XukFWpMLO2mhmp9Fx3U2Mr6YdjK9mkOUeLoN1hhDdpcz4cg+X9RG5Dn74Li/X81xqbxlDl/sTRd4QgVV+brnfQxMVPd9LhgeV+KTUuQ55Ddmrzpa+Q11gVqiHUjM14PTJPIn8aoMA8Rd2RZ8ZXYhZuc0am8E18ctxh7iZLV1RlXVGj1I2L3SBcVF72yZvKqPejlFv19SEH7++pb5CM04gJ6UMEzEb65PD+XvM7PeHlF2pLYboyo7UleW/lKloEETfDzRTBM9KxoiYScOsGQcy6CAn402VkbGqnCHOxleITM53OcGGbJLnRKdnvB3LdVwdiFlMQKaMP+gkKg/rx2btU9rvGWfIwnKFZhMm+y/6U2LIaYsRNWNLyK7UkxmRvp/wctLLrnH2rBDE9maFbAfYENVnOp2MFUxASs/QJW9R17m3xg/jXpJRmT4o2Jfab5QyJXbF8k8Inx9slQ6fvBuzsjCuygTQ5ms1bqAfkcGSTSxd26w3K9KGcG429lYRs3UCyWZ6rPvIa+O8yKz2FzWL1J29x82szkR1on/vCpf/vxEbiJlGn6ukLPaYa/67rvJK+4hfrWrb4z3N8sqPS9bCD3qJyVnPPFhsyDx39FuJ80tZjUAp0wv9ypwEPdC5rI/dUR7wr6EdD5Y6MdZ0f7psRXNoXWQtYCxLGcxihunZIsbys0X0q08t1OnKwuqos2xOWMWu9dwh6PFXrV+fSujI9EsW1bWrm2PHeLxyXbSdqvPYV743VhWj4j/qOAfBLWWfipmlC22tdczbMyq6WmfP5l7IlMYEMVst9l/WB8gKiNv5317qmhtijj6TSUmzK93sJTpLs54idca8JDy9Wc6t8bnvYp9nEl5MqW+h/W6D6oycGmfzzJGJReMwdB17ENkzzBrdjPZ7EPYntakx+1YhS3+NOCc1a4IhzmGXSuum8TqDZPhUvUYu6J9SBtZhZzuEJaIr2zLjo1kQsZm0udQfbdlQT5L/o0/QhduW8VU9nGqZHxaB/GIrxptTrDNtJV4vrV3gYz22WuLX0ZCGebOzVP7W//m/Zmb2L//6v+sqe/z6j8zM7Ke3PbTvDg87rJrE/vA5bgD+wE/oGlkdl8R4VOcfzF2RwRKLDuODDE16qc/ellVQx5B1IgxUSZaYM7ktrtnPSnEyMaiukUZbGtjyzKxp/yDZwbvQJrdqH7BPHoPWWVU1Poy+JbZrdzF6mPXaubDutMsoZauNsuj+da7Y/e1t8VfBXp/mTu985ipXSR3ifmKskg1gPohMIkvKNOL3mOd6fJcfnpH5AGvVMG4pEQYMmIRq7/fyCqlThzfOvrPsjN57mZndTr9g+9z5nizvAlZ5OR2yIy+TLMnr8MP4PDIGT8rNwjrCHI+p6zjGrPZx9bqR+nfkNM6DVDeIt6K8lZjroixpnf3DudmgdC+O8U5M/Esdy/BcEx3f513cMDOIf8iqMR3kWWfDgjAbaAyMr4vvolV/4no6/kfn09H/4IP13QT129hsFdg1mR+e4te+KPiSl4lductLYmafE/dkJWa96kFeMl3WJRGWr4jB3xCuZ2b9MSe6of6E5+CZI3ul9c8/etAmAzI+I97HM3EOqmttkRkXv16KXbGl9L2uJWLouLaP6QJZX+frm6K9LjB4zSpzcEkP4vePLdRRduDdnXm4a/0oZlQvzZt1fVPran38xWyYdkroYmBxuV3s47xRdZ351CDr6nGdUWI9bDHduPlS68MJIVP3n3sp8+YlT6wYejact6z3etfJ92pfPeGlj9MpIgPRrtRBgL7nR86ODKVZ43PpT3RU49sWOT9GbBhddiFrbRtDaVbr73xfUNhSsh3cn9gKXdc4DJuBTKEr6ldnw2BRQpT70lrtIHV0br7dzA4dkh4rxRoLInFdXW1pnP+0rT2XIPOymh2VA4MwprjczpMfNW1lDhjngmaNfGKLu9YS41qkgutg10rvFng2ruNt/YS8a3kpMu0+6wSPa6/U69G/Phb8tkNV7YqV/o+fWzTenKvZoiPTnP4QLMY72G2xv3VcHH/vobYQGxrs7oj4zJkY9xML6LsJ1p9L754GAZ0z6WVkMzczO8BL4pb1/XWOXeG3j3M4Xa+Ja0AFP1JnHp/wA/SdvmMftSqmPisziCd+brBq1Sr74F+fZNd/fvfeZ+/5mUE8kUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSv6CYs+MqiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCIxXMyMmN2fv2YeOkZmZmZmHuhG7E401CR/bT20EiNOqTADLXiJ4iHSikFNohRB0DdA4wWlk3y3pjl0OjtzqpIe6j3oWKBtKNGfQAUC9YZQgXDfeU4dVdPLCuVPZIWBBW+qQBW0xL8Hi7YyKY15CZPPZP+t7APhe2uc6mSBUBvCnHGvl9udwvVsea5xL492qp+PCG8JtKG/7vQaJ3g/X6nUL07bs1ip06yXkWed05cc5f26hhNyHehTYR/dUqhTUwFBhwL9yDeaKvO8HWPcG5mckCY73cmVdD6UcT9p6tSyTF893PoRqYZUtvleFzUKz8MzQk0i9GT1s0JlUwtVuNawaDvfbA2VlNI/oRNQ4tA/SjcVKVLxKF3UYdRVvhzG02mfDfpbpbIB3F+pu+Cm5r6REtCsof/BVmCnShTxLheXvqgq3yOn1tFHPs5LfExVn69mfOmPM6tiROrM+D1O8bZf5BRI82Us0fm3e6ldBkN87W0ibY5ZP40Q9nZCjjk92lH+HPvx1cubKsu8H9Yhk8iE9p2P63y/zpZJPz4mdYLcz3G5n1Y6Or/2ApeFzWIPFvq1NyEvrhPzxBZtZXwmrBcqt1CPISfIqMoUnY280r9KURXlHao5vY7Sq5WwO+l3B6ExVRu2wkv8KjatRBfI95RainHArr0vfDbrpvgC0c471eOxYievxcdC/cS9J+Q641XxYv+4yinwRkVe6LKtPDP0YkJ7O9/7rvark3KPsapAt2GG/5RU2eK6tNj1aKN/XvKipg7m6X4vrytQgNf0sJF+utCemu6PZ71R6uDHkA+uI+050f1OTU1Yon/ropOEmn1vLyP9p1mjh1cWzrVgmffBui46Op5LafEi7SF6oLRrXJPvr5Bz9CfyAZ0dce4w6HejDg9CPwpGC8dizNBll/i+UqnxjN5Xi73vN35f6iCLxNeuuwvFWW3Cj9Me798RiUtnVlblnBVVOf3u8B2TOYbX7XGI/jxLfTy55bS09Ry3I4j/fl4e1lQ5+K3Vdb75Vu8r5H+9xnX+jJj/adozJnVQaNoPXa3GNPifLj3CZ/Mcam+xDRidOHfS+8Z5meKgcI7rPVjq8H1subcdf29mtmWl/4NuQeOr+h1lshQz0ub11o5oO4Rad4HLxeZoI5Q3nfsxHtu9ba8egi++xMwWyZlB6BLpR8b5w20VBeLf5zsdeE216vSNo2IXpjhHsMq9XtXUqe0cY4BMqV3gmthU2qHzmEHoRnlm5F51A51gnHw8TpDnwRQf5SXzzAuaKo96XDU5X2ibzMxs7eXHVCd0inCh9wux/Aa3t/PEvuDO3oMf8/nhYvGZGxln5pkaa/kF5jp3d712oXIPBWbJDgD6ZU74rPIS9Y7PfyN1oPd8t+0Y+EjupXrVRcsaQcx4uBxDTliv+Vyoa9bwnZf6FSht8DYz23dIMfUjCzWwwbR5Us4Rbw0i//Qn31fb/tRQh3NqS4hvfhLqKJAT94+j0k/Yg0V+7HbG9TkmlcK1x6tiocjtJr6H33BZXCD3mhOqvNPLP5NbnYtuuc87zW3QP0kd6r8WymCf1y2R9twV7rlJ5RVZDnPjI6Sta70+c+K13ErXi9A3FulK8W0XNXxLnaV+z/Xa5hYq9J6xvLAqT3Zbfol8v14vRXaIJ3VeRn9ig0prL/E5uP9qOcbzoMdxjagLuoiy0YY3N/6QNXo0W7rwLhp6Rz0vi+t6Ej/N8fhkmjoai7NuQN9tbK8z1+el2y/vPW5mzZyVsXMb1CMnnEOWsVey3sNYob/Q2f+XVHmal4d5ibnWKRdLLkzjlSH+ZC8ZjnML39/AF+nHQjxIvI++0Oa+2M+stz/NumXydC+10XE9rQRib/qZuPQdUmeAeV2ts8RjErePeJw1gz5ie7ooxLmnvC+wO7y8rCrq9TX1Mcgk1yu1PfruuM69O9a43lRoB3ETsUhJd+kj/FopNo92Tb5fj0uUL7Vd3ON9oY72vTunBT6WyOsxoqvXebyzzOOfdYWm1mOPPhO3q9x6X73X9ei1rC0JDTzTlecXmv4XXt7m5Rbrxxrsx2+HdimYf5XW5x21LaXvmVMU3qnVz0hwrvFtjJO71h2RE/V5bfGsjjO6ECnnZS5ay9cgazldvgYDS+xbirtZK4ixp64HYDO6bBnX5l0JdvdHZvbsXVzjepdV80dsBk6iFC93xU9t52IMUToXj5v1ryeUbCnfR6YOL9SJ7dE1B8YKO+Vz6hNEDzGhU+hTyUcxn6PvZL441+PR7eiL24PFIpMLvbyOAxNVMWe8qTPt9nGOz7eJW0bEPs10rcEC5B5fzrN2rW+8ovn3GLd91/E8jJ2OD2sTxAnYHh0L5AXZRo80BsbW4HPRVY2xBsEAMWMNZErbGtf3Y1xoZnN8HOp4sqQPjJW+w73HzE7cDe+b3N6O+LjMqP3vmv8A2h/7Q3U12lD/zkJ5V1PP9aiL/mn8Nci8rAvIG20tvb/g9wPoKPd6ndS5KJwjppG28hsMTM2vealdj4u5y8tHeHmh+hp/5mUeYK8L8bKZ2Wb+wZ64rsyXdfotPs883ueZV6sNoF+IRZCvbVJnkHkg/moQv9oFxiDo76xtWMRJ8r/Hzn0xcOmdZ/ThpetEqD/z/px/vNlPt5ndOYw1rrNNfkRgzRwJX4WulNbiu95bAGSi6/vMQ0rreqBrnTHONzrQZzfN+tataugYRl3HvmjMSLw04SXvVVTmeVa+j8/S+If44oXWiwPk/0kviZO1X3zMXux2cRXPqmukHGOey7PH9zP6vcI7uT6Ufq+E3qKz2GS1v27nX/y60OYSuuYRUU70HeFXwrFBbEhsewkDvMdmLXGNPtfRVsXUz91pPU4kho1Vq1bZ+eefZNcNoh67gLn7md166212yCGH7N4b/Rwhf3OfSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJB4QTD9oj918h5/u5uv//OFXKIN43EHKrh52RLFLR3bM1Bmpv9hep2/HWWnXd9yh25IVyEwyEpCxS3ch+o61Bf59zToSM3gs8kwrt2umlYBjPZvYj+TY97y8y0syIL1d6pBNeLn3HZulHy+7sE7znVkkLHqa9+ES2SG1wevf5uPyGLJGSVoWqtPNK6Qd415u5QD3l6xtdBHdeGQ8YU02prVkqItZFM3qjDXLvAF1RlDdtcdNGNex8Nms2YXIDvXSDsOYxWhuoQ47femrO+ScywnZPa5b2Xu855p0CDtJNbMnuzFjFkfN2BUz97XtnNwdWVk0ww67+w60XhR2gtaZZ87xA5qt2XcEkvmvzkYvu77tHi/9med6xu2eLC3sYmR3su4Ij2Cfju7WxlYgX/SvZBhd4vdlU2htekq7GePuTt0Byq5MT8PyF97295zTVJnv99rCMW/rcZJ1ajUyvT6Ucv+vubw+PmYtN2vGDmVnB6VkPayzJbAbk92QKlPo70RVjPju8RnJ5P8W32X+NrL8lTKUsBM9ZlHRbBBcc5Cd5l27k6POy+7Z+mvY8lImmJCpftT7bEplgb4uZYEA7F5nNzs2gHYNU4+f7kfpQ81OGTMRdmTx6doZXme4ixk9uqC6gv5iA2mPPjsZB8a89K2MPdmV/BnnPra36vqSrhKbuK4vFfmf9HJ7dGzSd/Ncx7bSLmkr2VjqrPae8eS9Yvdfi0HB1nBTzSjlu4+JO8b8sHbv1IT/851wspAFpU81tF/wN1EP1cfgd84ofJ/x5P7Iv2YSxPb4M57gfXhl187wEtyWzvU+78vcpW0d9xK5VVuInI152ZWduATuQQacmN1iGBnEv+H3QV66dHQQME6Ms8YdMZvFbKByi0zHLD4aY7Vkx1gk+nw78TkZDWlzKZMs5zQjwoSX+HmPLzSDckz8NBaabNbE6a/x8mmT/o+ON8/PONHPY1KnLU7RjAbfDuc8Q8So+MPa38wm276OT1t2D2XIGSRDEuOwwsvA4mFm7W3TLFrYDGSRQdE4M2ZQKmU9BzH7eRc0FqdNmlF0mBlLtU9DdpnFIrfF2NKszP4RM0yXsqXhC0L2/yJ8TBevKLQnxLA98ToZqVzX6uwYkjVqmdcnzJnSdASMmcfMJ/r3rzhP6ng2Fhh1yFq4TKqsox0hc+XnpY6H2fabXk54+T2pc5iXdOEmL+dJnTo7bMiuPyJxwkzI2qb+lbgJk0EmqM2qnzTODdQytxU9bBlkHcKmdtlx5Ix+VUOH/vsAnex1L1F9HiS7eFe2tLZMUCpLyMwgmcgHrfNjMztzSDH1G+VMjJcQmFLcH5+9pKuDZEgkKxF2Up990kufa5EpeEr9imbVDKgZORDKbf115rks3uWfH+TldGkdbMxL/M+n5RwxNzqyJNS1hsgA9p3/x3rvbWa2in8C49YWaftiP7Yx+k6z2k8s9Th5PfJ+UVNlnstnrfOlzJzYdNrvfl4zkf9/1tuOeny6YuBjC8eu7b322q7vR+ZEs6bdxB7EJjrez+u9V+1jdA0Fe9CViZNzjC/rAKdLnZhZt4T9rYotXj8EPf6eNfFBV+bUUsY5bBV2KmYRNetfq+jKmk7coWtk6J/bgZrJomucS1nTZpFJrfZjHXONer0emZB55nE+HrhyWDyuaKrU5olHfaecuys04/e9vFj9D/LJhfDzkmG0tm/MPzzuWSisKJuIhbrmVYPE14wr8tGRgbIvJtK6yBlt1PGK2ZBLTB/Rt8TshV3Q+UdbNmO1l/RHW0ZMs3Z5x4cNS4/fYGbP9aPIpM4PiYFmw1pQil/cVi33tt6kMRr2gz7CH+t8KmZFjjGbWX8sw2dlZm0bn4JNrjPn4/tVj+L8m3spY677naN8jrSfnOJxVjPmvl5/yqOaOnd5eUWMk5V1oy0W+RP5nz6LLC0i27V9nKzKpWNVWVz7m03GeAXXihkRZS1z+ZLeKmsGsLvFTILYrkkvo0zosRgzlub6cf22lHl1kPWfKKPDWOP6ipk9zJq1HOxaVyxc8pnoRlcW02gH2jKFDog6Xo5Zm836/E/R9rRktO1ci9Hs79j7yOik2Zo5R9u8PSeLrl8S5JSsqvfLsZkJ/4d4h/EaJLYo2KeaWRb7pPYWG0GflRiIY7yiLIbErheFurr2Fse+K4bteq8UmaV5Ia9r32Hs++TGrF829Zl1rqhtnE0mfbNiRuqhrXHdbTayj2QK5/7EFwW2yppFh3eO2r88M+sqLtuzylJv1s9eW4oF6BfkpbT+GbOVK4PeIO8OggzVvycpMPV0MZaA47wO61YflHM3e4mLrKc46ut4DuIW4gzVI+7rtrRel1PZusZL5ncaL7cxWJQQbWEppo86qu8RB7lHC3rYwugX/HsXw0eBqaS2a5HRSfssxn9dtmcQDHNu/NfWGysG5via0VXXZvHDMZO0rvMzx4qxptZhPRJ7gACXYprY9xr3g0HeZaHXt8gx4hvGBZveZXsi+7KZjayoytpmub0bEfs04/ed6/o35sfXa//6NY9Z0XvL6/QD92C8JuWc32+ur0PX70xL+sP6Bn65a/6LbVX/5DLdx6Km71qQE48LjvBza2e71hyhdp/x5OUe+qfrNG2MHqW12Shfg8hWaS4aEZmef2xmZ2UG8cTPDVatWmV//cGX2Oe/8OAdV94FzB+971cug/ju/sl9IpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkfkZ4QDOIn3vuufbpT3/abr31VhsdHbWnP/3p9q53vcse//jH13VmZmbs7LPPto9+9KO2detWO/zww+2CCy6wX//1Xx/oHu0ZxONObnZ86U6/mPlpNjsONUsmO4HiDtlSlpque7ALjJ0SmtlqMpTstNTsu+yWChkIdNPSNDtsl/TW6dn9dKGXvhtsme+2W6e73Njx6btM53kGJN14+R4yqh1urRjxcqOL6WPeKie9/5b4TqYNvptykbT1r7x8v5frYrY/azZk3eblI7zcXNqRN4gM0L9klNEMRMhAzBBU2lHdle0syq/uBmNHITscD7J+cF9va72BuGMX4kAZpYBmkzjezH5oZk8eUlaWhxVqsEt0Tvis4BxZDnx353zRhy3IMP2DbEr26XrXLbub2cWnO7Vj+k8dHzIrkl0AWVSZ4vuuN8UsvmNVwdjRLWtlV/FC14VNLl8L/V6bNjR1RlzXZzw7+BxPY9iTdY0dta6zdVbuCWnyeFUy9Fvl+ye4HbqSnZ9keNBd45N+bc9CV+thV4Y5twGLRKZuD/J5rI/vv8ixetdsV0YPwK5+xlkznLiODZRFq+vavjv/ZX6diyV7e22gsOWcG5M6MbMpMnBKU+VYPzfhn6dLbW3TH47/2MzePiQ9PtePkolAdwB27YzfEXSHrfvB+Z5Z+ig5dSW6ji1G1zSLEBkE7wx1VFdjloNCJsA5fm56wg+Me1nK0BCvqzuXY9YtfJ3qiO8GfqfL0htkt/dc74ftk37AZeII2Sm81ksedTXf1x3d9Ac64f28WDKh7eflTVHONP6IMQmfC2PYF49p5rBDwzm9J/oaM092ZfZ0O7lYYqyN2Cpkc5AMoWSUUtnGt/CM9P3OZgkvyeSOMIzsSsTUYZf5iO+8n9Fd9jGjWymDcrQ9pSwoXVmVYvYsH7uerLnIBXEYcjwh10EPO5h+aoQ680S2t/L8PIfGcTFzpvvgRVIFF/kML891HZ8rmdC2xxh6kGydZMvQwN/94NLxqiQDck8MjK1BbskQVcr0cFb/LaZX+j8xW4Eyckx4id7RZ2qTaf/R4fNJUsczRfRlQCtlTYgZ1iV2XeT2rI4pShnAY5xORqpLpQ59R/+obCMDblfqLC/qA4k/te92ByuPNRnDi9nCYzaZUrbBCOzvjXJs/94q81ZU5VadByE8zJ9KsVrMnBQ/l1DIYkVWsumS/4mZc0p2H3nVLJRmtkxsI5m1jyd7oh//taaK3RBuhVr/txzrm5cWMrHW2ZToc2yi+piYRavQZ3UmKb/2y8S+XRwz01Fqdv14zecU6rgdqccg+lmF34OM7+tKMhrHpyvjiq5zcD++1zU3wGZhBzRVPPaZvo8ZuM16M2FNmdmpQ9Lj35Iz9ANtxIZq38d1opjlfoio7dqkH4iZ2neEqLesn+l1sM/IOd9Re4udjxlx31Sow3UYQ1lbWuR27fagBxdIzPin/MO6mn9/sczjN4asdgtExzbHLG3EUTqGyDfZlGaTkVZQ63pct1K5DZn8O+FxwWLXsY2aob0r1m2z6QrO7Wp2szaUskLuqP6wsqR93ppJWBdidkizZm0KGRqEOQvd0DiMNepSxscYFzM+ukZWyjZt1puRjTnb+aFOISNbzfpXyi4Ws3SyVqU673HXHNfNt/hhnYoynWSK8ewLm3Osdz3fP8MsNUcuUMcOjIvP+ZbIGswG9Jk5Dm3WeJIGTHjJ/E7jScY5xF89/hmfj92PWSrNmrHrYG4YCDwzY1fyHzFOUJkcxGa1ZR8trScA+kfj5rbYcNgZxL9kZp/tqMkzsx7M/Sc6vsPafmH+W9tvlRPGHp0gtirMlfqyNJfeYQHs7nFyLOpxCW2x2UsKdbtikaf2fjxC2sFSWIyv9TXIi718bdfaFPYssrlp30cGjVKmSPwyuub+9YjxpsraW0LdOLc1s2XetjrmLbE27QzDmgKZpG08a5csDIJSvD1IjBn7QX0Dcyv0mTbiD3aemafW4Yd45uGaEGc26/tdc0jXv4WSKXsT+oMj6rDJdQZMYjWdo0RWbPxYKfMw8ku/ambp9aGOy2gP20Xsj0Im5hol5tIYy7OOLP0COfLWmP25dK+u+T/PyGDic1WHXY9GXF5idlUza3wddrtk91gDWuml9n1kACitORBjMbcpsVvRD7StxDYwm7nAIHVpo8ZW2Kyu7OCOvnfIysYQfdpLrfIThw5/jSvOG5bImGxgnkJsVtCb2tfS5wip9h1jFv2HLooSk8U4ReWtzeaU1l0ja4zeH1vKs6t98XGY5/PKraV7Lg6lX3eu+N7aPvqzHzFWlf8ul9nPSz9l6zihehRtBfZTsv0vcvtfz79L6zXYFWKiQdgnC+8darnFt+gY7kqm7RJbRsxWXorV+CENflHjsPjOUtFmH3Xu1/a+Q+0T6w/I247mD0NkAhiI0Ut9A4uo6EjMJG7WjAN9hj5rPIV8leZsEYMwnoASS9IgsoTNoj0a9xNfx3Z0sbWW9KcQh/aBOJR1L9YO9F7E0l3vSuP1SuuUyDltLPVP1++mImajsyUd6WLD4tr+HAtE1zfzTr2jP/qynJfmFrCRYDvxCSUdRu6RG/29XszE3tYvu6bHicSwsWrVKvvABX9gq2/Ya7fe58A9pzKD+M8S119/vf3pn/6p/fu//7tdc801Nj09bc961rPsRz/6UV3n3e9+t5133nn2wQ9+0P7jP/7DHvGIR9hv//Zv2/btgziaRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpH41cGcHVfZffjc53p33Vx88cX28Ic/3L785S/bM5/5TJuZmbH3v//9duaZZ9oLXvACMzP7xCc+YQceeKBddtll9spXvvKBaHYikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKR2EXMmNn99qAHuhm/dHhAfyAecffdd5uZ2f77V1RFt99+u33ve9+zZz3rWXWdvfbay44++mj7t3/7t+IPxO+99167995768/btm2Ts0rREOk5oUgpUalBI/H3tmP4PU4RypeLuA7UG1BoTDd16mM3hs+aKR2KCqhNlNITKggocKDDOE/qOI0QbMjfC6WZNRQrLhrHj1flflLlijOq8s3++Uy/x+Iz+pszz/vh9/zzhFxn1KlfpqA1c4qqpYc3ddZPVuUNY1V5slBBPcPLVzoFB3Tyz2mq2BYvb+YANFhCofR8/957nILjoVDXFah95jhF3nQX9QrjAh2Q0qpCBQLtqFLuAWhmkCGXnyPk2ddGCiilE0LO4FQsUWQDv04X4y+oacFKlJ7oDfRMSjk0ar2yvmO06/HTzGxf/1+vqfT1ZmVKNqh8HtVbdUuJTgtdg6KzNE6RlkXM6dIzq3K9X3uh0MtsOid871DrwxL//oZIFaM0Qv786+lzBlHGZxPfd3twFyeEnnIGCkKnjFnAd1/U1IGm8BynFzwzPoOZHTVelde5vC2R72/iH5cLZHntT5o6i10nNk76gbHe75hZ3ceLvX82+vdV5y/k+V0Pry2Mb01nPxvKSOStQCdU09Ip2ij7XiH/B2quiyNNsVljTLEdUDcphRL3chk/drwq9dmvLdHPRSDnyBKURdjN7Wb29o7v96LbH0fqpBIdV6QtVJsMleZYuJ7SrTk1FTreo7I825dCeYLUiW3yGGCR6FhNcRf7VW42HW1FyW+4DV3o7cdMqX++nf7At7j8z1/R1NnifuwNK/2AxBDbOebUVHPc1/X5EzNb7f0z4n59RuugcNH2CG6KtFdQ6H27v249dtCUlWg7n9P7cZ7Yza3xXuqjiC8iJZzGg8gXfeX6d5vWp+8HoTAj/oIabaxQBz1uo7zWOvhwpRWmrcSl2j9uo2oqTPp89lTi7Tr8h94ev+Z8v9cWqMtKVH4dtHwL3aZvercf0JiGPi9Qa9eI97uoKmZK7SBGQgYk5pzrfquPTljpUKG/C3W2Shwy1+kwt/M8KpMcC227Xf933VzjdUbjWJo1voj2e51RqQKz6sO83MR3RP4XjFfleto/ae3wi9eypX0ABagfmy7Ja9CfhUJFWMcrjA8P8tKmTu2HlTPcrLGJZrXerKFtXEftOcfQUcZCqFtvvyjULclvtH2MrU6v49xxg/wfYuM6Ho305dqOkkx3o9sXCzauLh+vTnrJGI4W6sQ21vzcUsf/H4FGkXnquNRRCkSz2gaOiB4938srie2Jw0pzFFCgXu2LA5XeMtIsIncS39aPHOZ+69THuE+4GhknxtN4Ev2ZqIoveiwwVfK9fA97cFpT5QrX42VuF9bRlzoXxX/qGkFox3aX04XenxdfLnXwh9hF7/s5IrfT9BWyRt+Lva3rDhKL+z3XeZvnyzjXehPZ5XRNh7H8ZigV3v65LlPbS/Pnid72DORXNe7XefKPB/hug2491liC+yEnpTWLwnrIwNhf/u+gFQf1+BzZWa0C46rt8nsc4+cwu1t0rhRs8WLXiY16HfrB5XWBX2+zzq1d/5e8pCo3cE5kux62QPH+F1aAt32e+6WNpfjW+3PzhXLM5xT4/l/3wzfp84x7GftMbSB2sWOhBz9e9wcn1I8NMM41JqtiIzGAyksXnX2Mh/GVeu82qmwZn3lep0iXviMonbbfd47LQm2nVO5mt75l1qXH11kTtHVgia/FbCg9H8eYL7+kcA6wBvMOOVbSPxDXpIjfSnP7iOv7/6/nDXznnqbKUnQ9Xk/jqZPCuQIN/Dy3A8wTr/XPpzdV6inas7085lXNuevwn/hMl+Vp1WNkkhgA26FrQy/wsksm4xynpCP0OfrsscXFk1KHtU/GkrhW+45ro5slamn370t8vaVH3oLtw/cuENuzmfp3hlLtQWyHFT7TpthGbQ+ycFkolXI+ItqiYfnjT1unHs/z+LGOfVl7G5dKE14S0xCLaFzp57ZP+mcdO2wvssk46VwJcF/kpmt9gzlTyY91QdcRzZq2alzJ+t1jvcTGj0sdv85bxqrybWqTAp39ZteVzUubKjfR/rj2qO8RmAPsEz4rru39eKzL/bVqC7GvtNHbPjkudVgfRJ++31vXzGyd9pFZYwPMGrsan0fmBPU6GHaxZFeY00yG4xusHXE+UgLxvq4HxO+h17p+y9h3+SOAvFJ3m5md2VG/QasO//g7fh3i+0HaAeK8UeH6t+l1cszHfqEv/G6KNtmsfsaBYpprd1yllpeVXpbeDXCdN3m7ClWIya/TdQnkC9uDHhRiyKWuY+u91Ph4PjLMGhB6JPK72O+/Eb35Yu9xM5kDMF/lvepYU4d18BkOzGa8zZqYkD6jP1VXJ7wc97Lkl98X7h/fG5s160w8s49PTxzH/cPaeY9fxc7ORqZLc7gB5gZTtJWx7FrP/YQNd26sYDx8faIYQ7OGjw2S5+tbGy71h/uSBW5T6zhocaFuiFN0ylVPLZAF5oel36Mw3qWxuD6UKgMeo/6YmBdf+X2pwzHu4Xa6tD4yZ6wq1/q8eYHMP+iHrTHuKsV6/r25fk77/fbjrRdcT6/zvnBO11RjDOT929P3Hl9PxfHWuV94jtoW6Xews8Q9jE+XjcbuxXVQs/71JvWrXXqILLM2RNwR53Rm/XNsve7GcA5ov4x7OcjvpnrRrscfbJlbRFnS2Ib4Db1jzlT4fU8n+H6Ud10Dx/8Rf5XmU/G3XTI3GXX5nIprsoV3ezWwoTonYC5B3MUascawtG1OOKex3riXtJ/5q8ok9mTSS9ZbJRao3yGv9APaZ9hixoB+0TiQ+60OdUroilVZ++M9TsmfcS9sBTpSetdB/24MZeHYZtXR+DuLwvucvhgPu6t1eT9FW9FHtYHcC1tT8HX1mh/naLvK3YZyOxOJxC8l9nigGwBmZmbsjDPOsGc84xn2pCc9yczMvve96pdRBx7YuzBz4IEH1ucizj33XNt3333rv4ULF+7ehicSiaEj9TiR+MVH6nEi8YuN1OFE4hcfqceJxC8+Uo8TiV98pB4nEr/4SD1OJH6xkTqcSPziI/U4kfjFR+pxIpFIJAbBjI3YtD1ot/79KmJkZmZmZsfVdj/+9E//1P7v//2/dsMNN9ijHlXtoP63f/s3O/LII+273/2uLViwoK77R3/0R7Zp0yb73Of6d6yXdp5VwcUbrJzNIe7m0uyhZAsZYGctWc3qLJuSha5vlxIZDjRz8LutB2RVuUOOzbB7qpTZIe505rleIHXYXURWL3Z+vUnqrO+tO+K7GGc0uxK7Sn3n8XG+k3O17ib0XWEn+K6rK8miou3xHYnH+24nuukRUuW6lVV51IqqXC7n2BzKRrM68Z3uvvOdayP+kWyS82U3GP9u0mfUBnVBMzT4Lu86O3HMDGLW7G5D3tjJqbss23bH6Q60uLtNs6SxI48OISuEyhi7gdlphkyVdoixM5GtzKUsigeFc5qx5QAz+5GZPd/uvvtu22effWxHGEyPIwuAWbPLrrQrn74mQwrPrtnsSjtpI9BjnrmwQ7bOJDLhB0oZg6PO6vOwW5cME6V2IUvIF2OqG2po25Hhs26Tph/IJEAWFd3Byf3DLutpyXY2z3efbyW7uGbV4tnIgIC8aRZQnpl7cRO1k64DMUN2T0bneH8yRpSyFcQsnbIzdo4/DxnDTvd7vO9C6wdyp3LPLmZ2upNBQ/U79nV8drPmOaK8aPorN4a1H0I2Btm9rXLXlV3crMro8M4h63HMcmTWv0saG6SyHf1giXVjEJQyb+wIpd3AXwrnVLYODCVjqBk9o46OealZBrytCzyb1+ZCtrQlrscbsOVq95EhzpUyBpeyalove8cl3v7j/Nh/+PEt2ta2zNgllha/Dl1Z3ATuWQRGXe6mNHtVzEqm2Q6QHc3iYtbPALEjMK7Yo9LzxQxOpWwhMa6YTZYazXqAnGMzJIPAnBVVOR3ZTLBP95jZywfS4x3rcMwi18UIUHqO9aEsZTrFD4Y4uQf4krhj/thCHWUWiYjjEbO4C15GZt2usaM/VsixWJ/+eGyhDvaJgFfl+NhQF18jmdDmux/7Nf+8oZS9PD7jWeGzWaNT2Ckymq0otBnoPAg5jTGmxtBtGW01O8aKUGcQ/Sll3o4x6yAoxZWAfsGfqn3he8hmV1uJ49ROMC/VTCdD8sUPu9vsh++TmjEbkmYLib61Qzf6sjmqLYw28GDrB/aD8V0Z7mnWZNgl80opG+psgP50zAOWe3t6svgSY9IPxHOSPXSZz33XBbaMeZLt40lervG541E+f12j/gy/Q3YP5uPCjDTfyy2uo4t8Dni7+kxk8Zbw2azRjchupP69JOcRbTGZxk/MCcgSVMrGzbg8vKPOjtpgZkaGrAkvu7Jklr7fFltKNqsFZKwcxJ/PtUqPzxxCTH239fo1l5k+edXsMtjerrZ2sboA5iIhs9Q8se2PsdCOLmArVO67YrwIfGbHnO8fXd5/F5nWeM5t4IjXha1ujV5nZVXA3rOF9ug6EsfiHFQZMRgz9FllAD+D3KOPHZnHyDZesxmY1XapZkfBd2sfEku4vS5mQsMW831sRskGME7IgGZAjVnjBslMPsuM9TWYb2AnS3FpbIdmXyeWCnPSnkxm37fKNjx2CHr8VWsmQJrxnRiYdT3mkprlj2eN9lHnmWNeInfIlvpV7FwXu9EgcRdxC9fRNSHva9gpSknYaxtKG5E3nRsQZ/i4LnA53qxMO/QH48x1Ss8Xs3aaZCBHPvDzXf3jbT5WMpFfO5v4hGcurcl4jHiixxRXlBgCYiwzwPXq/tH+jdm3S5mHQZdMlLLpAWwEttPbMV8yT245v/dc8TqBJW+JX3eDZhIl1m1jIRgqFXNJAAEAAElEQVTmGtdhfhThLrWZdqC7atuYm2Dv8Rul+St6oM/TNQffEXSdBt/AGHSssaHPm0oygD0Ime/tfYW6ALnZp3CMcVXfwHyDNtOfpSyMHCs9l8d9CzwG3zzhxx8sdaIfjqw6Zo1Mx/lMqX86mDVqNoWYSVzrc218li6kMT/gpWJJJiNzqtuBImNimN/NlTp1pldiZ9Y1dG7JPTqyCM+DYaoUowFkihgEmfqhmR09pDUu7kFflZhYuuwrYHzpe5XbOBcpMRVSH3tdei7sPePDmofGaNhbjyX62FHMGh3DVxJPimz2sX8oon2NcziTbOnoaLTxZo0MRcbQUnZo+srtZCk7eA36UN9Jt8UyGq9H5jnVsai3PKu+t0B2mDMRz+l3o++mP3Q9bcJL5A2bo2tTcW2WMdVYdoD3mVHX54muD5TNnvsi09joUkyv883d8b7JrJP5tA+8N5aYuu/3Ho5jpF+uG6RfiOmjXSvYuT6/Wui7IqtjiLvqd9Nd7UNu1V5jP6K91Tre7tpX4fvUx8S5VikuHGBeCGN8PScvPQ/jwRqX2sC2+K/wPH0ovb8Y93IWrCpzRF5q5u74HBq3xEzFMcu92ezmxoOgxGQx5mW0FfJbojlur6cvtMoHvXZIa1yFterjmfP54YHWmHTNuS1OFtaZJe4nNmDv47yqdJ2oK3rf+HsLs6avuQ5ypnGp37e4PtOGUixBO2Jmao1dPxHOAdUR/PDGlro7QqmPYjvaYsRSFni+V2Is4VmjXut6T0t828k4PQj0t4WMfdf7zPhOpCSjkWG31E8DvNPoQ9t769n540Rid2PVqlX2vgtOtqtueNiOK+8CHr3n3XbrrbfZIYccslvv8/OEOTuusvtx2mmn2VVXXWVf+MIX6h+Hm5k94hHVL4W/973v9fxA/Ac/+EFfVnGw11572V577bV7G5xIJHYrUo8TiV98pB4nEr/YSB1OJH7xkXqcSPziI/U4kfjFR+pxIvGLj9TjROIXG6nDicQvPlKPE4lffKQeJxKJRGIwjNj9Px8/Z/6lwh4P5M1nZmbsz/7sz+zTn/60/eu//qstWrSo5/yiRYvsEY94hF1zzTX1sfvuu8+uv/56e/rTn/6zbm4ikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRGBJmbMTutwft1r9fRYzMzMzMPFA3P/XUU+2yyy6zf/zHf7THP/7x9fF9993XRkcr6oR3vetddu6559rFF19sj33sY+0d73iHTUxM2Ne+9jWbO3du26VrbNu2zfbdd1+rKIaeKWegq+qiiARQb0LVoJQetAEqJ2gylB4iUt2V6Fidaugop4xYA03HhVLH6SxqiqDz+i8zz+nwirRPkVLkoEIdpwmpqd388HypsoX7enugySlRhNb0WwVKz6VOU7Kff66pgiaaOsvHqxK2GWHRttVObXK8U11cXXrmSHENbYjSwPl1Fjgt+NP88GekykykK4HK43VNnbk+djW9k58bGW3qzEB7Cl0V1C9K7woNDLSwUBiVaIVLFDS09XAvaY/eo0QJb9ZL68J9GTPkRSlbBqWT2TVqkl49fkhHzUjzp/Q/UL2e42VRYB30/fWFc4GaqqZ0VvnDVkAfV7oXYw8dvdoiKLF4DnZHCQ38fKc82oKOQfekeg1FaaTa0ntBa+QUdzV1V+l5+J63Z4HQ527mWZGPEp1qwKhQ+0whS36dEX++GaVgCjTPNZQiqG18SzRCABst8nKC0wBdGSmHlFYr3qO0iw15QZbEZtT6Ay3ZLOSuiEhlru3pkvcdAZqzH5nZbw1Jj5/kRweQk3rslL6d72HjnX597rFNle1OvVzTg+k1GVeeDdlSO0mfoyN8R3WMPoYCqkTnFY9xz+lCHeinXRbmjDdVagrQaDtKFMqgZA+gTitRSeFneOYxL5Val47kvrTjFqnTRkWtdJ2RKtnpHOeIo5+OFO/erpHTmjq1f6ZdJZq9oFPLxB6sCzFNJyUb40y/fsfaUYpRIy1ZvG4JXbofY5xBsPP+uN0XRzrTLkhMVNtA9I7YRCmu6WPktWQfTw/nuM7RUod7RTrfLricLJRDm6IdgApdKeOiDKn/WR3OxetoHWSZ/lGquEg5XqLri1R5QH0DjEyMIT6uK77zNo+c0hyKlKs9CONb06FeWqgz6SX9U5KXgFnT3rZBaCWJgWtKWe6tbe7S/4hBdB2U4nWlJx9WTH2ONXMGs+4YJIK48PtyzMesk3466noX6LMDqmLu8c2p7dFul+wkMn1jqKu2+YxQR2MS18malRiKd/VvcVz5rGMY4xzmV0rX6W09wj/20WIraBA++FA5xzHmC8SD4jPrvmdOqjKpNM8KpcnExkB7jR5o32MDeXbkbDa+SlCvNUB3rjYt0kaXZOyE3jpzxN7WsVWbvJj129sS/B4LfTw2RRlVPMHM7jGzl++GuTH9wbh0UQ8zhsRvpdiNeJAxbZuLKVReIp03/qctTmxBbYsjbbpZ40dd3pe5HN8sVd7g5bkc6NIx9CDMe82sjnk5NE0dbU+kYGYMZI6y0PV/0/mhjllv7GLW9OFYc2iB28PN6DH9qZMdron/wIYpEyP2njnwknDcrH9+CbpouaFo18U7+hxbrv5nELmKoM+177oozCMipfkr5Nzf2GAY4hrXqAvnlM7riAejvqiMRJ8d18MU4ZlHJH6q4zjWKrri2ng9uWYNYlCNlWhr9NlPkDpQMdMPfEf9WPRRpWd2GTjO7f1q9wmLxT9vRH/wayLTy71eH3W5UKrX8/b9Q9kld9gBmTcv9TW1Os6gDzQGDna6XoO8XOr4GCzx623wth8r43wtNoL4jRgi9qlZMy63Fo6Nc0Ev9ZnpBwxlaW22JJ8RcZ1GY+HYnrGqmOdr4D3zAf/ePCucMxvuWvUr/SixxIukZpvfWVz4P9jE5TKGtUziw2WNuPUehTlO39yxy66U2hrl3MfiKHnmNbE9bXGmWTO+K71UmzLmpa5JgTinIM5/bHNoofudTVy7az5GG0lUpfI/yJosiPKr4Dquj0v8nhtK44ct1bVD4gzWQC7yUmNOxgr58HWEuSJLvLta6sfW0+dXyXXoq+hX1W57245xe3sdz6FzLuwCbeyKT3cGu2ONC8R4wZr1h7v888yE1B/30vvhCK+7trSeDUpzDfwNvqa0thNlsmQnY906iJVzfF/9utnsx4kY7+rCubBmuMDbulnb2ha/SQxtzAcfHOq+UOocFOpoTAOwefjDQeYmp8v/xER3eFmI9+uxom1xjmDWumY3R3R1mt8G4DsLMlkjrBGfINe5ktgqvjfoQinWi/5D6zCG3j8v9vuv0nGmvq5BDvu9cVsf6fgQwxwd6sb5q1m/bHb5w0HeC8VYyaw/NqKtkx33UsS4jc8ai4S550Ifn006Pvgv9Kf0roX/ea7xQnuIY6M9KskUuuXv8Xr8NPFj8J097aHvBpkDYm/l+8wPNg7SVsDcUeUV3RpkbbVLj0GUG5mrvNjlY1XJ3tM2dHRnfW5YWyv+BoIYc9yq+duiIenxYXIm2ufSuzCe+W866gwC5sLYh9LadXwHhh1X34ePZZz1nU/0SV3v1AZYQ1/s41LLr76Dok20g3uU3heDrvXP2bw3GATqu/GRcZ299C6Z8fV+PU3WuM4f5L1Q9Mtd/YweYl/iOzZr3oPoVKWOb7CFMQ4za+YJXXOM+B6fftG2xj6L6+Rm/e+p23Rj1/xxIjFsrFq1ys674KX2DzfM23HlXcDiPX9gt956mx1yyCG79T4/T3hAc7JfeGE1wRkfH+85fvHFF9uKFSvMzOx1r3udTU1N2amnnmpbt261ww8/3P75n/95oB+HJxKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEomfT8yY/cpm+d6deEAziP8s0LPzbOTc5kRfpruuXdYxy6buQmR3DrvC2HGlP2Anc0FXtrS2XW2lLHK+I3uunCNT6lzPlLqdjDzvaOrUbWXXIDulNEMO/eAZLxZ4Bg7d0V1n8eIYWYU0i9yYl+xwLO1FGK8KMjNuIiuK7moko4lnRBiR7Luv9fI9nlnnCM/o9O/y9Rnvs2XeV2w4nNJMp54V8Ch/1jWTflx3yYWsYnWm9kmpwy5XstGVsiaAuCtfdsbWuzFvDHVKGYDZVSbZWJatqMo6KyrjXMrgFLOgSna+eodhzKLVk4bX0ZVp8jQb3g7Sj5vZt/zobLMjxywJpUxD7Ejk2dltp23mXJR73eEXs1f9oHAOxJ3Qpe+zC1L1OXx/sWcK2niOnEPOYiZylT/sCLYHmRiTOi7bC3xX5mbuoTvvaWNpd2nMIhEzYShK2SwcfTuVz+r9ilkzZOvIpnRAOGHW7NxkZ3dJFsiI8MXCOcD3HhvqmjU79cnkj00uZYxAR30Hak9m9dlkQ6UjsJuamY3/465rlbs7Qp24e3Z3ZC1Fhr4tNd0eHee2dDV90LVzH5Sy1PCMhR2+dX0y4Q6SSUOzefE9xp6+0h3Q2PKYZfw4qTPpZdQfZSNBlnj20s5y9DfaDj1HG7eHz4qOndNtO9N7TLKfq7PCYCclflrg47K5Q8b7ssqUsvAyhuNelrLVhBirJ3NSzOhcAmOGXUJXtB2DZMaN8lbK9hQyRNSMLqWMHmSE+rScwx61ZfMeRnalD1mlB226pZl1XKeKGYKoRwxBdspSlrNoKw6XOugNukkfTkqdmCmsK8NiW7ZMRczkobrKNTWTBoiZIrru1eEPZwXa6rI578zm1FZvzxKPr+vMZSc1dfoy0HwlHBfUGchKeo0NQv5VV64OdYhLSzYwZsAoZPKu9WbCD2h2i0F0lXYwBsQS+p2YoWQQdGTpqDOrq+5yP3TkhWb2QzN76m5k5enKXNGVkSecI9thT/ZNZBHbFbN/mPXb8rPCZ7P+bPTYQM2OEf1FnM/IdWaVXUbmSqMuSzULDr5uTOr789Mft/nhrVKlVnUyotFGvQ4yHJ5rgfiz2r6S1aWU5Z7x7cqG3cY+YNadGQ5EOaGNqj/ed31dv1rqoPPYduxnKYscz4Vd0vWbmOVc5W1nsprz/RVyLGbD7JI3s+FmSTtMzhAj4oeQhXGpwxyJOJTYt5RBOY53V7Y07qV6GOP1uAZi1tjFUra2CObqY3KMOQW2E788yPNodiUyO/JcBf9cjMnMerMKM84xa6j6sxiTaDuwZ76uFzO99dTvYvAq9XW8ziBZ1mL2oa5sZ/HcIFkHzfpjKmXcAsyn4vqG6liwXXXm+QmpE7Jdne513qc63NYvz5H/L7Pdw5KnMTA+JcaqXZmYdzWrVykGiFl/qSPrv8t8nWhdtIUqJ4PETeg4doEY+KpCXZ49rp0pyNaGzg7CqqjXijKg358M96ftKgusOzMeXRni4juJUkZn5k7YqxdIna55S0QpO/hsEOdRuo6MXMS5dWl+14VBsn+SDZU1D2y7zmNiLBMzO+8uZp5hgHHScWYNtRS7up8ZWVGVM7wTkGzaxE1zfa2tjqG1n2fBklTbWfyRztFXhjZ63y+ROhtoIzLkMrVY1ik3ch18p65hTnoZ26ysA9EfdukYoH91za60lqt1tX6sqwxpvFOJMWhXfKrrK8h5tE9dcUZpDTK+F6JfS88Z2SU0xqJ+aPNA69olm8xzFOS2fq8V56nDWON6l5mNmp3gsnNlW5vNGvkiplZfvKv2dUfXKb23A6V3221+R2UyMt+V1uBBgSG6D74evkQYDnicK4kT6MPzmjr1/bqy/GPfseFcZ6XUid+nzyblGPa6xJ4DsIt+jyXSHxvww3wfPVImGHwTawXo/pjUYQwHyfA7SAxOf3TJL3Mc2qPP3vX7COCx/HJ/93RTF6up2/2Xid2/OF774Vb10Wt/BszTJXTFZm19/oRY0frj0hK4Xsi0XgS2UJlCBsk2G+NtbSv2ZDZrfrPJZF6yGcNijIhrDV3XVTuJ/zgg1NGYjXHw7y1w37T5G1IHu8IxxruDVatmkND50a70xwny/5XhXEdMU69hdLWjjTGqhLZnHlZMfYWZ/desv9+LUpzclRk7gjXIrt+8xOt1zeP1XTJjFdeLuhizSuAZGY/S+622+a6+mxjzMtqD0jjjI3yOO3JoU2WGGLH0roY4Er3DV2jsy3xn/wHqdL0/R1e73v1EG1iSF76Pzg/y24ESS0V8N6GxL7aq63dkg/y2EMR1G5VJ+nUytEex2Cq2yz/ODOKJnxusWrXK3nvBS+1TN8zfrfd5/J6bM4N4IpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUjsfoxkBvHdgD0e6AYkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiURiOPgVyiD+aKHXU0DbcEv4bGYfcMq913TRKgGnzIBaXVlQZvh+oCxaKnRrNRV7pJwoUUc4/dR2pQJxep3tHVSN0Aw+wz+vgQ5LqSvCs25+svVhmjpOa7PAKbM2P7ipc5TTT6ypObP9VkKzsd2vs8mfeam3r4eWftJLp9t4rpx6DzRc3kdrSzRGTtWyjrrQLAkNDzQ7e3EAikV9dqfQXOQycTuUKSWaGdrvNFqjQqM1BTUufVWg555qkwUF/TjVX2ddlNcShSs0yO8Ix6U9x3q/XNsl/7QDOhbao1RO51tFMTQMPM3MFvn/SpeEnCED414qNWKkI36Vl/p8PAc0S4zdu60fULhCJ6S0O9C0lSgFXxjaxr2UGsrpv+aOVyW60kMLM+alj9nG0jjxrJGacFrqTIbr0a4XSh3vu4fyGboavQ6UcvSDUPzO92tv4R70p9KcRUp0l9HFYlfqZ6TPJ7wZG5o666DdiXRnahvRwy5KNa7ZQel8rMvQtdBGqc240Ev6nGfVPuNal/V+npqQOpHWmzYrzRlAxrEd+lwHhrq05w45Rp9BWUZfoufbzOydhfvOFtutofwrUfg5VkeZ/pPm3zkuF9P49e2h1P+huypRaIIueigQx0Lx/fBZbQ/9N+YlFFurpY7IcA/U/iNf9FmJQpxro0/qozxmWOSUWLd/2tpB7OH3GBlvTm10OjAoY3/dj99UsEE/5B/iDfHTmxmPs0IdofnbHK5Z0yVrf2OLS/4YmYHKzWOT7YPEdSXQL4zFi+Sc2zViuzqWUfpd/LHL0HKPKXr6jrHzvtp6i/UDGjrkRul3sb3YZGxoFwXsbPESq/pyde9hZKJEIbyfl5s1dkXvGJ8SnWmUe6D+NVL/8axKNU+cAK0y8Y7Y9NreR4p2rYNdQdd4HqWrxM5jZ9R3O+ad1ft5q36grfhhv+eI+JgZfAxtxm6Lz6ztEMeQKdV9j9dqE8Q9SvELccriwjlHLfcaQ7i+zhv3+5f0j2eGLtDp8Jgb9FwblOjPnxzu4bH4HOnv6XCd4/3c1XocW+W+c4H73s06L8M+Y4uRDa0Taey170L7u+zSQm/jpnfb8GJqszKFJfb1JDlHnIK8Q3M7IXXoB//+TSWb86VQAqGl7JsbcR2ljPT/O235AaG8ykvVEfwQz/wSOYcdwI8QRwmFcu123AaNjFXlzEVyHfcBN034Z2ItoQqeJqbz79fzjxubOrUdof0uf9+TKvNdTrbQL9G/mjXzXCCxVf1sXf5iInyGKlTvMeYl/bvSS50reRu3l6g8Abb04eG40izjGwJ96KjMRaeCr6rngGbNnCT6kRK1J23k2kr7yvdfGs6pjtG/bZTMO4N5ZnMlFtnusrTA44I6jpJYcbnLRV/cVlozQB+xXcfJOZ6R/rgzlGZNDITcYvdUz5EL4mv1H/gx7BGy2UULTHsOKBzjvoyLUksD4nbk5nXNqa0r/Z8Yg2uMonM9s0YP2mJ9s94+ox+6aOTRN5elxT6mG1UPaWNpXAG61CWT+OVI563rPVe3nNNxJk4hlij5GL5XWnuJOKlw7LLejzP4Yx0T7OK3q+J9JT+Cj/KxP8f1+8zLB2jXrqIwz5zrba59Xok+GlzfcQ5E6nizRleJ/9TuouulON2xDn1pi9vN2mVR6dKjbtOOrmcG+jzoDzrOM2uM1hW/YQe4zpcKdSJou65xEUd63xHubir1T+xXjRkZ17hmMQjVtFxn1OOc0lytFW008gq1U23U9CrbXfYNtL2uKvUdY4m9vaxQJ9ogbPvuWONyLJf5R5/PPd3LrnUo9Cmu27fBfX/9Dqq0XuTYvtL/8XhygbR180WhMr5b19OiryvF+Nj0CS99PrRB9Rn9C/H/RvXP9ANzL5VD5ibYMOzM+YU6cf6u/UI8TPxfsgvRBuKHVN50HVCh+kw8EN/5lGJhMCr/Y+u4P3OUkiwxZoyLxiJRJ2SO04cYL6m95f7otT/PlMYkbeiyYToPom/oq/B+dSjYamZTZlfGtfb4PsWska84RzHrW3up8Rz5v2SjzBoZM+udWylUV54aziGbOo+ZDHV4HpVJ5CPaqZKNLvmBuObhevAceZ463sL27uyarLdpvsfyW5ATXTuPcs+zSt9h8+Kac8848Tw+3sVQ3nWB9Zq95N1L8T2dWa8/pI+jDSohxtcqf8jnIP3adY+4jlC6ns8fbmJN8rGFOsD78OLPyTGeg7E71Mx+1HGN2WCeVfYyyi59pXpJnfiORb+L7Og7W7Pyemn0Q6W50gmhjrZnzEtkEN+vc1qAHp4ux4jFuXa08aXvl+RurLdq3T+qG/5upbbh2JySzUCW6AP1NbNZF4lz0dJY0ka1U/4OrI4r6Ve1t9gKb+NmfJ7KLbJADMP99V7YN4+j1vKsqqttsW/pnSX3YJ1SY5s4R+r4TdBWvqf35tq+zviy8aq8uC2OV5T8wFIzu2eA7w6Cr4XPg8TMwPtxua9b9cTfYZ5Zr7OX7FzpHSNA3uO8tTQG7nNHZM2ujtPjGqSOb0T0a2aN7SWe7Woz4J5Hy7G2mKQ0zpNeul2ZUfvCtUvvalhHGQ/HNfZtW+M7Rf5njhJj8OdJHdb+Y4ypv9uIz0Y7pF9GxquyHq9B5E/jUuJ81lCxs9qu2EbaMbejTheiDOnvQeLvt4DKwvU23HdOicRwMGMjNp0ZxIeOzCCeSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKOD33oQ7Zo0SJ7yEMeYk95ylNszZo1nfXvvfdeO/PMM+3ggw+2vfbayx7zmMfYxz/+8Z9Ra/sxMjMzM/OA3f1ngG3bttm+++5rZl+19p38ZuUsKjFzlO+QXSSZk26PO8xKWbBOC3XYIVvakRe/r9lU4o5PzaTGDkDP8HPEWFWu1fb5M87xXYfTpZ3lK7wkk5r3WSnzBdkP66yHmunHMz+d6O24gt1durvT/z95vCovKWXljhnMZcfUG/3+5/oW7vk+Plu0ftuOvNIuXjJ+sVtN+4WdmjHrgrT1nd6eN4SshT27TSNKdboyqTnqLJ20Q2U7ZqEoZSLnHvsXzsU6K7wk07DKbdtOX81EsNSqNLJH2t1332377LNPy3fa0ejxm62cSSbumi1lSgnZ7GuUsliTTasrAxP3IPtI227LiNiOUrtilnGyBpayjsSd0zomXNN3MC91PViv2a/uDHXpS90N78cWesa90s7aOnMZ9m1STpJBg520Ictk3/1MsvDqzkt2OnZlTeAccsbuTpUbf9bahpV2Csd7uJwcLzt+r57wf5ATbQeZlrDb3F+zFsZdndTRLE1cGznF/0g2kcV+zdbsFGb9rAHIlO4knfAS+We8eK4pM3vtEPT4DdZkVwoZH3uAvL+kUKfAvmBmvRkAyJ5Q8rUtu8/ny/frDJxuQ0dXVOWU+jp8QFcGm2jT8TXa957Rc8Sftd6drD4QHeceJdveleUcRPuiiNmVYqYHs8F2Lsesa9gFtXPcI2asUJtcysphVo6N8Kea1qXk2yxkyGqL4x5cONZyvZ46jLPb3VHJ9jQVY4c2OTYrx6W7AsZiysxev1N6XNbhEjTDFc/alYEGOY8yXkKXzYj3VzlB3qJf72KyiPqgwIaUsu9EPdRMIDErATaoJPfYXvSpFGfEflVfR/YSbFaMO8waO1R6RjBIn7d9R763zNvax3RTAnahpCMx3tF5Q8yqUbKTPD86VrIz0aZ3yS8YLRwjlvj7Qh2eI2az6xoLsyqbwzuH7IvNBsvEVspaAqLNou/V18XvUUcy2Sx2ZoWNwQcX7W+cuymi3HKdR0mdmDWkILd9z6wsCN5nC8eqchNxrY5hlGFkQOzCCeO9VWOWewXZ8Et16nNkvivZjJgZqxQvdPV5RMk+eB/N80wvW1kH0H7pGrthI67plObYMcuz1kH/I2uNoq3P9N7Izq02XD0WirVjfA5xHXOMEvMQcT7PgUyqrMZ5UIfu13LnGZm7MlbXjA06B+LatEtjc/wYuoqvVD2Ome5iJjOzRhe67FzMaEtd7TtiQ3Td1/nmSczYN6/05ztC1hDXFm5foy2LsMaDLcyEOm8e8TrMKY7wOvo4W0Im8qIcMz53hrolPCF8LvnXUqa66GOR29I8KLa5qx2D3D/GSmbN+m2cq8dYbVh6/F6zEfd9M6X5blt7zDozBLeilOF9NpnZmHOJ7x5x+UbeihnZQt/XmdF17oa8x4zJpfXbmJ21lA0VXaFfS1khgcoUssezTobrxvptIJskcwvsnNogxhA7R7ZBzcjJ3AIWEORN2xCzJ2LjS9nfor1TxivsaykW8XaM+HuHmVKdQdbB21Bidoqsf6U6EbomtKN5x+6KqyO62AtjHfxXqQ/RVeK3rri9ZB/4PnoHi4+uEbfFfzK3HvXvTREbuQ2rYyWzvix4R3mdNV1jEhlDutozW3g7Rr0dPZn06RfsC7r1UqkTY9ZB1t6A2huuHeLTvzij+f89jA/xxqRURE65b5f95r6ltu7MOlPXu1Ps2yDZRwd471WsD+L3dl6Pax1+4t1mD9pHWMvwA2SS7RrnN8n/g2b83xHQN7fJL3a7vUrlFt8YGfQGGQP1qzwrdoD4qcOWLpRzm/CxXeubYc5YxwAa28T3W3zW99/RHriOzhtrDvXF4iXG6S4GC8eIt3GmlH03gnuUMsWHedRc6bvt2HB0nevoejTjSzxILKzrneu8jGt2JduDr+FepXEjLlBdx5fQDu5V8mvoBHFLKSbXd7m7yxfHmGSQGEIRsnDXcqsZ/qMt7fL30S+X2Bk3hnMlhhzsrd4j2nnGcG+pw0QwxhfKzMS5KO8l9qcuRpjIcFCyS8wNvtJRx8Fcdm2cL5r193Upu3hoa8/7P/QQe087SuuDESXW2J3AKdKei6ING2Q9uoSOeWL9TnwQ+1aaO5awu2NqYgHerZdi1515l6YZlIkvCr/92SEGeZ85WwyyFsl6no/TEmFc3BBlJv5GShHlRdlwB4l141qbvP+Y62sudfO/GOp2QWNALkBcAPtm1+/+BoH7ipHDm0Mzg7QxrjupXZr0EltYYnNoW2c9tvl3rl+zZpMrxdCDvLeL32tbw941PU4kho1Vq1bZ/7ng5XbJDQftuPIu4LA9b7Ov3XqbHXLIIQPVv/zyy+3kk0+2D33oQ3bkkUfaRz7yEbvooovsq1/9qj360Y8ufud3f/d37fvf/769/e1vt8WLF9sPfvADm56etqc//enDfJSB0cbZl0gkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSuw0zZna/PeiBbkYPzjvvPHvFK15hp5xSJUd6//vfb5///OftwgsvtHPPPbev/uc+9zm7/vrr7X/+539s//2rTWtjY2M/yyb34Vcog/g51uwC3FWUdi6zI5XsfKWdRewIGvdSs9Swg8czbZFV5ajXNVXWkEmELFy629t3GS3x7KMb2HmsO1rjDjOeQ3c2sQOUDATsGLtD6vDM/jwxW4yZNTvE2HnGrrsXSJ3vhJIdTrqDjTZq9hRAu88LdXQ3MLte6Suu3ZHldZlnbVhXypgaM5TqTlLfBVbvMCdjqu7K9V2lSz0DQJ2ZQHYMj/oYTsWdgV07Y2M2BQXf79r12pURsOseQabq7FWTcvATNrwdpG+2Jkua7mxld9/l4ZzsmJzjsrfCP190jv/TlUmAHama1egWL8lqzPN8W+rQL6Xdiy6L83w86swGpf06MVuUZmF0val3UJfkjWue6SX30uwWMbMoOx81W0HcJVragXxWb5VF8v/t3jeLXe43uvyOiEzPXOj/0PdjXr6wqTPX28RjbcWmzzJDR52Bn/4oZVSOO/7Z1a5yRyYE5E93x5O9BXtE/5Z2ZMfMZYVs53UdsmLrmLCLH/uN3KhMskvVd6D27T5VtGV/+1llV2pDF6NGCcgkflB1HVsXdUyzfdwZ6pYy3nGMe4x7WdpVH9sju9nrnfvxnDKQrPQS2cQujUudQTJxxh3DKrdtPkDrIO+lLHaOV/nzXDhIdoNBMxGY9WeaNmviBDI16M7/SS8P8JLnKGV9DhgVm/b7Xl5cYjqZDaKvRdc0szpj35WJgzEky9SlhTox6wi4x8z+eEgZxOPzoA/qq5BTYlj1LW1jrjuCkXe+35GN7jgfs9VctxS7dmVL4L5kCntfoS4yyLWf56XGCcSYMZO+We1n6liRmF58XX3f6JtUtt3/1nEXuqYxMOOAryQmUvuJ/4hxdokpIeJ0+T9mQtf4MGbELjGntGUH1Kw+/qx1YhyeWeWFeQb+uSsbd1eG0YhBs3ub7XwGMZfNEZn71XMrP/ey15ndt83s0n133RcfdbfZmtWFGqWslG3ZyLoypKArOl8dJLtYzPhCRh59VsYBu4COacZs7CRZe7m3zEVrZp0uZgP0GD36tNTBrkRmJtUnbLjL/UJvzya1GYwDeoOQb5M6/vzHevuvpQ91ThezcuPHdA2EcyVZ5jnGwnGdg0b/iQ/WeSZywrN3+cw43jqfaMvU0pV9E2ibb2mt1Z65sJSlBswmK1HpOvvbrrB5mHXE1HVWM+bE2NBSLNHFKBPRlbUqnlO7wDjEjLSlDGSglPFrEHRlrW07p21t6yudGyDn2Hbi9BulDvIf4+3SWkwpw1xbX5cyAA4yhsyf0EO142OhPbNAkXWpC12ZrttYFLXubGShC23xtTxPHSr+rDIPC9tlT0ZO7u9yNt/bvkXlBTs5SCZb+tW/f7Iwm13S9ayDZD5GPomXxr3UzG4wscWs/133RkdVfwZh7uvKsAh4LnykZPmv4/qYeVzlJs5hdzJDad9aThe65oecG/OStpdsBxgkc7zYwON9HeDqOIZqA3cic3iRZSjajNLcABvI+48udpSIYbPkfcbMbvajjIXOywaZb7TJbSnDKM+sMUrb3Eb9GHPxMS9LazquG6MeAxdtYWRd21kb3fYuQnV+TksdrbcTfqyEvrXi0r1YB2AeoO8I47uIGBOY1WNWs3AGW29mDbsjsqxrBYPEbdFul3QdG7a4cG42wA5EBkd95kHkBFvIGkEXU27EEDKI27usCgBoI/qLr5xt5lbA2Ol8BB1l3QB91uyzJZsXEeZ+xGZbVB/wZ67Po75GVJTxOJfU9SdnDVjsdqrIYDqIT+nyY/H+XXW7EOdqJTvRZnvU3mJ7BrHfs2FiGQQaU0Sm30EYkbrmq8Rq2JeuuZfapbZ3ACWWF+LScS8nC3XAw233MNaa9Y99KYN413wKW3pQR502VusSaw1rsfjrA6ROjFWpIxlt674bRCe4p9ZF7kvrZ23fdxnqyXyP/g+io/Qv8qq+ocWmHyX3mvRys5fTJbbg2bCSApH7OS7nfSx9ksW3vmbXM4e5Aey1Pcy1XBO56RqDuF6v14lM0ZrJHDmLbdTnwSeNe4lsa7wx4SXvFni+tnXuYb43/n/lTLA9xX5lHZ312q61uhhT6Bq+j/MJPi+8soudOq5h6LuJuN6q/pQ4J+j8HJH7LlbJHULjUmxMjJN13TW+Q6N98gx1fBHngLo+jk+hH/SZuUdcW1WWVfS4a80hvpv3dpwsVfrWNbiH+vdB5oqzwWx+W7W941jp3RP9gs0ozbWjTMffDpg1ax7YkxLz4nbLDOKJnzesWrXK3n3By+0TN5Szcg8LT9nz6wNnEL/vvvts7733tk996lN2wgnNb5Ze85rX2M0332zXX9+/7n3qqafa17/+dVu+fLldcskl9tCHPtSe97zn2dve9jYbVQb6nyEyg3gikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKReAAw8jPJIH7vvffatm3beo7ttddettdee/Uc27Jli91///124IEH9hw/8MAD7Xvf+17x2v/zP/9jN9xwgz3kIQ+xK6+80rZs2WKnnnqq3Xnnnfbxj398uA8yIPZ4QO6aSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBI/A3z4wx+2fffdt+fv3HPPba0/MjLS83lmZqbvGPjpT39qIyMjdumll9pTn/pU+53f+R0777zzbOXKlTY1tbNs9buGkZmZmZkH5M4/I7RTDA0LUPVB11CixnGahtEzqnIKSpo7pM6tvXXN6yp1DPQpP/TP20tUI5GW4k/kXKS6K33fn2fE6YtmuuhM/F7HeVt7WMq/4aXT5Cz3tt+k14N+yyk93ujUF+cqPaX368IVVblpQs5Neul9fprf43ylbWMHB7QjB4fjZg2V24GhVHoNqE2gWIn0nWb9NFpQlZRoXaDk4VkHoeHU9nB/H6c5S5pT07R1EDolqMKg6lHqF2gQIjVhqU5sY6SLGSbFEHpcoqZ2Orr5Y1XZQ3cMYQJjCC2L0i3Rr10UfvE6Z/UeNjObhl4H6hYZn/oe9CeURyXaNu5RopehOX7/6Qk/MC4neX5olpCJ70sd6KU+Yb1QWiTqT1s7nEpnvlMwPVZOrYVaGDuH/OtuLPSF8XhC+Gxmo07tOKVUxWY9lGxz/Hn6qJiUap5xibQ/XbR6D7d2IC9KzzThJfakREMHhdVFHddBTrheaQyiTMbjhXM1Bb1SQW3orVPLLcd/bGZv33U9Pvhus28i99hNpTCjz7DljF2JwixSS6m9baMfVUSbVaB+ba0b6yvidxUlivVIpdkF15/jnWLq6m80pxa44m0ewHfXbVTKYeTkxt46RSpBHzP8z7TSRLZR/CpdziCBb6To6qLgjjTfZu3+WGkcB6EjbvNtCmIa9Jm6JV8FSm2OKFCDvtHH49xBxhnQnmHQ7+KLI42qj9eoULTX1LXU1f5mXLtkoW3MVZbwY9iMbxbqcI+ofyr/14e6pXtxrovOGv/J+H5YzvE80CxjX8Ufnejje69/vro0zrOhsKV/0Adpz6jHB1P4467rdcQix3qbr0X+l8pJ+hVZ7qLyg5YL36e+GJ8Uv1+i/YxQmnLGLNqHLsR42ayfwg9/pNfjObp0HflCFq8s1FEMM6Z+pJyJdPaKNhrV0pwg2kuNaZCzaCe1Dn1MrHZoR7tAic4RilWn6h7xe6j533Kp/1OiH+U5eHbGuSRLg4Bn5PlKVL/oCPauKyYB2h5iZ8aC6+o8M8Z2au9oY5dviX4UGVA712ZDS7H0ILHabNBlm5EJtRPYYsYZWdDxifrf1U/YeJ7rlkKdXaft3OEaV027e6EfOFROxvHALnXNf+kfHcM2unXVZ+YZXXY26GrxvtjHLgpm7CwyUKJBZ1zPKpyjr+gH7v0SqTPhJXMVZEnparvojB2jfv+pLhmiraV1Ivze5OD3LAKbwTNzT/Xh2O0OXa3XI7psxyAU5IPUmQ1KMSTzb2zgjnxuG55gZveY2ct3nx7X6Jj/FCm2dwY+r1vgPmKzzC9r+UDeI6W5HovrGoJOud8RXif/v3uA+i7Dc15QldPEFG2U6GbFtaDF3uaNpTYHX3CEf16rdZnjx7W/0nXwW4VYkRhmphRD7Ai6PuLrx7XNwnfr9eL67yA4Xv5Ht7Aj6NhLpQ5zCWQK3zIudVg/Y+xL486Yse7FHFTWVGr7FNcksX/D1OPf8qP0na4DYMvpa+y4rlOeHY4VxqDP3r5CTuJHSzpq4Rx930WF3rX2EoFM6VrzIOtpbThB/o+U9bqOFv3GIOtq9K/G2T4+tU1FD/W9HX6QeTgxpMom7Xa5n+/X63k3EWOQLpvYMf8G9T3Ok4OD9DH9QNyODXqq1EE+iMO6aO3pj5KdY5yQe/S7a67T9e4pYphrXKxNl9bwB8HR4fN4oU4cc76jthi5p8/owwmpE33tIHEU8ifvAk50X3lFfJelsX6Q7SKw18x/Dpdz4T1xEdyD5yrYwNofdunN8eEz+lxam+UYsb2+F+l6VxvnRmNeqk31cajtyiA+vGS/GTO3r6Pe1vlSZRP9ga7Sjq57lXwN98JnPljORZkc5L1z17qlvs/ZXXPj2NaSXYl2Vue7rJ3g464Mx03eQ9LXyMaFTZ0+XUVXvi3Hgm7U/l7ntAPEf31zA40z2mK7QdZUtV+61g0A8QnrRoPE7+B0+T/KTsnOxXn7pXIujot/7nnPxTPTPyWfF+8b30d2Qd95TnhJHxKPltZW9g+fjyzU6XqfVHr/uDNAXld6+SI5p78p+ZGZPXc36DGxAuty2EftV/fZxflYG0pxaVsMrus9xLqDxFrxvYEN6Mf4HnJSem+GnNLWQdrjcjtHfhs1jd9zu7bQP26SuHLEf//V2WaAD9Y1Wewra5Gl5/G+X+z2qDj/Rha5Nm3XOLltTbjrnXQp3sYuEr+U1sOQl4cX6nB/2sN1TpE614e6QN9VYnPw67OZTyna1rFjLL5r/jiRGDZWrVpl77rgFPvYDYfs1vs8fc//tlv+87/toIMO6jleyiB+33332d57722f+tSn7IQTmnWL17zmNXbzzTfb9df3+92XvvSl9sUvftE2bmzmyhs2bLAnPvGJ9vWvf90e+9jH9n1ndyMziCcSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJX1rstddets8++/T8xR+Hm5ntueee9pSnPMWuueaanuPXXHONPf3pTy9e+8gjj7Tvfve79sMf/rA+9vWvf9322GMPe9SjHjXcBxkQv2IZxN8oZ+LuQ98FNk8yBG2d8H/4tb/vsDpKdlitYbcRdX3X0rwzmjpb23ZWlTJCfzOc052Cz/Om+rGeXVS+43me7zLYSjpv/b7vepwXMqhtXCl1VnjJTjh2L+kuOb/OUt+1t97bcYzsvLzO+2HEd54hZfPkMnW/8KyeHbhnN3zYwdazo/VLoU4JcWdtKcOcjyH9spXdcaVdWINkEvDdaAt9R9smHSff/Tdvhd+Ltpeu17UbrPQc4R717ve4u0wRry277Bf77raNMZPNm6R+WwaemMV3WDvBv2hm9/lRzYTGzvauHcwxeyNZZnTXnu/6rXdydmVjHyS7F/ecLJxDN0u7eNl1yPc3dtRtyx4t5xaeWZVsTJ9ZKXV8Z+SxXudaxlt3LmIP6HParjvdx72kP0Sm6/6MOy51Ny7PEbO4l3aNdz0ziFmslDWArAfoEc+q12u7R1eWcQU75cm2QCaOru9wr1IWoI5d38d7/97snzdxj1LmPDCbjA9gmBkdnulHyfKkGRaxi8jbrmZuYfevZrKJWZm7sqGghxNeqizx/a7shyDa7ecU6pBhJWTw7kHcxa4ZiGK8ofeg3WQCpF+6skYVslfXO/ZpI/ZBd0m39YdmJHS/Pt/LLcRTKgvRrpYyNNAesjt1ZaQZRO4HyaAa2V7MGnuIHmNn1JbGTDbI+iCZH0vZKWexa7y2w9vMbN9dzK50t5ntY00GEJ4LXS1l8i+1NWZSGCBDVjHbAGP27sI5EMe+K2sB/p1+7tIRUMhcUR/T8Y1ZAdCJMTnWlgHkCfJ/zC5SynCCzcHOFmS6zubIgQkv1ffhu2NWPs1egm/k+brGsIQYXw/i57vsblemFM7FDPZd2f4HQSnTCGOA/S2NLfpD7KfPQ6YJ7OwLrLLhi34GGUtLNoesfPSZjvNsMk12AX0m64/L1mJhJtioGfLMijbwOL/O6i6/CEoxfPTZjJPOO+8M5WwgvrsW90GysRDfEuNpZrbIEuDjNCr3muqyk46FXn9TF9MV1+yay5LdZXXhXMgoXbMQ3Nhftb7/INkpS9n6o/1XX+z16nUAYpCueJDx1qwSPD/2BVtYykZ0i1Ux9ZlD0OO7rXddK8YwXZlXA+aJnNTrNLHvlJ0OuxblVrN+tmQZnCP3qrOidekR9rE013cb8TKPBy/uyhSMr2Kc1G6hS8QHyPYgLBMaA9BXkRWrKyuYPnuckzAGqhsFtsE+RBvGZ80E2Ga3NY6La0qgY0681Md3Uo5tZ5zRA9XR2A8lPY5zEmRb2bBiPI3cKJtbWwa1Qef4it2R7VDW2kZ8rGbIQFh6adDGZDGAHvbUQbe+ET6btWfI67pHiXkFuE4s9OxzPeulbdl/dXzwdYwl41zKZgeIp5bJsS72hJgBNt7LrIlRIzOBPo+3e6H3x6bS+iLPhoyX5h1d/RlBHxKjaTwXx9DtwlyJsbbjs+M6iVkTo/KsJZ+JzfttL5FR9d1+7TreKNnt2Twz6MpEDuIcYXfo8Wwyu3XZnsJ16qz29L2uTbVlsdT1RWTP7eJc933Lpcp1yDC6jyx1ZamcDWabhXGQNRzknv7oinu8D3sS5vHMhUyPNSL7FHGgjiHnopzp/CPG1V33jHW0XrQ5Xdm4C++QFvn3b4/f1/duV4ZzXFfbo3GFmf2Fv1d9j86ZYmwEdD2B9Txsstph2tEWUw0zg3iEj+9Rwvq6ZldZO8K1B4o7ePbnybF3h3M+Fotf0FTZGOcEk16W5m7oJu/GNQMy/TrI2mVhXa+P/cDHfq7IW5Epuw1Bx3rmFqwjYA+61inwcYyFrMUs82uuQ5bVBoUxq/2ZxmXYaV7Asxbf1Yc8h/q+yJbRxuJk0uZSX7bFWLrOSFvpM4l7TvT39ldE1iVFtEtd9pvnWmrDyzz8VavsVde7mdhW1vL5jjK0MS+kP+hDZextu5fE9HNcN/vWe9R/4HORoUkvdbzDnHi+yP0W/on36GLhQY/UXsdxLa3TPyecow9mm2W8DYX1mk502dK4/hfbvLPAXo41h+a7XdsyiC2LmYc1lvZjc1zn6mVxXVfDn5eevc1Xal8wnoOsdQyK3cySV3xHCdBN5KUkC202UOWNe2CvS3IySJzPuKDXOg9qkz1lcMH2xLULjb/o4ziGpbkFz8hcv8OP1HV1vRMbTt93/TapdK6LiWZXMEgMXYL3b82qW9JZxoC1JOLUEis14/ylwrmdaFePLZ3NsyGbjF1pnLuYpg626l3BqZlBPPFzg1WrVtk7L/gj+8gNuzfD9lF7/qd97daNdsghg2Uqv/zyy+3kk0+2D3/4w3bEEUfYRz/6UfvYxz5m//3f/20HH3ywvfGNb7TvfOc79rd/+7dmZvbDH/7QlixZYk972tPs7LPPti1bttgpp5xiRx99tH3sYx/bnY/Wijk7rpJIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEr/8eNGLXmR33HGHvfWtb7XNmzfbk570JPvsZz9rBx9cbVzZvHmzfetb36rrP+xhD7NrrrnGTjvtNFu+fLkdcMAB9sIXvtDe/va3P1CPkD8QTyQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBI/e8yY2f32oAe6GX049dRT7dRTTy2eW7lyZd+xJzzhCXbNNdfs5lYNjpGZmZmZB7oRuxPt1CRtlCKK0718XzjeRQ0HlMIv0oY49cXoiubQ1GSoU2hXTX0cabXN+ilNaKPSTnOPeO0ShXikERXKogVebj47nFMqDp4fCowSlRQUR75PYZ7TLW3V60Qq3J/IuUhhcqz1A0oVqNNKbbVw7iIvjyzU4To8n9KUMQZQuTlly3IZg5ugcuLa9IvSw4BIH1KiFIQ2RGlzud8gVJyRmuelcg45ibQ5Si0dKSzbqL+HRTF0iZkdWqgBDVOgityu9On0fc3jXrgOlIEXhuNS9wi/x1ooyKDqKdGqIrdK1XWKl1Ae0VilfEGW6UeoglQmkb1I9aX7fqJOYK9Elo5ZUZXXrfQD0Mte1NSpafmg1OQ6en1k0Ptu4ZnNqU3QF13mJTKk+hzpyNAjlbFjQ53LrB2Rilwp89polNS2o5vI650ddWiX+IO5LifbeUbor/Xe+BjoD9FdpcFqo0JcKv+30IGdIHb7yone6y3y8bldbSHUctyf69KXU2b22iHo8RfN7JHhrPoldMJpLRe7/G1U3xd9HrZHZQo7id4oNVaJTjOihbpsqfTrevov0md1xQCgiwK2RPfURpnXRR2m/fGdUJbo1tpo0qStRzit/dqVfgC5vVHqR/8V6XgVL/QSOzkq5zhGe0o+jz5nfLfJOewZeqSUiBGRlkzGuabx416lfsJ/0q/Y+JLvng2Q35ItQM6U1jf65bnh84/N7MxdpN/9kpk9zPr1qC1uHhSM/VThXBd9XUSJArONgrmLErAUmwWazJM9lr1kJ2mG+6idzRqfQn+UKDVnQ10+CKKOKsUidgQfF/20WSN3pRgrjGtNL3y51LkzlMQdMobY3trudsVz9Ze8LNmeQWQK+0QfXNlWsRsj3vYZHeco74NQIx5rFf3us4fgi79iZlfN8tvRD3X5sQKgwO2kXPU68/zjVuyv2jl8A7KIDHTRNXtbl5/RHLopUm530NF30jXHmLMLxJEit4vdztfNZ46h8oYviPZA41LGh1izi9Ky5Fug2KYhBxXqxPlg9DmDIlJnQtOpbT46HNtVe9e1ZoGNiH5e70v/lOwAc8g4/1aKap7jdKtilYW7kX43Qiiu+6hES/3StkagbeVZg13ooXiPlN1dfYgsjMsxrj3hZUHHRrzvZ4JuzpN2bMXOYk8Y79L4OOq5XJfOP6r83SKUJhb/iS3tmpd0rV/Npk4XBvk+fTUbqlyVO2xFaf4BuuJIbF2k01a7H+m0kbdHSR3aH+PqrjVerqvyd7SZ/dDMjhyyHut6D74u9llpza5r7YNj2CnWJXY2NgK6FoTNRLfpT43FsSs8T6TMNmviT+aVtP2FUmeyKkZ8njcT52mKQebo7usWn9Kc2uhtfLHL2SraI/K/zGnf130xnNPxOs16wXUG6d/SHL8LwW7X7w921XaU2oF/ZgxPkDrIwADrccf4/a+7vPd4D07ysrT2hwwSp9MevRf2Nvo+Yr9tZvaI4erxQuJdqTjFWhYxRexDs/b1HgU6gn0oxL71vIMDpfHtuleUC/SmbV1rR+i6V7TbXSjM6+r43O3afB/vLeqrYuyMruj6IOMQn11tz9+HY3w+vaky4jJETFK3T9vQ5kd1jXfMy9I6ADE07eh6r9mypmnWMj/V77R8rw8uy6eNV+X5vk6+XHzETfEe6N+n5Vi8V+n9R1wDwdf8yMx+axfXuAaNqQVHeR+u0XUN1iqxfbS99Dz+/YX+cZNenD6LsfPRUqfkR3eErnkr8QVjUVqDxCZrDMH/pXW4COogv4OsHZZ8TNTDLpRsUIxrB7G/ijb/+VT53319vf7l8cqc45oq03zf27PIbfztOqcctE07gl/7CL/X2pJviDb5JDnX9Q4ORDtdkrfY12dZ5Yv3HaIvns14Yqto+6Sc83Yv8jq3F+KVf/Tx/d2uWKpF70ZlvjoVv1/6DnLPWqiuj+Av8EnEmvpOOvbHIGv48fcSZt06DogdmIcjPzo/5Jo8YyneUJ0y646hd2a+WgKxlr6fwrbHcdI4mfuXfgcT0bUuAuj70vWwz/RPwV8v9XkI4lJcy/Q6C/w5Nmsd1vwYQ483jhO5Xa31h/X7jzeY2ePlTFwjL4zz8d6mq6OO6lwsrtUN8l6lq07XO6ydgcobMUP8DcQg75v1fQ5yEnVf16YGWMde4v27gTVz7lHywV12pescNpi2luwMdZD3rr7vihM4xz2QpUHGsrSGiE7ob6LQ20FiaYC8qV15kZcoMnI82/VxbC/fx6ZFm7prepxIDBurVq2ycy/4Y/vgDU/crff5rT3/w75260Y75JBDdut9fp6wxwPdgEQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSAwHc3Zc5ZcFc603kyY77H2X3TG+e/c63fXWtntyTP5vy0Re2sHFjj7PGKYb06f8+4t9t9FG3bHv6Mv8UdpB7fdY6hk91+t32KUdd2PqziYQM4fLdTazQ/+p/edqsPOIHcPsetLdab7jbLnf46ZSZvSYIUh3u7GTznfXLffPfZkJdoCYcaLO8Fy4Tt3Wbf3n6h1nF/UevqmUZZ4dZKWsITHbZynDW8wyqDu9dIeZopQFIoz9UWPN/2v4J+5Ga7u+nlNdG1Z2S7NqR2NpZy2mzOVjOzvhNHNM3HldkqkJL+mrQhaTeod9NJ+lbBDszNOsh8hHV8ZLsCF8vqNQJ+6m1OuyExBbRptl521t89w+LPGsnRv0On6POa4b0/ThhNQhQ5xneN/UpYfYF83GErM7lXb5t+3A1rGI/cq46+7OsVCHDMiXyrG28Snt+nxw/6HtYcdynfn0HKnEM9Kf7PZXuQXYbTKgSf8u8GvXu7x9d/SVHZmC6my1ei/sELtx6Vfa9+PC9XYGV5vZM/3/0s5/bIb3z8ZLw3FFyIgz96z+U8Ud8iDsJi5mBwcxe60iPkcpk0uUcbUZUVdjhiuz/uzgV4fjCs5JhrkRl/O+DEEl2xUhfb+Wf74Zyi50+Y0uho+YFcBjtRHJID5Df2ILNTbCF0Wfrc886eWKcH/tCzKKtGU01/rRRmj/oMc8M3FZV8as0phwX+K4QsxYg7YSNwwjs8Fqq4LYmCEI2672Fnkt6U3czU/bShkeyChdymwYM9GWZDLen+t1xCgjK6pypiMDWZ05vBRjIWe3yDnPNniat/n8Ur/g67DFjLdkGqr9GHYam6HZVfBNyO/KcFzausyzra0jbledifYs+iy9L+OiGfhDnDGNXuo4MfZchz4XWVgf+3qALAwL/Lk2HygH6d9Bsjcim2ROUdlmfJgDomPj/d+fIctGqV8GyRwOrrXh+eK/t+6sLIqYSarEUoGcxPhYdKwvc/hZ1g+/5taueHA2mXlcf0Y8c/hN3+6vcpzr4+qOjOjr2vyj2ewyhxfmhRuxYfgY5mea2RB9ixlY9Xre/lF/1qnvh++YNeNUep44x8JWaF8w9l2Zw0vzW7PejDjofFcssTNZ8RyaxfqxXm6gPzQGYOxidln1y9jwsY4bEqtybdfrhY9tqmzCrr3PhqfHOwJ+VtYnYBiq5wldmUVBV3ZK4i6PSaYH8fcK7Dw0i+ozyZbDeBTm7zMtmcy3KiNY1FHa06HXT/JybXuVcnayaC/xFS8o1EWPShmhwY3Wj+hzY5ZJs0Z/6KvS2gdtjWOmWUzR+bhmqM8e16sYU53PoJPoivrwQbLXYeu4DvfX68A0R9+X1o3iPJu+VObFaKdLcfqVtnv0uMvXAJWRtkyg2mYf+/n+cQuxnsbbcVzUP4d1DbId9mQ6VH9l1rANaL+ik10+Ez9I3MacT2xHnYmT+7PmVvJ1XIdnVX0Kc+qNuo7rMr0qZpoT3VgX74+P+4bU5/uayS1+jv4dqGy3xb6lObbHSFtdZ3vYFLzN9bo2a+Cl9pTu0Zb9XXUtZk2f8LKQsb5eiyRGKukaGfOYzyiTGP6Ca5dsCXYovgchNh+WHp9kdQxcMyhq1rVB2Eg0m6p+Xil1GB+uo3Mctx8zE/55vKO9XLuUoT3K/SCZw7vmZ0vDZ5UfxjzYsqNEbtcgJwUZWod98u8VWYoiO2xp3YbYFVvIXGO11GE+qH1u1iNvM+HUOv4pxQtxDtjCDNmHkMmztr/KhMGYdcyX+9YFS+ssg/hnH8/zWRPye97U5c9gsdKxiW3V77dl8MRnDCt7ZxcKLAhrSvJG7B+fv9Qfbis2dWRmPsJjm7VjfqBjLGAv6Hkfgw1nju7rUT3vm/BfzO29rceKHl6LD+/KIh3fT0l2/Xp9CdksPUfbO/ZS3DBI5vDIeKV+Fr2Z9BL5L73DpQ/1+4O8e/b7T2O33Q5M6/umg3vP3U47djJreB8DUmH9aW2URR0nbB59p3UHYU2LMuB1j5d2XB3fR51tw4+pZ9N/yH1JJt1H1u/QYD8Q2/W7gRGg9qHaBuKB0Hd9WcMV1FUfGt8FKJDP+Bz6feTrO6FuIfN9jVIb47uAUubvttjhosIxZIvvqL1tWbfV93/17wBcjxbLudq18Bw8q/pydLSLtaYNOs7Ef+g183+1aZE9s4tRBtni9wCF+V3Xunbf+0tZKxh134IMwva4Weu3rPmtLv2WCCaAd7a3Z1bQtfe4VliIqW7in5jxWGPa2NeD/Galq07XT+sim4Ku97S9P9RYhuePLJeqVy2MTgsPbapsilnOuW5Jr5lrHdlfZwOyHZn5Su840PHS+npXPNmVORwg95GJVfUZnYjvm7UvkWFlTW9DfF8t8VPN2BWZonYW20NpZvN8DLfGOl0oxc3xtwY8RxfbZCLx84EZG7H77UEPdDN+6ZAZxBOJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolE4pcEv0IZxBOJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEonEzwtmbMSmM4P40DEyMzMTCdB+qbBt2zbbd999zewKEx4Ga6jXIt1NF6UO31E6IOg1oM6EsnIQqgelXowUfoPQuA0CpfmY9BJqE6gmlLZjALr2PpQosyO1bglQgBzgpdPDLJA2b44UTkoLDn1KF+0IlEfQUELhcpLUgYIECg3oWZTKhnGIVOhKTUI/lKgiI9qotxWRCk2p93gO6KNeIudKtL2D3kMR6Q7jZzNb6v1RMyGeHeqaVfTk95jZH9vdd99t++wTqX52jEaP/8kaziClQWWcoUhlTEsUjZEWRgH9DzQz6PrDpQ50N9BE/X2hDoAWO+r3jjAIbRtgnw8UdSqjUC759ZY8qio3bJM6LttQ9WIWtv5E6qAb8V5K+XVc7/Vq6m6zpj+R2zO9PEfqKMWeWT9VdQnUUZo/aLugzeL72pfYXsaF5xLq7/luM/ooSvVe2AhskO656tLtnQF0P9ic2F+KOE5mDU0UAwyNkNoJ7GQbtemPzeydQ9DjN5jZQ/xopLrqQom2CkBnp/b36MKxiDaqUkX0cSXqJa5zRqF9blfmu3xtmfTjSt/MPSKNnerRtV4yviu8jHRjgiOkz1Dpm5D7Uv/E/ijRzMY66EGJNvfY8Fkpt/ElfB/dKlGFRsrio+Ucx7DNIkvEE3Us0UXpDAaRCVCi3AbYJ6VUwx6V5AS0xU/qV+m7Eo3jjtq/83pc1mGz7pgGGUB+NbbaP5ybDZTKHh+DzeuimAv3niexeD1NYFycAnB0rKkzhZzT5tnSGSODtDXSuJv1y4D37ynjTZWLouwwb9B4biqcc/88KnahpjSNtni0qVPHzMgZNkj9YZRXHR/qR1rIEoj3S3YNSsZLw3G1M4wL1MnYu1JsFCna1S600TDeIXV4nkivqpfx+3ZSx8b7F56n5zrD8sXXm9l1zYklfo8NZ/fes9h+dOzBcoy20B/Eshpn0PfHhbrad9EHYOdKFLDMBdAnlZvYr9hkjW+xCyVfB7BTLgOLZT62cRBq6WAD67FUWlbahN0u+ME5Z/V+nu6i+vV47ihv6xrtF2Q6+mezph+IbQpzvxrELRs66swG6Jj4VfqartqO7mvbsXn4IZex+Wc0VbbwPeTl08252nfT99iZSanTFtM/R/4PdOQ11WibjOyOmLqESG1r1h9TAY1p6GNk8WjrBwOD/ff+GD28qdJp+yJK9p824UdY81gtddrWm7rmDchCyQd3rY84+sZX58SMZwfdcx9K8ST6h83ROUKcm5TWN04KdbiurqGUnt+sl4oc2aE9XEfbHNeLol5pfcaytM7RRes9yPpZjJ9K8r8zKPXv/lbZ09cPSY+f5EcHWcPTdUH0EL9K3KNrU35u7lhVbr/Qjy+ROjuzdvE6+R+99fuOeBw2U7IBcd1MbEYtk13rYR1x16wQ5UPtHNemj4gLS/PUCNGNZT7PWMd7AuImoaaux7y0rh6uudSvt/5yP16yf1FXdA4Z1t7rujqPnY2+ME6PkmNxTaDrudquZ9bEdnGOrdi/pU6X/Y/3mjKz1w5Bj2+x3vjCrDdOIP6izaX1CPyzx7wnuy++ZELqfKW3TtFmdK3PtMUAHTHNcu/Pm0p9yXoVuqHzwzEv6euSbY+Ia7Vm/esJJWD/XW7myDuSaeJA2sp1Sn66K/bl+8Qg+Di1HVHvxrzUsdge6gC9J3aO/izZ6OhzVX4HsY+sG3Ev7Elpbh117XSpgyxhv7vmVaAkh4z9Si917sdcCV9Hu/j+7ljjwo6guyvlHL6pzQYpSrFIfO/IexR9J+3PxnpV65zCrNEx1kDUFvl9z/bnOevTvcfNrBkP4gtkXH1w9Mt/Iufie8vSexz6AT/I+92u917o9ZgcI2agP0pjQDuIkUp2smRrzLp/F1CK1+P91QYit/hexv0T1o8Y/5di6K4YcZA4uQ3ie49yGVrTJW/cK84FzQbTiVJbhzU3/qKZPcwaG0h70GO9Z5sM6Di7PIy43BXjWjDI+4bZoDQ35n3UO6wdrJ91rC0NFJvt6m9T6Ef6BT0orfXGWKLrXQsQXZ3jvmEa26W6G9+bDCKjJcTYiuvo73uQD/wrNvkiqRNtB9+/0PqBPx4kfjqpcCx+T/07tgr77XbghFc1Va7ETqPj2PbSb1TMdv8aV5Tb0nuyrt99tEHf2w3yLtDnhSOuo512oWTvWnRrscxfNsbfmHX8PqJeYy75d7Czcg/oa2SIe8xmzauE0rpThL5HZE7O89zi5TcLdeL7On1PFeNk2lHys4O89/M1tgXS1s2DyGCcdyCLh0qdrt/GRGAHiMlL8oz8cd04hrumx4nEsLFq1So754I/sffdcOiOK+8CfmfPL9rXbt1ohxxyyG69z88TMoN4IpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikfiZY8bM7s+fMw8dv0IZxN9gZq+UM+xIYtdfIePii3331Sp2CZV2OPousDnjVVnM5sWOPHYOzybDlu7sY5cTu3sKO5pO9DZfQTs0+2hbtpNXyP9hR9JSz4C8vmvHUylbZTxGH2i2tO2hbimjZtwtq1kK2MHETjEyCGgGmphhwndxzZXMSdvj7s7HFtrKrjJ2/bFLTTO/cN8xLwfZJTZI9puY1cGs2WHftesv7oTWXez837VTuG0MdecYu+vY/c4O0lukznbbPTtINbtMW8YBdRoxm2RpB2dbNjG9F/KBrpDR4ACp07Wzj8x0yCZyproas+PzHGdKHe6BDJJdQzOTPCcco59KGRFi1ulS/3Zlciplrd4RdEf4tnDOr/NG2T17LjuX2fXt7TledjdfHfWuq11d2dfjdUq769EJrqNZE2IGM+roM6utUqjtYezGvezKmhOzrukYhqz6C/1ZNxUyXdd6EDMSDFGPF51bHby9ZCcHyR4fUdoh7uMz37MH9WSDn0Xmy5f5tS/Gdgyy21p9FRkMYhasQa6jWVlilhygMkWWs1usH2274DXOQA/pF//OfNGNLcgnmZhK2Rzpz5g9qLS738I5PR4zNMwm47xZI0s8Y2k3vd93/oqq3BJjArOm77p23HMOX13Qoz69o86YXOcaL/EpJT3oyspEu4kBYgaZH5nZ84ecXWk01NTxwbd93/rhbRvxfilmXYhjXsqUzT1CJp5FIre3z4ZdJUKzYzDOxAn4AY3jsL3Isvr3G8O5Uhb4YQH7gf0v9W9Lxu4R6bt6XJ7aW6dnnGOmB80qiW0Y85K+0wwn2LeYhVrld5BMIG3ZQgu2Z65fb3vpejEG5t7qg5nXoYf4FbEPx3smmzo2UXvrur3E+2rDyt72mVkj/zzXl+xnl3l4gDlkj29oGRfNfD3dpoeDMAuUMotw7ZgVXoEe8J2STe3KWhvbpfY/ZuhF93VOEGUJWVT94f+YxVTjbWyH26OFHkNqHFdneDzPD3RlXKQ9mjGSZ+vKAtOWnUz1mX4M9mW5yMJNxCncc2eZd7gvMkBGCR2n+PyvKJyLMYnGXzGTFaX20yDZEhXD1ONnyhnuj9+CuUXZxgbJAjabzEuDPDvXI+ut6jxjUMoWG/Xu4eG4WaNvzLVKsrQ0fCZ7oc6bYyYn9EfXYNzGLPAYq84KpBnE0WdkKs4XzZp4fTYZ5royW5ViiZidsyNr+kBsF6BkC9vYa3T9iWemf0p2aZBsdoxlac4Tsyl3rV2ErG06PMU1XQtx5TAZPb5oZv/Z0VbQxdJI3L9/4VzbuJayv/F9Hbuo212+JbBd9LB2MCcKPneefKczQyqIGcgHYd0roSvDfJu+tGXMGxSzyd5WyOjcF7uW1vUYuzEv1XZgl2L2w5JNLqEtBijFaF1ZrCNKbIxgkPGNWTslo/PC8arcFGWLGGWbmT1iCHp8jtk8z+zZKcfIO7FaaY2GMcNXqR+KrA6ldayuLKZRBkt2pYvRqQ2zkW21L4PMzb3PTvGPF50n5+g/ZccwM5soXCf2ddf670HWDxxFzMRfQL3uQ1tPkZPEGV0Zf+OaaFcMMEjmYN5DqN2i78PYqU2GHGB9WAtdKHU2sc7j5UKPxTeV7H+EPhd+HVtWYqlo+/6PzezMXVzjIvNw1JuuWKLLL8eMuKVrIrddjALoVJeu4FdjxndtG231taH5402Vtnl8D2grc1LN4hfZAtGfNqaaNiCnrEvTL13ZhHclc7ZZ/zymyz6VfG60fepPo42gbslnElsR1+p1mFsPwtYNdtKvsr6zBf1V3Z0NI0iEPPOxzq56rbKh7O41rlK2cMYjso4rBsnYHev6WvViySy9scWGbrqxqVO3YxYZu18ltvjCyC7T1fYYo+lclu93rSejJ+hqV6xGG1mX0HlFYNE5wte41ur3Y8xbWnOI67Ulpmm+j38t9XOcR5ViGvqOOEzt9yCMJ/E9lT/fUhnLzt/hgDgnLvmarverbb5NWZM/HersKMYbJtvl3XJmkLlERBdjHOOMndMs8G26Lu+95nh80rdmUPBVy3xc16lMMPare+v2+BzGAdtRmi/salZwQCyFbO+sP43Qd4XxPe7OZHoXkG19IFZPoO/qkanY9zqGvOdDlnaWSZj78v3S2gP2KbyP70TpXSVjOIt+6Xlns+trXInEsLFq1Sp7+wV/Yu+94ck7rrwLOH7P6zODeCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFI7H6M2P32oAe6Eb90+BXKIH69mW2SM207r18q/094SUaGws6zBb7DZnPclaPXCRkN6x1+usuHTIht2XdMdpxxL931FHc9dmV88B1Fc3133PZPyznfxVtnd2KnlLYnZloptZldlOwyJfPFIFlWdNceO814jrnWj+PCtbuycbNDT3fo0m52uLNvQndIxYyv7BQr7fpm9zrXk2x0fdmZ2KGlO8941tnsUlYgF/Qd3+/KONGW+dtssMwvXHvcS82svtGGml1p7tO9eTqGjHncgacZQSa85Lm6nifuopUMNH27KEsZqukz37F8/JLm1NVx7NmtepF8P2a/K7WV+2JrPGPYqDzz1DlVucAzj9d2SrOhxOz4jN3OZmIq7UBu2RU6V9q6/UL/Z4WXE17qs9PHMSteaacsdUtZsA4Mdd2m92TCRL66MiN0ZQQBMWuD7nTj2owHmVfUf7hMj7qdK2Z2G2SHemwP46P7xOhX+meiKhZ4hvafbjP7/r5Dyujwh360q++ib9GMBrSfcS1lEOjaKR99Cb5P/XXM7rTCS804wf3JzBgzQ5s1MUPcoa52WLPKmpUzv+Abzw7nSvJP2zUzP3FCtNe6m54dy+jPV8Jxs1Z/3mN7IotJaZy9HcudPeSmQXY3l8aUfsF/aZ+RySHaIM0MyvOjC/Snjs9sMoNyf7JEleIwb88i/9iTST9mwOHex0kdZLIkAzvaZb7z/njHGcRLu+hDzNhj9+kbvhezXSpihl/NAIvedjBYkAlroMyE2GlkYpBxF7t97FhVXku2ZIkBah+LLNP2rhiN9mhsRZ/5fY/we67V55sNs4fPGxb4WG5WueX+6B16rVnBYtYrzRSBLpxvO0Zss86VkCXsWoktg75Gf7qy60WUYj38Dv2ttprMOpPh+yq/UXY0yzJ9FrPja5wZ93IPM4P4R61X1vj/hP4v1W31eGXUx3RKmSOQE+a09J3Oy+I9StnS2ubCpTlgrKNZzye9xE7SV+qPOmxOJ7NBQF+WwDPkJLGdsh6YDabzGgPHuTWxo8592tY31F6SYfjgQj30ZDZZPwcBPlfjDfqee3Rlq+nK8F7KBmbWOwfkHLHaSjk3SGaWeM2CTJB1pTa3O5KbYWZJ+005U8pGswPMyj+WEDOrd2U4nG2WP+widj+wSPXcd28vZ5Ot9lFyjO91raMF23W8910fg5ViZzM7dcVE8ZpPDcfN+uewtF3ni4PI/yD2YLYZ9AdFaa1tFtkLi5ml2sZD7SS2kDgHeVW7ss3/Fg5Zj1WHY6ZIYs24vmw2O92i7rgci0xZmj2O+BOfjf6UsmTG9TNdd8H/xoz++sz0Mb6T73+7qTLiejuIf+6cl+E/7vBS5beN8asri2kJi1s+lxgokGn3ecsf21S5KWZdxC7E65fOddnkYeluF/sgaweldfrow0sZLAN6Mhd7HLrI58l3+fGiP6M9414ij8PMdggTALJRivWij9ExRDfoK8ZF5x+uCwud7XWT2ubZZuvdFTBHY85XWouMNozP6nvD9+p4SscwxoGlLL5+7UXeL0Wmwi4Qq7ax9pk1sfOYl132Ns5BdQ7InBp564rdBllzxhZ/Q461+XftO+YScX1c79VmA0v276Xhs9aJslmaC8a1PpnXLfQ5fs0EEOvujjWuLnT54wjs3IQcY8y7rhPt82ziyUF8VYn9qQu7kj3arHlW5K0UZ8f3FaWM2ZHBq/R8kVnH7UoPW8yE/8NYECdMSKXoG9VexzUG9PDdhTrexmJciq3AV5YYn2fjq5k70S+6XtPynq+HIcf98TyX260XSsVB3hM+IXzm/abalfhO7wf2s2PJU9CvMYOs/i4BH0ss3MUoEGWxxNYax7CLyaLEEIVd5P3Hg+UcuhXnL/o8nONZDwrHzQazBxFd2e275Jdz3p453tZpjQ0iyxGl9m9caxvk/qVYAj1mvHRM22zpIKwoO8tA1MU42iWLEciZ3jvGbSXWM8ZzkHs9wczuMbOXD0mPnyRnGBfsSGlMkWXkoss/Mx7MN3VO6/foi0dVV4lpsA9d7+VL7yQic10Bx/n9VnN/5g9XSaVB2CQAOlqyyRHPKRwb8xKf0vWOZRAmIn+++XJoy8pQBxkSvWrN3q46NuklckKsWcpoHt9n6joF1+yyL/E9RSn+jgwHpd9fDTJvJ/6hrV3vU0oxY/ztQ9vvJjKDeOLnC6tWrbK3XXCqvfOGyGw9XPzentf8ymUQ3+OBbkAikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCSGg5iWLJFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkdjtmbMSm7UEPdDN+6fCr8wPxFx1mdvlPm89LnWJ4/YQfgMKvRD8CrUaBrm8ztBpQMkAp8pP+ujWgPxd6iiOcamJtoMdYKvQl6zgH9UWJ4gHakgsL54730p9jO9cT+qea2R2KkgKl8xyno5iONHhKxwJNJ1RH9EsXjQ7f3yDHStQsAAoOKFF4dqUUgbIj0mqU6D6g2XA6rQXS95vb6AlLVICRZlD6ZSpcZ8TLmUK/LPC+28wBpSwa85L+UeoXZDhSt+ozRwoRyhK1FXQ50My+o7+tNZyaZ95LmkM7TVddwtVm2+/z/7voHKE+Kt17aahTokeaDW0auqL97bSfc1zneminoa48x0to7PSejCsKWaLymw7H/HmmzpE6Tj1Wy28XRTT96ddZVrI9PCM6qjRlHbRI9ThAhTZRFdtL44MsoqvTHXWAujL0hP4s0bgxBvSD05Ns0fYgH5FiS+3cZaGu0vbQ7kizrFSPbeOhfsivMzVu7UBe6F+e+XCpw7PRHig9tS+9/SN+rxm3rbX8/LijDbPBM6yx2/SLUg5DCxZ1/AD5H71jXIN/M7NeXxKBPcSflnz/90Pd1YU6UD/RR9BmfrpQF/nAdpR0/gTrhcpU1COg7XJ65boflGaWPvpiqKOgP6GkgrpnidT5fqjj9NfRv5lZ0350bkrOeZ9/LX7nYPk/UvhNFu4BJTU267xCHdoMPZ/KPbKHPpZoA+mXSA1XoG6d73bxCD9cZHr2Mbu9RLE47iU2xOOYI45rqqxFJruoy7Ar2G366cG261huZntb0y9T4byOYaBH264Uc5HCrYteOVKnqc4yDugUMafI/1b0hHFGD8fkOu8I56C/1nEiLqbvJ/rb0xe6ah+gU9Hm6FgyhtgRxlL79Zu959ZyPfWHxGJd1IreH6NuC4vxLvqCvcS2RjpqhcoE4xPpZkt0iMh9iUpTKWjNGv8xJnXis3o/9cT0Xh7l5RpsRimupI3cq0TtCZiXlfSaseuia8Uvlvwhxw62fn3bWTzezK5rPi7xPtpwuR8ojY/HF0V7z3NHus9IuWjW6DO6eqOcIy4mruT7qiP4SpQN/zZbOlzXkXn+cev5zamZy/tq98Pbvzkev1T+R/95Dmz596UOshOpShV8j34t0EnWNKgu0yNnVOXMSqnUNReACjQ+u9L3Yg8iJacizLGWuq1Yr7JNXOFtrGMcne/6esrJHmdcUqJnZcyiPSjJKLar5DsDiusAHXPaPorTktyCV/jxd+64HQNBfWf0p8SM6pjoe++PrcwbSusAXfNl9DD67hKtPcews7pew//EByoD/z97/x9taVnd+aJzwxYsYkEKaQlC6a5K4bFi8IpyNTRNLBPslnGCBtujR722lchJUJM2mr6JP5JrNEHUa4vj2P6IIRHb1moTj6alR7ADCeVAm9ZDAy03FoZK2KY0Fe3SClVKoRbu+8een3d911zzfepdu9am2DK/Y+zx7PW+z3qfX/PXM9/1zOlyoKNtrmt/huzb2bNC998MnxWtVLi05fN8bUYT+EyY88yujPOidjY89tRQqnyL32+lnKdOloI2grnX1J0fDfdi29p+X5parZ/Nh9/r0tkzr5nNil7Epnim3EP2Ot3ujnRsNlrDaGdk+p39C3Qb13tWe2Mz2+C+yIc/d3Rtb/TpYuO8Wq5h37Z8YxGfCeWRAOMxH9in6mtwnxSys9d/ajaSU5nOjn4r6i6MqiwdsHGwvmqXIpecJre4rtqttC06P+J5Po6P05+Y1t6sP9W81olpot1OP0/8aLfEufJ5uSV7NnzYSmUe236ZXIPOM99JRIufAWPdJtewZ1/gJfN8pvWDNcx4Pvhd9yS0le6pI+D9Vkr1o8F+m/T3ZLY0fJ3tdSK9sN7JOu9h/7J18l7TBmnJYsB+l/5nuhK6CLxxhtD2XuxJ5gMe1b1BSKl+mP3e5VInpnbP1tv7evdHknsg2pG/IfdYF2gQGaT+tK+EsjXPp4e6Ku+irYYNq89hzqFXfd8Q7S7eP6rsWQh14/7MbNT/7eF5LdrIbACutXwOEdgkW5J79Et4dU+sA/1hi37bZmdXDwHtR/+GAhmIzNL3J+wDkcGBD8xsks6ZZ7VpTg112C+qLxy6og3WSeVKfH+Y+eUWwucXyf88K9rkT5f/h9AH32dcztfzskeZ2HNl+izSsH8ne73UAT5q6RNdH+ZzwctsT0wdf+buzDb6Svjc8kf7vGBDjNkP8Dg+FPYjuibIVZepcz6vd+ve3+2L/chE/b7uFc0m94tm3ZpN+JYU0a54vJndm9SbIbq9pM5ZXGvGt1OunRNKbOBsneJ7j4zmnSfmti2XS2rrR9sh25tEG+b18j/+7BeFOpm9y3jg3UcldaZBZu9EOzJ7tx3W4LDb+OeK/+k2vg+vM6/RZjIb6fWr+9vo+qHXkTmZvQMyOW027OdVmS3N/KAPsv13y053H1nHoy1fTmNf9gz/3o3UUbnNurI/ZZ5UmLZ8J0cD1UvQfWtvEn/b1fodS/y+2tJugxyOv+1q7W0znzdAxr9UroXfUGzwNdDf0FwX7VnmObOhsTn5HVRmlyKXWEP9LRE0BP0veBntbwX7OvXrsU47k/rw9AXjl/fpWkR9mKAjvdZemLFFGZq9S0GuOF9vuGR0a+I3Teh5tedYl1Z/4nPUdou/vcvkzJDfZAHWHprWOd3pJeOIfkez5X3Qdwa0UygUfhjw0PmBeKFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVB40GDJzO5f5Z8zL63q0x+cmFtaWvqhHveBAwfslFNOseVovXqym9PQ8VSOnubiVCinegacYuqgp7m2e9mIUDJxEojTekOjutBvxtGK8gGYDz0lxyknThtx+vAaqfNEL+MpRjmp2EVi43utuePUkp/iWi/POUhUjFakL06scXpXT4P5Osx7dLKJk+YZiECQRVniFNmilxLRc+LEGPOqp1bjSbXs9Gw8/R7mZwycWGvRVoaXhs/TRHoYAj15dqYtR3O4wO655x47+eQs8n0bIz7+j5aeSubU+9JKopU/ObkWTgzPCU32tTFWJ0YAVOUVo/gyHxrxiD7FaDsSbfCMNyyXXXSmLvy/PCdGSFU6i4gR4uQU+mkeRWVfbEujRtE3OWnZIUYX5/tKC0Q69ROyRJ75tlQ5yOld5IFHah+Td/S/FSERQKdEoVJ+7ouIHiN0mLUjrMBrRMfUE6CsFfNB+9dN1kEudqJQTzLzTPqRnVaNUc4Ph+uKvkh895nZW2fAx681s4f71VbkYNYH+leZPCTCSStyU4ic0RsJwGyk27KoqjHyk/d5o9DSHugrZndQ/T6tzl8JYoSj1piJOAktHkzuxcgVGs2OMTMvfd9RJBlLOsQouhppfUhExLjeCnQ2uhb5LXbchA2Rzd2QaFzej/nTw/MyMGfIsGydgEYI6YugCz/ca2a/uCI+HtfFJ436ts55JI0qDLKIOtg1cT71NH60b+BHjR4Y5XUm/2mDyBdEY9CItrGvyEe1Yfsihcn4TvOoJfsW/cJOqYcNTX/ou0ZvQFcz1lZU4SGgb/DBVck91uLScN1s+qjMQ9GKhJbVwa4+2sh//sz1TgsHd/r1lvxFl2f2crTbdS15JjTZ2p9FOWejTFJ3fF7qHDSzn5iBLv5TM7t94Lec7je6LNzT2p8NkYUt9Ommltz3iIBz20eXOg+H8828r8GY3I19bUUrHALW+Vy5hk3WijbYikDYh0xnEjGJSFTIO9mHnOaZETqbXvdByJgY7XwIz2mU8WiHtvbWUc5phFF4nkg4rX3MEEBbKleQyS39DloRi1rfyzArm/q/mNlPyJ2+LAdK28jbOI4synKMzKv0wpoFXt8ge+KJqDvQre5XW/QVMjmd49EY71hphrKWPcj6EnWRcWn0XfYAQ3xtEVm0zRbdTEtTfRiyJ4511FeE3ovRpiTS77qF5fJQ5CPlNdYcutE20HHMi9PfeUJLE1GWHwjQPm2rP/lOmx0f32ojvaHjZF3ws2Q2K3tI2seeUzk8hAYA8lr52m2ZLroZ9K8RwGKkyRhx3mwkT4h4l0TF6yJOtta7b48vMuycly+XdzBm2mpFAG/cG+RvpP0nJvfQw5keGxLNG8RI5lmWom+Fz+pnpA2+B/2o7nW7Av4bxHuZ/gCZvwddAJ36eo3tmbCho89b7WzniQvd3rmJ61+VOlEvukxf7/bQ0gGzb58yGx/XuiuXLx7yvs7JnnaJsWaRU0Gk6SG+R42CzTsJvofO0/00tmbkI22LOZ5mD4gdqHKmby+gUS7pW6TbVhRfjToddeSQ72fo+55m78t8Y2Z5lq9ZI4tOiQ89RAM2S2TVrPYfCYjMS3auG7Po9j6vnd+ojx/M2vvuLPK+2dHo49xPrciy6fC+JMtGjTxF914bPpsN08e0AY1P4wNRucA7SeQRdm7reUP809nevOUHCHvXNJM2/W5FpI3vcRIZNu9j7fb9Wb9cjmx0PtoT7QVLdL/KHvgvyjBd5xilc4ifxG2rc2RvfQd2IGuWfT/sUyeiAisiH6kOx2aIGQ7MRrQTslGN8cajQh1oSGVp9BV8y2ZnU3/BzB5hozmPtrP2Y8HLFr3FqLAt+QSenlxLssn3wunkQqfjm1SHD/Gxxf1L5neN0dKV118frmVRZqOunCbCbes5jq2iz3bFfRh7ytYeWfcoZA5DVkzTV7WNIi3E/bxei+vU8jNG+92sf2xqA/NOnvX5otxznpyInJ/ZnC8a/84Yf8YxZ79jsVFbSwfM7p+FTf1xs9P+5ejGPmRgnDu1jVhz5G7me6Q+WQx9v3DRWaMquCXSrOcR0Ifz2MZto1uneXlb6znYj9uXC/1JxbU7/Z8h74mjDTsruzSLSj8NlO6h75btAb3BU9P45JXnY5YZaEH1M7+riO+iWu8jM7T8LEEWdzawZr7GBmeueFep/nV/Nu87OpukFbkenSMytrNpsHPmJ+vYpXa0v+MqFGaNHTt22Jve80r73c/+s1Vt54Un/Gf76zt32+bNm1e1nQcTKoJ4oVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUDgGmLP77fhj3YkfOhx3rDtQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqF2eAhFEH8oNncc0cfl0gfQZodT7uwdWFUh0xJXSoO6i6OP7evvQ7XLBddSs4sJQdpbUj1QvoQTeVBOjtSyGiaC0/Psd7TcR1spb0l/QQpIjTlSkxDRKlpLRbD80jPJOPaH1PW81xN23QolI6xFC6kRGE+s9QmMW2bYM5TxhyevDWJV3t5VXKPdYFl7gil9i2ur44vpvAjJY+mV1rwkrRVpMPSFD88BxpopV0H2kYrFRa4NHym/SRNYNefs8N1cN+A9obgdjN7s/8vqaAm0ieyTppeBp6K6WVaqf08Ndoj5NLB+H3njSVNBcUzNVUrYI7g0Sxt1PVeMg5SKW0bVXmCl3t7+mxm/amtJKXUuZ6q+7Yr/ALju3pU5x9J+RpSAs6LXOjSVWX8Q3oe5oV8TZoai7TEzqx7oW0dD7zu7a93njuY0TzPbq1vpNOY0lXa3+JzsHtoSiXmkfWFbx4pdUiJiG7i2Una3IMoJNIsqSyNAg660dR5pIcl1R1psFRXkA45pvubNTbYSC4iQ7OUzqQuZ301FVpMARVo08wm11NTL8U0VazT6+UaMiauuabqOincW1gu9mi6KOgWWs7Sg20J916W1I2yYkhKWE11hxxB10FTiQyac3pdIvWX6gOuxVRW2tfId1vsyIA3Xi3XeCbPo01J/9bROXIlS5/Gemd04s+cd/o/nNgShyMNJHO20eXcnruSNkI/Btkk06SQzVJ+xbShpAs8lNSdFg+3Udo+Mzu0uFx26dIyOentXiR23A3UW/ASGm2lcXO6PUNskQk9CL0or7JmO72MqUYV0BRyRmmqj98kje8+aIh+aBo77r3IxqG2FQTyCS93WT+iva2YD/cy/cw90tm1UvixD0I2K59nvAViCnNkYZTj2kZmZw+QI2c4fe1FR2bz4s88iO7N9lyk9YNusJuz1NCxjSTdZqdrVb/TLt9PaPKOyEtPNrN7k+evBP/NxtNosy7Qn9qOTvd7Pj/+OQXfa6Smnkh1quhLp6q2Hs+mH56Lc+nzUodxuE2TyXb6utH7sydrF7q4xkvVP+ytsJlJX3ub1MG2Qo5kc8c17OUhqSzPTq7F9MjJfm9fvHDXZJ2uP+gh9QNgI54Tyoz3AWuXpTqF/m8NpdlIXoPM7kH2sgattMu7Q6l969vHm43WOcriU2NFQSvV6HobydGjxY1mdnP/7W6vpH3/eqgE7yttb1suPuK66cXMSya3A/ZrW3FeoR9NRQ58ni+7eHTp6rAeyMTTRF7vow66m/TK2b7u++Gz7i1Y5+hHkzHPe98OUwdfgz7X95fd3NM/TbGLfkcPaYpr+jHAWDzH27gDOlN+Zvzcy1Kiw5N8Dz2b+RLhrbAPN5MxwhPOYxtfPKqzJ/KW9oN8yoteOn3ccsAmEfy3qb3Muj4xqdNIjd2BfU/ss8qXp5vZdxrPmAY3mtmnkuusHboB2la96nQy7zIHvTon6/NjXu5lXpDX2f478ats8mfdHe3bls8AOattQJO05XuVXxDZ80HmPNqDCvaM6Cb6szCqckekScd6SRt9EF2b+czgBR/HEjyRzRnz6n61MR1OHb6X2dvxOZnsAi36xbcVdZP6vFiX+N5B4fx4yzSpxDOZHv1himgz0JbKZL7/kVA3GftN0aeka3l5qOxz35kSs/JVbzA7hP7zPdiSytKoe0FrvTObJvijN8iefH/8Hrpmu3wf+mTNop1rNlqfaJeq/4cJzHRLH/i+0lbgiUtcz16rdBzXvGV/RR+v2TD7On4PX768Nj3H3y/dcY1fwJbVfXz0RTE/Oxt1QLbPbNmTp3vp87qkex3mGj2Y6fU4j3E/YjY5Z/E9kZm9xMsPxufo/sHnd8JPpH3AlvqETYLx4NvCb/uWpO5R4lznidv8HcVF/i7gBu17o91fvWy5fHcY64ZLRv/vj+sZfXdmI5sIGybTi+yDrgv3dE/IHGPr8TzxX3Xfj+8mWhB7YcLmxZYVvlrve1fI4+ZsDwrifGR70Ui/Ii8nfAzU3TJ5rbNPaVPWqXvXiL2vfMQ9ZCj0q74h/G/TyElv447We/3M9xbslBtba/iH4fPp8n9rr8c8sPaZTfKNUDLnaosPsXdWik/Yso/rUT33tR9P76mjiLZutobR9rgjfDYb7f1b9i3y3vnnJtpu+TcysPaZ3/XUnjoq9/vkm+rJ+BuKzI8ML0U/XKan6Yfr02/rPfb46GXaVN8q84tcafGPI303ATJ7Mu45oWPds8Pri15iF6peQ9bAR9l8REA3am/HNUxs8cPomlMn67BXnPhNheKr4TO8rvLX7aTDb7LZ2dS3mO37/yXXoz8w860yr5ncpb7TxxaXaTdcJ3Xieri9cb74725mzqAPn+c9sq/aA4+09m7Yg77XuVb2TFt8fXbHvZrqMepHv5H+9oB7yPnW7yQAvHF1cg//EbSkPy+EV9ExrfdL7F/kHfC8z/Fh5+OLvR/XtWiU52Q8H/3QQ8a+7shVxvZD/szzva83a1+DnXCo1T5zxdzrvtHtp45XW+/vGCvyUsbTy+u6V36/zY6PC4XZYakiiK8KHkI/EC8UCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKDxYs2ZwdXvUfiM+t8vMffJhbWlpaOtadWE0cOHDATjnlFDN7rZm9Uu7E07Kc/NETcJzi8tNkG/3E8kT0G7PRqUGieWnkpL5IaApOf8XoJXo6n5OjrahtnErz00Ebnji61UUub0Ud3RJKTqlpRIQYyZM29FQh0SzvCHW1TU4ytaI4AsaVnXqNp271pBenKGOEBj0lvBjuLXipJ/TiCd8sYmPfvOqJVtY1Rt7W77QiRABOg2WRJzhpRt+IzNyim+x5fZHUspP7R8J9ZvZWu+eee+zkk7NIp22M+PhuG/GWnujkrAs0QdSD7KQjJyf9O6e9YXRrXxxrdgqX8bNOzEFrvYTe1m1bLg+1osz2tT8gUvy8nIDuDpAyZ5x2Vprsi56lp+2/Ea5lp0TjaeSXyb0ob0GrH0Qm0GiQsY3GKekuGmRLXhOtgHFkkdo4Rclpb42s0Iqu0fdMlT2cbvXnPMPl7I3vkzpxbK2+TgOeI9ExulP98dnM8yEz+/UZ8PFrzeyfLl88zdsf473Hhm8iN1syDOj8bvNymuhXgu40PdHakP8tnQ7/aaQroufFfij9Z1EtzSajdJuZvabneYqGTMfWXQonmZvP1GhGMQKIt7Vh+6hKZ29Mo+dBFmGUU+itqNo+V1teM7o0OOK/fD+lM/qE/Oc0vkbmidEJmCe1K4mKGaPwaraJvjHqc3i268FzZQ1ve2eozxxS54CZnbIiPh7n4YeLnIVHsAezeR8SsZHIAYtyDV1HFCJ0QxYNuwWejZyLEfTMRjqBdUa/D9GZyiNOSxu2LZdp5qAW3OYk89HSTr+udil2aIyqrTZx4JsuuvYKZWJnC2eRFrE5M/u4Tw6ovR6jcGfPQV+xLn02vn4fvn6a3MsiSUdEGmhFSKdfjO+bci/0bcxGYx2gTdYus61Vps/KpnY+7kUWJRB6Q6/pfnearAcO5mOjXLsbGRZlse4/sLm/Fe7p3CEzkLvZc5PoZhFERIMUD18jN1lfaBwbUe1jnj1EjwHWe0Gu0YEvhDrKh8j9uA9XsK7s7fX7yMVGlLOmfQ3gCXRDy46LulczXjHWmMVNIkxPRXeJnu+iBLrd9gyn7Rt1X8dcEeG3Fe0MXcAcZNGILrXlsFgXrCIft6JlZhGxzMZt6BgBLUN4zlt9Ll87rY6J0cWyCL2OLmK2toF8xg+XRaLNIkmbjWetcbtiQldm2SuivT7ETmghs0XivQFR9jaIjtnP3EGD2E9DIt9l/emjm6F9zKIvghCtuYlGdoqJtoi8pH1GnjCezKfSpxtiVNVZ6uMf96tqK3kfuyxFO5fLS7eNqnyyj98SX85Wp49dLR7le1k0SXQt83qO1EFm4kfADhuQdWAMkZZadNfCNNE6QUP2pHWQXbENlRnoK+YHu6k1nsdPXpr36OSd7UjkV41IOIR/VoKWrwCdp9lt+uSAyNtnOL/cGLM6KIhgOYTnI1oyNfoQZ8nHvxiendn00RZReunLAJkhizgcsdIorX3P1gyF2EYteUKUZ+g/RG4cQ5iXTUJ3d4c2tsq9XdG+5zlqK14X6gxBiNRuZu33MBGsK/JySNuZDTwEmZ9ltSL0Jvp6Ino0UP8IGUEW/DGup9VfR3aYzjec7UV9Dea2L5edT3PlfDzi4f/TlnVX9Fkg6zXidfTTK88i63xvcYZHIB/zwTCPUVdm8jbuIbN3NaC1t4WmiYL6RblH/7NMYhHY3bpXYq3JCMK+VfchUZa3sjeBhg0wQS8aET1m1aLPyrvwM32F1we8dzOzTk6edlboh2YyRudjL0GbmT8q6qYhfvos2j/yYNFLlQFhzrOsbm/ya2/M2hxik/Xp7CTq7aXe1u1m9oMDZl9ZmZ/aLNsbD/DzdGAeyeascxbWpaM7tb+wmb84Xnfa/WEnS3mfxJyp/kB/Pj3UMbP1TosT2at0/xuyNs1tWy6X9Dcd6H63pbcuLJfN/QPQrLzImpixRxF1Skt3MZ+sqT6P78F/ar9Ms5eg/8jkIb5jRWY79KHPh2E23d4YqC+H/qM/iDSs7+oZW9QjautBO/FdZ9avR9ls3xurj2tIBuX4exj0QGZLcE19zOCToQ78nY15SL8yxN/+8JyXSx30R6TBRK5M7PHlveqrty+XV0XbSsfOmGP0bN339r3XzTJxTyN/1Z8wjd8gvjNSumWtWr/ViX3MbHzsimhTtNDS3X1ZFRTYkKpD4/uOviyVZm16Bcwd7y0i/R7d3rhQmDV27Nhhb3zPv7Y3fPZnVrWdl53wcfvrO++yzZs3r2o7DyZUBPFCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKh8IBjyebs/vo588xx3LHuQKFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFGaDuaWlpaVj3YnVxHhqkivlTkxDl6WmngbTpDrN0unFOqSF0BREMdXFS+Wep7VcRxpsUp9p+hzajWkjNO0b3yN1uKeOOec1oyp3ZOnesucqGvNLn7usFlnKIr6vKffektQzG0uj0s3VkBQeoJXmLKbz1lQrIc3gnD9naadcpD7pg97n5VapQ0o35pcULpoaJKaiaYH0Rk+Ua9d4SZ+zNOVxPbP0RqSRYS08xfrcZaMqS2+y2aXt/C3LEx/EVGwNTKRL09Qvn/cypv5K0k93/Ee6Sk1hSRrJLIUY34MWGY+m8SWN0GHrR5QnWRqueI22LpE6rDmyi5Q8mi6t1Y8hYMykouJ5j0rqsob0VXnjuV6+KdTR/g2hhT55lNEW7ZMaTXiuSy0HH2ubfWnRNK0e8mDRy5eHz2ajFISk3/W0YBcJ3d7Ql+ZNU+vS/zvCPe1fTCW7Wul3Pyz9of1WOtVWajXk5HYv353cW/BS5XXU1T4fG14wurQ/zGsn04ek1UvSJyJnN3lfNVXuVM+OKWQznQdUT8M/C+O3Up3bwjT2EqnCsjRhdABZ9ulw3Wwi/duc2yJLqsujHnzR6N/TXNfum2aMfF9ttb40wpqSLc5HRrdxzM5bl4hMvhb7dBsXknZbKRKRtzu9pO/w/L1m9otHmX43pvsDbgP0pp47EpBrmr7tUFbRxvUYtivttuzRVspHeCumftVUjQNSgzZteTDAjnu1z8dV2BkiG7v0o4t+Iaa3N5tMR3xmUmfIWjFn9PXZXr47qTvEPs1S9w1JMQzQF6xTxgekd8U+0PS76Gzm56MD2szGBf/D69hNmf0R18JsMn0jEJqf0A2X2zJ9nz0DXfxHZvZ3cifyhvaPPjH3yPZWWvsMyC7sC2wAtVe4hu29GPpl1r+nFt17oe9l9/rn3S3aQu4rLcR0oa30oZE+MhtgSPpR5Bp8qc+Bdth7QffXWT+gD9XBGf8B2uN7Q/iY/aXqqj67LVvnCE3LDR8zvy0/S0v2tHwWA9KfIm8Z1m3Qkuoh9m7MHZXV9ny//D8rm7pPH4PMXnh8qMNaDEllvkJs8GdH29rMRrIH2dnylQGdV8bW0u/RV5fZ/Qf8n6tsOOLeyWxSngxJay1zv8nLu6dZg7imZpM8lsm52Ldkf9iln+cCuk7lCs9BN7B/fn9SJ/Kj2UgeTZNOe4j/FSivIqsYKz6Y7DnZ+ipWg4/Vx7sY+saYde6xRXaFe+pn2e4lupznqtymPj6tzK6Mvr8MQ1JKRzpTfsaPeLWXLb4ZwltxDbM02Nm4oBn2GNCJ+p0YBzIn8xGfGspp5kX3H9AAOpL1bo0d21ft9cu9hDcz31lrXp8a7lEm7yYm5kOfF/kXGah9PSfUidfNRuuC7mevM02K8tXg4z5foNnku4lMn0W06myxSbRkaJQj2Tz3yWJdZ+5Fna3ydqeXrwl1VL9hTz7SyyHvOFr2SsvejuPS/eGnvIzzO8TuV9t1iA0Doj58+ejfOd+HLeFj+qbUa+mtHmz1OduV+dFYs51eDtmrHBhdmt+2XB7+mF94Wnie2eS+gzmTca13m+wge5tdUr/v/RRz8R0z+/mj83E94h6zuZPNDrKG7EOSvX1nGzVste59AbpXfVzwNDI12/uhW9BjrJ32R/2RZiOfZCYzhvhbkA+u69bL8w/ybH9vsmXb6F63z6b/mT70Z1981nJ5XfYeBfA9/HNqu9LH6LPTtpBV0aZ/1ujf05xOm75iZPk2LzO7NsiMeZFPh9FpsT/Ply+wx0cefT2UZiNeb+lnn5fneV8/zvtNleP8P8R+emlSJ871BeG6Wf87Od2r+D7hF9yP8MH32bKN+usz0MV/YWY/YiPZsECNpK/UiXI78pXZsPcfLd3PvMT3fpm93XoOyPxhfb99yHxT4KU2CfrE97J3pd63LU7vnQxo6cOM7vD5RV7VflG/9ZuOlh8gIrOPh/BEBPbT9+Ua34/0r/MyxIYf4juMuDS51vKvIA/XNerwfeZnPlw3G9H2E21ZF/+LB8DHBd1on5lXfnODjaO2lu9zf8FlECx28xC/S/auMmJae7Dlm+1Dy0/PPrP1njgDe2HeXTF38n61o9f4fkt/V8b3svfG9PuCULbmfiXzYzaMf6LMQC/r71D6+taaX33vhozAfzDN7w7FXhn0HjLuKRjPkHc2L5P//9COdm9cKMwaO3bssN9+z6vsNz/7rCNXPgq8/ISP2F/feZdt3rx5Vdt5MGFNRBB/73vfa5s2bbKHP/zh9pSnPMVuuummY92lQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVB40CE7Avigwsc+9jH7tV/7NXvve99rF1xwgf3+7/++XXzxxfalL33JHvOYx0z5ND3103eqUk4Abdi+XO7vOwltNjpBl0Xli+DkWCP65ha/90/883972ujej1roT3LK9BDPjJE9zEanpuLpzCwanp6KNokarmDsQ05xfT655qfQukB5tKEnQWiD0+J9kSQVWX9YZ06n6elO1o5nt06ubfOSudeTaOE0fhoJltNpMZq7rPNEREZO6+kJwRhVQ6PLEJmXOScyiNJbPEGXzRk8sitc1xNp8QSbn7IbG/sWW45YOgscNrNH+/96WrUv0pFGTvJoRG+8wj9zwlH62kXk5GTfzuVik5yWu5tnLoR+LIzqdNH8sui5fVG0dZ7jvW+Ez2YjGoqRtjWS+VWhDnSWZRYAHhXstDeMLvVGVNBT9fDqHyf14rrESEpmEyfjz/H2x2RPjASURTb3uTrP1/KWnUndvhObEmX/DKf/vXHscjJ2H3OXRbzoOem/9cWj/3fxbGRyS/Y8dfzjDTvlQ4ykzmeNDBDnapuXEjmva59oBdAJp06/bWZvbfRxKP7KzJ4UrmkkKOgUWdiKgIT8vt5LlU8havpWieSxi2gcd46XWWTDi/1712XrM002B5ezd79z8lZvLpenJtei3NXsA60IfIEPD2YR/AC6kqg5qjPgn3jaOp44NhsWvSuOR+VCiC6+RNSP1nxLdJl9L+qvNgH0KN/PIswB5q51+hsay7K0hDFfq+Ph2V8Mn/UUe4zUna1zjBBE3fsafR6KX7PliD1vD9dpI4ua0IhYtMnvES3z5cKr7+uTi2q/Pz/cyyLvIQPj6XfVq6xLxncg2vtZBG7GTJQ+7QdyFRuLtU8ioXVBVJJog4Mi/0d9DG8JTc4vLJdEvzrD+7H36lGdiSgsyOYsagLzoxGPYnQ/dKbatdNESsVeYjwqA5H79IN+3SV1oIUYOVz1UJRdmcxhnVtygHX9enIv7mlidggzW4p7x/fbbHjYzOyvzbZKdq1drTVADkGLrIFGI3LbY53bFYfQdRdP1un4N4v0gy6J+xeN8gcNRl0nsrA7T96KsM24sijyMbtFFn2E798Vrn8/VpTvEw1JdTLPiX6JTDd8ZLzKpdtH/39yp/8D/fu4Nop82dNaZ+YPmUr7Ga+3Ijn12W2azSraya2odkRNQ2Zk/oBvhs+tSDayXhucPvdD28gBiYx4cOdyeRvPgVezqE+3hlLAOjTXYFr8lJndLp9jxLEsgl/cLwCh27k3jt9qZrhhXmkrGfv+T4QLap/FSNstwJequz8ZygyRZrD7lZ/66DaL4os8wlZTu2dIZKAou6Qfd/f1QyOp4ecJ+5gU0Z+miDScPKeLjuntb/GMRLtVT0Y6C75EMxtlKER+q0yHFjF8fH7mZN+8xBxhDyMTs0iy6BbklcqpKGuyuYOPYsSlVgS+WSGLJAiwJXTdMt+L2bh/Anu9ldkJIPsyGYptqPYS4JnRZlVeZT1jlEAdD32N8iDLQAEtYCtlkeJZQ/qse7pLQ10F12IGGOV1nh18JxcKbd80RN77HJHRoPNHZNGBGSv7VJU3ce6zTD9RFqKX9TkxorTyKn7dGDVd6ZZr8b2DrmGMdI8sVVqg/RgVT+kXvRUzSUwTQXxWeJyNMvNAo1m0wZ1eDonmi65U38FvhDpX23Rgr8Tc+zyvF1k6sc+EHzPbNSLjJ9aHKN2PTe59JdxTXmPtkbtDfHYaSRNainI74xF4Hj2r9j96eMFLZGMWJbIVYTfaAMyl+FZ6/YNmbZ0f23D9uot9WbafCWu2QWhhf8yySl3Rh52d4Gu3bmG5PLRdHkodxprMWdc11rsVPTHu/WawP/42/7Cujeiuh7/aeJD3uxmZOkbiZKxZxqxW9McY5Tx7j0dbROxu2QLQrffjoPJq0D+7M/6J2SVUl/v3rxtiszZ+rrBh23K5/2PhhsqMaGck8nbfov/TyihDZoPMro304X0fiyqPnI39yWw3xp7NK2B9kcVqj3m/P07/kVfKO33ZIRL/Z8fHH0rqwaMZj8T3Y5mucxr4IHT6DZudj+t6W448HO3IaJuYjdYFOyfzcWVrHxF5KvP3AGRq9h5xiJ0Oov/JbHLMjEP9cVFvtfYdA7Lf7A6/GZiX98SH2VMwntYaRNpq9QtkUbmTjFndu35osCW7Wojv6LOsTXFdsyxF0T7IMo9GXT0kQ5O+921FWwe8e2WdkB3ZeJgf+iEZTzp8zGb3+4/zbFwmMFfMeZLxrffdrexpN/je8eP+uaOJJOtGlwGvZT9FqE+yFf06+hNbv62ChlhTlQ/hXdjznNc/rhf5HjIj+z1X5AnmTOmob/znyv8t+4l2bwil7mvwGaKj6KPa9PiE4fEsWnif7133LvH3TpkPH0Qdqe93WB9oMtHLHVr+7Egv+r5sSCZv5DzvP3iO+spYz+ivnTYzbKFwLDBn99vxx7oTP3R40EcQf+c732kve9nL7LLLLrOtW7fau971Ltu4caO9733vO/KXC4VCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhULhIYS5paWl5rn0Y4nvfe97dtJJJ9mf/Mmf2KWXjk4KvepVr7Lbb7/dPvOZLKLGOA4cOGCnnHKKmb3Wlk+Q9iGLAsqpIk4RJ1FieiNBJSfPmqB+rKsnwThdxAknPa3EySiirh3tyR9OWGWnVjlJyMlG2tRTkvGkYnZiOEa4Ahq1k/WgrSySTQsxUjx0pNEG42lgTno9V67F9eV0m0bPJFLkTi85uZlFFwrzsU5Ocx26xv+JpwdbY29FPXxyUudD4R6n5LL1btEUdBKjgmlk6U/a8qnPt9o999xjJ58co3ceGTkf64lWTr2yzlm0AdaDvu1cLs6QSNkT0aJBEkl24gSynibkRC/z+0W5x8l0Tmdy6lZPLvqJwFd7G1cxv7o+0CAnCulHFrkVZKfRW9ESQIxQnT0njjWL7h2RRYKiLcaxMKrSRTDggBDyUtuKpyqRAZrFAHlLm9CS8liMUJIBnme9lS9p9+uhjiV1orw8Nfk/ntxXGo+nROEx1SeXJtfM8vWOspm27jOz35sBH/+pjUc7NMsjCQJoQU/P+vp2kYe5PjAqYxcld0h9ohswvxrJuSdaoUZe7KIuxvXWU9IxEjNjzqIRRWSRqYBEPVy/zaswDpc5W18zqrOLKCytqC4xym0rOgbIbJzslHfEkDogszNi1LcB6GS7Rp0l0haRgtDPEtXoDNdDe6mDzlS5AqIOz/Q7a0fbi1InRktrRbaN91aujyd1MXMOTaPH9DT888M1PfEeT81nfebadi9Zl8wGjpHMsnnhVD42q/ZhXaiLbhiSKWdaYAsQYUJlMTJmSBRS+pxF7j44Xme9y5yDKm/QDdACtJXZfDESoGJIRJMIjUhFNosoC1VOLnoZ+Hle5G2MYNats7YV5VsWxSHaPSDjVWicude1ZM5YS91/RPrK5H2UYWd6P//1jG1qs0n+E37a6HqiGfk42g6s3U6pMw199O2Nzex8X/Ob6U+2L/PvP8N57cZW31lXta16+jq2Z+OZ2IPQhNr0fX4EjXS6K69zhrQ1Ya9k8tL18fqFcEujJLt8mfMxLy3aJIZEbArYJH29m2fG52i0KLIvRP3c2tMOibaZROLvov/s9AuZ7Rt4dV78AJ0YiO1qNJa+yEKZrfdUW46u9LxV4GPQ52cxG9kXMZuOgn5Dm61oZwGpTJ4Gme0an5NF9T5aMGcseIyCaDa5j6cf26ROzC7Bc7P9QxbJD9mQRTwGUT7iq9DnwFve53X+nUM6l7SFDNzp5Tap05ctQzMHYQee5aWPef7sUZXDzBl2Rsu2h49VlrLHj/aJ8iF9pM/ZPoBn0360t80meb0v4uKsfFxfsnY0SXQMtCC+thf6nvE/++eDfZGhjgSnhWc4LTxJbl3FfGC3bF8uzhO7+RbqRDktPrs593stsa7uN3qGZDS7Me5FNYojGBK9vW/NVMcgA5Fr6sPErr4u1Gm11eofdZADuudg7SO9Tivn+uS+rMEGX4Msa9pUiNlVsywvMYKsylL2DczHELsDW/4suRZt55ad0GdXzoqPrzCbc1nc+X/Ell7vtnSnz1jflk3CnkvlbRzzgGjS54qcvG2atY98NG0WhRgNL4mkiV19CDsD+bBNntOiD/xmfZkfpgV9xn7X/YCv57yv5YpsnKFo2XERGW37tXnnzbSv0Cd2TxbRMNo9QOUla0Ab8T2T2Yjnp8kOPA1m6eOaYu4736G+8wnRLbt9yErppeXTfFT4jK7K3rVEZHK75e8Bmd8HexL51HoP/vRQZ0i05Gx/GDOfqp4e4puK9t8Q35vOa59doLobez/SlIxnzveczWxNQ+Bj3ujvh/bE6P9m02VABSvMntPJ9pY+9kzP9nkz+46Z/dwM98bQstvF6148oD+snb7n6cvs/I1GnRaGvIcHQ3wfWSalPhvYbDQv3Gu9s4xtqK85/pZiyBywB9MsnNNkfJnVb15ARtuRV1XGbvOy9X4pvi9nvZMsOr/vvP/L2fr2vS9WQLdbwmezYe+0VwLX96eJDbCPyNRfsGUf1y/NiI//idzhveU1XmJXTiufsFfofys6OHUyeRl13DTvLpP6/8Z57B2acZrfixDhHfu4tSfEXlAfyuKUfRuKTM5gQzM/T5N76NghtmeEZpTBzljJePSdIXY+7wCeHZ4f/1corw3xbbX2fCC+j5zWTub7s3iPeXR740Jh1tixY4f91nteba/57M+tajuvOuGD9td33mWbN29e1XYeTGjkbDr22Ldvn91///12+umnj10//fTT7R/+4R/S73z3u9+17373u93nAwcOpPUKhcKDF8XHhcLaR/FxobC2UTxcKKx9FB8XCmsfxceFwtpH8XGhsPZRfFworG0UDxcKax/Fx4XC2kfxcaFQKBSGYMnMDtvxx7obP3R4UP9AHMzNzY19XlpamrgGrrzySnvTm7KTd99Nrinu9fI+ufawxj3HDw703NNTPsn3JkD9WPfbSZ2sP/x/MLm3EvCce5N73+lpU/sa28/mqW9e1RiMbWl/hoyRPt0XPp/UeA5tHGjUycYT5+xwUqfn+0vaVh8ttMY+5N7BpA73vh+uK1o01Xcv0sIy/w1NWDCMj5XH4jq3IogHmvpBa51BUmcp0kC2BhmNx+/x+TtSx+99l3ut58S1S57TIXsO1yKvKWIkzdZz7gt1W8jmjLboj9BtN+eRR7StOA5oQ+kl9pV7rbnLEHlev/Ptxr1Yp6U/+P7DQ12l8fich4XPWkfH2Nev2GfamhUf35u029If9PkHk3V+EJ0HA3Vfr+7OEPmw1VfHUiZX4jq1ZE+LHyM04l3fc7RPYX3v13606LWvb0PsjkyvZXQaMaQOyNa0j8camJgnsxEPxHHI/HY0Fecjs6OG6HCeHW1Rs0n7Ihtf39wN5+Mj6+I+HZWtQUYDsW9Zn7nW0odR9vU9P+uH1ol7iz57bBZgPJmOmob/6XNrXrzOhN2i7fOclj3YkptDZEeEjrnv2Sqfevg5lbdx7Vp28lxyvS+CePacqF8zWy3aWkf6Xqyj41oe22xtarNJ/hN+GqQzIw1ksnQl9JF853CfLa11D/XUzUAf1baaRr+37ME+3vj2kes09yiZvDyY9FGfL+0uRZ2lWIHMG+trn10wgJ+b9DJkLRN+6sba4rVArxNz2OqP3htS596undnzMWjJ5O8MqNOnowbQRsoj0yCzXRv27cx0dPThZGOO/flOuK7Xov7J9g+tPWSL3mPf4nol95bmw/WsrSHjASo7op8yyhmt0/KRxTbVThgiV/r8APcldeJYW/upPl6Z1d7428mzzUbj76M7M/s+63ukvh4JPlfozDHREm0rr3P/95M6sa+yhkuRTu8db1OvTbWPytA3D/q8xr6uo7chsi/2sWUnM/b7k/qRXqeVc31jztbgaOUmbUUa1Wt9Nrl+f5r3F0N8dtPITTArPr4vmV+RKxP3htgk0c40G0ZvAfevVC+3+HGaNWvY6xM2Gt/J3l9kiH7jo6Xt1ns3X8+Z8VEL08jyjLb9WrOv0OcU7646fKdRJ75nMptcn1nP3Sx9XFPM/YReMxvJ9/tCnZWOueXTjBEmp+HVTC6sZM+vfRyiM4fsQ/ra1PpRDw3Zf2f9mMbnnNkQEUPsfXnOrPXyD6JMnXZeep477fea44q2w3e6dma3N+7b27f6k/HaEJtmGr/xkPfwYAht9Pka+r7XY4sPaqOll1fC+0eqHzErPQ+GvMdv/fag9cyWH8CvHWqt75C2or1yotxbLfvE13DM96e0NEtfdeaDmcbPnyHu/1s2SeaP6GtrGj2S1P9uRguR74a8J4p8rfVnTROZ7GjtrePeaIhPCGTPWcl41N8T3wE0fp8zAaWJaXxbrTrxfeS04+P7s3iPOd3euFAorF3MLT2IOf173/uenXTSSfYnf/Indumll3bXX/WqV9ntt99un/nMZFqGePLsa1/7mv3ET/zEA9LfQqHQxp49e+yss846Yr3i40LhwYvi40Jh7WMIHxcPFwoPXpQuLhTWPoqPC4W1j+LjQmHto/i4UFj7KB9XobC2Ubq4UFj7KD4uFNY+hvJxobDa2LFjh73+Pa+xX/3sc1e1nd844f3213feZZs3b17Vdh5MeFBHED/hhBPsKU95il1//fVjPxC//vrr7TnPeU76nRNPPNFOPHF0Yu4Rj3iEfelLX7Kf+ImfsD179tjJJ5+86v2eBQ4cOGAbN25cU302W5v9rj6vPpaWluzgwYP26Ec/elD94uNjh7XYZ7O12e+11ufi4+rzaqL6/MBgGj7OeHjPnj22tLRkj3nMY9bUuNfiWlWfHxistT4/VHWx2dpbK7Pq8wOFtdbnhyofr7V1Amux39Xn1UfxcfV5tbEW+73W+lx8XH1eTazFPputvX6Xj6v6vJqoPq8+Hqq62GztrZVZ9fmBwlrr80OVj9faOoG12O/q8+pjWj4uFAprFw/qH4ibmb3mNa+xl7zkJXbeeefZ+eefbx/4wAfs7/7u7+zyyy8f9P3jjjvOzjzzTDMzO/nkk9eEEFasxT6brc1+V59XF6eccsqKv1t8/MBjLfbZbG32ey31ufi4+rzaqD6vPlbKx8cdd5ydddZZduDAcuq1tTZus+rzA4Xq8+rioayLzdZmv6vPDwzWUp8fyny8Fvtstjb7XX1eXRQfV58fCKzFfq+lPhcfV59XG2uxz2Zrq9/l46o+rzaqz6uLh7IuNlub/a4+PzBYS31+KPPxWuyz2drsd/V5dXE0fFworA7m7H47/lh34ocOD/ofiL/gBS+wb37zm/bmN7/Z9u7daz/5kz9pf/Znf2aPfexjj3XXCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhULhqPCXf/mX9olPfMIWFxdtbm7ONm3aZM973vPsp3/6p1f0vAf9D8TNzF7xilfYK17ximPdjUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqEwIyxVBHG7/PLL7QMf+IBt2LDBHve4x9nS0pL91//6X+0973mPveIVr7B3v/vdUz/zuFXo54MOJ554or3xjW+0E0888Vh3ZTDWYp/N1ma/q89rA2txzNXnBw5rsd9rsc9Hi7U45urzA4Pq89rBWhx39fmBQfV5bWCtjnkt9rv6/MBgLfb5aLEWx7wW+2y2NvtdfV4bWItjrj4/cFiL/V6LfT5arMUxV58fGKzFPput3X4fDdbimKvPDwyqz2sDa3XMa7Hf1ecHBmuxz0eLtTjmtdhns7XZ7+pzoVB4KOKTn/ykffCDH7Q/+qM/sn379tnNN99s/+2//Tf7n//zf9of/MEf2Ac+8AH71Kc+NfVz55aWlpZWob+FQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoZBix44d9tr3/Bv7Pz77wlVt53dOuMr++s67bPPmzavazkrw7Gc/257whCfYlVdemd7/zd/8TbvzzjvtP/2n/zTVcx8SEcQLhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFwoMLSzZn99v8qv49mCNp33rrrXbppZf23v+X//Jf2n//7/996ufWD8QLhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQuEBxr59++zMM8/svX/mmWfaN7/5zamfO380nSoUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhZVhzu634491J44Zvve979kJJ5zQe39+ft6+973vTf3c+oF4oVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgcA/z2b/+2nXTSSem9e++9d0XPrB+IFwqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoUHHEsP8QjiP/3TP21f/vKXj1hnWtQPxAuFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVC4QHGzp07xz7v27fP5ubm7JGPfORRPfe4o/p2oVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCisAEtmdr8dv6p/D3b84z/+o73yla+00047zU4//XR71KMeZaeddpr9yq/8iv3jP/7jip5ZEcQLhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQuEBxre+9S07//zz7Wtf+5q9+MUvtq1bt9rS0pLt2rXLrrnmGvuLv/gL+6//9b/ahg0bpnpu/UC8UCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKDzgWLI5O7zqUb7nVvn5K8eb3/xmO+GEE+xv/uZv7PTTT5+498//+T+3N7/5zXbVVVdN9dzjZtnJQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAYhjm73+ZX9e/BjD/90z+1d7zjHRM/Djcz+7Ef+zF7+9vfbp/85Cenfm79QLxQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFB5g7N27157whCf03v/Jn/xJ+4d/+Iepn/vg/ll8oVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUPihxJLN2f12/LHuxjHDaaedZouLi3bWWWel9++++2575CMfOfVzK4J4oVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCg8wHjWs55lb3jDG+x73/vexL3vfve79tu//dv2rGc9a+rnVgTxQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCofCAY8nsIR1B/E1vepOdd955dvbZZ9srX/lKe/zjH29mZl/60pfsve99r333u9+1D3/4w1M/94f+B+I/+MEP7O///u9t/fr1Njc3d6y7Uyg8JLG0tGQHDx60Rz/60XbccdMnLig+LhSOPYqPC4W1j6Ph4+LhQuHYo3RxobD2UXxcKKx9FB8XCmsfxceFwtpH+bgKhbWN0sWFwtpH8XGhsPZxtHxcKBRmj7POOstuvvlme8UrXmGve93rbGlpyczM5ubm7JnPfKb9u3/372zjxo1TP/eH/gfif//3f7+iiSkUCrPHnj177Kyzzpr6e8XHhcKDB8XHhcLax0r4uHi4UHjwoHRxobD2UXxcKKx9FB8XCmsfxceFwtpH+bgKhbWN0sWFwtpH8XGhsPaxUj4uFFYDSzZnhx/CEcTNzDZt2mTXXXed7d+/3+666y4zM9uyZYudeuqpK37mD/0PxNevX+//XWFm/w+581NevsPLZ3h54wpbeqaXX1kuzvyXo1tfu87/2TCgjV/z8qCXfyj3LvHy0V5+Qu4xTr73P5u9He/P/uTek7y83csXyb2PDng2OG+5ONXn51tXjm6d/7rl8uYrbTbIxhPn5Rk2ib712CD/80wfj92S1H+cl3/t5XO91HX6Z15+I9RVPCPU+X6jLm0KvXXj+W9JfXCxl9Cmr4VNuxYv8xI6hQ++LHX+zsy+a2ZXCT9Oh9H3PmBmf7uiZwwD88J6sxZXS50LvWRdfjJ8NjN7l5eHB7TJ3Gsbj/Lyr7z8J14qX0fxvcEm8VgvodfsOZu9jLLjcVIH2vs3XiI3/5XU+fcD+vprXsITJ0ud2718bvis682zmddMdsU2ve5zXje69Z8inYe6KZ7g5V8l91r8E3TLY6UfX6F+bP+fjOpMrAcKX2UQfPekRj8ikOnXJ22hH+nHw7z8tpn9zAz4+M/N7Gn+/0rlP7z62fHPF/34qMoNrWe31hPEdUX+f0vqRHnU0hGP8fLvJm89ztv66ytDXeUjbIA/zrs7Bnjz3yf3eM61yT10FPPKeHTN+3TmOvn/ULgHTWV6ibHSRmtNfs3Ld8k17/NjXTZ/Reszn6zlx7xUw9n11cN/Zbm8D90r9levvaLzcjDce6WX77FJIHdZ3/hdsxGPTmNzaZ+yZ5odjT4efedNZvZwm7QlnrRcPPynRl+6b5o5A2qrsaDIOfSRtDEhR1hvpVVoL9pq04J14Xn7Q2k2mhfsdeVZxhzX6blSR+1GsxGP6JijHMjkC3KOtujzo6XO34fncO9iuQZPRv7VtbzUS/SY0i19w7bJ5GPE873UcUaZ7J83S5W/fb//w3pksp6xwX/05xKp8z+8DLbW8S8Y/X8/36MtbF+1xxJ53wF5i13Z0llKL7OyqV9tZifKHXjsejsyMrsnznVL10yDKGdaaMiXX/U+v/tDcjHSvyLy1BCZ/Mte6php45+FusrP7wjXhvDqZpsENklcH22rtT+MfPckLx8hdT5r4xhiT80KjFn4sBvP33jJej1J6tweniP2yqm/tlx+6yN+ATvyG1KfsbEeG8L1DK29wU+Z2b1m9qIZ8fEr5I7Lo0f8L8vlt2lf9xZxn9lCy36LgP71udBL1L3aH2Soz+vpl41ufZ11QL5meyXu8Wzk9sVJHeDy/+GXjy7dF+eKfg3Zzyv69gKZb6kF/CzYBPr9J4V7GVgPbCH8AmooM2fRj/Z8qXMwlC2dhdxHXrfm7mXy/x+Ge5mtFv0QQGUr7UV6zfwaTieP+3/75ZYOhg8iHd1nZm+cAR//pS3vj83G5x65H3yHTxR/wheRXci+6J9TZP7JgOP92fffLheDz/A5/nHMp8Le80wvrwzXzUbr8i9DnRacNp8lvPrpOGZ0w2NHdSb2q0P8/Y+R/1v2G4j77dbcR7v/lXJv5/i9zS9eLv9W54fvQ+/RhjUbZscNsKku9HW+wz//o9J9S+asBLHP2RpgZzzby1m9PwCzsqtfZ8v7Y7NJX4hZvwz7N/L/p7yM+9R1NolDyT2uYbOyn1E5+fteRp7Q57gN0cm8p3ipNmD8fsvu4dnYk9+We/wQCNsk2g3ZPd2zxX0GbekaRL3MfDxM6jAObABk2e2jKmf6GL/2f/kFdIPyE7yZ7WWPBk+S/9EJ6AjG/FNJndWyz3WPggz+bLj3FKnz372M+xntM7Z89EtrG4Axsy+7z8yuPEof1x5bfkcRaRgZpO+UkVnYRCobo38f+rtd6gyxLSPd8txnS50ok6Ff9af9cbg35H1xA52dMEQWq63X51PKbDSuMb+ZXo3I9MeTvHyilyovsHnj/lJ16O3hOWqLY09HeT3mnAr3MvuWa/QnWx/WDp5AhqpNM8DG67VTdA3Qy/ixdc/FHg2/+pD3s9m+CH1xk5eftdnp4r+0ZV0zxF6JthljV13HmiO7Mh9X411PL9in6Rz+TajDe4unybU/8jKxMx7h8/rtyJtDfPBqryNfkTnZO40+H9Az5X946WWhjtDf6d7nr7fkSbQhWjIMelVe7bOptE7LLxi/h43Eu0Fdd+aafrC+KhfoP7TU8i9GO1ntnz1e3u6l7A87u+R2G0frvV2mI/r0hrb1LnnerPj4t230jsFsNI/IkcxHBR/CN9FWaiGh25/wMX6pRZu0uc3LnXIPm2GIPzx7fxht1ejvzJDJMNY52ukZLWQ2NJjGhmjtu+NzniD3+mxW1VFRV7b2SPALvKLv83lOlP9qA0QdkemzqNfVBwkf/pqX6KX/Rer07NsfLjw28V710TYJxvr7yb1pcXR8XCgUVhcbNmywpz71qTN51g/9D8RH6UgebmY/IndOlusm9x5uKwPfP2m5OE5/+HjSFG2cHD5r3UeEOqoAaQMnw5BxtJQ+z+M5qhCmmaM4H/Ld+eTaUSEbD8/mx7tKA7FO3/P0mXFeFPHeI5K6P9JT1xp1vt+oSx2lmyF0Fvu20rWALiIf6dyNnrnS9ECj762z2dFLBuble15mvEad74c6+gNx+jjE6dfi54eHezr2KL4zg3jIc/pkx0lSp49OMrnQ6ivfPymUWv8R4Z4+h2fT10x2xTa97sOURyINDfmBeItnW/wT+PG4rB+x/Yx/Wnok6oYhPMLaZW3RBs/VFyez4OMfsZXLHBBlmH9urrOitZ4g9pHv3Ndoo/XcjDccx8e2srqZTulDlM2K1nMifUW6a7Wv15eO8FwFY13Jmsizj4v2k9YbIHvmqHNo/LpZw17Rz98P91o0Hscav2vWXsMWWs8cYSV8PG5Tr7NJOeJrMdfiw9acAaW3aOf8SPictRHrap0hdNYCY47yQPXRI0LdbMxxnfQHmLFv0SHeqpPp98h/uY02fk/1ex//6mfqZ/uQaXgcZHIq8pR/Hst4F/cCWZs8+zvhns4vzxnXf+O0zbx8NzynNb+KSMutupN8ffS6+MTQ5jR74azPQ/ZBK8E0z2nIlxMze7v1zMhTQ2Ryq424B81k2DS8epJNos9eH6LDzSbneogNcLQydRp4W8qHS3Hv2drHJJ+Pi2sW9+Fa/2jtFTCaz9nwscprp/u5PrvSbLo1W4lcGKJ7Gy+kxuw57vFMdIzK6/js+UYd4G2l9krUI9P+QLxvflsvZDNEG0vHMEQuRtt3CG3TL507bPofLBfM2dKQPUZr7lr+xWwO+3hK6a3PF5qN2elkYg+WIfNxjXD0fPwIaV/nvsd3eLzS7TS6agDddDyR2Zx+72Hxurbb8hdFm36IXPHxPaw15iG6aogsG2ofgDjXrbmPdlz2vsDpN/OdT9BHtGHNVuYHTsC+tyPr1v7jaDHE7lkJ3UyPo+fjh9uob9EXYtbf/4wWWnsusJTc41rcrw6xOVs2fUZb8VprfeL6qm7o26+q3I73WjSZrUHfeHSfN8DWOy7q1ZZPdVb7IKDzEWVgZu+vtn2uY+7j42xv3dLhsY7eiz9SyZ93dD6uk5d14IR9E9db28/WOfr3s7UYYlsOsW+n8Rs1/NHTYGKP0cIQn1Jmo8U5n8JeaD6n9Z438nf2nCE81tqDZt+JfsVsrHFdM/k/ROb0zaf2ubWHjHM0ZF1aNv0kTczGpla7uoVom2U0Gvkmm+eV8Fa2b4771ZYOT+yMXt5s+Mg6ZPY6MicbVx8NZLZ4lN+ZXm3N3TQyLNs3983HtHZ/lAfJu6Ne30fWnyHyrWX/xDamtScjDWXz2zfnbZqcjU3dGmuLV08Kn4esbUK3g3wE8f1J9vuRIe033nV2tuqQ8WTz4usy4cPJaKG1j1nJfLb0WYs3IrRO1JWtPVL8jYn64Pi/Jf+jjmjp8NYepc/nHJ8laL5XzXxSs98nr5SPC4XVwZzd/8P/c+YHHA+hGT1sZp+Rz7vC/RuS7zzeyzuXi3VvXC4PfUTqcCrt0+Nf3fMm+XBRow3AqbhrvNzaqPvuyUvrXu59+6Jf+GTon9n4KSn5/Iw3ji7deJf/w+lF7ul4nhX6yLzemvT1C8vFvt2Tt276yOS1I+I35P9FLzkNH8eX4QIvkzmcqPNkuUZ9xpFFg3A6sZd6SYQ6XQOlQbPRuis9Rjp5eni+2QRtjkWs+ILleLz8z+nFRvqBrb72u97UX8feH57z6b6KM8L/YqMTkyq+pnlxS/SRjF6+7iVz6FFDznj5qMrezy+XW/wE9+5sfuCb93n5jaROC3eEz63vx7HruKDlVvSSyJvM652xopm9JXzOTsEuJP06p+f7mQqC/rP1YR6QQYteZn1lzC7LPt6i4xb9wH9RZ5iN+Pdzje/vHP84dlgfWozru03+Z818jMjrG7XNa0MJhL/nf3W5PMw4vpb0lf7wbOgY+TfkxwxDcK2Z3bOC761P/meMvs5jwbCySHkg8NhGH+uY7o40g1x4qVw73cvPhTqKLV4mehB0cha9gy7WOY9RBVqRopHFGoWOtcc+YH4eKXWijmJ8j7Ijo0Uf2AdZtCfWh3l6tdRBxyAr3u7lmVLH+3w3fZf12eDruv+dfiGbK2+3s+0ye+WA/4M8oK2+6BtmZlcl11gzjwzXjSfDh8LnC+T/lswJfZr3OTjckoHTYr+ZHTJ73cLyxyuR197HQ5mNdbmX75drrBWn6Ol7Zi/zzMc26vhYT/OP+3Se4AUcKegNtY24huzDCSS667QFf3a08S4f1RkbYx8YK3Sv+hk6IQoQbS1IHfYWp4Z7X5c6kYbic80m7WFkkM7douV4jfzfoq+vhBIdrm0wHvYW0V4wM4v7Bm9zt+xjOj5Bvix4qTKfeyqPzMZtge1eolRctjf5KIvIFPdRGt0SuRjlroIT4axrS+ZMi/U2/oLokFzva0uzCEQwx4wx6hoFtJAd7mUNoYmsrRd5iV4coGffAf2o/YMMYn6zfQxjviN8Nps8sMg+PLNhGRe0ndkLUbY/Xf6PNkA21pcm1+Jz4x5SI/PQRnyJ17e3NJvcs5iNeIF5YF51naELIqxkcpN+EPXN13kpo4kt4bP6JSJNSz/28Sx0BPaF6hhsIGgntqWApnnuRXIPO+xzNn7Y8GihexSni4M7Qx3da2zzErpnDTK69X1vR79KS9hmyFKiyWlb0W7K+oP+dFtg7065Rx+zvV5E/EGOzgvfZ52dJg4tJs+J+zK1gZmjsHe8VPTQJ/v0hM4vtm5mK4LgZ5l78ehWygMBm/x7dy+EG/r5yeEeMkD5B/rwvj5823J5SHUv/fmk9WPIgeyWzyJGAnRZtnHb6NIefC9xj53Rtvej6euKPh19zrzNjo8/YaOXeaqHYr99TW+TS2dsXy73IteYJ5U9yEDmNdrfZmZnLxdNO8fl4sezfUhfdE+9js0KfWHjtHSM24XXar+ijsKWafnbs3vRT697LeyUaCuqv4WxQSfsN8+ROlFH0vcG73cBJFXXoPOxM4gmqXMH7bTsuAFR7Mjcu3/I3jHaFGaTNhl8rWsQ7QOQ+W2ou9NLjUTJ+OM8q2z7ZngOEVBb8nclOGRmL/T/kaVqA8e9DfaGriH2TtR5YrfMOb0tXe0XlB/4EQl7wGzP9SzLIW1c6nT/SfSoP/d8kfs3Qx9c29nzXH02ZebXoO/xfYrZaD6wsVRPcw1+xm5RmzPKGGwS/YEFegPaSfYEnY5Z8BIZoP4E+C7a7UnWjDN87vZmvIZ9nu2n4rs35FSmOwFjVZsGfov71SFRJXU/Bc/zHGjzLKnDOOIeTmkz/uBF70Ez+M+Yc/ozC318pf9wCnsFvwS2aPbDSuZc31XSx6jjflXquA+m4+eMBpwn1nudgzv9+k6p0/e+WelvQDT7l3sb7xsg9zs74UVyMT4bWy/z/X0+1MlsfPxVmU+Idll7+OHZUoc2vhDqqG3EnKGz8RWoD/0LoVTEyH3QTfaelT5nOg59jszL3sNDi/BR9i7t68m1iD4/5Z3J/7Sh8jbQR/ceRXk10iJzp/bUFV6i837DzA6Y2Vt7+jcN1KY2G9EdNonOU/SnuNx/uei698U9PeNRnv+Y5VB9i47DDst85tnam439RmS9t3vwnZP3Dsb3Stl7TBBlembHZ348kPmAzMZ1J20sepn8bmRv3OvwHW0bvnH92slNfZ/COL4RygyZHotIfLvn+NzfcU2o+3r5H5nl+6psr7PJ+383a5j5MrkW91y61477IaWbuMcHSrfISdaFPuvc8b/6JWNbqwXVY08NZbYXhU62e7nopdqTlyfXzMZ5xe3zO6JN1HjnucXtnd1q33r/u9+T6Qtr59sNC8tl985SEf1n0Jnqxdg3+DL5XdlSlA+qq5Db0B3P0Xev/A9NvCzUNRvROc/T78Pr2MktP0Acl+rOuA58ntY3FZH5qOJeGv2hvIfO3BJKs9EYkVXItWSP0ck1b+OQ6qo4H98Kn80m5at/Z53w/KHIt5mv9lHWpPVC4Rhhyebs/s5RVZgVjjtylUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKKwFzC0tLWU5I35ocODAATvllFPMbJ+Nn2KNUYRaJ+0jNNIWJ2ziiUeN4BVPpWXwU/zrPVJxd+pT2+LUU3aidMg4iD7kp9aXiH6gJ6SGROGOGBL5ZRpkJ7o5dZtFdmtFie3D0EicEfF0fitCO220TicDPYkZo2JwAkyiU17mUV0JzDB2WrkvUlKrr9NAT/FyIpG1z577als+Cb7R7rnnHjv55JOTOm2M+Pi1Zvav/KrSOqcfiejgJz83vGFUpTcCjp68JxpmK6pr/N7h8NlsFJkti0bUR29ZRHROYyJDLpY6MfpPFp3VT2qu9yg5nVzR/gBoO2YRMOvnvyyq0RAQ7eN0uYYsJaoGJ2uzE9RE84XWVxpN/mgRo9E32j7H5fYdSodEquC0Lc/Tk77wi693FxFZn8P44QP4MYlS0+HUUJodeQ3vM7O3zoCPr7D+tHaKltzntO42L68N183akVZjZKJMr8ZT/CvRNRmy58ST/6A1hlZ0sAyc3GZcrai16CTG3oqs0OrHgJP2re9PRHaHxrOMJa17IJv7eG3IvE479xHxlHYWpSmLyLYSRNpeOR+PePhtttxnZBZ9zOQKiDRlNhq/27BzLvuW7pI68H+fjWU20qvI1CRaxjMWlssbW5EuYlQjxpVFhKJ9H9c5kqL6DnQ/86MRFaKcdd27Rcazm+gVyHboQ0NGEg0vyiOVJUQjuqunroKIPllkwSxyrH6n73t9mEaWZnuCgAslUsRNfeur+ynm12lq3vdehzVCOeu0ZbzuGB32Rexq9VkjaMAnraiHd4W6Z5nZd8zs52egi/fYuG0Q93OZPmXtTg91M2DPqUxm/EP23cw99sL2pE5cb+0z2X/YI7XoLWYlMRvZYp8L91rPmSZrmNo2zD10txD6ZdZF9DnP+3FL1IuKqAc1qhERY7NxMEZ0fqbDh+j1CPr4zdGljduXy06/Z/uY2BaySKOzUr8VkZmobewbVMcwD6wLa6CZFpD7tNuKcpNlYcgwK5t6n+X8BP0zvxoxknVu2RcxCt6QbFgZ/cdrWRRprsHzug9iHuOeT3l1mkxd0BCySO1bdD+RurPMAvASPMa4Vrj/fKHrrx075WK0zzM/X4wcmLWPDM58fgDeiLaJ0ni0IzPZzjphu6Irda+P7s38LTHiN591nWNEw8acd5HZ6HPmmx0Sxd3RRf7Si9+3ZZ/EaaugjwHjZz6ZX23L1+o07+OP+uXdX5Q6Q6JnYdMh51SGtfaMAFsZOc94NMLmNP7iuJdQ+4tnQlNEoFT/Ql9bLf+I4pzwuS9SoqLlF++LCmk22iMteole0iim8L/bYeu3L5cHdZ2w0eK4hvpHVoIY5dhsIlNDd6/lg+7LNmHWjeu87cvlLV+Ve8iMafYhEbPSx6+1UdTSLAp2n29L9gbz7rftIvRGOjSzebdPDu9MeoMsdz263nXewSzKZsgMq6nMl6ArdBy2jfaHsWH/MOYsQm300+h+CD0B/2a8Bp0h9z8v94h4SZ8z/Y7eImJra98bkWQbm4j8rb4c+JAxQ6NqG0W+wTZRvRrs7K2y390V6QPe0jEzD9hU6FXl1T5bXsdD324I9/S7rD0+/Mwu69s/6DsFaAE7fYh9h9y918yed5Q+Lng4+uGyLGHILHxArb1ftHPNzF7gJftU2lIeY+3+ONz7elJnm5fIR5U9ZE1APuz0UvTseb5v+O/+uXtfrHKbNhir8gb9QB+3fG7RhtW9LO3tDnVPTuoA+nG2XHMamvN57iKnql5l/K3sf/Ad66T2Mu8b8SH5+m542qjK/kaWyhUBunN5t17eeR6Mc84eTO3BafZMMdp/BtbugFyLY818iZm9NGtdHH32mR0W90FD7FR0p+5DWvwfEW3Yll2WRfCGxzL91Ze98IlSB3oIvqBUx0zzm5nMjstsRLP8/QfIdDh7NmQfz8t0GPpI9Sl2xaXJPcB8RN9Ftodkz9PKtjzEL4gtAv9kNjDrsujlTrkHDWbv65hH57/uXYtGyuZ70W+lke8XvGTs2VhVv8+Kj//CzG5q1ESf6j4zZqSJmYz02iWh6yoXWN8hvw1hndFV2fvrmG3CbCRrWplGfDwbvK/d7wCyiPXwOhmidU+c2Yhmw/fEAHqFf3jemUndbM/HHCHzhrzzbMkg2uW5LT99y4fNGmYZ1/le7LvaLcxH9p4Y/cdzXB6cJvJ2H3sa2kVeZW0Moc3oV1P6R2+0fPnPsuV3Tj+7Yj4uFGaNHTt22Kve89v2rM/+5qq285ETXm533fnXtnnz5lVt58GEiiBeKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAo/JIjHdguFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVC4QHAnN1vxx/rTvzQYW5paWnpWHdiNTFKTfJFM/uS3NnmJSnMSJ+l6ZY0ZYfZKCWzpIvqUqyQpoZ0MFkqjVaaTFKFkQKE9Bqasos0ITE9hVl/+i5Nqb7gJWkpSFmh/SANxcVeMj5NcfJuOzKYO1J1kfpFUzCFlD7znl7jsKa5iCkzkvR+E6lXdZ5jeo9sXehbTIOVpUOlLnSTpI+e83EstVKqxRRbmkYupFTs5iV7XkwbkoE0M5Jq5Xx/5s2tPkbEVO/yzOf58z6epTu/1WaaKuzcK5cv3iZ97+aItEzX2SRY3xa9MI+kevHUW+dKOq7bMllhNp5S5/s9dcxGKXyuDXU09XfkvyHrzHkfTeUcx6qpCIHz5IU+5ptIgXeB1KEfMf1PK2Wwnj+C7y8NdXTuYzojxvxyudZHr1lbAFn0MLnWs4bzkuKn47dWuluQpTzqW7Osr9DOgpc691EGtlJux7S1WVsxvaWmcopyiTqextYOmNmPzSjl30/61Sy1ILwaZfOLpI6nOZyQZSp7SE2K/H+13IvpxKFNlb+0i/67JjzPbDTn8Bjj0FSAyF700dZQ12w096wv9Ka6lzHGecnSRqNTniv3Iv9kqftATFerNNmXXlDG3KW9ps0sjS/9hseh9YY+bCLRdR3gUeY+kyV9toBZf2rEIcjSgrXA+KcZu4J5eLGXpJwjNeJBM3viUabf/SMzO8naqeAAtEPK+Wm+YzaSR8g81kntuWlStkY6ydpyTKSPbkGfw5q37OULwmdtG36J6T8znQttY/eofELmXR3amnV6eUWWtjPyZLRNMmTp+fruqT6ExxP7/IjI9hitfmAzvDPUyWRyTK2ePTummzUbjU3ncNbpdwE6lmdquuW+edCUqztDX+G1i6WOP3Ojz92ejLdcr673/fbBIamZs/mN95BBuo+P+kzTbCKD4bVoY5mN5BH2dUInpI/cN82eawC6/abueYakRR6CmIIzSwPcSpuLfQGPX75cbBJ6vTvOx+Xh+Wbj6dH7gCxlLfDX6FrQf3jsM8m96KdZkP+RJy27aV34nMzdvKcEPfw5W07b+S9WgY8d650+OjssS0Ub0pSPgX0DPDEg7WznD7hidG3OU593fhHkrPKzt3WZf/9qpY1Yn3XKfHZvsXGoPen7wI2uX5E9c7L36/rIXok50D16pBPS2W+Ra9BtS8cB+Ej36OiAuKfVNpgP+vYCL9XuCHvRDT7W/YksWuf3Dn3VLyhNQJ9nhnsq25HTcc5knSZ8Wq39+xDfRwvx+1smq8y7nYzZcIfOC99nDelftBlnpY+/YGZ/1qgZ6U5pss+uzmwR9Lzvo8f2q/hKaEv1Cdfifk5pPNrnCf13/iaXj3MuH5dUjwR51NGN0jb9aOiIFr1PIPNHRHmvcwVaqawjsEWQu2p/0P6toa7OyxDbPcprnnOX1MFXiAx5dfhsNlpfbHpdkyE8mc2n2UjemY1oGFps2dvsdUjBrfNO/xe9ZK+ufkfWEDkbU8/P0q7+p36VtczsJ65F35vWadkbpBdnXRP/RCfTqaM+Yvxg6MioX80mfUBZ2vXoH0G+KI1Aw9CiP2f9b4yqdEsOr7bG3oJ/b+tl3pTyvvPdum3L5aFok5iNZGn0xQzZ42frzHOyPQJ14ANkWmZrITNUj8V60W4367XFx/Z30ZanLV3DPv+V8piv6xlui6S+E/ya13vJfuzzUifqs8xPE2165Mx9ZvbGo/Rx9djU6dzF9wQtmwY0/E4dlCZ5D4W+iO+NzYb51qJNg59wyD5LEXlTx4zfmX0Yc6DjQQ75nD3D5dSNQ/S07mPgJWxPxqX9eY2X+GkYs/qjh9jpLeAbYC+ADM1smqifZf9h7JuQA8jUjKZ0b2PW9hlDb8pjcR9Fm0qPQ+Yl7pUU8HqUky0e2WJm95rZL81AF3/Rlm0K9BYyItrAZiN9Gt+7KZA10D1roD6h6Cdq+aYcFzkN3KDr8+lQKbGNzvPv3ZLxDfVZ148mdUCkSfU1M3e0m/nBpgHfZ9MV38dl0P6gL6Ap9IDqIWRxy3ZAhkGLL5B7kQagF+WN6OfkdzrZOkcdle3LIjIdMWTu0eXaBvWjTdKSGZmuA/AKPtXMXrnUzL5tZhesgo+r9b7O0dm+7h/d5L6Ku6+RSvH9bGt/hZyG15Qmse3Qa6yz2oOsJ3OvdJ/JI7PRepv1ywNFX/8vl//jesI3pzfqgDOT/6GpIe8spc9zrpebv5dijlttYFcw9hbPM8/YSjqea0Nd1u4Sudb3/nvo7+QinSF3dS+LXm75nPmfPTEyOpuf+H0Z80bfI+3hQt9aHN3euFCYNXbs2GGves//x5752detajv/8YRfsrvu/GvbvHnzqrbzYEJFEC8UCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKDziWbM4OVwTxmeOhE0H81HvMviWnYC9cWC5v4qQmp7JidBaz0ckhohPrSdd42ggkUWq6U26tSJQxql4WKaiB7rQcpxf1ZPmQk57xdBzQU8qckovRluU7E5HhqPORUZ2J8WRzlkWw6QOntzTyXhbVzCyP7hrx1OTaF8K9Vr+yyMNx7VvRiYnKt9iok0VlPdqTvUfARXLS/YZr/J8YhUXxfFs+QfrUGZ8g1ZPCzCeRETgFqSfpYoSW7KQ4z/xGqKtRmmLE7ykjW13i83dt68RkjNQdP5tNnv7NTgNzShCe7Ys6oHWmGU8WUQ0aSCIJXOpj/yQnQXXuY1QLjziXnmZ8fqirfJ5F4omIJ+VbUbn7+mdmW7yPu7M+wifojeyEfFzXVhSGvuwO2lbsR3b6PLahp5PjqXdogX7ea2a/OAM+vsJGuqkVgXLIie4WWqffY51FL6eVmz1Rq9eLnDzI3KM3aCOLMoBOyHg1jiOTC0PAvBJVJaNf+oGOO5TUiXo9yS6RRjPq6w+0sJIo3QqN2M38QfecoM7W2ddnnfPYoSGRbFpYYaS53mizapNgL7UigoDIRys/CT7i4VvN7BE2mscYZUZlKXoVeSsRw7rI1tg72DJ9toRZfoI/RJNIM68MifIR62br1SeXsghkLQzJTjEELRkK6HMWjRqwBlkkKdYQW481eLrU+UyoqzRwm5dDIuhHZJEZ4hpkeyXWAz2WRULq051mo/4j1zI91Df3U+7dBkHbmlGkw4vuMbshs00yGh+SLYPoWcxHS/7HqD86T9g5cV00kkeMrt/i2SHI6D9GqYkR480mM4Ig33ZKHe657XnhWcvlTS0d06LNiGxPO2Q+hmTGyOTUEJkzpA5o8TNrfnWoI5jI3MXYz5ZKsR9DIvhpZDf2K9ByxiPMZ4zWpGBetvh3z57R3vgxcocIeTxzp5cNXZPaHXGfm0WZJTIpc40OTyLETWTk0PmNdK76lPYWwudkD7reo4AdzPgmZsbBHnxUUpcoiDu93Cr3YpYKfA5qmzA2MlaRKUf7xXy2IqgN8TW0omlNEf19Yi+sdkzmbzJrR7mEBnTu8FFE/4RZntkqIsqVafZBSRaq5piHYlaRh281s0/51UaEuYnMANNiAN118kD8tptcrnSZH+ij7rmQMeyt0X1q+w2J1AiQ01kUxmmyxAzxJ9DWV+Ua0Qqhafj6GqkTdSy2hPaP/pPtg/23+qyhf7634KXaJEP4uWd9x7Lkxaw3QG2syOutKHQZ+nzlum9gPWM/NMo4fjSe498/f9uoys2L/k/cvygfsQZ9enA1MvNk0d98bPNOb2yrDqm9AA0O2eNjd8g8n+GR4Tpdi72tspi5j/Si6+zzeaHz7E1cz2TPNJnW6I/aejFiPnpVeSTaVCrTeSa8gb7XLBdR5sATn5Br6KigazYJ/9zNc/BLQC/X2ySwJVhonbs+vWqNOuoXjHZKQtsTWRRCFHczm5xX9OI2uUb71B2y3tEmVsQ21TfE/CIr1E5AR8c9G7LxoJn9xFH6uD5uy1nykD20OY09ZTaZFQk7Q2Uz49B3pGb5u4C4H1N5jW6J31M7+2NePtPLVrTL1jsJR5o1Ob6PillSzUb7hmh3ZZHI+6J2KmLMu0afu/lQmlr0En3PeLJsCmBI1FDNSAafxCjn2leuQRPY9EP8hLqPQXbGd3tqrwPmHlrSjGTsW9BHWZTZ+N5ZI7yzb2/tXzIbfLWy5AFku2ZVieuLTfJSuRbtC2hdsxRHPyf+CH0++2XmfKW2PLI8ew73oAH0o+wTtzgv7Ob3MNG/Zzb5Li2zxafJ9kFd/BQaNf1o/eEgyiC1aZDpvAvYGequJmImerORvY+tus1LlT3QXfSpqn2LLYLNqO93Y0YdtwPXCd0egldpl/kY8psZtekXpe6s+PhLlvtXsNuOdu1iNhL1pUDTfVG+zTqZN+/zeTjj57h2r5Z7jO2C8Ln1fTDgfcPzxAb4eJ+s0Wjn8Gh8XpLheas/exf0o3Iu/q6t5RN1O3tsn4qNGm3PTPfyPfrRyrqEfZll/DnadwlDfPcx+nsrYxa0kPUVJH1mv9L5a7J+9WXhic+vCOKFBxd27Nhh//o9b7Sf+ewbjlz5KPDxE15WEcQLhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQmG1sWRzdv8q/5z5hzqSdg8eOhHE7bVm9q/kDqdxONnE6Ss9Mck9TrZywjc7ncWJL05B6emcvmidejIwRiPidKZG0Ign+7Qf8fRuPLGl2BLuaZ14Mp7TSxpxYsgpVz9hNu+nvw8POeHXikRAP/S0d98pU5nXM/yE2V5OoLHuGomTU3IxsuKQqGcXJP8PiYgDstNc8XS3n+xeJyfqmpFNh0RTipEV40l1s/5oFjp31Hca6k4Rav+eZWbfMbOfndFJ8J/1q3qilXVtRQyYJrpAK5ImPMmpO07aK48wRuhOT/FyYpkTj37qdIOc4t0/hMegh0jbOs6+KNxah37Dm62TjzHawZAI1QpkKafGNYIGz4pRXj8mdYgmwSl2aFFlWJTPLX6YJgo849Ixb/NywHp1EVz04hVexswVT5P/obN4ulh1w04vYwRXjQ4T5T3ro6dwiQbQF5VrNSI6sN4agSzqACIjKI8hn2OkBj2V24qWi9yH19/i5fOlDlENmGtoSOeHe+imGJnwKDEWsSjaDpzYV73ailbbFxFX54w57ovgajYZTWJIZDZoUnk16vBGROUu+0CL16ATtROw6eLJf5XJ2E0aZcdsPCL6W8K9ePrbbBQRBJpsRbCPczYkAmwjouAYjhS5dRYRxOFh5Af6jHU+a/SlZzjd3Ygsz3gjjuf5SR3gND4nkZOe5OVtMSuQPifIwNP8+xOR2s1Gc8jzNBJtXxTslybXMhvC52Pe5y6NNBHqdn1vRTMCGS1B29grregwWWSdSJNA1rmLyoItk81TpPuMptmjoN+HRNBTu9kjyA7aq7SiOHAPOsNOaO0NskiuyJ4vJPeGIIvCOEtdvEHu0P9porEkEUUmIpyeKXXgf6JMRdmqiLJMn8O6EIlnyHq3svFgg+yUe9C9Rx15tdtjVzXaOsfHrqxxXawPbalNw/oOiT4SIzhlEWRow+njvMtGVW6J+4ajxZBMIWCIrsvquHzdsLBcju2TvP0uymWMlGg2svfRDZkNAKAJ5VXGti7UVVt80cvIP/odjfJ2yMxeMQM+vttyu70la6Az9iG+J3i12EFXodfpc4w0ZzbyFVBnwcssw1rkP42uNyQiY/TL6ZzBC/SN+dDIbvBES0fESGhZtLQYnSyzXfvs2SwaHTpY1/DUcK3ls4D/mY9bk3vQAvT6RakT94XM73OlTpSz7InVJol7e+ZA96IxkmG2N2/5YOL3WlnDuIcdp3vr6P9tRXGPz9G1OMeWs2u9ZAZ8vMeGRyY1y/3ITw73siw6rchYrf1DX0ToLKLtNeGzykSeHe3JVsYentOwqXtt4qTOJSLnrm3pw8A/XWR1tY/ZH2T+fUDfGDPrtdJsjyvJsKZ2AjTNPvej4bpZx1MX+pibGU8y+H7wGZ5Z4MaY4cNscs2H+PWg8W/KNejjE6HuI+V/5GLf3M3Srv4X4a7yDLYHvi50jo65L6Kb7nWe7eWnbBKMzffA63w8h5Sv4z6X7yj9un7vMtTyjkMjcuJzYS0XvdT3BT7Wy/w5iGs16W9gfa4NN8V2bUYH7LNDta/QUnzfdkDqbPMyRgVuRfBD122Ta/AWe5wh2WeB+ma9b/MLy+VhzXAQs7ixdhKhdN5tosM7/QI2SbJ3m7B9WzZ9tIW1/pA9QYwir767p4W6rQjrAP/Tt83sgqP0cf2Fmf2I9cvnVgaiLOtsjAIvvHGx+1uvwz9Dn5VX3xiuZfYO/LzTS+yULHNKhPJ8tPdbiJl7FfDvp0Nds5GtiM7N+BmeirZvNvaVZPVVny/7IOguawO7NKPpIXvpHpt3i/QjzUhrNi7Ddobn8NxnSx1kT8uujXtAaEDmcCIjeIu24V/df8S1i79X0HZZ70/a7N839cmjS+X/+O4pZl40GxZVFrqPv+041KiT2Nvde0N0LtFvdX6jXNS9OTqBttBxOp4h8gBa4r0Qc6m2eNRtWZagvkxx6qcZwkfT2L7Zb0ugYeYeXZfJoFZkdB/zOT4vdwyJGEyWrUS+pNkYjgSN3N2Kvs67EGy9jI7j3i97h/XqcK2VHfKlNrsseR82s79JaqCH4QmVT3GMWST/ITTEHEc6admDGahPP4bo12nbADEzc/buNfKRysL4Hmea9xbKz+gEZM9r5F6k8+y3b4tewqsxk6PZiAbwSfn40t9NRT0wJIK46l7mA59Bi37gFe3rkMxbQxDlLfuFq6VO3Gc6zpB52TtU1lQE8cKDCzt27LBfec+b7Kc/+zur2s5/OuH/ZbsfYhHEjzvWHSgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhcJssLox2QuFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCIcGSmd1vxx/rbvzQYW5paWnpWHdiNTFKTfJxW06PAGKqjJiewqydquVI0LRVnr6BlA5pOoeYUjpLaQuydDcxdVkr/U6W3gm0UrVGxJS4rZTkpNnIUl2RumXBS03FMSTV0JDUohGa3pJ2mWuel6XfiW1lqbZa6VlXglaq0mmgKVtI9RLTHCZ026UlYi2yVI2tsT7VltPvPm+GqcKOBNLpZf1i7kiVlaUtRA6QGk3X4EC4Rxqta6ROTHG3xSYR0z0reubzQlmfLtUrKe/oV5ZGi1RBXwvXzUZpAWM6IQWpa0K6zTRNjc/dGW9I7rkcWO80cHDadLVxXZjXF0udIc8kjRK04LJ+vYznIGlqSY+UpS2M8jJLORnTcGfPQQaSQmmn3GOsUWdlsifqsQWpE9My96zpGEhbyDwdMrNfnwEfX2GjNKakCNZU5uiJqMc0NTv65q5QZ1rQBmkldQ3RRZoiLyKmBuY7r5Y6Ue9l+p1+QANDUtBm6cLXhzoyL+c5fd/ChYxX+D59zOygPjtBU+JC7+8M/ZB8whs8bfB+Ut7R1pA0aprCLJNZfXBbaU6+vwQNIQszO6UvNXsrdWsrNSH3SBOWyXxSsQ2RabruB5NrZqM1OWRmrzjK9LtRF0cbVGnhI1627BbsjCx1ZUzzueCl0mZME4281DmIthlp4b8vdZArLRs68i82tfID3xtiU2c2LLL3BV4ebcrJlh1HyrvXe/kwmwTto3Nb6QZf5uUfyjXmnrmmX2ob8cw4H61UzuA35H90Njq8pRvga+Ruti+KvP98uRf3KNlaMnbkjMqQvr2e0O28y4HD8NFum3363dhu5GezkY6OtoSiJfMiWnvRiGwPiT3Q6k8EdtM2ucaawQdqk0e5nNF/X9p4WcN1voZdmsssdWtEJoO8/Q1u8+7neRmPtGTYNCl6mbOz5doQHwFo2Zpx7pBBb5E6MSUo8k3kP7Y7VQ7Da6qTW2OOtjPyQNOmwwvneqnyrQ8ZPzCep5rZd8zs51ZxbxzpVX1cMfU3eKr8H9OXvq/x3bg/U5rkmfAq/VocVTnt5cvlvpaui20o2L99zEtksO65kN3oBp6T7acA8kD9AMj9R41XnXv56P/OrqSu+xzOENtzL3w0jb9IU4hjO9NH6P1lNgnmvjV3ce6VXpD/zCt9PkfqYD/xPfcDbJAq+/ne520Cc15/iTUckoIZqC2OjmV/yZjVNsJXEu3Slk3fh1nq43/iV1VOTeHnbPqaW77lvrq6vtBQ337IbJKWWnLX5eOc7wWXrpF7yF7G7DIs9YNFZHblNHi8/B99u/RLU1O3fAQRcX7UH/1sL5EL0K/O8zQ2VgtD9iYxJbuuYR8t6d6c/qNPeY7aSpnON2vb2Rnw632yUQe5yBrSJn04YGanzYCPP2dm1zdqRpumBbeTN7iPar/SWvx+0EdmNqJf7m1N6kQ/j9I/8/CFcO8sqYNMh6YymxH7D/k6xH7K5inSnfIh8j3Smfojoh3K83TMUe6zV1GacJrE9jyIbaT6mTFi/+BnvEvqhP3PRn/eni/KxYXQvurOuH9S+xJ8JtzL6A45jw6fZn91QXINeUnK+5a8yvoVn5nJKfqMjOf7K9fHIx7+ki3rLl/DDb4unf2iaxh5TG3IuJd222he3pGM7e3Nhun7zGbje/E9lcpk7i14mfklsnGY5fuHZD824WuL7xKyZ7f0WmyjZXP27WsyZHY/fR1ie+o7011eoqvoj76f+lC4l+0/WENv/xJvY+xVZZ/dk9muUc9fKnW4Fvds2XvRlcLn83z3Zd78pvHrZjY51y+1ZVvjiTPQxf9gy3ITuY+MyGROtFWfmtSB3oa8Q4syVd5/dHSOnfO5cF1wrtPAbcyd6rzWePCLRvt0yPsTtaHx27IHzN6RDPEp8UxsEOhMZT2yI9J45pdogfnwOXiG3LqR/SV0teil7vH7+F95/hovkZ3YCbo+zG+cO5VhzEvLdh2CKCdb9JbZ1PQbGZHtf/k+631WUkfXbpZ745+XO31+4/jeS9GiTdaDPk7j4zSb1F/4eHdJnW1eDpGBQ9oAuofExmR9V/o7icDP8073na1i1tkr0eewVXhkV2xL7eOdXqJ/WvuhOPZpdXfcH7Z8GKDPt58hk8mtevBq9psQZEbkVZUZyEzeIWT7ca8/77LnMGsh+6F1LvMOtX7v8GRb/h3X/75iPi4UZo0dO3bYK9/zJvtnn/3dVW3nP5/wQtt951/b5s2bV7WdBxMqgnihUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQOAaYs8OrHkF8bpWf/+DDQyiC+B4bj3AdIpJ0pwY1ctiQiBV9kbH1NFfrdNKRoBFTF71sRTanXaI2aFSiaU5CcfKNKBt6Qpa5akVliaffW6e6iOhB1EKNqBZPRGUnxjixyam57DT9t3o+m02eeqU/Os+cXNuWtAHiGDlBp3PHqdkhJxO9Xxs98tyeLGJENh7WGVomQoqeGmc+I20OOVWc1YnR8GI0u1mdIP0tM/tJv9o6IcipZD0xeZ2X2Wk9AL+xPtC4Rqe8xkt4jOgL+txpIhlkfDkkSmcE9Ka0wCnpb4Q6Cf2+3O+9L0Y4NBudgCUyJyeGVb7oyUaz8SikfI+Tn1lkkr7oc1mUjhaeFT7DK3pqFVqIbWV8icxhXlUmx4hserK8LwJadi4rRpEYMs5WxLvGOk9gS/L/opesIbpzVnx8hZn9b361FakCmYws+3xyz0/hrtu2XB66WupAb0OiNWXRD+I8QuMaZQC6eG6oOyTqrSKebsa20PHE0+9ZpF5klY91vfSViP3n+7huhg9aNsE0skhP7vdFv84iXUcor0b6iBE5jtQPTmAzR0RYaUUWnYZ/WjqTqGQaQYD1zaLurAQxgpLZZNaCR4b+zSK60h4zO9nsXP9+F9kkm7uV0NCQSA8H5Fq0ZVpr2IqSH6PCIO9Vr0aa5Dkqk9E7GY/G77WiOSIXsMWV7mPmCj63ss5k9A9adjpz5pEeu7nXcbH/QJ81shytI+LvO6VOXPMsijX9Rzdl0c1iVogzG3UBfX+kXIvR6LP1go8XvRwSZTzDpeHzkSLJrFYE8ceGmq39K7Stc/a5UAIdH2Pry3Cj/WBsLXkPMvqN9nUrankrIhRrn0X0dDQjt0Zk9jr2DX3N7OQB8vEKf/YbYoTS1lqq/e596qK6ElFE/SPw5DQRaafB05NrUVcqTbGe2D/TZidC1jCenV7q+iBXWzo7RIe5yGXQDSrDeM4NNjs+/rdm9kS5w3q2ItQ7ushA2ZzBP+hw9MaQSOQKlxWbfO94N/ujbVKHuUZeqgwl4jdjRDar/TVEzsb9FzpC5VW0HabZzyuP7BzwvfjsLItb3Bc2og02+xqjEencebTSCz2q5U07/brSetyjoItVFrGGMYOW7jNjX7MIi0MQ56UVNZq2np/U+UK4l9FRK+LjN2y2+viX/arOBXyILwVZ/nqpEyMwt9Dnu86gNAnf8b0hUZuB7ssWvESvZz4Y9N9OL7d7qfoZeot6KNuXZfZkD06TMe/jH5dZ6z0S5kHpx7luO9zWqNO1H2lcIyPGdxMxe5JZbl/3ge9Br2qr8ewFLzNdEf3Q1yR9hf+xMzLfR9yDJm0099/RLt2e1BkC18vnbFsu76A/0MSs+PjDZvY3yxe3+Hh2K23jO8UehQ8WpM7nQh2gtit7G76nbSCfXeductvk7kWp86FQlzXVdYrR+TL/b0Tmy4wRAFsRg2Pk0ywSZqyr9fvazO4xZn3Om3rqtHyI2FwaoR17EJ0CrQ/x8bbGrOjTW2pDx/0PMkRl4RDfGvIeGmQ+Mn90pIEss9lKcSSf7ix8XPfY8v7TbaMtbnvuhu4zv27L3gGsl2Ynwhf7rVAqkItXeMkaZlFIh9is6Absr/fJvWhno4+yCNWtqOnoYfhJM9tAezoPZuP0h30DXzOeVpavAdjkc3m30o+P9SLvzw3e53ViC3TV3z3+nbG+AeZX36X1ZcnQbAGsYZzXzC/O/MD7Sjf0Db8GtqP6/tDVboO8xHnlw5lePTWUZr0+3TH7KdKr92ejPGdPbO8CW86u9fOr4ONCdjCfmb0/TSbwaTLhtYCNo7brELsanqRuJhOnyVhC3cyPjB5q+ZSG+JtA9m6g733stFmBhvimos9Q5VP02bf2h84/GzxL2H59V8lvBVqR5qOdAv3pnin8bqPLXKI2D7QYsmNPjUjTWcZR6iyO98vMRnS23pZ18RtmwMf/xcy+K3dW4nMckn0p45Xo62bOs0wWref02cB6Lfqss98cYKvGrAit9kV/kEF5KWYkaMmH1rvTbV7yrlNt4GgDKNyePMPtjb1Z5sfolx/S1yG2LGuq/LzNy2kyaNAf3adhP600ew6YJlvYBaE0G/EIeizbW4dMCx1tx/4c3d64UJg1liOIv9l+6rNXHLnyUeDTJ7zAdt/55YogXigUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKq4klm7P76+fMM8dxx7oDhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQmA3mlpaWlo51J1YTo9QkXzSzz8qdkN5N0yGBfR/xf2Iqm1ZKEVLgLMg10muQaiJLHUYqH9JykPJB0xvxbNKBaWp2vuZpIA+10i6S5m2blx+Te6SAYsyeKmjj9lGViVRQDTRTF3vKmjlP57X09aQOqcdINaTzQWqgR47XWS9r2aX33DpeJ0VI+b1e0isdJG0Kp1RIf9JKbZiBZ0IDWcpTT2M0533uUsBo+hJSz0BbSlOkFGmlS48gTYymhYEGMno9EjTd4GFbTlXym0efYujUe8y+FVPxmY34uS81ldmIXs4OdTSNFrxFmptPJ3WYF9aOfmiaP9IAkb5a0k2t9xTOB1lXnn2ZfH8ALZH2ruP1VvrcVrpB1gpaYsxZCvEh6bCRjw+Te9Bkox9n+LP+0T8fimnpsj6zlt+Ue6zPQvicYUjKYfp8cVI3jidLAUhfYyrwDKR93iXXSLsLvZLiU1OHxRSR2ZyRIqyVcp7UVqwXzyG11LfN7MkzSBX2cTP7/039/fFUzNu8hFdItahzR8o9dJ7KN/Q7dD9NKrYsVeqzwmdNxRlT1WVpo1gf+sW6a4o5TeV+JKxPrr3cS+ZomjRamd2zkvTi04xB222lCot1srHDf6TBU1r6gh0ZMb0gnzO7BRqgH09O7rWAHIE+hqTSy+iEMe4K12eRfpe0nVmKyIiYxjGb+zhXOk9xPZH7U6YY3OA6Zv8QGzb2OUPk4yz9LnS3IPeC3tlwSX+/zvE+37HTL7ToBxmo8n/RyywtJmCspMWjrsq5bV625i7y+BAeS9KGduuE7ZrZoFm6Q9Cn16e116eRby3EeVE7YaeXvneza7w8W+qw7+F7C7acPnjTKqTfXQnOTK7FlIiqP+gv/Jul+uWZpEmGpoekyM0QeTVLid5CTAO5bnRr3umq2+eSYlf5kHahBfSH2gbwb9yzvVz+/1S4x3OH6FXpczcfu8NnfaYD/8i+LC0l84GsaMknxv40uRZTOLfsBGyszJaOuiBLLxz5WffUMT207yUvlFTmN33C/1nwEtl1lXxP6crMbLuXKm9UPh1d2s5+PmZv8lwvW/K/tW8GLXnbB90fsjdBlsc9pZmd4Xvjvez9tsn3F72EXrO9pK95p0+5nuks0vZ+KLkHhuwPAbSk9AyPM2eRNsxsnfN2J9aulpt9aWXV18B8IsNa6c5bfoD4bHhL09V+LlzL6CW2wTwvSJ0h9ld8jvoj0ONvWS4mfCFm/fOQ2WhDUpEfyfexWny8EpA6GZurtXdqIUt5f5aX6KhMXuPHuDrc+1WbRNR1qofQ/VEXPNYmwb6OsSsfIgOR0+gPtUlaesvbm9u+XC616Pfx4bPqOmQNuhL+zvZO6J2oHzP4887dNrp0W7RFmB/VedG3BLKU5sxr9GUcCXHf/NSkDnvoBS/j/tlsmH3Tl477ZfI//acffAebYFZ8fLeN5An016Kblr/e+7rBfZD79Z0NfsmoF/Ua/I/+0bkM9ux6l60HW33N0pRHtOhlmrTpLcC/yj+MJ7aR2Hq8n8JVfUh9Of6e4Yzty+VeH+sGkfuIwjvgH0rdo8BLyDK+tFPqRPmcpZyP9sqQPZfu37ETaKuV1h47+dOTdTb6+CfeA7ZskgzwH/3J+oGu/mRSB1rmHSHPYczfMbOfO0of17+15XmCx3iPg22kY+baEJ8BY8/eKy162bLRWuizm7Ln0T76XXVNn02UvfPJZBf6a2doX30fzKfTybn+7NuG2IeZHdcaq9ffcPZ4lYOamp6LcS+r+vC6UFd9U8Hm5J3WXm3D9zjdvLK3yN4pAPaZp8u1qLMzfyU8MsS/EZ+TvV9tze/l4bPuN6P/jrX7dKOO2ex08V+Y2Y+Yne+22M0t+oI3o79SfSfYVC3fMIDe+X62Dx+y/wBD/NLa1+g7x8eb7VOhxUwWx3nJbHCeDd2h+18vdd5yhOeajfaX3Fv0UvVk+I1KZ98q4ry2frsDMj/YkHdQINsPxTVAn+g8r+RdHHJBdU3DT9mB72XjQX8hX1hTHUPUbS1b4slmdq+Z/e+rsDcONLhuu3dD+Rsa+L6XjFn1EGse340rLaAr45zp3hg6a83HEP4FyEnl1SG/IwDolAUvW76ujE7of3zHp3s49Hzka8GE/1j3Y+gWt73XO2+M7T9onzWE1zOduZJ96qXyP/Y5fnba0vlBXjKfLt/m5DcvS/w+L9u39u1/Mtsqvks42j0Ttoz8JqnrY+vZF9myTf0vVszHhcKssWPHDnv5e37PzvvskPe5K8dfnvDztvvOL9vmzZtXtZ0HEyome6FQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVB4wLFkZvfb8ce6Gz90eAhFEI8nzzhFw6lVTu+9WupoVKg+DInywSkwTl81olVe5CeIbviiX9ATPfF7rdOQrVOMnAjMTrdxAm6a6CXMmc5XjJQNsmhEnEYjwsKQk3Fmk1EsWifzYvTcLNKvY6s/d5f23U/Gz/m9NIIMp8c56RWj/pmN5oOxt/rcN4dHQt/a6QnveFKSvmv0XU7O+QnJ03wc+yRKwJxHDlhi7ZjLGBFnhtGV1l25fPGQRlFh/sLpQY320UXnbEWm4to0UVGJELQo9zjNyJx/X+5537pTlcxZ6/R465Q02JJcI7L0V5eLeT8deVgjGnj/Nznd3J1F6488HqNim43WgPnUaM3Ip0YUuokoYNNE79RIHqwZsiaLDEV9Tv8iJ7NT3DHqm/Kjz/nWFyyXu1qRCbLxsGYxItui1HGa7OaH61lbrBN6Q6MVIBegM8ahOi/ycYw8MSs+vstGkbJBJpNj1Bw5xd5ly+DkIGupp5tXosP1FC9ztdNL6ERlKWvGqeAsch+IUcYVQyKj9p0Ib0VoyBBpUU/iI2OizlRej5FJsEWyqM/MWSZTh0QVpw4RdZGli1Infl9lYaD70/yE+j7ldWQWNlaMvJ21ESOQmU3KqoznW9EFQN86Z9EtpolyCWYRQfy/mNmPmK132XXwGq9BlBu19Vp8uNLI8majtTUbnYiPz1G6ReY9K3xWWxqZeXH4rGBsUS+rroj2V2t8LV0X7cAsykAL8DHRDYiS1oooGyMcmk3aQvRDIxG0ZN8QxEgryZyRIWgiwl0rOnhL96I3mI8k2mDXJjym8iXOY4yYqMgyG/TRhepD5NC3pJxlxNINcge5BI9oBEyf8y6qPRGV1dZr0RXoi/KR7WlfFj5rHb4fZYiuId9DtreiKLYAT2SZlfh+jFik0WUuCXXJUtSyb7GXVbZHehkiPzPdi+za5qWuG31syaUYVQl5oDqTZyKnkT2LyfNi1oFWVo8hEShbUbmyCMjRphmip1lT5Wv2NkO+f7ktj/vsGfAx0Q7BkEhD0XbIoi5vCaXf2yJ6aHfM9oQ9JbJjndPAob59uCX+lSS7REdnrJ3KHjAkaxrI6KQvM5TyITQNLbV0cXxeK3tBS783+rrRIxPuyb4boxrTZ+WfqLuzaIHMQ4j8OBaBCf/ikCjLL0jqxrglZE+4Tq4FWuyQZdmDD1q+nBbiPMTMhWbLtDgrffw2a0dTRb60fLQtG2QaoCNU1/Xpmcz/FDOFtHzWrT5zD17X7Jk9/dGsoPv6onkNzSgT/V+Z/oAu4InMb4sNAS0RNe3FoyoTdi30q/bggpfXePns8NlsJHuxM9ijZNHBh4C52pn0LfJhFlUvIosO3shCMhFddohPtNUWODXUOWRmr5gBH3/G7NU/vXzxKiLpa8S7aTJxRGSRi0EWnc9pcUIHm/XPY+ZTwr5gT6n7etY8yoGd8n/Yy25w2T6WOasvo6XS/w2hrtoA0M4Qmx47EvmSjUft2fDczicbffhK/8wvfhGeJzQ+EWExy24C/+E3Vf9KX+TXLMIi30MWa1TiKHtakeKjDBzig8x8q76WW3x8u1t2g9q3MUIq+wb2GPea2S8epY/rj8zsJBvZDtG+VVpvRU1n3F8PdVV3x0y0mb0SIzezvqqH4AX0a3zXYTaSPUNkKLZdZte19lh979DUd47/oBXhui9qdRbfLtS5SOitm2r2Kq3MSnEvqG2dGu4p4Ans4wUvdQ763utmMv1Roa6Oj3u0yXOzyKnRV6d0hx25O5QtKB8jj+K49DnQSfSzZ/Pq5foXLL9X/vYpq5iVBzmrtijyOWa1a+3LXJZueu7o0n1e7o11M5szvuNQfkI37Q73ni91vmjj0L0J9aPPJNOPMStF5l9hHqAhlT1RJ2T+zgUvmfNsj8FzWv5kxh+ztGR2fCLnerOJZu/Cponw3gK6iv1E5qeINNDaM/G8LUkd5Lb60VgP5Evm14h00orI3Mg0Mrafm9Xe+B4b3xv0rUdmJ0R/pb73ju/deVeS0X/062V7HeaVd5VqY7X2XEMi+VNnp5fITd3XxMj3yI7seXE8Kp88698Z/q69k2WNbJMd72o2HtqHXlR3MvfQMHvhzI8MGFe2x2Z+oBN9Dv6h6M9uZe8AIsvmfT4Ot2zVPrlt1u8bVlqivQUvmQOlW+yBhu9ik8u5u1mPLIM8tge8uc1LtRNutaPl40Jh1tixY4dd/p7fsyd/9t+uajufOeGSiiBeKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqrjzk7XBHEZ46H8A/EOcXFqSVORV6X1AXZKUK+f0P4rFFMh0SKIHI4J5I4fZRF0eKkfut0ZRZVhVNxnNjKIrbEa1kEsVgniw4JaXG6jVNlSZTLczxS4x3M6zPlJuvB8zRaxgEbw297NKLf1VOZ8aR+KyKCI40C7Kfq0sjhoG89ssierehefX1UmuJEIs/WKJlEEIjRLLKT8pyWbdGSP3tfMvaJ+cj6fqoNi+YxBD9ldshPNY5FNmQezxqvvj+LrsR8wFsLci+eos+iL/BMaCs7EQrfZKf1/OT/PiL7sE56CjhG0tmd1OGU6lWhjor1sD5dAAJ5zjyRw71uF8VNI5S8z3K0olzE085mI1lIHyVy0qGdfsvbP8yJR6V71vx6L7NoBbS/zcvsROidoQR6khQ5yWnXLGq6n1rfxfxk36c/WcSJQG9n+Nj3Kt36czq6b2UUiLJY1zDyArQ9JMo2tPZtM3vrgPpHwh+a2c/5/0S10GgDPafWiRpuZnaal3uibNHxII+yKP2cgmZekIXXJXXiqfqMr6H3VkRn6Bd5qxGQ4/qg5zUaj9Pyhm3L5X6ut+R3Fj0rnqDOIsgQGSRGEjebjGqWyXdk5mdC3YeNqmzwk9T7ifCWRW2GhhdCP7LoFGB3z/9mto8T5a2Iq/DY2XItRuJAf2hkK4AcyCKv9unC7BR7jJCQRTSAzrKoCRHQ23fs6Pn4RjN7uNlB5CI0xNzFyFtmZp5xZCxyxoDocR1i5G+VxX3rmcnLyC8a7YDnQINZhN7PhfL1SZ34PI1Aw/eQfU4nW6VOZ4cyZ28Kpdlo/OhR5jWLdhMjaLSQrQHykUhSQzKNKI9u8xJ6hW92Sp0BUYQnIiwCjaIQoxnRR40wCg24fOiiwV0zoM1v9vTBbEQ3Golmu5dZJMs4Z/BBpj945nqbnU29rudZnw4ldc3sDng77ikzMB6NONEXpUr1odPplrMaX+mLnp1FuwHYYVnELux21YfQUiubFva0y+uJbDhmIz0WefSJUifyfBZhKPoq0JlZVFUiZO30MotGxP7lRXIPO53nxMg2+n3X891SqB4CzB2VVG7HKE0Jz3d7EugUXs/Gw7pm/YC+vp/ci3Ka6HZKeJFPWlk7Yl2lbfTNdUm9leIyG8/KQ79jNDwF/WfO4HVdH/jXeYTIW2ORHqFX7BWXj6+TMV8ZI4dDU+IfY0vQTavsD6F3SOhJzk83ZfoQtKIMco8+Z7oBZLYMHSEiId9Xm405x+6Pe0pFFg0SsIZZxCwfzx5sCfqejP0M95HtZS+p/Yi+G2Sa7pHDM1M5F21e9nLqJ+GZZIHLMoABZGAWTd7xDO/HjeqnmDbznlnOK8gldB26v6XzjgYxUiaIfmT2IRoxGLsN3YB8DL5SMxv5EF3ejtmeMCDfy+zaGCFU16Qv6pzanujDr4Y+q6/tXC+haSIlDsg2tE+jKsb6yKvP2wS6SNV3ycXoI8nkAVEbo08p2+OHuWsOJ/MzoqvRncg9tSX67JVPJNfoD75jpe24/8jshCGI+3WdF2QG9AsNyBp0kcODnFondHso2umZD8XRRVbjO9gE903WXRGuM7vqr/1/9u06Xy8bv7be3zGM7TX6Moy2soKoTRL0zCHkt65h9M9gj2TyzdflXLflb9N9JjYZ68pz1O4PmT73u7x+oTxnBzqBfsWI4majMUL/GjGVdjO/FQj+vPO9j4+XfnwwRnHEnpTIrR29XRDqqJ5mDXkO9q34e/bBk/TLeX299Ocg88tz1EcWdTdRIHVPTN+i70IRI07G8VlPFHqz8TGzZuxNFsLztI6v0+4YBVfrQMeZrYzsi/uGWfDxybYcQRz5iG7GLh2Swc2sm+s5n8elnX49s1Eib2d2DzSV+WnQsTHSaCar4R/kwkJSBz7IfJmLyTXQt8e/Wv7vs3U0Sia6N8rC7LvBx3WDZsqlvtvpc67rlrIMwtE+lzW40G3om3j2xVKPucoyjIA+u/QF8j90RT8yf4Df2+o6v5m9tnWvL3J4lu0bvXGFTSJ7/wiQDb6G3XsutdcZq/PzwTfZ7HTxPzOzH7FJftnppfp7sFO+Pl51bA5dTm+9bLnc5TR9t9aJ/gf012LSP2RY9i64LwtQKztQFh05RvHN+Dm+X8giBTPGzL+CLY8tEfWJ2Yj+kVPsQ+S90MR7sizTAfqCdWKvEqOgx+859k9eGu+P2YgHhti5Q6KMx2ye0V9hNpqzjBai7551Fvu2e3+e8Tx95HuZjHbdNufru4RP6VKp88lQZsgyux0trrQ8EwBrDt1lv8lg7pBhuqfj+8hg7DG1ObFrkcHQf/YuoOUXjP5FXdMenp4XO/Dwx8JNfvOS6ZpIL5q5Dh6jr4xPbEba3cveHJtVdRhyAbkJXyofRX+A7gVjhreWrsIGyN5h8c4o7tWH7Fdb7xyBbNLhLTKUdL/b03c+rAfzoxl28B/AP/Rdx4XvPu5DWhnCk99f3Q29sB7wvvqEWE/6E3nF7OizJxQKhbWEh/APxAuFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoXCscKSzdn99XPmmeO4Y92BQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAozAYPoZ/cv87GU0+QOoa0DaRk0JQvW0IZ086aTaY1y9I1xXTn8bO2D7J0a6T3aKWYAJ4a5fxLRpduJlUFqV+ydCbXhc/U1VQyfamNNNUp9Rkj6TaeKnV8jrpMYfTv6ZN1UoRUIu/gnyyFF2kOmWdNHdOXOkNT+7w93PNUHmMZrknl0Ur/CLyPG/05e3T9Y0pd5iBJvR2fZ2ZmnwrXWqnRt3tJ+8n6dN+/KHw2m0zjOKt02X24xUZiK0vjQ8qyJNVKei2CtHzQOHOoc08qtFaqrnhNU3HSfuSj3cn/jwp1VD5B/zFltz4XGroo3JO2DsPz3tbSkLSJZ3upaY1iOsgsPZnOg9n4Wnj/uxRK8KymEoQ3mIcDSR3HnJdLXMhSCca0hZpWDtlHuh3GpWuCLGZ+NXUSqQeh01ZKal+nvczH45M6tI+c1XREUTYw1kg/0lY35i1JnSh3kZdZquqVYL2N5AjPVn6OOZc9LeQhqbMnym3mV3SeXeNlkmKuo0nGf064bjaSZ8xVkjpyg9P0ftaOPl4+qmOkaYspWzPZTP+hLX3OodAWyFJegyyVM6mwSM2radKYK9LgZX2Mds76UJqNUikyHpdXG0QGdOPge38cPpuN7C7mjO+rjUSfSUmuqc37ZI7qusg/yJeYZtJsRC/QSaaHYsoyTT2W0WL8DuOHD84M182aNNkLnjMgRftgxPG3nv3u/lsbty2Xe5iHxyaVSItHer5W2rMsLaWv6wZP2bof2m7NHeNZn1wDyInrG3UyW4T2Pe3brp1J+9GmylLmMa+uG8bsUugDHs/2HzHVJd/RtWUen+tlTOWXXdM5iHSykNQBLVt3COBtdCZ0ons46MPtjEOu287bPqpyS5Szl9gkmJdoXyrdtWyqOGcx5bvZSNbRt0WbHQ//bza+NpHelJiivM/475JQBxqVlLQbPAX6/rjOatP4fO7+vH/2VMod75uN5oA2W6k9AbStNtaCl8gBTY/J3ENT9FnXhz46bx66K2kXXQKdkGpb7I05v9fZ4Nm4SOO7K5QZPTDn3wil2UgXwPutNLotn4HDsy3bVVl6V3AwlNpH5pd1kf4sXeP/OE+d5/N0i+7LI//xXF0n5hHeVz8AaxZ5NUut6/Zox6vJvrdbS2S82lHI8I/a7NJo/39tbI+zydu/+/t+AXqL6dPNRvSPTaG6wW2prf681NRk3x32YVeqjRbXJ0kTe23kX10LH9tB57+bsn7Qb2xe1jSmzjYb6bFkTzyxJ8r8UPCNj/kZbpvcqDIRWkY+wHNqV/KcLM3tfKiTrR19Ze7jPtysk2fN/SVrBW2jK9V+1pTwZnYo2xvE9qGpZI/e3cv25oC+PlGu7fTSZfmNmR7imexZ3eYb83F6Ou2OqKOeNRv5/qKf5SSp80WbnTv9MWZ2iv+veiTK90zORh9QlooZYJ+4nt6lvIYsRg8q/bvu7tYgA/WRs+wlnyt1ok/VMS/y+jBtnBMqqY8VnoLH2S+LvdH1GRm4SANSx+n8tmx/GOFyZiz19860pq2/YPT/QfglyhOd+7j3Q0c9S+rgG2CuMvuSeYDefb3Pfc2oym3IJfZV2XO4hpxp2eaZDxJ0BoKXKjvimLO07dRBn7lePqR95t3BopfM06tHVc5ze3/Ctp81nmBmf9O4j4/C6eNgtFvMRmsPvWeyPULvUR/7LVs7bJdMRwLnv/Ncr96Cj1b3OPD650KpYGyM3dOu78jWgroXj3XBzMzuYFzQv/p7ALKL5xxK7vmYmd6btR9qG5rZ81yGfDzrK3WhP92jYMfSZ/qh+l7X3GxEE3qN79GGfl/bM8tlK9+jLbdl14kMOxTHFt/vmNmhPl9J9n4UHYUN/Rtyjz4G+TTms17w0idiTr6/xPeh2yiv7+3p5zS4xcwebiPdjgxsyQ7qXizX3K5dWvTPmT2JfEcuopsWJ6t2e1jsXdWrrBW2DLSuPp5od9FW1q+WXYPuzd65RmS6gfVkLaFR9Ykw59u8jLLQbCTzGCv29WVSZ3G8/aWEXuGFQ9iDPE98fze5r239G5bLg0oL2KqRR9SGZq7w2TFmfc5LvfxQqKtr4bKvs9uiT1H7wRxiC6uO8DU/w7+/l+8rvUBvrJ3uj5B9vBO8wkvRud27PO/PXvp1VlLnZJs9PmvLfByx4OVXkmtRVyZ+hF3QGTJI33mic5lP5izhp7nty+US+9+WX5v51vc68A9yVuR1pzgpWftflTp9fvmWTZC962ceofFFL3UfAl0wL/RL9Vl8LwQy3zd4v03C16P7ncXn5d7VoS7ySetAA/Ao65L52rgHH75T7lE/+nqzd+R/HO41fgOz/mGT3TkcbQGdw1tDCZQWoCXGAb2p3Pa+nevy9bbWvmGWWGdmP59cxy/ncmVe7ITDrCfyPvOzMPfwgfPRueJzuI15jXTf9z6vD9d4iX3Q2qM7DutcRp9w5oOBx6A31lLtQvQn9mCiw7t2o6846/M2L5Ht2e9ZgBJstAGwgxalDn1D98ffbWifBvgZp0K2f3D9PDH1j4wXbERb+rs9738nl5BFqnOZs5YMjvtmnqO/xWNvxFyhX9XXGt9rMdZsX1UoPLiwHEH8+GPdjR86VATxQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVD4IcHc0tLS0pGrrV0cOHDATjnlFFs+MfepRk1O0OlJSk4ycYKOE4qt09KnhtKsOwl0sZ8Wum6ak3VPT65l0YSIuMGJXE6p6ilYTmouepmdfONEEqeBOVmkY2aOmJfktGsXPYvoAPRDTvad5iez9vF9TjfrCT/6zAlmPSUaTqR3kVxlDdf7uh7kWozibjY62UtUGI8qNHZqzyNdTERv10hMzBkns3juVqkTI2QNieaYRbJhPjNajJHuhiCLDg5Yg9ZJvCxaJ3i6mX3HzH7O7rnnHjv55OlPiI/4+LVm9gi/mkWkipDoPd3JxozXjwQ9Mc98+KnViah/GZ6fXONEbowWYNbx77xHKTjcinQao53pacB4Ytnrnvfi0aVbiAqGPGHONMpZPAHqp0/nXz661J1chk70pDw0TaQL+EBPR2aRUczG6X9dqMNYNdJWFpXMLKWXLmIEa5dF3GZesnWC/5mfjCZ5JvJS+bsvaqPKlZiRIJ64NZuMBDINskgcfbjPzN569Hx84T1mN2URaKdBPD3bil4FXir/s47xORliNocM2br0gVPOH5NrC15y0t1pfSxqzqL/w4nuIdlEMvBMeP9suYcejmNtRVCOdoPZKCqfn0ZOs2VMg5aOiv1YaXRd1iVGHcjaIBJbFnkP3duwkZrok4WK2JZGo8AugG6RycjP+8zsjSvi45Eufq8/r8ce3iiR6vZAC5n9xVxPE4mhtc7MHdEfVM+3MlgA5gz9RxsayR87lLaQu0OiuJvZeu/HwZ3L5fw2f0wWdcTHeprP575WpKEs0wN0AS0l0ReIhHiYqFPMndqr2HjIhcXQTzM77Y2hjxoFPj4Tflb6gU88Usw6lyeHNOpnn13byggANKpRjNoA/amtFnWJj2d+++SjDzPnLb2WRaPos9eVVomaqOtxr5m9ZEY2dRZdaYgMAhoBry+LUBLVoqO7ATqhi4jcqpvZaNOAcei+Afq8NdxTXo9RTDOw78APESK4mpmtcx6fiOSX6d4hNklEJsNAFnUE+5pxZRFtI01rxO2F5WKT02e6dnHv2NKZLbkfvxej3pgNiybTygwVkfFun52iNIVu2W0zs6kn+LhPrmRRuIbsH6aht8aettlGzA6jaxD8NF2p8woN4A8jAqDKZHQAa5DtwaAZ6D+TJ87P8163052ZPeR11rkOHONv9DF9VXm7kn0d9PdVufYCL2m3RePQDfOtdIwva4hOcFzma3q1Rh+Pfq9s3/moUFejMyn/mLXHw/zShsiDje4H2YMsb+0tIv1HOXfAzDbOmI/Vfnq2lw2/1YQvClpQ/YwNEWTpWDRs6sBH00ZJW4luyoAPHrmNXNE5iLqAOdsm1/rsgVYURdUbUdZkdj71Y7a+DC0dxxgXvGRPsNI9bZSJKp/6njkkw6bZJB8z9wtSB1kRIjIP2hPrGiCX2JOj37Wtvv2Xvkf5TLgWfYnfNrOnz4CP/7OZ/YhfhR+yiGxDooID5+OxCIk7l8sXblsud6j/Ke6xmB/d4yAbhtjMyDz0ka4h64G9EaNim/Vnw9LnsC/l+7SZ6ens3QR2LFkLssiifdA+0y40wPzoGPrs/mw/FOzkM0Te7o12cTYuvq/ZZxybnB7uRudndBb6+m+8/Xcoz9wQ6kI3OmbXp+vdpjiY2WoAOl30UmUiexHeG/AuoRVNXt9t8KyY8QTa/raZPfUofVzoYp+rTmXG95ratyyLVZ8dd2ry/6KX9Fnl9Qr06jne9zum9bvGthiDzmUjg2tX32XQuZ6lYizarMvguW3L5Y/55TF+6JOPavfjQ/T3ZR0NZb6caWxq11lnCN3t5Z/WfEaa1Hd0zGfMZKY8iw1A5tGkrxf6ut7unw9iX+v75minI3PU1on7FeSL8jy8jQ7W6PjwAs9x2bVVou/uinMFrWtWFNaHd5MfstXbG2d+uIjWe+9oB0If6ndlPvh+ko0h/iaj1/+jbca9jyLqZ7ORbr0kfNa+xv0hddVmi3tH2le/KzQcbavWPgbekHfSMYI47xLSd0dhHzMnenWJuWINMp/dwnJxocupm7KMNEP2u9HfovvDmHE3s2miLZH9TiHSLfOq6x11ttq+27yM8rG1VwH6nhjbasFLaEl+M8BvAw6/yWbHx28ys0fLHeYq2oqqK+KeHtrW92Xx9wjnhLpmI9qJtKDv6plz+Mlt8TRLC2s3ZD+mtIROoY8LXi5KnejzQ/aojR/fDQL1NUMf8HVie07ouhbi+1X5XpehMEYtN2v71SNaPAudxAyD8TcWZpO8oTb9JeFegonxtIBsX5Rrkbbhv8QXc5G3dQPjUVs86rjMPx31GXsoXedDdrR8XCjMGjt27LD/4z1X2uM/+74jVz4K3HrCNtt955dt8+bNq9rOgwmzyolZKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFApTYM7ut+OPdSd+6HDcse5AoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCg8WPDe977XNm3aZA9/+MPtKU95it10002Dvve5z33O5ufn7UlPetLqdvAImFtaWlo6pj1YZYxSk3zBzPbJHVJwxPTGLbTSS64EWQrLCE0t0kp5HMfhfX3eRaMqHw8pNC/yFDY3TJt6DMT0ko1753kKjFu+L3Xe4mVIzfPbko7ld0lZw/ey1HmkQVoMbZsNS8UW033S/i6p4/fO8DRIXQq0LK09afV2evk0qdOXHrZFC610pKQ60XmNqV5IgaNpiFaS+hUaE5qaWA/GfrVc+74tpyZ5wwxSDH3GzL7nVxM+JG3jXlIGaZqaBS9Jb0OapCH8LCk9SRs0kfpOEzIcTq6BreEzKX6yNHRD0p03UuZt9PnoUnNB28rzpJPJeAsMSYPqKY8ueu5yecMn5F5MYwRNKm+Q/ojxkHJMaZUUOvTDUx5tPHtUpRsrfYafspSCpPG6PtQ1M+OZkT401Rb9YJ00vSTrmaUviiDtOanQNbUV9BrnXuvQbksmW08d5ee+FNvIuXvN7HmrkPIv9oN1jnpZ01+Rjiuj6T6IPJi7bLns0nGTykll+hSp1DtkqQljuipSSOp8xzRaWdpC+jNgzKQ1O6Q0iQynLfSrpowkrWVMd6bzAg0xRvraSuebpbYiHVjURzoXi1kiBQABAABJREFUIYVgE5k9x1xdk9ybBkNsRWQptgA8Nk2KtJVCU90dSeasPFVYPw9n6eciMhp4vZdfSO4BbG94IaZzFJzm+mcfclttK2wodAv8k+nemAJQ9XbSrpnl9vqQdPI7vVTaiu1D/yoDY5p16io/M5+7Qh3ta1+6d9XPfK9PRyR4ndjyV8YUpcyPph8FzAM0pfKhb+51DVnzaJOrXdqnI4foQwXpG+kj66M2G3YG8vZ0uef2zoXOh12K03OkTpSzO212NnWmi4+EvtTqZtOlnGzZt602+p5DWmNd5/j9VlrVTK9mqYEj0GOsA3STpDDu9HKWKhiajPyY2Xqx7cxWibb9q+XeVdYP5h5adpna2QZmI3u0laa5T/Zldtw0QGe8Ra7FtcOee6nUaa3hNIi2Yjb3UR9KSvSNLmP2vM+W5+/XZ8DH/8XMTklqQFOLXuo+wuXkBpdP+6fxBb1I/oeX2GNl6459snu87kWiIzpx2+oHsvSboW0F85jI+PXe3sHYxpbkf/RfTL1tNvK5IOfivtVstKeNe1GR/+svG+/PhTIfN/XNg6ZmX/TyznDvcFKn5fdhfe7s+Ww26QdANupeP+5TGY/SQtzT6nggAp+XiT2T2UiPcu8NXmqaUdYuyku1B9Gx+IKG6HvWWdOvf8Fml0b7wzaal0w2TpMWHDmrY/5KuEcbOr+ailrr9vWpDzF9vK5F1AnZuOjTYqjb2pe39ov0x/Xbum2jW4fYL/B97R/PYg+Q7S3gBdVJZiP6N5uUa+jubZN1Nvj39mPLqHxaiV9iGqic2+klewqdF+RJlPcZvXANv9pdSR2Avf52m4TP2aZty+XdH5N7yKpotywmbaE/4v5qVnz8WjP73/wqdK9pyqPdlNnN60Ld+NlsJKcZh8rfWL/lx/U13ORrf7fQakeLLb2Mzcj+CRmve9ooj7in44Ff3p7ci2DsC3KN+eM58I/uA7jnNHiG0+TeIePL9iPMM+N6vtxDt/Duh3XO9rE8m3VSW+I6L1u+HfQZ+lHXmT0StofL+K3ybmPXTv8H+YL8vW5Up9PLUc4poi1OG1+VOi0/EXhU+KzjQUbBW8wrfb/PzN54lD6u37LlvXH27iDC137e7dPD+q4Pv5U/J+Un+IYxZ/MTffeZHyy+D2rxPM9j7lT3Lng5zbtCfU+GTbgY+pO962QvEe05s5H+4fufD5/NRnoU2uY72Zhb7/HRsQvjz5mT/ixdEfo4xAcvdTb5tbuxNdGDqnPZrzf8nKl9HhHknD3SS9WZfe/0ZL/azVXLt8O6Imey94n4+rCj9DnMPTRxqi2/b/qlGfq46Bs0nezHOhvGZd+GheUy1X1DdAK0/YfhutlIt8V3Ri17mzXVvS28hmzO+tqiF54JTbLe2e8b6D/rpe+5eubjDLGBOx07gBbWu/6b2KtnyGyjvjpHqtcHxqfzEuVjfNfdgvaHeWBeXRamcxe/n40FX9/D5Bq0zfoiNxelDvSB7xA9pPLpi15iv2W0oH1cuS42i3z843Knz4eveij6A5kr9V8xxktDHZ1X5Bu+amyjuFc2s0t9zT6Z0W3UP5mfP6JFt9x7ulyL8jnaSmYjecAaMh71kervZ8xGtsVXkjrZPRDf8ajOYTxOby88a7nc8fakTgvZGGcJnQv0Bfw0jU8mAzSg7+3i3pf1VZrv+12NynjWlb5Bxyqj8al+IrmnOLq9caEwa+zYscMue8/bbPNn/2BV2/mrE/6p7b7zy7Z58+ZB9T/2sY/ZS17yEnvve99rF1xwgf3+7/++XX311falL33JHvOYx/R+75577rEnP/nJtmXLFvv6179ut99++4xGMD0qgnihUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKJjZO9/5TnvZy15ml112mW3dutXe9a532caNG+1973tf83u//Mu/bC960Yvs/PPPf4B62o+HUATxlURJi+CUXHaiOkaAVTw1fO6LgJchixTE6atWlNjsRFPf6V+NcBJPZ3NCStvyk+5b/CTcbqKK6bwwZk5aXRuuyzPn/ZToYU41P1Pq0D7RD/X0Oc9uRYCOJ+6zyCScJOSkboxIYDa5Zq25j9BIjZyEo1/MmT6fe5zqmjLCexetPX5PIyMuhvZPtUlw8oyTYq1+cCqSaAV6so2T4LOOPJxF7I7jyNapdQo+Rl/g85akbjyJnUVgyk70xdPi8J8qjlak7iNB+wG9cfoR+ZSdDI+RJlQucGKYCI2ZXCBKASeWld6YD8ZOZJ+dUofIHzHynp70ZV1ol5P2Gu1/W7jGyWxtCxpc8BI5qTQFLRHxKIvEj7xkfTOabEXJZB1iPxS0S59Zr6yt+NxpdI0+kzmLkWhmFV3pczaK2g7daRSHeDKWU9I6ZuR1jFqg0RcWep6nyCJ+HwmqG5Aj9ANZoePJoilFwC8x2kdfdN8+cFqb6EOtSD+t6KNgGlq6XP7nJHo8nbwgdZireApf5zdGa4sR8OIzzfK1bEVyBtNEK88ALcVoKNn8Dol4sZK2zUbjjzTF3M0ygvj6UCOLdL0Q+qXAJmM+YoQRs8kob0AjdSGziFIF/2lEhGh3ZQh0Mu968LBGz2V9Px2+o3q1Ea2WKKE3YWsSzS6LIB5lRhbtfCXQuWPu4cNGdIwJDI24HSNnoNfV1ol7LOS9yh7NlmOWZ82IdEIdpcnt45cO0i+NbIgMztYHMI+0n2W/YI6+bpOATuP3WpEn19vsIojfY/m+FZrQSKnM/ddCqdE1psmWEHXvkIxZrXnhnka0Ze2jDNaMC9ALOjOLXBmh89KnU14v/0c9zFg1OsyQqHoQLHTnEVfS/Rl1iaar/BkjyKg8WPQyzpnyz2sa7YIhUeCHRBkHvk5dZDaNFB+jZ+m8gml07ZC+t7JmxO9n9PJSWx7TE2fAx79l4/Yx/zeiaXdAb4XoVWY2ubf4VZsEtjy0uDP5biPTVYdoj4qu2+C8uR9bmvnVSHXR75VFCxwSeS8+J4lUOu88dZh9+4DsWk05NyRiN8hkYPRr6Dpp5E4z2+D7+P0r9TkMySjGenukxU1y627kc2YPYnsgt9nHq7+mj5YyvwYY0ufMb0pkqr5MXjx7VpkA+vRxRGuvEiP1ZrInRnLO7KdWdpchiDSpMr1vP6fjCTrgQtc5Y5H1e/THeuGRg9f4P3EfoeN7tpd9WR7NRvTh/rD1L5A22B9g402zh4yR2swm9cYQP4DuDbDV4nrpmIesJToOms72U8zrNBlZs31DjODa2k+gK7JI76x9jLxtNlpf+syaKv39xNHz8f/zHrP/G5poyZwY+TizUVgD5rX1zkPGut731gcZK/aS6oZo62Z2zxAfWYw4CXSdiaSMbGZcKsejrxhodL1rvGTvFPeEZiN/gK/h+QujWzcjPxgr86Nz3+cbU90Lr8e9vvqvIt+63J2XeTkc9aG3/Yxtozo3ZpHQY1/RlQ9r1AXZXimuL3aK0luk5SybD0CXs5/XiODoBNY5vofI2lI+dtmzzu3+Q0Q5Z91XbldPRhAH2ALQhOrMaDu0xpFlVemLfKk2vdPMOW573hGzpWZttcCz2R9mciXaTZqFKka1b2Uhgd7VFsEuRc4zn1kWniHwNbjIaSDNjh3HozrzW6HEnlRZxH6jtZ9h3+F+o4vETrgBeyvKyVaWsAx9EVOVFmL2XPq8IHWir81xnkRNn3iXrOh7P/Ay+Z81pB+t30vo+swym8fQ33/QPvYxNo3uy6JMb/kKoo7R6MaLXkL/2fdpHxpCh8p8XOxy8bqWjpgGrXfk09gC8ErLVzbEZkR2qHwKdlLnp1+Ui1F2ZPvmc0KpPnXGGP0I2e8Boi/+MvmfNYv9yfymzMeQDH2sk65337tTsxHtYS+13g3G72f9iBHIdQ15F3itf/dfz4CP/8LMfiapEX1+mv0A3orZmloyLbONkHPQAPIgy7QwJJsuyN7bsU78JuqJoyqnOS/t64smr3hy+Kz8M4SP2RMht7Gtsr1ozA6cZUHARtKMNAB5G6Nym03+LiLz5bC+tOXPGfMDsNeBb5hX/f0I+nSIrzjuzYdmKIi/Q+N72W+04h47Wa+NPsY9LfkP/bKPyiK0Bx/MBpm7/TeY2XfM7OcrgnjhQYMdO3bYy97zdlv47B+taju7Tniqfel/fNHOPHPcV3fiiSfaiSeeOHbte9/7np100kn2J3/yJ3bppSNf/6te9Sq7/fbb7TOfyX9v88EPftDe+9732s0332y/93u/Z3/6p39aEcQLhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQmE18P73v99OOeWUsb8rr7xyot6+ffvs/vvvt9NPP33s+umnn27/8A//kD77rrvuste+9rX2kY98xObn59M6DzQeHL0oFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCg8pLJnZ/Xb8qrdz+eWX2+/+7u+OXYvRwxVzc3Njn5eWliaumZndf//99qIXvcje9KY32eMe97jZdHYGeAj9QPxiM7uxcT9LLRqvZSkVSC8SU8doCpqYeilDlibdLE/xA7IUHDG1T+tZ9FHTOIYUY10qZ0lncpqPeTepskitk6XvIZUGaTs0TaCn3TnMmD1dyJZTR1V2x5RnT07+p86pNglSKdKfTyR1YhoYUv225h7oOjMPp4Z7fanSFS+S/3lOSB02J/O7FNPLCC106cDoB2lL5DTLGb6Ge0m3maUJC+m/OlrQ1CmkKmINGKuu06lm1i9EVw7lR8YIH7DumvKFlCrQG2lqXi51mDtEIynzlJ+cPs7z+ejmW2WAf2/9wnJ5UNfr6zaOLE0giGmAHi/3SAtIGlPSAGk/SOVGykn4UVPq8ExS/JAOS2UR6+rfm/d0Z4dlXBf6fJD+d8PC6N5hv3eQZ2fpnZCl9IMUVSqf/Pvrfc0OXhe+o/0mjQe0qakASTEUU5Nuk/9J9cX3Y2rBDFm6wcj/+n347VvJPUAaJGQX6/VMqQMft+Q/8mjRS3hUed5TOE+knUW+fNvM3po8e1pca6OUf0+TayCmm0bmaHpL5BPplGKKK7PJdExZCvKYTlLlG99n7piHj9gkYjpvlZ9ZSjqz8TRcITXX1u3L5a5be+qb5WmsnQYvcZ4fUyMxnd+il1kKwJgGK0sZhk6CnzXVLvwLz8d1MhvJ6yjnVO+T1ox1GpJWT0G/Wym6M9rpe04rdfgdoVwfSv1+TEGm9pPz+txzl8tH+uV9ar8wH9CWpi2ivTAeUpH94IDZ12bBxy2oredyOk0Dyf8xjVyWcjKugX6HecB+cpq+RNJpX9tKKwjQCd7W4S+G5+r/PBv5e5fU8e8/w2XqjUJ/N/G/pqI2G0/56OPH7nuEXx6zJUhfBY8seqn805e6U/kB/ofn35fUjym/vc0Xbh1d2hH5R+Wep9vtbCr6qPsY79NWtwU6MyWzxXkOckDbfmqoi6xX2ePzeJD2Y3phs9HcRfmdybB4T58T50X1WExNGvpnZqM03tDZQVtOvzsLXGnj6Xexwxa9VFqKqR2hF6V76KqVMpY5Rzdk8jvKZGhU54U0y9AAukr3U9hC7AVIEaf206eWi3PWTXbnHOe/O2Ia+JY+Aa0UrvSntT+M+tVsZGdg0zNmSV0878/u7PO45zAbpUjFnmyl8s7SAEdZinwQXtngtiv6azffuXxUJ01rbja+vwspMw9lz+FanDOlBfb6r7dJMEfIGmhLbRrkLWuGzs1SvDMP9F3pBdr+kM2Oj59rHR2b2Wgvgo6CRxekDmNzmtrk+6i7Jb34xDq/2yYR03LD3+pbcVums3ugF+UR5jPxx+0Pe/P13seDOvc7Q78Ys+rZ6GvTNLXgj0NdZI+M5zDjGI8SMv4811HzC/4dbAtJGdwh4wP6iK6DRzVFb+a7NBtfJ+q4DNsP/ao/AZwdPuuetI9XM0B/vm53Z3tbdI3qj897iV7kOdpXTfeuaPla8fPo3o02kBHwfrbPBFl64xfbsi779Ub7Q3GlmT3J/1e5h83bSmcf68bSbGQbDfFvIu+fPHntfJezN7dsatqIqZgzZPsqbEungZuytuIznVcOXiPXgi3yau/7VV+Ui9F//FibhPPYJv/+3dof5D3jGLKnBNlaDvk+/ANf9tmSgnXbR/8f6lu7uC8xm3w3kV17sZfKY312oNrojJH+Q+NKd3eFaxltk2Y82GpjvvPYjyg3Z6SP/++rpW/Mp9IYMngIH8Z3FLoXi2sg9le3V7wg1FHdEOXJ18J1s9FaocMzumGdsZFcl18oa3gTtiq6M/NTYhc/N1z/mPzPvCKDdT74nzlDTmU2MGOlzafLvYdZjmzsfC/akNJ+t6d2Xj2c+RmD7Xqj0gv/02flDWiAdab97J3c08Pn8ZTZy2AOoVF9DvIWnsV+03ctjG3Ry8xu4JnYRNhR1yZ1eXbyznNChkH/mS9+Whz2P2Qx85G9a4xyJLMrHdFVZWa2nnckjAd75yyptLhc3MH6YlNpW6xv3Jtk/Yk6Rm3pOEa+r2uJHYs9lvnF437shuQec+drpu+O9rNXg86iX9pswg92A44j5WfmI87DovwfaSa+IzCb9PlltiK6ym3pG4RGn+dj/nhoKn330/e7ALPRHiCur44v3mNPm/EY72G877ccSOqAS+T/7Flm4/5t5tXHs8H39g8XubL3itDXU23SR75S/Jot+xOwC5CTzK/a+LSP/IfeMzmJXEIm6x7l2V6+Pdy7OnkO38/8LPwf38kJuu1g1kfAsxm72hRcQ88vJt9nrA8Ln9WOcx7b6DJrD9czP3D8PY34r+JYN3j/9ut7FGSxj/lwax/CvOhzkQ2MJ9pYimCDnyG2yV7oP9DqvxH5+Q5kBXOGPZj5/lhv5J7aLdhLUc9niD4Ds9E4ptnHY2fou3LkIjL18nDdbOS832pm35mivRauN7ObGvdZg/he32zU188k99j/QwM7vVR+Yu6hG3Seyu1szo+EzPcdeV3kwT5ss/jOVOkPOmOd0VGLUicaIch03U+fHK5R6vsPgByAxnRfFm2AzFaEJ3i27lHib2Pg2cy+DUhf10KnPEd1GOsZ7agM8Gb0Cysy3wd7mTgv2g/mI9P9wOdxT7Tts9+l8T6WurqGrNnTxj/vVzo8ZLPzVRcKaw8nnniinXxy9jvgcZx22ml2/PHHT0QL/8Y3vjERVdzM7ODBg3bLLbfYbbfdZr/yK79iZmY/+MEPbGlpyebn5+3P//zP7Wd+5mdmM4gp8BD6gXihUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQePBg7gGJID4UJ5xwgj3lKU+x66+/3i699NLu+vXXX2/Pec5zJuqffPLJdscd4weF3vve99pf/uVf2sc//nHbtGnTqvc5w9zS0tJEPIUfJhw4cMBOOeUUM3utmf283OHkXTwllESzGxKVozuxw+mAISf05JTPaR55Y1/rFCQnijjBoCfWOa0YT1rpiegQRWirRwHepdF7OKnGCcXGqVX6v9X7vktPHPuJ3C5i5E6/rkwQI4IuLBfr5IRFdyiOZ+tJ3xghm2gzOod+eusiPx3XneR+qdThtF9fJCaTcTBXnDTUU/bxpBe0tU2ucdR3SFT5FrJT9IDTnEwe49NIarQfaVvrMB54ZZqIOBH3mdlb7Z577hl0AidinI+v9KtXSI148j+eEDcbneTbuVycv225HIuAFE+SDkAXEUCfw9kb1imLJEgd+i7y4ELnqZti1MLs+4zRT77Py6lKgoHtYq5oK4sAwAl31v0FUmenl5yc5gTks6WOy7wNTif7NUo5PMWpaE7RK88QtS7KQI0SSMQ71gkZnUUUi5EnMsQITEkU3+4kdCsiSZw7s1EkghjVWyLadvPYiDbSoRX9AVq4OFzXSHPQV5yrLPqht7XeeaaLajJLPv45v8rcTxstAnnEyeVsnVuRy9A7MQNFK/IpyCJgwqPoFj0lDd1mEUEB+ufz4br2h5PgMapdFgE8iz7i39/ka3d31g9kFqfwgy43MzuM3mGsPj6N1PUkL2+jjRg11mxkd7XW3tfpJX66+cPQf7amGY8QdYL5gG4zmRpPgr9M7sG/0U7QKAMxElyWmSPSZINGJzK4aAQNovcseqmnxllz5HXUIyvn4xEP32PLc4kMW/CyFdUii5DSh0zuQ19EF1DZhS4iKiD90Agn27yMdpNGIGOO+B46QnmOe8wzdlR2cr8FX8/1HmX84DvlXjjNn4adoh8nh7oaHQDe+ly4p3Yc63J2uJfpw1YUOUAbi3KNfiNfdnqZ2cKtyEnoT74fo/WbjcYReaq1PugD1fO+9mQFm8jcYzai0/ePX75Y5u461jULZ4E8Yf+C7NJ9WaabZqmLNYJ43FuofGNvBt1lEfPgSfgGm0LXMmYz8eds2D6qsj/OGXJSbde4HrStdn+0d1hnjeLr0f1e4nz4Yc3UEPUE4/qqXIvyjDmbT+q0MlEEXdBFlVNbGjq5Zvy5zxB6u5F1cZq81O99Uv0S0+zjMj0GsMXhJ9WBTi9bLhmv0pQdoKVXB+xFu7lblIs7vWzpn5aOYn1YD2RrFhEnPkfHc6pc+46Z/ewM+PgztqyTI4jYRT9Ur0aZjrxUfRijCKGXVFchM+OeNttbwD8+Z5skuuk/erm/RR88E3myTe657p/zaNFLcd9rNhklLdt7YdcydqJ/qlzhe9AifK1RhProVPyM887Ph7GLNQpj7Fscu9nkvpTxie5b53vrzo6MURAVLd2LjPlYuJ7tv6NeVFm44GVmIyGfF5eL9e6HOKh7hGi/Zf4e9CjtEt047q/M+iOSKzL7CzzKlvn+12fAx/+nTUaENev1KW8Qud/km4jWOkeozt3pJfor+lAyZDqvz9+aRWdlL5rpzFbWNBD3WG7jXCpy+5PRN6sRxJGPvgc4zed8X5Z9c5p5bfkn+vb6ikiTWaaqFugr6wuv6Jogw4hke43cu2xAH+Pat/gIWm7t8afBkKxfAH/9d8zs51bBrjbL9WGE1qHfMcNBK3uARrRF9rrsnIhSrGi8/5jwb0I3KjdjRMPsea1IewA7CXmNrG9FC1T7C/pqZZVjPN7/f+PPfkeWtYm5zqLNxvbhI+V99gmsJc+RzFudDUD7cS77rsX2Y6ZF7St9uyHUbcGfOyfRXZcW/Z9WlMz4XtU/r982qjJBg15nXuocxu5i33nHZH3a2OJr2GUpmoWP6722PAdEmlz0krlUOsZuyaJSAr4HjaqtF/VFy4bue25fuxFDdBQ8gr2PflyQOlGGq2+XdxH0x2lovfDqQdbXx4X/eOxXCey1kCNxj2E2kivo4Gye+nzvWVbRxvx0up+1G+Ln0/eqfe+sMl9zCzGrHXOvGYDgkcY7sF6dkM1LBvZK0EeWERZE3a9jYF3vlHv3mtkvrYIuZmzZOkf7D7tnUepE/Ruj+pqN3iH3+fvNRv6zmMninKQONP3kUNdsJMuRFWo3oWe+Ee5l3wdZJsloQ8WMfGajdUX/IP/VfwUv3BbuZfoI2zNE5Dezbh/XZeh0O2Gd6Kpuv9t67xb7pX4f3iUMyd4U1zmbX+TUp8N1fTZ8kPmf4Gf6w3pn2U4S/uuyPsXf0wi9rfe9DvLgXP/ObbrnH7Jf1uxgs9ob/1sbp8Mhez8QbSRF3CcM+a1LtneLvx/J9h+tfsR7Lb9rC/E5rfG47XCOj2fMvIRf4lizd3O0ibxRuTDEJmlFGQfQaZYRNmTgTvd80S7l+2q3xLnmO6ojWnuLAeh0LvKVddI+Mw72Qck79vR9lNn43GOXIk/i+0CzkVyifeZSn/NkW84g//QV83GhMGvs2LHDfuE977Af+2yWvWh2+MoJT7S/ufNO27x586D6H/vYx+wlL3mJvf/977fzzz/fPvCBD9gf/MEf2F/91V/ZYx/7WHvd615nX/va1+zf//t/n37/d37nd+xP//RP7fbbb5/hKKZDRRAvFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCgUze8ELXmDf/OY37c1vfrPt3bvXfvInf9L+7M/+zB772OWDh3v37rW/+7u/O8a9bOMhFEH8w2b2N6Mb3SlgItkSISSJqNPVbZ0+5LQ1p0319C0nQOMpt8fL/5zI44QUp3z0dHKIjnmGnCTaG08zhwgJZtad+trqp/F3TRNtJkM8Dfx0uccJKz9NNucntcZOPPWd/suictOWnhij3XgqTvtBlDjWgNNtGp0vRsqOUdjNutO33cmvEKFtDK3oxj3RBpuRyDPESBVyGmziFH62zhl99KF1ApprnLbmJGs8Vb9a0Q4jhpz8zCIQANb+G+N1icClOMSpQ07Ot+Yyi1Da6kcflP53hntZVAswJMoTdMspbY3QHqKUd3SsJ8N5NpEjMh4LkR02igzb0xfBIDs9O2DutvqzOznX4OsUMVpba53oz2VyDRnOHMEr8pzzvI+30McsM0Ckydhm1rfsOaxvlHdDI0WYzY6P/6ON+GWKk91bhV66daVOX9TY7HnyzGY2hvXhcysSFfqsFeUpnmDOItpqdguzPFJP65R0lMUahY5nxajaGq0gRt5H3n9T6kQdFSMsmI14ARsri4BEZKBpIoW9KLnGCXXvx1j0XqeTLsIQEZ3U7nAa2OC02EXiy6K6xGhRGiGL09oxinaWscRCvzI9TVusk9JUpAGdF3jphlAHzCK6UtTF9Ic1lQhZzQgCcc765tBsFJVsmuw+Sv/ozzjXmX6eJhIg+lCjHsRIYxmvw6usT6stp7d5sb8OT2PD00doQufuolCXOo+1ScTIJs+S/+F/eOX1cs/lSRfFpNX3IZHmAHyosgfZd42XLbnNGIl8pPwcI61SV+Zro+/5Ovsli0Aco2NkEThaEfxYc2yqg7b6NnWLD4eAMRNpWPc4272MNNCKgDlE5zHnGT+3vj8k0mTUg2pzMbZWW31tKO+xp8CGZu60LZft5/j83sFeVPUq/SFabmbnTrMHzPoe5zzaFGYjedYaM7Im2kYZYgQn3evzPXgLHbFN6mDjZRGUeTbyBL7UNliHRS+R6TpmZFaMgKP2rbY/Kz5+rw3LRKR6aDHcg+40ynKMGkobKm/RsciuAfvwS5x+r9V9JtFy2EuqjsJO/5SXyHjJODeRQYPPElWso4Gwhxzbi/IPEcToz8ttEkN0MHYktl8WiTwDe79tXkLTGvHoieEe9Kq6sy+yu9ob2Kgx44Pu4/uyYrWQ6fLYn0wfxj6qHRdlhNc9V9bntp3+z4KX+GmUx5jHvkjt2j7o8wM8UD4u0Io+zfpktgT8En3Fj0zqDsmEmSHK12yP3eo/CLQzyBcPNKpqXEP4T2zpc73sMl5leizqQbWPvxL6OCQKdqZX+/wRiS09wYdZn+NaDIhKPwbmCDrJsivGjDKKuF9oRRAP7zjGouNf4/9Ap1P4DMaynwU7fX57uD4rPv6ijaJHIzN07uO7pj4/n9lk9Gf1JyDDWJdW5pUhwG5RncncxH4osG9ilhXlwyiPMt8ftjv0yxhGqZrtV13nvTvjMV/rjrVi1ldtw23m7r2OZg5a8HIK38WF/pyblK+gAezsLAop9AnPuy9nw1mjKp1PKtY1G81N5M1MBrI+WfaQPuh+ChkTooOP6UXGHyPrTpGZNcN64eODjCeOAzl1r5n94ox8XLRLW0N8QhmGZDWNyPayjBF7vZV1BrTeFwDNPsCcQXe0qVlj4164FVXeafR5krnr4zHDT/aeKu5T0Wca0TaOObM5Y9aybA6iz6Nlu7JXaY0ZZPKaMW61SXCPPrZ8kZeEz0OitaqvOPJkq61MR7E+cW+siHPNHL5GrvE99e2utk3dyqQUoft59ivBxzv2fgqdFu24bC8KWtnLIhK5gHxUVt/vunqr74m792bK64yjFSE7Rrje7qXa4tEOZBxZ9o+4R1c/C7SHvGNelI5iH6FDjTIOL7B22W9U4vtDtaH7eLsVfR3o7yQ0mrbZSL7oc5g79Gqm52Nb9F35KGaLzfrUsp0v6KnTyjhyJF/iLPn4SXKH9uIeVhmgz5+Y+SBbeFb4nPnFQ8T7jduXy4nfNhwJrXV6avicvbMP0bw3XpL0I8qaaWSPAhqEN1tZFbNxXRrqLCb9gCdpi3VP3qt2Ee+zrMtDMkkxv/gX0cWZrxlZDv3o72Eiv8j+pVuzIfsz5AB2g/JPH13JPvM8p0l+Y9L0oTB22tL5+podLR8XCrPGjh07bPt7/q096rP/cVXb+eoJPzFVBPEfBhx3rDtQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqF2eCY/kD88OHD9lu/9Vu2adMmW7dunW3evNne/OY32w9+8IOuztLSkv3O7/yOPfrRj7Z169bZtm3b7K/+6q+OYa8LhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFwtFiyczut+NX9e+hiPkjV1k9vO1tb7P3v//99qEPfcie8IQn2C233GK/8Au/YKeccoq96lWvMjOzt7/97fbOd77TrrnmGnvc4x5nv/d7v2fPfOYz7ctf/rKtX7/+CC0o/srM/tXoY5degbQh19kkPK3Fvi+G68+X/xe9JGUEqZc0ZYmmrFEkqcDmn7tcHiZlmKaPIl2Op4zY20hbMv8Cf46m4fLUrbtif95ok4jP1rTEpA4hxRGpIvW5pKLylBtLpOmQtsisRX82erqnPZqmg5SEpBySdMJz/v8SqVGYzxZZMy5N00I6DdJG0X6SYutgK1VMTPPn45qTMS/F9KXfCmUG5l77HNpQLH3f/2mlsSPVS0wJlKUoJffqrUkdENN+ahqtq62dnmgabLbROku6qS5FZFyfLHVxTLOsKaliylVP1XJIntulkbxqvM4YSDWUpX/vS8f0ePk/3oOmW6mQSN2n6fCQVVmq4QjS5kBbWWpDkKVfh06RD5JKcKJ9n8M9mpI2pp1mXjWFEil1WSfoWNPdIOdYM2hR5XhMx73NS1nnjZ6ueg8pQk8K/dS+fS6UZt3az/tzDpOySPjnFp7NM6/xUmkB+Qr/L3qp+oNUS6SGz/iNdY0pqnTu6IfTzTrnjUPIxG+b2VuTZ0+LzTaicfqa0RspjlxP79opdWK6ziwdF/MCnans6ksBmKVf3GL9gF5J87yur6JNpjvTNMvoeuQu+j5JY92lFs34mhSgi15qmjyeBW8ht6+ROjEdJHOnae2ZR/pD+sHLpE6QxRv93olPG13bzdyzlqTc0j7HtJ++JutEr3bk7uO7Ttv2ed39Tv+cpRnzfux/Ubiu8paUjMh95l5Tz9HHmEotWwOfu92ZTcH3obvMPmUc9Etp69Zwz/s672uwdMDs/qPl44vN7BE2ogvap1/fl7qMGVmj+uTToQ6f1b6HN2I61ExnkjaUOVCZzP8uA+ecj5Z0DZAZQ1LHgpj6V8G4VIYwD1OkSUc2H1ZayFLUa5tmIx5F1jw5fNZrURaqLIC3I72KTd7xBP1SG9T18M1q30ewznE+tR/eb9LP78/4h7lmXrAD35/URd7Sd7Xn4h6TuRT9uucT41Xeun25fO3n5SJ9vNT60bLRSE3KeC6x2eninzKz2+UzNtYfTlbtEFNBy7i2uN23G/11MJRmdpqX++JzlZZoA3mQye2YItjpZ52kdz2EvcOaYbNdPKrT6bOMlqL+ialxzUZ6i7r09atSp2+Pl9n09BFbQvnZn30HfAStq23D3Me+674s0G23HzIb2ZZRvuh+in6z9si0TG76czZ4Ktz9sW2zkf7I0hyznt+0cagMY67gcfqu+wf6itwV3X2u2yW3RRp4mPzPs7ATaD9LN3tqKFXnMf5Z8vHFNkxnqZ0d9xbYegtS5xuhBLo+O70ckrLb+eda+DGR7alPyXVTJ/eZQ+Wfc8I1Pl+T9AP54nS3R/Uqcgg+Yl+ktKH8Yja5BzMb2STIUmxW1YHsS933N6YzmfOoG1QeMA6XA51fTPchfJ/9LnJbdR1zvs1LeCTxU9pZ4XMmO5gz/Cst/0YmD0BMXWw2knn02du8TfconwklfVSZwXPiGLMxU5c5bOnHo8E/M7NbGveh6cz/DQ3SN2TpVqkDbyD7Er/EIDkS5ZvOK/zfZ1eaTe6ToUWlpYXlYqvzDap3TLzwPeYDWXyt9aJLsyy8eluU4acm/7P28JOmwfaxdu8WVM5GtOQkcxVTfmf+XHxS9Ev3gNACbUC/6nMDyKXM/mE9Phrqan14FFrSNnzR1uFLfadNAr38yfHL+1WWYj890vrRkyb9cCO1+uGW7DkaXG9mL/b/mReleebVZc169xMefJ/Uge7go2tDadZOU95a1z4gZ/U79Pva8Lnl14feVHfxPXj2hnBdv4cMZnxCG+/GDmNPqvto55+D0H/0XZuNbFWvc3DRPyvPM+cLoQ31JyAz3F96E3Om44E38XtFP7fZaK6Dvb5f3//FumfKteizz8bMeHaG76tfAh7j+/jllN6iDzN+VvC86Lcxm6D/Dpkf2PcdyhubnF/u5gI0hZI4YGa/2OjbELzSlmmFOcefBv0oj0Sb5CK5B527DOed4NKi1OF/5hM6yeQ1oB86h8wfNj22gNJbpEHk71VSR/tvNrLZ1HZjDbc3+hjeBX9cZTw0SFuZnxN/trc77zx6OHtXGW3FX5U6PHvBn+Oy+bDuyz8V2qav+s5nS7iW2b7g6aGuIuyr5kWvHmZ/4Dy7xWXH7rtGdTq5Cm8iK7QteF73wGa53zHSrwJais8xm7Tls7rItfi++2qpwzXW9fk2u71xH65PrtFX+BAaUl0Hn7C+Ps+7Mj2LvYHd8vbk3ldC2UD3rvvqyXvd+++XyUXXV7vQW4wvs4/Z96Jz9X0Isgb/Svwtg36ftccm17bQy/Fdu+oR5AI8gfzU7/CcaItHejQbrV3mpwHIGV2fYD91clvH0+fD1+vwc7SXVHZEPdqy2ZhXdF5mw2bvMZCzrfcOzHHLloj3Mptcfx8012hvWmTrG69lv8kA2Gat31K4LDztxaNL3V6x9Vsdb5e9zp5rGnVjf8xG9NFan0wGR/AcH8c/ZnXgF+ZqV/hsNqKzz4zfe7nUeR86Kdp4SuuMkXGJbTHv7wu6PRp6SP0b6JTIv4mf4rb43lz9t9k7hNgW88v3XZbOi8/rMPOBrPA+nyH+9b3I52T/0qG1j4J/W3Kgb3+3OPr3Fr93htdt/uoT/1nGY+tstnxcKBQezDimPxC/+eab7TnPeY79r//r/2pmZgsLC7Zjxw675ZZl5/jS0pK9613vsje84Q323Ocuvzz50Ic+ZKeffrp99KMftV/+5V8+Zn0vFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCkeDuYdslO/VxNzS0tLSsWr8rW99q73//e+3P//zP7fHPe5x9j/+x/+wf/7P/7m9613vshe+8IX2t3/7t/bjP/7jduutt9q5557bfe85z3mO/eiP/qh96ENHjnJy4MABO+WUU8zsCssjGsYTmxJ5bOIUVxY5LEYWzSJCx+gYRPXVk5dZZLs+ZKeG4mnBLJIhpzvjScUsIoiDyC1jJ2NDBOSNWTTgOJ4YMbvvWujP+V7evNP/kb53UWCISOLRycbG4HUgn9v8pNaFcmrvpnhyLUZGN7PzPbrTzUSE4zRZY1668WURRqEJxi6ny3qjYa8UffM8LZIoNZxK23uNX/hKqEv9+8zsrXbPPffYySdrxOJhGPHxa83s4UmNGOEnO/kfI+Nm8BO9l3p0ik8SsUIjA8C/0DvzoXzEaUxON8doY/rMeErabBSFDL7mVGQW2SpCIz/ECE7Qtp4ShVdpi35cktThZLr3Z93LR1W6KNOcmJTT3pt8jCzBHmhbIzzEqFPI6ExmZKcxI2K0No1kE09AZ1Fd4vmpGNncbDTGLIJTjDjcEyVpDDHiY9+1iBi9DhmURW3zqDBb/WTtLj2Vz9pzYhcdyNhnxce3mtm9fjXSjSLK1DOTOgteQveJ/M9O4f6C3/tglP/axkIor/FSsw7Ek+itqP19EX+1feifU8Xan4/YOPpORCuyaMJDEE83J3Tfy9dmHQ2d5pFa95HNZEHqwC/O1xd6RKib5Dkv8TY+zDxjx2kURuRIFmVtJRGhW2jxMfIRXs2ih0YaJrpfK6IB0Ow18G0W7SOe5mctkVPfMbOfXREfT+pixhOjprcim2VAXrJOKvdjNIAsys00YF3gOaWlITwVQaQtjVaA7YDdrfuP7IT+kUBfdV6G2HT0DdmBDNBIXdAAPO5RTc+RaP93EF0AfYZs1jEveskcamQGrvE9bBmNqg2fnDle5yVi03wYGzxG8Mz2bjEq0huTOo1Ikx36onK1kNkJWXQl+h2jdbxa6mhkL7PlOfu2mV0wA138R2b2d0mNLApLjPoD1N7HLma9XQ5skrnf4+Vhouey7hlf9+3VFVH2ZLTANWhLM8rw7FakrGmA7ay0FfuY+ROQ4cjvJDMHQTy6rAdR55hNyt4satM0MpTIKBLB71zfb98WM3PI3J/r83BbKypRzLIUM8NYjx/CLJcvgLnTjDnMUZa1Bp3QiogIYkaCJArQy73P7zvSPn6Ge+P5K0c3uix0rDN7UG1jwcs+G9ZsUpa29iFPD591Lmnf9eEl7lO5tjU/Lx39u3FhuSTrwKFMfod9HDLnbo1E6/1vZqDo2/u10BcRM3uu7tGhuyQr3Plu13b+L/RxFpH5saGO+i9pF7uDvqr9EDOrMQ7dQ3pmwon9lO7jkRHxedrWG7zMIsP1Qf2ltEc/Wnsu9BjZBzSaNjY8fWRdGhFP59znsXSF3DvZlvn+N2fk4/pZv5rNS9Qtup9wud9FuhviQ4w+JrPRnDHnrb1T9HO0oL5Q6AH5/zCbBLLrV0Nd1W/MUbSPh9jGqhti1EOlaXRR9PO09A9ovVPI/PTBbhoCoo8ebq039pdG8GbO+yK0ZcjG3PJr9PFma7+KXn6uXJvCHz4V/QP44KCZPXFGfPzzfrU1rz73W91PskuzviJviX676KXyCnSSRaWPNmaWUYC9b1+GKLNJ/zW6IZE9HaItYDayk+CfzMcVn5PZyfHa620S8L/LrnmJ7nc42g7Mnc49vm30GXpV9vHzfm0i+qHY1hc5Ld4Q5zWLHMk19sSZHpoG6sN3ntrgtNNlYMl8U621ZIytPXBfllQdM3O+uFysd5o8qNFQmceYgc6sf4/Gfuigmf3EUfq43uZ9Zj1u83KazG9mIx2ADwW9OmSfqbwXI2WzLlkWN4DcV99x3BOg79XOxWaO9qzYxpe4HXdt9o4le6dyJGTf8TFu2LZc7odHtV9ZFhOz/F3YJ0Ld1jtC+EfXAN6I2Y603nYvia6q2XSRA635cf7pMoHznVamHpXpgHWhjZatFv0TLagfDT9K9Ie3+no4fNZr4FSbrU2t742jn0XtUuQhtBOzIppN8gQ2jtrrUYZmNlLLbjoS1G/K3KMH1QZAr8c11yjjjHGafsQsghlc3m8V3buLvStrz7ouyPcWvcQObNlPUeeqvQ1tQls6Zn/mHFlVM7snZlNEHigtxMw6iSxs+hoA9LboZeafy94zm435STod0Se/tS36qnulmN1lCDK/qdoAs/z9xz+VO1FW0Q/Vh9HGe3eoG/ttNppntbOZT3gdmtD3q9u9fFO4t13qcA8ZpDZSHA/f3ybXWCvkCz9uWmlGs8g/Q/a0uneD/xe8xIbUNbg11NHfikXexreq7+T4H1qexk+v44m/hUI2qqyO/oOYvdWsP/K37mOQXTxH+xqzpzGfJ8k1bEV8L8gifQ66CpnH+JR3ox8cXZFlkmxlhDI7Wj4uFGaNHTt22Evf807b8Nn/a1Xb+cYJW+xv7rzTNm/evKrtPJhwTCOI/+ZvLhv+j3/84+3444+3+++/36644gp74QtfaGZm//AP/2BmZqeffvrY904//XT7ylfyl8Xf/e537bvf/W73+cCBA2m9QqHw4EXxcaGw9lF8XCisbRQPFwprH8XHhcLaR/FxobD2UXxcKKx9FB8XCmsbxcOFwtpH8XGhsPZRfFwoFAqFIViyObv/BxVBfNY47lg2/rGPfcz+w3/4D/bRj37Ubr31VvvQhz5k73jHOyYig8/NzY19XlpamrgGrrzySjvllFO6v40bN65a/wuFwuqg+LhQWPsoPi4U1jaKhwuFtY/i40Jh7aP4uFBY+yg+LhTWPoqPC4W1jeLhQmHto/i4UFj7KD4uFAqFwhAsLZkdPnz8qv49FDG3tLS0dKwa37hxo732ta+1V77yld213/u937P/8B/+g9155532t3/7t/bjP/7jduutt9q5557b1XnOc55jP/qjPzrxQ3Kz/OTZsnERUwyRkoGUMaRd1DSmIZ19lybmq1JnSFoPTwW0wdNM7c/SqsbUMS8Ln6UfXUoQjazu/V7v4zp4XVKHMXvanXXeH8mYZ4dJp/diL7NUVKSOYq48tdV6SaN10NOoTKS+zNJOxbQfki7wDF+DvdeEMZiNxsYASP+mqTN2erndS1Kb6LzQN+/HhZ6K5qa7RlXOOXu5vIN5pa+aApPUZ8xDlrqeVFaLXjIHms40piFivTWlR0z7rCDVGPRFXzUtWF9KRE15emeos+Bllnro1FAnpsqZLjVJm4//hV9V3milLrNwj77GFGKKIemiaQoaF3rpvsdcZanUSKVDmpgsVRdpxEixo/T2llAXGbIg10gr6Ongu9TUyiO0z/edRy58wajKTaSeYTzIQJ2fmH5LeQxZmqXGBszRi8N1TdsTx5yk9Ozg87ve+zGWLYl5oc2+1NlHQqQ7TcUZ0yKFfpnZaF7eHe5pmk2+j+yAtzQtGPPwSC+hJeX5mHqMzzrfpM0mnWqkyVnx8Z+a2e1H/P4kNK0eqalaaZGmSeFHXU3VSDonUrh5KqqtF4yq7LrG/9nmJXaJrvP7Q1uttLnoOPSJpjnL6HwlYKyu18bkNfdIsZvJjJiSSlPcAeYBGmQ8mv3lUKgD/2laMMC6sCaaVtjlQpdaeqfcQ0+Qro32lTew/5BZ2TzDf9AdulLTk8ET8CN9zWgUeYl80zWIqdP6UpodCX3fG87H/Tx8hS3b1At+Bz2S8dw5oY6CtKdXJ98DMUVvtj7QIHIXepncJ3Tp1i70tN43Zel3h4A2Yxo4fQ40ldkZQxBTv2pqRGSDj3md25GHVDewHtBtKw1dK6099O/89AxPG3qj6kxvf4O3MZZS069t+NXkXkAzJSfjYezfSurEPQUQud2bGlVTRqJPW2l3h6Tmjf3JbHHAWqjNuOAlsmy9LfPwG2ZkU/+k1KRd7P8sFXqk+2xfNwRRD2pKaOwU7BN0qK5PnknMtsj87kauQNstmyDqCK0f9Y/yIfYf9HVN+GzW2VRn+Me909iauu+FztAf2T7zzPAZ+as0yrr2zKFik8/nI+Xal708GG36TEe5LTTvsvCwjj3qfqD6HfkM/2RrF1N6st46FzEV+avlHvIgpu9VRPpgDnUfzvhjGveMLx5vZvea2S8ePR8/8R6zL6q/pk8GKo+hT6EL6FjnnnsxFaz4LJ7hbe3xz7uH0DZpp98p114TrjXSr3fy6Tcmq5zh69LxWLbfBVPs9Zsp0fvSPyuQGYtyDRmB30hS6251mbML2sz8CY5z3rBc3hF5RdtlLRmryu3IG8hd7Sv9YH/4TS/PljrfCnXRFRoFLKa5zexCp9MLfX5SG421b/kVAHSj87J9wPfhl51esu6qh75my/r492agj6+wcadsBPqINjKbjTroDd1D3hDutewWdMyiXMvWqg9uM653ejmobWV6a7WA3wAdjh9J/f3fCtcyu3JIG58M11X/9NjXY/YKMivuN/U5nhob9XUVa6o0+dHQSGLbTPjnM13c8rGB2Ff10/TNR2uvMSsw5gW5hnzu23fOysf1F2bzP7N88TDyRW0j9Cd+EWRytjdo7f+RoVma8EiTGc/z7Lh/Vh8Ez6Qt9rS6hwp8s8ll891KS9OsPX11WbhefN8Hd/o/jPn58j3WLL6D0pT1vhc/w+91dkL2/gP9HPfRGZhDnZc+vtF9FXPHvKCX1c4NvjKNkbVE/+O+7BKp1Cdvde7wUUQ5ILLnXJc9t0Ub71E2CWga2+hpo1sv8fF/mAtDbMZsPNgAO72Ebmfh4/qAmZ1kI5pq6UqXkxvcbvoxubWLseETZu2z96sRQ3wWSrfouLjeaq/GvSN+q+x9dnzHofQC3Ub/dva9FqAd5IquVxyzP3fDG0aX9rf0Vx8iryRo+qHiPuRo0eLVbC6hi8+P3ztf9MfN6JbYxy3J/y251ujHad7ePuaIfum6sf9wmX6Rr/MNjd9SrH+j2dIBs2+fMiMfl/7+A3sF+o22ktnk3l7nLNo0oPXOJz7XbCTTIz+qDcAcMT+ZDqddft/Q1z+tqzqYdvts2Azwz065hm0Zbc0BPrtBbX1erkX/ZGYbxb296Kh1/n7rUORtffeELPX3BN0+UX1/0AXrw/zq+lO/772O2aj/sa76/tSG0e8MxTnhM/vCb8o11ifOnb7bxobGTwT99O0NZ/n7j4f3fm+EbF5bdAK/RTs9s40iniX/sz7M4ZNtEi0bIvYRu0v3otx7cqgje9n1C8tlt9/ObL8XeYmcbvElbeDDGeI7b+17Mzs73sveEw9Ba52h1/g7Eu2rz/VGtyv3JLr/EqeXa7mHj0j5kzHTH/U1IGNaMiz6EzPZDH1CH9lvs/rQ8onSH6Xtz3n/fn0wHxcKq40dO3bYS/7dVfaIGz+1qu3c84jH2N/ceadt3rx5Vdt5MCH7FeUDhnvvvdeOO248iPnxxx9vP/jBD8zMbNOmTfZjP/Zjdv3113c/EP/e975nn/nMZ+xtb3tb+swTTzzRTjzxxNXteKFQWFUUHxcKax/Fx4XC2kbxcKGw9lF8XCisfRQfFwprH8XHhcLaR/FxobC2UTxcKKx9FB8XCmsfxceFQqFQGIKlpTm7//Ax/TnzDyWOaQTx7du32w033GC///u/b094whPstttus1/6pV+yX/zFX+x+AP62t73NrrzySvvgBz9oZ599tr3lLW+xnTt32pe//GVbvz6LMjmOAwcO2CmnnGJmb7PxU38xil52IooTVpwE4rSdntKJEWw4caMnx6hPm5wM1FNhnLrlBBEnvzQ6EqdDOfGlkQkGRPlY56eeONl+96L/k0To/S9e919kJ6c5bc5JJiJhZHXjaWKNNMppUD9F1Z1E1u/zTD/5NS+RcLqoJ3rKz8zOlQiwtzGPzD0n1BflC5yKI7pBNo7Lw2eiWpw1unQwRnlqIURrnvoUOiceORm4KPf6IuHoCehIJzH6s9noVPWQCDJHqjPdCdKIER9/xsxuXEH7ZnnUXrM8QgO8zxzoSboYQZbTxRoNIp6+FfqZcxpc8nU5zddpn9IdfELEeqKnXC11YrS3eCoy60cWiQD+4YRsPGWs+Hr4vE3+9+9PRCUyG8mIj4TPGikLGcozOZGqYQuJrL3gJWvZom1OXmpEA76PLM6iyIWT4Om4olzoixrQh76IF6qr6CP0Br1qxIUYfb0V2TOLpBbr9GFWfJycBJ+TqAldRJxWlI6+aERZFIcsaig6mjayKBLUITtAYic0o4z0wfvznteMLr0SPQSdNiJlg44mNQojfYxRvcxG9kQWzRsg+1xGXOz69D6p0kUNZs2+GPpsNqIvdB39yGRpFokTPDd8bkUVZuxq08AbK4lcofqQZ2cRUvqQRZUcQFMTaEWLjW3F9hTIg5WfBO/n4ZVGhmtFkZwCXfT4Fh+6Xt2wsFxORB4yG0X/ZV1akQSxsZDXymutaEZDsof0QaMvIK+xF7BBlI9cJzzDP94IDWnEIvqIzn32cnGGRD2YiHicRVuO0Gi10B7RRnleEol53vt2OJu7lr0T241RlrIoScwde4XF0a11Lp8PIV+H8OqQeVG5wjrQt28ldQ6Gawdttrr4SXKHfrcirYAY3UjRiqiLzQktIqMXpE6MjIJ+Vv2OfczejXXWuUffwCuss0b7b2UCgz6xmdFV0/Cs2WidkY9E7cnkS6QztcnZw2L7RvvdbDR32NeMXf0J14R7IlfmPaNOGvnySNA9PnYo/V/0UiIJduPQKFNm42uITcJe4N02iQER4bo1cFvr/G2jWzdHWdO3XzRrR9+FPphr9mxZFCCzVbWpzWw0jizz0BA4Xcw5TSy9L6kT9RD7vCziHcj4Bx2R9dEjV3br4fu8dSKTDl1h46A/J8k1+j8ksiHI7C9kFv6mzH6Jtk2yz+zsFmSZRtqO9ICvQWkVvtnmZRY5n3377lDqmiArsOFD9GezUWbAiSyC2f4MPf32UNds0h+hoN+Rx4bY72rTYF/HrFqtKPDImT9O6sTMc/qcR9ryum2aAR//Rxv5mpWmWCt07kLylFb0+iNB526nl5m94/Nwhvtw0kwY6EwiarXsJvQXultpEjplPlv+nrAva0blhqaV19x2Pte/NxEh16ytE2IdeG5R7jEP8Cx80NKv2f4o9iPqTrN+fskih0WaHhJNVDEkGj2I2cvMRuvien3e7e7U/qevpyb3kKEteov+TeaAPnzHzH52Bnz8R2b2dwO+Ad0ir9QH1xd5UmT7nOvF5r43RtBflHvY1W6vb9m2XI5lAYl72cxfE3V2pofivUyWIsMiT2RRIZN7W93u2uXyZM55fUl851t8znbjt2Je1IcPTzEu1kX7EXVVFmWyzy6VKPunefaQfdHeziItZj7RARnmJiL9gsy/SBvP9FKzo8K32OBZlon4zgn6VX8AthT8uJA8J9pUmvEHuU/fWEPeS67crj6yTZ1hmmwmIPPPD8lo0/KLc491Yn7VXzLEhzkkCxv0n707miZTDzaA68x12yarTET6VXsF2wE+zKLvMp5WJj98Fovhuvo0YxuKvqjpKt/wZ6MrY6Yps/73der7gKbh/cyfdnF4DPujZO/DPupQzCJuNiwD8BAwxmhTm43mXn0xs9ob///Z+/54q6oy/fcq6WCBoCRiUgdDC5MGjEI09ZJkUuGEaaZmYdqUNjrqWP6qFH9npqbjWI2NmCXamPqVJvqBcYsKTQpGLNQwTl4TtatXueZVu3q/f6zn2fs571lne5Fr5vg+n8/9rHP2Xmfvtdd6f62173qfxy31F5+N8yjay5xMsD3tKDV7Ndvt/wdiIP2TezcxB6X3r2alnH/HndO+89lqlZGcMbjPTj5P6jBW9O+McmtkA1nfzGXR9qBfpJ2YnLkXwec6WI4xbtnNlbo+QV191H3XtnnfqXXor5idlDZV1wHYn379OLceUNUvPMcYtqp/+aze/ip4TmzyOMRCBasLz7XL7/zaWu49on/XQ11RX8HnP83SPGvgTAAehR6PftzsIe073pfjwv8PyL2D8uOs7yH5PJQ7Xlf/l8DHrKvccbNSdh7KnPPwbDxmzfNK1tF3oOuzTlkVk+CZJyAWLpJf6/XZRz4zugLyT8LpywfyHjyXXfyFMHLkWDfYZ5zbq69z41H4vOvkoL+/Z1gya23XVKYo595um5UyWBUTtWJ1GQAj2QRZ+1jlfUrOzvl3Il4PeK8nzeyfI4N44O8G8+fPt49cerFttuh/XtT7PDFim8gg/rfEpZdeap///OftqKOOsocffti22WYb++QnP2lf+MIXijqf/exnrbe314466ijr7u62qVOn2o9+9KMB/XN4IBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEPg7RX+bPdu38Uvdiv9zeEn/QXzYsGF28cUX28UXX9yyTltbm51++ul2+umn/83aFQgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCL0e8pP8g/rdFn+XpN6sykZN+C/RvDbQyhKfuIFVEjv6cdGukh3lIzv3C1cldn/QPpH4SSpHdQTOyBHQSQ0Ax0ffXsg6ZKVZ7ChChDBuD373n99YSs7dNJdmVxqLcSWgtFvLZSMVBOj2loFTaFDPrIj1Nhj56f1BcXa8HeT/WB7XIcu1XUomSIqUjFUPmlFX65rk6pAkRepkZoIFZxL5Df/duK/fieDhqtjbpF1bvRDsq6VQ8bafSg/sxVOolUp+x/bOsGZ42jrKdo+1cnTlGkBaJNDm87jypU0X3ub5YaCXlX45m1lNySt836W+OZo80N77NOepUPjPlT82ppwsUPSwoulGnSykeCdKZsT9JnXRqWaWgjbvDH2huR0Glc7arK6DNIENPp5zr4ge0ZyjkpFfkqKDmJV2PUN3NQv0FpD6b29guM7Ne0MoOAxVOQWet1D4cM1xvJr4vFH0onpUHeC43PpChkbCp3apXHShpS6nfSvsptKVm1qhrtCdV+sNrUtdJH52jL6StANV7AyUh9fY37pzSAPGZaRNJeaq0SKQRa0WV+GIAAtef8zmt6J5yoC//thzzdHhKz0T55Pjw96r7j7hjlN95ZRXKTEEVzxMqS56iHtf7tD5zDaUf+1wsAWQpmOlrMXaTRceWk3brVdYI9S0upln4IWsGbRbln315RKau85kThbJ+paeyztHyse88Ta1SqjFGoy1X6i3WpwzkxpnHqIeMFd8qdahb6xM2Uy/VV7Wi4Vb6XU+lnos9GQ+SarGKXt7Ttz1VUXegeIuZbWblmLHPfV+alX2di7dbtVtp0zl2lEXStonv7M/1kb8ObF4328bxUap50o96GrkcfS79H+Q4S2u/hStz164CnrkNFMr9at9Iq0x9hq4cIX3/a5S38gDlTOMeyhIDVOj1Wm0zx442OEcxx75mH2biyd1RLmHdjK/ro12kLVN7RZvB3zMO07h/kStZN+fraigzetnbgQ8DiWHpGzLzlwJ8nhvlGPWXNpQxzg1Spx1lh7040Oej7OTop1vRR+aoX0e7Oqo/rWieV7b4bFaO4UI5RjmjHuYoMBn3MAZnDKC+hzLNvlffQn/FcdUYguCz+TZrPNiBkn39BvfdzMbBfjD27uNzdZR1inGh7aPd03ZR7xjb0P5XUSCLzZiGcgn9D59Lx5DySjtAG6qUmNSJDpQ5PfL+fGdXmtk4UMjW8b3fMrjKfaeuqX1hGyGbS6voUG/LHPNzckKpOOnP/PzFt+9vBfZrFRUtwTEVuz0F8r+MB3J0qASfMUMXO5RrJjwAOR4mPrOH8x8fn5qVPpNzG7S1mNOalfYAOjES/qxhXuf7gfGcxKVG/0Pe3JycUDcecsd1zeFsd47zKYm3+3HtI/G7Boper2M8p3YF8/+2Gq5XJWf0f5TjupzD7wt9Qf/06Fiwrx52pYLPRv/FZ54pddhGjoXa4j+6Epgm/bqU/Uo55bXr8gMeuwgl2y5rKAXYr7RPGtvQZtAWU/f9vH4wYmozsxVWrnEpvD/O+To/z1wf6ByFfQUZGHJ8eYpzzrVVck8fzfngRdYaPhbYsqJtfl5kVsYZrn+a1rnNyvH1sblZoRvL72j8bmalTvi5nz4z78825uZB7SjZP4w7dD3W6xTlWGMLb8NzsuBp4Blv1DN1eaxqraoK1IkqH+Pbo2B9jE8f+0f77veubhXocymjal/43oEywHGmbPxlANdfX3h6bz2Wi7OJ3DqgWYP897daT9B73OiO++9mRdyymvGLrrX5dU4+h8ot5+bU9arxJjCWDWtUfY3nsvNVgr8TXV/FtuK+/Vs0fjcrbQPn66vrmWszdjnaHVebwbk47W3VOLNkXHpNWaWLOs8+5Jh6G2tW+qYcZX0FuuiPOdfnPXPrL3x23kvl0K8J49nHyBiu5Xigz+m7l6rusj6flf2a812M+XTtg+1nrJmT6Q3FFEtrXLTBtEs1lOoP/NxK3n8UfXaH+56Ln3iMc2rte673eLnQe7E+x5B9J+95C12iLFJ+1E5S7hlrsc2rpI6uWZrl12+JOShzc9COVIxBvL1W5Xmhrwzk5ITtZ3+ovLGtHDPqmr5jqFpDJVrZZLOyjzh2tI+qq4x36Nvof9SOZ+yav07TezLqj7YP/ryP96p4n9PL6xyHUmI2ztGK6bvKPedNnC/jHvrem3OcQrbZ1ppc58XQX+Jca4ypOf/IreUQP3WlgvJFOW0lozmoP6T+QSeKftZxl3fHDfeUNevd8Tv+/0flOg/rqExSF9a5uhqbt1r7yIFzdepcXc4xxuxwv6mKgxi7qq7y2rQD/L3aDvd+aYzMQdf6NQrOnXL/A0HB573U7vk4kn2YWxOl3eb/Teh7AP9OgNfT+TfuX6yl8N76TprPQzkTu7/Gr2nRXk+QYxxn/s7LRO7aVXbzDjN7ouL8euChi61x8Y/3pZ2tijUhF8X/B2hM699D5p4ntzbsAd0YiXt05+agBOetVderocxdh3Ec11tz8aC3A7PlM+ztqqo2+n7ZJ3Mcv7/c1gO594D0TTlb5NtBec/FAJRp3z9mTfF5oT+6nkZd5xyrjlL1s5V/1nbm4i6CNrRqLZV+3L9bqJJxIDumfB6/jmVWrl9rX/l7rbbBW+MKBAYP/ZFB/EXBRi91AwKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIDA4eAVlEH+tmT2QOe4zWunOJmblmGkDB3cNaeaLVhlnctk6/DHd2cTdPdzhKzsdl3Q0nuvLZB5YzR1J2Nk4Flm5OmXH5VruhOUz+x3iZnajy6gzhcczWXyncGcrswrLTsXp2BnJjb0L+Tzad7hXPdOcRdxNeXTjdbqbm2wTcc2VuH+f7Pg9ek4qL3U7oDU7xiJ+drurd5fdYYt99mpkMem/o6zTyV2Dfie3Phj7gTuHKQO6K8zvYJNsFC2vo7vbMhm+zKxxRzfBZ3eZLM1kZzj7hRl3NfPqHZbPCPZC4bPjmZW74/zu5qrdkUNcqdd0/TL2yPJzJzMqDCTbANuqWb2Y3WYzlJQF3d25yp2DDOSSpjdlKN2iuVKxU9JnfDcr+qiPGcDxfOMl01YXfw896mVDRBaW/9Udk+z6CzgulCXoTa9uO0W2kh7qlGcI0N8DCz/l6po8K8e1KqsW+qc7ly2QMkDbxXtX7frUTALsPy+DKm/c9Z7LIgEUu5HZVzmZ9hnr2VbNhEYbQ1mkvfK7c80a9bdFuwYNK11p1jr7kGZN91mz6Mtzvjd3Pe4I1uyPHv4elEXNSoz79tfx/apMHdd/RbZxzSBOPzyQzEtEbic2M3HAziyvyzm2bbwrJStMkcWCu88z2V4PQp35PiN5h1RiZhHeA35wpe6Yh9wPRV3q7nmizycxqyR1hVnpNJONzz6R2SlfIJfNmseqbLrPBk4/X5W9qSorCuWOuibPU2S2qvJf9Pn0J7ms1PTztPdVjCXri3ZL9qVV1iCVefavy27fAM/ckouP/Thrdv2J7hzHd3s5Rn1m25glSTMcep0aSOYU6PrqXLYN2mLNBOOZDXKgb+tIRRFHin+fAJtOl3kF2npFXa6DsZ+L7AnLUE6R2JXqNg7lGtoejSX4mb/LxZwEx079Nfrvft6Mz67ZT3rdOcqN2IyxzLJMX8t4QzMneRuK+cw4iXvW0O9d6O6ljC7UKR/b5zJYVmUOJ2gPNHMR20g5y2XbZCw1mGw8CvE1bbCv/VUZfahrlOmcDfBsHzl9rtID9gf1kbZZ2S4wz50BGViU01XKl2eXULnjMcqZZv3w45rzyxxPnxVGY05mRmH8R/2Rud8a2Htm4/srdK4r1791lLlzvo20t8fJMcoZ7Yy0dQmvyTHj8+k8zmcbIbTvmLXQs0toDMAxY/+wHTKGazzjFWXLM66Zlf2R8720FQPJsEtd07k57RPv7xlHzEpjinnDqFoqu1TemMV0paXsSucNoD0Dgdou+kaf9Sc7iQTcGpGZ2bIcA5P/Tvmincz4wSLTN+dj6I+egczRFVyb+nbmnMvwVawF6byBsse21tlAqePlLXedfVFSFvAcDUQjjIFpe9gvahuhk5dzzU4zlvJ3PuN3XepA32r4uibHisLf5+Z6hM+M6OeAOeQYMVplr1Of57O2qxzW3f3hI5bqtTxzBH+jPos6yTHjvVTe2A6f0U19DOdolC3eW/3CnjZ4mYf3M7Pf4rPKoWeeyDFbdqDMsSR50E5x3qHywt/VUtHAVMXfecYvrUMZXmXrD71ujzuWk7f1AXWMPkpi8rGQj07G2aoPPmMkIWu7bbhmv8uG3eAbfuPOsR1V87KqbJAExjuX6b0AmUd1zkQ55z1o9zW2z2WNc/c13ncgGfNy8RP7Gv0xbkbjrc3MLp/XWCebHZtz6jrK3HzeZ4inXWI8M1hZ0u4xs8+49qiutlo3OC1zjP1K55J5rmLNQG0GbRT7qorx4XxXt2pdg3Kife913c8RFGwH+n755ZlzjJdo7zRm1Oycch0za5avn2bqIAZazbUltjE332UfMnZWH8M4jnFuZo4zBHJfLHlU2S6uz/H5crE9jymzn2cN8fGpWenrIOejIC9dOZ3l2OXWM+7IHDOztWqn3Px7Ke2uzsvYRvZ9q5jLrDmrtllpo2g7fYb2wYir78V1KSccX6yrj5S5Trdnt1P/wTW69VhHH4Z1qx6NFWmjeD3KaEVcNxFrBytz8zXaI9qATGbQJtTks4/BNT7mmNEm32DPi7V816L+kHLLeRjtksYJ7SjpY3LpTH2mVt4jl0kT4zsD+rMo1xc5pulDWtQXPWzKEs3nkneMhbz5OFlsz1TEoYs865OOIXWKz+5l1KyZSTmzjtVTdwckzrCbm+ubmfXn7D7Bfta1WYxDpV0aLPisrDkGMCKXLZa6Td/EdYWqDPrU48z7WV4nOxfm2hhjrRpKsc1L/O9ybJce6t95LW9HciyrVWAdzwLyjkzdR11dbQ/tCG0I59rqY3Q9xaz0OeqDOQ8hI2auf6vmFH4dOZP5u3iX52M0jaH5/P4e2i8cpxybg0Mv7STbN9B1YX9N2gP9f6HfuJLIxVhvcHV17Y9j/6gN3ty41xqZAGiDKSc5P0t9g14X/x+gsRH1d5X7rv1C+1j1/wQY+yJzOOVPYybaF/qv3Ptqomqd0mcOF/2ZDplc7OV9Q1kaKD8ae/I9DP/XgGOSizfo63LrAvR1tCHqP7hmSbnLsfswIzxlkPc/XOq0WLMeJWPQxT6nfcqtQVIWOCegP9W5R83VrWL8oUzp+NMe7GyDA94Dc4UGxh/qqv+/sBfKKBYI/O3Q399mfX+NDOKDjVfQP4gHAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgb8b9Js992z8O/Ng4xXUo3+wxp1nBHeXcbeQ7khipg3uFszsGOaOsbHI5sINzMt0JxA/+905kplqDHY9Ne1w1B1s+P3+2Kl1ve4uw+/H4lwndy3prny2Gzu0RjCDuO7KxM4wbth6BNft1nbh5BDsQCoyh8uOpFejXMJn9zv0zGwx2jiTO6exo26mZE3n5rRfo3ynNGMk6r0R31fwhO5Uxy7rlRD1adjFtVSyaHHzVJHFlDuote+oKsi6xiyGi+dJHY4ndxdjfHYXmVrCHfdo13j8ZrWOM+XNZ/jRXXteTnRXMndRMkOczwxlVmavZtv4zLkMB9xhC/npl93nR6CNV3CHZKsdioOVlcUsn2mCu/P47FuinCd1fPYU7uSUncijDkxlF3fo4pk7tb+5Q5hjlsvKQnmBrk8W3aD6FztZmb1B9Zm7qmlzoCurNSM0P/vsACoLvBl3UX7V1bVSj/soZ9DHhs2DbD8ybU+BPi/TLA5sDzNb3S/nqG+QSTIMqA3spW7QdtGYfqqsw0w8Y2C71jJTxBFSB8//ecj2PBzulGznxW5TyhJ3xmrmYcJlpGnIJs/M4xwDzYzbKnP4FtYM6h1tn7S1eyCZFHhtPg/1QLMHLHJ1c3aBO/dzrAUvNnSnrM9ORuSyAfusGDkblsta5TNDUEd0lzHl0+8m1r5ju30Wn1z2N7S1P5dNZfvGr02ZCXLgdTWzDnS+rZbKD8up7+GafKwbmT33kLJOD2Wa12R/iB7e7tvB3d6afQOfZ+KeCyF/E0V/VsJv9F5oDThJn9lnjvkxShlT2pNe6nVOtgnHApIahbKOkv2qNoz38xkvlOWFNtxnMstlyGVf8V6yY77IRO0znSh85vAcA8VgZgz3+KalmNplr2vKXKfIxQe7ue85++jHjN/V3vrMN5ns000Zi3NZn5kVjPrMMVC7QptDO81nvkLqcDz4O5UBto1ZOTjemrUT41rYAcqHZBEagfIw19TRtaLKXgf+j5mZ3XLz+9KBB3HiNM1qgSxTa9gflC21aWhHG772+yxWZuXzsyFi52bh9wv8fEHHx2etph+QVIKdXr6GWzM4LuxXjMGanF3w460ZFpnNwv9udYvPLVDYJ9i5YRKv9ND25RgACPYLMwSf06riC4Rkh6n0N7kMVK2A/pyGZ1+qNp6+hfaJuqHzb6+b9LM6X4WcLYIMTIMtflBs8hrKubfBOduIto6SQ12eicDLuFl1Zl6ijpI2y2duFBTrAFVZm5ihiP2iGVc4H4LcToB/X5XJCj8KcXaX6jGz5LJt1D/NipTJpmRmNkxi+p7rGs8VcqZ9T19VlV2PvhL3nNieypVqb+mffYYfjSt9FrmqrC6tfmNWxsm5LPtOfziXHHJgeazwkUNt8ObGI63RLjBW9exdmrWK9pFzWPpiYX8qfIHPFphjAaGdzNkpz8xGGdCsg4xDKQvtco7zbW8nNeMq27jIlRmMhIx3086Irs0G+1OxtkVd11iFmfNGN9ZZqeOvazZmZZbAXHwLn3WY6OGV7AcfT2rfIzZcg68F45Q+e1U2v1bgnF3nKn7MGc+p3cai3RCMZSHr6jN4HdoH9eFk3vLZvBSco9RQUg81O76XbdZVeeHYU6aoMx2Ze7LNA2EK2RC81ko5y2UQ+6MrNc0y/ZBf11Odp456P59jVKJs6vyDbdKMcv730I2Rc1LZzXblMsB65LLh8VjO5hBsD+1Lzp5DJsfiq8aSnfR5tH0fK88V6+qMYehTZD7T79udY0fxdXJzHT4Hx5V6XMU2hOtWzr1yvor+faKro7FNVRZ4xkRVbDMEbRnXWXJrMphvk0nlcvXdfH6Ob05OfPbPXCZ9jplf33gRMBLj253JuswMbmvZv7SPGg9SBtgPGWZY+oaCbezwTB3KIsZplNjAx1AWqkW9URYF2lv6s1WurllpIyg71HnRo1m1VK7F92U5eeU9mFEW+tildWDTp0D+lokejcHcqshoje8a09OlLOG48HlqZZ2hsH29nB/mshtzXHymbenfPp+dn/ZT+47t55rBltYavKf6U47VL1qUZo3rVCbvODQTK5+NY7lVRR2PHAMLZZHtUFZFHvN2uiomz8RzTWx79PeDkbV0CP6cjSBzsGbuLea5W1kz/NpwjsHXrUcX+phjQeD1ql7h4x5FPJrL7s2bVDEneqifZ1zBNZDcuzCuadHe55iH/O9yfcixPy1Th/pHncA9pogePo1yJdeUGH+oD/5p47FFVb4vM+dftNAdyLDg9pBJibEq26620Gdcpq5I/FSoAuM5ylRuPZrIrdu8wZW5uMzLr84J/PoXn6uK+YT2RXUd/dBVx/edzezJimusD3ax9E8J7Ee/nq7yz/iLTqIqtmFMQnutcwvv22jLVN5qKOnX4fuGZeY8BaMr26621Mea+8k5xvCc4+TiYtprjgd9uLaV8ZvP7j2Q+cdMqdOOknpI+alJHS+3nt3ErJx3s+0+y7dZ+Q8ktFnaVsaBbDPnXGqfPAtVZo2238s5+q5tv4o6hMqhHxeOgdiC8YiFVnMscusbGO+C0eiG5nPFs+ZiRu8L2Ofad5yve5lSuWXbfmWD+/8fCv8+ieOk/dpqDTW33sj+YdtzDIU5VhUCa20Fy2nVfIzycUXmHG1Qbh3Av3ek7ZB3FIs7Ku77fMhk3C5iLM5/c33HfqH/yLEYsD9Vbv07TtowtW/ex1AmO+QYx66GknY7N79jnI3x6lIGeV6bMXVu3ZFxQcX6YiXTNH0112arMsWzr9fn3YuixTvkLJsC4W28WbJDg+WPA4HA3zteQf8gHggEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAT+btDfZta38Uvdiv9z2OilbkAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQGB239/f39L3UjXkysW7fONt98czN73BqpQUgjSQqcR601PBW00q15Kjiey9FakHKCtD1Kx3KVO0dqEaWGXe1Koe4rKAA9ja9SpJDqYk9rhNYhZQt/D5qPKXPKKsscNdxYUHt0KvUqKdRJj4HrtAl18S4o34/yVpQLdJxAZTMOX9cIxeI0UAwtJY0QaVmEUrnNUTX1o83DhKqop44PfgwyMkFaSA5Ll1JHsu8wLqNqqKMUVW9orHsYqJiuVIqTqShBAVLQu2h7SKV8dGNdM8vTaupxM5twfCpXeYqhnNzmqFIJT8nTCk+Z2Xn2+OOP2/Dhw5+nbjNKPT7JzP4hU4NkCBy7HNUdaVM8fVeOXm/PinPQcVKG91H+fpWpSyjVNCmfSBFEuhqlG+TzkG6Z/asUo6Se8lR5QgwxDpTWZHgqaGVU552tGQfaTmXzpdqCAbagJX2N1CFtaI7OejZ0cmt8v5zPrCQWtGvtKHP2lrpBXeWYbi91SKnjKY+Uto92yVMWHyefL0JJ+096JbG7U9Axyy7HAZU71uNz0Q7oM5N6jTJE3VBqN36uki8nL4Va5miEfJ8pbTr7nNcjPSTt3FNmdtaLpMdKJ+wprHBuqNAn9lZRJA0Aw2BXezzFr6IFPZOdIp9JUcc2087m6KMJ0IuNlz5cTR9AGaed0HtTbzk+tBni04e2N97qw/L5SvoQ7+OESvNQyAMpeS9iHfXv9DvzUNLXaL+cg5JjRn2cKnU89V7O19Cvk0KQY5KL2VhHYxzK8ECo4SmDGMsJQhm5inbtHBs4qFsaA3h6WdzzCJHtK0g5RpkiJZpS6rm2NlCyeV9N28f+6TWzY16QHjfrMGXS0cC1Sd/1U7Y9naNZKXscT+8X9VxVnM7nb0d5lTuewZg5qWygW2O756FkXx4tdbws8Xk0dmWf066IfZuONi4GveAwxMs9F5Z1ijjW0zVLXHcoYpkn8H1SKnb4QhmX3nMz5P8jOMB4e4aVOAvlGh6osq1VcjdnAL8ncraVY+/t/yHlxwmI3Vd1uDoaq+X0xayxrZT7OsocZT1AWe7nc6l94TgxRmP/PCJ1KEOMCf4k52jLPWWxUjS2o2QA9htLOnzUIPniD8gZts37vCoI9XERb/l5c47qk33O8VL95niyr9mvSpnK+I3+jDZIxmcI/E0fr01brDKWo1QkaK85hqSKVBlg/3uqyAzlMOeQa2nflJaacs7noQ3TOQttDW0qqXZrzfei7xx6RGPT9ZKrSHGqc4L2VBRTSV4vR1/t54BKA0y5wLySMZfeajnlw9uVHBUyMbSiDuMFNv6uTJ0cxXsr5GSbcQ5lVGWJc70OlGjrzAPLKgvnyrmnzOy0QdDjz5nZTnKGcsE2+jmygnKP8RkjpwrfWEVxynO0HTlablI/k6qVOnek1KmjpK5mqFcZk63inEv61S53lWmDvi3HqMfsDyjCGKGEXsv2M+arpWJWraxDxuVPwx5Nwe+X/b6sMxZzrE4XQ48Uu9BNvcG4TJA4YZVf12Nddd70afRDKzN1OIZ+7NXe0p61N7a1Iaah7aFM8Xo1qeN9dy4+bBEDm5m1wcb0X+fqqNHwlMMDAcfbz/nX93dsh65zTLUUhL3jRVzjIih4jBd03kzbR72pWMssfJPvZ0XV+h7vy/4YCPWx+sNW62az5TOdlJ9z6XUudOcq4rjClqNOm/Qd4+IF0OeRYg+6oT9H4r6Xs39F1wsbSN3gtXVtt4byN+67xlqtYlcFfRvn0rnxYax5VeacB/16B0qVX8r/HJS52J4yST+isV7VsxKt1qwHghyVOfue8v9869NmjfOrHQdJjz+Oo7Qd6hfpK30sI/HTyfBf57LPBzKmavfdWuhErFeu1P6gfWffURbU97JN0PXjoBsX6foNfa1bq26TuRvnT4wDOW/t1zgO15yJOh04/Cmp0mWNv79R7Ns4jHkxl8Wcaba8e1rirlPcJLfe72M99aHsI13PMGuUya9aHvr+jnJGW1xDKe+yCn9TR6lzFY4Pxn4I5L8vp6tV73oI72M0psdcYiT6oZsyrTJF+/wbd07HmWvtfPZcW0+rONdqDkA5XGdmWw/SGtf6gPKSWyd0cU/DGplf7835AReLNK1LaJ0aSvpQ1Wc/361qs4f6Xj/26rvZbk9Unom/huKavYzfVcf8PCYDxtPdZ7vf63yV8o51uTa8e+nPyRbBeEFjG9/+D1kzqmIhH0/mYjTGVIxBaGd1LsoYmPFTlV77GDwTSzfJUu59DH9Xk3MD8a2+H+kTdG7h450hNnjvmx63xpjGv9NQ59LKXmvfU+79OnvVGjyhOkL982seh0sd3ovxecX7+CEYw6zd93OurTJ1/PqX1qGPq4pLqQuMeXPvP1r1i7474ntuyrJfGzIr7b+fg2rs6d836Jos+8HHVOrrOCfmdbimr3LL63h/tI/U4Tso6vFAYvycf6MMch2KcYb+XwDHsGpNk8iNT6v3bVXrwTk/TVvRaxvyvslM9fhaK/vSrJxDVs0bKDtcb2V/qpzwPXwN5aWurtb399L/T/BzaMbiKlN+TUvjdbaRff8p992stF1+fpn7/wC/Bq/67OUip2MeuT54IXO33HtiL3cDwevks/9d7npeJzh2KpN1VyenI62gsQB93dBMPR+z5uZcBN87Vr2/rloP9zZjIOD11J/dZRv6f1yBwGBj/vz5dvCXLzP7zpLnr7whePOmdu9dd9l222334t7n7wiRQTwQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBP6PwG/t/T+Mc81sD/nOnV7cjcWdgbldWDe777pLzGfk4S4jzS7GXT28ts92pmB7uPtJdnONxK7bx/C9yLBjVu5GxjWLHdmaOYngTmzuXJPMCsX9ubs/1x9o2+61VC7BLr6hkmHxSpRzsfuKXdYv2dJmYNfeqdwBh34ZItmAD+X1sDNxpuxe56WuwnWKhAyS2YcbxFaxH7Hzs0d3o2PXFzNTvRqHl2nf4R5NGZg1ixCfH/LSxZ2yumPY7e6+so4Pmj3QZfspNjrmdpDldgojO3iRWYc7+0RWV/lrDSTjfTtK3T3rd/UPNKP4C8XhZvZjfNYdkJR/ZiPL9Quz7XCXHmVJn8FnOctgDDKWra3KPOB31OpOx/Gu7oGurlmZORyYhX5doBmLkF1kFO7Vhd+PEx2h/Nddu9beX9ah/tMb8DdPSZXFyG7x/5DR4J9g54ZI5pQvo/w3Zj3pKM/diPGZTPlg1ja5x1r+jrtdc7IE3RiL5+hslRnNrDH7ilmDLWvaaU97LTs4m+7BHeGyI3UZ5Y47QHWXKXek+45V/ab9aEdJO6W+wTM++OwsZuXOWLS16DLJoDERO4RX8nm4A1SzAPE6lElvJ9Y3+1orfNpKm8Ndqo+0qGtWZOrq1Wxh1CPunqed06whHe6c7Brv8fYxh1a75tU3kEWEu7Xpl3OZEjiWyNq5WnfhQr7a8LW/lmkD5YLPmNn13Qv7vP/w5p+PgZ5Q/5kBf4ToMbMqXU05oR7qjnvKhc+E4LPgmpUZbOoor8vUIZgtRvuO+kY54QNldo836axZZeaZJtC+YixW6XVwvyJbzUCydNAeKHtBDSWfETagoVv8Lv6qTBOEstnw2uizIYhfCnunxv0FYuOTzdqGyzUpH7C7lZl5crvxKWe0wdpnPgvSwe67YEotlct8FqwMst1A3WYf+oy9Cp99RGz1ZOjWcuq4+P3F7BvEGz002BL7ToGO343vH0C5S1nFPpeKofVuMzPr3WWkmZndM0mybEyCzb4WfoiipG51DWRwAsZulc+iblb2B8cF/TJWfG+n1jdrzLrO/qP/o67rOOPcBGQpW8W64qOKxPI+46nqOR+SfZ6ZTxXPk3tW155ClnPsBTX3G88kYVY+I7OE5XyOz4Tzm8w5fcZB0GEzS9ki1EnQ3uaYMJjR6iJrhGanoE9Y5erkntkxKjVkrPC6xd+rb/BxNm2IsFT0MZs++zM3L8P9C1YR8e/7Ixa6njKYy9bB2FKzwZg1zpUgg2sZ88Gm7S7ZwaegXIZyNfTgibKK9dDmwb4dBp1VU9jFTCaQ0170wUyxCwvZL8zmpXEg2trDcaUsaDaWXJYRs0ad70CJ9YQeZIhbrvXZj1WZa1plNcqtT3i2Cc3gwntxzSOXNddnYlPZZrzFrDeUP/VnHSgZK0PeFub8Ya8Nnh73WWMmS+cbh2JOubUcW8M+52IKvq/V3/o5cS4TM+0a9S6XvYpjt4+rm+sXPocuUcIOPeG+Z9dFeI7jpNnw6HcoO7B9IzSDOP0Gnxl6s0CCNDKItTFzOPtA/SHvBXvCdblubStlB322SteU3JpYH2zFZLnHcmZN9HOzXIY46oSfk5qVfofzKbIAqg3zzF85Zhdvk/n7XKatLVxp4mtpRyhDOlfy854qxjf2g2frUrD97MOqTFtsqzIhPWQvDtT35nTCrDGLtbehfC7NVkt5Qz8XGfn1OpxLVGWtqrLXrbIc5nSddXlPCUynQ+8W8wDHOXcdz2qlOt+eCroNsmpdK1V4bCfo87l6bcztL2d/ws+3yVpDP+47dE4qe/28SMFxpX3Q+Gsgcz2ubVEmcuutHe57VYY2lwl5psQxC7lO4jO1C4ZBF3poA1UP+fx8xlxGQuoms67l9Nkz81C2lF2F16Rs5tYFvWxyDBmUPJn5zQvBLCtjj2vkGMFnZf8wNpF5YiGDvA7HWdcE21Ge7+roZ9jelZDfUcLa0cX70oah73QdmVgDmb6I/aoxsLKiyLmG91SYB/XQBlOfJMs4/cdClw2vQ+I4hm9ksPy8jPOZ8Dcnw1+ci1JDvaf5Ab52THsq14q8HYR2zPe2RvuFegOZngh9Xlm3ZnDNgn5stJyjvM5JRRuetWENpSojKGUI7enLZSLk733MnPPLXDPJZayH/nVzDHNZiX2f8R66Jt8qy7Ku61GmKe/adsaR9GecH/I3gxFXn2xpvKrWsjwyWbg9cxJjtn6dI8N2zUDdZ3F4sfoD6i38cj9jK+17H1Nx3aUq02lV5nDPDnG2nGO8VBV/sQ7jFp0jwz710k7RHqiM+7a+ublON+frjMnoI7Q9jom1n7KkmX7Z1g73XWNrt8ar8/clreREY7Z2lHzmHAs0sc59l7lo8Q6Lz+GzLZuVa+5eR/X9EvqlnzYj928hvCbXDGbKuYG86/XZS2lPNM72mdSHW/M7vBeKc62RCYC+hGNf8b63Miu3h8jC2Dmp5LuIabjOUr0OYyG/Vq3v41/n6rLMvF/qq8py6+tXseXl1kUGEpfSpjNDMGNNvXerjLZqC/3/xtBmZJja2mqpLGxhbn7H55J+ZXzzTny/mic07uB6GcfFx7BmzTpFma5LHX6m3OXYn+jDeT2Oj/py32fUlSpWuBwoU2zXzpk6nkkyl/WZz9OBUtef+D8Gf7LBW+NaYY2y5DPu0xZpHcqMZ8CbI3U4z/WxuILPxn7heIuu0M+TyG9pzmb4+U+V/aRtz8216649CraVsRDfTet1/H2hf+Mlvl3NfqDdV6Z2wq8RUFczjBhjYR87da2Z/cF4mLawiuGG0Hv4dUraYu0fn13fZ//X9nh2h1y2csY9bEcups3Jkl9jpo5rO9h+6FHhh+pSx8dNvK76zQrf1gTPAqXyMtEGb24cCAwi+s2sr+15qwXWD5FBPBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgE/o/gFZRBPBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAj83aDfmgk0X4x7vMLQ1t/f/3/6sdetW2ebb765mZ1kjRRDnuKBdNM5akRPzaN0LqQtAY1DG2gg+jPUIiNJL+up2cwaqTIUSh3maXe0HaRmJ10oKSJylEOkEAGl4AyhursFZT8oRYaBYqfntrJOcc0aStBZTBT6xJV4/oKyO0OFA9ZpuxhlO8rFQu89EtSDpEVeJXQdE0HHQTq/GWiPsr0WVH/8HZ/1fqkEKo9ReA5Su3Xf1lxnMugBl5MOSSlF2K+k5SBtyDvKKmOUmsvM1s7DdeeUx3jtybjn8hy9i1K0tAJkeiTGcIScWkMZzFF0E562KCejrEM5JcWbp515yszOs8cff9yGDx9u64tGPf40jioFDfWZ1GWersys2YNQ51WvVro63EOj1KCU/zkoORZKl8b7cryVKo5to3ywXZ+VOrwvqWwgt3OFguZ0lLQ1pK+uyWVWdeADKaSgB7NE58lG9L8od0nFTsfcXlS585S3pw834QBFffeCq9PsnZum8t/xXRnJriD1LORkBmTyt1JnLduK/hgHqqI1OoakQVZ6Z7NGej5PcU16MdGfNvQHXUJBB6x0g6sbS1IvqbhMRrmcv89R5vEHHOcPSR3SCK0PhWVuXxf7w9t7pfzK0KyZWWObqZve1xCDpcd3WElLTz97vNT0tHy0gUKdVNBVeSpnpRyusm85qmMP0uGxX9nPOSopT12ssuRpUP11zUrFpf8g9aTSu9IeQI/Gwz82DBd0fDZsxY16D8QFn0e/0g3WpMq17thCxhJCDUrT2cQ6qDTUfFZSf7GflWKUmIfywFSMEjvXRTvJfmE/q13gvZT6j6gaXw/KUE9FHepUFZ3jQOrQDjBgydGzMnbIybGnatRYkbrpn4d9+ML1uNThsy0ZUNIw+metorRVSkO2yVM1qs9d1eKc0i/6Z32D+27WOs4+Tj5fhNLHEDn6RH89vRdjEvJhq41n+6lb9P2qP5QP6PMt8F8rpMr7UQ5J07jXbJ2odU/Y7IKiyukPpPvuvc0PzcysDsW+5wtvLerYh1H+I8oiVJJYvA22pr8DB+ooa9IgxtnUwxxNIO0ix/Kvcq7dXZP9rNdhv7Dv2JdqJwnqD+XnCDlHu8CYIkPZ2oSB+IwcclTdrfCOzDHGkZShGWb2FzN7zyDF1K+VM972KbUiqeA5f8jRj9ZRUjerbKmjo2/QQ/rYR10dBevThtCGzpY6vD/lhXZB5wOOpnOi0GyuRdnFvs/RNDuMwu+7hMZzAvxeHd+HuNLM7COuaZf/3h0ws5mIbxZCb6YhJlqqesRn7nBt/ZjUob3mGGqfcVzoW6Q/ClCnOM658SFoO9l3A9EDBWMG+sqB6F+OLpn3Z1tz9Kx8Vh93mJW64H/3Bvn8R3eM3zU2YfuHWvLFpw2SHh8kZzjHI8Uo43ydO3ka+qnuu1nZf/x9zodSPmmL2c8XSR1PAcu6ei9/7aPLj0egb66gHuaCUNoDygn0YIrEG8vcXGssxvtNcmwR5+uUcYz7eduWdf4H5QiUNf5WrrMK95qOeyy+HCeU/plyuiVKnY/h/gchLp7P4zmZZL8iLmyT+W6/+g2z0q+qbkBHR6IO17/Gibys4XVotDju2mZHbV1J0Z6zpYwPEPMOhQz0dkgd2nnfjoOlDq/pY2eNKyl7o10dXfta5c7x+XR+t8iSHp81yP5Y1woQA1WtMTehaj7Dvuc9VKbcfHWo2P/enF3Ue+Xu521hph1FfKnPxT7meNBuq4yxrbz/kbiezCGpthzme1F2z5PrQMfo+ybLKYpXDeUCtkN9Hu4/Dv54DWVL50X7oaT/o13SvhzIHBT9MQ66sYZjonPA3BqFWd5XoR0joRvdHVKHz0jbXBH3NK29KfxzqR6y/X5Oq6iSoVag3ORiIw/65yfN7NBB0mOsmzb4ewJjNQ4ysWYg+szfq33ysYjGGTWUnsJc5YQ+gb6atlz7iX4Ya93FWmiuzfTL1FFtKz9T/jHeo8RXdflYBPeYLTaILpPvhW4qT33wJ2nO+sMn32NmZk8cMSqdUHPNNS5Ok6eg7L2jrNOG+XE/YwmWSt/Ovqf+7pmpQ9mjrnMsVI+oC15nNe72PlxtT6u1F/XvjP3Z1qoYmjLQnmkX/QVjpNyci8/Ge1B3tT2QxelY+1iM9eBZ+5VVFrDPv2rN8LpA+8R7PWlmH9/ANa7fWbJbXH/g+LK/dQ7JWIT3OkTO8X2YX7faU+rQObWy23oPrpVzvUjndYyH2R8Yy2lHllWWQpYYS3D9Z74Gr16mKBM1OcbYis+hNsPH9z9AmXt/wfUvjPNIifu7/bts/H7yqWUdilWvi69Hiv50X4cPtDW0kzqGA3mvSnhZ8NcyK2LqYbLm3bM+73r8/ynk4PtZY6NWc1mVOx9L11DWpY6P89Wmc95yW4u6ZjYUstfrnr0hrsz1y2C+N/4HK50Ax4zX1HdGjEehj9k4m3Mu6niF3ByHZ7yIdTSm9+sgufUFyg7XgnTtnPAvYuRd8u6wk0uuwAHaGY05ueZYR0kZ0niFfqyGsmoNhfpLu6e+gcH4zSghP7MkHlzAPuf9uW57Q1mnsG+UZfbdD6SOa5vKG8W9x/8vR+bdRPF/LFW669f01T+/ztXN9dnH3Hf6Ph0n2ldem/Ksz2zunK6pwF5XzskJ9n3RUXKO6yy6vtPq9wfjtzsOkh7vKmfYN1Xr8tQF6N/RePZLpV+GwZ6143shfzpXYv2qeRnh5yoqU5Q3jmHOFleBa+28jl/fXl9QJ+Afhx1YnvJTteJ1m7x3o94Wr+jmpfKIOWUdrtnRH4+Q26+p4wN1gs+h7xTOadF2RW4ubVauO5qVOsW4hbZVYy7KC21Nzq4Q+P0E+PlVupYJPzgW5zpV1/x7D/pKeSdXxNdsK8fp8rLKQfCr8+fhAOVN/5foOnduQ7Bh/jgQGGzMnz/fDv7SZWbf+vmLe6N/3MTuvfsu22677V7c+/wdITKIBwKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoG/Pf4WGcRfgXgFZxBvlekik5WbYKahzoHsItSdl9zRxF31zN6gmTS5Q56ZtrAdq2EndR0f/E4rvSZ30nFHqe4kYpuwi2p/7CS9XrMbY5fpGOxQX8tMQ5phB9kRpuPrxigPlSrcYHY9nv0g7O6aL3XY93NPa7h1Q4Irbnrf6/Lmk0fimpdzPPCsmjmG2Q5nt6eSXdYjmRGLrC51lNhNrMm45nOn1xXWgINkfOZzhy93VrHPdJy4g407liljmqWImVaYhYJjq2NwVWPdsZJ9t5NZBXiM/aM7lymTlPeqTLs+G4Vm0qQM83p8PtWj4Wb2hJm9Y8N3kO74uNnvuGs1t7+Fu3C54/7NmTo+o7Nm6eBuOz4rd3dq33O3IXf9uYxZDffldTQrpO9rXkcyPBSZ/9jX3EGp2WEoF9R17hiW/h0PORuB70xo82e5DEURP3/jrimt9733SUq1+4c0Nqsb5Ti5zlMoL0b5hDXjLJS3orxabM8EtHsVdQGyfZBkbaOKLaM+Utcli8MQ9Bl3R3PXeK/qIXWMx5iNQm3+pe73Obufy9RCcHzQd23YmduQkYC7XtkPlE3VVe5krbk6VaiSTcoU9addzl3eWLX4PeX3STPbf5B2gu+EowN5nsMzx6DjRZZx9mtO13hMo8jfuHN+R7aC40R7d37zucPg+6+sYmfAzvKJc1K5cmF56jBkib2ezRhIphH4vGni80agpI7dJNU73M/Z9SPKQ0PPSsrd2zEyHWCWJSXdYOamGsr5dPi/l0o0LOxz+gTVQ9pe57M04cSNrh9m4DeLdAx89lLNZke7SttOW65sHmw/08b5jEFmpZ748dXsEMyy8bA7l8sYMQAUrDP0qxq3UBab0riX56ZD1xezfynbg5BBfMTjZm3DzboHIqc+y5PGvi8g80GRoVfv7bJaZLN+qFyYlf2hAsf+8Nld1K5wXNH3s3CvBZrRHPagSBaQyeRP/Z2FSq+RKt9DSfX5FsqdyiqH73CZmZktsd3NzGwYnudgycD3CDK0jLVOMzM78ndXmpnZDjuW2dLu+S9kLqCuM6PUabmx9dnxNdZjPNyBMpcRw2cNVVnwGfPZT5pdpeauxzZq9lA+P8ebGWhU1hnLs/2MrTR7IX/Pe+YylLAO7Qqvp+2so6yKs6vAjCTMfvWoJV/84UHMrkTgeUbBFj8ip/ppc729zWVH5ljSduUyWFRly/RpS3wGYrPWWUNy4L18tmOzcnzoE5SGarQ75jMym5W+DvKeWyvgPPd0fN8L5clyGerfna6pOuW6nj4Azz4R914pY/Jt2JNDvP5qXOkz1Yl9G4V+KOxrrp9dZh7a0GGSBaVlDKPrIz6Wpx7nMrbQH1NHdX5HHaD85TKaV8XrA0ELeRsic8giKxPljTLVKjPgYGVJ+7I1ji99bS4+8GD7aW/VpjPeoYxTD3RuAd2cAF3h1GKljj/b1uHurawO6KNhyMw2Qk7RbSw+Gx+oHLIGU8R4bP+7UarfRyw2oZbKYulFWM/2xzWZabjIUCgZgqZjLYpujNn/zxW5OwIyzXn3JzkmyrDGeXs9FUMkg1Mfr0Udo/zqIhmeo4nNap/mOqMwPl0cQ8nIdiTi5MtpX9jhmtWIWd/ucnVyc7gcy4tHLgNaK3oijQGuep66ubbhXkOl74o1AcYynvXFrJwTU045FjqXfIcN3tz4WqteNxoAg0WBqozMBK+nbaYC03bJPLUAz/m5hVl1JmmC40mdoJyo3HKsGKsWC7hSZzdXUkbbyypDIPdco+Zl3l9WKea3j6Viy45yzvZIB+J9zns/h/JGjRMw9xsK2cmtF+2OflniWSY1wxwDLh8v6TrlPJSMTTgfUb9aNeYePraSeyEBs3VxDFTXaFc9i1QumzwzwlVlg6N/p27lGLgor5Q/z1ZpVtqeDpSa0dnLu59/DpY/vtbKZ/dMm2alzaOOUhZya3bezumag4+JFJQHxmouc7CZWT/nQRwz2h61t15HMZYjpV+7ufbB8fVZ8sxK+8pjlHFZN9odfmhJPZUH1VI5Qi5zAl5bzmszM7P2M0r/0XEf5pNvTjbsDU+m5/njZyRWPA7Ml11gvWQX6BrXCpRrOlI5rD2Vo6TOYyj9Gsh46d/VngXLx7l6jvDxmFmzLqgM0Fa9kPg2x/RWlUFc10rMbCx0v1PXpuibXHtGSb90sdMZV67vOhDnnNQpz/QxGBnE/dy4al29CgPw2ZPRN8t9fKvzVF7n0oo6Pks/11eq+jcnN34tpurZaStU1ykzHCdeT9fV3NrwEYi79TUrVes06hFtjr6Tw9jvDlla8ntX199X26yxDe1c1X+bbOW+V8kCdUVj4Jorc3MutoNxGMf94UwdnmP/qh+gb+C16T/03Sl9N+KOcXNSWclokWNL5ju0uZk6A9CXMZD/tbzety3J04kvwhoXkWMl4Ty1KpM/ULx7ysXABGM7+lddE221/uUzTpsVNr5Y11aZyr1bITxrCNdHNLMudcm//35Hpg7nwLQ5Vdntq0D/R/uiaxeMIfz7E53r32yN4LxZ12Y8y6T2mV/LyY07n9+vKeXWminv/H8S9detshBXvc/3bTBrXj/O2W3PAKM2mfeooWT/6HsuyhL7hbqRi+kZV8IfjZX/N+rk7/9qie1yrxdRjweC9XkXl8tI7tcqcrrr5xZV69Jsj7IXtPLRIifjIV9FKEE509+62LvpHbmZTcAxstwV79TkMl+zxmP8H4/vSZ3ltH3Un5w9YPvbUaruejZ46p++F6JM+qz26t89ywxtu8YJ1HnGAlWslwNhi/UylYvJCZ2b+3nz+sS+Ob/qxnucxNlr5uGWc1LZQ/utfUe7yD5j/OOfITKIB/6+MH/+fDv4i5eZ/deLnEF86isvg/hGL3UDAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgMDjIpeANBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoEXF/1WkrcHBg2voH8Q/6Q1Un7naAnNSrqkDDozlEukcijomEj3Mb65bnEM9LlZ+k1HI9fApkIKtRy1A+gWh4GKow/UFTrCBbUEKDfuxtehcr03H9942bWkuzmkPDYZ9yCl7uGglntM6pBZaxooPR7Dd6XnOwB9tynvxfZInev54ciGwszMLl+XStJ28llXSJ0L2hvvWzB5SFsLml1S+aCfrxXql/Fo1GonH/NzFMqkNCG9jFKlkIaP45yRtzGgUVpLSs8ayoua65LepjNzqrg/aYiUOulgV9dTF5mVdCOeTliFis9PujbKqFLpvc4S3d8g4HdKBaY0cGyTp5HLUS0OceXlcs5Tof3U1VVU0KaNAd0VZbpNzvW7vp4MoV6esz18Rsj4eXLqiyi7HU3teKGOmYTyesjbbNDwql0ZkYppuy42M7MptszMzLZ6/ZVFlWden5T0kilJNvff5LtmZvaNb366vE4tFW+877dmZnbvdm9pfgyygPyZJ4RaZx9Sc0HvKErzhQabOjoNNL5LMXaHiWEomg0KNVL9zhDaHTLnrCJdFNoxTHS1Z7fG3xd6tL20hxTDOQpJUhTBhvbT57xB6lBHlV7QrNEIkoboDldHqcfqKClDD2fqeHtEuVcK8VYUi/ztUzZ48HSbapOot7wvZVppTIGl8/CBfab6xWelLVe/T5qnX7nvObo1+kGOt44P2nilp6rra65DHV0JnT1UqEFpw3sob6TMXlfWKejFqDeIik+S9pCJk+LaIc0YkYqNDvyLmZm9b/T3zcxswX8dUFTpXTjSFO/42c/MzOxXbW8qD74RPm4++4OUnkK3NhQxCX1vET8pTSCPKcW2md0otJ9DoLfszkX8jVLeUXYwTiMljinofykLjINUTjgOnqb5py0+K3KUdVVUvy2oWoeKfaLN8dTFDaBMkvpO+xAUjYvXl7Z3PfDYj81sM2umsM3ROdKueDuXA2moNV6BXI0kDd6F1gzy0kJ/qUdDpF/76vjAOIEypFSAjDFIl3g+SqUwZoyHay+gXdK4H23spW+6zZowAXq7YB4OSAwwBTLMJmcYKA888VozM6vZGjMz2xd9/taf3FPUuexdqT83tmfNzOx7O6bxan96cVHnIx9P7b/pwQ+nAwVbl9Lae7rE41BKvzBMGtGeyi6l5+OzOcrhseJPO6n3lGXaFb03x45+lPKSozaEb+Mcp1f1gXpLe8+OzVFp8jlyNKQ1V2dGpk4VWtFPK5U326bx72D54qFm9nH5jnZ00fZoDOEpGdkfKvecTw6EEp2+gLZC5QW+raDUzdlCrgrR3lLGlFaS7XfycYLM7y6gH8vdg/LR7o7rvA5+g9Tyq9FPY0R/GLt/oPFyW73rvqLKw3e93szMNroy+efn5r06nVCRfARz153wneq38vyyziG0wSxrKH9f1vH0ytNmlqcKymT61Rw1+kPuO2S0x9PoKigDOp9qRWepc/Q6Sm+Dqvxrjj7U18/RehM5ilH2H/sVMXmfp7fXa1fZgaHWODncEPzZqume2WaVAc65PK39PlKHcl5HmZv3oq9XcXxox3eTOhozm5X9fY4cOyUV1PUe+X0n7QmP8ft1ZR2bgxK+9gSMwQVaB8/4+1pjc8ZJXAq2ders5u0PpuZ071RUeY4fv4LyTpSz5DkPY5PRnhmg0130sbIO/VnOznFtawllmjbLtd1MRJv+UOUZn7toF0nHKz5mHj+wDuNj1Wf6fNoDzk3eLHXYEI3/PDxds8JTbBO6tsP44I+ujtoVv86KOKM3Y+Ono58X5+w/+7PPlYoJlqeXfyFYYWbvx+dc/O5tsdB6F7EqfRbbqnMDNxfN0mDTr1fNPyjntHP6/N730w/q9fxaHWKIzwvl9Jm0qz2uVMAGj4OdWgObdrKsg/0Y5dYoyUZ/3NNFlWnb/NLMzOrQrS2Fa/uR2+G3LsOBwvXXpR1o21NYm5qJZ14oaw5L/Jou+1nHudU7CB0nyHYbnrE/N7emjvmx2E8+cww4f8mMk1KOm1k+jvP3yI0T+4HPrL/hddwce6TET8VcmPLP62lwxDGvsj2UKfbVizVHftjKseTzqe4yPqnw2W14/n6vh3/KfKYtV5vKe7i1w/4r5ItfF6FvysV81niuW/uZ96JdwPprA/U7fUo7Stj648SGXY3yyFoq35mKLT9cPvMRG6X233hGeuaO+8pYfNrrl5iZ2Ywn07i+CS+67v5SuX515s/Otgaw6XU5RhN8Pdr6OXz/tPYdbR/lFP28uqOsMhO/X0h5o9zquPs1FI5XzjYTqsc0cIgPxsHArdG2Uk/oM/nQGhO3itHUv3O9GDFeZ1W87+LtLpmjFHNGPjPvrXE7bQXlLLd+RDvCuJTx4T9k6q4vTrY0n6X++dhX5+guttJ1p2dR9vs4W7D8N+4c43WdW7Sya1X2jv1RZecwTrtLm5d4m4N1rDFyaC3lI/c+HTI9Evcv7LeuJ0BeJ9RS+UMclqloaYbQv/R5Ory9aEexbsU1CLU9jA0ZQ8P3HSnPfDn7yPmziVJnpe+X3LtBjmHu/wGoEzX3G/X7lCvGwvyNrjmwreygXNyw0p1jW3MxLOzCmhsy5zz0fxCoE1WxIsG4lH5e9Gctf08df9QG932TWfNaoZ8/mA1s3Q62ail1tir29zZ8onzmePLd/nHuuwI2uOf8zDnI17DTmk/1tNJR1Y3D3TnaHl2zpixx3oA+zOkGj70Hx/W13Vq2n7Hah6wZlAv2HW2GPoOfQ+b6xfuznP4Qw6wZ7Dsf2/j3RGZlTA7d6Jf3dvaqptoJuj6C8WDM2517Ho/c+hf1MRd/+Xk71/f0nfa8VEyek8rllAH186c11h2G+C33P1I21AZVjxvek/mTtLc6tn6ei+/67vVq/46QdlJ1lWNOGaDO5+bW+rtWYDx7hBxjuzkuvKesQa7mZ+oEbbGuKbEdWB9fqutfwCoegwx2YV1wmsjCg65ZjIHvLKvYcsQFR6Nftsb4nKqyQPnP/Q8EZZHylVsroCwzzvmTq6v4mPuuvpzt4Hyjlbya2TTE10upM7n1ZL9mLd+LdwHUY/09P1fFvsWFUFLO1D9RhtmH8Kt1/T18XNP7kzdYMyj/uTnpYK5VBwKBv3e8gv5BPBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAj8XeHZ568SWD+8gv5B/DvWuKuLu/kHsOvV78rUnThruLuOu3y4o0d3gHLnTx0ltlPmsmPMxbHTsNNqklxmbQ0fcrn0sfvrnci+srAiS84yfF+JXWYzZQfcQlynjbvIMpkfuauMmUqPw87Jd8q9Pohd7wdht/ZjOH6A1DkWJTeOfR6lZhm/FuV3Ub5Gzm3rMqkjcUvD5uh5KLnZlFmflkr2M+4U4313Qak74FZjR+uh6MOrsdPrINmhWmQTx27coejXXs20ht1o3GG7kg2UXXtrmTGAu8u4U1F3fPEYd73qeFO257m6mhnXZ+jNgburXcauoZLZrZc7wZmJJpdhcTB3gv9BPucyJzHTFuW2Xep0oKSAcAemZpJFBjPuNByHr2uq7ATvKbuT1zI7M9rRP9Wagd8tZ1YJzZjHfq2lYiLKz0mVPrYJu02ZWWG1jOlqmPhRGMNbcXzTssomn0u7DzttrJmZ/fKud6Wqb55U1OG5b2+SaAM+Y18yM7Mvf7TMIP5v112Gp0o7mO/dSTKIL0BWghp0jbZjhmRB8YnqmbTkRqnDc0upI3NSscQE3mbB7i/SzAi0odDVyTAey6XvpmM8F3N8oaMzRecXYuyGnprKXt3h7rOdoF0TJctTy2wUml2Les/MTVuiVN1tR8mdpHWUKtv0fz6LiWbQz2WWMDNjRuZ1ZnZWizobCt2V7zJKFzvftU9p12in6E81u/AiVyp4D5/JRrNYsc+YYeGPrq6CO5c5dp6lwazcYQx9HCGnJvHS3oZKhoXVyNozDilW1kCO62WVCccsNzOzVTdPTpfd99bi3O5QlEu//xkzMxv23tSH//zxrxR1noFxYOalkw9IscxGD/6lqPMcE10UO559diRBk0hJY5t29yN+GiopZJjxbxTG92lmWtQ4CEFE22cz96T+aEYHs3JXupkNQXaaPp+JR7IMFGOe2+XtkcvsQLRgnuj17Xs++OwPPouboMhERl0fyDM8H4aZ2autWRfYh5o1h+NMPdYsph7cva7xjs9CpFnsCGa2ctlc+tQe0I7NdnUlm3CRGddnXRAfPgzP04NYfiJ890odA8pwR6ZdiD1WsT7syliZE4xAydgX2ZGOPbGkEbkNbfrcr79sZmar3wY/9vryMvu3pf4cfYo14NazJxWf34ZJwUOnJD1YesP0dGKS/OA/8cxdzG6Wy3KDPupysYmZlc9PGUAmjAb2G59Bh/GtZlrxGaq3tdaAnDPDVFZHaNPpW3KMAERVliaCc8JcpkWXtdnMyv7wWeRaZVI1S/3xl4rz64Nea5RNz5RQKz8OgUwXsWcus1uOPcsfZ38wezDHV/sM7ehB/xYZOTUrHvuecxuf8V3AzDO9iB2/pidxr2Jetqj5XJF9BHpwmMzZrkS7OZQnIEacLpdhRkIybzHpk/T9JkelC9z/M5w8NGU4PXabUtcu+aBmCTV77jJkGV8k2bgOgy280rELNfge2jPI4tIMO0vxQKyr2ex8pjHI9u5zykNLOFYcb8ZTmayDhY/yWVXMmjOtEJrZ0GcD4/xO5c5nftIlMH/tv2aOc6x8nJDLRMZjjjHBzEof12uDNzfewczuyxz32cDUhjHGZMDEuY74uiK5Tb3i3owneA9e7xGpw8811w4dA80mbtY4dj6LGONi9d2Mb5g5nPfQZ6YNQ1sn4llX1ssq26KN3al4/PqUevgDB19bVNnkz0k3v/NNxP01/lZuVaxl4R408X+qlXVW4flH4LtmTV/CfvUxo8YmyBbay5iKMi7XGYob9/q1Q/Exf32rO0ebLnHpTPjehTzHdmkGMg8/LzIr9Znn1PZQdtzydNup5ecioy79qWYdJOa5drRijTSzxZwT054cKCfZ14zpOW+Q+ff4mtlz6xqXp14wXm9l/+TYTKDPY2HTO3PZQ+uuVPvEPvPZ+TwjxPOB/jBn+4a5kuN1nNShT6ANgq85V6+jum1W9ouuySO+X4PxnQz/qGvFX0bJIcQwv2GbNUWVpfftbmZmW26b+mGbjdYW5yaf+J+phScme7T0GDj2P76tvMdSyOuH0a8L2Z8yzyzsm2MTHSLP2edlm/2bGed+2mvKv8h44U+9r/WZ280K2aK96tK5V4t14Cw43mpLWJ8xCNklBpBxX21pd6t76dqqn4vmsuTzvp5BqBVD2AvFA9acxTg376aD5fOIre9nu33fZ+Lk4pjaDH6mneez6rqglwfOW3PjzHswDpQ17+no68UdOMDMlfLME7CWu8qte14vn7vqqbwcv9s/6cYjN5XP3LNfeq6piDfues0/Fue+b3uZmdmWiDd60b9dxbqp2cF7/JeZmV3zIzAnMXTWcINtovoWS925uQ77g/0qWSEXMk7mOjYvWJfrUIbpv6izGjN6+eyQz3c1lms43vrOk5+pz9526HV8hkNFq3chueysPjOi2hWfoZ7Pqmu/1NFcxkc/T2c82OHuuSE415IO+7iA7VAdcTFan7aVfc1no5yob/DzqVxaex/zMm6qyvY/kMzOwJKzMwdpe3CdtSqTlJ0cCxrGujvHrgQcWkvlCHwnW8W1UodL75MRb9B8PyZ1erEmNQdtfQzruTdqhnf4z7HQw07Yk8tz/eMYIFdelzlHe6Iy0IIdsiFbOHWM62i5TL9+7YdxcpXv5bhoLO7n9Iyt9V2wtyvtKDNrKAX0XSX7ryo7OcFr5uYEh7tj423QmKdtqCU9pu3jYmgdpY6Xk/csqJuMyWjXtO9pAxnzUud1DMk6QDvJdR717+xXyhvlR9YldodMF+statOpk2RshH/v1LkSGSjaUVIWtR30aY65ZaWs5ReMV4h9uR7O/7EwM9satpyZqcfUUlmG21bGj7TxGebe/eEzr6evxBiMmVPWWcu5a26t2mEYgs2GsJR959/J6ZoQ+5p9Rl+l8yK+++X64kPuNwK+45iAuqtyfsTbF20P7QmfWRb+mxiHuFagGeQhw8tzmY8Jd674nyiNN3SdfrDWuF7vGMAg09Mh04tz75X8/7jg+9W5/32hvOfmSAR9OPU4x2ri16VzcwuOmT4Px4HjwvZorMPxpe3I9T3v7xkTPFOAWWIBNrPpeI5b5RTduk+sfrrUqeE5LsI8fDzesZ0gc3QuCy7BBQ+S+S59fTFPzdldPiv1mWOgc2L+k1fV2BEDYMlYymtT51Sfc+PisHog/zNEPa6KVX3WfwVlmO3AWPTXK66XeQdVsBbwmRk3iS8fvzPWuHJZ2wOBwP81vIL+QTwQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAI/N2g36r3JQZeEF5B/yDebY1ZE37VqmIzit1xH2o+tzt2MS6hdHLXnqYiqKPEDqeh2KHXndlhdBp3FmLH4ULdIcXh8plPzYqMAwuZCQS7fIpsf2a2mGl7sWtpCq6ztVzmK2jbBfjeiR1nuhGbj3paB37Tnsr5UmcWdohxoxWyi7/xqN8WVc5COuSDbsVuaWwSm3lgubtr4Qfelz78O1Iet8s9uJH7e2wPSk2w9gGUyL5YZET899FlnfegnMJzPPGxss4fsbt0Dg9gN9d82Q3MTPM9DzXee77uoMeOx5XcUsd2yG7eodjB3Ot3FyvOd9816wLuNxM7+Yps8lUZUnI7HZl5jDKIju0VmSx2nvEe3GGrslmV3WB9cauVWVk045HPBk7h6JA6FFzqMftXbYHLYLaGwqTP41kCOHbqofZz5zSjOnc6+n7RHYIuk3kdX6dJlSXcDYqd5f38/W1SCbtCH0k7ssfcnDImPfPcJkWNR25PSrrN1BVmZjbjzUmhTiiMgNkBt6Ux/8XUlDFpPNo+QtI4bHVgyl639ChkV7q4v2zGTugPZvB3CU/MrNSXi1Eyk7/uAP4A5PwR2JercVy7cn888/XUTYzzFMmoxmR2a5Ax4zFkJxslerSYtpNjCJ1bqFkLMea97HPZTTwFNmMZd5TjeitzWTpw35HMlKs7Sinn3BnLnZ/qj1S+9JzY//EYg9U+I5rKrd/ZSp9DmzxYGR3Myh3P3O2sTsZn0GA2Bs1o4HfxzkNZlZlKsyvR1uWyDBK0K99wx9UmU2bYR+x7yVZZ2El83x/lpRldnQ3ZvpFyo1l8oAt92DE/HfbhsbLGqm+mzOG0Ge/Yt7zHImwF/957Z6BKLV3ONi7qXGcfNjOzTSxlSLSDUvHc3a8ub3IeZOau9Htbzp37kjmJO/1n4NkXwJ+eXSvrLGLWKY4lZP2v4p/ZL13IPHYonv1qzY6CbAU0OcryUow5x4zyIf6jLzf2Zo3ZBwaSkYi+gWOWY9SgT7kZJfUw5yfpl+l/lss5l2VgivT9MpfBqZ/jQ70ejIwOi60xQxr7mf2r9ol+leOsmdnpf9lG+k7tb4z9EMhSH+2a2gnaE2Y25NipPWC/8PdHolQWBaZL8Fm9RFd7XAZz/uQx8TFs/q8RU79BZZoxFPsIuvERqbI5SmT12+Go1OZ9C7kxuwPPvAix64w5KcbvvrK0T19FQ057IH2/Yl4qjxiyoqjz4bkpeL/SUka1dz34y3Tin6Q9FJmLmN2FzyM60sfPtOWaUYeZZ9ifzGRQkzrMgMPM49CJoXKdXnYsdGIsvnZJZoNeXscxEzSAMZbPWqtjy5iKMpTLhuWyTRV1j5c6zGLP58hl9IQ9KrLw6NzPZzsZzKwscu/nO9fnGSPYLs2KxPH1/rlq/kH7ptd5XeO5hbmMNhxX3hOx9URJPUmWll7I0iz41SfkMovxPAWjk86n8LkNun0TDv+TZiFxWZqfhe2oSxWG65hvf+utKQj4yO/K9Ilv3BHzY4RdC7dJzzPzvh8Xdezn6eS2B6fnmXxG8gkL5gs9FzOxTUC7CrHVJZ8aStjtNskKVoTulEHqrsyJi7GCvE+bk8olEnMOgU96O74vrciq0k8dcWsYZmZdHHPG155dy6x5DshSM6HxmmyHMJU0ZZ6hPotNHwNDv9Zn7dF7+GO+zLVjsLCVfKavxxg2sYiYlfEF5YIxiMxRegey8srf+6zgd2XqMBM0r/ubTB2Os9ieITX8jLaCMZXOx9pR0nZQBnIZ1TCWNBXn1Yoak96b0ig9YNuYmdnDuyZKjt8dvGNRh/Pjxz460szMfnTdvumEJhWijbkXCvUvbalcJc81Bv3BjMdHSCbOgiyBzDrwvb2vKusU8w7MG/w6lFkZi0/DuaXWDGZUL/Ta+WAzs4XUbcpWLr71eki90sxDvAftS07G6D9h9/vFrhT2mRP5XHalOSg5T6Beqh/y8kaIn98dWUOL7JocYFk3Wt1ngzc3fpOV/ZuZy3KNojNnO3x2KOp3Tep4P0w50azpVeuL7HPaYPo+HYNc7O3vPcydg+8eIYe6fAZMPk/m2WdBvur4LlODaacsNjOzpSPS2tRWb01rVcsKx2R23utPRItTu/aV7GRc57oOfXTcJWnt70P3SQxAN34o+opqs1RkqcggyGPI6N8n1+FzLOAz5hhZOB4V7yY4NSvCpVw2bcLRCzVk5aYs5WI0j56KOn2ujoI2o4YSOrYy11Z/L1kfGYe+W8Ms5dRRld/fuNIxkQ4qOA+iMCoTEtvUgXKCK83K8d3HGqFMEK9zx1owlJlZKZRVmcxz2TZ9vJJhl1jcKpaRtbJVsCs+02hNqt+ELx34jvc7b7uwlKnllta4fvBs6pe2x8ufv2/VLanObqkfd/nFCjMzm7TbiqLOm+weMzP7xd67mpnZHy9EDKG+m+bpJpQMFe+SbKgkIOAwP4ixa4hz6c/hzCcjJl4uclck2qZMckw1Ez/1h/1QleE3B9reXlfWKn7j57YKn/ledayO0q9p6XV87MD2qT5St+vWDJ+d3Gd3Hcz5MdtNu5LLmA0Usq3r/FxnusNV1gyy7Gv2IzNq6pyNz0h7kMteStCmZligi2NsP++t8yGcm4b2LOUz6zypVUZbs7LPKK/olxOkygqUfET6rO9JHR7DsnahBsdKnYno3yt5IMcYhzilk+uM9UybmZ2Vv39Vpg5995aZc64fhqJdvRrH0Jby/pQBmbsNwe/6KEPoc2UYLJj3aGvos3NMOZQFdp7GYXxm6hp/n8tI6+9pVsorfUHV+172a46tjO9YKGczLR/XbwiqGGUJH7v49+CCYq7F/six6VBnc7rKvqO9R7voI8zMlre6tvhw/n/DRPxOp1NFBmrEQp1V//tS9e7MyxX84OxaeYjs8iOxNrwL6mhW4hEoJ0NeaSYOkzpXci2I8dKv3Hczu57P5WKTtcoY6p9HGRvcO58eznmU5QiyTIafvhxzKdfNOE9lu5RpAe1vYoxWhk2+z4FtZ6zUkPXZM+DRbm8mxxi/beW+m1m/j/sy7zeLzOWtWED0M/sjl9H5xcB91vjOiZnDuVDS6j2eWWnPGI8tlHPULRdDDBOW+kI+PIuP2gu/9pdb8+aY5WwFYx/2LwNSXXeFvzgI4zSfwWeGlbHpvbVgAha+yBrF7OsTynctW85L9x+7UXI2XA+rie/81af2SB9eg/UaDs+pYuMnUEewxjRf+x462jQ31jUl3o/vnFhHxsf7lDG43tq6HKQN281ag3rDdY7cOBEDyCRexGoaH1M+qC+5ONvHVrkYy9+XclOVRd0zW5r8/xb7JcNeu3qBDW5MHQgE/p7xCvoH8UAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCDwd4PIIP6iIP5BPBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAj87RH/IP6i4BX8D+KeitMf13OkPJpgTVjCD6RjAY3QOKFrXgMavZmgx1hIiiulDSQ9iKcjqksdT5+ilEVsIygmSDG9u1DUrUXpGaBWyOd2lJ3XpbINtKNKEfRhlNei8ifw/SSpQ7pcsJh8YL9rzeMxcA2N+Wji6Vv7o3FmZrbwmJLC7x2X/MzMzDY+51kzM1v6wK7lBS7YNJUfwfcaSmFa+edffsXMzL6+4l/TATIM/aNQ/RwGKhIyL38N5eH1ss4bQCNzNsZ1MftexuBYlJdjnEn7NKa9rEP6FVITFpRzQulR0AzOtkYIXRLpt7tI1ZKh5VtI6ljQhw4TurQeT4NEyhOlawZlJfvnSv5G6G66PVUYqUrPkWOzLXEtn2cbjBEnmz1GyqQqGpUayhw1InSseK5MlYKOm3qt1HsLXWXqntK9dKCk11Lqb44vKWNydOOg+RmHMVsDCtolQm95EJRrPnSVlF+TjyzrPIZyr1Ss/VnSsaGTuosqp0z9gpmZnb32zIYmHzO2pBmePjE9z263/drMzM6derKZmb2l896iznvH/o+Zmf3zf/ynmZk9KbRXt8x4X/pAOm+y6ilj17n8ABv2FKmtamWdC0i5h2ccCf3bWK5Dqt+CLge/WXZ/WWcM6ZRBN0W2wDVKv87xodEgvVHGDxTUPmJ8lvED7D0p1Zbr7xwtVDefT6Mdypenq62i36MfEbq01Z7ejP0jlOaFDB7t6pJ+/B9s8ECbw3ZU0YMRGSqn8dCf1Z5yzqykyub4KOVcK8plpYIiRVeOWo4gxRh/953mKt3z8AH6fD1pC4U2agjk40aOK+2cUj3CXp+FrxTpO8sal38hcfWdbYm6fobdUpw7yb5oZmZdEPj3HZvOLb54WlHnrRiXN1rS7Zv2S3L37HOlku21UbKL3zkPvuA9VCDxQwUFGn0E2n7qQ2WdghbMUQH2KQUYqZPxu6uLSlIHMpxlg+S1Ub+ggG1FiazIUYfxJtRLpYmtofS0t7OkDmWSFLu0Kzl6PtKGesr3TBuXyfMU8cHcxjqFbqyzQfHHZtYYM5uZkR5Tn4c0xGyH9hlBO1Th1/uqxoyyR/3hPdV3YzyGoB/6SEep8kf7yliGMd4cqePomVfga6fSMEI5i+7pkHO0y5RhTMXOlTontDecuufdKZZ/4MfbFFX+9SdfTx8OwAGYokvaynYwortiXioLa1/4J7P6jcmnXTv7A2ZmNuuo/zYzswXnHGBN+DLKf6O9lv4diZLhvrqLPeFHJ8IGZqkEOWak0sQ49UrMNZ20kvAfnbS/t5V1Ct2i/c7JzTnuO3VjXqYuAdkaIz5mbQc++FgzR3VaRW2L+C1nlwp5HYjNeiFQKkz6Os4NlG6Qdpk+M+ezh7lze2bu4cFYQOjom2wvx1Tsw0HwufPZL79ovJyZNcVNHILeeVKHWoE5f9uc8hTnADV8/yfcY4LE4q9GuWJ04z102otLvmPXn6FKumf7jmUMyDnxrF2T/u2zpsPMzL47bt+izsMHp3t8G/S0q+mHviX3okoUVN0cL6UXZl+jX/t1XtOO8hFrhNpm6jPmxEtJ8yr0yH3wW7crFagH5YV2tqfxsJlZF+dP7KuMLLSk+VSbTDnJ/Z7w87F6eWqt1z8K2p5yjPNs+vWczvM6bzazJzPnXygk/hqLOVIn7tXPdSelKqVuez3WpcEtXJ2t3Hez0l7zd7nVWvY52lPMseuZutRHkdcDEAvNp52lLVKKX547vPGcUrOzaXNSsfc5N5uZ2Y/ue29RZcXNu6QPmK8e/Mv/MjOz3csFP/vEJSkQ7Tim3czMph242MzMlv6hXZrTZmZmM3dO/bzZ95Msfvfjsj64NW+K8gqJjydAhlahz3txbqzMQTvpP+FPe2iXbijrcFyWXt74vQGj3XeOqdJy39BYpaDe1jq0K57KXPWAY0aKbb03dYoxL+eiutbUau6mIJ0w5ZfX1Wf39L2UKXnOJfw94xzEtTNEphbNtcGj3/2xmb0WnzOU710d+MC+U9pxv55d5XPZh5NR6hzDr49rP9Mw8/d1lOOlDu/L69Qq2sPrQF66pso52gzGajVrBuIUihDnxH8payy9ZrqZmU07OOnodEvl0KdL23vPpm8yM7ObT/1Qc1NhJhe8Ns3jDvh1koH5byvj409clda9nlgEzu5iiiPx7Ur2HRo7EvrTLbHjAu9jKH+iT+NQ9kEGOxc21yncHu/5G/fdrJQv6EYX52zvsCaMqaVybfOpgYE6T9usa1+/ciV1fl7mOj6eFNuzhn3HeIPXU9nkXJzzD7+eO5jwVN1/lc8/Run9WC1zHfYVfa/aBfrKOsocFTkwGbFZwxqkX8P3L4jMzLjGPNvV8T4jB1n7GAZ5fxO+1/B7Wb+y01H+Oxz1xcledxWLtGb/jQnvkxsnXzP8tGfK3++disk/wfjC3I9cV8aBT87UeYYVk+S9j7+5OPSjtyLmHt9YtXx3Y1bYzBtpi9n3cv2TMb7noj3LKQMiC70cA+gzTEhp6xW5+RR1gPJOXdex1DhYoX6a8kWZysmCvx5tvPqPnRurzsRzLZQ6bZCFfvYVr6frRrkYz9/fg/btxXi9zb7aKnMOdrqYv+v9ua7P2IxCpf2Lz7PxbuJGvrvVdQRek7F3VfzjY3odZ8rraldeJHUYM/I6lImDpQ5820iMb/d1co71OYdE7PmsvJ/i0jRDQ8TC79jxZ+Zxb/sb09U+ifUJed+8yQlpXeaZLfEcMyB/i3TdlT42J0vWeO7/YZz+iTqq79oZn3O9ScfZzXt6c+s1Pi4lpK19kJexaQ2/mMN1an3O53j/3LsjjgHXRCkvqp+5tVizxkWUqnh7iCsJ9UN8VrYj914U9YdibtR7tg1eTP1aSzbZx8fe9vjPZqVwZtpavEfPXYfgXC23DtBiXX+5yg3ft1PeMu+0uUa1kuMjbR0G3aQo3OhjJG0H/yeF66b6btCvlWBMt5RDfEVUR8nhW9Zf1sGcuHj9gKl2w/+hjDs+lWto+2jT9V0Y9Zh1aJf0fyG8bFedwz2GSJ0++KIa5H81baGOs4+f3HwmC/a9jj9X6hnr0ffpeHM8FmTOERxDtrWqHfRDouurKB/065RtjTnd2vB0xJWLVcb5+3b8djDeNw219N+ABCd7lA/OFzWmZx/xGemDd87UcdBHHoYx6+E6J9cb9d2wf6edW3PD/3ZwPWGUyFsXr80+51jqugvsgcbMZtY6HlKU/5NRxJjH8udo17vLKo9cm55t4sHpudrxDmtTe7qo86v790gf9seBi3lG1rjw7x/22JxUrpUYrw1+byV9A+fL+v9PfLYJjd/VHKykr4YsrKUs6vjwM2zHUL5fUj2E3oyBDSrWfHXe7Naai7XMnL/nHMm/bzIrdT4nf5RP2INpuMdSvQflrJ5vl5mVnbSy8fBIeX/RzXN+Xc7PHwZzrToQCPw94xX8D+KBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFA4CVDZBB/UdDW39/f//zVXr5Yt26dbb755pa2Kv9WznA3EHeU5lJP7tzinGZuxW6jCch4scplEjezcjcnd/cgw9Qo2cHWxZ07/D2zbGxb1mHmpSI7pOwQH7VFw6WzWT6YKIablXqxu+3I7cs6J0HL3pAyBdvZyOaiGXq/ghIZy/Z6V8ocfMuF7yuqbDIHO7rnpd1xpx+ftns/Kxeajd2Hd2CH0z1IK8EsamZmi216Q13FlZYypT75TNpt9/hd2H6+V1lnhz+nDN33XIfd+OyDDrkQM31zc+YKlBf9vqwzAX3E3a5F1mnNCMJdfrjXl7HbTTdBM7vxcmZyQn9TfszKnX1LKG/cgS87voqd/rmshzWUdZTMPneptURTFl69Nn9HecvJNjMy53bQ7Wkpnc/77fHHH7fhw4dn6lSj1OOTrDqLMfWG97ioVUUrd+9ppgV+5s7a3M4+Zhato2QGpxwjAPtH+wxbNIfgGDPWny5VOmEH9odQXo+dskPEHlDXe7mLFlu5R0n2koNQItl++5dSuybKbsJJEPhOG2tmZp+2y9JlVj9RXuerRWW0A+W4skofxH0IEqVMnFruXJ5iyZ7Muw87ja/ABerl7wvdIvsAs8x8Rurw/pfCXs7FDkpNGl1kX6GdpizoDls0cgxs8Fpk8j9BGBcu4AfNimHWKC8c15ycfMzVoSxqdibu0ORuW95Lox0+B69HP6IZmFpl7tOO4fMzSw7bXJEBowBl+y9mttcg6fHH3dlrMr8g/LObVWdjJfzuWWE/qGQgILjjmDFALuO1y64xHX2+WHd9c8yZmQE2ZIKwOqzirneXqW6iZBZZSV1H9qCvJLnZ9phyp+8X7AwzM9vYEutGXTJSHQcZHHlmkoV1p2xiZmbDvyoZmN7ZeIubj0kpmb4tmWO+/2Ty9U+cBmW7APp4qGT+5g735ZBf7pQvm1NiGbNAYNd2Q4xFvWHMBkOzu2QuLrL2DCSzINCQAZDjSn9OHZfYqJCFIgUtSs0e2u7un8kK3rTbnM+lmfNaybbuhmemVvad+hj6Y+/z2eanzOy8F6THpQ4/bsm2Op8/Ec+3Mpcxsgp8Nuq4ZnigPFC+qLtqS+lv2J897rseY8YtjtOqTB2CNqRWHmpD2/rZn4jn2o4v69BkMkPoPLlkP+UN2QXGws9/Tuow+zCOMc4+UTJx0K+O/HNqx1yEG5rPk66bvcn8R0ecIZUQJywfn3RrjydTBqcn9hlV1pmCsgMlTWqf6Np5uMtJsGWXiY5+Gj52AnzsKv5OY2ifIZj9K2ncToa80n3dyL6syXX4O8ZC1GfNiMy5H8e3jlLH32fS9DJaBZVfb4+GWTN431x2MYJt3cIGN6Y+V874rEjKJsJMG8zuQb1pkYGlAWq7mFXD29tcDF3V1y4LdpF9JJdNhfae91Sdz81tCMw9J+D3q2iLNDMP/TKfC2M4W/wHQneyYo0Avc9kSed47qOnm5lZGzOFYVi/Om5OUacGOV1iu5uZ2Tk/S4o8aY+S5mvFwQimV+DAYyjXSiw7GT5iOdsuaSVHIuYoiIa8fzUrYyKfJUdtPex1G8oiW3QmE3lTRqecbSfzAmMC9b3MqMh5HWOrqiyKOUtZBdanX9/Zfdc6/nq5tpptiC8283r8aTkDgUPCLutnLKCxFeN96h37qi51qFu0YVxPEEamIl5pFXeYleM5kIxW9BvK6FRzdWAfhkgc1wf5PhrtuJRye3hZZyb6ZSHafy2+KwEFfN33Dk5++Yf2HjMzmyvzqRthAz9+Upq3dJ+XbNEW95X92/+TJIOL5ySGngOeS8wAj9wqtpBDQCa8KeUpu4kXQskESjI1L+bJz6JcrNnpCdpnrkcwjtL1RY4n58DMSKg2kTpOWf5Fps5uri7nl1XZrAcCnaf6LOnsT01nV0fpM12rPXBsAcy21xACsj9pe/jMynJ0kQ2eHq+xgc1NCU2jRb2hnWfcousArVhINDNo1VwcKOYx89y9BEWGrgxTYhOYVU91ngPBZ8ywMpAR6jF8p4nXsAVz2p12vt3MzKbCBk0Vpf/ENxIjwCJMq2bMkd8zPGDCcIjZ3JknFlW4fvaNm2GDJ0Gx9xG5pYoVmScRRw2VdSeGJ318RvZdLoNfDSXinlEyzgV7lGd4UnDMaB+/0apiHoW+zHPX0zjBs39UXhBlO8pcxkhvR7QOB4o2uGoOSPiMzIOlx3OtNM4DiY8Hgkym0mxmOQJ9PwpZe7vqOJ6zL/QXGT1uyDZqElPU5SDtKseJ4z6nrDIB7V+FWeh3oc//UlYZelcKOj85PC2MPwJla2Dv6ASN3Dwc+IM0wyf2JeHWBWWV7p1SOxZDzm6CHl79xU8UdbY9MT3P/Qcg3rgbJ1Z2yM3gd45DnH8R5kdDpb96qdCUO8RGbaKrBbsLZZD6rX6VgQLtgs6VfMZXzvLV19Egcp2RE/hMJtlZZKziT1S2KCf0NYxz1R/6rLuMBTQmIagbreLmFijWmejreJ0NX6sudfgmS/RQ1LsOlFxHztlLCl4tc45xCzOF6rsE31e5/G2UB16bsfQpUsdnqvQMQGZl+zlvYUyt6xTIXl3M7xgT5OZl8B/jJJ5cA781Hr6NjB6SWNRIQIs1rkk7pzlsl5XrTvf/V2rbwo+nd8H7rUsxX++dI4s6RVgxHeX7aP+VrZJ2jQaCwq3+g+PjmVQ1JuHvIMtjDyxPdbKeZ3HQ2Iq/51pFLptwi8z5E8RmFP9rQPvC2EjeWxcZYxlD8Hl0fubf+fg1L7PmDOCqT5QrrgnVUKqP8Wy3XOtW+0a7pGv4T5nZWYP33riIVzi+tBV67Q7XNtrt3DqUZxtT+DWpXJbxFtlds/egrvI6qqtci+G9VKYpS19159Q3+N9zDFSW2A9oz2H4eqW0YyZ+92AqNlnEzP7yzCMhp92Qm7Ho5847yjqHwmYUbLGc5yl7M3WD40Ib2JD2GSX86jDNiO6r11HmYiP2OXVD4znGj/x9Ln4iKG+MhTUupQx6e61y53+fY5Hya2TKlsL7ecYs1cMOlN4+tksd6nPVGhdlaKGlzMMfHwQ9vtYadZVrfAN5v+Shc2LaXq8HOXi9VtCvUobQ92MkxioyW9czv8dYF3aKa9S6vshr0eZw7UPZfGa5OsOa63w7OeK9Dsb/b/0H/n9rl7LKXjunc7vaL82snC9vYw8UdXb+3e/MzGzbHZM9mQJq2ps+8eHmx8uRJC1kLMR4h/qjMQ37mjaLfaC21K85ej0QNL2DVR3xzDhV+kx7wjEVPz8Wc4LOnG9gPf6ugvWpiM0yTGIF/Pw9x3ieYz/weL735xs2Nw4EBhvz58+3g8+6zOxLP3/+yhuCf9rE7r37Lttuu+1e3Pv8HSEyiAcCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBvz0ig/iLgo1e6gYEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUBgcPAKyiA+xWzsu8qvnRe686RMETrGmaDpWLjO1VFqHtA+rGpF22lW0riQ9gHX6VLakDpK0kmQak7vhXMFTaDQqnSRGgvnrgUVj7J88FK9oA2aDAoMzcw/DyJxNCigPoDj0tRN7gRt0KREMXHLD97XdJ2h//JkqlNLdd5riarkCaHUuRIcRbPsZjMz+xoo5jaWrSAHgiqVdNpjrbM4t/YPtfThe4nv8I3H/NbMzO696i1FnXvOEepOs5KtR5mGNkcJCsKNvpe40J4zoQd/CiVpgOsob31VWWc8qMZWgsLjWziurHrvR7kxKB+XfTuVr5Y6S3CsieJKaFULeKoss5J+iJRfpF5RGiFS0IAKZ3WuDu9HapIPZeqQGovtYMcqxej5VnbghkJN1mz5TGo7TzMj1NLUqVHguOtiP+foXfjMpFeaJeeom6TfUso9D/aV3GMkjnWjfw+nzVF6ZBx7hN+hgH1ynT7aFVDmjQQl4By5zG9Rgrb6tnVJr4cOf7KocgqopLd+3ePpwN448Z7yMr/4cip34zEM931TtyrqvP6S1LYbjknUk0cUNIpmx953WfpwpnM5sutry08l5XykA3ZyFzzzEOl7sowejWc/DZR+Y44s68xBeS708ARQ4Vwwr6wzFPXXUm7xHN8Qe1Gw8UHHR8LGdgsVWgP1k5mNEdqqtay3sLGO0r+NA03nGteOBjpIUm+SZol+SCk9qW+U/3e472albyE9GvvVPUMDPJ3WYOnxwdZMY72VfPY6ST3K2UDagRx9tac27JDPtA20HaSx09+QPpI0prRvOQomjP1ixBZtx5en3oZyGfsTzniVUsx5WknoykqNLfh72LD9nzYzs+m2uKhBf3qBnWBmZvvK+I68pLfhVsOPeMbMzL49r7zDIToMZtZ5TKLOnirUVm/a7B4zM3vkS8lm/cfTeNZNrRnLQfHVBVqtMeJXV3qKesZlwg8+hHS37AfozJK63IT+j9SVrSiyBItyMRv1hrRiSplHe0aKLjp2jdFa0V9LnX5/3yr/zpiRgYtSR7I9/H3Od+foSwcLf7RGikTYk5WeGj0H7Vf2GZ+RNrSkfy98QB/tGfRwqNjAXson9S5Da0/K+4LGnRS0Sl3J67DvGeO0l1X6i4ahxBj0S5sXQhZnWgYcRzx7J/RgiviPrVEiNtzREpXfjEfLQLstqbo9dJg1IEfS7DVi7hfKz6eB/nfyAYnScMbb0hj+7mc7FnU2sWRr7nz329OBaTixQmK9k9if8DU1ueEY+FayJlJ2zhZ7cCrtAf0NqfiEZvPcOj7QblPuVTdoyz09oNJKUg85d2IPqdzy954KVmNPzgHYLsqPxOSF/Po42azZb9FWyFy0aAfv9VMbPF/8bsvTDvL+ajs8hWYO0Ju2I1LZPw/HdSzYN56iW+kTaYtzfp1gu//qvitmue9su86ZeA/qvNoDUF1yjj8KMtQl8++C7jzJ0EYPJl775y6Ty8xJRuMETDR/jaBgyzLIt7Y78YFTC6jGp+6aV9Q5a+a/mZnZ9+29Zma2yU4pXmmX2GbFLuAJnY84chR0ZLLQYS+nrmIMJotunIASQ2i9lFelHKa+8L5zUIoNpB/qp09gzCXyPw60p2t4gGOQSwlRR5mjdgZNKCm/C8pi9c8eVXJMqK57y3qENYMyCIrTYZh/9FyRqXuwmT1hZucNoB0DgcYf8I39mOdOw/xw6betGaSeZV9p33Oc6Wupa0qxSxsM/1xQ5J4tdajbjJv2Ran2hff3NPBm5RyHcyNcp0/p32c0NKPAhG3Lz3WUn0/H9j4wOdEfjd23qPLGXdPEmT7vkmsRR4nKf3wW5i+Ilx/B/P3+129dVoIZeQj9+46N0nMt/MF+ZZ13ovwSyqel3R0oOX+gGk2WOkXYyH5hAK9yT1uKMZwGmVy6SurABg6Bn+6DD28Tm9HPvvZxbrt8pnz4MdSFMKXoNmtc10H9ggaYg6lzYk/vzPhgXzlGueW8l/Kr8zvaD8hvT25O4G0N26q+agurpu5dH3zNzPbCZ6XO5hh6imHtF+oS42sGn1Xr08AoicO6qirCHvZzrsY5qfflZtZLH9PTfK5pvntdpq7v+5XWhBEoJ7nyManzRCreYz80M7ML1nw+HVAxviUVM/4N35fJOXbxsY3N2VXG52TY8PP3PcbMzD779UvSiVFynYtRduO5PgxZ7JXxodwXekRbob6K/hO6wjlyV26cGXfl5Ic6ybGj3Hj9NsvSTxf6wnlgbk2J1/R03Dm0o+xwpVkpF576OyMTBei7lQ6b/cg21913WdPfIPRas51TsD9oT2ivZa7TZFP4XSjrl96PD+zndqmP8emiAPPZNSbmWPG5cY+hEg/21vEBdref91f/4WnNsYY3SujbV8E+jcXvKQo6jb9ipJmZTT0++Y+D/pDmcu/d7vtFnXXbbGJmZsOnpPUrLHmZmdlcNOkUvNf5KcRjhrifRy5Ovprvkx6DEZlzYhnfzbsZ666H4gDfpY1styZcxLgYtrBX42To6LcRDBzCuKwudbgWCnmdCR+88Aap4+U8Y2+LDuXYqf+gb5DxaDhuVtiDBdTrUzL3IC5y3/Ve3rYTVfrAvv+QHGMMT10XuV/JdtMecK2AfTkY8+NbzewfrIxvuS7pn13BNp6TOcY2Z169D8M7icKm+vV6s0KnpqHuUrZLxxDXHoN4f21FUzmfHwX7OEYWq1bSzu/c8AubqHXoSxBfr6lLRYz9as6tIZM6tV6Rb9UnZZ41+uPpmY/H2vCs4UnZb3pzOS975m6172Z2GL6vluPjEd9cSRvKtj5U1jGdS5iV/kfWo4uxx7h0+t+Y2QQ86yrGmnU5WUNJmWCcrAvv1Bu++4FPWCX34jusXq+rVe9zEEtPPLU8tJJzNMbpXEOfI/cydy9da+Y6Ct8759ZrWJ9+6PfuuN7/V5ljG4rtzGyzTHz/qCvNyjiD76CKF4FSh76uKq6mP/fv0FSfWsRNY9X3ouyiTWU71N/i2iPxu26VacjSdL6fYpvF6U6HUi52MZquRy9z6wZFmC4xwBQ8G3zlxkOeTR/+3+iiyub7PGhmZo+PT/Pkbe9L/XT/FvLu9Wo+NAWP46PGw88BGb/oOOEZj8Rz/UBO0T0UMqF+h3C2r5h4y5y48FHtKHk9/b8AyjSfK/NeqIj7KAu5VXw+AH0D7Ns4Gac11C3KR01+7/1x7j0Zr81441fuuFnzu1sfU5g1+sjBWqteYckfrw/YNu+D61KHsYOPqfT/R5ajpLzn3q15HUf/rq2yExn0sG2Ue50HcB2RvoFyovMGP65UVvFjGJ5buvD/W7emYtJRtxZVDrVvmln57mmtpXXtje3Zos4pO6YXSU9bism/9mRq15ZfK9vzyAmQRS6XnmAlhuBg8W6E8ZzME8fifXcnbRD7XPSzWC/idfCAI0U3uue6Ov79qsK/O8qBbaQPlHHqrBpz/o7j4n2owq83qd1nu73cqj9rtS6lss3fU8cp42r/fl9xrUDgJURkEH9REBnEA4FAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUDg/wja+vv7+5+/2ssX69ats80339zMTrL8zjOfjULAXZydfke37qTjjh/utPG7PDMoMmLqbj6fVYO7ozVrAHcbcreRbpmou9+zPROa68yqpZKbRf9VdgXtPrTxHJulmUG/gfsuxc4mZB/c9uPlbsjZ2EXMzAzcgcYMLopNLGWBeMuv7zUzs/95217FuanYXT36obTrdNToMtvawze83nATtBntul525++Ekl21AqWKAjfk1VAyU8TnpM4clLw0h103RvJeV2P31ljsju6UcWbmY7ZjCeVEx4ny5bLiDZUdtr28JneLivwWGe78DjbdIcud7dxplstWwF2IfqekZmH02chy2dqYXelEe/zxx2348OGZOtUo9fh6M2OavY9JDfYH78/nOUTqsD/5HJns3sVOUmZT4u56yQbc1A/MfKTPBQUaiV3Nj8mpYvei25muOx0pS9zIxw2b3XKdYqcy+uHLtVRq5iNeB6dOOTjt9tQdoMdYynQ07MmUZmnTSTgxqahic//bGnDav6TyUdnkvEUiCbDb9043XSFpzsgWsPTd09OBRfVUXlUrL9DutoAdDmVbJPpzJPQHPy/Ef7XubIQNOwhf5/P4/VKHGeUo48jicLZkIj8V15yG6y1Ffw+RcerrwIdcxiWmrKFOZTIwNWQnNCt3lNblGD9Tprl7PZeJyWee0OtwB+oMd26q1Gnlt2j4njKzswZBj9Ufs59yO3ardqw6Ro5sljJkcSzsnO5097vp6WsnWjPqKJE9ZYrY62XM8sN7MCtEu/yeGRS87j8idfyufNiiYZLZrQeZIY7A9SA+P31vOYYr0f5Dn73azMyG/+KZ4txcJJk6DUwAc+GO9YlnImPxIvj1WStwYpuyzhGv/XczK/37d38DO/ugXOgklMygthjjNEbkhswZTP5QZFxRfXKZbIpsvLn46RT3G7NynCkf1F/JFDyB2Y1Zl9eTnhmGTG5NWUhy2bApZ/QxuhObukQb1IEylwmNusrrSWaQkZDFbr8b3qzcWU774rOUP2Vm570gPS51+BZLA8h2V+khY1b2h5f1XF3dTc/+87vpM1mWi0wCfizNmtkGqKs9mTqMtzKZyOmrJ+F7kcD/r2WdURDqIhujZNY9Avp6hWNuOU7ilX/B1Oz+xJBz5h4p7cLnbvxyWQfNmFuVRK8F1BJSyrbpT2nX3m0/NjOz/e27RZ0Lnkz3f+LNUOhOMGMMk4xSRSJa2O25cpczUfahj3ZH/zQwAVA+YFNHzkllt/ol2M5x+Loml2GUYBYX6o2wtExkxnvqD32FZvqlXOR8N1DM5xiscZzVn7WSO7Ny4kGf4jPj5O4/zJIOnzoIvniuNU6I6HOZYUKzU1A36yipI2qLqQMUBra9KltzLjN5K2YQ9VYUfLaVdk9th89mx/ZISsFx8LEFk0vOpjOmYoYuzR5dx3VqqWTG32llje8enzJ+72q/NDOzTTHvfUAc61v+N82BLblX64AotqtIgg1o9T8m/7EaceHMP/ykqLLtduk695+CmPFctHmYZI7swTgzw2OXMN0wk9xa6hRjHJlztUF/i0yyVVliaQdoi7V/t3AldVQz/VIu2OfUeZ3TUm94L8qJZiRj3EU98jGgWaWuFzLDmIzPk4tTfXaaXMaWWZbS2+45CHr8RWvsD69vtG8XZY6xLsdbM+b5OQF9sMzXyJxUZEriWOoYsl99BmRdT/PrB3ruEHeO99JsqFs0VhlbQ7vkGIcO6zxDj02T6i8MP6OocvJtqY8enbqZmZmNPBPjK36Wc+LTmNiUoaeyeUBc/rR3kulNkR78dY+WGYueIcMV2rPD3mVcek8bnwf9MrI9la+ReyA7cjHXZ7x9o853Ob4+O/d1UgfZt8dDf1YzW6FSoHA8HWPbKJkTZ7MYrw+87NRQagxNe0QZZPbFHBsc16/Yr7l5M/UuF0NQ3jnH4pxN18q2smQD/m0Q9Pi/zGwzHJV4ZSiitF46A8qQxhLeBvOczvH5/LQVtPs5+50D+5PyMQelMq/QZ1axlDF2p0LWU3G06PmlA5AlxuLz8B3rtnvfUaYVHo34j+wdD0Fe3v2Tko2nA8vOnIruNqm8xdwVqWQ0OfPKVH5yzsVFHa5xH/u7r5mZ2dt2TL7l12dIpsbHUFJ9TkR5aFnFcO3C9K3m+KhsMmL3bJM6zozDfLYyzWwI3eYyJ11Dl/o+XjsXv+ViRA/6YWZC55iqPvN+Fe9jBpSBfCB4vuu88LmxmV/jIk0T7ZX6MJ+5Mhf3EznGFKKKJYx+/McoabOUfdDFQJ5ly8ysj3MaxtVFStl8c82sjN/VJlOoa6nAVHbb40u/f/8DibFuh23uNjOzN8L3ff/aD5aXQXbwh1JIbaPLV0Y2F0wAx2FKM5ziK8to9kAq7rsn2YHX/yK18dO7lXPrrz70STMze+4XWKSiGv5FrsO15WKt2Wc+NSv7SNf6zBrWQKZjDJuyu2omcqxNF+GXyoKXab7H0HU0dgSDmKrsiQTjXV2b5xjmsh0SnomA/SE6PxJt7l6feOE4+cx+pW/hPTWD+Iaucf2HpbZ7e5SJgdcLVeTd/r1ULhMtj7E/NdvsFq7Or9xxs9IWd6Csu3taGdOzqZ2ULWWIwhgOgd/pU5uKejORrZr6o+E6fj7/mGQr6JcnS2pxZvn/NmT6h6C2nWK/LupcfDMWm0nERPVRNp5iGlNHmWNTcMx+BcRGNv1fgP6e4+HeFela9Ug0rknuMyw6G4oio7T3uRqr+XtVyTbPyXuyqv91WC/QZjHO+YENni/+uqWYmnMZ32ZhJigCSepCztflsoo/Hxgrqb9txaiwW+aYX6vQOnzfjK8qW4dBBq6c21i3Ko5iRmqdZ45AuQSKPBl92d7cjMLFoMqH3lrGjt+5La0hfWhqOvadL6TvmxxbrhU8836MNcngr6in8oRaeS8yQs+Yk8rs4/h3I9Jnh2K9lcu2y1C3YS7LmCrn1wk+dFXmfiL3voHwGaFz70U/5uoMxIfnmCj9u2n9XwqOFdvDGZEuQjK2o6/N6YjGAIMZU4+UM7yfl+lc/MVjOaYgn6nbszhpfcqUZxXVezCm53UXZOowllGmET8X4D2qMudzfDXOHkCm5/PwjHRfr0n2/tDXX1lU2QaB8twnTzczs03w/04rtijbM/laKFAK2+1/dkvB+CV2TFGH74l/dfMe6YCazUX4fRuu2U87IHIyBuVayiDXgdWHvhCbzP7VuTXllmPGDtJ3lvSjNB65/vbyJuNTrL8xKPJrogq/hqLveT0LFefh6hv0nZEit1ZG5PR5opk9aWaHvmA9DgQGG/Pnz7eD515mNvfnz195Q3DIJnbvPXfZdttt9+Le5+8IVbPUQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBB4cdBvJjlPA4OE+AfxQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoGAvetd77L+/v6W5xcvXtzyXCAQ+PvBK/gfxD3tNCHUup3z8KGKRtFTmJPGS6l+SbUN6ou+DKXaBFBOrPLXGd1ct6CRVJooUk2QTqIjFWOFmqSzlkoUBWPM/kLHcj2u2QfqcLLMHCu32gdic1YqJn38VjMzmyhUK1c+mXh2Z2yWKF9OuvFiMzP779klHdcBq0GZAbpAsnpNfVtJYTbqpMSf+6XzEgXUpsIZdsZ+ib7xv+0AMzPb95n/Z2Zm446vF3VW/GaX9IHsA6ThrcnzfA8l6clWWTPOBAXJ/hiXpTh+ttSZhPJqjEEnxmSY0H3w2ks4ThifiTPKOitJO+IoPHq1Yfx9rbmtXZ4mlzJal2OeaovyptSipFpRSjmzRloXT2NH6hWlhv6OJYqhwcAKK82WUp5SR/nsdZTfljo8x2edg1KpOT2VIJ9D7QSVgvTMNZRKuYj+6CZV0eVyjlRqHE/YijdKFYrDEtL3QE66tW3gtJ4G6qNzcViZZLZGuX8qzrkv6cxOr19eVKmhr/bdLFHybnpO0rm5B1hLzP335mN7JuY/a//hnakZe5c0WqQF3OnHt5uZ2Z3Hvz2dWKFXwLi+E8ElWYQ6RH9uRTnJGn8/Q2wYjxUi2IFSaae2bTx2ECjzlkmVcTi3lGNHukCVf1Jbk3IrRzPGOtQt1Q320SJ3zlOtmzXT0alMkjKMstWR+Q19EimKSFWl9Eaeeozoc+UGYruTzf5AmjTeS6jdCptDn0IKtTdLHeoq+wy+cqTIS/eF+ECfqbZRKcbMbBju3yPjW9BJkq4dfbVMbWI7So4h2jE047t7+YzzGus24OjGrx+QzyNQ/1upeOd/Jurgm4Xm8oL//byZmd3+j8nZfX/PO4tzp22TyoU/bLyFkqStBIXuaWRFvg/l41LptakYDznd6HXpR8899uqyDuKDYnj+Ef5srdjkoaBc7gWt2GWo8+mSbrCUC8g76TpnyjgvpEyTrk1pWR2dX0FXJv51Fcecfc+xlJ7pqaWS9GAb43if+g9PrUu5VblrRf+mhps+inJGSlixL93U21x8ymvd2OJeg4Fbzewf5Dv7OUd7SN/Idk20ZtRdXa3D8aTNyFGRw2n2U3CpW3od1x8Tj0/lSqUSxFiRyfApxMK9by2rdMMeLKYN4Zgq/Zu73kyhfy/0D7HEFFznorLK5uelucAe2y0xM7Nn6R9lp/Rf77MXDH3iOsqdpyUlP3Bpim3OWXdqUefJp5NMtm0L/7wtYsiloquvgU6Nhe88TSmygWng+l5CnZstJxHTFXYXsfBMsYkL8bs+2gXStiu1IM/h/gehrcpCtrKOD5Ql6fwCbBvtQYZWkiJdxGY+hjQrY48cLSU/M3amD1f/ztiBz3WDJbq/wcBrrJHCso6SNkz9spu7TjgwlffL7wv/SQrDXCxDMJaGLRsn91rjKZzZB9p37E/aQvZzjvYZvx+Fc9OkygKc2x33X6LPybjJ254MxfuajlRePyeV7y9rrDh+spmZvcnuMTOzt3z0XjMzG3nQvWUl3GJuCsWLp5t7RFnlaJiB8TckGzT+L6n84IdLCsz32vfNzOzwH8PXjsMzK2XwSjzzGPjRLomH1uLcQei7+agzQ+os4vOTKtXPvcyaZYhzHo0jKScc3zkor5M6DCKg4wVFp85XGWfzekqpTtBG7Jk5p7ql99Bx3hclY5gc9fA+KOlreK/c+tEW1hSHvmB0W+OcmDaTdiRn33LHzLI0rQVdemb9am3dHaAs7CzH6I+3cHXEPjTdY2Z5roiFdJ5tlp9zYZ7Qye8yPqPQjg+koveC5Oi/ecZHyzpj0zrTGZbmyxdtf3I6/khZhVbgrwelso74eHtx8zdg+Wm/L6cffvv4D5qZ2TN1iT0/jHKndM+HntmqPDcGE/g/b9vwWPZYWcXehJJLYzey78SWDoMfp20uYtctpQ76aDVlmvGOyjbXXn6MU7hHV4fUIV01dZM6r/NexADZsWM8QRtB+ahLHT8PraLL5Top5KaBQpxt41yYsqnzBx+7+jVj3n+w1rjusXLBtaM83Mtx5byHba1XXKuKdrnid1W6XowrYmcfEzSgAyU9mcjABMgXaeSvx7h/S3/vKdkzcT99GkKJrR5IQfGvn3tbUWWHjZLP7QQP9vv+fEs6sXlRxdoZwkCP5q5ofhpGGcPT8rZdeNDxxbkrNk1OetaO/21mZgv+I7OAdhF06yroFGOQK6UPKZ+F2lEf1J/R/7BfxOgU8OudqHuE2NQrcJ3PIYbuz43l+MwxYjOUHCfY+4ntZZWV1L+HrBG/sWb42Fn9R2Yu8YLAWJ52gC9C/pSpu6E4331fKJ/Zr7Q9OVrvVqf2kZM3V9yfY09bzvjFtyuDPnm/NBby1Um7TXvyMflBHSVjPsQ1Q+XdBqdq/9P4k/svLGVsp+PTGvFsuyndGk78Bx9uL+rsc2eHmZURud3S3PyLaI4fcKWVvXL02+E3Lk7FwUIjv3x0iteXbj09HbgCejhBfPcf4Yc+Ar94EAZqfkdZZwja3Qf9GwdDs0b0uel/JuhjdL2T895TfOXyHVMP/VkuBvbzMMq7+nfqG+/PtVmJSYr3Un7dSWntKQOch9HPi+/s5n0ZH/N7Xa6D+xf+SN+j7ObKF2Ota4hl4/M2xFNZe0l5136lc6He5dbRMdajMKfu4rPq2iFtFm2prpMSqD8UOttLHyF6uDvKJfRojOtknJ9A2bPIGjCxXBOylYjJ+1wdM7OxqDcC37nu2lFW2eg/07rxFXjZs6P9zszM/vWwrxd1ll+Z+u5za7+cysdT+ZdxGxV1bts3Peuv35l8/jP3Q0YnSXv4fvfsGp6LuiU+ht3Qxw/UJ9G5zstdZbXp9FFYwyniJ/Gh3erTFCoTHCuu0nG8VRZoi3PxKO/l5TPnc/38/apMHYK6n4sn6ZMYL+u/l/DZuLb1HXfczIxzEbdePyjowb0ud8epT+pzoX/FM3JNV+0nz010dTSGYH1eOzf/p//0fS5jWqxD+HH+RfPnbsqp2J4rKTvse/oGXQNhW9H+Yu1N4ww8B+NHhk36LnhrrA3f2mZmZh98a4ovnxVZeMfUn5mZWd3GmZnZzDPSesvCL+5X1OH76sIGDaulUl/nj5uTSq5D7Y9+ul7nlFxfZF/J+7ar+Ywfaiy7bijrtHxXo6i7e321uUrTu0XW1XHP/M7MGmMs1nlzriLg9TC3Hu3f70o7uAZbyADvpX3BOIlyz37V/1H5qQ0+djH3TwMA/GsbYoEGv+yDZ5b6XogLrPwddUbHZE9X+jVnMxuT/k/J1vJAzpYyXjknc+4O951r3RqDHOfOUbY/JXVarevJ2sf/pmLz4x40M7OPbnK1mZmtln9E4f90Xb9ZWrc65IDvmpnZ5L+U4zwXw3xaWiqzzXZL7yWelH55wPDieSfYh69Jk96IGKawb0NdaWZr6S/Y95k1rqZ1CP5e36fPS0Ub/t8jG79d0+L7Z+UY47gKnS9i78y8sp+/f0PzuQLULb9Gptfz8pVpzxj00VrGaIwBDi7rND0z2y6xStvOZv25eLMRkyZNavj+l7/8xZYtW2arV6+2j370o/kfBQIbgn4btH9NCpR4Bf+DeCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAgLjwwguzx0866ST761//mj0XCAT+/tDWX8UF8H8A69ats80339zMTjKbfW55oths7jJuN+zU4u4Zn3FCjRx3Urnd622ys6nYpeR35WhGDJcNdTJSLSzPZUBGeZXc42PMroT2H4d76Oajd6PktoA6St34z8wOzKT7PpSvlTonpa0aJ74+pc/+4j2pHUO3LtMbf2n4Z8ys3Bm+fHVKlfKXseWu71cveC59YBZEbqgbJ825fa/UjHkpRcSX5pS7wb5mnzQzs65n0s7jzTZJOwPX/lIuwJ2o3EzJ4fpfeZ4pKLkRnMlQNJswszx9GuMxDOOjm52RaKLYybIEu4y/LDvYLkbZyexo3DWtMsWdiRhfJK+yc3X3FncI5jIO8wGYroMPLRkwh0IWe/nQFALdechrO7lrwGnuO3cBqmzPsNRRO9rjjz9uw4e7zOgDQKnHX7RyB2huh7re06zUXbPmjBfUw7rU4TNy1yx36WsmDvYZd2Jzx67eC7uRh+D3momJWbd62Vf43QTpywdRdmMn6zjs0G3IAOiyWo5BnX+ROrVUzDk47Sg8FSnvj7cyiPugXW9mZh87Nu3SvOIr6fj65tP5LJIH/x4ZiLfpLxt7iHEneUpd1gMZ/dUpe5QXYDYnbvzkJsityypF5rRJrrxC6jBz8UkoV3XwQ1lnAnaQrnJZljRhHZPj3kiaAGYB0UxI/D3lT3d7+92duf1Yfe4cv2vGloddHf9bre/bo0wWLqvfKM1wAnTRLnGHOTOpMUPVOjMbNwh6fIk1ZljR9pk179znbtcbK+oQmsXXS/Hh8pl9VJUxA/gGdPNw2mm1k2hHU/ZRbxut9DXEb/UyLov1yZBJCVsKs0Zf85H0DOe+/jNFFWZBev0JkBtJ6k09mSvZlJ4Pp/0rPoj4femC1MbP3nNJOkAWjhFlnTEfX2NmZmtfC3/cBXs1QzLZMNxaCN2cCR3TBAfc0L6I8sE0jjq2zFZAOdEd0fRt3J3f447nzvnMdWb5LCEevH8NJYMalQXuHq/KTsE+YlzHdmhmXAZ39D9qD3zM6nfKP2Vm570gPS51+A5L/TQA/SnA9mgmGz5HLis4QTtG35vJikT7XMQ2VZkNfSb//TJ1qOPMIq32qpaKsRBgElKMkCoL4Semwy8v1viAsYfLDnhkORZb/nuSs0c6ktx9+V2fNjOz9rb/KOrk8m9uCE6Dfbrh9uQIf2c7Fuc+f/MF6cPpOPAYSo1JRrhjmrG7h2OOeGUC+m6V6MGh6OOrmaEHOt+Q9dNnlkYvTJc6iyknyo5h1pAJqtBNyhANnGbmaZW5UrP9UzYXuTqahdS3I4OCRapKbhUvXIfNVI+/bI0ZxJmZpMo+tWIaGSCKrEiUYMawtbLOWmbyYXs43hqLS30zK+2c2naOJ8Z5PM5pBnFmE5qBdjUkROtACT2mj9JwjCaYc8YrUZ5cVnnnOSnr7pKv7Z0OILuwnSGtv6Gx9RW5wUq/jPIL40rZvujJlGXmibtGpQPzceICibEmoh+LhOwyB22Dbvb7zGUqJzzXkTlHUOcRi4xEFpbuBZk6DhNFn1dyXH3mb81SxHP0g7neo3/mPavkN+c7eawjc/9WyM1F9XrrzGzzQdDjz5nZXnKGbavyqxRirg3kxoL65jM7q45xrYCxAO2DPg9toM8qWYGDRAbmc03BZ7s5Tj7XG+9LezJCqhyLEj7q0IP/08zMdrC7iyoPQ9fnYrxHfiPZwnUyty4ylDocnZnmbYEs43d9M43FmchMbmZ2zQNYp1m9aSqfkB++D3NPZm2EOjeI7VrGrhinIQhGstmf2Z8cy4uaz/EeRQZLBcezjpKyoPEt58ucM1J+qsZbsyr69ZQq3+mz0eeyHXNtrIoJ0iMzj2/Kqq1tfoOlgdttEPT4JCsXXGtSY6X7Be1dXY7ldPz5wPVJZcXiQojPsmdWZn+sgrfFzNYm65RTYD+W1XGA9lrXQpnNkXOmzLyM8+7P4TuWoV8zq6uoctVmKXPVNkjttsuRK9IJSTxP37s+OE3swWWXHo4WpzWU1/4ObbxWfnAmP7CvEe/OlbVZhr5FnEv7rYtTLmNZETtq37Gv/RpvLr6lX4TfH1Urq3RVxaMcD2bgu8gd13tUgfJCPaas59avcn6UGMAcfST6qnseDnidGay4+iQraahysXSruECzQ/KZPUOC1BkPHSlUS6/HdUGum7F/alKnRZSZnXPBLo7D79fkZIP2hKx7+m4C82yGCVyjnVPW2OmclEF8FNZ5/tM+YWZm4//p/qJOLzKGn/+XfNOfD6dRFbZDyW6Sduy600/MzGzpPVhsY7yu8136SoorQ+CVskbchnlDkTXQZ501K30c/RdjN11zoI78IHMO41KsNfBeys7lMyGyjraD9oN2l+vBKn+5NTbfHi/vA5nRECr/fD9WFct7xhP2fY+Zbb+Ba1xftPRcbu18KGLY7BoTYpKx8t6PrqiozyCxJr/jesE1FXWoS54tSeFjoDrK4+UYY0Zem/5E7S1tKO2Ub7tZ83s3lTfYnPGwI6sRF04uM5BvtDAp8K6jf2lmZkv2wdx4YyvxepR8fcNXcrKWfscndzAzsystUXtcfMlJzc0jkSZZhSgmKzXOxXuhQqY8A6lZ+fzUUX2nAMM2Cs/YlWM9apU1WsG5PIMSBvya9Zbj7Oa7u4vcLWnFuqRoxVqra6u8L/27yMAQPGuR3d+/F9X7ezugczfOD9iO8ZZY8v55kHzxP1glS0cTfCyhdpLxzUDWv9B3E+H7CkYVs2I+Na2WyqXQscPE9xYZwKmjVTEO9VfGchps1VLaMAaYmlkXx4o5zjwcF4YpztvBnvOG/0rP/scDxF7jku/YI2UJJ8Nsj8SDb7Nfm5nZCATqx/4M6YQ1Tsb/mNgFkDPaz/ka32IMJ6MPGWbqv/Cs4noG7j9r+/LcAo4DY6PM+7pincdlWK8EdVczRB/s6lBndS41ANlsYrXbJ1OpjpJxrc5lO1B6ua2a39HX6HyX+uyzaUvbGT92zbXBi6m/buXLFrPyWb0fVLvCtQ62mWOo79hrKP0cOzcWfpx0TZJ+gnMufz0F76/rpujjGeijgqVRYyvGb7CXbdDLhuzOngEZtnyurNm1p+LQPdL617cfSjJ64egyThhHdvkbf5R+nntNBhSsPHCLfZPKc4cMn2dmZveA7m7F8buUJxlDM7y/fB4+7FvW4Rh+vpZKso59WP9ngHaSvoU+SuXNj8csV9eslGUeow0U+sAC1LGcTeYxn53erInVtEDu/z6qYr0XgoG8x87hQ5bWuN7xgvT497//ve2666725z//eT3vGwi0xvz58+3gL1xmdvLPn7/yhuCfN7F777nLtttuu+ev+38EGz1/lUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBwCsV/f39ttNOO0UW8UDgZYJcStO/Kf70pz/ZiSeeaAsXLrTe3l7bYYcd7Bvf+Ia97W1vM7NkVObOnWtf//rXrbu726ZOnWqXXXaZveUtb3meK3scbHaj7kL3WRtyWZZaZWHM7JIu4Hf4KXxGct15zN3I2KK1nNulZSfoOFz7/fj+Kb02d/NgV+SCnZt+bquxS3QotnkuxvG61FmCkhs+r0fG7G8cUta5KYnNzcekHV4f3CHVmWU3F1V+ZO8xM7MP2E3pALKEv/q+58rrfBElEicVG/E+UlZ534UpVcR/Hn+omZltKbu4/h2pkvd7Ku2yHjLk2XRihTzPeSgvRvlJlJJx+I3npDSu954OmeIGd900XiTXwY4z7lbVDd0+0d143aELdGLX4ZHI0HA5dpANk92Zo5AphjvdiwyyuR1bzDqgW/uYaYvZ52soLy2rNG2MrKPU7A1sEzMacJep7mbUDPetsP47Rluj28oOWSjHuXuSAk8d0x15HCD2GXcKqh4yuxR3DXKAdTcwwfHl3kndpc9xxY7lbunXXgqTy2wrCa7tBJRfG93YHM1q/3nsCj0TmRkuguCqacPuzHk/S8Zi2R7Jrn7Uri6qPMb0atjU+SdkEB9IDiDtXWZzoVka1VmmQps8drmZmXWhQdesw45qzQ6ORy2ekdn/26UOMxVfj5IboWtSp8gcDpmYhQsslQs9xg/MeoAsCnseWNZhIrRC7qkHuhucigQZmCG7mxehd05GVopzc1lNfUYF7giXnbFt+H0/63RYMyiD3I1Mf6K7wTlaEJAuy4DGix3LHa5sc4u0eeuNB6xMDc0MFrr1n7uB2R5m21CJa5UtLbczlv5dsseNhT/trMoOCxQ2mPYus7O8yByOHftHlKde85XU2U/8IxRyNce3Qy4AzRnLzOGYSA2TfmHG8RGpGHNKJ1pcauh1yP7zmZuZFaL8+fpkDicuhD04vkx6WPj6K3ZID9l+fAomOorU5pI1giaU8Yb6zA+gXAibuBCyMFuemSHWQeiXf0B5pWbvRN+NhBFRe1tsTW93DVA9pN7QCFMvNQUN9a9VVm6zUoa9v8jVrdrJ3SpLWi4LYy47DH3aPHecsv0q23BcYyXNglnz87xBzlG3qD8Z9oIm/VOv4zOpE9JPQzBmvfNaNdiKsdsdX5cwo4j2B7P20BbnMoxApu6HvWesdqhUmQVZXMDYROYfI+G7SbozBjGSdOcj70n9efGPU9DKbA47H1DWWfDfNriAeaU9GWLPFqf23jfp/I++iswOVLHvWYke2LXLoKN3yrnXIJ7k1G1RPZUza2UdhiXMvvUYvj+tjcSNx+B6a1EuVh2jP6SvZlyoeqkZUZ4PPoaVjI+FT2HGJcqx2hfq43KUyrADmR5w5nCzNFl6genzmvBna8yONJDsSgPJnMRIkJmPcqxaBPz82vPLQ23IlNLPuJ0Zf+bI7ziRo82hbVfbw2eDbK7GvVerPjNzuM9ablbKCcZ8Ido47LNlFcasZP6BSMz8eJmW9BKm+t4JBx5Heas1YSB59s6HX/4sbMYZe5ayvfHMpLen34oJMMOpwyT7euFKYJ+mi4zTVzP7IYPzfvU/jA0p236eaFZmgamnopu2ULPcccxqKDE+K5Wqkj4Bfnos2tOpbD78Pccu51/ZRi42aAwJmRmJOUA3ZVSzEbViJlD4eLIq4+lgos/yGc2rsgozvqFucW6smXlc9sRi3DXD3HXWCNoH1bG6u14uqyTtNfzyfM22Rj/M33EtSNYgpmCudC++MwbvkMukhEn2odvTnIK+7odYszIz+zCe55tw6P9669fNzOyhAUx/LvVJFc3sCPi1N38xjcXqMSL/j6UFsL32SPR9ix9qL049x8UoZktkljVNHLYT7BLnxJw3nyV9z8Tyi6gvdZSyiMi1spM4PpwL6zIxbQR1Yyv3XeGz11ZlnlT/Qx9wiKuj2ZbQjlGIE4oMtyq3vN9ujb9paIfKsNbR7I6IN4rM4bye+vB9rFyDGgwwLlXGIJ/9irFwTr9pgziGmh2cfU8/j3niSJGXwk5zrVvtLGzxQcg0RnYKlYEZ7alcRBuO3w+TMV2GGHp8LZXFWnWH3Iuy4LO/S1u5Zv0e2IG70z2O26zMjv8vdpmZmX3SUrbC2uWJ3Wrrtz5e1HlBnCj/Wn6chIXnG9Fn/7ZjorL78tLPlZXoxt4/tfGmp4kNG48+6oKvbpvTfN9++iTEPwVLnvo6z7ZBn6VzHcoXdQs2vmue1PHzMfXdHDRlItC6AwX91m7uuK5f+XOePcCseS7NbI718lA35/jtKNeHAWt9wb7LxdT0e7R97FeNLRhjUv9onyROblo+yLHncL7Nypk1rqIObMdjeg5+eUotlb/mcV3M4Tiwf7F+NV7eTTD2Phb6Oy8VW76/fIg7P/p2MzMb882ko9+0lP3/jLPL+HYoY+jcsvwAcAW65QgwAPS9N5VD7ivrzIbf+vWotGb+zK3o+0/LhRjaTUaZiw8415mFZ17ANWeVCfYd9cDLhFkpw5RpjZsgM4upx7QPuXUe/9o3xwzr4zmFzxyOYGSovDDr9fGBrtsSlDdmOOU88a5MHc8wYFb6Q5bedw/GWnW3NY4TdKOSnQ5t7NT3U9RpH0PrC1ofP9BPKxMZ67ejpABqFlK3TlkwwpwtdTBWQzCP6qNMqGzwOowlaG9VJmlr6L8ky+Vk3B/x6FanpFj64ZIAz/YfnYLWC+3f0gE/NzYrppAXQjyOxFx7qDR1GQJkrn0X3aTvlygOJArqZH/InJh6vBxydyTi77pcpxhWjqX6PvRHF2PD3Nqs9ze5DKHesPFhNQZku2lvIXdL9J2sywpesGdo1nTO1/09RddGQbe6OPGQ5+qjDHqmW312xtmUF7Zd+07lnHX+wQYH25nZZlb2B+Metl1lerQ7R1vqYxyzsu86UOayvGLMVnLs9N0E9HapsydXVv2vCvtS5YjzONp7iZuW8lkZQyCWHqNMfJCLtWwH/M94mX9gSrLtf6U+/OPOeI4Tyypb7ZEc6HHoqxWgeP5gMTktswifhvnCnD2SYj+yR5mtfMEZWOTm/4YU7GES7BzZnkqK26U5m0z/gThlgerDxMaqnGMv65CD9MecB/n/9zEr/THtNfVI5268L/0AxzCXZb8C/VxP9O3JsSbz2o5tyMzKfqHO5dj/CMq0ri159pvMWluX0noPFrayAbFxNuhqq3X+hzOf/SxQ+5Vw8dKw9vIzQ4W+3Pstwmdd137FBYp1Go6hxFZkvqRe9/P9pjKjTXRlas8m/1LGGM/clWz6XhjDB0ZvY2Zmw4TCbt9fpMzhVf8pyKcpnmJsKm4cXsr/aPTv/vZdMzM7/sJybXcU/hFhRVsbjnjmOTM7D59P8rGq/E9TsSbgbbzKIe01H4ix7OsydShDZO5SPfLvgLnQOE/q/LGxzjBZs+jhuqbPIK4ySZ9EnXqzNYNySnlj2/WfiX7l6uTeN1NO6KNyGc7vsMToMTA89dRT9uc//9meey79z9+mm25q8+bNs1e9ajDePQcCgn5rXlIObDBe0n8Q7+7utt12282mT59uCxcutK222sruvfdeGzFiRFHn/PPPtwsvvNDmzZtnO+ywg5111ln27ne/2+6++24bNiy3yBUIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEFhf3HXXXfbxj3/cbr21MfNNW1ub9ff3F/8wHggE/r7xkv6D+Be/+EUbO3asXXnllcWxWq1WfO7v77eLL77YTj31VNtvv5SF4KqrrrLRo0fbNddcY5/85Cf9JQOBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAi8Ahx9+uG2yySb2/e9/38aMGWNtRWb4QOBFQmQQf1Hwkv6D+M0332zvec977IADDrCf/vSn9rrXvc6OOuoo+8QnPmFmZmvWrLEHH3zQ9t577+I3m266qe255572y1/+MvsP4k8//bQ9/XTJR75uHSk1rjGzg6Qm6R5Ix5SjWdvHfSfd3/m+oiBHc+OptknnsK3UIS0Gr620xgApsgpWDaX9JKUQKJxWg5Jn7PZllamgY52O75ehfJ9chl30Y5RvSnSXm3xAqEmWJWqSTcH73gO6wjl/uLaoM3O7RH3zgI1JB0AZ9tvZbyzqPL0s8QCz5/k0hyhz68ap+MRfwNErrCMHfnqemZndMDxtHiC92Dc/eGhR57lPvDp9AM3Z0AndZmbWe8DIos69p4DzHiwhQ2eizk1lHbuInQ6ZOAyUW8r+1AXakC1B+UsqGGEYtbGg+QD7ou0PKo/dpc6xKF+DsocdkqPWIW2IyqSnBCWlh9AJF/LC3n/YlWbNtEO8l9LVOgqzgtZFKU5+autDTWJWpcdmJbVvjoqT1DWejtSspEUitRwpXHK03Bwg6qzScbHPaDugVw0UMLVUvA1fF9XkHIWG19misXlmxRBu3pU46x//FLjy6lKnYM4BJc9H8PXLUgeUfe/cNSn0jvY7MzN72jYpqkwxcPaB1ayKTMsjR6jGJo4+rDx21g2nm5nZ8cOTnPY+sZmZmX3omJIm7TuXgGry3ThAcT1T7Nx0UsuDiqkTcjZFaKQe5Afo7ALIZNtbyzr9pNijvGIMlsmDUO8mwoaupM/I0Z6DaGmR0DxNQ/1zPS394WWdwgeQUq6OsqRbKyhKCzowPqvKP/VQ7H0TOFqe0lB1ZYH7DXWEtE89VnKRPz+q9fhPrszB02orvJ0jPiSfaedqKIWOu5Mf0A+kgOr5a1mHNFOrIW9T5qRyWc7Ps68QVl1RXueJI8DzSbcO39Wo9JDBTpwbhnv1yJiMgLz+NhWkwf30tSJ3f0EJ+twGe7AeKEghQb33qDBQvnn71I933/KPZma265U/MTOzH0jMtN2+D6QPBc0n/Ieyv/HzCXNSeQH6VY3PBIwLmc/m026OLuuQKrWb54TWuJAh+jPa7Rw1O2WK1xku58gfx/HI0XB1tLhejnLby/3H5DPs4u549iXol2lCU7aUusROfEN5rvAx/hnZjoHT77bW4cMtPR/709MM6r0pF+wzpTP1FJ65vuJ4sI9ItVgrq4xA+cicVPbndLQjFUu8z5eYZsjxqezzv1e7D5vRD5mYDburYc+9vB5kaHsZu1W4Nml4GTqISL/jwp+lptoeZmb2Pvt+aul/24uHxOpt7z7s52ZmdsuVpX360e/A9cuhZFuVxvci+OrFtGViu4bBdi2CXbyslspPKxUzdLSTeofrjJMqPaiDn5e0qBKjjUJM1sVztM3qGzj9he8cCSrB7hzVp6feU7vN+VyOypOg7eBA69Tbx/XsYKWZ9TrxU1tfCu1qX5yj/cvZt4GA/THaHdd5A5+RekhKc6F67OcxxvZKnUzQLjCmImWkxg2kgMU4U+d2kipXU073a6xrZkWMyHXOfrT9CanC4SEbJYZ5iD1bVDkE7b/t94gVUTyaC6IHgF5/YEr5cbotNjOzi47A/GEIlPSTus5BfYGuacKPgpacMlJHmWNt+0bj13G18vMaxu4dKOkblN6XcwB/bZV5R0Pfybmo9oJS05uV87L75RgDi9ycD/6q+xfueI5a2uuG+t5cXNEKc23w9HiKmd25XtcqwdVV2KKx4qs65zaeK6D9xN/Tzh6CMueDQQNvl2fOUX/9dcya5ia74zpLZBGmiMsx9t+CjNfkdyNS8Z2vJ5ma+c8plli8rlxnvHt4Wqca1QYnDt14WNhqacGr1qVPg5g/BHP0i8Tiaxf2H1/U2WbHFCfvA4rp5/731cW5jR5Mwfxz2+JYH2zom4Vy+Ez407Gw4Wzjt6Qhh9CWQkcYV9alzkn4MrmWyuX4zdADyzq9XDvh09OebFXWKewKbSj1MDfe/jqKqzLHCNTvuq51lbYjU1nEgVw30hFjP7r+aXgeHGtDn/VzXqf+7BwbPD3+tJXxe05/aCer/DJtEK+Tq0tfC9varefwuzb4w4ZYGrZufh3fb7AmLJrbWJcy0aPXwbHV6OuxkLNN55RVVrM+5/H0GyVFdbHm8XnYCojdsB1K/3Ei1iw+amkd+Zk2+I09iypN3mMg+Kv43N3e+2szM7vxmg+Ymdm857AA9o1S3rZ6fdL1hz/z+nSgjhPfFTt3IsrZ0Jsb2QfSWGtHyd8x9lQ6dfjlYl2DfaZ+tQMldKXy3QbjsMx4F+B453wg7UINpS70s018RviWBlpu9gNjR8bpUsf8WpvOM18ctNTjN5xs9kfGDlxV1bkFYxfGRKQpr0kdr/+Zde1eP2ZHy2f6aPYRbbBKu6NLb4Mevlaq1KBjS3kvrptqnIznGYfnWIPrrda4Afc6HV+x3trzTon98L6E69Jc47IflVXmbuCwsvUP4X3XaHb9v5Z1PrMwrR9/dotL0gG+GzuirGOPoFxeR51aKlfJ3GcinnkpD/j3MmZlvEPjhZv06ByNc2Lqn86vKBdYgJiNujeq/GDuOwb3XUtdy71X4qSEcbf44sKe8NrwLb0q25znch2b95gtdbge7+V3qHz271zHyzl9/6lt5O8H/o8p1XNjxUDeihyMUmzgUPRZr9dnfcdcQ+nXEa6Rz9RVxsKMmzQWRx/RNy1jnKKxNPqqj7+jRugLTcoH3ylQJtTH+LGrlR8p5jA1PeuSjk84arlUScde1wlFOgAnji0v03FF4+WGslnie/d/9nozM5u4cVqju+eSN5mZ2QV2QlFnxfa7pA+dkNfJp6ZyucwPlyO2mwEdKUJWnUPSbuu4EOxPGobZ7rhZ6WspC+xXXROiPiM+5XvjzrOlDsee8Xkdpa6nuet18576/wU0prx/DaXGjJSP3NrYI+57bka0yJVbZer4OcBqy6xyVKK1Hv/BzP5Bavr3XCtbfLbnacN33He1Xf53tF3qe32cxHHR6zLmpUzk5kV8HsYS+q4f8jAUi1O99VSu1fHl76Fco9pTubqjrLI6aeD9/wFZoOuvlVW2sRTfXmkp9j0Q86pRIiMdlibBcywlhlxlO5pZaQvMzLb9Qrr4/d9En/H/WHaS95uXQ1fpzwoba83g/7xouEKV7sfaYbF28FmphHWicfBVa2j/Zf1qPO6/mn3PGFhljHabPotzr45MY/3/C2ncz3Wrle6crmfx2iqLHvRRXLvLrYe5d1fjpF/W+DWyTJxQyOJQWx9fbFalxyPzPyjWeHOB4UDWr9lX1DHqaO7dtIuXG94Xe93kdfX/RyiEFFRd9+QCMmWHMaKsNSyFvzgUeni1W381syYbdmiaxz/z7+WhD3wh/b9WHS9X2rFmvMImFXUe3O1/zMxs61HpH7iOhou4VEx8k+S8MxUHfLmU/yc/nPphlHWZmdmu4g+/sy9kh69UqIa7ic/9H/6fRB1lblz4w4Pdd405nb3mOtimcmwRX+JVyZRf35iHsmLtt2Ht4+CW1QqMQby2tgMH2NOzpBKjIvaHj4HNmteq+Q5M+mIc1nnWrHR19To9NhB//L//+792++2324QJ/v/HAoEXCfEP4i8KNnopb/6HP/zBLr/8ctt+++3thz/8oX3qU5+yY445xr75zW+amdmDD6aXm6NHN75oHj16dHHO49xzz7XNN9+8+Bs7duyL+xCBQGDQEXocCLz8EXocCLy8ETocCLz8EXocCLz8EXocCLz8EXocCLz8EXocCLy8ETocCLz8EXocCLz8EXocCLw88aY3vcn+/Oc/v9TNCAQCG4i2/v7+/pfq5ptssolNmTLFfvnLXxbHjjnmGLv99ttt6dKl9stf/tJ22203e+CBB2zMmDFFnU984hPW2dlpP/hB827W3M6zFFw8aPkMb8y2wB1qugOMGVu54yuX5YZ1/C583enOHTvcieQzaZg1Z9LRXYMEdwtxZ47soJ+Gf6LHJmm7CLvaxkuWgtXYvft5bNU6ExnZRsnOcma9noSSGXXfKc1A5rWj9/2SmZmtxG7K3W1JUeU99kMzMzsNO60W/eT96YRswL8Uu9kOyexKI7g/aw43bG4jJ5GE6fa9U4OuQGqHr/+kTAOx17vSDrhbfoM06cyu9C9W4nqU3KTGREDtUucKd06Hl2DWNW6mzCXTJlZz1yF30skmiHEY3zUuw3Q2mxBka6zs1upktnPu0uY5yaBcXIvyf6k1w2W1aPouYGbTpbyuZnVhlrTz7PHHH7fhw4fb86G1Hp9kZnvhqO5i9VmRiXfIZ+qoJ05QwXO7Q7Pg7/2u2VOlztnumGa6YlYN7gptT8VEyQ6zFiXlfjF1XXb0MUsIN7vWUWpyy2NTsdW77jMzs1thIOpie6afgNQmyEx6R6o6oFwZOXC/5ls1iS9sxllz/83MzG5CrV//TJ6ZG0a7UF6McpJch89GXT0z0wBmvmG/rMFuyFmS+YK3PQlZYUdBN95dVrH5mjXCrBznmXKMWZB4s1PkHLNreMOmmeZ9Bv/Z7rtZo5ybNWfL13tU5bXz1+Z1dTcrd6Kuaqw7Dnrx3DqzP24+SHrMgcplDG4FFe5FLWuVoD4z647srC4y4XTgAHfoZnzvxPZUUi+76nKSO3FhZ2fC8P9cqvTA187ULC5mtlBljHbV7cmeLbaUpoPhEFgDzt2hzAhy0s8uTh++koq5VQm/1gOa62Yq9Gf2z+ebmdkMjMX1pOows8eQqnHFUQhKqCKSHL94jku5Mxm6OkXswjLI4nj07+p5mQsxQ0VuBzf6ZiTktZsZVtSJMxuMy5qQzWDmd2RrBoD1kWWC99BMBOc03r+nyh+tD2gDnjCz3Qakx611+KeWaE6YKYC6Sb3M9EuREV0zNPH3lH/aI7V7HFff97qbHtcp+ozjrM9HuaK85TLR8jP9M9sqNrkNcVORTZL2VjIqFRlN4LtHSYzXhT6aiT6jS5CsSG87OD3/ifZFMyt99mfay1htbi7xxyDgkP7kYMevLu3T9PGpPzvugCX4Rzz7UJljMHkJD2myHDKc1FEyXtZpHJOnXAR5n4U+XKC2nrGQC7AnSFbVVYtcXcqWZhCHDE2DTS5iV8324bOhUsY1A9ICVzdng3xcqfEx5SyXnakVhlmKqU8dJF/8dqlJHcllpVzfbOJmzcwCiqosHQR9G/VZhYpt9Rmp1A5TFvAcR0BurtAMsFQk3ktkmtmHFvuMJDKfotujSDI7uUw1Hn1rYs0Z2Z7syyLccsYBZZ2568EO4FceTpsvJ6EKXxqX7NQldoyZmd2/r/g8zu0Z06i55nyf+/CX49lHidx2wTbsjmB8CSfJOs4+m3w9FSMlDuqmzXRZwnPZyqdh0r/Uj4VZ04yFzCOrNJMT4wTG3S/EXytoT1SWGJdU6Qp/t8CSHp82SHqsrHqcr1TNCag/fo6hmUr9OcqQtpWCT9+Uy97uM7Pl1tX8eoTE4kPbU9mUhVHn87DBo5ClbxIOl91lO/wszfm4XjUaPuLs22Qy+ThKsvEgq+9cTXo7ANCdcSTYc+P6y/WanX+WWL3YVZMOLlP5r/goYuc6DizJ+A/60XaU13Puphl80PBRyMDWVRVPVslLq3UWtb+tKBFymdA4q9BsquxkygfXUDoyvx8Aiszf/L3+NpeBzaxhjj4EGRr76Ee8Ppglues1sxMHSY+Z7VDnKJ6R4/7McZ+BjDZIswpTt6rYjQjaV7GtTZn6crKE35G1rZ9rFdLW8cz4zTYyzlAlg68fC/vSyetIjDZzTirhq476Tapz3XNl5vuFGyU5e/uOYFhAt5//h/Iy65ersjVOwzX/Z1xapzxgXenUe9+IDHicdpBdUpNbfozPjznp/ujv6+dJJcaYZE5hFjmNK911CqhMQce4vlPH4X5dW6qQD8YDXV7e1HfTDuUyFXuwbYzb9d6eWScXb+t80KzUA82YSn9DO8l28W1Dr5kdNQh6fInl3xkRfu7JseuQOnxGn7lSfGkxBuwXmSsVusp21FFqTOSvCVsxTHSsB7bmPMR6JzFmy2kNYps2jLu+YaRr+TzKD6MUVzNrx6QvZ0E53tp5TzrxnrLOoxDt3DujFwJanlnfL48dMTO9oLrXEptIx39B/pQRltnEO1ByCnqB2MTC//CYjwrMStljhlSOj64VE5z/+HcsOWgGQM4YOB+jXRBGyyEY3z7qMdc+cv626l0J74GXAIdClq7WuowxeS/Kkma/pf5R3nT+Tv1tR0l/yPjjL2b2gQ1c41JfrMjFQRwrCqXaIt7fs9dmBHgo/GJTnKugbvp3hHqMoO/XzNLU+UxGXGI8xo5Tpm6Ok16Hz4X+mC1sM3xHw/iUplxudedHUz88DaaenRFnd3yxrNMq0tOI80iSRmM54Y4372BmZv/4m7vLSm+jfKBhTEbbrXM3yO1Y1CnYk6rWhLQl7Sjp83htHZM6Sh8na+bieSi53rTSlWat43S1C44FqJcp0ZUGgT1cMQdsQzsKVjddE6Idofzf5b6blf3Be+T8on+OIZbmxmcNYkzdKt4fCPQNCNfqMv64CbRZXBfJzR9oL2kzvpo5x99zzUyZzWhP2I7MunjT+2qtw/GgjlDuMozIJLjKkKK035y+HGX/YWZmByzEvTNu7BfjEr32Ny0p7++QSdzM7Oc/w4tYisS5KBdlGPCKaQz6dYy+R0egMAR+tU/nFuxPn5lX/q9mLOZTnewX6rzKos9GT+QYf2hPMll8C+TeSfhzlMWBvKVXXa16T+bhmXqqkGMO0kzog/X/H5eU717MJKYawFx2JOS3YFHQ2IjzA78OretgjIW8rqtw4/5tsK/F+yHVVY5rjrXD35fndP7C30PesyxfDpwjfEWO7ZIC83/eLjHkzLabzMxsY7HD7z4hvcR+FL8bSLzNlq/pP7Q4Rub6Gnzfdo+WE+9nfg952KWOI9TLTL8U8xn6oRxjOseplopZtfLUArIAU29y7yaoL4wv6e91nYXn6PsZ9+j/+VAXMmsoBbyuaxxGW0M/X/V+ib/LsGu3XIdW1ku+y/C2TOfxfTaQtepbbrnFTj31VDvzzDNt8uTJ9qpXNbLTbr755i3aEwisP+bPn28Hn3KZ2dE/f/7KG4LPbmL33nOXbbfddi/uff6O4P9T8m+KMWPG2I477thwbMKECfbd737XzMy23jrRIj/44IMN/yD+8MMPN2UVJzbddFPbdNNNs+cCgcDLA6HHgcDLH6HHgcDLG6HDgcDLH6HHgcDLH6HHgcDLH6HHgcDLH6HHgcDLG6HDgcDLH6HHgcDLH6HHgcDLE3vvvbeZme2zzz6Wyz/83HPP/a2bFAgEXgBe0n8Q32233ezuu+9uOHbPPffYG96QdraMGzfOtt56a/vxj39skydPNjOzZ555xn7605/aF7/4xabrBQKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEXhgWL178Ujch8EpDvzUSsAcGBS/pP4gfd9xxtuuuu9o555xjH/rQh+xXv/qVff3rX7evf/3rZmbW1tZmxx57rJ1zzjm2/fbb2/bbb2/nnHOObbbZZnbwwQc/z9Udpg01W5o7Qbqs1ZlznhIxR09EQg3+nvQnKq2kLXGUbJOFKmW5pwfB9XYXuihm0OemnLGSRZ2Uy0tB6zIR51YKJc8E0AaNwPdDQWV2lvCGDHk2lYuwe+/M9PvNb3qmqDJ1k9Qvh9o3zcxshaV/3l9mbyvqPGDbmJnZXD4z6ayXFVUK4buugraEZBpzwepymrC5/HbvRP33MbTj7ocSrdjP3zWlqPOuR3+SPnwrFRP+Y7mZma06ZXJzQ0idNAKlMkp1gipsDDgE15I6rFbWme2y2tdRtssxMpmshkwch/65VOqs4QfSj1A23iGVlPrGSjo3M7NOlFNAe7KMF1eKE9x3LH+ToU0vqElWu1IpdXCPpR2N7VH2nt59LNH9nWcbjh2spOjSdpDW29O2iQ43UQwRagY73Dnqn9LQkfqGnV5DuU7qgPaHlIInnFqeugA6ORn6uPyOxsuZlQw2ZGsjZcxIqXMj2jQMMrk1LnNzactIF/RVS5TbP7PdzcxsXCGcZgaK+7lftkEBpeytQt9LZqsZdouZmX3f3pcO6CZh2rcnUIJdu2ABMit16SSUlLMlQsc1Fgc/gu//DcqgN8l1TsIYfh5jcCbG6f0yTvdjQOr43slzQiM0EfK/kgOmFGikkKJMUmdvljpbuDqeUjYHyqJSBVNQSCNHqiBnJ8ys0J8xkO21Ktv0bUoPZmZrqDNPVbRrQ6F0Rq2owlRXWZ9UR3+yJhQ0kqQFEwqnnlaUXBkK8pV1fCclnMYf7GPI3ULYzTahdjsCvpamC7pqw0Tpe/iZ44rvJeO82VrEFRMTbdO8M5L8bWqlfzYyOP0ryhtsUKBEc314jhPsgtScZ1P/XrLxMUWd+qO19IFsidRH1XmEX5s8kp7rmanoy7reGc98L79Tx5Rqi3aaFII1OQdf+xraf/qEHOU15Q6xWU89U4fjS+rgCzN1KJuMCTS+BLXXyDloT04O8fueK9xxpQtEOwqKaaUSa0V7SLsyGHo8yZLueWprximZmHoJn1Vtl+8jUpaqjnHMPZQHp0AAAQAASURBVF2aPif6tTAdtKUiudMhX4t5HVLEaRCqbTOzIbDxfUKtOwLlY6BP68dND5V4fT4/wC506TjDN1C3SVu9oqwxFoHcM7aJmZl9ZkGK41a9EHbU9cT4D4JS84DyWG18PX2gq/sann2e/hBlB8p/l3MM/24FdeTrkElgigSLF+HiQ9CPK3hiRlmnYOWjTGB8V6k+0w+S3o4/UvmB31jq9W+CfP5rY3sK6u1rpA4fmnJMu6QTiHkoqRs6P/QUnqhDelMzoTpWatLB9MVKbfhVd64VRaFC6Qo9BSL7JeOfszSqxCxXhzGOxjR+LsD5S4aeci6udxri9N2nlueW1PCB8tJRnltMO4KYaBqeZ+mqsg5l5p2YnK9uMzOzo/YufcPIX+A5MD+bsRea9d/NTR0IvPd6tGT0tC3uSeUwGMNt7AEzM7v/LLFtH0T5Q5QnlaeKZZFimgyK0xFS51WIT5Z04ADHRWNgjg/jL8hvt/o10qdynsrrKBUz/OGd7nvDOLv1mVVVFO3rA5VtxHHFmk6OIjjPbtcI/d1g6fHhZvZt+d6KglznzbdZHtr3/jq0j+p7ScHMsZ+HUvWbcxzK4J6ZOhC8Yq4up3q9TntKczMz2Mw5+IrlLBWTe85INuKNX0jxxqmYo6+bsklRZ/ixiKfTcpHNVWbq9YC3pNSC/U4tbcfXz/6omZnVEbM+axsX5yZ9c4WZmc37KGzPEuiGuqhVuNZ3eZD9K/EK4+G/4Os49O8aGf8hsId91Juc/Pj1ldzxVnKXC1zo+7aQY5Qh2gH6H6H+bsLhKHURBb+rol4u5o5+/Ut+w8lOEzX8bPn8Cxu85fSZZsaXbLrmd02mrlnps8zKiROpxGEnh0n/9lA+fHwuMVZhXzPrEL3Uddowxg7aVlDT93M8GmmG0+15HdiRIZjbHCS00VdDhjr92G9ZflyIsULsvTGU/scbvbuo0sPnwdzzBqhMVfSxvigiqDNS8b5T01rX08NKu1IsHd2EkqbrarnQUDx/L9p8fT2VR8wp6zCvzpLGZ7fvyXW6PZU57bWMO+0ATU6lrox3pbk5jVkRI40TH7iG+uvlTuXlUXeO8qoxNG3FZ1FS31Q2aGO8bCvFO+eVj7o6lKknbXDwgJn9Az6/LnPex8MdKLVdfB7OU+lB5Hpd/MDx/lh5rpfjw37kWKjtoo7TnyI22+mzZZW7oMcnkaI9pzlcM8TchiZZQ5Je/G58mo8dvsNlZmb2cPF8ZlvCdr31QwhiES/P1XB7kMFemSV+/oqd/sXMzNo6EdPz/dD+8kO6uDrKUTyxZ1lnEsrl7v1fw0sS2jwGKoyJVW6px1zgqNDVobhXr9bhjIFjh/s3rEFSl/gug/J3eFmn0K0qW0HZhg272q9jmZX+dKg7rnElr0N518CH/udRV5cYjLj6ZLO24Wb9HfjO/jgC5TlSV+NQs8b4i6DAsM2ZeKoYM/a5+mD+jvZxnTuuoLxBAYccUp5qivE47rPKOoV/ZptXue9mNgPrpIvqaKrYhfPSuL7m6GSgpm6WYs3O4qWj2aaW1oLeAvH4E7p1IEtcR74nc/ALqXjsOyPMzGyTWvlO7hmVczOzbj6fyN/JqHMuvhfzEB3LdpQdKHUmTv2FDRyHmHqNvuBlm9jXHEtdR2YfM+ajLLRLHQYTHHuuZ6heIobupYU70v3WrFluCfHz/V5e9pV6PMbrwJZz3dTMrA/v1wr9hdxPlvXSpv+B6LPmOcQLxTBLvng9Fk+L9f15OKC6Sv8J3SzepeVsIu3UnplzHn7GaFbamvNRUlfVBzPeYnyg64vsY9pg+nmd1DI+59od9GCmjE8HSq4TfSDp7oSjfldUeQwLRLvaL9MBvgNW34118d2+/2szM1vx2kmNvzGzS/ZIL6/e/dyPzczskb0gYxMkrqQfPhPltNy7IzwXg/PlaksZ31B/KMeiz534PBv9cCPnKkeWdfog77QvxXtFtcl+DTW3bsR1phrKnKxizIdhntrD/tAgi3NaPo/em+vHHGd2jPpg6r2fb+o6GOWFtiv3Lo3nhppZW+b8C8HsxjlK0/90cN6qa8SYN+haUhPox/l7xlh+zm9Wzh+ucXXNihjkNTzF676juY4xlta2/t4dowzp2hfHB/9j0s8XvGpfKDsY3y74nDuHFzWOOjjFlu1QbM6RD/jfMv66EP8T0uptfA4c9RlHy6QWJuy2Sak8pb+Mm05/FV4MXVVL5Zkoa9IviyDDvbB9bfAt2fkqY0W0ZIHWQX/QtnOcRkiV4l0L10PY9xpfnoKScu99sVn5rpbz1k/JuatQ0oZDL8dIfFv4Es7deJ2Gf65CudIaIXFck+3x1zNrfmdD6MjPsHIBsTX22GOP560TCAT+/vGS/oP429/+drvxxhvt5JNPtjPOOMPGjRtnF198sR1ySDmR/exnP2u9vb121FFHWXd3t02dOtV+9KMf2bBhwyquHAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQWB/89KfVm7D23HMgG6UCgfXEs89fJbB+eEn/QdzM7P3vf7+9//3vb3m+ra3NTj/9dDv99NM37EZN2cOZZeEqd1x2TBZbJmHwJrencrns3ByPHVmrmQEBu34mynVWczc/dodNwPflutuI7cHupzbs0FsiOwOH4h/ne7Eds1N2G03DNZdihxU3P71JMsdcj11kq9BmZvL8VCkGm9+Udns//tWU4nSjB1Olx+8sr/Ojn6fdw286JqUxYbbw3e1nRR3uRpv0NFIwIUHCXM2GOgBs4coii4OZveW0lFL0P+d+wszMRo9Oz/4a2fX03i2+b2ZmN+30YTMzW/XLlBJty7PK3WCPnJ76/OAD/8vMzK65+ePphGYcPhC7s+v4vgLf3y51HkP5XZRnobxb6izhrkGMFzen6aawovk8iGwSU8rdf7aMspN22NqdslubO7iXdeA762r2UaCTdbjrTndMsnHccdyOUjOkXY7SZULolWzaw6aa9a8rM0NvEJ6wcqekbktmtiC2n/oo7erm7kzuxkeWo4Zd6j64wU7saZJtcCl33nHXIPVHs31Q/7Ez8ILL5Rx2fo7A15nYDXy/VOEGZW4WfYyXzWQyn4q2YZfm/T+Tnf9rUR7IliYvuscl5Y7fuf9qLwruWFF+fut7U7nLbengIVOTXeuZ+pqiziNTU/qVGXiuq49Pel1mMbSyj7jJ9X9QPiYKxOH0m/FX6Bdk2CqGBfZXkmyUidAoy7ywZFxYCXkbgt2ufbpbkxdgNi/Kpuqqz8zgsjCYmY2EMHSzsVUB+Dfcd2UEOLvx1NoO1y4FdyWzHdzN+4QNDhPA4WYnQE4voJ3JZIwsQKPos61q22jTjytPdTMrB3a/775feY7Z+EbBnnUx64JmheF9ayjpWNV3w3bORB1mwtfs0zfVrAGr4Kd3F1u6BEI9Dbt/GbNMkt+dnuKCg/85+ao3WcqyNLagjTCzT6fiF7lhHSQU+9nbUhaI3b6Svn7hmDOKOr/cYlczM/v2U2nH/eNHIG26JqqD2j6zJeKdIjGHZLcYBxlmgq+nj0/lSt0ZXpXNCPa+06dS11iPckJWF467xofMvoCxL3av+wxI+vvc3nvs1u72nEjjM59rKBkHZrL5djEebZU1XME4s8c2XI/PtTJDmlmps4xLc6w8hOoPMyUzQ8U1rjQrdRzCk5u5MMN3YbcZH3yorLOYfcR+ZGYHbQ+ze0A+mEV7vjwPH7sfejwXenyTXKbIWkK/IYxBlJlJ+PpgKl4zp0gHV2RSe6+lGNZ+lIoJuUQRg4QiZwOz/U8qz33l2RQozJuITAiMb0+QC9AwdKI/r5D5xztRbqsUAiZxqlkhO4yrlzLeEbtfTL9g57PZ0jj2NIK0s6pzdPZep1SfIdNFxi0+j2bgo477bLzqq6jPiLvGS3bw1bzmo411OqVOcd9c5pnBgGagoJzOQzmQ/CGS0bPIYENDz4xHmkXlq64kVLg7UM5ByTmKZkDmnIa2J2NzmGXmenyfhvYt0UpoxxQyXqliucx/zCavWW9/m4pJ2yUZWNGX6G8u+9G/lXWQ/fr3yKp0jTLsbAAorXWZxmwBM3flMYeZmdmvfoKsHo/JD9lV16J8m5yjrl5KuUc/1yQzCRPBXQl5HYOMTKpiXTAIw9BnPTQQOs6I26bDry9mpizNag/57KFes+81KxzljjKRy3xPH0MflYsnfV3NrnKOq1PQGcixdpScY1UlM9jCBi+P7TesMVh81JUVKBgScnGUt0/Mpqd66LP785lz8yHOp5DNS1nylmBc3ojvy3RSTFvO62QytQ+ppfKCeioPxXdJ3rPDUWkNZjac9XWYj530oYvLSitSMXeQdLQJPyo/7n92MkyfsP80M7PvXldOQjefjcCAYn8CbKrG9m3osyLZLmLphTLu9DfU+TUcQ8n8RSaybtptjp3qqs8ozbGQbLOTcf9infR8V9eslCmuq2gWYLaJDwmZashIyA+cE2PeO0FkaZWPhzkv1GxnqFNkIsvRLfns1ZwT6/rTwzZ4TAC6SKoxsMsIWvhTrdMi5m5gy9oiX6dBVyk7PuutWWkPGZ+gfw4SW3wX17jxu8L+y7xuCOr3IRtXH+Tl6vPLOjPwu1/jezcWkieIH1qV5PNt30zywrXn1TKfOuDPGGfYgfEofd6tDUHBDoAkW+vGpczhe2xcBhodX4OSMhb5M8o+dZocX/hDiq1mGS+mCfB1V8/Dd83syfGsocxkji+Y4dCfLVkW9XcqY7QV9Lnw7yM0g1kHSskMb2aN2YA5z+Z1INvDxMb3+Ayprd7hmJXxeRMVozVnRqQ+sL8Gk5nHMfFVnqPOadzjx4zr2ZrNzs91cnEP45wcUyhteg0lYvmlch1m9y9+l7MzGCsOPddmL5YqQxrZHa/ca46ZmX1zdJn1fBOw4d31nRR/vflc2Jv1fHf0QvCQrIXffUySwaGbp9STtV3rZma2aqIsSLNbGaYU5LXyroYMoQ19btY4H6Kv4tjz98qiRrlljCWZ4os5Gt4HFRmDNUaj3XbZb3vU53FcfUyq68pb2fMD95iCWKBgDtZM+pRhfy+VbR/Lr7Nm5JipBgvrwNjsM6lzvHIxMMdF2+XZb6jHuZhoDkpm/JU4rshqzOtxvHRMaii53g8b0qfvoOjXeQwyda+Mz07I+trL63AdTXT/Fn5AG0fWilMbzUmO8InV6b3O2LemNeodrcw4PP5bUJydUjEQrjLith+Wn9lzT/QnnzIULBCTtlhR1PnVEZgDX4S2XoX442PCbkIGgIJ0g75Y1maHwYb1sB8yTIfM8LuGcqJySzvAa/K9ocZlPMdAl/qnOk8Zoj5D3hpiYN6XPpLtUbmjDPN5eE9dz/JZc/X3Pss32pWdS7qIqylr+IuFHmtcmBgAuL5fZAefJycpqTyXYxFtBY2N2I+w36PwErfrfGsG/QXj7Nx7B0L9M8cHvx8D+ctmO+eaB3zWY+KzKFbtqXjjNukeb5J/cOCa9dBX4Z0n3kU1hHrboARByHtfm9a3f2glJcDNiGOP2CjZwC/uj5t/10oUj4j45/e4SU3qrMV66XLqU2atZRzeCRaxsLJlYK54I+0k2US172gPHDNHg6y3mnNpVm7Gx5xvYk49SsaZjD09lD/eU19c52JNwutAbgaUywZu1rgOxgzKvH/uN1grG3pa+v+Pp07L1Flf/Lrxa3cdH2ifGAPruh772Mt77iUSs/VflDlH3+jnD+rnMR9qWjJXBWD8xnHW9TnM34qwn+MsC1gHIc4mQ+0wyG+WEZvvu9O5SeeUOjYRY38vFtveQypJ+T+d9ckcThQeT9hj2/FO/A39id5aWUQ23ymtcT3+TrwfJjPA1bJWMBJxILPAF4wuuWzaHI8M+xnlvR99yPXoHn2f4+LjLOhPacspdxoLLHftUr10bJd8r7NW536U26o1al+31T+/KPxc0Kx41vHQ0dXzcFx1/vc2kLXqd73rXdbf329tbY2sAf39iYnpueeee95rBAKBlx4bvdQNCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIvPTo7u62xx57zLq7u627u9sefvhhu+WWW2yXXXaxRYv8RslAYBDQb2lvxIv59wrES55BPBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAg8NJj+PDhTcfa29vt/PPPt+OOO85uv/32l6BVgf/T4D+Iv9j3eIXhFfQP4g+bEKhbM1UZKR8qKI9ydEirSYFGmirQcK3UuuQLAZXIKtKxKC3MpShBK9PPOkIJQ1r7XtKVCCHXUken2gGqiFp56DV/SdR9T5CKdid3XTN7/Oeg+QB9/JtGJx6g8aNLyqL37JyoSJaBT48UJccJLQtpPl+944bRSZB8hSP3V2H9eNW4VI6em6haxq9OdGWjtitpid+xUaLJ2vwjicZkx00SHdHSL04v6mz+uXTumvd+3MzMNvlWko1n5omjG4OS7CX3ovyaNBa0iQWl4mtQCmVLQSN0GL5eSZoZkcc21OkHnccUtEPZVMaDsmj1Zqns+bacxFhNAB3SKtCqDBNqq4IOqa/xNwVtrN6Q9CmU8Q6pQwpQ0v9SJoWip2dPM/uLDQ4esJJO72E5frmrx3NCvTcK/dp1HQ7kqMhJI0S9A83f0iOlDs0mnhlyaGv0Otc11jlZ6FXPBWXfYk+zLOZ4NKi9RuA7N96NmVrW+QA+k03m86l44x6/LarshR9eAeqk8+ykdOLsooqd9oVUzj3DBhVK0PNWyHvfBN7+VDNrpBu880dvNzOzzr0T/dC2FyaZvH9HoffbBSUPwU41MGVRt6h/dZQLZHyOwLhcAb0r6I6lTh9lgbrC70INOhaWqTND2U1ONtINvgmHlyk/eHEzlDwnclvQ/ZK+iG0USudCQLxuVFH48V65yIoWl6NI+/BkxfXWB98wu4COh3T0Ms7F/aijpEFUI0jaRVImecpGPQaqrSVyajZs1430nRxXoX0bBZvZxTqkVBYKwCEYZzJiFeNcK+t0wZONgs4Pxb2XyPiQPnTpvFROm5PKd0qbQbE1FDK5y9Er0oGfSx2I9N9ir+5ppORFN20ldOwj7DEzM3v8RsQUk3DiArnAsygnYFxvhGzP2rmsw65f4+8utGtG/UO/zhA/tsjpwFD0c2+HHCSZGuUOlF+Mx8ysjNFI8wm7MGNGWWUR6Xo9dZ88j5Gi2FNjKy2kp7XPURSSPi5HR+lBPeA9B5FGexb6cwGplHkPpb31VNlKq8d+5TMiFh/VXlbpIo02hLuvju/qZUAN2TcP3//oSrNSfwsOWTRP6A/ZxINQzqdiy/xhLbUL40p24eVllcIP9TBWUzmEjVk5J5W43Jb7dZnHQ+jHkU+l5/j2T5uqDBroEWZQtS4rz31x3Inpw4inU3nCpqlcVtaxeShPwDNfIHHtJMSx/4LvHHZylpqZ7Y6yySXJ+JDGm/ctWO+UfhcyeBB+dy0O92uM5vWZcquWk/LC+89DqeSL6xqPTUfdxTreFCr4ugZZ8DSF1A2tQ9+PewzZOdF2PnuebTjeaY2DmKMdJegjGefQV2bIodtgn3bCuK+8Q05yEkrfTYHTeSz7mOPEObpSLnJCxrhA5/gAY8aFtKkMmJXyFM8xDV+XHSfnMJ8chfoFW+3ossqkVKy4Jt3s8wen+NaEvZr2wBOUbigo/qP1IEzvMXaJmZl95PZErz3pxFuLKit+iI6ZgwNvyV0dMe8QyKgyvBZ+Ff3yPny9QuNb2MceUjD7ONeskP/FrSjnTXSK/pXxrRoKXpOyxXg9R1mfow/19bdE+cdM3SoaUu+Pc0StqkeD6Isb/OrDLercJZ8hKAVlcm5uDclqwxy4n/e4VOpw7oox2B3jtSRHj8prH406C+Uc7nU3x0ljIuor7TPHW+bmNAPvqaWSorRPubr7rG3cUPahZGFmdtsfMs0eTAjj8Nfsk2Zm9gjk7fMHnlqcO/MaTNRJu8tlHl06XIqHvBUP3421ixlSaRH7mMarHaXMV7tJKc/1M46pxp6ch1GGuB5xTlllOevo/NTMppTPZcv4ILxHbg7K8WbMp/6QcqrybmarbpMv9Ks8lqONxv27uSCSawctK/3iw64cbHRbw6JsAeobnnkcxrdpXiTgnLLh5ca3XSX61ZwtezRzDOMxFL62F7J1U3tZhe6c8XAP2n7Z0WUdUlCvguwchrZeKXOlOspuKjLijFUy5zohxRcrH030zL9+MLXriB2vKOtwGodQvoo8eoOBZx++Z1pvf+PP7y1O3XZsmsD39o1MB87kvEZ9FIxDwXbO2ErWB9uwplSMK32V0HIXfotrs1wjlfWNiXNSuRKxUbHWpPNe7880NqJO0SZjDJdfKHXo/6CPY1CuVX32lNuwIT3aL+4dRzlbkWNsB/onO9K0Z4wVF7jjz0+jPXDk1voIxqHsa46z+Oeir/gcjFHUJjsdHStj18k+Rv/+Av2yW25dkL4afd+wruE/8P6yZleERHjmI9C/QjVvH0b5/lQ8d92rzczsvGNOLKqsXIjYCOo79wb7m2H0e+Xznck37rhTWqPe0h4xM7NVxfqNlWvMtHeXw/ceITbsuyi7YSfHQkfU1aylH6aPqaHUdSP6M+q4dEwbdLx/uKuzZVmnkCuvGzrfo1+t0gGOPf3fbu64WfGeaxnbQWNWtR49EOR8+Cko6yjpr9eZ2YbOjzvMbDP5zng0N0dm3/l1PbNSOWgPcvMXttvbW1lH6/f9x3MaELo+OhSyMUKOXcoYgO2opeKNYntGwQ/18tps+5vLOv14zzUe95Bl1+fOTrptJ6X1otV4T/we+2FT8x/CVDSzitASU/ctP9/3/9KFtv8a/Clc5VWHf7SoM+HBevpwKOSUOjtLZs4jUC6gnas337iHY1ZDqXMc6EKPmxs3PBn7j+tG1Bu14+xIxKVFHKdzLoJ6DHu9Sn1OB0q2ORdvc8z92s5dmTr0LRLvN4Eyqe9MGed8x54fE1FWrUOtL95tZq+2cqy4RlBD+VWpy/dRiFv+P3vfHmfXdLf/HaaJCRMZhpgQJoSKiiYEDU06eRuXUK2o1jU6SutWda17jbhXEUqb0mjGpUKbikorRbyZNiouIXlFDTo6h8Ggk05kwpQO8/tjPc/az1lnzQjOuPys5/OZzzpn73X2Xnut722tPev5trI/dR2A/fB+7BnjIF3APSL/XBuvJzpmgQ/33yWO836CchuLifD71libJwZ1a12h05A/ocQ0c8WOg8zM7Oo1TrAQ692PD1eglOXFBnRnDVxE067OLrxl/XydcvTHeU/AflOUdP2JQ0k7xXdJupRZgXFqz+GA6NhQlP4ZOaaqY+zj7YNzG0sdjVHNMt+p64ucg24d1JX3+b7vKX+wGW2qzxwnxqyMCVR+iaMj52grAhnPw8Tge2yOQv8Rro1tZgXonGrFW+N6yKJz43EQpoXsF42b3o9Xoe9kXKvv4Sg7XGSKxUi0XaEPj/2rHVeC5Z12KeShiXNXPEeV+KhZaMdI+I1luNcwkbcVKP18zsnCq/L+fmfI5Oi/YXzpjoYUtvqD/O+lWrkahAIbzXvdzMzKJ2VyV97P/YPU6+zOm/FhivzPDFXDv0aE/lXJXKeVD8AYjfKq40+doM/lhfX/NkJ95j3kf/G8nHQG5Q1SJ/x/DVn7sNCPU250FT/8H0XKiepnOCfm72Nr3qEeyHe+J5tFeYn9T8ar9mH0uLKy0p566qn3rpiQkPCJwGfoH8QTEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEnrC//3f/+V97+7uttbWVrv00ktt1KhRH0+jEv7/xkfBIP4ZxGfoH8RvMCu7JPva2RMra4zFlLv+uNtad/BwF38NSuxmLJXdXF1k5OFOdO4ekp2cZBVo4c487BIbIbuOGoNdycqySSZzkuGd0eDKJTW+yqp1K92Hb7mi7FKwmcyuyK6zNdgBf+nYARu33sbMzEYPyagRj3zT7ZLaZ4DbvXS3OdqF2Z7myGzaY2fienjSu+1Dgfs1m17Pjo0AE+Hw7Vz/vvLEumZmdqMwCZ5vjh759SWOxXTRW2Az/ZOvYq8bjl3r6FjeXoVxGiQNIGshxYMbkB+N1OFwt6DcTep8FbvArsL3v2DH11dkl2ctmXSgnitwfLFSaUAGy7CDVDdVtte7shE73kZDhraQOrPvwocay4fuLiYzBHepcleZ7HotxfN0NeBAjDHlVSse87BZppexjADcicfdmcLytJwfuBNUd8gT2Hk3AmPgd+MrQzl392Ogm8mUpbv5vmJ5eEg+TwKT1jwKCu55vOjzH1GSIZty9x3Z0XobZIeiA6b6567MqAD3ONmxNYzEbvzhs3HPr2aXKTZzeBTb5n89HcwedW9n8jZl91+Zmdle5ozFQS+D9vNoKwSI0O1UlEPlHIfjAuzqfGkNV1Zm/bvuz13WgNfroftd2El6vNj2pcE9F6HsEpqMFsoSdUJ3aeLZOuBjFse4I+uC75Qz3QHN3a78fcxtk7WBURKZCZTNJIyg6FuUUYzP0xPLTDHZDomOoFQ8HpSKcBc8deMsqcMdwtzRLSyzc0KmF95DxmRHlPP+YT2Ctq+Je6YZU0gGihHQVQ4du/MYudd03GNirStJuqPJF/B7Miy8cbmT7bU3zzJ1TH2556YWC3UUN5pbMA2XXv6Or8M2rv8tZ9+WV8KLr5ALdXPMQLU6DHI/t1EqcZw5lmTOVsYV0skgtpovvmEM+pgbsBfm8CFGxRwynChjPQ0RxrUcYzr/dqmjjE2CEsne0U1ZDFnBy+UzdTXGwEnEmIoCVODZ298P08n7xFzaj6bghDIsVq/GhTieGJe2ZZFzBAMwjde5ez8YJ9PxISh3exY2L4dyVnDvUol7KBZfY12yI8szeybE+1Aqw3WDK9qcj1r/WnePs4WZ52VQOdyPWO+pGe75Qn6DYqIOqtWAULNmVHZuB1CzlK3jYrlOc3OEdQ7NWM9XnYg5BrMEnCo28HLGo9B1sqhqGDeDMRGZEOiH6rM6izEeQ092ZUs+SwaexBWzQr+hOofxrKx2pX+MkVInxuZt5hnSzCxjn4AsLojpGplV+DttV8gcTp+g16HvR1zZdbsVL6Z+wMy+G2lPjDmZz8rYIcZohX7ohl1YFrCnm1lGW037FmPAoR+nTuRQ6hiS9Yr9SqYeYfjxcTbaMRH9O18ZYCCM1/D3yuwDZYeu2lJ831eqkKV8a2e3+xnm0X1KVZoP4Uu1OsT3ZIn59unOV/z2WbFBjJ0Zk8wXhvffQO/mwyAws067+MP90Y9kSPQN0PGhcvfmfzgO9O8cO6FZXvBwUJcspjLfLEXA5JmGWUcZ9Vifz3GwnAv9R8jO0hskq1AeG41ZYfYMs4yVqdhQuxSuV4VZhrROCGXIwjh49kLaR7W37Ff47IWrE2/kUGp/QXZqGAdWyznG4Mvz66q8cSow2/n3mm63btVw956+Su3mM80sy3Bz9A317sTa2WUC7uui46Wbs89nnHWVmZmdOsSV+w2UGLQaJdyqcf3rHLnYaMjyEozvaIx3XqAAPSyHP+6APg2V+UcL4yTUKQUrZB5zN20y/RfHbk+pQz9GeQN75mK9Tsjkr0EArxXElSOkrY08x/iiNL+umWXy1dubA54LGYx1/Ya6zeeJ8WqNtOL54wmWDbjaIOox5KM5ttZGW4P+JMNnnp6HsTTHQGNp2seYf8eY+wwaULpOYdiaFvR5CeKF42J2YXLeZeznMldi5pcm2kuuxcuzX+765e2TXDz6+23cevSudUI3yDn05oU/LxbqgrkwQ9YbHj+usDJtzUTY1nLxdXeizFnwQewcu6GRtpx2X8eLOsb5JuMvoV716qLsaPobs8wXQCfGSUyvGdnMLPPz35ZjpfnnWtkujbOpd2TarUbZG1MpGx9m2zLJ6hhmPFCE/p39W8y1as5hqU8aG/H5/xGcEz1sDdtIo679y/iG75B07Pj8uLZnDte4h7LDc4j7n5MqzIY1HDbo7JwrK2OeEraH8aCS6pHdsxYlzNySlVn89Ogkt1jcsteTZhbnwSw2GBXre6o6vF9ase0gMzN7FXPSb26TrZf+/iGwK3PZdgTmtjN0bkHbVeMKzjPzCCgRux6OcWJ8kGdGKQv0g/JOopsGjWvTHEtdv9K4zyzza5rmKLQDpG7V9x/QpV7Xlugr+ZAjI3V6gq6J95YdjzLMGCScPxQjE8Az5l6uoa+Y1a4ttnZIH8u1d/Wz4TsrOjvNVhYyJjPW0vd+tBG8Hu8pNtnbW9iRHL7m2eqmoC5tiMjIcvokXjsvRxWAca3B11NFYG/h+0vnl48e4tItH9Lye1/l1T1c+UF0e+pd2efNSlw/1PI9m3sVbI/5l7KWzdFpl5jxarasxZTSN1GfKGM6ThhD72NU/qGjfP/fhawBN4hMHxFmm4VfHVmT1fEZyDHe3cF3M8ss4/ygVISZ2qgbsbUd+h32Ryxupn3QeJ19RXvC38fsQtgeRW9rSh8W95nTY+omndLwSF3qJn1sjOE9zFi9U6QO9KcEMuXHMDZXYsnx0Xdh4ToGdVRiRqMy4PdloqudaP/h8NUzI+uLwzCezfQXOTSjOquzAUrMPfv90GXIucf28FWYEXrTWU4fm/7g7rm8JMvqXsP3Wl/ib5x/3K05S4N7xzDnx2q2c3LScAf67GuW4UmUfCXJ6ZFmqN0X5cxIBlZea3rk3aDH00HJeErln3pMf8OMC7EskWEcqu+LwpX9WMwKHfcZBXiPyVmVCVi7i65Dh0zFjJ1VbikDwfx9tXIfxuzKR4CF9fhQg1L7kjY8XNdWfxa+e47MKfx1boicI+irqZu0hfobmd+aWZ4N6qIs0p7A97aKjxoKe7KM8waMT3NsvIE/uGdtFQLnBdtMMDOz0X91+teIcENzsH2Y/7nM+w8YTDlfmeQc8xDLXlKPwaTgxavRD6dA/m6R31ejZNgydMtIA+lXmTGL8fIRUifM2kR7KxlY/HoaxyIWg/aULUZjbOoLxze26EAfTnnV+V5opzsjdeijuGZI2VYZC+eQXAfYLjs0K5Qd+mKdfw+31Zkbb7/99tbd3W0lJSV5x3fZZRebOXPme/4+ISHhk4HP0D+IJyQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCT0hObm5rzva6yxhm244YbWr1+/j6lFCf/fo9sK9zYnfGh8tv5BvDO2wypkmFMGGu6B4s5u7g4KWSbN/K479uhYObWQu3q4Iy/CatHC3U+8AHYAKdGU35WM73kbg7Cb7AyyQdS4QjZQ22KwLG/tdqV13laR91Mzs377Ouazt1v7o8muLDss243/1AC3O64OO5uuNMfkd/TP6rMLoY1XfkjmcIL7vpSnqwE7UbmH/tx/O3qlh9fL2N8m2AIzMxu381/NzOyK693213Xnv+LrvH4pWIRvwY6nbTEG2cbYbKiOcvKyQ7frj8cGyE5S7lwl6804lF+W6xyHfhwOeeFG6jGyw9yTcmB32lg86Jb7ZXXmQW4PxG7CmcoyUI0Su7+W4NpLdFckhai3vfvc8UYB4bOKjnRxRGKMCsQkyxi+PyzOtIxZSs0Xnq0KfdTKc2dnVbp72mGp16Heoe4w9F1ezENdPdvyUCFj2N6AD7jORDnnd0Zi12AZ5FU3s5PtYDbKy6cW3mMHlDAna3ze0SRV7LnCVzkJu877mdvt7ckgeiC67Ss8gQ212/3TlaUDHdPwilerfJ2RQ91O7AdtFzMz22GI21n6WLXoGO0hN5tzM76ShXB4qGMbg0VrxAG+yusbQedpp2uw/Vx3n3t/wd2YZJdQOQpseZ4MXIQP3EkasoWb+f26VZCBVu7kVj/EzyETodahPlMfuWNZd7SGLJv0R8ouRl24yPLBHbcrzcD+/uFwnGU2I2QeVnCAadPr5VzIhBZhZZkMRp07UebZAPYVhYq/l3vMq8EH/L4KgtyqtpQ70bFTuQQGvFqqgN3fM+lzuKaLg5+Aa/PSB7piRHeWvaPxytFmZvaOrWlmZms/DeZw0efh2JzdW69+WDwMkdn2UMdg/lx/J5sPC/NqMzpg+VXYpd3O8RJfMMbV8cRH16K8VNgxaO67avMb8aKw5nSQ/ZQMCSIDixm/kQlBGZMI/o51ubNcd48ra4SZdXAntjI9lFkU3eqfaaxCxghlMQhZPz8g2ue9d50PjApzz8uZWcjoqQ6NgQ5taYydlf0bMipbhDEjwkAzAXUWsH9JFRRhiamAwLXju3Yzm0gf046d9l2SaWEQGAfIXjIcdY7MqlSd7oKG1hL6HbE95XV5j7H8z07eGvaq8VXKICdH4jk2BguDMicVG1MhpicxI40kY9jv506W9tjAZSW581pnoFbVVGaV6D/JFJeTix8EvSOZDG3WCm0Bg1/0FVlD16rNqizBuRbIyY9R5wLN8kBWF87voE/l1VmVLnxu47jQxwmTcgETCO2E8mwQocVV5gr641jgRTmn3vTGoBTORYsF1UfqYYwNhiwqL0bOET15HrVvfMYwC4gyX5C9IrSFym5MFgyM4VjIwiKdj1AWalzRwOOaWaA6v07exBv2rYp2AIfrcr7GFt0u9n7un9ugVRgnn7XI7OE+zuyhec04f+j+pxunu98AXVq71PkjHuQBxHx/FkaRQ6BLxyNmvIY6kcvqvENmafpzziU1GGf8xtiXfa5M1w35D0L5q5QYoI1BEe0+/bIwaXqmY9p7tkd1BYyInv0tkhmmBPFcd2+5GkJqeGXBDlnKqNea2QbyOXSi2bsrzV4qRkxdavksNYx32NfU65D9TM8xJtasQiHbOe2VxjRk4GEswJhImLsqwUrTFswthsm8qBmyswLfK6qzc+28NscF7ZCETjbKFZtd7AS94UrIn4Ruw0GNyuxyB/7zTndiq6yOPn1fII/tH6p513PuQcrFTlbtghjidggsYxJlTlrC8YBPWhLOa8xsDOJydl0HbGmL6BgZwykujbHYkTpFtrVwTmmW6QLrsB1qoUI2bmV4owwHjIKNulabQ9kbx1WohzHwHk8Ex9V/bBec4z1PkmN/sfi84oOgw6xkd/exW/0y150Zp8SYreB7K6GPbauRZcjj35HPvc1DOK5hpg+TeB1t7cbYDRddJ6t3K7RtNmzq36ROK+RqOOR3A6zBaPhxqCtqhri1Xq8/avbB6t0g/rjYmAqXfxJcysCfuHKH7TOb/NheMETM3sFQSdmayfo+H/pYijXNHaWOX76m/tKibCaVQqY66o9MIDppt7nGgPEuEYPZzQ/wrws1EwxBXaeMKrslfleFcW3lcbWCYRtjMWQ4R++FcdSz6SE+qMrW/qyVshwyurEvVprZ9yP3/yBgrBoyNpplNgbxSgXGOcrIvHH+10pZ+/CZj2Ks0fTDtGGMCTRG4+/wvqukxpW65s1py8yAcbJN2vFKwNJJMTldjpGQGuth++6HlyWyJNRgjtnwW6AI7UvmcIJWUnuubdI6ZpZl4bn1KZdl6cX5sp7A6Soz0lK0GjWupA1nhkDI4lyxt1Xou5mMj1V/CPqbHEpdt6V8BFmG89aqOeZhzKs2g2vVNJ6RzGjspV6z0vHdKWMZDrCytIa+ib2vdoFt5u80BmBbOQegbFMmYxkp3y+68IeYpq2zt8oAhUJsWBl0u5P92du6Hn1uJHuCZ21nbMZ+lblsBd5LtedcuZDyF/oDs2xdHbZw+DHZKao6s80UsNObZdkC8PuRmd8o+4GLwUcOdPb6kCfBHC7vhAeDUHJDZCjoKZ/Re4HWdQbmveyVH76esZUfSnZx+t4TUU7IsrVW3YF4+1j0MzN93CDz1XbEKzvAXzTrOg8MZRd9C+TmiGqpw9bRjpARVoKaMtzfixv7XN+A0zL29m8c4TppbE0nzFDbC8IMRHltwvOUQk66NEgLWZZDX25mFWhHu/rMYmXz+IKZDTAbA91czL6PMQUTjGWoj2p7+Hv2HZ/vNKnT4IruenynnMmYTMY4z+F6Am2xjlPoAXlPzXLHa1JuVEeZkTz08zrvhk8YhzZyHfvL3VmdP5fk/ZwswMskO8T3/obUF9C135QUrhPuzMzqCDk3vssF5S/dlK2NMgZg1o51v4aMz6duJO1B+XmUi6BXZRKT5PgBPqX85Ozc9NBX4vejZQyXcI2Dcso5ns47BwZ1YjLVk73/gKmMusPfiUwt4LlYDBDeN+bPuEgAWSzbMlK1J6ZwjaD4g9VjHl49lJnZt+Q7Y6jng1Kz21E3GVNRn3VdIFyHjsUOq+OdeH/6wVjma8oC7OYUWcDilPrvKDvrC++9inaEPonypv4dNoLrZ8gecsPXM6bsvRC0Xn2mm+uccM/1ZmY2UJY+YjO01YWuoLyEOcAhS93/aP1o12zO9saRbnK+zgn8pxeM6UOSRZ2nDkLJ/2s7RddAKG/huoiOM+PIcC1RhHsJP9MWU+d1ftPT/zup3IR+eWTkc2jbZU2JYjGPsThlYGupz9gu9Ke9Zb+kDVS7EPqdWOauJludDPJVVVX2zjvv2FprrfWedRMSEj65WOPjbkBCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCwseP73znO/ajH/3If586daqtu+66NnLkSHviiZCIISGhCOg2s3f6+O8ziPQP4gkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJ9uCDD9r+++9vZmZNTU120UUX2bXXXmvbb7+9nXjiiR9v4xISElYbveUm+ozg6V7O1aAc2MNxBVJFMPNMpaTv8SlFmJaI6f40ZQnSn1RVu5JpGDUbL7NRtDAPieZ8YcqYLfMuZ4OkyjF4jjvxnan//p5VefsB1EH2xn6brMSdstQxT5lLo830P8PrXRqh9h9mdQb927Xt5Kvd96kvWFGgiZzrmP1nqSsmrvdHMzOb//TXsnZs7jryuH6/cAeqXfF6U5aqqOpcpBV7Fml8mW2zIrvXupOR4ugfLu3JY3/FCck2aHsiHdNipGKayeNS5+/oowPx/Uk2VOpcgFRHFcjz9EccX1PqMF3VTMpAKKNmWdoQJkzuKfW7WWHKLLOstymnYVptsyylSS/pjCoHmr1r+RlsPzB+b1aKNHhdmiIect/KHWpUxN7SIBKSVs+nnkHKluZYej4ddDOfx6pd8mQy7c8+6JezpR3l7KtqVwzCV80284XgFqfiN5fnsmMPu9/vNN4J4yO/GO9afuxCX+VPtpeZmQ1DGzcdea+ZmU3fI7sMk0H2lDSnGGAin+3gcarRnkGDfb5ZOwBpEuv/7fINPnc5OmGFXAh6M2m8U/55Q5C68TapcwHKpSj3R0rP2ZruDKnmKCY0qXtLldkH4wNSzY2Gzq3Q1Gw00OjFdr0HLx7o4YgszZM1omda63GA6TLVtudQUjeZckjTkAbpagt0V4EUlN5nLIvUCVN3sw2rInU/CH5uZkxBtH3kPFNzsY1Ip1dZm1Vp60m3xUvM4cAy9dO3pV5ZUJ/jVCN1BuaXrdDr/Y/MqtyPkilXz4B8XKKygCSYLcG9TpIxZFa0q1BWuqJxv9FZnXNc8Qzy6v31iy5N2fiLsmcu/br1OajPO1/3rpmZDfihSyH3sg3xdZbzAQ58y5VfgvyeIz6G6T4vR9mOUjPo7RvcfBbKvCxw9E1MHydp/piWlSLdwXE5Pqvj01RTf3gdNcq073x66rGm/ArjScqY6liYdrq3NHRHBHVjqb9iCO0AwbYWI+XfBDNbx6wUMtzFtLfse0mBWYrPXbRrkRRoZejztVFqSvV5DUFlypDYjgU92IMSSeE3CCV11ac9F3mZy8+M0xlnSFpFui2GVE2w7e9ktr31YsSTl+LAGTonAA5FCT34m+3iT/0GJzf+3+WFv+sj1DGnINPxSla8X2/g/OH8NzE+TO2pKnILYuBpiIGbNOiDjk1EP8ynzskYDkNqxmbIL8V47h1ZHZ8mECmqL+A0Vu/FFI9MHQl56dCkiRMtH0xNuKEco67ieofjNzNj6fnWD77HAt7lhedGoj+WrU6s+m8p3zvd3+rhVDO7Vr7T+NJ2adpctpF9x7TesbkBwRTE2t+0Y4y92fdqF+Crj4F9mU69lHmMzwyKMVtEu6mpTml7IQMja1y5pEbqMJ0w+1djEtwE7szP2e6v9jWeI2EGXPXQzV0e3b+Jud4VU5Q/hxneiwRNYjsC8+0tp7jyygEureQvdj7W11l6K/J2DsKBUXKBNjT2GsyHJta4Mid1/FDBfx0POblF6rTTdu4clJqimo6cfY7xbtMgQHXSLHPmGiczPScbRuHQOHm6K5pjcTGMnc+qTHnVtN4X59f1slUudQZbPh4JSsvSO7dcacXT41GWH3+wH8JYXuMV+lEa2lgsEs4PGP/onJjjQP05yxVDP2eFoI+E/W6eJ+cgQ9GlCtpujh1s8n1SpcEVz38RzwjxPXbnK32V2eZeXjz1sJO3N851PBlrb/WurxNLvFxMHKxf/scV+z3s+mHazlma2dabEEOciAPt6N8SiaGvxecvY173RZ7YLqvjUxbT51ImpmV1PgeZbOSclvNEiZ9oVjupmxzvmNwwXs6h3DVSh+1Qu09ZpEXjPXJSh7+jzQjXfcyy1MKMDziXi8Qkvm1hOl+pM4L9w+Nqnx634unxNmbdvcUCYQplBSSrx7mxWbYgybTknBOrHlK+1E6H4FoZ1xdlbl3QfpxbEbnMUNiDFsiALq99Af6C8kvTo28u4G+WXehs8rNruMB0ty894KvcgbArttJRLFCCBjKDs8umbUPsZV9nycw3zMzssME3m5lZ/WxM+hcIs9aZWK9inDEX/btI7wa5Hwvftgg3vU6qPIpyBn0T55I6J0Sf7491tNkYt25Nh62xt1n++gj1Frbcy4CuhQKtlNuYdWXMzMWL8J5mmWBwFBkPbiZ1OEdjO2CXWqV/ue5aAMpssfS4zDJbA8EdLnPApgZ8wNpde2/SScHHuOTpN+Pza6wQvB+fnzqvYwBfWVLjSr4aaZWI8jHGQhyXyPx7Ec/BznZAIzruyuo8CdmudkWTbWFmZl8Y+H++ykPIJ18B0a6DCXipPruMzuKKCY0U3ylxa50vd7s1rR22cfb+sVfEj1UjWHwU891pHG+JATnmTZBFP5eVNYdWxsXoH+MalfiqCvRru/ovgvMXxA4IG6xZqoxGO5aEtjkXuR79H+VFjTLvT7uCtfS8GIC/Y18tC0o9Rz/KqEifj/NK+hoNDBkn0SGzD4utx2ZZzMxYiM+xT6Qu7l8qut5JexjOk9XO8pqNQR2J17luxfi6ICY2s3b48Qq0tZ22Q9ej6UCh18NRNkmdCo4r264vo4kGlLjX0uxMzcAFZma2DHHoL7etNTOzo60+q7RfQes/EOjROFM7EmvEfxu4Q1aJa81cc6M7vCer0roLFGcRx0AtAlCFeGU25b1aTtKu8hzlQwMWxuXUWfpQke1OrnHx2vy9rKl6HSNib/K4PkO/yLFUPaK+bRbUnSx1oKMdrFst54L5bRf1WueZlG0+1+DguJm1Q5Yr8W6lbaoVV4fNbHEDPvT2Lpx6+2IvdWC7hyLuaqFeamzOFzqUhXAt3szm8HecWMX6njaDcxOuM2qMxXVK+OxysT1jUC5AWVrjyi7xoiPQ5wsRJwymjJZkdV5BS091L2ly71abmdm5a5zvq/xuVyfvbyyNrO8DDdC3v9yTf3ybm7K173Hm3mF3wMfs3M/NQ4755czsB1x/pmt6lXHHf7M6r2D9YQLGaYH4XA/qLOzmkgFyjnEPDJUf395itdg53oP2PogLzazn/6HQtS9aSsZmHHe9Dm0O76HrV2EMHQN9C9a6OldnXZrQuBL3LZ1k1r3S7J3vv4/r9Hb9375nrfyXErRrO0XOEVyDZN9RTiJzpWzRGaW+R+R8Wd4VmVm+LeS5nCtuVn/Pa98QfJd+bYcMTkbcPxe29CCJOe9EiSXeS37qYqV35J+IbkesecLPrs+ru7G6qvutKKCU2mKUb2XnZhznbE+/5W5O8TbNW56qYv3uRejxLPZz7F8Ydw1KtckNKDkG0LkqqdLK+Bxr4H7c9Z1CT4jNbambN8qxnq4l63HzGKBQ578TVrbsOcI4W6/PNnEUrrRC8DrUkTAGNQteuPeIV1991YYNc3HUn/70J/vKV75iU6ZMsS996Uu2ww47vMevExI+ALqt8DVHwodG+gfxhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhASrrKy0lpYW23TTTe3uu++2iRPdJps11ljDSkpK3uPXCQkfAOkfxPsEn7F/EFemCTIbhTtJlUF5anCsNwpk7iLDtqc5ugMn3BnIe54kdbBTbe1qfM+54my556VgazgDu5qVtKpjY8vDv1Dqxv+lKNdBiS7od0u2E/XtPbALE0wkZes4pskTZWfT1+xPZmZ2rf3AzMxeqV3XzMw2qns9uxc2NBWLOTwKsqWgy2+b6uiF39o0q/L6K4727eJWt8v1y7s7uqnxlrEsX/xPjEs9DtQW3ur1X4JWg30e2yB7C5xfG76TGEHZjX+K8g2UyyAnZ8pO9Q0wBr/D967fWCHIwsWdpMrewJ3LsJiV2AW7QqqMRbmQrEHcKaksl2jT0GpXtuAe+wtryGzu1g13W8uu1zYrIp4164rtaIWgl+JZu9D5ZBs3k99xlygHUZlXaBLpbahX07MqlbhmGxgVxoJpKyeXaYXezsXvhsVYp9HWjbHzUx5rq73cTu5nSzAGF0WY2MCE+8gujjm83x+dHpcJO+z+9nt3i3sdhdIduzumh2PGZGxRUxdbn2PSua78+VC3K/Jn9kMzM+toz4zY9Y+d4D5wCPZHqQxx1W5c5t2EHd00S0pszY2fJOtcyhOyM5w7RsnkTxnVDaBVZKXH+C4hG+IBUomMIpClqprsVCv1hP4DRrFRWLkq8Bzt1N9bXTFa5GUJfQB3h/47KC1jK+nitSnjygrGnagNKMk0oTvUqS+hjpGBqBjMwwT9MQdKd13ThnG3N3a9tsV2sYY7utXpVaOEfZoqdraOz0jmGvR9RXVWh4wtzAiyAY7PFkaqe8C2cCSZw2mTZef+OOovZIBypww/NOmLQTE6BvJ3qtTBY6y5vdODmebY9sdOyXa67wb9eboPA2ZK4n7YzP/WD/ubmdmbomO//yf6dX/4RexQtwUSG63AeCyBj6tAJ4zJqmQuCTpyDPSqSWMsMobxWHV2iiQknQ34EOqTWcaERfnujUmTRoI704+QOpRhMkVEWEM8wntoDMdd5zfYe4Nypgyl6McCJr+uoPwwuM/M1jLrIqMD9ZkGuF5uGzIqRNAJW9WJ51DTRXswpsaVi/lcypsbgCwqHWJv29lHiL3pp4cK+0KLzgHMMnmRHfyMLxqhz8PQ3xlpodk8xNUliOc0XieL0SCUX3Pj8fxTGdPErhs85j4wjoR7NCFkKzamgkimbnMcOD07NwC6saoeVMrjcCKWeuQdfpBBnIDxOBPf53POJDLq2YcwBp7NPScX53yFHcoxlcwcnumOdRFrjZPMDwt5Xx0YszzG1JCtZCYHQ1m1GRtSxqnX4XW1jqQV8szhAXNLHvoyz8vllmXzMMv8KO2R8vWxjZyTMKYQGzgOzGO+fzk+wiDu4xXG4Do3JyADPvTmuAgFdwdtMcce7Roq49NC/cVzMENUHtMz20Z5URsANo5luNfhhewf1//0MDMz+16zYwZtRoA5WjL1TL2n4Gd9hvWQyKPtJjfZ//69N5mZ2Vd3/1NWaQXKSMYsT042DHFLbLnET6NyrrwGOnf8flmdGYiVO9F3B1W7cla1XKgBZY0rhuJri9r2sM9pJ5WRj3FcuKaj/HT08xx7nVdRbzmnJRu3tiNkzGe7lEWoF59EdFN/drVsMeDDYjczU4YWMtawX/h8yjIesjr3Yl+8P6XOzotUIus07tUSYyDmeFCAlIkZ48EMHVPk1M1kNcvl/65LGMO6YCO4NgRTtFgCynPNrQUt2Nktgky4zlHz/jsj+u1zqIRuiZD16Z2dDZzs6Z/MHmjazX2owYGvhTbRsmwfNNOc4vxDdKYaZSNjGNjkErHJnqyP+kv7LfPDTjYEMu4zsOhSMnWKOhLL8ME5GsdO48McylCPlTEv9Ie019WRe4TZISSOm4D6C6gblE19HlynkX6HTOSq5982twhxqX14tFuc1ZsgRTX7TuMFzGELsifUSB3GRspqZpbPEEX/GWMrPz74zjmTxkqws/tAx5fisK6v0Oy1PZ5fV9cLuTblWexgfyuFHb/FxYhvrnJzz60GPuOOy/SwL5nDCVqxnbBUMRAx8Ms7ZFm1jh7sDNPDZALlOn2FPA8zAFwSMLNXia8Cm6NfdmVMrdk7VvADr12PUlhIR8L+/x7fh2pmC4I+gr5T562MY9nDEXY/ZsvwmTnYU6o/nI+Gc2Jl2A3Zd3mvr8ix54NzMWwZfF+d9zsfBJ1mti0+o3+aYmvXfEa2Q9c1aI96i/97yyhAQHZGQ6+X6Ho91hi64UBaMaYV4hvaOVaUwUiaunL4Dcbkw+B/tpD1UoYOIDIc9t2cmZldb9/zVcgq/najo9CfHyOz6yOo9O3zE1fub7PNzOyMN2Hbc1KpFGtb9L2jMYZLRLY3QKz5EvTnvyj3letwPfoayIfXmU2yOu0N+BCRgRKMazf8RTPnXKI/njk8zCCh8bFPEYKSMVqD1An1JLYmy+v8N3KOgB3g2qpnxT8tUjeWoYp+mPPUvhCUUvxR3i+T42bxF4Hos7z3VLShjEliMRHxUvA9Fq9TBmpR6qIQmcPxvqIE+tetsQT7GG1sYrtyWZU9EcvPOiC/bl5sRI2BT2nL5s3z7nX2YJ/d3YvMXexBd+J3vopNLXI2rUkw7Z1Y5ll8oMyHKuFjjkT7T+EJacREZuBG3MRsCtnrYvGrzOYj70O7w+yUEXvPjJbt4bqtzsU4dwvfR6q8hH6L33V8Qr3h/xzovJfvXzgn5jsX/S1j5vWC0qxwfukjISvEjcF3fd+MuLTX7DcfFP80t8YVZn+OIbw/xzfC9u+Zw0P2dTOrQH+2y7p8iOPx/NeE99S+D3y/f/+sWVY4HhiDI8V3z0bp7WwDDoidodiWIlbktEG7C5mZO/d3C0Ujt3N98NW3Ml+39pUuC1c9vsfyC/bE3f6tiZkt7Ub4Nnu9b+I3Libwc10z8+8kR6LNP8fhC0W2mfXPN3Fgdq7g/ePTwXHLsnbQDjTSL2rMSVtMX4l2VYpst7GD+T4nzBCgYK/Rn6n9p13hu+gYE3FvsS9lMcyUpezEnE/Sr/K5lHk7/B+KyPqtz2DxhBUv87S2y6xg3dcLrMZIfMYYc3gIxisRnfWZTxkD8B21/v8I5mr7Q4Fm0xbqGLKvMU4T5J00Wf57ZJM38/bWKxWCz5vl3Qaf4yGnC2fe6v5R4tqDszotXGjFHLsT5uTfxVqOFNS4ZXG7COt5Z++VnVuKtJtvHwpdm4LyHL0CYkxmOChjRnGZy7ZQXyj/MbuNcfXzXPRvq+oR/Rl1Ncx0o9fkvJf2QN8p0CajYyskrvWZNcOM04owtgx9p1mm/6Fsd0bq0N5TV2Nxe2/vq4fb6vz/xze/+U2rra21HXfc0f7617/a9OlusXLp0qW21VZbvefvExISPhn4jP2DeEJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCDJdddpkNGDDAnnrqKbvtttts880d29RWW21l11133Xv8OiHhA6Dbet+LnPCBkP5BPCEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISHB+vXrZxdfXJgFd+TIkZHaCQkJn1R8xv5BXFMqMC1TXVDnN5E61SiZ9lOT5DCVA9MrMf2JpHkZjns0IaXnRKTsul8u041zzwX31vRVPwmaKumrbX+ktjgQaVg/hzQdmtmFKWRrXVG/n2vHMSuz9BQ7PfpXMzMrR1/d/0+XC2S3Te7zdf7cz6WOGf3m0vz2SGqS6WhbmLCumGDK7jpkD658zD3sxB3+6OtcsekJZmZ2+6buWR/4p0u9NGzznK/z7c1d+u1lF7tURY1PuJQneVn1qlGehxIpEvMytzLN4IUod2W680OyOuyINqQrYYrPSyS54e8x5swAOAi/b9YGASVI9dOt6bwwngWp+wQLWZ8pl5h2UFNCI91IS6Ars3WrDmUHdS5CnbOlTolJetFiQs0XdLLrInxHSrau260QHASm2O0p6ZWZlSEljz6y70+kaVrEFHWSVrICacBW1LiyWdoxAqn7GnGdxdDdF6t9lWcfRNosZgrzmSazOv4cMmSdtZ4Lyub69E9md5vT34m7u7bt9zTSDL5uHy2Q+nadqc6u9LO3zMxsm8FP+Sp773W3mZn95EHI0P44MUuuc4Eb83WudnmIV01EDrHarMpWv3BpiJ49Fn04HTI9VNMRubTEVo++X4L0RAdJuiemOWeasjba4ieyOmU41onftaqlo3zSClI298uqtFOWqI9noT2is2Xoj84wtWiXfKTfYhvpf46Q+kx/FKbx1RSj4TY8PgNTIf3HigcK9d8KT5WirV1hGkZNL1ad/3vvZ2V8vE7C94fu3swKUjm1a95L2OcV+NpWjw+1WRWazm6M2WjcRLuKKSqZPe441J0gDWKaWcoLUlT3+1KWWn399Zyyfx1tPnou2pNlsbbffIQpeR9G1+98pQtcZmz4A39uxaGDzMzs7cf7mZnZ3JJ93YlLRceQDdwOhY9rwPd6vQvGcwJke3oOxzWVHvqRqUFXyCmmB1zC9HMxex/oxEhcb5mm4qSchumeJQ2wR2+pupjqi7LNNGW9pbim3KvPWz+4V2b3vSzSnvi20mmsNLPv93K/1cFR5uIHLgbQHlHnygt+kdknTelGfQ37TFPZo/5j4fU0tSHHiqmuOaZ/ljpM78cxgG51im84CdeZRlvOeUODXAf2iTpLGVtb24bYimGG6uV0jPVwl4Zu24uXmJnZky9nqebbNljHzMx+d66La9kaTUQbsZzFwe4oX84OPTzc9dHBx/7azMxuvf277oRm27wFKbfb8P14iX2RbX2NL7iJwruT0FlLxQbyIcuRnrIa3w88OatzNu01rj0J4/UvacfiME0zZHLh81aIGpSUl5ycC9PwcQ7Y0EsdGnmJB70s16NUmYSe7I/nYEpY1eeCdINH4L6XWnFwsHxmH9EPanwQLvxRGm/IDi3cJ6jD7/LbLt4PcVhBWm2zbG5BO8J+FtsxGfoyh2k/YSdbLsvqeJ1nemXY2wrxQzSlTYh/jhG7P53xBZ51JmxGdZau9vz/OdfMzIYOazEzsz05V3shu0wkCXFRUSdpOzl0XZioHrG7y797w/8el9WpQXkcYz71dXjGZjxj85U4vmVWZS58ydBaV7bguIo99fkYjNl0+KUy1XmOA2S8JZY2l6C8TYyc43MMD+pqnEAdj8TyPu1ub2k/w5TdTCNauCBeKLfqDyn3TVa8mPoSMxsv3xkr3BrU21o+04NEUgR7IIbowPylHPPXDo3FMXbD8LWZ/aIpVzkudISxeIexrkuJazdLKvPRsKE5jGs7baJ6RKRzfQgxwFW8cxbzDUJwuOvZCCYwN11vsmX4XaRpRYQmaOc8czDs7F72J3/qlNpr3YcL4VfpGzTbLLMGv4KyFqWK8Rwo4kjocxP0pzNGu/JE8F3s/1Doagt0pZXzzmqpT6Wnr6TOLZM6HHvK6FlyjrY7TGOtlpOfmeaZcqxxPK49DLammTGxdN4C3h/xxmTUzVNzymuoR2Gd906/u3posN7pcPgcfHa1hfODY3yQGqlDXaA+ss/UPjUE91SJZUpt6N0E3GuBxuuwh3P5UpB9ruMMG3gdbDFDmR2kCmO6piDl9pZZnGy/cTZmj4G3mZnZUDiild/LqtR9Hb++y/ocAzEXf+XSdc3MbPHcL/tz/Xd1C29v/wB6SBGfLbbwe+jrsYhvH8VxNdtcG3sSJcxE3kJ7F+WE40I7Kfq8jOu9iEdb2M8S0zKddyeuVyq+2y9B9TIT6aZ8UY/Lg9Isi/82Dr7H4kL6bl53YKQOgXuUy/yh45qgDvue+lTMuJp6TD1Qn7ksKDHAI4+RKhzDGleMQMm1YzPLdJ0+XNYj8CrDliAGWsK+074P06Ujlm8XfR6Ke7RwTvCiKyolHmwLZGkjyImmrO9yOr/F79wE8SzYid97gTY7bht3//869bH5H/VaNQF1Ybzw9n/cOtYW3/27r/LclV9wH3I4sBvKL4lNno6YhD6GfulPEm930uchDb1fv5G09L2tKXH9oZXxE3U9ppccsz9HzjGYoI5Uo9Q5Lg0R9Yb6F3svStni+kqoe2bWxrqMv5dH2kX/o4sN7KPwLSPnlqvsw+vxBHOLOhwf2ohfxqubWRYvqM/ks1FHY7EE6pwJ/b8k8t7Oj2dp8H1DqQM9rMR75jbKhLZH50RmNga+JifHZlGfOT+D7x4tcsv3FGPctavuavanWp91k4Ej8WJ0u6efdSf6UJ+nwjxR+k94+Hp/rmHnCWZmdueiA92BH+PE1mLDKC7noDwE8jpUbGFL0J8XZqeytSm2gLoyKavTnsMHXocxkY4JxrcEcy1vD3T9l7ac16Pdl/dCFr4/oc6qXWCcznGNyUvgq0pkjSfatvAe4Tn6OA1YGoO6+hzFQrj2z1hG14vYJvpqxhnfljrsD9qaiJ1tnxEcoO2SOfE1lBe+RGJc+2pWx8fOsHNtbKv2Hd/zQSba5NR5KI/iAV3nATqCecMl+HqV1MHcc8R2bq2afvGC/udmrTjL3ax2ivt+x82FtwojujqsvXWL+JdgWMZc4+bop538M3dgf/nhOuirU9BXczgmagvpm6pR6toS7RrinRG4qf7PDNe02q+0fMj8w8+tAnvdpjLF8aW88f8BdLGMPUOZiq1DUaY266VOqPO6tstjfAdNndMFBdanj4rFEJRbtoNzCul7/257HyueLpdZvgRdFpyPzRfos6etxvUZE1FOxAbOD/1x7D1izhWzKczhWJhldh72ZMEd2alyvruCneZcq0vvzbUP6PEUxGy3SJVu/H5N2Joa9/8Wz9jnfZUDKIMY3umI08O3GcXAVNiDui/hgExBR5mzJ2vMxHuhk/BeSJc1lsHfTIHePYDjzdJ3fjLN9f4GlOJ7J+HzPK5x0W6un9Ux/I+Mt//B/xeYmTWF8Xkoh2aZruNh27Wt1Fs+JNdiVH7Ddz7UNYlXvK8MY3n9f7Dwfyf4rPpeh6BPib0rX8/M1or8JiHhY0a3+f+XSSge1vi4G5CQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkFAcvG8G8draWvvud79r48ePf+/KnzgoawJ30oa7wmLMVNzRzt12woQzBjuLF/N63H0kO/+byLqAXUMFO9EE3dxNjJ2g35Rz4Ub5oXLuQH7ArqNTsSNcNyhyVyk289Wee3vwW7NH9nTjOuqFh9yB6Y65aP+f/t7X6Q/23/5g8PZdKQyJsb1JfYV5i105CSSZd4zKGHrPXNNthR2JMTsMbOE/ODfb3bvJ+W6X1Iv3YtfUi5GbLEVJgtSJ6MSjRYW4UXEdlPtjDJ7LqvgdsJXYYc5dvccIUzxJR7ZAuRjyUi472Dqwa7Y7hwO6g4y7iFfmf1d6gDLspBuF74u4W01oasoh2x2UVw5whLmVQnk2GSKEEafbrHgsaaXWOzsGx566rjtjOVZUCu6y053y3NmO/mWzu2M6S1YM7Pobrcwv/F1EmP4VfC+pduVSOXZUzpU34NxDrCt15rsdiV/uds963vmO/qDsxHZfZchARwE67GnQlJHRULMPKGFyH6ET3fmdVic791c5O7vCBvk6M951O2HXHeOo0F4/B7Qo18mFYMNWNYHWexGOZ8TF9uwPscuUojwF43SzUrjmXLEWd5cOzzvs8HjePW0o9KhlelalGvdq5A5SZdEiewrZNcOd2YpHglLQGe5WpYHQXdnUuxxKyrQwe3pQDwJWLjOzMuxK7mTbuQOfbCLFTDpC/aVjE3aYrpBFjv2iO2yD3eJN3KErqYyqwBzVymdUPebz54L2yA7dsfhMpi6/vVqu042dvfvgenMh7COUPRG2mIRuZA5fKlXInHYDmEDg196uyRiyWs9zn5/abxt3YFO05iNkDVdQyupPceVG3TX+3NsG5vD//ZY7QGLEBXIBxh70nfz5OlKnCjrGrB1k4MhjIYWd9f0gPqqV/Qd/XI7+7dDxCRh1lpE1RNkUKVdk4KAfUqYQMkUETKN5vjtg2spjtSBovMgKQ71TFkbei21daYUgs+lJQd1VkbrvF9eZ21HOnen0p3x25SLgTn3aI003xnohe5zaGtiDgkwkko3B77inQ6N0fierUl6NW1J/GStJLDGNz4FxKWCgNDMDJWGr5SNvgz1kp5HPJ0ynv0fbYFee3GBHMzM7/V/ZPaZhzC66+gJ3AASuU/swuKYkTgVBlrISk+mh9l7MG7Bje/0fZXZ4+TkYwzNwYLFcHG7z3RwYIuZBXqcKAyAe1ZM+cEhV7OknKqGH88DuMkVYAnnfoRg7nwVHgh3S1HRzzhYy+yvCzFAiU943UR+DrBVmljGHx9iEccwzh/P+IYOEmfdZpWbWvbJIu+bLLD8m4bMynu1lvup9Z29s57Hn4LFqlDHmFwJ6MwlxnJquOQ34wNiBjBfCmnMq7Pzl4XPInMv3I2Rqutj9k3B/zgWaoBx7ZHP8F/dz8eOyO5xd25PsJRJKPN/HPnrq3dlnPtnWJY6ubZfuB83M7IbqY7NKl2AyMQbPrKEr477vQF9GQLcadc5FfwOr4dkq66VOrSumK3uK5RNpLsf4tHOdhexMSulM/WUmDLbjJKkDhiCfOYt+Vpm2qKMx9kTqZshcfLTUCZ6jV7kNuXj0u7KoRhi9PhD2M7O7eznPta0GOYZ5TxUEtZUsaRoPBezoHTF7gD5r5jiFTJZmWZxEdhrOY5RJnLY0kupnCec4/D3jg3lSaf38n4N990+1mSM7oB/8F1w45Xbqtwpv2VdQ6fvLP115GrJPPVNV4c9N2dz12c3rgA75RJy4TS7AOTBVgl0+Tu8IHeWSxTLaNw0mKB+0HlivVMbgFvY1x4y/V6YhsohF1p0KEGPgp75RL3g9lZPq4L6MAzVQwMM2h/KqLKS0NZCtOTDSlZL5pK0h/+cV6I92zU63zIq3xvVFy1IrVctx9mfAKJi3yEswBuezxhiuiBgTWrgOoX3PMYPALSDbocRxnN8uqMcBtL1CbN0mmNsc1YADNa5ors/qcFzH4tqLYDcXSUzxpLM9Cyc6ge9cY4BrjYY0asL7GFOhz3VznO+9bfK+/tzbT+A5SNRLdvBSWYMchDIXfNflHro0zKXXeQMZ9b5UmdVZRt9Iu1uLUn04dZ4WiUGKxE+dAXuiTlc7aOcZsPM5lGE3zB8ai4EJyh3brqx/rB9ma22IXIdAezr0GXh/zkmpK2xzMbPkka2NbdY4mceC9exlMf+KY420hZoZcAlK2gER9iUca863eU95z+VZC+lXqwtv72Nu9h18b5ushRoYi2mDSZJ3uVRZ5Hx+P3vbzMwuBnvu9SZ0/+iOz9HkhCHXR4V6VxyyqXv3dWi7m6C9ud6ArM6B7l2YrdXflRyCOTm5EHRjfygOT2mVIzGXuCbM3qG6QwZBBi6iiH59E3bXk8IrmyoNCLMBc41JWUjD7JLwGyUSA/h3Ibw2Y2BlO+d1bgjqxvKf1aPkfDOW9ZX3CLNomhXaFxr+YujxfeYWddh+2gjOTXSdj/pDP6g+k/XYR+xP1R/ooWcOpy3V9Qj2K6/Ndmkch/nUBvjaRp+r77kY5yPuWpwL2m5moxE/LWEbcc8l4oiOwXNAlFr3G+ZPbXGHY9pfggB7ryH3mpnZz662Pgcla+Km2bFX0S/9rnM+6+0L8ay61kxROoQMrpgUS4JB2xe/uwUxzdkif+WQYc/IzHHS95DfCc7lUEbisO7pwQH1h+HYs66um9KfUjaZ8UfYsP07H8odfYPKL/UWcXJ37D1QDcqG4N5mhe+a2NbemIWPNzePLEY2j06Lp7FGO8rFdvn5LW1O5D2ZB20N7YFmOeKcBH1WWuPKLo3FQ9uFOCzvfQFi+H34exzXaa//3xDEYzeL03wS7eiCVkzEWM7XRRiuleB3O+I3yo6Pte0OxGEnQRb3+HeDr1LC20LH85Zte8AdWPbZT18JIIPlPuZS/lx+5almZvbat0ShB6EcA3v3EsqNsio+NOJag2btmAalfgllI9eGdb2yGiUNAHVOMmFwrDpCNmFlnA/XhJlqJBbcxHwcQXmhz475cMothSL2vpmplKjjw+Vcb3O/EJR3yn8kM6bNteLF1J2W/88LHBfaNT67xsecn9KP8jf3SR32H/uMY6myEGY54pjumVXZH9ee3cv7fA/06wh5h9UY+PcufNdM0wuoq4hFbmZ75DqjoQuYYu80xP1mlLxw3rUZGfTwXrUvmMOJyeEHWWt70HYxM7MJgxvMzOz+0r3diWliG5k9ugHfyeyf984Tc9epWNOpg/XR/5ObF657cb4bY+Knn0bclOeeua7C8aLxUj2iv+BDqyzw9+H/Ium8OXwf+nxQKkI7EJM7XodtVN8T3ivGIP6qFfqrhIRPALqtbxLOfMbxvhnEOzo6bPfdd7ctt9zSLr74Ynvppd5ekCUkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJHxUKOnu7o5tq+wVy5cvt1tuucXq6+vtySeftIkTJ9oRRxxh3/jGN+xznysWG1JxsHLlSlt33XXN7H4zMF879Laz671wlnzGjp8q7DTmTv48dkvuMuJuNO7G3SyrcwwYnMgUXINSyWE8swR3twnbwJnYuTYG37+Zc+WUal9l3Rlg5n0AWyy5iXeK3GMUtmH82e0Q3vD7jnL4SGHJfNmG5B3btcntRGsavomvs7zEMXrGeLqKDe5TPBmM5gfsXu/P/fZBtwvsq7s4+tIHV7rdagcLvQx3sDWeBSqpWpz4o9yExCzcbU5GWWXH6MCW3mfAGLEvjivBKIeeTNBs6ndkJ9xQ7FAfhe8rUC7UHcyQQbIoLpdT3dzxyV2iZJxQCruQdYi7IIVBwPcsWSBCFtAYYswK+5ijIPmKvf766zZw4MDCn70HMj0+x6wKNJOtunuQG1UCJtg89gX2S7hTX+mFeI47SblbU5kvuPsQO47HgDVgsfRpJXbh74jv83TssPt+n7NdSQawP2Q1yrZ1LOCdXwObGDfuLZYdfBVoYy2+c+P/+lmVHXZ2u8YPt5lmZlYNtoK9J97v60zNPvYZTgNpaBl04bgDrzAzs5vePMzXGTPA0X423A5ZJPO+Zw42M0fKZOueB1t2G2yZMIh7lv6ZGI990DEPSJ32nCtHVruSGzdPlTokuCMbaRXKkDXWzDJjul7kHHd1knVBt7qFOz9ZR6/TE2Ws1BkO/9OUwwFyaKisc1fov4MyhpBFkfiPmV1aBD0+wzK6XU93E/kFd7au10udEBH2QT929XKQz8+90/ydUjMgTjge565Bf1QIE1S75YM7lpWZhMO7Z1BXGYdHoSQDAuVVrlN2qbvZEwPdLunhfwVz9rpZnamj7CMDORJG1OLD4dm5r493tnicLTQzs9N2/Jk7sVtWxy5BX58En0ldWyp1eG0y7FajXBQwm5mZl5OS2sJT3fX4QCY+3TNPPxHqjW6A5K5vMjzwNxpLUl5HoCR7gera+9lUST8U00f6ghjrJ0GnQHYMxudvmtn3P5Aex3VYAVs0VuyTHyv2udKFUKfDZxSGX4+Q4Uoz/tD/hsyV/5U6YFYYC4bIRfTLEieMgyzSL3fx9zLOpYgHaMr5OKPkVowRl/DZheF6Akr6thsxN2nr76s8v51r6/pvOXbAy9d61z4qeL2WYRr5hHv+J/dDUHOiK8pGZQawczHilWtxQMNAMKD7DD0k8MgLx6Anx0N2GIM3q65jfIZDx5rwmzKRN8+GxDkWZULlpxZlDiV1TfUhYFDzs+X6wjaH7VN9JAtrFycDq2MDVP5D5r/5VlRfXHZJdqKTDDjsuxi7BhGmtTLL5qe0OUE2hbzfkZGH7R8hddiv1Gvah5zUoe1AX5WjjhJcteM6JZCPQTxeL5VqXDG22pWL9B5g/yKLCwlslEkT8+7puxyOU2+amdl/SzIZ+Ci30tfRRXFeiPaVvCzLPSTplKRRHmQo/gJKDsvN4n8OQl8vxffGmB5ClqogEz52FnkZHjArdsWYugI586xNsbqUW9K3K2Pqh2VAicXw2j69B40n5TZg4jYzG1Fn9s5Ks2fXLVJM/VU5w4EN5utDJT5uoVGuQUk/qCxnXcG5MGOCmferPnbGnGWY3KuZ/cJ1CMZGOo/nveAUxsnvF7KtWOsaCVuYk5+H4QUz1IzKqly7l6PvHQoaoq9f6ZgNlbxn6keQVSsEVxjauvf1x35ujvH/OczdWu8GQ+Pe8kOKHkWT9kmXO+eGrLtkLlMfQ2YtsqMxpUBMxxghcOzUbtNGhOsswkrsfSPHW5mXgt95XVc2RciXzxbAAVO2tFBXQ4a3GGLMiD1R05QGdYo5N/48jipbFO1IA0raWe37YMXVs533lgWEiGQ1iYJ2YHhwXPrexzvhmrWsQY6E7C3j2PGe1VmdSXjGeTkcgC8eE5nj/8EJ/KwhTukPrL8zOwfX9DdkuopxrvcV9ure1n/uD+bkLz4IhviZOPGG/IDxMc3r2WDUHX1AVudQlKfQt6GfKkQWaP4596rE/KOtXm4G+aKdXcjjvcnLZpFjtF6UAc2wQ/bUWAwO+PiabQuZtxUh29nqIMZWzjZTZxgQrTSzoUXQ4yvMytDnnbH+jK0faLvMstiFcTJ1vlrq0G7Trqmd7WmtXhgW+d6mKWyjMkJTR8O2yry5Isj0xswLZTVZnS+hPNEVm3zd2fpH/Ysrs42+jUXepa6YgVt/1FRUdSBkvPH3ztd9HX7tC/Z3X6f1DvhjrtXRdc2VNYeq4J1oawM+CFPoCMi/N4+c+yjLJd/jcCxiKYkY89IHaxYejh3XsehbxI9V1aCNMEJeNjRGo05wLsvr6TyPukSbngvaZZbFEDzG+FAnJJh7ej+vMkqd4D2oG5SUD+6PC9e40EfleGfTwVhUr7sycozoaa1dWWYZE/H5eR2VHz5jLCsXsWtQUk7UBoZ2lbIlsZGPu8Jn1ZgR/XIqbNDl2fzq293ueXLmdOThK52cvHFcxkvX12tadUKgP/xVtyD33P9gUsssHi3yA4oXu46q3ir6PAzj0cz37/quhn4L/ej7UN8p1LhiaFlw/4elDq8Jf+r940VZlYmQxfm0B4xqYu+LwncssTiXa0ucUFTLuRvzq+qcbSTasaweB6h/KifhOyeW0ndlmG/k+cpixdR/M/cihQaa/RBbvwoZw6mPGosH6wjR9Ygw3qEtVlsQzpEYv+maNfuI9pVjKYzBQSLkvMQEfETfNo6zrItwfYbvThlibZBV8deG6Wn8abWZmX3+31m/lGzlyqn6/wgfAHXIdP3XoS6+mIkXS69aptDz7iIzOg58E3rAbGhmZq2c57LxsfVfPNBvML+S5FHeZHbQ16Hvh0tKgSbKAvWQYyryz3XFFfjeiLGolHlMWxB/+eyX+g8k1C2OIW272qDVeUcak3uCbbqslzohKzJlWmNXnWUVS4/vNLNvyBn2GecboZ0yy2JU2izKa2ekzvv5vzD+H5iu63HMQ0ZojcOox+jnKjlFtW/jJBDx+0SRE9+tlItqV0yRd2E34/ejEb+diBYfdq6vcir+eenNks68q33UqO52MdAv7DgzM3vkrPHuhK7B8d3vQShnodQseQvD7IXVKCUjzSTMoTnduID2QeWWusRsHZQTzbgQzkZi/8MQ6pGul3C9NFyJmGyFCHUspo+hLKp/r+nhXu8XJ9mHnRsnJBQbs2bNsoN/+HOz3R5478ofBrf3s+f+8bRtvvnmfXufTxDeN4O4mdn6669vJ5xwgi1ZssQeeeQRGz58uE2ZMsWGDBliJ510kv3jHx/D25WEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhA+N1tZW22uvvQo+JyQUHd3mNtf05d/7ptL+9OMD/YM40draavfee6/de++9tuaaa9pee+1lf//7322bbbaxadOmvfcFEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhI+Uejs7LSFCxcWfE5I+KzgF7/4hQ0bNszWWmst22GHHXrVgTvuuMN2220322CDDWzgwIE2duxYu+eeez7C1hYilmeoV/z3v/+1u+66y2bOnGn33nuvbbfddnbSSSfZIYccYuXlLh/LbbfdZsccc4yddNJJ73G1jxLPmdkA+c7UXkzrxdQgmhuHaSCYv4dpojSlyNGuaGW6HqTqiaYUZMpWpnB9MTt1C9LidCAFzlpoz77y83qkrDgV3xdLmptLcL/bUGdctZmZrfHTLHfl8H7PmZnZY/UbuQNMs3GbZVjhRGKT77s0OZ3vulQ001ZlY3nfwN3MzOwZpEEdMNyl0x59cJby7jf20SFMuFFuq/zn+l1cSpHxyJ354MBdzMzs0JezFq6/UVv+BV5Bua9sGVla4spr8X0FSsnqYodCTmrwvRLlLVKHKcuYMuUcnpBUUy1g4G+BDFwE2VgoqfeuRpqzEzDuFZKCpp0M/rUomVpEGns8Uqpcw5w2kfTXHkxZyXSVmlo6SGlbkO7PzEq2N+teacVBuVkrdUtTaTJ1FO/LdCyaMohpf0qDupJb2oMpi6hjsXSOuMdi9qGk8BuEch7T0Emuux8f48oLcG7cdvm3NLPOcRXuA00E03ZqKvN2pOg+GnbqVzj+vazKQyu/nNfi0tH4sK19pLgMZqjuCnyf/CMzM2seUO3rTLT7zcysYbSTr7JJ7WZm1nlnRXYhiPLQfi4v3+tPw5apjvlcSZBxDve+Uudp3HcRxvAcyMIrUofZAnnTraE/rZLmz6dhZbodTR+Hz8Ohm0zhmpd2nSmOmFqI6ac0TSDllmPP1OxPZ1Wa6Jt6S5HFNtLWUODUWlcHv+G9mebyDSseaEcg/9H0TPSrfOZYmiemPKZ9u0PqoH5raKfMCn3+34LjZr4/6bJpZ9q1HdRxpPPaBO3QrFVMKfcKnmsJbPQISYe3FOU6KOmfRbZP/YVLC/Yw7NLwpTAQH1PSFkZPVu+KupHZubbxzgHebdg5DN23VrnAMfCZN+M7h+KrUieH8l/8PcdJ+o6yNBRyOkhO0b23MrUcylLRwy7ad6b9LQ9KPUfwNztFjtHnMv1ub2n/wlhU0dnLOVuNc0xbGqaM/08vv1ldlJvZWpK6HKnMqSyLVEeC+5dKeswu6ls4HYmlFw+h6c55P9pJ2mKNE2AHcvyO1GwTJI3vFihXoFzGdsg4d+HaE+E3BgW/Mcu6eCL6Z5ScuwolfXWXc/DrDM9i0cW2g5mZ7dL/QTMzqzvLpd6e2luoViRQw+aK2C5rcs9fciTi4hWu6PyB+Gem+xyEUqdBzABGW8UUv2fUSyXk9/wjvjaj7ytOzqq0Q8eaEHcdjjG4Uy7TSb2rQUk90DSxlI/qSGMDdKONE2tdOX/97FwFjrXz99RZkRef5jUWB+8TfH88KM0yOf+waQJjGGLWKamlvc17OlK3t9SkxGXB99hv6BzD59GUu7SL1F9KpeaApd6irzpiNgM6zhia46TpXZnmcxHbLo6M8/YGfN0X5QVZjbH/WmBmZhPxPNUrnV/WSNFnq420sNiYCvGnim2MmHiTI7L+fXEMUl7uiwN3ygWQhdsWB+UxIqs5lINQjoQeqn8/DvEx17laqYfiG5oQN3l55zmNpSk7WG/x6ZLV/gf+3eu1yh3tQujLzTI5pbwxBtf04JRbXpP6HNMVrhv1YrAbZ1jvuvQ+MPhMs1dflQM9xBwv6hcabOrhrsFxsywW59hxLShGAhHMrZtVAzjfZtzGe+mchfNkXGexnPIptaFJy5g6VvseuroM90L2c1srq7EHhHH4064jbj/FHdfVwY8DE8/Hh3/d6Y9dt8FRZmbWevcwd4Cqcrj8sAFlDuUKlPN1zaLaFSPQL40cC+17xEZVGO/WWHzL+mHMKfGTt+HDg+/6m+Bcmdj0ToxrOdIBdzTghM6JISdhWm7b2grB+4d+ScH25Hqpwz5jGviH5dyGVjQ9NrPMhun8g+tMbAftS2z96ghXtMdimnC+zHU99UxMWczxVj/NY7QRtNuyvthVH9yTizLHZ4eWoW2jIW8culnS5nm0xbRlqLtbVqXsDLdO9FZnPzMzO7DpTjMzW3lMVmfgDoVP8VFhx9lP+s8lO2EM+Z6IIrSO/ICiyCWL0dCDJWK4lyD+rIQNbcN1q+U6fhkc4+p1RcappBbtwbkS9G+3xj+hH9F5NxsbyqD6bsYMc61HdLNtXBOijunCBuWzGmWY5tusMNX3PsFxs8wfh2tCjAne7Lmd7wtbyHugWAxMPaLPow2VtXPfbuo+ZEHTphc8x63yGbHUcESCTTkcF1va1JVf1/e92MtLIRdncAzCOMiyedmR+P0NNagiMfkmmOtjnZXvl2ascaSvcs5gLBQhk/NLH1dC4v6uWAUbvDXijLfe7uerbLvfo2Zm9txEpwedV2EuvFj84SCUjTl84HqHLBA2Yg1xJNZCl8HulxyQ1emejg80bJrinddmPEod/5vUoVxx7qpyArRSJjGuTYz9VL95Heo+fZXKduDz+X6qXS1wGENsaD2iLRc5SFnkfWP2oFiAr+3gGLDvh0udGhyCrjdp3/fkeXStmg6wGiX7UNcM1K72hIeD78sjdRAzj8S4rMDhF2VOXPCs9N3in0eg/nWu6Lf8v/7UcrwAXdPecQcg7pev9W6vrS8qhmQfm1+tdh9acIDvwFZI/YdQfpHzKP4PgMzhmtlH/w7qmFkpxr4Ldfw0SupQFlowx6mAbLXnpA5tMOp08x1NjVymAR8oZ3yfo3M3zl05hpz/6jyR8yfKKO3LNVKnGiWfWe7BOM5fm5MUnX/0JLdyvJPyxjlkV1j5Q2Cu5U0Ce0XoszkWOs8M/Llfj9A4g36P8hK+Y9BzjO1of8Wu8P3wQt6TcZTGyfzA+ULmT22Tgfm39/bytKwO36lf4+Lt9d9xs+Hlh8o6DXx22Y9dvD3iwZyZmXX/s8RX+cfy/Nbrat57oU7DSiz9jd/W9cd3f/VrMzN77p/bZHUorngFbGNwgcViL0dizYDdu9F22Tn64xLEiH4KKnF2B+dG9NX4f4Amib+Gwke38N0t3+WKzV/E8Qji3Lz5K8cDcVcL4y/1q9TxGy0f6vvCGLg3cHz/K8fCOSP98mtWiDCuVT+HOaifXxYDD1n2olRQUu3KKMtr+E481j89vTcXHfHxMGMr6mFdYZ2xkKlFWK+sEPvfDrvg/61MxrcM/TkZNnQObKouA/hYj2OOkzfLuE1Cm6iIMF0XP3G+r3LRc24Bu6K3JdE+gvwXiw3D8zzyw/HuQANOaGhFcG3gRs5H5NzxiEs3Ctb+TGLoedDbeYiBJ8M+zDEBxzl4RzFSbOqyUEfCdzhmmR7F5I2f2RO8l76f4rlqlLRrR0gd6hbjk5iuUicD+6Jr8CV4Nj/HiOn6NCvOe+OEhCKj24zTjE8Kbr/9djvxxBPtF7/4he2666523XXX2aRJk+ypp56yTTfdtKD+X//6V9ttt93s4osvtkGDBtnMmTNtn332sYcffthGjx4duUPf433/g3hVVZW9++67dtBBB9kjjzxio0aNKqizxx572KBBg4rQvISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEjwZXXnmlHXHEEXbkkW7zxVVXXWX33HOPTZ8+3S655JKC+ldddVXe94svvtj+8Ic/2Ny5cz89/yA+bdo0+9a3vmVrrdXzbsyKigprbm7+UA0rPtot29lqlu1ex26jydgBNEfZorj/kTuBuANHtzZxdw5ZdsJdZmbZTlLuyCWDS01WpYP3xbayRTlX5qqzOtzcw50SY7JTlsOOqh/gOzZTvvuDtX2Vx97BLiWSCp+Sf0sz80wmlaDdXGcNt0t/+cBKX+VlbMsmE9NzoFy8Y1Z2Ge61mmF9D+4zbtrdje+Me3/gz/1m92+aWdZmsp6fOCRjv7rqcd2GZplWLM12xvpd5ue5Yovxjgr81TeznYGrrkIfsatYfkmufXRwj2qUZAs3s0y+sDP8Um6tlZ1wJ2CXK3cKZiQ1wm7LXeLY1iuPY9dg53YF5L/degGZJiC3Y4S5fjF3r5PNgbIuO8O7p1pxd55xl5zuT+YOPu4EZbuUjQVtqsTWwgL2KUFVtSs9450wRvodgXxG2IApokg3k/aEu8+FTeICsqpBS1bg69VyiwNRklmoVXf8E5C9/fEVO6C/vNV9vsZdUO77YY9+vrVT+s77I5frQ9SBRJj2qb6/o0D73Vvf8nXWWe6Ye07Z6kIzM5v2Kpjq1IiAcf/J63d0H76B40qow429VdiBSbYm3WHWHrCxLOAJuVAz9G4EbPkC7iz/dlbHyxtkMY+VGOPcRFnAdZpV7mgQyNBCFhFlK8ih5K5O7lBXVgbqJHUiIncFTF/cha7+rCkooT8VYA/pXpnPuPGBsallzEcxdm+yEdOu0KYpQwN3UOuu2xC8NsdFGVvYHycF59Rm0K6EWQt0DzRs95lgJyCTv5LZkUFnCXcBk9VB2A7KcIymcgXKh7IqF/zaydSPvwsb9gJOxEhiPgKwd7aH+P71qIxtcLQtMTOzXzwO9l+Sg9VGLlSDkhk2npFzzLIxN+fKMsQxnfVSCePcgjFtkVN+7JUJ0cy6lNGMssCt+tUoe2FhGIfnWhjzI+XBd931za36oa4qemLqVbYCyivb+BU5R7tE/Xk/rBKri33MrDziR9nGWB4Z2J4u/c1mkXpm+c/DPmNd6ryyUDFOUptnls+UtWdwDn24WGKrBdRJygfZNdROgWFxPu5VApn8mlQhY0sjbNnDwoI9CCUfJ+cCwiGbvuyr9Le3zcysDrZnyMUn2kcFWtZz1a5wCHZ+y5XngGJNiX7CrqqVc4xR0dVlxyBDyO1aCeBUbQfY1tmqBzmUGKf5Eo960KdxDKnfEmePhp1fguuNgdwujukz2jif8z2R2QKWTsanwsrimcOpjxpDhJlswphA200mqGLq8cuW0ebrvdhnwpxRwC7DtsfY2/gcVAQVlCDjlrcVGtNQtzn2mpGAQGxVjrHrYIym/ZPD7WkHYIN8xgMza6MMsT1iQ0rwjN0NrjynxszMyl7MJk0tNtTMzC4FpcnQdV2gW7c0u8zUUZHm9zE2hgg9eoSjS/uh/cyfO20MPg/CAZ2nUn04rGQTflJ81UKwHo4h6yHjXGHLuZxyT0ZF/l5lmzaZk2LKm7LBs0Eha7XqPu9L3xdhLauqcWVrrrCt/ndkZQkZ/cwKaXYoL9oO2giuBfE6wl7lZfslK9rc+NWfWr7PDPm7yEanxxjP8tm5DiXprDgOo/GMS6jP4kvLcM6bac5xle2f+ssJHXzmPrJWNhfzskrMy9pk3jsUstPCca1BqQtYsDEcQvqvHbOHng/9f3NEvZmZfR1LZMxy9VGDMXT3ca6cuV6W8WQXc9lDuvZy6Q8eOBfUyUrU1QKbXAYbSObwYaKrK1A2cn5bjVLkthzHWkNmdmX2ZByLfkamQlsYy9yQQ0k50fiJ8RZ8ZF7GRdpyZmaizsWYk0LGJJ03M96njrI9sYw7tFMx1kL6Q/4+jC95/yLp8Zpnmr1D/6UDHay1TRxcWIXzjioEUK1k/azPqhRkPCF0bk0dj607ERzzWLxCcK0C8xl947Ajxrka32fRH+t8IFx7xNdrsxqdrzjW3k1+7ezd5MFuIXrOUwf5OvM37+ER+hDkBOv+n+zY2PXcYtQim+AOcL5wiYzFIuo/fObIanyXHAcvreHKjdln0ONXhJW4tR4fOK6Q8Uqp4+du6F/P5K3xKXWDeqB0a6GP5dwvFkNTH+lrdJxrUTIOrEapzGyc34VsvGfJZzKpcf6NtlcIo3M7r9mAMly7LuZaNf0x4xedx1C2Q7a23piQaRPVziG+GAmbmsduh/FhKFBR7cp2fc/FceV9IR/XyVrDpfzAOQ3voYtciG9msB8hd8fInAvr2qPGu0UtsgvvLKzHr1yzrpmZ/afkdftYca4rtjCXefdgjFeuX7Wv8irixzVLsbjMLtP3uXxVOha/W4RnHS6+twx958lLIa/dT2R1qCNIJmJ5r1jpI6kLlPcYczXfQ9LOqD5TbyinjGF17Yw6v15QKtM1/QfWVtt5HWXkpK7THnE9OsZeiHNlIpOecZh2hM9MYdcXXh8UpfgLsx9Qn5V5FJ+baF96y1cRi4moJ/xdrB/CeJ3Pqtm62a+IFzx7u9oF9Pky3guBMtlwzcy2RQzOzG/+HbWMATOugo377UsyVvtxP3W+bhBfLuJnunJezJwrMVy45BT/eWf02aJ94Hu5rlwjP2AmS2/noJAT5JkXNLhyHH6oWeO70EdDMScZhOO6HFEG+eiEHrbT9n1d6qCXOnEPnymkl3eWXkbVJzOepSxxXheji2Vd6pXGALTpw4PvZtkcgteMMYCHa0oxRNjJiw5KH/VvTk8VLZNO2jKdE4cMzoTGK9RN6hjto65jxViizfLWJfz7Beo44pUSkclu9l2DK8ZKdolFnDeQjbgGl1FZ4jzBjd3yNXk9Ga8b3Rh2LnXx9mXjf2hmZm27ZOlvtnzdpa25NfsXjB7BkaD3qJdMIbV8P41wbgoU87wVl2aVGDvvgTnKJPaZzM9WkZ0fz7NF5P8BZlS78nIcbtT5HeMbOmb22eSsSksuOEZd0/eq/B3HnrKh7yNot+kjOffS+Sp7jbpJm5yXrhglfbm+X6LfCNmEw/dVCmYUyMmxcG02hmIyh/cEyLSft/SWp5FjSdkeGalDQx3LwMK+pz7z96JHk6GTc9gvmBPr/9dMQZ2b6wtv3wkZnhNk85kja9Uj8B7paVyHS/dNokDz8teE1mh2i1u/Gvz9rM4KtP4jZA4nVGqaMder/5mLPWqfwPrTvlLpDyiZyYjZsVrlma/h/JB2lg+mmSwwrsPgj+7k8Zhf5dhjLPLmVfQFtLN8F6u6VsOGoVQd47oo10x6ysQVw5JezkVsTxXu1fpEUFfmmXy34X/fW5bIhIRPGLqtb8NG4K233rKVK/OzQPfv39/69++fd+ztt9+2xx57zM44I/9/S3fffXd78MEHV+te7777rnV0dNh666333pX7CGu83x9MmTKl138OT0hISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEj4pOCXv/ylrbvuunl/MTbwtrY2e+edd2zw4MF5xwcPHmyvvPJKQf0YrrjiCnvjjTfs29/+9ntX7iO8bwbxhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISi4CNgED/66KPtggsuyDsWsocrSkrys1h1d3cXHIth1qxZdt5559kf/vAH23DDDd+zfl/hM/QP4u2Wn0sqSEM8p7fUTUQOpabuxecypHHo1LQyRDVKpi0hRX1DVsWn/WS6KVy3Va+D3QhMP7VAUpgNxbWr8H0RSk0fwmshM8omJ7t7vPbvTACZIuz6/b5nZmb3o83nrzzX1xk90KW4eA3pXcdfib5cnN1q6hj7yDH8MZcG6Nzds5STHUjrMdRazCxLacjUvWZm06qcwu5xsctj8pRtY2Zmldbm6yy9Hvm3b3PFDuPdw/72AUk7RWL9/VFSuzRrCDMB3YnyRyg1TZmXD8gAsxScLSnrKb85pJJtickv24Z0lN23yzmkEvkPU0vFUvNw5wpTHED+FmvanSCVz+G43kxN67LSzN4wyVP5IdBuWYIaScFXwVRSbFuYetjMpzlrC1PlaRpdDFZrmMpTTCVTYs9lShvo7M2SbnBckAqn5ZjsHLJR2pdRzsV4nyBpwe5zxWY7u/s/XxKmupLPezgZWOd4J68P3LSbrzH6sKVmZjaVzzoKv7zbPlrANlw4yaX828aeMjOzuv6Z3O4wxFW64mWnFN8e4pTtt5dmOla1i8ur2Xqry7NZtTO+PzbM1/FmFmnKJr3r0v/MK5FUHaMxHi34zuyUZ0iKxROgL/9lejymzNJU11DoCpSanXbE2a5clsMB6pikVB8JnVrGNM1Mv65BAWSYMrWQKQAldatPY+QvjPJhOUbfRBmiMeotjTT8o09PWaz0uy9YZjDDdGdmmV1hX9HX7Sd1ND2nWZb2TG0S+6HBFaXy+y7aU177eZSS6tHCtExPWyGQhu8SpImlSVXf7ZsEHZ+AciOp8zuUV6GcjfKhrErZ/i5X2eUrTzUzs/N3dTn4pmq3fISgRF8E8T17RmYDX350iJmZ/WIVUqLRD9bLBfZFGYZNs8WfHYV0V8dUu5JZxd6ozeowjSJTgS7Qi+EHpfARXUjFWS7pIDuQYtXLG3Vd0jj6FJ643kJN0xyCA44ArLQmO9VFfWPv5VBqyu3nLY6Yn6cea7BHf0F51RynxcKtlumwWZZek23cyVYP4bMy7aLEEMMwDs2hPoYpzhXs3y3lGGzGK0yLiv7pEL9aiZiKMT19hE8BaZb1NZ6Rsn2LVPk5yuNgEDSvHn3/dSiR7e3Zp7fzVeq+7/pxC8SBh+F4b4mLi4W6vVx533pfzg4yg+bLrjjr125OcPGx52d1wuRS08T/TEafj3VF51ddqlKmOjQzs2bo2FLIElIX2/6SmHg2bQzqtDANqqZmpyyG+RPFry4J0t0uhrwNE51vzuEDY2fGVupvmfYZbS+B/HRris0w5aXG8hSe8uD70ZE6RJ25uLoYMXUItoO6pTaH4xD6ZQVtD9vM36iRD1OY8zc6huH11kd5cWGVjtDmaGzEdsCPjITvXaaxEeJ7iKS1S1sH8RiCROh456oBvsoPB9ah6gozM/veV4Nbm0+GGk3uXAxo4mIf6SLj5Y43PGlmZt8/4ldZJc45KcpnygUoVrzopbjQUqmzcLv8Yz+Gnb1A5YXjAN82Gr9Zoqk4KUNMu0m9DNO6m2W+YefIubA+ZVR6ppVto8/UuSxB/adsHiznKBccxXqUOs/UkTDL1p0iqU7NrHhz4y7LjyHCZ2P/xlLicu5JgVXbiJXXJXwuxtkyJ+6cn1/XQ+cWYQp09O9cXYZEIMt1rLaG7FQL190wr/LzGOnXkTX5p458y8zMRg3J0rL+6M2fmplZx0P17gAe+Sv12WU+yqy77JVh6zk7+d3bbvXnDjvwejMze+Dl8e4Au1emqfYnjGEj+wFzymaJjW6DRTgUP/wJjmu8sgRjWIk6fp1E1jXK4Ns6IUMLqSuqe/SxlKlwnmaW+VPGp5oiu6e1WJ17UWZ6i/9oeyL+ouA6rwXfVY7XC0q2VWOADc3szV7u8z7wziVWGEiZZc8DG3p/pArR2lMfmszlQ+gkknW+EqnHMad9+U2kDjAMbWUM3SUpoTeCv5iF9a9yzBO16xkm8J0KQ5N9pQ7E4sVfO9v89CGfL2hGaJE/CnDlYbv1Mv0p54LgFGeX7Gt4uTRGYk6c8jbMm0exk5vwpRTnNpDJf2kLOK/COu5I+NxlapPhL26rdeVBONyt8SlZkNggnRMT8Bccp25Np83YV+yImeUbMcoFbfy/g9Is61Ee46jGfDjvCRvUnpNzDUGdvsK/LVsv47PrJJAxAO02Y1+Z63h/zrFk/2wtdaAAy6ZbIXg/ruPRZu0pdcKYGzHOUTOyQ6VHurKqxpWt1Thxo/yO4wlfUAp79ahUGeWKt8Y7+R0Am7nb3x7wVV7ZdV0zMxsYM8VFBiWIPVA3RU5e4YqlvxplZmYz3641M7PXc7Jod54rNrz1BTMzW3UPjmsW+DMgn8Ogo1WIXZvuyOqUw/ZSJMehXPi5rA5jzWbqvK4RYw11HOovpE6MtAKUYu2b/Tr0tOxcC2Ne/o7yphERe21OcGG1suzRpqBOzPewDuNsjT0558PzdOoacfge6CvB8WKsVZebWZlZFdZwWi/CcbZZ4xb2OeR/uNjJJuodbVcsJmJcfWTwXW0gY0PajkOsEK/lf21nbB573c85MJ6vJZedWlXtyg6OB9ZPdQxX4BnpGnRJ1dYxM7OjGGD/0xVqAfsKtKD7+TjTbKG5GPqbV7p45ffboe++JD+8FuXViHNvxverpM4XEQc+ie8HyblZKFsQ07RMwwHR1VGwi4v4nnd+UJpZJ9+98p0l+1x1vtbycZkVgot2lCHE9KeKbF4e6iQNw63WMzTtPeU+XBNSeaO/Ct5t560J7RScC+OFD4Mh5qSCcQ1sVxn6oVPnL4yPaM8ict/jao7ONbYOzi2LHPeeB2UOpfrVsvy6Izjf0/boeoJl//9hZpnMYFw7+HzqGzCelfj6DuKmI6qzKhyqTdx1hmAhuLJ+VVan3hW0YBJBFIB2gJK0311yEu+Ll0x3MevtjC3kVrYHyv0Rn87GFSsnZXUORXkB7rJY1/yAI9AfwxnnSlw4Ak/ilxgo62q/+STQ2UqMRZuOD+NhGkius6h/pEwxjmM7zpI6lC/KC56HMYWZxGacl6keccxpKzqD0ix7v/3nHuoqKJu8bkxnR1rR5sY2yrKYwMxKalzZTT1kn+k6GNtYjZLPdaTUCWxgGfx6Zy/zaK/PEq/3+H9kUudm1PHv87Ue11zYRva5vAvw6zyQ6SbKkjDNjsS1lznf/W698yPfq73eVxk93gWpdSPc9abq8mQfgb1wmi4r1Ls4Z5taxBnfxPFaqfMN2m34sVHQ1ZPk3R7+N8t2he2aTZ0TuR0Kf8oQvllicIJ9xyn24vrCOhXVrixYS9F4kDHf9laACrS/nW2kHRA5GY64vInvPPkc6nP4zwa8F2VA/JlfC9I5Xwhek+2fFqmzpxVvrToh4dOH/v3728CBA9+zXmVlpa255poFbOGvvfZaAat4iNtvv92OOOII+93vfmcTJ07stW5fY42P9e4JCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCZ84KFvy6jAnJyR8ILxrbu9fX/69D/Tr18922GEHu++++/KO33fffbbLLrv0+LtZs2ZZbW2t3Xrrrbb33nu/v5v2AT5DDOIVlr/DNtx50xvIYMsdY48XVvGblLgfUtkTfxuc43fZWcTN7uOwE9DvKhN2h8pqV3LH8jUitdztxCaSyWAdacYb+XUO32ammZldsCrbBbXhTx0Twk4/cZUOPv3XZmb2+YHP+DpfN7fV8yTsMup38ttmZvaF7z3n69Q58lCb+rL1OfyeLWyCGrVDRt9Qjh2Fd5ujROyyNc3MbKGnaDA7uepKMzN78UG3RXbELu73S5+QreXc9Auii9/uBZlQMpVRKLmzFQwUecT13HXODWNHcYe77Co5FT+4HTJ6NnZdl8nOlU58buQuUWGBKFEGEmlktzKeYpet3yEZ0wfKacgYo4wGAUPcTFyvVH7TNdWKxzy8lVxLdrEX7OTjOW0rdraXsD962x0asDB41jIzmxsya3FrtewGXohr34Z7HahMi9j1Oxe7iYeCZalJmH0anDw8P3vr/FuUb5LVIStTzhWrHnLbv7c9LKNsecYcm1Ll09h6Dfby8On6HI4Uxs552inFQ1uPMjOzK246J6szClW3druufnsWdGxpVqX1v44pfJP7XF+/+AQ6RjdqDUV5nivmrQF2ltFSZwl3ZaI/SyEvJygbEZh5voWvl1Cmnyis046dXsrCeCc/wF9Uoh1tMs6e9QdyWgE5a1+Z1eFuzoW8L9nolfWAu0O585g7Y5VhhLYipOTRMKA3ZtBig4wx9MvqMynwZLHglmO1T9zpHjKAKwLm5C7ZfbsPxnNuaAf0HhxzMvnEMoTQ1oAF65ot87+bmY3EMe5yZoaN4+QylFvWqUW5dlblTwNd0FiGgOONvbjH791Iu/oeW8LPn4bY4oBH6/25+9+FLHG3NkTzy/+bBc0PbAlGXhIQkDH4x+I/SC41HUFWKfxbl4wbGdgWNOCAsBmVoO/JHE55zyNEqEVJ/ef9NesGGbKom7yeMHF4Jqh6HHi+sK0elGnGcdvJOcoynnUi/HuDVPHXjDGoMZ4IGe/BoltU9mHqLeyaZy+IPTN1NcYwR9YHsmEISwdJI5oZe7N/hFnBZ2NgHephhCnFI8IE0zYpvy5ZxW5WO8lrIha4CrJRI1V+wA+wHfrIg1DSh9PkSFPbvu8e+m9vOhbv/mCMnP9V63sc7oq7LZukznjTMW5sNsRl7bj4ZfiqpfK7epT0xw8JswmH+SiUbdQf8XVVAasTGTmWiW8gM5dn5eI59ZmUPTK2gFmhShjZWikn1B8MULPqEweNAhibL8JHeZZ78uZo3Fwf/EbZ12LZe8zyWcND/95g2YSuGJD5xzjozcJIXOuNJscunGuYZXaMtoe/EWYf75fD7CExXeWYkeIkds+QCSfWd9DxQYy7T86qVKNk+FMnc6WOWnzATJNz87lZarlbf+VimVFQhu9dAeoxyf7R16zEGpl4SXLTeesGkdg6ImNlV7hsJJ050KYrYT3dJ9WHzE2SJcyvQ8xC7PrH0LaaZbNzxKPLIBslQjXn52Hsc9p2mdN6+aBuNgVlDIyBNS5kL8V8JvWQ7eGkXzMBUPYoZ2yjMtGwTVw3yqFUCaBMbmf5duvD4GCLs76RQYzxvzCYzaEe0xbG1gFYv6GXe3NOwf6lr4wxJbIOZUPZ0nKuaCPDfITJ2Q8BfjdM5uYgD972XDcHfvLKHc3MrPkH1b7KowMQfC/FAcjxxvWRpn4EqDsFH050MnXlVcf6c3e/i1Qe18LWkCG4QS7QhHnGcxinP+NFzKlShyLNmPF0+Ka8qSD6dxC+tnHtRHxvJ+egkF/PdHp8VsfHzJSBUA/MMl1gnZg+8r60/zF2fPoL+hPJ6Of563gPrp/pmhBlZ2oP37U+n70BpbK7/NmKt8YlKJEYwttJPGt35K1FKVm4wwwdvYH9GovXY16L9egw+Huxk2RmbEZdzglywvg1h/PjalcwC8hEeWZmWLwKJddPVW6/4Yrdv+vWpX+A1D0zl2ZZ+yIr9n2GOjClkp3/1/Zdf+4E+5n7cDP0uRYnlEVuAkrOe2dx/UjeF9A8LqSOuDVs6xK/yrneZMh9jN1uNNcnw3Oqz4y7OHfT+CvwN9E11XCORbmJXQf6W1IduR6OFWTDimWd4T3CzDsKyhnvQTkuFsdti5l143MsS17M5pnZBIl7FoTzmFhWFfYjYrsy0R//KGFMo34Z62hHYu1iBtYkSzP98aG7XytjgDg5q0NCRmZ/4jKnJhjAq5nGZ91i7De3cid/vmuWlfFgyEIFp449dFMxUCA5L8hnvMfhO6Rf93N6/M0/SvpNZHd97X83zftN3lQH2SV3+Kd7kMdK2DGSsaGDPhPrCD77oGba4dgzztb1Imb0CHVNxodj7sUFMWtLjdRhfepjyLEefu4J8I2ViPHauM6tPpx+lW8jeE+1C5xDcq1Y2EN9jErd6AsrX+r+Wnu6tjLSIs6ugt40xRh+Q3ZliV29ojSg7G1ewBg61GszH5uVQYE60U/lcq+OXH6b/VjIO0b/To2+gG0XFmu+jtrXFWt8PluTuOJe925n2e5OTu+5yznqut/5KjY1S0xdVNDsDb8kywx47yGIpS9A39ONaJzM+XoDSq5jaVb5e6B3e+Das5Tln4qPFpwEWzxN1pH/FdalDOlbOV6T/iKW8YryQR8Xy5ocsvzDv+axhofZJnkdzSjDzuL9da4fZkSP+apHgrpkOv2t1KHshVkii4HNLe9FCm1nZz2+q12hfaNDi8UDPa076PpVT1k7Y++pwmxlunYI2RkGX9D4t6CumbedVfhdXuZ5tL8Ez9zNeZHa8ZwrwrXvV7N1wXXHOGU4sp/7/S+xkHvIV36fXQbx+T90neg9sN8ofNCpBlR09OYu9mwsw8vbO6UO9fZ4TAZWwG88JnW4pOSzeVZn54bi2Vogp00cO+mXRo4LYzLaSaVA5jhDJtpk7ZCYjHnZnBcLz3kw4KH/w3iXiX3ppP9ku/C9VbnawyyPKm+hH6MMKfM353H8fSwAC+fd+H3B/32wTrHmxkstS/NoZt1om/+fDp7QfuazMeZlTKN6Hawp+/+LUT3s4f9FSiVe988cxmERG+LnfErdTbsa1pd5DJnHV+D7MtjSYRIr0jz9xs0ZNzzYBbY6F12Ml9Cjf+nuvxOaXMy8DUSB95qZnfvdMOcvGu+AjvN/KHJygSnQgZuhsw04rlkUjkG/+ERKNUFpktmDMTjXUGTevKw+8gRmViGy0B7JRGBmcb8QiR3beYxyF6Fvb6KvpD3iyKiPCd+BEfo2oCa4B2VTfTjjBK4xcKTCLLarr8ebb765rVy5suBzQkKf4J2PuwH5OPnkk23KlCk2ZswYGzt2rF1//fX2wgsv2NFHO50688wz7aWXXrKbbrrJzNw/hx922GF29dVX25e+9CXPPl5WVmbrrrvux/IMn6F/EE9ISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhI6BkHHHCALV++3M4//3xrbW21bbfd1u6++27bbDO3qau1tdVeeCHbkX7ddddZV1eXHXfccXbccRlz5He+8x2rr6//qJtvZukfxBMSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhI+DnRbkA3zk4Fjjz3Wjj322Oi58J++Gxoa+r5B7xOfoX8Q/7zl50Jnagamz1qOUlJs+bQemgLXLD81A1POhOlHNFEH0leMQHqMRqazkBShG6FciNQiByHdjKSo9uk6fRoXyWPXhPRfw5AWZg+kjxsnaaI+n/+zC753kftwUlal7VWXamnU6e7G/extMzMbai2+zvroq2VIdfGOrWlmZg/+ahdf53v1SLF9uPU5Jk7Bh3tdMfTkrK1X4eFqkJNkLsZinOT0/Lw9Y2ZmHWPWcddDKrXGO0dnN0FmjXV+2WZmZqvOqXQH7pGG0EBxWJjR5mtSh5kCRqHcBCkFb5E6lzMlHGUTF66UOi1MQUMZkhTX3btaPpgORWV7misoS8yu3S5pTH3aEsr4b4LvZlmqsABd/5Avm1nx0nY+a2ZI5+hTopkVJrHRcwG62TamI9YcmNTtMK2Spj1jKh/qONNwaXoZtOfAWANwj0uR8uvvOHyzpDniR2aTuRzpWW6TMTwQuXRedSkNt/qfwtRsFyKFYdcQ9/3uS3c3M7Ovv3GvrzP/2lgbi4wN878+Y1uZmVnVYc3+2Bbov+eQHuf1FTjx5ex3Y89aYGZmi85FHt6lOKHZnilq+6OsR/klqbOEKXXQsC6k5TtS0gitwBheksMB+gFN50hZQBq4nx6QnfLpptC4Nthbk9StPh0gZLGdYyg6NozpmpmmkKn7jszqlEEGO2l0+PvQd8VQLZ/nB+eY0gzpa4umx2daYbrcWMph3p/pVDsjdcI2aQom6nMkVfbc0GfTCHbIsZwrxkIWkJ3errmy8Hp5aZnNbIqk074Z6Z3OgbwgBV+/jbK0S2/TPmtWWbO8xzkZqaRHIrXbTVd/38zM6n6S1Zl6eqRpfYSpL7tyfPdYMzOb4HN/mf32l5BpxjDIqv3AwbtlF6Dfo24yDholN8mhHA75+Ba+XyJKT9EZWuNKTbE4DuUC6i1se5faS/VpZlk8t1PkGJ7r1ENcebn43g76Wo49B1NTOhNMA8YUYrlIHcj2fN67LFKHOqKpBMNUZ/TT8PtFS/lnlqVDRb8uG95jzQyaHpm+lu3/hxVgMfWNuslnltR7T9YF55jGTdozGnq8pD7/nnmpEZmKDXFBU6DXZmaVsLe7wd7PyrlSM8VVVLuSMcD0XHbuNpzbFt+ZqfGP2Sy3P2Lv/tCxPLPWx3gCOnZ4d5YL8KkB25iZ2b1Pfd0dWOqKsj+3+zqd5yH9I/X5PrnoMyjpBhswD9I5zgqUcyDvZ2JcfiV1nuMHjit9qMa3lHfaf+h3a0NWZSjGbhVi3nbqsRrgaywfvKfOAREHNvP31OdYSkqm7JN0e6WwFV30h7F01jmUTI/5FyuuDovOLazHB/an2sAwdTnlVX15aEsJ9dPUN/RRGb53xvpsz+C6cp2x+N2iy4I6CtpeTHQXwkaP2DmrwmGt43xKbGlXPT5Uu2JKjSvbsipLn3UCv8VWTjiv/qLzyz8cen1WSbM19gE0atmHqe6R8bsEqX93Hp+lxnzgB/DDdKOLZD2CaW2r8Z26q3H2bH7IoYROlIgt9emMEat626qppQnKEm9ymZzDNYfhazNThA6WOkwrC/tUoLtmBX6xStraCtmrxLG2mCxS9jhPZhtHRurQV8d8P3W8mHq8WfA9lnLcLM9OjsVixSLGQrdbASpgJ9tpI6pRhnMFs6x/ObfuipzLoaQNFftSjvYgtLLLxRaP1LUJM9vfzW3tPDmG6eSTn9vRfUB8OajfCl/lTLvUzMwuPOocMzP7wkSns+Fs5KPC1CtcWd7tFpIflv5Y/iTs/RdxgOpUJRdYAf/BqWc1yk7R56OhzycgBu6Crxou64NNMIJNtKEYr3LREV57GWKjhbG08Ix9Gddx3GW90qf0ZTruWGp2yg7XWWJpfVmXaZ4vi9Sh/2A71EeEMhyR6XK0tYM+m9cJU0MXa25s5vunW20QdYqSqhYf6OJaVizVcQjGSLTFsXTaYRxlZiWDI20zy7M/oR+nr9xWji1C+yshm224/3yR2/mSXt0sW9OZLcf2dsXLUIp7Wr9hZma/m5yljT5kL9dnU++2vsf3XPHGn9YwM7NSyX27JmWa68bsj1ctA9fjzkH5O9i9U6UOw5NNMBaz4DOHyZoD3xfMod08AuWSrA7X1pYEvqNKxruVdp91dG00iK/9Ouz2kTo5lNQTlRHavGpXdOuaLNEQfD8ruK78Pur7Q4Tyy2cokj8efKLZ27CP7TTcul7OeUKw1rwgFndQ52knl8m5IC14nu5xzYPx+hwrxCaumMHc7JyPiB5WUw9pI2Dvh8k8njHiYtpJxDi/qvFVdv/pXWZmdu+xLkZb9gv3PAdI3DHo304+XnnAvSzZvuR1vVqfoA6vFGbIMuGRWDN/yty892XDAV3+3RcldZYh3yqpA719bDvqBsZyf6kzBs77DIxdUxDvmpk108dxfDVioVyEdl99EvSwg79nqnk1PpRFxuCcGMk6SwE4J31JjsFXtd0R1NX3MqHPjj0DZftW6xkfReTGgWVMUhp8N/NxdmtMfxlXhL/TuqEtJdQvU0c5HrHfoI87g3lHh9xrBK7JoZsPGdhf7P7sg/EBtnQo2yGTwFEosbb77v+tnZ1zr1NtOMeT69K63tNHYMT30pnr+2O1CJ7rJ2IiTnulQ8h3g62wgVw7Xi519gjG8pia7Nx0yPtUxNXssjJ5L9TEBbBqlHwfdFFWp+D9Y/jdLJMB2nba4lDnzKwE7SmI2cwynQznizGdp/zG4kvGp7F3TqxPP+8XXKQOn78v/tPnATNbK3I8XCs2y+wi7YoOPvFS5JhZFv+Y9WyLdX2cn/8clHp9SLN//wd/nWcT8e6qtd6VZbVyW8hFN+dPsbbDzg7FfJv/KzIqq/FOF8a+nytW4Z4rN+3n6zRd4dasI2/bClCHZZrfuJDADhkjJ7mEA4LNU/a50MzMrvjB2VmdJ0vQRrSrGsf1ffYJKC/nAZHpdSh74VxU1zs5x4MsjEZdDb8GYR2xjXNgxE3DZG7N9WyvqzGfyfHFGByO2HFmTuow8Geb6R9jes176PPwHSdlkzKkQQ0Rrrfquyd2AK+NdnRp3E57squ5gOjSyD0+CPSfCWDfvV1jf4g+891OF9eSqNeyBm9hbLVx8L0XdMXqQCbKalzZOSM7VYa10E7eX+JsL298DoyzrrvOx+8ugny04rmatR34wSHOHpUf7ObaX3/1D77G0YOvcx+Wuv/VmnSQ+/rIrMjjfEgUeC95njefc3K1+36YG/wQyq/mcx6e7XCM5UzIma41T8e4/gl9tje+l2XrANbJ958Y33KMRYf6TPo/yj3i0nbtX943XNtV205/TFnUOJvjy7WXmE1mrz0SHFd9XhaUlCmN+3uaC8feJVNOqQ/6LnYnM3uzh2slJCT8/4bP0D+IJyQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJHxi8AllEP+04zP0D+IPWXwHKXcN9sa4wh2l3BepDHPc5cOdQ5HrlGC3UGPI7iK7n9bhB+wyWlHtymbd/YOdQ9PAlHXFJtmpJmzJIonWWti9uGdWhQo0Yj/HINJ4uWPI3mmbv/oqjzw+3szMWjYYamZm+65xp5mZPcwdcZYxiJN5ew/QoQzbU2k7+x7k4pgKsnKyqFZ4GkKzLUA3+Atz7ExHYofUFhkNoZ1278/c9XZ3O5+vefZH7oQyPGBz9KoxoPEehOM5qTMKZQNK7sKdJnXIqI4NXmt8w1G8vXuU7Ly/EYyVp+A7iYJeNAFvzB3/ys7EY9zRyt1qyjiE3iO5jWcH012V3G3L35MCT1l9qD/c5cYdsrq7eXsr7s4z7vA7Qo4NDOpwi2JsdyfbFqPk3DIouetaGU/J4kBmUfa37LabgPt7NpjvZOfYx2dwRyH686KMvaHqh44KrfVWUIhch+dT8ukj8QWbgp+9ybVxh8Oy/Zqn2U/NzOyrAx3rweftWdfSj4I1XHEuSjAZLt/a6VHrgxlFypBdHFXqipWDzMys34Wun96+JBtbzxyewwHqqHYvdsJ60o4zUMrmc88+dAX6/hSMiWz09ewtVdWubIW7rBA2CM8OC/noElaxkbDvZP5fwAapInM3NH1CyIpqnhUvYycg44Pshu+kKw9ZIHS3NW14DqXuaA3B64GhakStK99ZafZsMSiqf2OFzIbKBknduiYodYcu28gdtbSB8lyeWb0GB3rbEc7fK7tlgysWgdJwEeTlxpOzKt+hjWCEih3DDwhDaSVihjkw/HPc7t23TxW7FZKy1qMclVVZepdjKj3g62AbIFPvFQUP85GAe5An/GuRmZm9tUF/f27fY28zM7MDjnVtPegssFed2Z1d4HKwQJDYIIdykNyEOkYWReq3snX4hCARdtgFAbtAZa0rowyhBH2e7t4O2Bcux1iWCFOEZ0wNd4SXy2fKNpkMuPtbgzX+nj6bvu6GSFvJKqFsLDOCOpRpjlhJ5DofFIyP6XfoO5WVjkw+3E2v7ItEwE6Wh7AfyIQm9yhgx2F/zssOLaHNYHugz13KwMQYCMcW4etQsftMUkP/8+VqV66TVbGrUE7Hdc6szs6tQEnWFAn/iGefdT5lzFYPmJnZ4iZH96e9+nz4ow8JRkTbUaQvedafqz4TjojxLMxs53cqsgtciJLsh+pzKdJ0X7PIcqCstWCPIDPEnTgsbM2+z18l+y2+D5I6bfQXiKmqYL9bdQwpL+HcLUzhoGAdZUjkiCyz1YfME7t6Y0cj2GmMwZeZp4cuCnRuQJ/Uy/OMRbyzKGQaNbMy9F8n42FKaYzJAv3oWQ+VKoU2giwdkUwJi0Kdp5CpLWXsTqY6ONpG0flG+nCdRxHsD1yHRDjVUqUGh7ZyOlKJOXKJyP/xMD3X9NFCVh6/MprcjUwAJ693iZmZDZK5sdeX78AmHy5XYCYPDiFDViXXbKFdxXh7YlIdkyPyj42BXi+WtGXeoHDMhOHUA75la/j8Zsa+ytgVyhnkZWxtVmURHqQEayetEfZBz3oYy8xB/xnyWYYsL2ZZfH508N0sP/YtFoP474PvYXzNvpJYZBFtL4UyMm9opz8MWd9jgsyJGGNwzbRAG9GAMsIJOhj6dznPyfgsg3eqgs+uy+GEsFYNh8KNym+GZsDbAel7FoIe8AtD3VrQkbI8+EsMSTE5oXsCo6exb/7CzMzmDsgYj67Y7jgzMzvljz93B9A96xydOcRVayMt3QbolxU8Izxul8KuToH/u7nBlU3KXgV99ozxZByVdY1ljO1wvSrMrzYSn7mE40GGRYzJ9BgDE6+tvoZyGsaIEXkbh+ss5LV1SZv15wffdU7MmLU0+C7zzI4wcx7nm6HOFzOjRyw+5rGQYVQZpcL15zBeNsscV1hXx4fsoZHYhNM3n2mBzkHX4ALfTRbq1urCOivIXojDLbK+SLFqhCaWw/4qSSVu3/quY/gdU5UfL5uZkfyXmtUXnLM+N8w9jlFx4F2OTXH8Htn6+qqrsBjENSmygi8TSzMZz8gpHOcm54gtPRPl9CD+ylMR+C+yHi6hrguj2jUNrhxe60qGT3ksuIzJqDfqD6kvQXauKOMp/WmMYZT6FsZzGg9S7ukbLo5cpyforInXYczLWU/ufVxvNfDqJWbGuRGlY1qkYrhmp8/MfqR8qD8lhgd1BZWw5W2MfYPMPWaW+WNdXLb8JQufWAH3qGIcJmttzVy/Q5xTAhY6IbWf/+pX3QeY22evdDH1gJOz9wNvru2Y95lBax/c6vGYSBUJM8BUeojOw53rtWfwImcFA2adKjGkY6asTjRyoYxTLYyYZxWH/unzzOYXxE8UyTx9xnsHn1FSs2Uwdg+zbCjDIeWMF4/FrIxG+Duuxeh8ivaZVpT6pCykq6ObYZaA2HyTQki51QwfPQkE/WEx3jmNMrc401Psq88M/S3D+l4ek3/I4E//qs/DjKBh38Uy9RAcF30nR/vaEyO5mTVClhrRZq635HXpJpaHFrSjQuwTXT/9mWZCPsP1UZUhBV6tK6beVdicYoOR79a2gz82913oHUxy2R9d5rvqgTlfp3E8skbzEdn1C/TqZJSGXk+X9znMyOOneuj7Tl374DyI942sofh55iFBnRh6ymJu5g1tN99Z8sF0ZsMYnP6HMq3rYLHME8BkyI5nSaY/kvc5Y3HfReE6j7KmM35kfLI62W8/LKpRqo5QlxhnkE1V39uFWS+J3jItELrGRLmgbea6tL4/4LsM2PhStG+UrH0wdp6DTJt5tgdrLSW4TjfHWR08NKYFNqMFY3dhNoarmlzs2rndADMzu9Z+YGZmD66ZZY7frCDLS8+4BnbAz8bkNcqfJrk4Ye+/3m9mZiuotA3y3oLx8SCUNMmHyP8wjIBM0X38RN6R+OkP/Rj04CB5tzerBh8wV1kCn1t+WlanDQ0pZZY8+M5m0bH9cd/Z+P3h+P3MhqyO9+G4F1mSRxySVfHTwrlBqWzAvC/leHVkMpZxnfLPa8dWQ8IYQueU9MOfs3z/9GEwxPJ07qBaV85iW3lPWVvqCmd7fA6drzJDLZnDY5koGcMz5u3FJnItpZMxjehqJ+/PuUBs7EihDz2eL/OX8lpXns1Yj3Za/McEHINO9EMsfdLgbP4x0ZxuUaau7APm8B4h5olx9b3n45kZJzfoD8gczv5Bf56nVTDme9M/Q046dZ0Rfmccfs9sqcNqsypcWstjFZc2mFkWZ1NeaCc1ZqK/iMWpPf2/oa7iU7fCOZu+Aw7lNabHAZg9plHfEdPfsH9jmfjMirvGlZCQ8EnGZ+gfxBMSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhI+Meg2s/++Z62E94nP8D+Ic+c1d8rHdltzJ60w8ZhZnN2Fv4vsnl0TZRfuMQU7eG6WHfTL+HvsFpzHnaWyK2wirjmfu8pkRxPrTzo+v+kPSBOxQbJxX+ySxgaiR44dn9XZFk3d1jX6tX7KtuNA5vB7bA8zM3sVz3r+VbLzfe+CnxUd5C+rIwsjmvojsCabmY2ypWZm1vSmG5c3B7jdr9+zX2UXwi67IeYY0NfZxG0h67/WW75Kxz1ut+3b52DXITdAV1oGMsuNQsnNWPtKHW7mrHHFuxv9y30YKtQV36F8gb1hOFhAsuaYtVBeMN5Khg2WZusOdjgOE3nhxnoyV1RiR50yNfpdbtyBxx3HuvMy3OXGUdHd8L+1vtl5pjtDuSs6ZILaMFIHx6Zgy/LNutuaDBqUZc9TL3W4w5334k7BkLHNzCaiX+ZPl4P8Pce5xhXtWY3Wp4ZZHq5CeaIco4nAZtGaK50tU3Z87s4ky//n33GMoMu7q7LrlPQN83/dXtnnv+3uBG4xBO9u24sN9BgHGuC3BjoGpifv2tGd+LlclJupB6HkrnF5HA+eOw/lj+XcbDKHczcwZVp2STeHMrR9/nXNzKC+XhTKhHVhWQM+UFcpW6qX/CFZHGJyy8/c5cnfaEP4mXQ9rwWlWSFvFq872ApB3UfbG9m+VZG6xULI0hKD7rwNWcZrXDFGnmcx9ZY7sA/OzpWhrzzbAu9/dFbHs3xALoZCbhqkynAwM3Dj8pr4PkjqMAYg29qPce+NpM4Jln+dUSjPyarccPchqAKmCTJH7J7VmQhmht54Zz4suOf9sG6wF8573czMrpt0lK9D2/Pdlb82M7Oqi5EV4V6xbfRVZFo9A1H+08I4wFDtB0EjKq0QI9H3C0TWJ5DpDt+p4m3KoMH4j/pDHRO2Na8/tBnQ527daU6mAMoSG687w+lbeP8Yrx3r0/fGmMMJxpyrw4vHusXM6BFjWzDLZ1dZHa7r3lhyiLAf9N7b93BOKMxG4vOykK1NtYXHGNtAJlskviV7InUznE6YyTQBjCaXCIvQbfj9WNjtqyBvuWxK9uXTHS0ZfbdBzIrNGq7Yb3N8gIj/6swp/tz1L8MuMgvOCpTqEiDSW6z8u5mZPXfYF7Jz/HgGfIm3v5KdZRz0kIkImOFGp1yzOa7sT/iBNmGKr8IxdifFvrUhq1OGMegkGwRjvRj7GX03/XtvrCwxxmAi5mtD/Y/NRcuDOi9Z8WLqCZbRsOv9GW8ooyF0wTNBsV3iuwuIZpCtJdqvIYtwb16LFEPKWsOJLlmnMREqq5b2oK2c/6zAcQ2fOsJsQsoWwnFAv6AL1jknmywNHuAUhkzFTRQ4IRLsK+ZwQnn4T3ZTc7t1vW+amVkHxmm2psW6Bnp4NezmbXKBhyz/2GyMy3SVBbCXDK12ZQvZuaXvRqFcgro+HtPsTwT7GcZnslyH7GTzdrV8aMYr2n/WaXDFImVwgXB2x/wpo5pemPPHgPnJP0fop2OgHfiKHOOa0p7mMgFcah8e25rZC/KdusGYOcx0Y5YtHNBQMqZWplOuU1GYyTSq/ho6TnYzst4OF7a0JrLF8f7oyzJhUKoJmqzMSxW4tme3hXyMEZr+xSjptnKumOxTUZhNyKcD9MPyeH126KNgDidqoGu/HFBrZmb/+++sz4atB8c3CAdAirxqMwl++axchvg7yuGiq/Sj7B/f0cLgNxb9SCb1BfR1apMp59WuaMW5Vp2XBfNTz3IsWQM4X/e/U3tLS8b7U38j+uOZwym3qof8HeUtxp5rQR1CM1WRMpZtpf+JsZUXC7yX2ltmMMNzDMLh5pCJVUE7p/MY9ksYtys7ccgcfrx8xv18BiZmDZB18krcry3ol4kyr1uKxZw2xDSe5F8Y6xvp86tdMRP3XCzysq8rls9wPmbk95393mP4H3yVe47+hpmZzQ0TKxURg7kOPcSxtV366olmZrbqu5muTvq1C+Ln/QTPhfV2O1tsIJbnPaHsjzEuDXKzetYNYpodpE4LZgpLaM04b1VmTvivpt8EdRTQcb+WGct4wzkWx0tjvTATR8ima5bJW1g3Fg/25nN5jrpJXY3Nmnq6TjHXqqlTsecg+xsnj9RHjW87g7rUMY1Xe2FabeO6c8gMp7/nNTn2YKE7VHRsOn8Pf7QR/HJeBhYI7DD4dcp2tiRk796J9xzUlWpXzPDCbrb3a47ZcO0ud8/GPmQOD/nYb5ekTLUomXXn4TextjRWbNosyNk9PMB4RQzNifBjHcEYtG6c1fG+DXOuZWyZ3KsccVc1vitDKWWnHO+KOH9uU4MX+nPI/2TxDXO4lhUyE+o7UPoCXu+y4LvZajEZerbPgHk+TzYj/VmAkOGU1yvGWvVWZjbQrApj3xrGDhr3MBvWdCsEhHgodMr7Op1r0GaGcbvGAATHhXZTMzLR9nFuFMsGEmQL6EbMpRnW8uZWZj4mapfna8d1VuD7k9mpfuu4NcZfgIr/nKuvyGudWd9lhadkvWID/LH113AL62vu7oLhd951i/KNB4/OfliN8gI2kM8q85hS9BFj2BbJeNiEJxqHC70CPZakmdlaSfhuXVmj6Qc5Z2M8Go6JWaHPVv2hTvKe9HU9rdmaZBDqLU6Wts/pSSeE+XhRAz6E6+OaYpBxX1/kdyHYN9Q72rVYphKu48XYVMO1ZkLjDMbFtKmcR8j1PJsrj9Wg1DHlfz5hcZn/R7Jc5saLgzEoF9/dgXOjcKwD9r5J+5n1g5mvmN2yK9wL6gfNMYYvMJfN+anmrC9yvBq6eWpkKYXR33ab4gMzCmRLzTZud/cu+Nzxbl3hhhcQRCzO6tg3ggufwbtXZ8foApiF9p7sFP59xbI1TGEO94DdPgnyMW1u/nXNzOttF/uOOifzMq5Z70Pm8JhuQRa9TGC8NdNhQSZZ+mn1vfODsjcw7gj/x8ks01Xquv7fRxhzhhnkzTJbUcz//2i3PN3zrNc8Fltzp83jOjSfWfWa/vNzwTldB2B/wr5Rxzr0OuyrMCuw2nZdqTXLzwBWjRI2w2dnkCqDUHbwZRPHRWRgAf2Ea2vj465/+m+f/RPR1LdwbZi5jtUhmi8WJAi4n7aXa86cLst7b6/3c2ALp1S7UpeNjseXa+pxgCz/Oj7ol4WcVOA9ek6qdDcEjeVYKgs+/TPnLdRnXWeJ6RTBd03h/zzE5t8hk7n8f0IpYt2u0J5oZhvG4oiTG+vxPRZvdAXnNJZYvQy5N954o33961+3ioqK6PlbbrnF1l57bZs8eXL0fEJCwicDa3zcDUhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhI+Phx+OGH2wsvvNDj+VwuZ9ddd91H2KKE/+/RbY4EpS//PoP4xPyD+CWXXGIlJSV24okn+mPd3d123nnn2ZAhQ6ysrMxqamrs73//e88XSUhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEj4QCgpKbGXXnrJnn/++ejfkCFD7LHHHvu4m5nw/xO6zZHf9+XfZxCl712l7/Hoo4/a9ddfb9ttt13e8csuu8yuvPJKq6+vt6222souvPBC22233eyZZ56x8vLyHq7WEyosS8dilp8L3iyecgnHfFowpgaRNOFja1zJ9BjdTPUg9+pifnSkbLmZdTTBHVNVMF0aU1VI3o/5OPZjtOeC7JSNQ9q3HL7vi1If8x7kuTq1xJVI8zfpF1kKi3lPuRSRY/o5A56Xktq36Ci02OUfqkB+sV9uXevrHL1DvZmZ7fpP970vsgR6nUWqoqbaTczM7Kf2I1+HqQuHD3CpVk67/WdmZrZGTZZL8LK9fmhmWeqkVbe4HCf9j8xScJQPcumhlj+KdC7sFtUgpo1bByXTEGkmD2YlZzaii6pdefa8rM5UpDOrQzoVNrVVevEgyEAO3xdJWtaC9LDr5bfPzKyZH5A2p42pTfaTSkyDEqY109RUlOFApkslJVtRjat2uKY8eg0l08pQpgdH6lAPmZP5YKkTSipTwGhKdA5emNr329nHV1A2om6JpPT7Gsr5Tl59drM/yaVo3uowLlV4Dk2xxRR31a5ouMmlM3r5sCzl3VlIIb0ceXsGLnY5AAfe3err1EF/pva86e+DYf3s465nO3uSg7wv/Pc4d2LrLPfeVU+c4T4wTSHlZrZckxmfmMVub5SaIY7pxLbFteth7054MatzEvp+Ifo1lvWWtngi/NJ8pIgbJFU4Zl3Qow5J+8Z0rEy/u3+NK2c3Sh3KJFJY+hRDKyN1mEIKHVMq6Yy6KIvUD+ql+LVS2Ayfjui1oDTL/E7OFRVIE9hO3/emFQcvmMHexlMFh6D+qZ++BiWVBamkVEf8OaY7FJ0dhHHpDOuKzy3THFZm1oKUjzOr5SD7milCIYxtD2dVxjB9Hfr6y1sW3Mrb+Wb0B1P3HZ5VmYnEt2MMEyzadDFzO63ryr+97sogaWBRwGtutJ27yUvIPnVAd5Y+7aCzoEy1+E0TUk5l2YSzbFlnBDeokc9/RNkWpvGSVHPMcL0ghw+SYmsBfWOYjrUjq+OvxbFkWkdNGclUcEynx/GWWLQK/rOVBuXPQan3otzHUmr2pBPqh5BmcDRke4mmGWOb+KzTUDJNWDHTaFOImaaM7Yikpff9qykR+fxsK9MXqq6Hhj+GMK045KRK5GQFyhLY6S142T2zOn5c0f4xSC33mNgC7ihuhGz9AwLY9d+sziT87sVq1JXfHwgNGg4fMwrHs2z0Vg75PGOlS83bfJpz+JNPz3x3nrsqAqYiXt//OdcxHSLb+w5xd+s3xKUp/O2vkUJ1j+z3drkrnuv6gvuwjpzj0P1hy/zv68j4/ArlQsjQBPSZZnosgwwt4+/Qh6WS0raVfhQxYgvjuq9kdTrr8YHBQw6lpmu+IzinaQZ7AmV948g5XueRyDmmpI2ljIetKocf6QhTCn4YLLBMAM0KUwlqTHNlvF1e983ybaZZpk+KMC04Uxlquk2mUeXgcyLVWVhnEuRkHmLfTumfCpyjyWvP4YPaWDpQpqQWPS7BuY3wfagrVjVlyrrqRff5xE0cM8Yft4NMfTm7TJ/F2YB6M/sfVwyxl83MbADituUrJSifAn98G77n5Pd8fJ/NkjoivqoC9tXP7xBTd0vsmoP+VcHptz6cXzcPtGbQUU1d7dPuQo/H4vsi1QPGBYwLaW811W4OZZhqWo9RN8usAJ6fgLod89OcB6Ktw/DszRIPerv6ZyueL77D/GKImWUGtrcJOOWe/cDnUZ3neMKmcmo/T9Op4lm7oKMjYIsbte/5Q8ZjmI91ik2dwXvBxo8Q3+CXONRXm9liSXm/D+bZnAP80vmqU07+ua9y7ZVuPN6y/mZmNvotNx+rOSi7zF9mWZ8iT7IwZFx/emu9fv7U8ycjjq3BAU4d2yzDAyjpa/+FUteL8sZTUCUp3hfR10EW9oH+zNXJNfUNPnwSxnme6iHljfEYx31aVqW1h/aYWZYSl5cJ56167TCW1tTvG1o++HuJAZgGmPO8zulWgBI8f/fyePv6FKo/eLZ2xBftvcXC6/XynWt0iG8Zy3ZfYz1D1yx2Co51BsfNrI3rmbD/QyEv8yNzndGwI0sorzJBLMXvx+L7QsjNMpnHbwsZRMjZ8PIEMzPr/txaWR3Yg7pRrpy6tLAZHxYzcI8joUYtCBQ2/HXm8Be+Od59YHjKdcIDtV8on3j2hfX4Lnp4OPwnXUcO5WzVEcZNHCc6dV3T4LWpj0yLnRdNOMwPYz/F3KDUgJ2fGRfG5JbxYxhfy5qq90PhuxsF7QB9E/tM49MbgrrAaPTLOyvNnri0l3usLraybPGGac6173GsEmPZdoP1DMa+nFOrPtN306toDA1BGw6/2BSbN7BNtH2Yh+R1M9uPeyyBkI8QXf0Sypk5V/6n2pXyKoA6ShHY9vxHzczsKdsmq4N1K65thUnYiwl6EfZuXW127oldtzIzs2q8LFl1DeJ9ffXIZYxtUQ5CuVBSs/Mm+6Dv5jJ+2TmrQwUeAz1czGBHfE0H7MICXEfXJjuh4wfg+wxcL6+x9CWMXSEncy6TOrTl9KPsGZ3L/iY4R8T0kutwfK8kMYCP9/n+hf2i1wnmovvIM8+lLFPeabuo18VY+fy5ma1l1hoeR2xRJe91WmlfaQN1XR3w75AxrnnP89+gMm3f7XKM77woOxwX7VeCfR++DzQzvBeyUsR/XRzv2HyKcRTnCvpcsBnT0A/7Zmf6rfW2mZmN5Bgipv72kKxOrGXFACOJs++90x87Yferzczstd0QcFfjhL7i/ibWHKtgX1th36aIX7oZcVIrbbH+3wLG8PP4upAtUT8Go8H3d63US7XpOFaGft0T4z0nJ3W4TsTx4Di9KnWoP3wvylhA42SOOfSwnXKo62ChfEVk2xs6xv/vd42K0sBFh1/2VPFDgP1B2aauqn3jPL2391JhnMHr6MyO8ynGUvQJEsc1uv+hsEkYn/twPG/KTnvL9U2Me967xmA9Tdddz4aNIWmrf/ev/zOQQ8kYC9fZIPNRfH/Tsb3zKeNsoZmZ/XBY5j9+NgPPgf8t4bJi3bVyKy4HYh3tlS+6F1bPPvF5X6WfOduxHC+Rv7zpAjMze+TCrD1vrw9bOJpHql2h01U+FlW1Vs4Z35OzHyGvs0RXS/Vilq0zviLHlvDiuNlIyIS8brZ2XHsubHk5rtOh8zvIVGM4R5J5PNfc2mnbGR/oS7XgefJsTxhN0Wfqmgrfu9Aerc5bBt6jL6M1M6dvd8n3cA5KxP4/jIJ3cOQc7Rv9Mcddx4fv9BC8dlC/te/YV/w9Y5nJUofHYA9Ka7JTXbwmYqs5/C72uqUBH/i+gHXkf4huwHuCI/C7yH/6rf2/77oP9+ffYXXexr9f1J2LD3BRDx04yp/jOpydiAM0c2MsA/uhHHHkUp6Qd4TTw/95oH7r3A++d59qV3J49X0BZXlijSsfxj07ZF27HLanY4blQ3V3oPUM6gnn+tTDMKY2s6G4fwt9l/jFHpd2q+UzbQR1hLGMzkX5HLw/fVVkDXw18LWvfc1KSkqsu7u74FxPxxMSEj5Z+Nj/QXzVqlV2yCGH2K9+9Su78MIL/fHu7m676qqr7Oyzz7b99nMG8sYbb7TBgwfbrbfeakcdddTH1eSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISE/y9x22232dZbb/3eFRMSigEyiPf1PT5j+Nj/Qfy4446zvffe2yZOnJj3D+LNzc32yiuv2O677+6P9e/f377yla/Ygw8++AH+QXyCZTTfqwvskm0hswK35wvTyiLuuwoZ4f4in4+OHDPLZ0i8LP9UJXb3tJ2WHSMDwS34fpHU5wagZuyoy2GnlDJz/hlMuj/AdzBcz/tfYY3OuWLx8B3MzGyXfg+6Ov/MdsCtsbZjIysd7KhnFphjbNnL7s6ug01LMQ69YoH7oV74vduWdpG53fDrC73SANRa+mvQW4DM5DeDD/V1yF7Rzxzb1Fnfd9vdZsiuzNe+i13nO+JAPUolQ/m//HNl57W7dlZXZHW4k/YIyNRs7jQUmg2/sQusO9zQPVJ2DM+i7IDVaPSW2blqXGBOsIO7K7ajG/I1DLKVx3LG3ZlkDgiZxM2sCrtnW3nt0si9JpsTtmKwsnRl9/BbDc2y3YIhW+EA+QxpLMeOf8/CGGGU8oOQQ6lMFjWuGIbd/c1URGFZaiS1CPq1uyE7N5c7gjH2i7ErWjfpU2RORd/z57JJ1DM/cVM1WC5efjOjaJgxwMnwwqedHX1hZ6crm56dMQDc0UeMhkrgtRLkQwsumpBfZ3pJ9tmpn231MzeWz56PcbrZCup4lvBhwXEzMxJHfR7X3g3fl4ks8JokYfgObbwy2+IziRTmY7tpi7IvcDdzNUrZcVkK+fBM6JQ3YZfx1MfhrvGz5DN9A3fCQta7VB+bgjLCRtqlzBIKZVqjbsEntAdMI90rzd75bg/Xeb/oba8ynzVkI20MK1q2Y547iJWdEn03ArtmK2uzUwvJiMXxZH8KK0wnWBYmYJwWcLwkBiBDKW1GO68j47wU5Qi09UR8X1uaSrbFqbAL9TguDL1L33R0CctK3bX3GH+PmZnteViDr/PnPmQOL4AjKLWNYTbv0cZyfkhmKcQoazyaZe9491DtADMrwTjp7vEcyhawJ5RivNqEcacNlchU16JsZ9Rp6MRQsgrrfWtc6ScB1FVlkOB2c7ITUBbEf7SGLGtkF1AWBso9O4i+XFnbOHohq1KEZcwzh6td4j3oVELGiWJglDn/ynuFWXg0wwbP0dbEWNNDlppY35OxhZFlU6QO9RH3/5f0Sxd870HQw1l0qGobee2AhVF9eDs/IC7ogp06U9pMBpEc7y3XqoKfYNhHcyLZAkrh4Pce+AczM7vnr98ws4zfpi9QRzKKuc+ZmdnJ+2T6fO8Le7kPT8JH1EBZ7hQfXoOS5Mqq3vTDZGzy4p5lPLFx8PnDMIYLeC7C0uR9FfpyR6myiPKG8R1e68qc1OGYeTYHNkgZRhhjcoAoY8quxMkXf0/mCGUxod4xlj5azlEGY8zhAXzMurUVL5uHWdwuxFjFCPpcxrLCsEVmO6+i9figvjxM2VKNUhk0GANBN8vg1zs1RoOOzqPg1rhigrBjLGD8RKY5XG/KAVmdmxvwgc8jsUkN2X7wnSp+qFR5wtnnJW+PMjOzd2xNMzP7+6QtfJ3ZLzxnHxng2xYMc/H2fDTaZ/Ewy8Ik2qWl8nvqL+PsRRE2Fm8DKb+40I+FWVqznJlZJv8anaB/kVTIZw/QWLqRcR/0Ly9jFhH6FNqA3vKXaez7SHAMc6Q8pkZl8+sJvC9kuTmmP9T/R6y4eqzMbpR3yjKZXDWrVrhCw/mvzj+COfU8zpV0/s2+hz9uXA32uOOhf9doXfY9YvBGlRM41DGY8C7mvFtYsMnQxWuf4diJ1p2RUX61Qbg7SLM2CieEDKin2UexcNpM+YL73rT7983MbI+d/5CdYxz8ZFDKFMWvB9LUcPlLWS95HZ9dCVFEq8ScYzHnWwT/NTeHExrHBTHrvJD10gozNnh2JtU1yp1mrCMCBsFqfM0jHqbRCtdd9R40cPTdjOc0zkYM0UlZ4nWFOayb9UN2Y41Pe2M1fr8ot7wMFh7U357Yp8x6SIVm+bEF4pKC9cCRhXW8BiiTGu9LP8yByUkdth9914LfDxNbWo1yQQM+MMaTeUAXxqyRLH249/4yFmT75y2rnM7/avwUX2XIUW6iuvffQJe21IqCOp2nch0N+nz1V08xM7M9Bt7jq3zjDHyuya+bx7i9P/TPZ85jnCL+kOJGs6aMkR4YF58Fjn4wJ3WeD8oYQkZPZR6jDFFeMN7jxDcsDOUsZ4Xg/cP18AirPbNnzor5mJBhOzaP7wF+Hl2sjB7PWjYJpB+LrF/5zGhcs1OfHK5nB3GQmRXaAbUHsNdNYdyyrIfPZlZe7crmhuxYCfq8Bt8XTM9vjplZI++BiR5fn1wgc2uuZ+NV3JOPu0nb2O0X+CpHbXuVmZld9/qJZpb5Yo1sPuzaFnuMkZrnJZWMP7dD7+6kTaUa18qFGlA+itKraC6rw4xFc7leFDK+m/k54+Lge966BO0iftcpNmM4/OgMPhFjPp3Xhb6B+qz/yMH61BfeXzMCUL7IGsq5QcyG0J9SjvWZeQ/6D879dG7MNkIn5t5hheA8lVLBmKAYelyKP0oIpRFsx636Ejb8D4UYAzOlGL52rq7mhBl/OBa6DsV5d2/ZBoje1vpwj0H42kb2Zs36h7b59xgcZ7H/XK+iP5Kp+aoGF2dX7+Uoi39T9U0zMzuk9vdZpfpemvgBULc5PiCz69lb/9ife+18vMPlNJxtv1MuMAF9TXNUijgjL6MQ+sjHT5G50gzY8h9jvC5QXwV9a6Vfp19WllnMoRk7z0FcO1YC/0X8QPmoQRlj8eW6NGWrt6yVlIUwC41Z7zyzvf2HTrhexLW7mA/vC+bwI8zFKLx2+PzV8pnxPm1eLNtYaLPos3UNPOwP2jtd50bcNI/jw7hH18HorZbln2tT38BxQb+2SnxwO+6b44FYTMT5Af/fBJUvEfs00dlAZpUku/dhdpOv8usj3Nrpdw93MlSHhHVzf+Cr2D6n4APUsRPv6FdIauY3cYzswg9cj5iiQZrMYWFmP4rUfH0vCj96DeW1OjtVhfmGnyczhhUj1oW1w4fQL8wKv0zlljYTMrGMPk4bS0APOih/ukbMdecww47oWjs/M5MsbbyucYUxptoD+mzKKftK78mO5XyMflVjToLP2pdvJRS/NbNvyfewTZRpbU+oz7H1wDD7bQzhnJr6qH3XQxbQEnl/0c36aGv0/3II2OCy6uxQJ9fveCySxfMIjNnhGJ/zXLF06y/5KoddfL2Zmd10glt36gvmcGLu+a5kpPnYcTv4c4O4kIzM1z7Lr/7fRwX/HwHx3zLKqMwEuFbgbShloFYuhPpzqX946hKJabrxO58xi7+XuWgH9Y9rrJQNjZPLg2Mxv8xYmrqvsxz+v0n4fyNhhtcYYszfoe/uLZsU1/w+2Ezr85//vG233XbvXTEhIeETi4/1H8Rvu+02e/zxx+3RRx8tOPfKK27lc/DgwXnHBw8ebM8/3/Ni5ltvvWVvvZX9t+DKlZF/ak1ISPhEI+lxQsKnH0mPExI+3Ug6nJDw6UfS44SETz+SHickfPqR9Dgh4dOPpMcJCZ9uJB1OSPj0I+lxQsKnH0mPExI+nairq7ONNtrovSsmJBQL3Rbn1Ej4UFjj47pxS0uLnXDCCXbLLbfYWmut1WO9kpKSvO/d3d0FxxSXXHKJrbvuuv5v6NChRWtzQkLCR4OkxwkJn34kPU5I+HQj6XBCwqcfSY8TEj79SHqckPDpR9LjhIRPP5IeJyR8upF0OCHh04+kxwkJn34kPU5I+HTi3HPPLSD2TUhI+PShpLu7u/vjuPGdd95pkydPtjXXXNMfe+edd6ykpMTWWGMNe+aZZ2z48OH2+OOP2+jRo32db3zjGzZo0CC78cZ4Ou7YzjMXXJxhZpF/RGc61Hakc6iQtDtMZ8GUDuWoW5lVydIHM40EUtqUSZrlTqZr4LWZ5uiIrA7TngxH2qmxOHyzpgZk+gmkbxwnKaD2RMnsRUy3Pk923o1A2/bF14uXmJlZ44+y/kVWe1v/cpfGaPnvkDqpKqvy/fFXm5nZZOTmKkeKkzclrcWSkgfM7MOnAuwNx4P/fr1zXXnYj13KFE1V1IRxafw1nhFZ52qOzVLCPmXb5F33tbuR+0jTdjKTDfv5NpSaxpcZRXIouYlKxW4mxuNqjMUJDa7cvyarg0PWxvSUTAekKb+YglDTVQGTIKfzKHdMaSMpaHy6EaY9pJwpOz/vx/tTpreXOlN7qKuYaGZvmNke9vrrr9vAgQMjdfLRux7vgaOxFFtsP1OQa8oWgOnnF6xGGmyfFGd9OcYURbgOM9neLM9ehf5obcAB7RdudULarArU3VOq8DNT0DLD4eWiUSdB33L4zhTTYno2G+9SUI23hWZmdrz9zMzMdjz8SV/npXpXbjzKlVOXWlFQp2m0kdno6q1dOqMTn73OHVgsdSDK2yKjxJPnw4jpZsRrUTL+PCk4bpZllqxGeSfKLaTOYqRIrUTKPmbuWyF1HkC5hHIGub1O0vfQlDM97UmSqmgaU/kwnRFkacQBWZ1Gpmt/Lb9OND0k0/QxdZKmsAv1j8lBNIV3Q3CdMGWWWZbqiPfns9N3dZjZdkXSYxrG3tIWEkEKYzMr7CteR1P05lzh06erzjM9FFOS8h5bSh2mLA9TiH9HPrOPoJtDa1zZEtn1fhD6DKmp+9Vmdd5eHwpAGaJplyx0m610z1oKR/0H+4aZmX3hmOeySshaNTWSzbhYoDTsysyxyPpWufmLvs7yczAO38CBP6DULFxH8Pn5sEjXOVpSiFNMFjHFKVMAaqo4puqiDIivLIW8V+N7E2VAU2XTV9J40uHnpE4tSqYa601u4WsPwm9mvSjnwvSw1LlbrWfQ5sQiKvr1WGYdjhSfh/3SaWanr5Ye96zD/7D8tJ3vB7E0wqEN05T34tTMLEujqDaMvw/TmWra3FxwHc4jNNVjNUrI4Bjce3EsNSGuV4KYXGM9XoZmqk3OLWzAB+jIPs7mbHXXE77K+rbczMw+b8+YmdnpdqmZmd1eko1zmDT6g6LuIHzYyxU3HupSUV5up/o6T54V+ON6lFnWQrP7UDbBJl4tC0V3olyA2Gwc7Oy2kd8TTUxzvHN2jOp7NmO8TVBqWsmaoDJ0NW9e1lP8p3Hy11GGqe61DseD8kp9UnnhObZLrjcUdqiFB8K4vSf8x8wuLZIvPkxqMl6J2ZqYH15dqM+kzaT9Zx+qHtagpE4wBld7G7YHdnLCaVkVpLO3Ttpg+nK1Kexzxkua4pf2BMH4QUe6cpb49/9z/T9iOzen/pV9z/3ylsd8lQbME/5ifYO68+ULVOtvB7pUnl9+FoH2eVmVdetdlrbX+//RHRh+ZHayCXOUY2ADGaZaZp983FSK39FlD5IqtIdcJxkDWV+sukf/R7k72XoG70+L9205x/EIY7XVRTi/ZRt3kjqPWD6YXvxiOcbnYXyeQ1kjdbi2NMJc3uKvfHg9Xut1s/9E1gM8+HySXrsU41GQ5lbTnfM55gXf1a/SnjEdNv1zjdThMaZIpT3QRIa0mfyd+I9xKBdehA8Yp4pJWR0uqYVLbgfKLaAKB5/7a1f1uiMKmjFVVKEvUHe1fFmCe8483czMOmUd7SfPYnxuwYELUMoje/vG+S3fpc65SCqhr4bhhzkc/qpUmU9/Slu8HGVsLspx5vhIvD0GxxaHMrWrfOYaCPRppMTiy8I5MQdG57s8RhmkTKvPDONi3qO3dR+2cUM5xmeEbFbCR7SF1ymmP6bhPFh+wWdcDd9boNfqVz+I746B+ku91nk37TPHh3ZbfTfbEdr/Y6QO6zO24/XE3nK+zJ//2BX3HjbOV9ntVLeY81+48Itft6KgTmNfuIKmfVw8+nM7zszM5ouSPfk5xNDMks4YokzkhUPfTh2hMZMY2E+i1e+Y5a/Nsg51AvpcUZtVaeeHHMr4exWHcL0kdo6yEJMxto1+KKaHlNPe1pN5bcbUusYVpA5fLdCWMTIrlh7faWZLg9oac6KtVZDfVsq4vlzneNAncN48zwpBO622i32DOfYI3KtR+556S3nB+O4vMfRsxitc68IazISarM4ClHxEru225rI611W7EnK3w+nOplbLvJzvke5u+aY7cKIrcnf4KrYedOSXWOt9v++ZGBawV7dHSPL0ttm87gSslfP91u93xBz/x3Kh2qC8GaXO9cln1Z3Dh4iO0f8t43sYzjs1VfxlKPm0GvsyfT3r0zZLrOdBneJ1tpZz9H+YUzPOmKdzWcoA7Qp0tUqCptZwjY3f9V6xuCIE4xYIVfNlco7txzOXQF67ea/V1+P39sXUKcYkfC6JscrPdmXH6rxXWp1YJLTfZnY4fjezt9+xjzl4nBOIPns5Cd8XCM5En10S3kvHEBPNYRgnfWcKk/PNXZz/mj37UDMzm/ot6zPU0SXAVe7xqz/4c/f+EDrFd7Zc5r9E1o0q8cM3+B1li67fDkDJPhSZHIbxqcH3mZRR1R9+ps+kvVdd5XjQD3LNWxf1+QB/C+qqzwzlltfVWIKgvDHeiOkM7YraMN4vXGtWhO3g/FL7hQsIXHspNafDFxY5pn4vlPdwfIR8ZgzECSfX9HXeHL635/PFxjlYv8qLE35r+eBLz97m+tKOqu1c2Yr2DEN7mmdkdSphu9sor4wvZKI5EW27zv3L0AWb/8j91M8TzY7+eb37QD3kXFRDtDFBiW6dOv50X6Xams3M7Co869J/Ql5PFHLIuTnco9qVq3Bch5nPzHhwnPx/z0LaNc4puIah74U4J6bsUf80zuaYQW8YX7er3Qznorp+bME5gnGZygLflfSma+x8rrNoDBH4TF83J3Ui/zPxnuDzyHs73+5HzBnUfYukx0dJTdqKWD+EYLzEPmiQc5Cv0Yh/loSxVm/Q8WF7wvlHbK0MGCvytohtos+H/JaK7+5C/DUFfuNmtlGvy/GodsUVeD5xH2f9yv3j1EX/5xaV5o6Kt7wY4L+z7Iw16lN/fIE/9zD6/oFn8f8wHMrjpO/HQV6X4ntHDh80boFfvhT27Qz6dX2fT5uHFg2DbWzWdW3Wp12DPgwTnW+mXaAfiL2rof5SJtSuzAjq0kcss0JMDOqoP2DPYu46DHLSrLZH9d+sd5mm3NAf6T8l3Wrvd26ckNDXmDVrlh18+M/Nhjzw3pU/DJr72XPPPW2bb755397nE4TIrPCjwVe/+lVbtizfGB5++OG29dZb2+mnn26bb765bbTRRnbffff5fxB/++237S9/+Yv95Cc/6fG6/fv3t/79+/dp2xMSEvoWSY8TEj79SHqckPDpRtLhhIRPP5IeJyR8+pH0OCHh04+kxwkJn34kPU5I+HQj6XBCwqcfSY8TEj79SHqckPDpxP/8z//Y0KFDeyTxTUhI+HTgY/sH8fLyctt2223zjq299tq2/vrr++MnnniiXXzxxbblllvalltuaRdffLENGDDADj744NglVwPKwIydWe3XBN+XSx3ucMeOTRLYNMd2q3E3DfZfdequsoAFw7MF6HVwL272ISneUGGb5f25A1qZzMlY8HuU3PjzB9nlw0f9oisarwSrtrCD83fLT3W7n/a58ndmZjb3F9m274rxK8wsY1Y42a40M7OH9/6Kr8M9WH3pItbjcIL9cF+w1uz9ZsaucfYAt1OtcSP3rP2+5BhbnrHP+zqv/dUxhm8x/u+uzl5uN9iLVwrVKTddbQTC/V1L8u6dh31Rkl3mHDk3AeNxFQ+43WUb/u6FrD0lpF7mrkHIz8hNfB1blnNlJWRJ2Yzm6W44xfORz7hHZW3hdQrYW/4RlGYZ+wpZJWhSdBfqfMtonYuBCAffPtCTuWRhBctBmbARkTGSzOEluqMP4O7jTjJDxFgu0GdkDr+Tx8WcemZ5MnII0w8zEbD6KJQPZVVsFvdxYnv1KhiGStkNOA07JIdhd+igsD1mw8c7ZuEdQOfyCHZrDp+ZMQ4/Ue+Ee8ZSKwrq+Mj/mx1rqnWy+w4fmsSkysCETfhP3gSWpWoc13liuAGaGzFfkTohcV8tynqpsz/kYjZs8AXYpak2lUasAjt123Hzo0RHyihD2Ik9Tc5Nxrk5ZE/AAzY2WI8gu3ij6jDZuAIG2+Eiv03T889VgM0kbxc7BY67Xam7et2QxZi7ZmnJi6nHBHfaxvYu98ZY+lLwnQ4hwpqziEIpfUYGg8XcBcwBVwYmslGGO/aFzmgkGC+X4b4t9TihLB2wpf9COyD/b18o/pmZDXxSFdyjMqNfeP6fzm/9YXPnqJn94gt7ZfrcebP1CTw7i1nm98A4/NPhbof8Vvasr7KoEuN6Dw4gaUHZGZ62zDqvrXAftg2YV1bIvS7nBzIFkaWgJqvTDZ8wCXHXo/J7+rQcx54MOFdKpZCZjgGUsuLdFZwjhHGkArLQjmvPQlkprKieXYrsI70xhxORXd+0PZ1XFp7zoLzymanPq8zs9MLq7wu/tdVnZQkRYx0nO1qMwYbBK+2A0tATjFdgz8owpsoUTZvZFKaEEdbZEdA3sqw9B5kqEwZMDsdQHGvBgYnin+eCdaiRcVuMNRc2Z65r87MDs3vsu9KlqZmIMdz6Ohez1Y3xVWyqZuD4EJg6y5V1p7iyE2wM/e3trNKvUH4PJR8rS0bik6JYE2yxiocnAMUzL0TM2CiMeTUoZ7ODwfDQJewYddRVbjCG/owQ295IGeIxfO+RNdwss/HKFBQyh/eWNSDG/hCeG1l4qiXMQrU6YFaeS9/Hb3rDf7OP5Yhvo0xotSjZLyFbvyJkVI/NBkMG5ho5F/rxWIYE+nwKF3z3glcjdajjsBOVIndtZJcBS3lltZwL2GRIVHCq2CfY9JY3HWXSwwOc71//0IxKsOZE1/6/6BJDMfE7+YwYwGf1gina4ta/+yrPHfYF96EC7FFN0t/jYPMKSBmUjQVx5Ab42opg/L/CJMhz9JGLaaOVaYv+L2QWVT9L6huyyIcckGaFTFv0J+prwpwLsUwWodzFGFOJkMHVrNCfU0eU/VBj1SLF1P+5xLLJpFlmjOcFpcxTPcMw7RptUNiXZoUMdZqxIWS841iqzncFdWmjNbMAr80YT+ZBCzlmtOlYh8jCyfw5npmtOwMs+ddmaahOPNfZzOtWgomq1MVhnSdkv6MEhzw/RYNcuAs6NhpU4t+46Z7sZANK+lGKr5LkszsXQ0c2oP86O6vjSefot2DL/iYxzQjodiPllxeOsN769Z7I+sbicFmZdWTdqALz73aM9zJlO6d/p97Rt3xF6lBOyaKn9oQIWZ0o/2fJMbabMqgyTQRs2G05fNe5QTgX/TDYz8zuxmf1q9RRxsCxGAR91EV7GckaENb119OMV+w7/l6ZK6njbBuYdS227shr0tcKw5yfv4Qs5yo/kLNhmD81Y66ja3fTIEOTXLtOP8xd7wf2c1/lmYPcondndqgoaJQ1uxFQu2YsXA2xl83M7Mlbd8wqIUNnFm4hhuiU9YQvYP5xEPrqFGXeJxgfYwx91rJ6qcNxot5hnPPWhKg3q5MSOsy0Jtf0MR7bquu/jwdlmA3KrJBhsTeWe7S5BHMDWRa3Ft6jN3bWEFxPZkxRrLi6wwpZ5NYrrObXimnUY7aM/cox0Lkx5xZcT9A1a+goWco9c7jGPdRt9gNkanaEhW4o5gacsyzQuRLip7mMpWkfJB48CjZiuBu7x2a45+r4RyZTF+KFSftQd8+KtZ2s580ePkDIpE88mATdfMWCOezb22aLzW9bPzMz2wu2+Pe3Y85+ibCYEtMQ21XxgmJLuzlW4fwwogcVWP9tpxzLO0I/L+MBjSfDDHMynyPI8N3KOiELoplVQJloI+aF8hsDdK01Nl8M/akyr9agbEBJudX3Mrhmc8zXBWs33ewP6sobVjyErKpYb58gMZafc8bmHeH6cSzOoN4w9o6wUhYwh2O+m/eeK4cPmKN7P6t9SHvItW7G3bJmfQltKJ+HMqX2BdfZZPuCnzODwDO7bOU+rLI+g7cea7ui/VdOH9bUrDMNKK9C+VXGKxKTtAUZS85Bvx4lToahJ9X3UJHXHfC7ZuojdV5jGsaaiEfLwdJcI7oxl/JBvYu88xyKtrXQzsaybfAYY14+a0xXeR20tVRYb7sYn3PdR7P5UE6C/4uokn4psA2Uvy4rhNqc2PkPgi+YY5ilbQjXn5VdH3aE2c6eweG89TCubYXZyjSXY2iT2Z+anipcX6RN03iF0s3fo5/HSf8u5AdOLKUdrUF2vv/U4PshWZ22MGtT5N0413JWOf/348fdi5lbtt8/q7OuKx5GCLHzKBzXZU8ce/ooF/NtPde1L+df+Jrdbs4PNh42Or8Ni/QL6vPfiHIo/6V18MxkDo+S53Kcjs//apbZzFL4ZS+Ouj4SxM7tnGeKTJXgoj67BfUyFudS/hkrxtafYuutBGOPmO/mewfel3KmMSfvF/r8WNbM8LsyZSvDfTHfG0sk6P//hTpCudc4I5x/0K/qQEOnltA+0BfH1qzDd0Y67w1s8A1o3xGyHs13UCRIXxSJs31f43pd8nvK280hy7n8X9wErOUwq88lKCXTehNTzuFYsZjD60CwO/Wf2bHPBXVGSiw87VUsTl2FAzRF42R8FobPGsseBZzB8aD8q42lXYP++IwnYi99Bm/awgZXNFfLdbgOzrUyyp/6K+oP5UXjdQYRy4K6MdCvhkzgZpkMwgf7rBC6NsV1HrY18s7Tg7YsEktU1pm9u9Ls373Pjaurq22jjTbqtU5CQlHRbcULFRM8PrZ/EF8dnHbaadbZ2WnHHnustbe3284772z33nuvlZf3lAIoISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhIeGD4Ne//vXH3YSEzxrSP4j3CT5R/yDe0NCQ972kpMTOO+88O++88z6W9iQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkfJrwifoH8b7FJMvybSjCVAr6HWksypEiLppym0CCjqFIT9ESqVuC9A3LkO/ZNNc08lWtwFdW0RFiKkJm9Bkq525DOa3BlT+uceUpUod5PpgqiBnYXpE63IVR7Yp+TDEvGWKWmEv7sz7af4Dd7k6cn9W58W7reyBN4MThf3QlUnHcPWBvX6USub/XqXHlAQNcWzWdUevcYWZm9twgpNxmKrQVcq96fnDplTb5qUtT8+IMSQuPTGFMrWZ3otSMUhwn3Mqa3bi/tp6kjJwEGcrheyMGbpmm8EIqHI5huaSE6mBKFcgy07F2v5jV8Xk5kTauDfJaJtfprM+/l0+rorKt6eY+CmxgWZoZ2TI0lynQmL4NqYE6e0nF1M3fnJwd67zLlZOROnAOn1VTkOGaN0+0fMgYVqBsR1srpF+ZLpr6TP1rljTLF+H+Z0O3OpDiqk1TMaNOM1JKbYH7S3aX+591urDLVg+6x7F9zcxsyjs3+zpf6HZpBrtKXEqd1Uk11Fvi4qnonrpNs2NdtqaZmV38LlLd/RL5lfbPUnoefJbbeXhr7rvuADOfjpOLj3JF2Q0ur3jn19DRX5U6TCNMMeGjtt+e1ZnN9Ouw8cPwtVns/1Ck+GLGsElI8dMuYzkI5UZIddQsaUPn9OQvRG6ZGpJpln0KWE2nTdnTFEVm1tSLP/JphLfWH6Bkx4Yp32Pg8xQrAVUMTF25feQc78usIZqSjZ9jKT2JjfPPlcrYLUa66tBmaKounwoqlm4dWDY1qMvUfdpWpKR7Fbb0mzg8RarwWBimaHa2B5z/eXPzAahaY2Zm33o508QydoNeuwh4WDLk7oy0fitPc2l4l9v6Zma26KYJWSW2m+5okCs6D6zI6nwJ5XT4tv6wqQ1y41amDKt2RTfTrUnKLaaaY3rBNk2XDnRhnIahbrPoTyl8rFfNSHpXP65MSz8xOG6id0HK7LYrszpe3gagpKHSJMgxWQ7QGd5LZfPWoPLTQVmMlH8dFk1l7KH6zPGI9WtP6bN1DKFLozF2S5geWa8X+v5Qv02yDjMuYBpH6btGyJtPX8hnvDirw7Fqob9AW+dqGjikrZtImyO2Zz6uOQbfq9AHX8uq3Hn3gWZmtvNeSDeLdPZ3LLaiQD1DDT+87ooWTC4e+56kt/8eyh/Ad6+A775cLvRHlEdCn476h5xE/PhjfL0Atr1N5GQy5kiD0I9/wvFWSWXeBT9egpioG4apUXWMtjf0kRKvF8hiLP0z0+cypeENVoiYb+oJtNPqY6irbA/bqGk/NXWtmfOL0XypHxCSMrSD9wpT5EZQChvYFYuz+Tz8/caROo3B91cjdQjaWx0f6h/jOEzC1LYzVfBiTsRwLs8mYw4wFl817SdTJdNXzUEc9jeZEyBGHTfgr2ZmtgztWR/zTzOz25eHaVmLDDHpD31xlJmZzcDk88v/c5+ZmT3w8G5ZpZrg9zfvmX1mymJ2wzKOi6S7PQkx7zSktSxH/3aovFCGaEcYR8lciSiFHeiiPqlMPR+UgM6r2sN7xnxokAZ7dfxsHtg2tp+2KzYTIii3Yku93JeaW3DoPW3n6kPn4wxmwlhIqTZoh5DCfDj8YMxNF6yVaerjMIZm6nq9V2lwjHXUbjKtK4PGs+Qc6nHd6zz4kyNkXtdG+XZ+/fUzMBnO1NCuuvsMMzO7YS8Xty04win9hF2z/NV3iLv5MKAk8kkPWBsfDsrqXD7wRDMzq+aCT6VcgClw2R1VKDtFjisoX/Cd87hGIDHNNNp0xpi4V6esJ/zr7KD1HCeV7SNQcswoKJpamnM2+n7osa5RtdOexAQND1uG9vg1HLUH/L36SLNs0cws86PUUaYFj8wN/LXZng2zU4wDqfrNYVp4MyfbxVpOv8OyRSK1d2Ea79ic/C/B99icuqe6McTsGseRYxBbayCqUdLeyXh1cmGF16N9EbtSynWVHA7ge7f6bvQHwouf3O6ud+0B2cLrjTu4lOHfORQyMMOKghF6nRdcsdvvHnD3OvMmMzOrOThL5bzsQBcXLD+HsRB1RFJlM75fjPEdiTFcJ6tiiyjDkPEWfo/JC2LYgxAbzdKYOIgrqaMdKluUAdqZmNzRHm3fSx2C919PjtE31qKkbPXiw7th71pidZgqm3KnWWf5IoT3h85zDvbuyt7D0NVGhWWDSbmXlPWMXdoRT+6P77N1fBiTbYcS69N540w7r/6YwJi38pq8nsbdtAMcX46l2nTIF9+N0LOdOTircglkugrOsxWdqO+pvozneADfa13x8ptDfJUzB1xiZlkMff5Bbt59dLZk/b6itjqsDU+/Pzs2Cd1YzZgebdxm5bO+TsMK1x8tm+Lk6W7tLS/Te3sDPpzkCq7p5/k16ibG6Q8ovyE6sgwxTBXmtH4MNsvqdORcOaLalY0Sr/uxZ6r6yDy1lW2lX6QPl7iuXd8RBec8aLuGB8elYyowN/L9Q4TrUmbZ+nZPc3az+Brv4Eg9s8z2FGON60xzsT5jTMbXiFPXl6qVaE8b56ey7mS/Ca77ZysE45MwTta4gjaLz455SGeszyCTnWz7JoXn9sfvZ0NXx0mfLmRsyHbw3rpOCZuxEHKyUE79ydV/6tVtzMzsjlpni+rWmeerTP1WpNkfAJSchofYUqezz4mMfvUJt5h0/914Pzwctqgpl12otNqVXfidX78S2W5CrDitBqUEAeMQsy7kmjXvr+NNXw9/0wFdX6zvE1kf42Sy+E60cHwoH/ShatsxLpPg8+bF5CSUN7S5a2qkDv272oXQ10NOWkOZN8v8YLiepXipl3MfFH83F1Pn8J3P8SbKy8IfmC3u7f89wvHg+zr1wcG62Tj0y0KNqdkOBhx8x659Sl+v689mtlDtL+0qrlcm/3TgmwHb3gp7MPqArM6SavwueB+p8fpD0BeI+74/c//McJFl88ZDRv7ezMx2Ph0HKJJLpakQneEr3XPduI+LzSfK2kz9Xc7GbHiTC6pfOx8vk9tkPflG9BWnY43sV/WLwELqqP4zBuMmXJP24B2p0oyyqwEfYnMm6gLtPX2U2NJu2s5wvDUG5nVeyi9LZN7cTbngoPKeDVkdLy+0J9+Wc7QNof9Rfdw4KNkejTm5Lk4ZpNxrnM3B7+V/MN43yiybG5tZG/V216BebP7B8WDfx9brQ53XYA+yMwJjtmJnV7ZG7MSRGLMjIud8aMixk/E1zmvxz00n4f7T1N7egVL/J8XMbHr2cSF0g+tYDIVkuWfCAQ3uA01XkebEU//pSv3/j07+qxvcyGH//q0/d+tgtw5379Z4Zv5/m/573AQ86wLaCMj2dVIHvt9mUqcYA8s8huK5CvLilyfF904Lx4yyrus+4f/+xGSJuo5YsUzGy9tXdv7qrMXE3qPw3TNsWDnme3n/q8g1Vf6Ouq9rQ9QX6gj1esusSttUW92YetGiRXb11VfbokWL7JVX3D84bbTRRjZ27Fg74YQTbOzYse9xhYSE94Fu6/1fERI+ED5D/yCekJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkNAT7rjjDjvwwANt9913t5NPPtk22mgj6+7utldffdXuvfdeGz9+vN122232zW9+870vlpCQ8LGhpLu7u/vjbkRfYuXKlbbuuuua2RmWt/OsANxl99vIOTKjcDuW7vbhliTursOusPLqrIpndA532x2R1fG7nYKdeffLDp5alGQnHyM7z7jRk4e6sJts8jFZnTVRPoeSjCS669uRg9vujzuKhafM7f5+8YXqrBmbuq1mt690O1D/NtDtxuqQ3YPjf+6e8fYfuO99wTNdhx1vlx5xopmZvYrdT0Otxdc55YWrzcxsi02fyWvja2fJ9rYDUYLJeafdHQvcIy/sktW5AHspOEw1KGulQd/BrvEzsRP1URwPScvMLGOVwM7uYbJTsRnXGY3rbIHjs/X34Q5f3dHMHercKSmsJR6URe5M5I44lf9dg3OxHdXUDY4w9Ui388wxt/PsUnv99ddt4MAIe9x7INPjc8xGXuAOLlM27a7Yzyx/DwzrhEwpuvuUO5TZL9wd3du9wHJ29eeyQ2TV/DxvJX1Hlp5R+E6SGd2cR930GxOxa3SsMA0RHMoL0a4D5Zn5aCc51s9/DXH0ZOv/21PBWAc2Fk77AIQbI+UzJZjW7bjujPKo8l53vzG7O+qYx36Gho2SC/D+JNPLobxF6hyKkirOTeBjpM7ZDfgA/eGO38acVML47hOwM81S9gV+5k2CHfxmlnXwP4Lvco+qGlf6nca6Y5jH6AtiDKXcAUs/wvHdWeqszi5tsqK9thp1Qh2h3HWY2ZZF0OPrzQv3JLB35rFbhPcnYn1HFkSyKOgudoJZApTRln0WMnvGdsFz1y3vpSwQvDbbCh8+XPqHO52/CrtYAVuxrVyG5D08RvHbUerAn563i2NBHG/OV034v4z9cPooV/Y2yh8EwmVktWAnf/qmzfLqjHg2l305AyXa43eo18gPuGGZJAW/C35jljGhn8Dx4hjKuJEZviumY+jzSvQ5CJDzNn0j7rEl3MEfsg0owt3iO8nngOHHM9LkItehX47pfuhXA0by1YVnS+dzse0f3B9nOvwPc7pCxgw4olLsas9joMHzVDIThp4DS05Bph7dpR8NoiyfQZIxEMcgxqjWk51VJg/GMBx7xvtKK8r6tBW0PdpmnCuBH9KZFjfQk/VgFMpDsypbneziwHEI0GfUQPnXzupM/RCZeuok40/nT1xZhunG00ucvI24K5dVIoMbGVbQHNtDLkoC131RPiTnZmJcycjMuFuJGRhQLAHL1EQwIrwhdZ5E2QF7UAYb3amMRdRJygB9ZmwmQsaZGKtXiJ0ixxj30T6RGUSZrnlfBmsR5lRmDvJ+MMZ2rqwsxYqpzzAruyQ7UcBGpjY+YKXslWqxFiV9pbK6BMzF3gHoM1e7YiKeeX49jtdInVxwnVhuG+oo/TTnJspU1YASzzdO/Aea4eN0ZvzReBlLC5P+7eL0u5ux+Hmb1EH9l6B3RSJs8aiTbGErf+Iye9y+prO333/KsZnmkb9x3s/MV5J5yDM+MTMPs/IMkjrVQQP4vUGOtXKeO83yG5CTStQb2N2hYLprkSo+1gtjYcX78JEc34Uq62EmAMp4jdQhY9Hq3CvU9Yg+j6gze2el2bPrFkeP89a4aEwp7ztbIcK1gdgcoac+V4bE8DqxjDthtgDaRGVCCpjcYgzxdMONfC6ZdxvWTi6Cz6VMi65++1jX1v7IjncW5vYtQnX6YMkD1heoQyz7xE1b+WNck/ryTc7A9PtaxnA9bj2npPfvlWXFMzOzeWJLx2AOy+bPIXuhsoIh/joI8dcs+MoKzX6DNY6RWPNYRkYqWYP0tE6Q3zGo+5xUaefvaFjUDxIce8rHPDnH34Xs1ZpVi7KE9pdCb/KWZtgP1OdYDEmGRtontkdZxntidxKWcasxR6+7U5H0mIy6EQbXggxIEruWQFe7gyyCeQj9YW/xRl1QR0EbSCYq7SfeF/1ZhTqtGi/8NmgzZLJMZJJsYjdDFkpwvW4ZHz9vAMPWdW4l6oLvn+qr7GH3mJnZ3SVPWjFRp/50d5RfdsWRG1xrZmY33H5cVod+lEzDTbBhw8WGNUFfxsFecyo6W8eyHiXXZehDlfEuh5Ly31umG44ldV1lm7pK3VefRx9Aex9bvwpBedXnCZnHKYuTpA5lOsxWEcPq1Ann2ESx4uqfWVz/iDC/BB2b+t6QCbHMekYs00+YBYgscodE6swIzqmuVruCGSxaYa9HyvgwS8cglAxFcnIZzm+XouSylWS7u+DXTm8Ph4wPXunkrlQYxO1eV0y9y1YbdXIPn5jkcJQgL7z0zBN9lZk4+ezdiCW+gRPqY3yIB/s4AvZyhdRpJeNjb4yazPYKlspu+syc1KnJr6v+sRIxVFsDDlDHNAYI40EyyIptj8bF7wX6ZZ3Tcm7Fe1K29f1SKMsfMiMW1xX8Onsx1rjOMSfIHPSQyTy2Ht0bAtuXl/mXMRDXLGiftF8pQ/S1tB1qZ8JMMBxvlTv+Hmsf5fA1KtvMLnMFrsd3Wq0yDxgG390MO1UmrJSY++70dbdGfRJirAOPv9NXmXqt9Qle7r7KzPJj+nl3wVfmcOAE9ovYubGb5Nehn9ZpzNyQZV87jf4G4+rXlWV8ynWt0WS9U98dhTYC4zxU3ue3cByofzFWbq6PhrH0emFFsxJcu5uM8yp36wXlB32jT3llUKPvielLpsmxIq5x2VqWzemD+UNeZoJe1ug8wvk/HMr+Esf5eC22VhGit3fS74eBGXJXIoe66105rNaV9MEX3CGVaItpp9HXPxY5aXDFOn92jn7V0e5d8ldv+pOv8jtzKQEq/g+2nLfQ97OjUC51xUP7uAPDpb/3RurIRx4e7w7cgxNXyXXac/iAPvMZ7HTuxvGgbVX2XcjgmGpXLmb8o7rBzzWuYPyjYuvfZVAmmFZCx5AysHFwTmWMsV6Y9UljwJDVGzF9lWRBL2C0jjEFE+8n+6VmlOHz9JYxSK9dTD0+TM7kUPLdTySGKIgLVmduAGjG6a5QPnLBd7NsEZT2jf2isTT7mu8dVAb4Gf068v+xd/ZxdlXV3V+jIzjqEAIRiBg7gfgSbSixqYgaHWp8oTUqltqKRUOlKiq+8lgUNU0VQYugotJaLFEqUUtBTTW+xDIaNWqj4TFqUIMZDRKho4EEGcDRef4463vO766778kkmTy+rd/nM5997zn7nrPP3utt7zN7/dzxFAgkmjUK4gW1Ey5ffW5XnCnn0C82a95L71b5hMve7Xbfpx0r5L3QvkBXE55NuPGGqnjoSCMvm69wJ/k6P8Casz5OvXToineS63UHSztBvf+fRs02XNIfLl7s2ABkQJWePudddIntZQ/e1Q74PTrevUTdxEfo3Jz3jm0+i+AFG08blc0n+kX8QHyHuns9fuhDH2rLli2zV786Zriv8Na3vtXe//7327e//e3i+URiT7Bq1So75dR3mx20f9bsa+w4wK6//jo76qij9u99foNwt193AxKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEr9+/OAHP7CnPe1pPc8//elPt+uvv77n+UQi8ZuB/t1X+X2B7/CaLTvGtrOTlt2y7Ax8ZlNnwHeKjbPz03elFTfksavs0eG7WXcWVN8J93jd5eP3ZbeRbko7x3eTLfVdPaO+K+wxUuftXg57eayXmpzIs0B85qWeUsEz6x775iYVIFnFx78ys/rJE6t+ecJK2cHhXfZXvtlpxT6mM11euM43fMPo1c+rdkkf7GkblkimoLsdWKULvf5FDzMzs6PfU+1aOuDNzU6rG97ju6+8r772j75rVVO8+cbyOmviWb5jbKWo0ALPNEHmjLW+03zx/Zs613q5y3dJM5ZNsmWzE/06a3zX67W+s1oTWG5GBtnxJbtm+3yn2GTbDuifhbKUOR85pT/JtqTXZVcdOlK6znRiwmxT3LVXApkrdIcgO+9iJqmSGSQzz0jhXjHLmu9YfJnumfQx2OY7QReKXSEjPAl5xn3szpUdeagbXb3ZbcX/NFXqJg1VxQH3ud3MzO669KDuOtceaGZm19zvBDMzm3dIM4YLT69k6CTP5lDKQwDIR0Ad7V16fDm7xb/aZCn/7BMr5fr6W1ymkGXNwES2RbJG0QeaqO4FXmKaMckbtZXDVbEw1Nks/bJ4qCppYp3JWZUMWfbdleiqZHC1MbKUkfXpmObcOs/AsT3sLtVk9Oewo5UMD3xXWYoZCGijbrFFvtzmDLjN0SyXk+xOjZmTNAsvbcXvkJ2CDAt7kWa+iB9YbSjXlDKvxEwKPOvK7qr9nvWKpvfJbvr6mSk1Ozj9yE5fMgBIto8+z6wyyc50+kXZP0a9RBbcMW8RO/l0H59B3/m8w+3mP0nGCfz50/wDscVfyq08m/4/3FGl2T/lT//NzMz++A+/Xlc54wFVZsQVP7JpQc0jcVlzbI1nXnrIB+7yJnrq70blGz+IaGJmdaMnWafoXhKkXCz+7Keut0u9Jdu93CByM4FP8F3LKtIbvI9RqWv8d31ikzdGGSSbScmfsVMdndA4bsRLDwAnuKlmHo7BIVnXSllDemU5M+uWV7E9CNNWst1wT9pze+F6e4r3WWfG0lLmcOBjOEZ7dHf5SFXs4jnoB93532uHfMlb4TBQKB0f+jrG25oFAmHk2rRV7S2fXdDIHLZZs5f4dYjB10l2izrhv8cJGz174hFNZrfvLanG89BjPFBwFfv4fZ9Y17G+z9ieAgv41jc0x179rKq88IoXmZnZq77sqQ5/0tSpdQomm7/38m1Sh0d8Od91DD1+3O627yIydkudjV7nNa5/56HXMoZkCz3e5aTuS83woPMms0YmNI5DlmLm8NfKZ1hDHh1KyYZ7vMd465EJfHkpeyDjW9CRNTHTqsYitHVPsglNFccWsoYrSs+B38J3LinUiddU34tu0Z8/DqVZPeZr0SnupZlfsOEInvd9xzx+pX8Y9XLES2HjWbys8zIbmlO1jyIb8WafGA6c3tTxOPbLd1WsU/PmVplKz3rNBU2V4aod0545/C20S47dver71WQPgc3jWv2ly9L3fQzWaJYx/91Gt6F9PhY6zAd6eamP83oMhGYdIWsJvgq5kWyzz3L7Svy/jXYsbOrUWVCIhWmIZqXula0zZmSyHhkSo1/25xg8sVAlxoyaLQZfFbPrq+/y+HHzCpu+mDqiV3actqymBGDaP6NeoquujycONVXWoG/Y8tWhNKszmM/1seOx9fF3hLn1DpmrH++/u4WmuixdIpnQ+l2n6ySKHm+saNZgPvLflS+Y8ZjKuX3gp883M7OH/Eczhk9wgrm9iaE7kg16uRxf6SJxzGe+V9d5zhPfa2Zmw8+p/NDInzy5Pve5IV+cI4aoWeTEVxzs8j3KAbIAK7+X+8xVGDj3Qzr/Ps/lthZTrvMQqYT/9OyjG84NxxUe8A96XV3j2k5jQ8bFDsSshzEDvVktbxPYE33mKP9MQLStUUe9X+dJpsa6P2ImcV3U/IhNrx6HDNxmVs8vt2IDCxlpuzKHI0uaZX/Ey2gDJQYuZrQCxMNcpxSDMz/2Ptu+Ohw3q+Obeo7uz/NIqfJRL/u9H+q5hWSzww0f7r7m+/y0mQS+7n+rIPVPfP12XzOX1nkIRcReeknFfnCAU1Q91L5TndBEuet8rBb5s77Cx+Wigu9lngzz0GIZn+2+xrEF+4iQyrsJ7PQsrzuGrOtch/jWbd/SZVWpida3hlh6nujqFlh7Ssw6e4A6MzzzUua7uvbVxrIXsXP3Vbrm1MjUTmtoDPcFN1o3a21pjv/DUGq8wmfiDHRNDPdsj822s/6k/p15E+sY9eyv0F63FQtcYDdJnP0sH/NVRK8uZ5tG5PfD3o7AFDUkVerh9Lka8i91Xv+dKmZe+NBrzcxsw0HVgvLyn7+lrvNhzxy+3OetO8UEHeTiveJG68SfymeyJPrvX/HSikFpbZ2+0OxYX1T+3ld8XYUM5JeNNte5hzccppPN9KsuWkdmM7ceJwujC359kjEsZYr/5/D9Fc3HsWin8YOaMTX6w4I/XXdVONDGIAFKDBsxs+jhhTox2ycyrvNe2sy8sMQqBztFW1y7t5jwP+JSxoBYQvtFMzuaddpZnj9k7t41KnUYM+ZPvLh4alNlDu+VuA4ypMyYHpP1eRB8qOvYmI43MZ33K3O5g6XKNnes/+Xfyaat41OzPPn9/1ls12hV/Ped1Tune1/7KzMzW7kfsoa/dkZV3sPfzYx5OtL7vlTmdD6PP+BdlW+4a8Jj4n+X97P4vYO9XOzlallbmuf1txT0Z4nry1qXzY2Mqcj6LrfBsIbsQpb0nQ+yQ1zgsea2S6QO8h7jL32fybn45q7wQn4yMgapziJv/E5lnRh1PNTVtRzg11zg87RNH5ZzxBJTsTl7C/QFHUOflSWPd17IOTK9UurQ99hpj6OutAJi1mcFNjxmYG5b58MGqr3j9+5/7i7r6xP+HFu9f98YshRXlbwc8pK6Ek8uquT1tiurzOEwSt7rA827hNvtXmZm9sI/qmRpwR9V9vt1f6GLxI63V8U6V7L6HZIJYz1iy5zgj+X3a+l7t6XMkT8r73lhu5z0NZxniV9d5WsDG3gnwURC5c5lIZISd/lbsyZ+g5lDY1Duiwyg36XM26VjIFLuOjRreD13IxbZXXbvXiBWJSYp0bX8NHwvsU1ON/TZY4ZjbKiwjXUxd5fGjv5AD9y+TayUOm5XZ7vtquMNjZliLMS8qPS/ONjSkl1wf7qJzPeqq25n5w9V5eaSrfBjk/RHVffOOw6sa9x4r4ql7LoXV2P2kGdOz3gh6c++nxx0//wfI5WvGBS5e8QpFcPI117I/10hr7KWw3vz28gcjl/UdzXMb91o1O90NQYG2Ij4HlDB70a81JicPsdHID8a0+JrVoe6Zr11XOfRMV4n3i0xpEf5amO2Kb2roe8YlwWFOiVG5m4cffTR9tGPftT+/u//vnj+qquusnnz5hXPJRJ7jbZ/B0zsFfIfxBOJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEvbmN7/ZnvnMZ9rnP/95e+ITn2iHHXaY9fX12U033WSf/vSn7XOf+5x95CP7O5FoIpHYV+Q/iCcSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJOxpT3uafelLX7KLLrrI3vGOd9hNN91kk5OTdsQRR9ijHvUo+9KXvmR/8id/8utuZuJ3CZOWGcT3A/IfxCNt4XalPoDWAyrCApXHeKSBgDpGuVuhcWyjTIXeEMqhAj3waU5RcZl/36aU5E5tsRoKmpGqeJNQpe5wKp0xp8ga9ePHymWe5Vo26qLhNELXfkB4P6Hcnsdl5pqZ2U+WNW3+1mm3mpnZEpiFXtX9OHuCNc7GoqRtD77jbmZm9tUtFZ3MSfNWmZnZuQ2/sP3q/zrn2MlVcf0nH2ZmZgOP2dFciOeB/vDrXr5dbgblOKJwi/ePahCi80YvT/B+PlrqwO6x3OXOm9fQA1vDdPQTp0Xa6GO7eaVUgq4E+muhQIOStEhTCKDHgYqnRBMYaChP88ZfpnIM1dghnXWVLm3gRLPJnWZ3TAdtp1lDtaI0KtD8bAqlUG3ZhV5C//hB6wb9CuUK/XJSoW6kmHugfIaixWk67yN09FdCBwi10HBVKIPkNuipaIfTPU0IQf2Zfk2nor3rSU6bM0eu86aqmLGkotO+3HkyX2D/UldZ+DfVcxzjbD1XKzVQeJpjnOXzmHdX5Rqh4IaA5hnHVuWjjvvv+tyT7NPVB0wojMfK/jPq5UYvYUcekzro4bCXUByOSh0ay3WgyFpwTFOHa5/jcnON/2iujOEuly8O/cTLrUqLB42Qj08HRadSCpnZoNulc9SPYBCgc0WfpkLbqQg0WuNQf0e9NGuMWKQdVNAO2oo/22XTQ797lFUUvGZlyiSojqLPVVo9/11NOw1NcaQuLV3XrJFYxiA+swn9NbamRPGGEDuVMzp74rObKl/xkiD23a4An5bL1OZstCr+2e/1RqlzrJeu8xv+tKLfPehbdzV1fOiXEx6sak6tiIxwLcC11VK8sDl382RFPXibxx0Ptu+amdnAwxu6wS9+8QnVB0KQa8OFzcy2um6e6rp5mx9/hdAEomKoCIyWG57c1MGgLHSfd7XQakGPXDNKe4w1OdrU6fc6NSUhvxfZXODjW9O+EbMphVekLOsP39tQooqj0dD93STnkK+VLb+HeuyU8D1SX+8NZloVY2Bj6Afoa5XCO9KTtdGVlej40Hv6gWfVeB16NqHG7viNmS32eGldoLXXvuv3fp0gNhrvrrPY5WWd07JuLlC2vtvrvBhfLnFTn99j0mOZJf5dh8VN7voLKorepz6q2nX/8asb2s+nOvvwisD+qJrxqdAsvOCSZ0hTr6ji0Yfad8zM7P6PqsbghhdK/yJuB3uJX76tqWLnEGO501y0tDm3Ab1BoYlPhSr7BNf7UQ74dZ4l9yBmvhRqUGzyoVJp2Ev0j4wFQutdy0vUzTdbN77UWc6V2HP9xV21K6jvpR8uKZzDjlwY6hYojGs8wsxubzm/JzjROldX0L8nh+9m3X6ZuECD1+DP+7yvJm+Qgz7frmN5oHE2MRByAn2pUmGixy5DfSdabzAnQAMuak6tQ875vdDDMgybsSsuN/duqphP9W79SUW/e/oDqjj9qyJvL3zGyupDKbTbFzBNe3tz6Hbvs+u/Uc13G9MzWte5z88fbGZmt53lBzrMrv/g0y6LT3I/fbnOKbGLyC9zUHXwyDmdSL8KzeUqrvPWcO59TZ3jXYbWc/89yUCi8fKjwzmhou01MLvU57pvG3Qa4V3I33OlTvQ/yK3Gru+z6cd9rXNCxSSLvuf+Sh0e/dYl1g36PMQXa7Rf/NqzfI4zhsCpf/Z571b6nHFRD0U/+rXniL1e7/X7fB602WVpgTgyqiNCa10x75Bb+Dzu1i8eYWZmK/60okJd/tO3NHUQL1/2Kq2SEOX8lfum1R5nlwiD67AN1/2A5tRb7f+YmdlrmFedLL8jHt3q5Ua3oYtlXQ86+1rXPGJfLP2Cr0YUZnt5ntJgu+2r5474hFJc+bjwXWlruabLOC6jyGaNfKjcRZnED2nPYssJStBr9d1uhxa5TG6Iczmz2n8s8GObfP5+vd5f9dasGUSdZ8a13emCUkvHezAuSusNvTm21GWiX9Y1Job8A3GL+7MF4jtv8ZL1lX7pswmd75iJsskx1hToK8ZZhGC+/+5/vRxz4XxMU8Wu8XsRQyzy8vVS52leMj91cfn6jYvqKp+9X3XRgy++xczMln/kW96G5jIXfr6rhV1AEo/zsOeDl/xFfW6xrTMzs2t9kn6ZLatO3KJX8D7a4HZ6AzqrlM4+LpPuVzG/6/Q6xIrYgRjnWtNnuIE+t/uTOn5hDWj1qH+PPsyslqUt+nt6hBi6bY0KoE8SA09CY39dqKv+upfPjLbIrHvtW+PtqM/Eq+jTdMXV2g5sxWG9KlqzVq3r7shFXKOTeHs7Y4jkagwg6ygdEGr2M1xALnH78nQ/rq+gVkWdX1uoNOyly+127+dfaN/7deYs77zMcFPjmS+tZO9f7AVmZnYKsjWjqfPHk+7Xj6n84c3j96/PHbSmOra8egVlozp3dPzkiupiT7FPVHV+NWRmZrtuaeYu3/ov/yeGUT9AfPyaoe4L1kuijKH6TB+fM33ecfEvuqvUHRHfp4g1Wuh9tpGxaIuBC+8PazuNTvEuoRQDI0Nx3M2aeD/Oe9VXof/IGX5ZfRVxaFwL0ngQ+UdndU2dDuReBFn8Zjr1OMYkxEZqn3ivQ1v1N9GuxVUZsy7bgH/cLGOw7dWddYw1FZm/z3Y52e5xXP3+RPSw3+OECX+XMeZ9N0vmBvP9c72sEuNCM5vwZ+5zP6RrQdVU2P7ywP8wM7N/Oq5q+7JLJbjy98sr9nFO/GZqgwKGAAEAAElEQVTX9TN/XpVXehA9+51b6zrbH1u9p77rMQd1tK9+r2Nmtsv1ELXbhozJ/G4LhsD7bLas869l7D3emet9uFXjW4/FtqCP9Oeo1OE6xE+HF+rEeJAZicpdnPMRJ2i8jlzgw/m9+hF0alOoY9b45fDvJH0SM06OdJ7bVLIrgHP93dfcZ6zscVzXlLCrCMFUYnv8Ril6pB+ZvzxTzrEGhQ/HhsqLmv5lVTkx6gewdyUb77a8I0ZnHJBbZHlI6vi16e4J1nL0eQ7p/PmHqmL1x/+yrrF6qPr8+mOqOdef2yfNzOys/2xeYt1lB5qZ2bBd460Y9eMHSHO8IdtdH89yeX20OM05bnuxOWuY3KqPIJby/l2l7+jdsM3yGO2+fnjz86SO3491nro72lbYuafOM+M7Sbfbs6XOdsa1Td5Ys2ayg+7JdcaZG3gfzpRzO/ifB2QB3699RizyTeuE6shA4ZhZp13ZH2tcR1mnz+V+Pj7z3BZvKdkXxgVd1XcBDw91gD4fcW2b7YpzYWKbR0gdP3a8r62uL82V3F4/y+fkHfG3xwCbQztOlXG+HP11WzY6ZGZmtz13Vl3l5v8I8UbhFVbbfwf1wqvf4B++1Rz71z+q/u/k7r6g9VN5V3P9G3yNmqWLS73vjpd4cj0yvcxL7KOs4c/yfhljwovPGpLWESMyLsi46jx2FXtSenr6uk0WYlyr70XCPHm8dB3WTOL70IKP6XrHoteLoxjfuZg1QR7yju6qPj/ZzH5uU/n/j0WLFtkHP1j6/6pEYj/gV9bxL5CJ6cHdft0NSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJxPSgb3JycnL31X57sXPnTpsxY4aZ/Zt1ptZlJyK70WKWJbNmBw+7fdhZWsoWFTO16nVCRkWysUyUMs+RaZj0n3pddgD5tTt2H7Izyncbvd6fS7OxnO0lO7V8t7U9TOqwi5JNRuwCG5I6/vnUV/6rmZkd7ClSjq1ThJot8Qs84OxqW9qoJ2cq5SWZCthfe4xkg9h4RbXrcZuP67Nvr3Ys3TZ2cFPpumoX5aFLqt27h92tas/mV0o61Kd7+Tov2UWrCQk/4eXJoc7dpQ6Zx7k9WWN1wyPDtMl33q/wHa0Pljp/5yU7Yyd9l//Mv2rqcN+xmH1N4TvolnomqdWlXWrsIiQDh+6MZQdcacdZRMjE34FTrHqYh9utt95qBx3UK6tJbzR6fLk1AlzIFlVnj2fHvm6LZBcnz1XKfk6mB9etxf51nfYd+syufH+eAdnxOM7ORHYDN1ntG/g1T/d7adaqa3w7VJ/vhpws7I5+h5dkiGCj4RFNlaMv/LaZNZlBKT9gz6nr/I9VmVKO3F7tynzH7OebmdnJfe+t6wx6ZtOD/tQPuNiufUddxZbQRM8q/qYnNrQBr3/pBWZm9sfvrOzuxpuONTOzX62UNIxkNeN5sD23NFXsau/XmZ6NBVYE3WV55nBVXowMLLNuBPt/lu+IvkCz4pGlh12Ufu4EycxGVqcJ7L1kihjwMR8P2WFmSSbzOrtH1E3RwzN9p/PFZHxB7tqyNOEbRuVYr8wDmikCHdkS6qIr42b2qn3X4+NvNVvP7t+YZUbBrlvuJZn4u/qM7DRquNlpzPhI5r3aZmqWQ7POrYjsqHWdn++2Z7Oyd3hmiJkuFzs8O8CAZGSrEwi43f+YK5BmB99AJbLC0K6hps7nvR+qJAx29HGVfh8qGSfeYP9oZmZ//n8/Vz2NJAgi08pUQI6AV3sWxR3rm6xcM99ZtfVTLx2u7nXTf5mZ2a/OEH0e9ZIYBDET11vHJBvRO2RbMxuS3cb7bMx1d5441lr9vQ+Plwxi6/nALnT/3aBkEDjYy21kAWrL+O060u/jO1HyDfgR5Fcz234knAP3kM8xy9m+ImbfvcPMzt8rPW588dlmds8mQ8WOtt30MbO6ZkJCD2NmE70efTXs5ZdCXbPGvsV7qX4jXyEr5jyJpevsE/xuiXWDPnNbsci/b5BxO83jCmK1S0cKvydmWFkVpy9rqji7wPE/qjKtnGX/ZGZm262h+JjtLAyb+tbYVLEcU/7J5thVf1zJ519c8cnOyveXzxd4uZp+9rbPlTpknDzeywPl3FrX6RP92a/149vFj80nOywHsAPq64jX8KMluSMejb5OZZ2YkYwMPs6zpMoYbCHoM/cWnznodr/OJtwrw1ovRHaAHjLagUOssnV/Pw0x9dlm9gY5U5pLRMSsSAp0lUxJxD+apTz+LmZabINmoXN7NgBzCmOgDF7EcXXOXy+/L3W8zwe9H3ddKOc85uj3c3UmJ8luNc8V5dPVcsp9jqj88XH3auKEtV94ipmZ/ezx1feL95IS78jw/fSXVOWLL35bfew976nYLv7iRdWc+D8f6pl1HiI/ZFjQ0fvKuc0eV/epATCzSc1uRIxKHIccS2y02Fk31hGnTyWrUMxWZuJjGJeh7jp7hKlkgGnBmf77i5nnlVh40ANsRsy2BPbeF5upHn/azP5HzjBXpI+8zR1J4Ef9w5CXCIVmlWTewXO4LTxRfCbDu8mzxsxxedvWtubgeniyzL+v9Au9z+VOE/ugrws8DsRUbBFWrUWuq2Tedt3oSFC9weXzXzz+c534z8f+WV3lGd9yfwrJEUtvYpJjxuHlLDWo6fmBl8d66br/4r8RXX2l68iVfkCXW/7Vy5Vesh7BPNjMbJ77QZY3mSI9W2MC1jziOo0wfNTyStzEOGns6tfs93lUHftqNqpCKioz68ycF7Of6kCzSthmIHtlKtYspszjkC8EXzO+PblwzKwjw269hoN/7vV806XHHlebmc0SHRubiq2K8w36oGSfYpzchlPkM/VhfsH+a5Y0gC3H35cypyIXjI+sEhOXb0HxdB0iwsd5vtsO0cMHvbTSl2/cWU0+733ar8zMbLOwa81/WVWukDWtXljuv7vur5tY5GJ7qZmZfcGV9FvP8AzEQ/LDi5gfuA061cfpcpVjZJj4hHhQDQOxqsvZGH5RMwEi98giY6CZAYkmWNMqrcFMF5BlYmrJVnv8cFWun4qMF+KDLhSYoWrEdeCYuXs/6HHtTzV6w6n8OJzT2Dhmf/M6i2UdbB1yEbIpmlnT5yNe8swl/QlMDafLOuel9A2/o11D8nviYfctNeuLrmUgk35s7iFdlznsv6sF5Dk+mbzFF2feVTtzs8PdFi/8c58oNqfsKycea2Zmj3z3tR23sibRaT0l+MLbK1kY8zXDT9uT6irvfa8bBBLm0UZNBn2wl5vpH/pQ13Lwdfg4X6zqH+6+zljsZ0VbPscSk1PAyT4eV0Yd0xgAWeL+2Hi9bmxb6d1PnM8h2yoL6N1KL0t+FXlBJ0pZyrkX6zXcY9zMXrpva1z3vNWs7yCzcdYhyIpIW/Vd8JCXkUlP28Tv6lS9Uof62HCPLE+Tdc7LpmIf47uwFeG4ybuJMC9bKvHGtV7WLCI0+dymTs2aidxKHPgJjxH/sHrGtz2g0qfF9oW6yrf7qpc8y/xnK3qFVgUsP1a+EO/7Mkbfo5wyaJssQLF+daXL+L+4vVTR3ohMue99h89RXqbr/UT8xFqlmKZupZcybvVaBX6Qhz6zqdM1L0UG9F0l8T2xHvGpxhLIF+PS1sExFm7LkqyMJ/jhkkyDU0LdzS11XQ8W/ZXZL3eabZwxDb74Q2Z2r+ba830OGbPwmlljY4gTiCE03oj2DRuo2V3d7tdskwVW0q5ssKUYGvC+gnVFtYXYcL/HEtHjtTEGQpYkDpzjc8ht/jyv9+f7r0IzWM9GXDXBrYc7b3vti82sYZa9pXZwTcbwi9y3vNgqOupXWrPmdqOvcd/8f5xqC/2+SGNXfOyolx7bdPxfjNulPvc1Hf/txHgw1yM20nVB5BP/ExjOOurgOxmLUiZw/pNlSyjNmg5tW39lrkRM4X5/ocTSG6Octb1X8r7SVyRb8HE8I75bA584/y6x3yimMaaeeV5zgnettT0pZfCPbEJta8xRr7Vj+BztY5v9B4U16yJ6vQsXltV6vk17lobjZk08OOqly8CJYjPc/b39lRVTz8su9P/3aIi37IOP67zTVJ50OazyImrv+KPqf0p+6T7iVW95t9zEy7/28hzv+5Nl3K5El/BjPIfOldAlfFMpFvb+nev9sRVdKcWVFs6pP4zjw9xL4wTs9RT+f6pmsNOs270YbvUfytreEe0F6kzkJb94klX/x/XovdbjRGK6sWrVKjvllHeb9X1x/95o8gC7/vrr7Kijjtq/9/kNQmYQTyQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJ3xH0775KIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUjsB0zuvkpiz9A3OTn5O92tDTXJW6yTWgSqJsgzvmZ7B2hhoDiBSkSpXKCEc+qwuU5HsVXpJKDHcAqk053aShkkoP643GlV3ifUr6/zcrtz6S5yeq/vyu93OWXMCU5H88iqOOCsnXWVu17gtBHX+4GDvXyMXOdhXn6iKuZ/YKOZmW3+5sK6yg+OqSiC5q7cXh3496pY8bnmMhDgRFKY5Yc2n1dUTN322hlVeQ/5vfmxp86r6HY2eAcdaxvrKpuchv6Gj/s4wwa0TK4D9Rh0Sgd7+WKp83fhd//gpdLRc22YRWA/OVvqwIa82mmiBl1+doksnOv0zDDE1ZScSvEDIm26WcOnDA0ldChKYeb373dKkZqNWunB/UFqaqyp0JR5ncEzmkO7vmn7Sk3S6PHrrHVfC/RS22lzG01aCTxjoNMu1gEPDL8xa+jfOLZMzkGdwzi5PfjYA5sqT3NbdepA5+UWN1Vq6r8No1V5/lBVKqMNtPGfrYr7/29lZ8Z/1dD3HH23Stn/zf7WzMwetq36/u05R9d1Du6rjh0Jleenq+LZ32toJR9vlXJucoqfK+3k+tz5rgR/83Hn0YbZUJUfGrENXl7txu9DQqmDeDKU0BK9Xa7DNSciXbpQbUXmzJpqUQ2u6xR2dwP+Q+UPpcf+K30cBgD730bBtyeA8kiphi7uUUcpbSPlGXRpStM04iVthK6J6+0ys2OmQY/PtYb+GixpPvb5s03imy6ybkQPQhuVFixSmSugolsZjh/XfJznhnEL48v1lC6d56A/XOcXS//c5uURXrooHLBSfO+hXh95G/VyTOKW011vnanu0CdXY/eou325rjJgt5uZ2Vnu2P7k5d+qz427/3nrz60nsG5P9fLIypXbp348XNc50O40M7M7raLwfK7Tgt98o1Dd/ZfTe77Av3/bS2XVexr9Sh+6zr7tlU0d/PI11Bmtij6xl/TrdvRXqRqJxYjxoBAr0GRC6V5T/Spl9y8669ZUoUrHVaLb7YVIg600cugflIolWuFeEZRZN1UdFIDc6+dm9vR9o9/toNA266b4Vf3mWTHcbTSbtgd1hE5SKCo7frNI6mygbcRb3EPjdafsW+jytdHjr3dLjIUfnIQq3m3G5eI/lvgzX+vfx7Q/rqqKBX5NVHRSfv9p/73L/8CbdpiZ2eKD1jVV/vdp1Yd3+QGPs8eFAXPAmbIxcyturMonTR5b1/k7q+gFr99ZjeH4JTOrEx+2BvSD3d9L7JLQJ/Z7n6ES50hcu8Dj2k00zoOaWcusC3d6uYsLqT5/LRwb9lLpLTnHuGJ0lOoRoOOF+LDW8Wj/lT46xojQ6X6jUAfrOiznevmok+Sz63+fx/CTK2z6aDvfY+WYfgq05UX0+p3Scb9/D66H7SJeVltAXw95SYyncVykeMROHVk4drWX2vdui+f5PeLc2KyZZoxWxfO//A4zM1tYK7/ZC89ZaWZmF7pJfuWxVbmiqbJHWL7MP9ynKt5w8Wvrc5fZaWZmdsM3/LkwPY9cU9exc3394E3+fVxs4MnEMP6dNl4mMeTr3U4yLLO93KRxJv06lTjMbWJNmarrI6x1oIdcdyp+VmM1/GlpXgeWhu/yPHO8rdsiBWcHR6+X2Aju1cufTZce/5uZ/Wh31XuAOVIpzvBgdZYvSIyV6EeJe3h2xqlkVx4SvutYMEciBlfK1mEvsaHotayD1b/nvtjg06WOy/krKhk/7MKqz14hc4zj/L4nvHO9mZl9033oMW+RyxAgE2JBvS2m56vOVn3oZOUz522v5pmDM/63rnPbV3wRCdX8hNzDp8v1+tvjOS6OeX6Yp17u546XeGX9uf6BRaVRL9UOY8RivKz6EGmnwdXWGzHOVZTWcp4d2hbprEvXRv+UBp763INnV/vEnJPYwZ9rqcjLei/H2mKAJ5jZTjObOz002nVcrWtK2I82imrA74a8/Kmci7/H/mr/eh/N83NbVOfps9GqmO3jtV39LG116vra7qrdi/JQotd2Xe/39cQJ7jnUVNnO2oe3Y44/+/2bKgzre//jOWbW6PcxT/te163WXtrZYrNmxe4M1qbdDkxKmHC37/urFHSWdWXTvsMXsebi47JYdHXdqH9w+R/0Mdg12tSpx7VkiyOmEscRF09FtqaCqVKqR0SfWYr7I9riyng9s0Y3sHOMyaiXt5vZydOsx22I46OxZ7SrLgtz5NA2bBfzsdfKSXQMv8yz6nqa++7ZrjDbicPUluJzD+881ydza2jJ6zkT7dI1+MND6XiWfP4bL7/ilzurmvf+2UGfrKt8aGdV6YKDXm5mZmPWvDQ62G4xsyb2PtR1bNHOa+s6yw96vZmZfdx924F2l5mZ/XG9+Gz23u+40z/LDzzdy/+yBmOdbbXJOBYK1puQ6VLsSh0Cdl1/GvISO60LabqGq2ijo4/vOhT0ZxuFPWOPP91cqEM/4DO+VDgHSjaIe7TZOfoz2oe9j6t76zD6Qwyg6088D2u6MiYDHsOMx+dYbt2IdUSfB31+W6+LYN80zub+xEQ+ljNlfX0Hweaol/hp9eHMu12mF3pbN0r76vdtl1gXvlT57BmLfmJmZs854HIzM3vnylfXVX7x8qq8h4viCo+XH2cNSjOSiOW+Rs2ruH8dOdXMzJ7/fz7QVJrrJSrOsKo+b3MZPsv17gJ0Ted3yDs2rE1HSu98pvIelXe13iH1uOh14rVL9yJ2RyZKvbkgfN9UqBPv+Ww5hs/lOvhVnSNgY7xfB10fd6nclPpjuubGHzKze1mjL1eEmoW1oP7hqpwo2R7qo+PRLpSA/qm97VW/ED/xrn4C+ZN4vfa56LXI66muFMwLZ3qsKf9nYVuIoXUdXO5pZvYaL9/odm7Qo2L9Hwjmqe4z1xxzgv/0vLrKu3zxnHdGR/uC2nfsoXWdG/7S23/lSFW+b7gqn2eCUX+eoarcwXGN3BkfZFr9qc9lj/e53nrmtuJXT3D/eQ0ywHqj6hi6xfqxx299xzRVJkf8g+tfbTf1nYXPjep4n3fSGicwE8GGMF7PkDquj3P9OsX/MwLIibwwoB2L/ffriAd1nUXX2ntB34VNlx6vsM7/BEQ+4/wyrvmaNesI2ETV67b1r14ovX+LdgFoDMw5+l7jHddp4mpi6o53g+g49hIZKHlNnxu9Y6gq/6GpcfTPqheyvCd+4f9dWZ14m1zGVWOFX7ptJWY50xiP5SeObc6NHlTNLf7S/sPMzK7920c2J/k/ltgtTSje+Oqt0RarQYhr/8i6xJn1eoaFcyV59qedu7THvc0afWQOqmtLSwvHQJQPHjrqp1l5Dgvi/xsiiyovl4ZzJdDWkVBX16yHrfpHhsfttR4nEtONVatW2SmnvNvMvrif73SAXX/9dXbUUUft5/v85uBuv+4GJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEYnrQkor3dw07zOx+8p0dNyGTwSzZMXm8l6t77K40syZzK7tC2bmm2WXY7ec7m7aSzUV2kp7s9yWz56W+I26B7EK83Hc7DfhOvudJFiF2hZ4omZvNTBKYmS3yZ2XHlu/yvOu/ZCcQGcPIkubZyTp2WXtScBIG7PJdRl87ptmJfIFffPGyKtvhrNM+amadeZzIkRBzfqz4qXXhHn/mH2R323FXVLvkHmVV9tRv+g7m59jldZ0rfMfnDeO+Q8s3fD1i5xfqOl977WOrD2gDO9f+rzSADahkkyDLxSKp81Evr7ROPE13ZyJDnvXgSf71WtmRTTZI9unN8rEdMwFy9wTrAtnjN8Rd/SPy2Xc8sxt5E7tVh5oquoPPzBp51awUnuGk3q3qu+x26W675dbsst1XTFir2drOjkB2U7ZkDSez6AZta9zFXtq9xy5k36W51Pu7Y6MgOs+OQH3+j3vp/XiG7/B+2mhTpW+oKjEnJAB7geyOHnTbQDYlxOzOpord20tXshsOcT34w6bKT/+52vW66aGV/jx4RqX8oyILf35jdexOz9q//OJ/MDOzF9l76jo3un292Z/9pfbO+txzbqoacOhTqp2TPz2ruufRF367rnP9f1fUBMe/9hozM1v/l9Xu8zpLeAf8YVe7TdPNkTR7i+/Yx+hoNtSL6NAo0yrbrj8bqONb7udIJo5t7FqVzIw1+F3MGPG4Qp22DGwgZm27qvlY7/bmudjjq9kKjgzH2rJ4ksWIdiHzd0yhnVPBLmu2BZMtQ7KgTyL4g6EclmvE50ABNFMvY4X+aZYbdtbHDFeSmZrMabWtcP2ZJZkIxrCdvisY3dXNwDAafMKvc1lV1IwdZs0jYtI/yvVldzPZBTxT8Iv+rNI/1VWyKX3Ux/CXb2/s5SNvvdbMzJZ/pvp+rmcT1nwIZ3jbanvmdZ68daSuc/rcyklp1gczM1tyoHzmg2dB+RsyMusP3F7P8t3aK9ymvU6q1JkhXD6WeHbxX0qda7w8yfX3arXp7LKmQeqPgfvDMfwzsqW+hsDEM+DU2YA0w2LMCoVs65574qSYhaiUpS/GnC+Uz8g599RsRL0yLmF7pssfmzXPiA0sZTqcCnsHWRYKdWf6s9WZjwrZAWr7hgK5vGzQ8R710u3bfM+atlmv43H6Rtfnkzz+erHaFc/2dpI/+wjH5TprsWf0j2YN8Gtu8nHqymxgTVayp/uVL6iyep/8jzHANLNjvfSspgN6jtjVkzYs/xue4Ni6yk870sCY2bPcInxV5P/J3maSn5KYoMP3PbCz7Zp1hEud5D776vtz8wZ1chAyJyFLaqHcVjAPqvVQ/HLtx8lAS8cKi0it46UMao7a3YVMP4OS8XHXiH8gawfZiXQOGLJxFTMHeX3k7eoROefPPNlLr/cFPzKzx8p3MrGVMk4yHvhI7JpKHPKA3CMokpmqi32hlI2FaxK4DXmptos0ob18uVltFxHFNX7PQZlzMV8hS9pP5Odk+ZnvfmcLOi7PvMrbtKTy5+99c5V98OjXNvHtg8+t6Lxe8aoqJe33PZws5chssYR1DiMYtMwTGtwo6xsPte+YmdkNn/J45WDOSNxyDnGLx1rzlzXnWAd4mQWIrrwxjN0Y+qcZySRGNTOb7/27WY8zp9kUSs0OQzCCXvfKmKhAptqyepUyf8eMLxKv15nDY8aXUkwRM75o1jV0ZLoytpqZ/cAauhazJi4mGzfPobaUDFa0v5TR0OdBxczh8V70CxmtdJzoV/qFuGlY6mBzQsY5M+tcv9BzMo+pM3O5XZjpdnOH2AwyDLupufkZDzAzs+9e9eC6yoOceu9NL32VmZm97sBq4emrEn4dxzybBI/OAvKVy46t6/zUY/EBX3R70+zqek+CgsvMrv/Tiqnr2i3uoJvk4mYPc9t3svsEGAHnif/ZPOLlsB/w/l1vAvqaeRVOV+e7WBuyIbnBnC1V6kyRyL2OTwT23+3koPjnen2IcdYMaJdaJ4jfS3mrGNfxQh3iQWS7JL/xmj4PWC1ZIWfSR9iRknW+zqZvbmzWneVYP8c8Xhq/xIxw1GnLsjzqpfpVf+Yto9YNxtxlaTu+V4NX2kjM7PO6ReIzkQdixToWUMYHn68Pc8shv6fY27Nczr7u36/xZx5+eFPHXd31VunaAb5I9vGPNXO3172z0vElvny85N7Nz+3vvWS999iquPSQU+sqhx1XMRHc/KXKntj5fuJKsak0+2Dvw1v8uyaYI2Nf1/qkZpVcZp0oxU/+bEs83l7bFlXgh9pYqYD0ax3UE7kgi3vq13plCtaswGRFI/s1v9E1HWxOC/PWIq+D/d5EfMm7oF/tvrnTCnweulHKlI5OeP9sUz/NAid2UzPwA/SfvtPYytcPfsI1txTquD/FvFzv9npSM+95+yGO/JbPeTYqC0iYU/De4CVyjMz7izqranz7wYOq/pjjfnWDVCa7+OsO+gczM3vTzqpceFDTr7wj+tY3/6Q64CHR178v/hCztsbt4hd9rU6WuGyMPie2wp5o5j3WZ2J2QJ0zPSLUIW6S939dY6eyzawgZsbV7MbcL8au+s6jV4bsku+M61/qS7E1XJu4o2NlwhEzgKt9oX/9eicJu2O9xufzjXo9QFnyzrfpRZxLqM9kfJAF6ftxYl9/jj5/jo75fGQu4joyH9lFXzHe9Ku2g+sQL7icPE/irwv884Cvh4wzH5O52ywfqyH8EPPFJgO4bWd8uJewFH+oKm4dqegdR187ZGZm1y1r/NhD7lf5ia8+yTqgkvRq98OwXtZ5YMVm/PyCKtfd5w6snms1fTAqF8L3Yiog4tumc1Gfe15AUM+7G7HJ83wet0UzFQPemwxVxUy3GTtukDpxjRgfqutXkREWv6qrBfhxxrv0DopxYT0tZh4268oYXs+h1HaMeMncsZRlHN3+cSjNuuxIW3ixX3CtVe+bYrxfYi3w/ixmDgdx3lNaY4iMTMxHNP6O92eCqeuUF/doj8QAXcwEIq+Xu1zN8TnjMj/+RvlNzZzqTq/PZVzdGJnDT/NxvtaPHyF13PcffUy17vUee1FV9QlNxuD3fLY6dv2Pqvn29Xc4Jf2DZWwWenn8cFX+Oyc047a/d2cJcMeof9B3qU/uLDuyentcUi/TIL8SA1yz0j8wTtG/mjXjgD92n3cfqbJr2D+4EaoZzvV9juvbLuw9c/QS81yMr1Ufvf5WbE4pK7G1nHPfso6+5p6jUifGEKX5ahtDwt7iwVa/OzGzxubxHrWUORx8I5SKXpnDNV6JjCeRubrXtc0619zi/55pJma305M+bz7VZety9e8usLXOhnVcs2buSPNfxhypeZ7rf1C9ux04qmKc/skfVQvKR6y4tbmOiyRe7Zhjq3Kp/I/JCi7t/1Py48dWa16H72xe7FztV7j2e24H1NXxf0ZrXSc2u2ydJOultUrH+ak8c9+yqpyMTO+yfluv3dOfpf/po4/cXm8lPiix8XA95jX6vx1TYV7tFbdbj/9PMiuvWQPeOSlDFHO/tv/3QIaxPfF9Feemc40rkUj8JiMziCcSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJxO8I8h/EE4lEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUTidwR9k5OTk7uv9tuLnTt32owZM8zsvWZ2Y++KfU7nMKnUTtC/wKEBz4VSPPAZ6jN46Q6XOvw+0lkIleZMpyyCLqdmjBHKknlOA7ElUiKa2ZzhzkOjXr5Nbvdcp8pY/IyOOjO2NHzat57ufEFP9wPfsm581MtrvXQq20cc94W6yv28r49zivezl7/dzMxW/GNzmeVQi0AV5pTZH27Yd+seO8PZav71vg2l50k+Ht+xiirlcY+t7jX/CxvrOptvfKjfrOIFnPHu6llvfZPwIp1e0b888wHV2H3kAU7Jcf+mit0WSs59UepA6ftIp4c5wWmilE6Frr7YaUNOLFCa181HbqAx+b51A36kU+QYwgNtSBu1yJGhVHpL6MigCkIfCtQpS/05VkOHou3ZZVXHPc5uvfVWO+igg2xP0ejx2VZRhUVAJzNROAegjYOCs0AF2EWVVLoeNC4IAdQzQgUz4P1R0x0q9RFtdTq+07w/LjtX6vg1+4e9GdDZCTdbn9f5a/++aoSbN3VOdrv0QP8+5OVjmiqnPPTfzMzsTufOHLKtZmb2YntPXefL9igza3RtqVPRPHL7tXWda2Yfb2Zmf/mr/zAzsyfdrVHkH9kcMzP74oueUB2AvlfZR2kbdEp93i9HS51bvLyvl4jCRqEJnOv2rabYOtRLpX9yu93nBnOS/lXKHmRh2EvotY8p1IFyTnU00gY5UdNs+f32XrRx2jGBEvgkr3O1/hbZdkqgRedU5Qahp6yfH11XCkDQi44IGf+5mT19GvT4PWb9ThE3AZXZ6VIT6srIRViiecLAomNK84RDLFEAYqPQF6gflcYxUpdxf7EZUDIii4hbBzWU1+ERUY1ZUmVjkAVsyJ/LsSv9vp/wdmCSn9JUOfo9Fb3fv9nfmpnZv9gL6nMffKPT076rKla4aVeStMdNHGBmZgd98i4zM7tqaUXdul0ofpfdeZmZmf3RgZXeHGBV3c1HLazr2Fan0zvLxwCR7m+q2DXer/N8DLdgd5U2nWMf9xJ6PaVZpu8iDXUJ1BGa8loX3P/Nd4qtzao/kU67BXU8OeIHRFfmeG9v4wA07CVq6DZAe7jMS5Uf+g/K10gXeIeZnb9Xetzo8FarnouYOdIOlqgRaddhco74Ar3D3in9YqTuOyTUbYPGIvhs7Av6rDTltB/5wjeo3ac9bu8HnfZQzRVUtkNenijnavZuro2Dbmj5ZtxZydutV3usOttPKMW1m4Nlr6xisn/7WWVTLzrkRXWVE+waMzNbeFr1jN+87EFmZvYye0dd50lukL7q85i1t1f6eNvbxUBB8zns5SUel/ZLvHG8l8T2925O2d95eR4HsKliSxd6n2ND1zKfUl19pZf4d+yDygg0lPQntl39B3qHPiN/Su+qsaFZE/td1xya723e7PrX798nLmnq1DLucjtXqJi30m6eA/+1O3uw9zpspnr8TWtiAjPr8zZOxthEUaLmjefoa2yrKgdxkiqFWSelZ4xBOCd9V1Mf+xjWcXep7ZHKvETVSN+r//F5f03pOerHxTfM9zYRPjlL8aEPaWKsZXerfOYr7O1mZnbkkZVsrigsSyynGT4ntp/LyRdXxZ1Oy/3Oe1X3Pkx0ZNlbfI1gsR94mZezrQE6ur3gc/u8xARfgr3UmNH92Hx/WOR/UPwyyyL19Cfqk1kTO3MP5rsik5ECs6bBVsph5CtSO6u/hiyVtZw/kHOR5pmYsURDGtul8tKL5rYU05hNnx6fbSaxXrMIBH1uG9VonOsr8J/YKXRlWOr4M9f6h+17oNRh7F9hndBn5h5Q3V8q5/C/9C/XUepf4v0475ZFmBPdLg3592Or4u3Pb/rukx50v9Te6a2p1lQe8FXpH9bWHl8VL35BdeDdX31VXWXHcZXNeqXHX+fZ2WZm9mr7p7rO5d+rHOOh8yrd+ul9RO5xURPMb5EhtV3ENPS5y9bic5oq61hbQCHpn1c3dep+HLFO/EI+45ixpVxnVOosq4rZbq+383ulq53KOgtAFkq09lGfdbENe0hb+X0pfucetEspp7FnJRvomLfc7Fc7zX4wY5r88VWFGm5n6/Foi33xkcTm2i9xLkvsq/Ne5KS0nufyNs/Hd0vJ1x7SWS5wuuhNWpfnwY/GsTSr462ZHs/tKMSMNVgDiXMNMzvBS5/3Pv2hHzIzs2PrRWyzg22HmZkd5/LxyCObc/wOf/ymP610/D04Y2vWo99zhcenQ37iydYAMR/3Na4TXE6u0fcO+EPXx1lLrQtjfq7WMeJk9St89snGgI/buPpM7CWNLaxl1nAZmCc2vTj2EVOhuH5I+H5doY7ff5Hfv4t6uwR0t7Qu5z5vvq9DbaZf7jCzc6ZBjy+35p0T+qfrCYwrPg+70kZZz/hoLLE61Fkgn93m1XOSQp/xDmIN50rrgy5nc91fbF3px0vxP5NbF/aFQ82pjVC7Y3Pczrxbfl4tP9tj/umzZmb2xVN8zfj8xkfc7cCK4/7sw99iZs37JjOzT9ifmZnZY22dmZk91L5jZmaftic1zbBqnWr9jdW6tn3KJ9XrrcHXveRV0Rr0SWSpz9vPW9Q5Xm6TuGXAF/1wr8yRR+Ve2+kP7Bp9r2sg2H3ktxRPEhfc1FIH+0iD1LZzbWSA3z9D6iAnyKmunQDawT15nlK8zbzO27NY5g/ruLbH4gNyrjjH0+vdYWbL93GNK75vKqz/1kDv6HuNpXv9ThdDYwxUWGuo3xl/s3AOxDVQt3MnnNFUuYa+wzmVYoloH+NvzBoZ4rl0jaySoaMnK91ijfhf64Ugs0df50p2a1WseGRVvnZGXcXe7OeW+6vfb17ud3ptU8f83LsfUtme8z3OvuEJEiev9fbX83j/PlNkCtWYCHJXeuaB4aq8Q07V75GIYbi2jnuYH87xOttUj3zttM999iT+fbSpMuDxfZceHGZdqN+1TMVnAl1nIT5pe3cE8HXflGPoArYmvhsz616fOcyqvn7VNL43xmbNCzUL74dYx9gV7Z1Zt18Gat+GvYxxT+m9BcCGzJdjvDiJvlZ9A3ba5WTxsubUOto65CXr8ipvyCuxmseFb5P1uFfh94g38AlynUFfzzvLvw97KTpywKIqBrjrBh9P12e7QHRkhdvLC/z7Lr/nHImFt62pSn8/1RUGmVnz/zisWQwU6jDvKMhkbSuIW/jfB11zQC7o59I9xgvHeiHOd0tyF995lt612BTOtaCOGfHhOkfxGG+O26dtnCvMVez9Nm1rXHe/1eyXbe/22kA/0sY2Wxhikg6wOPv5wrleMZG+2+acj91csQejXh7sJXozru2gbS7/fS7/k1rH14Jm+lx0h+vBGc9urnJ+Nd/9+4OqGPp7Vr0X+uDW+uWUTbof7mP92V/vrmheU9mzJysZmH1nFYNfe2BVaZPMQ3gHfe3D3cGPSVPR49rmDVWFrlXz/1G44TW8+9EYCwNA/FOSM+rQNua/+q6G+W208SW7XYrR9gal9yml9ZCpQuP+X5SrIBtmZjt66MKz5JlXrTaz283sr/dajxOJ6caqVavslFPebZ3/jLk/cIBdf/11dtRRR+3n+/zmoH/3VRKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEYroxaT03QiT2Gr9HGcR7ZR4G7LjRrFXs4ItZTEpZUNiRVMr6NpUMGmFnLbvo1+m9vB0D3o7SDnp2I7MZ/Sw5R2IjsoORyU+TNLHR0hMOPe+1VWqH9/W9WCqNVkX/UFV+u/OwmdkpT6yyEl/xhSqL6X8/tsrUcMIWSdHgmZfYjPUz31j+C9lIf/jn/IMniPjs3zSpjy+2l5qZ2YWeUfD/eFam79qD6zqbX+pb3thwyea978rjkMmTzA4jXv6h1LmE3a3sivadZz+W9K5LPAvFqH8fZ+evZiVmBx872diNqLLhOzbrneWjhTox+45kox/wnXi1fJR2osUdqOwafJ/UcZme7TuFyXa8QHaV1Umdwi7rhbKTdOMKm94safdpqRmzMJR2wZM1a6WXugvRdWyx61itf5p5knEl+6EL1UCzO9PGNRt4bFfIJlHvUr6hqbLYd+auG/Hvw1UpVWyrt22R//40P/6mpsrxN1bZQ9d/3FMokWxMNzz6xqvj31PVJfvCWJ0tzOzDnpHz+rDzXjMwzXFFutkzGJDJxczsh+/0fiWTIZkNNTHDOb4DdqHvkGX37GbdGetbV+f7g/yvHx4r7YD0e57gY3nNSHOK7A++obXeXH9Z6Tox09bOwjl2Zuuu0x52v1/0pyujA/Kq92CHLXLKrlW1K+yEjRkeNNNDW/aTgNr2xJ2yt5vZ306THmOn2TVbyi4TofLH87w/fNe+o1/YBa9BZMxIx057zWrKHjp2FZNlSnbf1lkKaBv9skbqKKOImc1zW7FFZHvA5b6229FGm7E7+jGTlQ3a/Ksqo/9PtzRxy+wHVSmYyNSySzIIkAnxYU++3szMVngm8+WasM4TRbzh1VWKll/a3c3M7Jo6DZvZptsr33D7rqrNvzrCUwUfbw3We5/XGWlHvYFDTZ3tfGBcyOQhdRi7AfcppbinK3NszBBi1sRo6E0pI2F9QS81IwIxIlkk6NdSVgZ+5+MyV8Z/a/Qp6KNkfpnpGV+6dnY/Vz4j9zEWmAqmI4N4zMqC7aNftO/IzoEdOU7O8Rw8G7L8QalDVmd0U7NZAGKpYS/pu5JdifKxxfYMxBCkUrh/oc5IVcwc7myWmdnVZJlC/70P5ohvwPQwbXl5VRz//GvqKrs8Fnq29y/+eIP9cV1nrgekz179n2Zm9m9Lq7nGR2uaILNvum788L0+PmzGvlwDDjIpu48ac0MxSzIKLvPyglH/MCS/R8fRl9IYAvqB6+j4IF/o6NXhuFkje8hdlNF9hco2vgU9bssqQZyu8tcrU7gGR2T40syr0xVTv9M6M0+2ZU8BMduT6NjAMv95ix8ja1eXfStkP6xB36ksYCvc9tXz5pVSx9vTlTFGM/OEvfIDEgOMj3Tea6bL+w6pz5x6qCpm/6Dywfey2+sqp3qqpHN2Vhlb+t/gJyRbWp2UaaOX+EfNxA+RxrKqeM7fvNfMOv3zjTdV6VdmHV7Zp5v7uJBkFjnen2P9iB/QrFVuj2a6ndvhse/xUmc9cRZyT5+VsnprujczG5Qs/XWGrpj1VoGvxB4hU+8r1G3LrgToh1KcOZX1mpZYuqdsa5ZUbMNyq+LV6cg8/Dprz/lQajP16Q/mGCWGj151tT7MDdjZlnsNeIyj8VwdxxGQCnPEAq+/iXPor8bZPKPbs5nDVblD/NjX3Vev9Fu+qVLkgw+6pa7yHPuAmTVMWYMux0ff2dieKw882czMnvvkKma96lOV/D/juqY9gw+oJqiL71Wx6810Cqwrvvy3TXu4LXNjnX6wNof+j/m6wizJDt4198V36nH3JSd53HU14yPyMsezP25j7WLYS7HbZ/i1L9mDDJS1XZGMWyv8OssjS55Zk6H1geG7+qiYgZxx1zUu5CPqRCmDOGtkjK9mAGPtJvo8Qf9ys8mdZr+cDj0+2xqKNEGfzzknXb4WuqCom5zAdhJr0ffKwIKAxflMiSmhNMdhrRobHtcyzbqzXrG+eKgc84zyNRsEMqWx1Ui4v99j1nBTZWyk8xjhy8ubKg96ZbVue+PtFQvWkntVMv339ha5U/X7s7e8vTog/bripL83s4Zdb6Uvth1cK6/ZR+/7153NR5Sa5WizSwPLRu37Shm/WGNgXHQMmU+u9JLMrWpvI6NTIZvpgOtNvVaN3Ot8ZgrrRV1Qn0tbaT/+WWUk+Cay6h0sVTbSL9gubM7zpBLxwJ5kXyOuZO1huuLqMbOZLu91LHCS1MSOeH8MDlXlLp3Hx/kKwqU2jWcsZa4kcyGsswWGENbza7+K4GuGUmyEt3W2j9d2qVLLLXZhxJs13FQZX1mVM5d13uIrcpm/Dscu83WAzzfr6zMe6Uyw76rSez/+lZ+ozz3KvmxmZjc6492BVmUbf8+bZc2Od0+jVXHYX/3IzMxu7nuANASfhP87JHw3a2I6fA3yoiyrPKTL9kwP8neozyOov5eXjLOwbizwWHwT9kAz9KLjrPeyPqHzd9o95CXyp3EpY8dzFNamav/BdUpr5m2sH7uDvoPleUprob1A3Z+b2ZP2cY3rdVYtwMSYdyqZI1tYO+b7uc36PMhQ27oIwLaPellgYFnier2W7Jg6v6OPY3+qH/L6J7lvqdesNDYipuN6kmn+XL+Wsy7Pf3M1qT1c/Ng1W1yWYJEma+gn5RaYOp9Cjr24WvOa9Znb6iqfeGKl0E/5jD8PWf8/KtehW4kX8EvPkn5ZhZ10fTrB4+xrtJ+IA9FfXdtnTozdLmWZXRK+s3aicSV6E5md9LfcA/+FzSnNM9sYojjHtUvZvQPmyTplzSJSeocMvI1d76YLdeoBv4dVcd8x+5F5upS5dV+gMTAxDet7pXkZdn7Ey+GqOFXWpi6PMSPxwVTXMonX43sPXV/kGG2mr0u2yGOYJW4X1sq84UzXedjpzvfyFvk57nBeKHWKwbL6NcSlHustFbmrGfBG/YPfu0/kZNLbNujndmkMTX9wD29An9xjcqV/cLs2y6/dMeeOcyTWsVZKnZo6yDqhMRvnYjyqMkWbsTnIgL7jwJ4RH5fu0YapvCfmmmRr/v/Fdhn1OOoUelPqM+D6o0yH9TxsKmvfxFbEbBoD/EGoO+yl+kzsPNdRZrXI/sFapPofYvqdoa7OuYjjwlom727Maga8o5/zbVMslfeI3/Ws4p/c+hdmZvajuZWvuM89Gj9yiE8b/mdp9Q9TzI3P++Vr6jozLqhi8K4poFkzfbmUZyRm1f+54X70o8v/Ilkr2LDSPwx5ybhr9nbW5hgD77NBmRvs4jrLvKQ/mrX8xl9EOdEs4y2Mc7V80o4SAz32BJmK62HaDkDcPdoc4tlqE9SWOd/t5IkuJ2u07sMtM4gnftNQZRB/l3UzX0437p0ZxBOJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEYv9j0oqbZBP7hN+jDOJXmtm3CjVilo02sHNYsl917bJjB5FmP+TavmuIjApkUzAzs6dWRb3TkevKju4P+S6jZ/l33Ug37ruv+n1r1oTff5FkNb6F5viuoPd7W4+V66Bj7M78rJe6CdFvNfvGKpvK9hfNNTOzuy3/eV1liaf+JuPKbb5T64NXNtk+dp50gJmZHXT1XdUBNlX9SO51a1V84U+rvn/c975an3r8g6qsEZ97rWfx9kxsA2c0qd3GD51ZfXi6H/CE4vWmO322mJh6lnxex+4231Pxn8PddcjQzi65bXFXo1m9NXbusqrcyjjLDkF2sE6yc81loF921P3Sy0mySGimFN+BeoLLyzXsitcMAmSImUq2AoD8686+i0oVC5iuHaS7y5IG2BWvu/sZGHY8lxxKr0wVkqFdd+eZWbMLULOVswvSdzySkdzMjCT69e3ZFalpfNn1SFbtoarcKFXohjlekjlch4REVE/xkk2NdzRVTvlOle2fzPtD/nz/+ZnGdrz1iVW2/rXeP9e60dAMSrd79pMbPu429ezC42CCL+OEZkHxHelkF7/Wy/OlCtc82UvM94ekzqZR/+C2YqH3vfZdnXQ3ykRpDGLGuhIjwEhV9A03pyZjNmPaVZI75NWz5HVkGTgp1J1KBuRSxggEJt6/lLWTuvND3dvN7NRpzpJWysCMLiEfZOLQ7GLYR3wumSv1euy+JeuNZvaJWW4Ku8df49c+L2ZxUP9O1hQyKHm/nCxVrowZspEbzbaJ7WHMaI/aIvcFn/D+4VFf0tT4zP9WCnQ/T+90P+g3rNHRwV9WPzzo8+57lUWkSpZmp/1RlXlm5XeqlA/HPrRJ83SYt/Ezr63iloGzK587PqOJAepnZQdzPSwrpY7vgF7o/bqR/lBb6uPRlb1Bd2tHaL/GbMLok+pGr2wJpR3hjNP7w3ezZqyQO/RHr0/2bHaCt2UvIRsMmfdUV9kNjyypLy/plLZr3MxetI/Zld5rVcYrbKjfs9YR/VXMlKfZCskuSxYKMpvo+MTs5LvCdwXnStkkcI7Y5J+FUoHccB1lJojXISaSQHmhxx74HTXjxO6jXq4vZBJc4Tqwzr8jSpL45fg/c4aQr1bZgx9zXBWw/7mkYPpne4GZmX3IJw7vsReZmdnln/m7us6DnljZ2e/d7xjrwBHyGVFc5eM9259vu/oqb/OJ/hxrlLGBcUFu8TGSMrXWcew+MqCZrbD73qGzvM1tLCL9HgNMxIwIZk26mh92/sbMmmwUjCvtUX2O2cRClj0zs+3oOjZI5TboahcbgkKzu0xXTP0T6/SL2AietS2bShuLQq+6Zk2GohbGk5pZB7uL7dNstXH+Xsoa+7VwvVKsx30LWbCe5b9bFTNlaZZNbIPLyYm+RiAx8ImPre5Htn9iZ80yPuB9/cht11YHqumzTQqb1UsOqVK/3N0ngRd/+P9YF0gCzPz0mhLzCTo21Nl2M2vsIXMT17GZoof1NDswS20q6RhzR3S/zeeRWaeUMfWtnVWVcaGeb/Mc+GXNyEl7iI+VyYLfe1v73C5NasYWdIGY8cfhuN4j+qwSdtn+y64EcBgxE6ZZd8ZwzmmmX2wdOkWfKQsCz/+RwjkQGH/qdQ6VF+5Bhmxl4poIdfgu9lrn2WaNf92m96j09z4/r/rqtpe5klzaZHk6frLKUAob1gFWxclvsH+s61zti0pn2QVmZvYan6h+qE6BavYFn8zCdjfyBh+Lh0lzrveSNTddynmHly9DBnlmmZfBXjCJvjDOo3KhKJOsZ6jddp1f5HqzgevpGgo2E5+NPqq9RYbJXkVcqrEF9d02d2Rti36P+E197iGhDu3RGC1kD67jUp3slLI7mXXG/b0yLmlcOd+qvnzgNM+N1V6z9sl6UylmjShlLQT4ea6jmbba1vX43bCXrs/zpc8292JP0PUEbA8xIs8Vx9as6Wt0VDKVdmVoRE40m5v7gB9WMe/jH1BRZ91pB9Q1fukyOded7gJZX+Ez8+d/tNebmdm3vvknzS3+KNz+0f5cJ8n7gquxk2R15VlVXqiPzi+ritOkXy7Dn6ObpfcX+FH6LKwnK5Z63L46ZqUza+KuYS8La8Y9WTNKwPYMybG3FupFIAOlrKwRLdn+d3ud6fLHK6x6cWnWxIxqS9E7xqVki4iP6TPGRdfgETjuoeuCjOeQl6Neqh66naz9Mcc1PuZ+zBNoj15nKkww+ASPE+a7jL5OquC+3BzNWOTZwn8iL1sudv9BaKVrbSPewhdVdgkGPWW/XOyT6vd9w5lxYcx6WYGlgvXodcioPjMxputqn/u4Dh/WK5u2rGUOun/eRUzO3EJi4Jl+3x3Ii86taXdcm5L3FvP995t5DuzDJU2drrXH0txvX7KDTwXKCMBcD90oZRcHxDjYuzvMbPk0seSBqWQOBxoT9frnBa3DOh5j5/0wIPPMek2gJU4e9GPMGdcT8ynTDnro9mie+5wtKrdRxyNrjFkzPuijMNs83UsPh0/8s8qeLBTW2XO3vNHMzLbOq1KHM6c99M6xus69n/Grqs4nqjpztzttwarmVi945dvNzOy9X3hZdQBmg1ulqS+wAPRHs98SQ8QszfreAZ1kHqR2jt/7O9czfD5yifZrfDfDWOo98E3os9viAenfrvWh0nvRXnKnsWsvP9jGItX2zzgl++BrdQvcPm6Kcly45qLlZr/cabZxulh57mnd73fb4mNQWuOK9jFmfdY6xFvYK10IZo7CeMSs42bdWc5L/jWuMWhbY32upzEE2WlHveS59LouJ7PdTm332OJzMi4wc+CPubWK26leMt1gjVl9+Ca/9iK/9gbmbGp74pojdqrENFVicJnK/0AgL/RDCyMN67a4i9ZYGN3Stk6Ec7S9zdeUMuCTor20ZjaVDOIRyLG+k8OXEF9y/17r2tMVU3/TOuPSqIcFXe1iqJoK9oSBqJSh/eGhzsLmY5/LXR0jltYapmKXYp0S48+rrRPCKHOm6zxmYLQq5v99848SL/DrsFb97J2VfVt70HBdB4Zp2Gthm79U1hM2f3lh573eYQ0i+VydtVrfq+p7S7PmPYq+D2UOHN/J6bsNxop+GfWyjS2SmE/X++P/B5Xmmz3eCxV/H9un9SMztK5rxHV0ZEKuv8Cvs2ll+I3eC/8V+yHq877pcSIx3agyiF9sZp/bz3eakRnEE4lEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiURi/2PSOjdMJ6YDd/t1NyCRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBLTg77JycnJ3Vf77UUHNcmg0FHs2hMqjwilaAw0n6f69S5X2hooL6CmgjpCaKzBYv/9uhE/sFlOQvPk15v37OYUbBGbaA9UIkJvOccpeLY5RcupTtMpVF024b97jdNpvMuPv0nqkHceapCXFOr4I37xDYvMzOyrTsd1d6GRmuXU7o93OoyZt1d8YLvudZ+6zjV2gpmZvdleaxHXfuGR1Yf7uwiPONfuT6QSbCnf9hI6I2VQhv0F9i7Yar8idaBrgwb4z728UigAT3BKn23+HdamNaNNncVDVbkOah4fr9lDTZ3t0AxCEVSiXuX3jK/SlyDLrw11PtxUOd6pz9ZH2jjle4HqCKoWKMOUzvRx4RzypzSB9/f2ThdVGPLRRnPmmCn0PTugUoy02jdbN3jmLxXOAfrMaW9mDjenXDRtDdR/Ss8UaUJ/6qVSSTGeLguLz6jKdXr/US+dBm+J67Myx8AEhSzeUhXPv7Hh+Hnvm52WD2qsf/fyv+6s69zt7lVf/2r03mZmNmOh035+5Yi6jl3uJSpxoLSDbjyWdkHdpzR2UOkgH26v5wk19RbfJQYl4hw/fs03mzqLlcrazNZBzTwqB6Eid/mHHmx8ROo4pdpcP7cV/dFxglqI5xmSc5H2t+RrHhLqlKiCpyDnNdooAPeENgtEerrpogr7hpl93I8i6yoL9EOkCFbqemimGXuETPwitq/PbefkN+RcpG4Cqqu96OeUFozrEF9A06RtPaSzzjz3r1sulDrYA+jJvA+WCKUtt4BBiltsa6rUzXfVPPqJ365PQZV9mCvpv6x8uZmZvXtZY68/bU8ys4ZO+3M3+vh8ShQatYfVbBtxisRDff48k1eFc0oNi0wOeYkfUQou+gM7CUWWUm0t8/KDXgq1bi1LlMhALzo8s5qCbLYY0+2j/iHScLXQdda0zd9vjs1yYzy20g/gn0X3uyi7X+HlpU2dmn6e6yjdWIl6ULH3etzo8HuscjbL/EyMoUv9i8CW7BxAV35WOEdMg31T+kTkhPEtxTQAXeNeagtoN3TGwVeU2sg4/7FUIVasf/dcOcn9/PeL/Pcb5B5L/Rhsu7d5KSyz+L/HP+oTZmb2udd6YPqSxne/6n7/ZGZNvP2aLyh9vAMWvkX8yNu1WGLOdcwpmLdgt7/a1KltLxc8Rc7xzAQjjM8Hpc4yL9F/xkJ9OvYeu3hpoc6ScA6bU5JJ2jHkpVDjzvbrbMcPIGNqn5Bp2sNz6rMTY7LLvRetr0J8jE9tGlrKR5vZz83s6dPgi1eY2cvlTJSPSF9r1j3OLahtoOoPuuV9NzBcleMyR6nnP9hgKJ31OkHna7upfhV4DN1hMwD0zqWYwH3Byd6O4/3wq3ZKHY9Tlri8/GVVHHByU+eu11VjdPR7Kn88bCNmZjYovucEu8bMzBZ7oH+l8+4urWMls//0Y2fffn5HK2978qzmC0yciD2U20oxOstjkI/597PlYtd6WTdtpXUDmQ4Uyn0it5Oj/oH4wMdwgdiVTdhrGh3pn82aiUyMB0tAtnh4oSXu8/tPYhcaGtRGrqKPavNjN4XjWj/GFAXMW272q51mP5iOufE261xTinOBEg02oK8ZA9URfC6013HOo/eYCrCL0MQeKecYjxWhrlljl5ElZEjWPpa4bznYv1+JbyrEADX1sNvkj8laGbdwk37AYyo9vuu2e9VVnv6AK83MbIM7zRu+UcnEsQ9vFo6u/aovBHzCD7wR+69jQPuRbZk3zJTY36yZo29XqmiX5aUe+K8m1tQYi2djjtS29gE8Nh8Uv1qLNOODLGisxn2j3Ci9t9vZ+R7MbBab3u/jMjHqBxhDnXdzLew18qfrhPQn9qRtbhyh9OtxDajUd4+zyh8/ZZrWuBhosV1L3Hat5XkKc66etkttkc8N5i3zqlNZ+26bK00B9ZhqrEcbfRI50/39Dp1z09csyuJP7yV16AfGzHVslujzn3jpLvLUD/yrmZld/uW/a+pcWxVLX/QfZmZ2usy1PmF/ZmZmD7XvmJnZy7/8L+aVGuBaWSteTwzyDKnE3NHnc/0uJxMarxCnMM7M5Q6XOlGfiV9KYxnnQToP6UWtrRTp3+hRp3TtkryxSPDP4bs+Ty8Z1PUx1/8TXZbWtMltnAu+Qs7xzLTjzeH7LjN74DTrMXKs/YKu4tdY3GmbG2P3BwrnWIfQsUOGkRfuWbIZcV1Q3ynE7Fz8fpN1Ab/Ke5iOuN/lpd9t2YTHGXNf3VQZ9fICL4ldlUGaoXpKNc8duM/t9anhg6oY+pdu7z/zj0+tTsjjzH7U1urSD59bHdhYinuIPdDD0vwhrLPwHFuvkjroP9dBZ2UMB/x3tVuP7yrMGvkg7lEfhR8kHmW8da2tF9Qvl97x7A1YTyQe5VnHC3Xj3GupnMPeM19WmaQ/g67zDnVip9n6vYurGx3+klXvm2gbtpPn0jVrdIL4omVdsO5zfb9LfBPto/pD7hHeT82XudJmZAB7S9xzRlOnvibnhr3UNVXiJ/qXOVhbzCh6/Cwf87Oq4rCH/8jMOv3qJ92vrvD5xwF2l5k169RmZj/1l7W8Qz7UF8QO9LpmZle4rn7opmqt7lePqd5TdYQtvAvG3D3dywtkbXa2zx+2894OuZF3CnNc/7a5/M0UmdzB+KCjXEdjzpPCsdKaAzoQ5b8E7AKypO8/4ruIqeg1sqXrejFmVvJ5nj/OsVQ3esmMXmfYS/R6gZndbmanToMvHrNqLLG92Efupe8L6PPSujGIc9g2xPUIne/GY9iMluvW7yo1ZiQQZe1O9bjXOwCFK8qJ/k5hDfahtAYPvB3ybzW1CHbE+WbWLzKJSHIIdbhF6l+DTjJOxB86B/SbDbrN2RXXp61aXzEz24Is63w6vodHNgoxZ+v6IMDY+FzlZLnXlTFW9Yfuk7n1ZIxBCvPMeuxX+gH0UmWKQSjN03q9F9L/LeEFYoxXCnJbr6GUYnHWBr5m0/fe+L9MXqwImPejszpnea4VMTDUfB7vNZfQGGvUy9NDHY0HGbN7hDoSP89cVpX1uz2N5UvxkVmnPkedZJzV2bmvn+nXrtfDRSbnV3I6/zuVY9x8lf8j1FhT5cznV++OeBc8ZFXcfLJdWdf5svfR3/7fymYdPL8K2B97QPPPKtv8RdW1T/X1sNX6DDw/NgNZ1LkF9jb062lDzefL6E9sObqq7/ORaf7pq/A/eHU/8n6VWF5lodd7j0fI5ziv0/cF2JX4Pxk6Tw3vYQZd13aprEa71Lb2jAyhf5u6z/Uvq8qJNdaNfdfjRGK6sWrVKjvllHeY2Sf3852OsOuvv86OOuqo/Xyf3xz0775KIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUhMNyatexN7Yl/x+/MP4vf5A7Ndsquxa+dbaYdtr52FuouR3/l2yG9xXHdIxaxXvltonuz63uK7vtfxO989vmC4qbPJd0HO8+wLt8gl2TR+ru++usbLtbLjcch3j83yjAaXj/oJzSLiO7V8M+Z9flJtJ7ttrWQn+5CX6730Z57/g411lc0frnZoPeY51W6/x3zgs2ZmdoJnTTMzu8tTDD/SU3WPfqVq33f/9H51nQ979sZrf+SpDT8qIktyjiv7Otox41NNCvFbr/ZUp2wg/QcvHye7uX7JTijfvTfqO9p0I+moly/38l+9PF2yoHCPLX7tLex2kx2CXKeWs6Gq2K67tV1eTvSdb3W2Zc2oFjPbLrFu+G7Kmb7LbIfI7Xoy9bVlFb65fG6htGNj3HlJp8nOvL7llf2eFhxlZjcWjpO5IGQH3LGipQ7Pp2aQLIXoPLtPdUc0u3bZpccuTbnXGtejuZ4ha6u2Q3fWm9Xp7E+Xfr101D+4Yv+Nf12nckJb3WZc619lB2ideImNtU+vivd+/GVNHTYqkqD37V5O3L2u8qs3Vbo64+2eOfxTlV7NfurWus5282wsJBV6mLSDjPskj5jvWSnUpw/6rtdbrLO8Xuoc7zpF5vst3mf9shN7nevxYvSOh9dMKci/j0W9g1hlwe3/Vnaz+zgtknHawE5LZEJ3icaMZWQ+laxg9U5nZJEMApq1bCqZz3pkhOuXtk702iWtz4yOMFAfDnWmKWQ48mhJbkOf6e5+fOYjwncVGHZbx0wPurvXd8ZOtmVRiNmmSlnD405d3WGL4oRsXIOSNSFm3mM38KJXNnWu9bIeJ7ela2V3/0/d37D5l6QJKlIkoLmukpfrf/TgphkPqHYYD3um0ocuq575Sfbpus6QO6krfuU27F2eOfw8uQeZhv/Byw0+dpeI3E765xUebywvZW6lYzBC7PYWZo7apyDby6pirlTZGjMolTKNRj9ayjILvK3b9RgZFKLPbMmwNhnjSzMbI8aLMikZALoy4NKvumu7LYNar2vvRfa/nviRVUFYzLCIzm4uHCuNS2wb/VPKFoUfxrEVsjTN8fE91g+vLmWCoc20SzNPYj+Il7DbGn+Fvp/0jF8btM2ejYisxveRU9uQIfdnGxhvyRRxsJerUXKPGf9aZGBRZbs+9zG/74yqOOCeTQZxsje87Tuvqw580U807r1hEVqF7fPrzRPbc3/POLxK+8HMZklmBRg9NsasgWbNs30jlJIlFjUZ9PvXU4pS5kl8PnG2prJhfMhkxm8KmZgWeRxVZ2+XMajnh8iJZg6P7YmZPZSmCBmkP5VdgvHEzjGnEB8zGfXmITa9utyWaU7vQ3aOmEFDM5wQl3q/wDaxXTMbhoyX45zTDCqMLzJZYvMhNnMZ2lEYw9pW4H+wNzJ3Ix7t93KTjqVnELnSZfJKzo1KHR+ftV5nbRWn3PUm0VXPLEp28LvsADMzO80uq6uc7U72ET6ZPNiD4D+RrDmL/PNtb5/Vcd2OJPCEaU9b6d+XVeV9729deHQhE+0i1+kN9Dm+VzLE1fobsqZ1ZIyMmQO9fzZJnVkwJRDboWPKlsE5rsf4PlXqML7IMrZYMqVMbg51NCMU10SfXR9n/lVTpZYv9ICYfFSug45PIbv+lhVWZWWZDrzbmkURs+75AlmrS9mR8TGlOcabw3fioFLcc2Y4V9JZsqPhR0bkHHLykPDdrDtD4zIvxTesxb4TEGOLtK0+z6yXiUar4isPbKqc7KXHvHeR6VdM+ifvU2U/vOtT1bk/POV/zMzs2iseWdc59pRqbeva/+vHTnZfda3MDersZvgEyT66I6xHsG65SNaUridz+LnWgTlCNbJttCoHXCfqbi2xooT5psYtu8LcpO7X46TSs8M5oJmyhqpic8xkaWYT9AfjTRym6yb4hmif1I9FX42913nmiJe0H39Smn/TP6VsiJ+36dNjhcSua/mM7yxl94sZIksxgs8NfhmPt2WN1mzPzFnj/KNkV/ya9ZxWY8eQ6XQHxyWmXzhclRtH/ICP71LRn9WMi4/3HJfxbWLb13jbzqrqXn4vzxx+QVMFMVt9RUX/cfdTmg7CRz/tCz5PXuknZFm8nu6sx5YyTqVMW64LEyP+XdYBaplEx7B36k+eGerwmxdKHcYQu+Zye/pQU+XSyNYU10J2B2TyyHBc7lG3m1icuLZtTaYlQ2dr5nAQ219gTepi0qCd+0OPo70ys5m+LrKD+CS8hzCz2p/WDHiREal0D12HiraqlMU0Zi3knK61YVdi1vNCptLt6J2vi80Vnd/qulHbA9dVDVsmXRZfxQF/5gGJPV/gdf6l6pdDn99Q6K15qPfrZl9XJCT597qKbb/OF49g/Hqk6+Ml0lamDWvQH48vZ0o7dtzQWXnrqH/X7HxkEGfssZPi88ajfRwKdc1qXVvs918ncUKf32MyrrHpOJcyM5p1vt95RDgXWU7NGn+MPw8MQmZmgz7PqF+RkCG9pLvxxb6uoRPPca/S/Bs/4vP/dehIr2yce4LV1imcBICMXVs27ZsKx/x3A66r46Xf8/yRldesnn8R/23w6/1v6feMXWntDb8R4wXxmUs9Tl7NsRJbMc/obV0qMR5EOi+oipuXPsDMzN489I91laOfU7FpPe17lV/92IMq9soDrVm/IoP4n3mGwL+1fzMzs7Psn+o6V/zoOdWHl3t/bPGxH5T2sGbNVPqCON80s+34M+wcRkD8xzbk3eNIXeap2U+YfxTmU/XYI5/0r+o6cSi61vYOyGOzAbcB46Xsn22Zw2N8i64X7vV6t09vVD3G1xKTsL5Sys4a5U7vEXV7s02fL/62VROZOD8EanPadBrEea3HXYMSJ++Kvprx1dhkMNQpsZY55nqMuLW0xhXjG13n6RVn6ftQH4f6fw2wObIufqrrP3500uV2k/6jhN/3RI/P13i/1mxQZvZs4hOXJfTnapGpmrWZY8TS2nceT+7CBqG74p+3sHaPH9Q5qLKcmzWyqfYW/UM2X1iow3yV+M3twpXWAve5k6X/uyD2LaxV98x0re9lY0bpITk36iX/18BY6PMoS6VZ0/eFtZiuzOFLuuvYoHVn1N5b/CB8ZzxZo2L+ovOgHutwxfAgZljXNQd0fsRLxkdjpsgC5/rcwWQf+6zUkPiOcQosAHNlDoneHAGjJjIh73N8vrr5Hz2b9kf9uIQ7a59fjefmH1Wx1cceUP0jxxXCUvFle5SZmd39jyobcus7qwX/1Rv+srnQkJersbPC+I6+9Hlm9nr9WGNXnwcu8edZ63HuZTo+yDQ2mH7Vd0f4/Dg/LDEuEEtzHY2bGZ9doY5el2Old56HhXM8a2me6jK9q6T7Q+E7cw2dA2IHlnmJXyq8X63tdGRppI3TEVMnEonfBvz+/IN4IpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikfgNQmYQ3x+426+7AYlEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikZge9E1OTk7+uhuxP7Fz506bMWOG2T1vNbtD6RugeIA+rkSF++ge5x4SK1pDRROoRYrg3kopBe1ppPNVGqBIB6l0D9Dr0DZvT79Qm0xcUpWznDqMR1//YbmOUwSd4W27xHdlLBWKmJry3u//db/Q95sqxiVhZ/bHO/OYhhbs7s5xerU93czMXuH0Gj8V3s73/OpF1bH/cQqO2UJJdaknwP8v/w41ynppyBxv25P8+/Fe6hA+GrqTq8NJpZqi7xlXqJd0vOhrxiXS/ZnZgNcZH/UDPpaLhN51AxRhLkuz/Rk66Hy8/qlO/3O50qhAsVKSaRBlqYRAQwS98faLpU7b78FJZnabmT3abr31VjvooBLlajtqPbazrRlo1Q3G7tHWia/KZ5edegyggxmVOputAwudpnmj7k7id5/qrNtBnwuNC/RMOhaR4hGqK6WiQd9c105znb1OqtxCk/3aJ/mzX12gojnD2/Yh/66siQd7iel6sJfKxnVbuB5quEiOPdepvvpc/lTHNkN/7VTOg05vs2tUKqE3UL8ifyJjS13uayZEDM2wXAfKMZeJAR0XbsXvnJJnvvf3ZrWpUX+5jlJ502kMTMk3DHlZ8gmjXnqHzvJ7jI1IHTob6j842Ur6DSkINuDHhXPzOussHm6qrKM92JNIM3iHmZ0/DXr8TqvHFR81IfSWtY5hF7HpQnk0Z1lVbkPep+J7p4J5zcdZTqU15veox2el1IeSCpoqb1eRhg7KSuRPqbsDpehJfi/VZ+5f+25vx4nLmjprvK/O9Uqq69dWxWEf+JGZmd151wFmZna/A7bXVUZ3DpmZ2fjjZ1YHoOhVcweDW80G7j7rNSc2da7llLexbrT0yyK3jxt4Rqd+/E+hrP8L6nOdIS/V1kcaOaFo7HPqtckL/QDXVkrLSC0HhIpyof9uo1P7Drrt2DUi9Z127lQfp8unQodNW5UOPlIAxuOlc23gOYhpbjezv94rPW50eJtVtIolWrSIeeG7yEntaLC3pdiqF9S2R2pEfLlSqUVacc6prvrva1pvzmncgx1yWuMSHeQgcYZ/7zCl6D+yyFhKW0/0dvzEv29EXsUGLnb7+Df+fYeXS5sqww+tFPfLP6uoAO+6wMf7o9IcKIrHiO3dn82T9mxZaZ1YVhUaA6DHte3S+ItnDfTiRT30a9d9/jipQ6wHFSexkujDQr//xjh2z2zq1DaZgYEqUmk/0U3ugf6pj1G/ZdboWolacCrxcgmRctJs+nzxCqt24EcwFqqrPFOkaFQgfPSL9+tcuc5W6NGhREQmlFpX7WGpXWZNfIDdpl1CM1vbAeoi40KB/J8uL39R0vUIt2WzGppNG/PyZC+hlz1BfvYPVXHAH1Y0mwcfcouZmS2Q+cDn/u3PO24x/7Ebzczs0PoGZl++qdLjX3373tWBs/zEY+ReiOca5i03hRNmnbFH/I6NieMiftmCrSii5NvMOu02cWykmNYJCJTh/rtd+ArxK7Ndlup5MvOqe8l1GNde/r6Ekkzye/pMdeTCULcEAqgPWqXH50zz3NisO95njalEaxwpzF8h56J/L62L8TzEYaxxnS518OdtdOnMn0pzHAJRX8eqZVT6fv5QVR7s39dzQuMwv//JPre/0u8xKPEkYj7bSzfpR5/y7brK9X0Pqj58zn0Dj/NFuRXHUBG6fqbUoa103bvk3Gpv9yKX+w2uz4OyHrfLY4kzfLHtEmzYZ5s6g37uPv59+2hVLhlq6qylr6G75Zz2Xa81UaEin1Lchu++onDO/cWgj+suxlvX46JsewfrXL9e38EPEavpGo/L0KCvr+ziuW6SOps6r11fVxc8r7Pp88dnm9nfVgcXP7CpsI51QYSKdpTokSNKa2Xoz1C4nsJt3yyhrx6bypxmKsBm0Nc/C9/NutdVCr6m9gnYdq6rcui+f7HHJrjTG6QKuoG5WyDnzveSWL6mj5d4bqb35w7kQtdeAPrTaw3RrNENnhVabo0dpxJH4v88zjnL++mCUakz4iX2lnM6XyvFsYBYF71p83kRSl/N88TYcQroE52v6ck51iartJ0x4N63mdnj9mNcDZDpp3r5pVAqYvwv9Osnuo9dQ0yta9VRX9ANjfWYBzGHdRk9Qfwhc9DN9CextNiM+v2AX2/Anej4yqbOkmVVGUM9XWvtf3XnqTlebpV7LfT7P9K/Hyz1uR0izNLWFu1Xng0582svFllahx3C7pZsa5QzH5d+iXsm4ruAsD5tZs38dsjLqaztyDuj2qch06UYL4L4WvsbW8Mzl2J7DCPzZeyDvNeo13Sj/qlRZe6HvGJ41fYwXylR26MT2JH3hfN77497x9TTBeKXQwrnmFeW5mz0A/rL3GQq461A/rFBzJGUVBx7wPiEd2MdICaR9ZVBn2/8oX//X+sGKnHWnR2HX36/Zs4x4u92tt41ZGZmcw8YNTOza9/yyOYHH/MS1zvm+twvOsL7bzvGS/pgtKnTP9TZvgkMldoOGs3NJEbr6bd0vsvvSrHv7qDyclg4h67KmnUxvjBrYgOzps0eX9fvOER38bG1fy2tQ9Mvbv9nn9FUqefkyBv/GND2Lm063xt/1Mzubd12hDVIfX/OPBl5JzZRuzTqJTaszV6X1u4i4hxdY0f8nreVeeouta1xPqUygOzG9R5dC0XOeWaP4zr+f8Tl5CQf56sJnu8v11lZFecuq8pzwnsdM7MFx3XeqvYRss7S7/ONCdrOGJTmKDFmlNholvvhMXyw9qv6TzOzhV5ulGMDoQ76J/dg4h51ZL703Wb8KTYdm9EVCBXap8/MOPP7UnzL77iX2nRimLb4eCqxM4gxgII++rFN79z4WXIm6hT3jO+bzBrd97YukPHZtNI/sJbUFvMRw6D7F8o5jiGvyLTaep+v9y2rysnSe++pgL6nParf+O44l9C1TOb0yIn3z7uHmiqYYu/WN/59tdj8n/VCt9mNdj8zM7v5Cw8wM7OjH1utkV3/hIc110HMieW3qR1Gx0Y728P7VjOzjfQRul6wKz19nfrekj+fKtRexveIBdTrEiN+QN8R4geZL7td6li/inaRumc2dbrebVwS6irimnVJD+mfku0x21c9TiSmG6tWrbJTTrnQzP5jP9/pQXb99dfZUUcdtZ/v85uDzCCeSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBK/I/j9ySBub7HO3aPswiHrSClrITvrC5mgu8COtVJWvJjRlCwOsovpZN95duWKzjpLZVfYajI9aBYvMOLNGK5KL+xS3QXoWaFm+c6fMbIFlHYCscvZdxWfKtkkLvcd5bM9i9ERflwzmJ3lO8pf7rsXX0J7mipHX1HtNHu/70Z+tv27mZltlJ2dH7BTzczsWt/deS+7vT73ngt9B9yxfoDMS1dfVdexRd6vbLhkeKQdtt53XfWd0fkc6ySz+pm+43nEv9fJEmSHFdkc1/l3skTtkDp9XmeSHctkC9BsRC47c7w929g9Nyp12KFIpi/N8hUzaLLLrm3HOjtjJfVkvSOXey0Idc3qjjjZ9elKZFR3851pVWaKudO0g/Q1frQtcynPsVOOkeUAvXPZHDinqTIe28+OXdVhdsuS9YP+eUZThduT3b7DyrLz2nWrlptLpM5w4b5mnX0fM6S6rThTdj1ffGnnuSXesLWS2fN4tyfX+neSn2hzJnxX5yy/Ds+nCUaGrPM6myUT1Mf8d08jYwA7dXUXN/3i/dv/jM6qZpKgIWYJlIxqC/1eGxlnGALkXvPZxc7YxYyuZrbA67MBe+OIf9BMGvwe2dIdrRwj00Npdz/jyY7UYS81CxA7T/FHPnazhpsqXVm9GCDNNMUOUnbRF7Le9srMVmM6d4JPJTPLk8P3XruEFZqlBkOtu9l3h9Luc8YJ3S9lzPOsGoNDVblLslIsdDu/0WV8vmdd2FzYpc8u4rP9+/lybthLNrizufg+Ume7y+fJno3ic3LuYK/+rSqF2m3nO1vHLKnjQz7j7VXaqFuPPKLzXmaNz18fMqurrl7ufuwkt091JnTdAe3yNs9laUvcKW5W6/qJfo81BYaOOmMxui72oB47xoNgQHdHx4yiJb8a0WuXtWJPMpWWEHePa+YW7Bv2f431BvenzdORQRwdJpPBsJc+LsXMbm2IsXMpFmnLWNEL4jMXuOxtcvs60+Vkx4pCfbK5TIFdqM4WoNfh+UeqYulwc2q1zzv6vD2TxCmShavP7zEZsyVopgiPD06o+m7GpyqdnXPAtrrGXXagmZl97xTPnLTK+3ehZAevfaXLa7/bpwlNsRizuhb65XR/5ktj9k6zRnY5hiy2ZVEpsULEDCdxLicgi0vJztagHYy7tmcq8ub3mOtft9IO9V0x9i5lT5wKlFFjujIPv9OsX2xyV9a3ErBLrqMLJYvWxl6/16w7+OFoQzWzFRnh4nhrzMi8achLYt9StrO27JaRZWZEPjNWxHPIr7bVM7At8rpk+tUsye/wtv2Df3ef/cwfNdmnvt6Rjt/sTtddxQ3vcZ14sT/jCrdTK6XS070kXCID5B9KnXWBpUVjgBhPLvX+UdUgw8kcP7etTW7QBWJOjbEio1JpDYXxIVtPyYcDZKCUdRB/fHNLHe6P/dc5JHIV7YE+D/YZ28n1NGM2Yz5glR4vnwY9/pxJymy5X2QjUTaGOAcgs42uMQ15GRjoxqTvZ7oM4Ufn+nhtVR/BfJA+ZN6tDHbMN0oMKjFjnrejg8GCa7MGxBhqPLi0o7DV2BDNChQyqbNm9hqpwvwYVrpbvJTEhnaOXxsmO0Sig13Ln3+mrzHt0MUpt5l9HljfneYVMqLXKLDDzfK+Hou+VtedkD18ra99zBbbvr2Hjmvm1Q1ejsdM721MA4roc+PzmTXxV2kOuzuoHMX5O9B7xnO9mKr2x9y4lB28ZB97gbZqvLEnsbP/vk/YMrpiedYlvinH6LNRL0usXr3ibFWO60JdxkvmQTOHqnJHbJf6Z37nfXaarx1fpm12u/0VL5VEgTWxv/fyvl6OSp1x4j7iHGKAgtzXWTqxoeo/fM5JhrtNpTXVXvPT0jMHxp1Zos81Exp1p5IBXLPRo38xhtUYbU+y4u0JSnPrEmOjWXuMHZmIdpnZMdOgx2+zpj9LGfDjejptLPXd/FBHdX9p57ETJSP0ml5sTSrc+L2oWzJ3qzNxsuZSipscNdNCKZtuZD3ATuhcHyoNMvbRPrELta+kzWKvT/cxuzS8LyuSouzsPPA28WOvIl6hzSW7SayJgcB3l/rH687z8dmi7xWpzzPyXGq3ybrL7zTzN+PcFvuCOOfS9VI+70l249I9iTGxD1xXFwh5jpjJXO142/Psbk13OjKI32rWd5DZJDEq8spz6JoDa8LIgDKeEK/81HrDbUPXfErWERa5LNeMi6W1D5chWGPqNSldO0SukAHGSefB/jvW8f7aD/+XVNkV6ipq1ptAJ32y1Pk0db1EjcTV/eADVYbS79hDzczsZfYOMzO7/grJUEp4wbvXtcS1+l5oqCrrbKTot8qPy+2SYb8O76tK6zXIgvpc5ivxHYLYdPxvPcfm9zrX4dqMB3Zb4/Veseveoo3ZCf1lrq4x9M22W+ATUNktpfXB2A6zSoffNA2+GD3utUZRYCvbKyhbJfEfD+39tFD+l2Ij7yTw73vAnNIxNwBtLBf4Q5RlvtThvqz/LqtKnWfW8SiyyLOW+hTfjX9VGcHXj3qJbokezvG2bfP1nqUer6+WexFDo+JOvtf5Py/oHTJV8uG0lX7RMeRZ22JYfN2ol/Fdi1nzjJF1QOUujEHNoll6HrKdI6vqr7km/awv7ngedGlToU7p3bFZh1Fmvr9uKmx5R3o7XzpNc2OlX+P50TH6WezvQn/vsZH3Y1OZ/5ayctN3kZlQ37uh26w/lfrFfXbNUKvri4ydj8uJPt5rSjrGPIx2SVtn+3y9a71GbMbrl1XlG5HtUS+Hmzrfrto4cP8dZmb2y4lqAequG5oxPOWYfzMzsy3e51/7u8dWJ5QIrDZr2DuN9+m/4VBH+y6uCcXs/2aNjhITsdimWeaJgXYWzoHloU6cHyl4Du6t6xy92DPNmv8BjJnqS2yV1KUT1T5F5oqpvJOO7TNr1nvxWfSz+sJ91+NEYrpRZRC/wMw+tJ/v9LDMIJ5IJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEonfTpRSsyQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJxP8HTBeTTi9M7ufr/+ahb3Jy8nf6qTupSV4gZ6BriHShSiNRogUMgH5rMtA1F2l3loTvShMINUp/+K739nvBDKHsDxNO57rAaXc3OcXJwDOaOlx6mZcj1lnXzMy8/gn+9Rp/jgVCPYYebna6nJOcLkeZNPg9dLuwfWyXOj+vitf/Y0V/e6NVVGIf/dXT6yqn362ia/uQ05P98AcPbn5/SV9VXuA0oWc6lcyVcg9YyGAv+l8v/07qfNFLKLbHvFyn1MdDXsJnxDgrtRvUJtAI7Qp1rWEG6knDroDGy2lrFh/TnFrH75ETpY2GNgVqOqUmBfAtogdO6dQvbZ0Y9Q+U0NCV6NZ2h+mi332vmd0/tMusoV9kPCIdtVlDB/O+UEfptLkm1EsojdCC1f3AuRKtaaR/K9FWQVUEnYtQrdcU3VwH6uwC/ehcb9tWH8t+oe+ZgOcH+qEC3eCioaqc7d/p3kuaKrVuDHtZ69hoU2fAr1NTSwvlUZ/bFSje+v35OqiyoYl6eCjFPvX7dSY4Rp8p7W3sM9ohcjfLx2Ms0B/OlctsxWghL/gKpZ1CBhh7HZ9IZfWKwnFo314Zviv9G88YaXOXWjfa/A/yDt0b8qdUstDHx9/jC283s7+dJqqwp/jRPaHKLlFVRyh1EnpbsoHQVqH/2I7C7xd6nY3Ilo4F9jA+h9J1xnOMRYHiqiumUNpBxpx7QjGl94L2bdhLtdH+u/+s5OTQp1eOcWLi7nWNW//8iOrDHD9wGWeU3vJQL6HhKrXD9e9ZLsuroPPWQJ5+IM6B2k36C3rzmh4SKlo1UNAEQtWl9p/+Y5yxC72oac2mFPsV0YtWrEQVP5XrOGa5fRhTOrpIL15CL8qx6aDfPdvM7tld4QSXgWtKNqhAAViPB31Wog4PGPR77NJ7RBrtNrTZk3gOWZD4C9q507wdl9GOZ1o3uN4/yzF0En0mmNfY6iPWiaj7CvedJ3t8erycepX37yzXw1v8uHbdOdgz+m55d6Uu6uMSiEOJO5RaNMaKUDKPyjGoN+kPbIbab3w98oFdUr8MBTSyNS98N+uOZ71/BiRWG49xdhsNfMTexMlmDeX97mi+pyum/pKZfbY5Mc/HeQvPrnOLz9veQ3UjynZproINRCYYQ7GBA27Tx4mbGF+xHdFWQE3bEePE2E79O3ECsQR2Vznr6Rdv86zhwj0cJ/r9iamfLucIOb075j9oo5mZbb5iYVPnDi+h5X6Ml7ukzSu8rYSOVyJ/K7vbM9t9y3alSiVGxQ6gz2rDnhnO0T9vljpQpnr/Dnr8vuutUgc9wb7pPXqhjb6zV12t30bFGa+tNMDE5VBxIotT8ekKpeyeLj3u4Y/rWMhje2vzme7rZv1VU6VLhmm72jeX/3peR2ym9h8/il9lbepIqXNRqKuIsZjbydkPbA5tZ15I27i22tJ47WEvN1kX8AW4o2fJudO9/Acv16G892/qnOYlMXS9xqRrbuim69EZ5zSnLoHinpiZebsu/mFL3S8u9Thl9blSx3+3wNu2qeTD0b+4Nqr2/33WCea/Z8qxGJcyBso5jH/+RuEcz6r21axzfFxea1vOPF5koY4LkDfsU8mH8YzY0NLLBubL9IHmV5mw6dXj/+NHdX0RezvkpdrQCPwp+qdt/Vqog8/VNa641vA8+exz1rk+5ltLY+j3KPpagI5in7DJu4t7rJkjmzVT0eI9wPLwHRprWR+f63Yef3qwVGcYWNde52WHmIT56Zf8ek+RKjtiG+lzHR/kHP0r0Wpjw9DVPfGDLXWL63JtYC5O/FXSLeJ11joOCaVZE2Mx9swNNJaIQB/0Or3WyhRhbl2vvRH/3G5mJ+8nf6xrdqvDuVIMjK/FhiETagsfF+roPAidxMcwXlMZX9UZ5mFXh3O6JuRjN9PP7cAfSh/2+ed6Lac0ZyfewsFeWmgbvsGfq1+eecJjsvl+r81eZ1Dk5D5ebo/rrTI/rOcW2Fl8rsSDp3p/Xu51zvTvF2ubGUPGlb5TH849BsI5jY0AMrCnczF8NMasMMev78+4oCslm0zbSvo8lbbRL8QC6J/Y5Lof6J/SexTgtnTQ60zuNLttxjSvcbkNHnA9Htc1SHwt83ddW8KGo//Y8oL+EKstHKrKjneF9PmPO+t26PyF1gl3UgOiz+P0HX7n84U62CfG6f3hN3Lt2l4XdHWmzzte4t/fKO9V3+HzjJf597d5uUF+f7CXZ/m/Klzq733/R+qs9fnYPF//ekehOajfuOv4Ctd5NaX1PHkkPERhblCjNFchDkWmdb2TeczSUKcQc9ZrF6X5VMTDC8fi/Jax1LrEQtwfH/FTqUPM27YuToxIX+k7rDXhGHZW18Xiu9IbbHrfN6keRzurKNlFs6mt+bUBn6Vr+PRrHDtdp/T4ePayqtyOXj5C6tC/pXUIZI9YgHintP7lNov4ekiqbOVD6b1UxPJQR+eQzH2x88wXS+8z4z1Kuob/4Drybru2WaC0FkTchXzFtUkFz6HvcJEh7D5tVnl1ez3b+2V7W/yFLUWP2voZlJ6r5T3KfG/HZnzFMjk5Eu7fdj/uRSyufce87nCr9PjUadDjj1rnS/raqLf8+oVe0o+l9369dL4E5Cu+HzLrXh9BXjQeQtexr4XxaXvXEudojKWa5EmP15/la0GrsDnajmjDGFOx27Nct17j38/z8lT5GevRZ7v9vs7jgyd9Uyr5utPJHiNeqc8V5z3MF3Wc0Df1oxGMR5xTvFDqTGVtGSDTyE1JxvAjjKnOO5ELnkPn3b3eP+pas9+vnk/FeYhZ95pUCVyTuI12TOX/JFS2r7N9XeNKJKYbq1atslNOeat1+/rpxh/b9dd/14466qj9fJ/fHNzt192ARCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFITA/6d1/ldwWnWHmHQdyZpDvU405CdtnILqHJuMPLd83NkZ3Y7AJb6L/f+GHrib4zelzXrN7dVm9Ekt09r/Hfnc8B3/03LrvxyRB8Me0f76xrZvUzXuPP/iF/Ds24Xd/fd0lf7bvT5siOovt6ya5TNstpNpVnVTvO3njjG8zM7D4HVxeec69tdZW3fNLvzyYwTfb8CS+/fkznOe06Mh2zeZjMiudJnXq3ru54NmuyUps1O/0f2Hmd9Zqp1HesneAydA07s2UH6EZ2EfsDne47/y/V3XzUJxPVUFWs06xTgB3Ymok27LIlY90a7Rh225L1we85oTuXY+YlR59ki5osZZbbn/grK2dOvTh8R48180Xcicuzf1WOxR36yMQ95Jjvwp/lujU2UpUnnNFUuUazd5l1ZFeqdwQynqF/zcy2MlbsTPxmd53T/HeXBVsxoTvLfTzJsDLh2QHmyE7FOluD26WzkHvJbjHm9X+MTNIeuc44zzPspdpJPrjL+Uv/ukp3e49WxUx/5joDjdgnMqIv9r5eR7/qzk2/f5+XtS0VdzcWMwx5na2qz8hC3LWu8sLYkf1ggZzDt3Dfi8J3/V3c4asZBWLGWGxISQ/WhO+l5wH4Q8lcMUamCp4De8D25Dts+sAzs1N3S+Ecx+YX6gCXwT6XbfWd/e4UJvBNmnWGzANev961LVkt+r3vN3IAO6MZ60O/1vot95rv9mjUv49rOwCZw/l+U+dxM2tSjPqO4eP93HqR51d4hoiLuIfI0sf8eTyD0k/f7hlpNBEOiRzakrUf79dZT3tcztSFHkHmcO9fMkvrdbf5M/aR9Weln5Bd9ZNkOaAfeC7dkY0ME9Oo3Y/ZAUrZDgC6jl7vaQbxw0PJGGpmw2WhPSXwbO5rx9Br9c9tWbDZHf6N8H0qmeamitdYlSUjPEcxczhAtzQDBxkEGMNRL9WPUd/jpl2le5AxI2Yp18yGyBV9RrYczcYYs7YBlReXk8ti3KF1aAe+8tlyzn93quvm5aWsMH5ulivk2Mqq7F/WVJlgfN1ezj6mo3lmZtbnenisf0dHz5c6MXN4LS6S9RlVjxm3O3yv+686c6Tew+OLOR5foPsdsoDe0g+aGQsQ6w6GOuonib3JuOU+d+ZwU2UHvhaZJFusypZfc47rYZ3RQ+N1+ihme9N+CWwimgGza64XMomZ2f7dHb/aOrIrbfG0WzWTRUnXyFyBvL9SzsXY9RuhrlmTJQf9IXNF6Zn5PTZZrlMn0zgulBIH1bbC5UWTdIDZrptk9hmU8Tmw8+e2lQ+l+MszxsC+oesAG11H0aM1nvXs/jK3+JaXr6uKzf/gmcM1o9oqZBv7xHxMsqss9+c4mftHO2VW69j2Uf+uax/4GewC11b7RByMTS1lDQxrDIt8znRNKbs+c0jsuE72saFuO+oEYCqbGL17hTaX/HwpA1gvxi3N2NJ2TYB8oBMrvdRMQW3ZmfYWDzKzG+U78S2x9CXWjZhJ0DHWxsLhbVcd2eVjHzPPdtQJ7FXzh6pys/pnUFh76P+rcA+3k9vV7uKTftZZpwPEdLSNfpF7LXA/uol5vPflKomlV/EhZveTbMuXuW6f5j7qssh0YNbMl70fPiqnXu/ZxN8Y53WlpVu/5mr3O4OSiXyX2xpsWc0SoesUxCD4M5f7OZIRfVtkoUJH1Raih4wBmWBVNrgXY1fK2B3tq865YAALMlX0k5F5ZVjO8Xt8Nfqt6z2MVcyGp/bu0VZTIk4Lvl84huy02J7FPq7ros8uZd6KGWBLehjnXGb1uNaxHf2ivtvjndas3iHuKrJ8gTDX0ZhkrEedDtYm6r8w1JUUoxPuRxFFdZk/vrMqj0SBYJBQGcAPf7wqXuL2SrOGzw1x8S4PBmaLjm1nrQIZ8FhpvsjkZu7P+j7yW5oLMob0tz5YeKcxEWIlM2v0pZTJMGaxb2NxirKk8XFsN5nDC2uZ9RzW5Xe+vHeY5XZ2Hdfm9xp/L/My2lSuc3ebHgyY2WP9M3IyKue9/ee6fTwHWVTmBNrEuJTiBmww/aKxDTpODKN+B8QM70DHB3/D9VoYKGp5xw+KHa/XttrWMLFHLqc1I5mugSMfLm8TMk+c5X2GG9rcWdXMzK4eDfdypT9JYs6rkfeY0VBk6d9D02vV0uyHrndn+HOs9MPjqjvoBsfIRqr2hWuqTvRCzCrf0bgK9Rxf7STxDbJQyuoaWdLow6mwOyqoz3wGm6zvueL8v2RXGB8fl13oUVtW0T0FdtJfZMIEo2vFNUoxJ3ETPrxkSxmzoarYSD/o+m/Uu7Z4Z9RLV4BxjfVwctzT17w65lO+NjbbJ1vbsQGlWK009t43Tkhpb+S4xNkf8jIQ2D3miobR7IsXPsHPeeZwwoQhudUS941rvf1/Tp+pDfOLL/Fzb/fDHawerP3hV28KpVkj79RRm+zj2ue+f5Jx1nXkuP7MGKht9vh61zc6v3e8XzoylGQRbbMPJf/BeCKj2KDHFeqWxjmymdA/Owt1I6uvsgVEFkOz6X3fpGixDTO93MEB7KP61T1gq+yKyf+gUCn+D4K2z9cNCPnquLAti3kpay73Lfnu8K6J+HqrvofknziWeTnipb5T4L6RIWRU6rAOEv+focSUi21Hbu8ldegQbHCJWdNRr0eXGFjnh+8KbBWLdm3MGMTwtKOQ7X97G7MN4B5TqVt4r1O/fxz1A2q73HhujjKwsvk44OtW48w3/HkWit3eSP1SzAn4PSx504E7rDNO7bVmp7JA24ifXA8WL2uqoJtLve9Wt81bsbdDXkbGDrlHMVtzr8zdZvVca9sNoY7M3+nWCbLAt8Tiq1b6d3RE4tv6fTf2nv9fkbj0T3zd66yquNv2ao3jV8ffu6nzdC//4J1VCduxMu6e5uVlpb5i7BhLf8B5JzZVtqCjMd5RO4dvwiazSKxrOVNlZzVrX+MFkelWEd8dKwsbOh71V/27j9kO4tnDOo+bWXvm8NhG4H02W2LrLkYDYog2lu1E4jcFk1aelyT2BZlBPJFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkfkfQNzk5Obn7avsH5513nl111VV23XXX2cDAgD3qUY+yt7zlLfbgBz+4rjM5OWkrVqyw9773vbZjxw477rjj7N3vfrc97GEPm9I9du7caTNmzDCzt1hnCgF2YcYd4MPyudcOokMKn9m9xK5bzdgSd/mwO7K0i5xdVFy3LRNmqU3heRbL7vN17FKNWSR0VzFZULie7/KcIzt9SfDNhnI2QR0rl7lmtCrJEsWO+wdLHYbjJV6y4eufpI5nUrMtfr1ZQ825YS+vDLu4lsouudXsUvVnJHOSbqpk89bJXpLsU7OMkxHuYC9H+a1m5YoZh30H2VIZg9VkcYhyp7LJDsW4W053l/nz1LuTNSs9O9diZhDNwBSzhbC7bSo70jTjNbtc2d3GrsFHhDo/N7On2K233moHHSQZX6aIRo/PtkbQStldY+Zj3VV0WKjLQJcypYCJwnF2M7KDOWYkM2t2iRZ0vN7hSzYJ7qG70X3n9kyystBG3X0er13Imv56v9cbYxZt6ZeY8bjfr6MbL8eR85heWHaJ1v14u3VdYIHbj2H/vt7LDSubOn3LqvKv/TuZhzuyaf/CytDGxh26/nya3XgzdgE95LrLpJJngqqz+LD7vCR32G3tD3bikllr1EvdhR7HgzFUXSfDSsymsqdZCGP2txJ6ZUbg+M/N7EnToMdfsyaNVswM1QbdbY0s8jwtWavqrBDqO3s9q+oYvgR5x0m17O6vs/PpvbCZ3JOd1Cq3yGLIULdQs5ByzZglRHWEjBHeP+fKuXNot8vyWb5L+wLVqzdbB2ofo9kXPPvWIs+UsgH7IHZltscS20NmkFnyPHWGOfwP/aEOOvoq+lIzRxKrkZlWx5T6pQwRsU5b1obg1+vs06XMnMgydkF1l3glxpcqdz8M55B72VU/pR3uvXCHmZ2/V3rc6PC5ZnZPszmeMeA2r7CjLftCG5D7kl0rZWqyJruYmdk1yPCbi1U7ETNOalasXv2qdWKM5s7lXInjzqEfotyYdc8TDvUyZuRTUFfbwQ7/mEFQ+qUryYi36xNS58/DuRrLrQtzvdxKf0t/9XkmZpKpbFN98qwYtc0g64Lqdyk7p5kNSDvGV/oH+gx/X8pKjB/d14y9UY9LMWOMCzQTILFaKbslus64MmC7i8X3XofNYkx9z0KNXpkFtY34x7aMkW3Z/gnKPhWOmzVxF2OHzmlWC9oYWSXasq7FNpg18rInDAs6x49MEcRaktkGJifU5hYvN2iGD7/OaUNVSeaWQ5vstL86zbO3rFnpR1zZ+sT21BlW8VHMNdoyIL1WPmNDgwwskH7d1Ktflb4ANiLaWupnjV3M2jNj0ecl1oA4H+J51B/E7F1Plc/Mzev05F5qnMF9aeNJ4bsCvd4de8d06vHj5QwySMZL15vjZQzXM4bYKvqglI0jrhHonJhYHFtR0n18LvMZMktrJrE4N9F7MLeKfX2KfGbuG+9fyo6PIgrzVw2P6Rb4uU1u7/tl7WNi1D8Mdd6rgx2CD2QBwnapD+f5PY4aFIqDyJRSszooixX3R7e4XimjWujfDr8a9RnboVmfsPcx47ZmFozrLMT0arfxy+hTWya+tmyzU0GM7dU+aZYzs/Z1sN3FEvvbH9Nu9KAUp5ayE1pgnUF28E3MJTXGZjyJe5TNYUU4h63QrGfY/V7rnWbd8UWJzQdEFrdSLN3m2wB2Cp+jWaSZW7ndXyp6uJr11WEvS4yJUc7IbqZzv6hjJTYr7CS2z683Sxgtx+hXWImwqaV+Rn98/j5LspXXGRXpu4IfgwViV5zPKHhGdKPAllTbo9I8b0uow3NojMU1Yx9q5vo4D0JGR6UONhD/g23mnvtDj/2ZB4abiuPRJyBvGg/RV8wz6YMS4xXt14VO7CoxDH2l74BK8X1Er0yNmhWPeAnddD8wV2zH1vjMPKuOs+tCvS7N8RGpw/hyHcl2O3+4KjfHNXPVDfo6rh2W3hESx3kbB0S2SYxZM99NdNY1s8ZmILeMhbYnZvmjzWo7iONifGrW7ZtKLGjRPvF79Rm09WeddWZJ3FOv2cWs59KeRX7u25wqzRXifM6fa9armypjpTUC0IsJkGe/3cxO3cc1rtdZpcMxHo7xskmdmGHUbGrZYBeE78NeflaOoVs8O7Geyhtjd3OoqzqPnMT3DyV2Uwvn1L7gM/GjYtPrDKWxqsgC8Sd6dKyXpzdV7MU+Jz7VdYHH2KB9OuLlOeF7qd+5OG3WtVbGjmdENzQeJL51WzFL2CG7GFNK71x66aquefd4l9wVW8drm5XHMN6z9A6XexETq7zQZ6W4p9Qmsw4/Nug+oJ4CY29/KvWxVYzhCtv/MXUbSusHewNkCDkrzVcBMaP2M2PFGGIvdb0jzsNK7JsRUmfQlbPIzNmrbZEhUIGPIt4oyQ2+Fj+r705HvHQ9fIW37yK1t5HJgnuUZBsMWje4TikDf3w3SRykNIRDXiKf+EOdf8cYD1+pshDHaU8ZOUCJNQf0iuMUsY34eZW3Xmt02r88/w9t+vT4Q9a8XDCrbV2f25d63VOZT2j3HmT9nxJcthcMNYe61kTxERo/RQZI9d3o+NWd52ZKzBnfrzE/U3eNG6vfQZfWaYhh0BH8j8wz6/51nzDpscXxItu4pjpOZ71I2SHQI2RS5cR1i/XxNd6eAemz8cj21HId8H6/3nPVjxErtr3v9XE9eagqr6QPS9Sj+8pSw//blRg+e0HlpYeN6PifsyiTPLu2HZtRstOKfdPjRGK6sWrVKjvllPPN7L37+U6Pseuv/64dddRR+/k+vzn4tWYQ//znP28vfvGL7Stf+Yp99rOftYmJCXviE59oP/958zL0rW99q1144YX2rne9y/7nf/7HjjjiCHvCE55gu3btyYvcRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpH43UdMl/v/FZ/6VOcutssuu8wOO+ww+/rXv26PfexjbXJy0t7+9rfbOeecY894RrUb6f3vf78dfvjhdsUVV9gLXvCCX0ezE4lEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSicQ+Y9LKrKeJfcGv9R/EI2699VYzMzvkkIq+YuvWrfaTn/zEnvjEJ9Z1DjzwQHvc4x5nX/7yl4v/IH7nnXfanXfeWX/fuRMKxR3WSScBDRe0I9BrjBRaFmmilIKGf3KHcgM6C6VPjDRRUJ4oVQR0Pb3o7c3MoLmElkbpibyNs5yyAqqrDgYKrg39BNc7SepA+eSUF1DF/VyqcG7C6X92OL3fHfdoqiweqsoN/n2z0/n+tdTh9mPeZ+fO7zxuZnYwH0ar4r5Dzbkrna7wXKe/OufI8BuzeqwWOt0J/bFLZGGeU27UVCJOMTJL7vUULy9BTpCrEj2xP8Bi77vV8kCzfXy2cy9om3SguG+UmwK17bo1oY4C2lBohZQWKFINlSj8SnJm1knDSD+iG9A2Xyp1jrGGtmxq6K3HD7NGd5XajPv3ov81a+g5aUuJyjY6mRKtMM8IiwHtUCoXaBJ3hrpmtiNS+nBtfR4fq1ugSoJqUWkIkT2nw67HSWir3jjqHxgz7JTQekMN1O91YMz7RVPF5vi9rqEd2K7bmzoD3tZxnvmDzblNPmabuL/THA8sa+pAQ/kV7BM2Uan3HLNc58f8+0I5tzHSX/mDHCkyuJk+Rw8O76xrZt06hZ1UatCbQ1mSKehhndLptOHm1GW96H/0OFR36BQy0SbrJdDG4M/mCR3Rll4Uc9By3dHjfBm99fgqayj/oImSdnTRCANlDkHeXU5q+nX9rX/ewT2UTpVn4twyL5XOapSWewkdXgvN05aLC3WiziNv+luo7qC39PHdqM+D/kCxhSwo3RMy7fc6R07xzPimCzj+QesCvn+dP/NcodLc6rqxAd+GbAn12PbuS5qZUKyZNX0fqbKOlM/BBs9yOzWmukpfE+Po9XpRLCoYH2SQPtfYiDHDLpR0HfBc2Jz396ooddWuRPp15P6rUmd3lPeC+f5cm7GNt5nZ+bv/nbXp8C4z+4XZtl66qlTk9FnsF7PmuadCER9oha8pUcRPpR1xPNribny5Usy5DPd7PDcxWpXnSKy30Pt8Iwcuac7Vzwr1JHZB6JXthtAOl+l+6bsJ/PiSzjpqP3d5PEtMvs6P/7nqIb7Wfc0Cv0cXZaKZTaAj0NGJnbu7l9voh3vJD318vu5f5zil6DaJxWcOV+UO9N9tfAdFNc+KnRz1UmjGa71BZ9t0BBu6unAOe0acjH8W+3K898f60FcDYpPHo31T+UemmY6/z7oAjWRNAfsQ64i9poDeenysddINev8ucirPDaW5Af2CDxU64XqeEWXntfIZ2t6nekn/qg08tCpO9We/nOsphSz3GvYSPSrZpLZxxr4iyzd1n1vi7Vjrzzwo86B6XGhPId5YE32Ky8SAUHGOD1XlZf7d58+/2rSjqWP39tL7BzsxeWFT5WRv65UlPwagt8SGKpVyierYzDapvY3zU/RP4+84DtG/mjXxKHYA6tOLpE6MEyg1nuMzfoDnURpS7MGQn5J4pQ4t0YWSf0U+GPuSbkT4hQeXdx3qHef2Rm89vq91xgdxLoudOrdwVY9Z+z1YnCi1y23WbL/Odl2oYezchh3vX9dLlTlDVXmL36PWGaWKdj9MX6lZqtsU1+N0fQKZxNcyhiNSZ9hLbJf3x0wJlHf4tTe5HVjgNuc2ucxWbBWxhD/7pNRhPOb5fLWeX2l7GCfXm11CgdwPfbC38SV+/OIfN3XmOr3yT1y2x7me2lKlbReMl8YZW8Fa4OFyLlJ0I3u6lBzmmYv82TfoveLaRwG1nPnv+kV/JoIMM3aRftnMbMB1dRzd0Hl9XAKfCjMl8qc01uO2JzG1WZsen2Jmn/XPStPMmIdYtU/6ZZL5KWPva6sTapPjfMi/z5LrsH6MX150XHNuA/NLYjTiFaVUn4pdi7aT+ZT6KuQjrsXovYilw9xA1zUIt1i+2Iq90jm6txnbs1rjhOtCCV4hn6lP20p0zcRA+CbXgyXSVqYZq4n/h6uiYwmV8WWtgXlD25zU47mx0tj8QfiufhF7hG1VmaQdPGvJv4NI8f6zQh1iEn6vcTPxzSGhLM2tiUeJK58s57BPzJ1K7Zg6euvx/ax5Zl+r6GAkp00+LvXY6VhoTGbW6d8BOoI+iv/oimFc7hcPN1XWYQ9cf+b7vGWzjuHNVsTM+zefdyCvLMb6xHeryORMl9PaTm8OvxHU4cuIl9Jmxmyp+xZ9x7KZdVLsAbL5wqZO3R/c3+fIHetO3o9xXbFe3zbrXHcza94xlGJgv/9896fav9iqOj74YSi1jcir2ifGGX0p+VV+x7wZHyxx4olDVbkGH+M6NlaSqREvEWqZD21gDLgnNl19D/7seV76s3bYJ/Wx4R61H3xu+M49O5StFb11OLYjzB0HJWbcxTnekTzC9giL3K7WcVLpvRDgWeMcTNEf6uq7o2gXeGeksZ7Ov8waOVHfi24zBuKkthGjeey8xnWtI87wOH3Q3y/dx4+r6+z3Nl0+UpULh6uyT9YBJuN7E51TRJT8MkAn+D36rWtLfn/WncZ0nS76YeyBrm3qurVZPQYar1zv5SR2hPEt2WEfy5Ndfq7UdUbqRzul6xshbqpjFLUhMt8ws3K8zxh8ybqwC1mYCHVLcose9due/ovK7vW4FzTmJC719dEB5qIaWz051C0BP44NZ+6k81WCPWxVSTaxJ4wZMjUil/Fj9Xyu8M7jRH+ONcir6PquGK9FmSi0ba7bxK2b5eB4KEvPQ4wX3gV3xC3YPH+Oi5Cb+VJn1EtiPMaw5PvwMXoPYsS43qqBdpwP0q9qA6MMMO4lXaX9zNP0+vHdHvIi791qfaDOkeG4WfNcjIH2GePJ77in9ln0m6VYnv6k76Ksm1X/92FW2ctdNj1z42vN7K+62zbZmWy0vMa7NnyX/5Oo67fN/7HP2AGfdxSXMBg7v2dH/BR8RP+zm1P1GleoU1rXwOfuYk1WdD6+bqgP6PoNesvvsGlq59w+TSJDLmfr1Z8Qb8X/uyjMy2pbKs/DOk+9Pu5z8nH1k7SV8cFH6dwNH+Xy/1yfL858ZVNlB3HPT60Thf89uDI2XvUCG3ZxqKNztx/a7lH435aeQK+1n/EfrGO4MK6W/++pgc777/vlXeME9ii+d47rfXv2f1yJROK3F3f7dTcATE5O2itf+Up7zGMeY3/4h39oZmY/+clPzMzs8MMP76h7+OGH1+cizjvvPJsxY0b9N2fOnP3b8EQiMe1IPU4kfvuRepxI/HYjdTiR+O1H6nEi8duP1ONE4rcfqceJxG8/Uo8Tid9upA4nEr/9SD1OJH77kXqcSCQSialh0qqNl/vz7/cPfZOTk5O7r7b/8eIXv9g+8YlP2Be/+EW7//2rrARf/vKX7dGPfrTdeOONNnv27Lru3/3d39m2bdvsU5+Ku8bKO8+q4OJsazKWmvXOvljKSszu4bYMh+yoY6eW1u2RVaMjoxQ7zAq7b2v4br9B373UkV2JD9yjrc08o19vluzIG/PdnEs8Y8xa31k0ILsY691f/syv8SwS/yW3uMXLbex2cgU7XTLRXOrHzrhHRxW7VPqpzt5A/xR25Z/gu9mu8b47QXaWk9Hwc16SdG1Md27FXaHs2O2RNcPMbKa3a4dk9Bj0Z4uZsQZkBycbPXfpLm+zzqx47NJitye7w2S33AAy4PeaLbJUZyfXXa7h910ZxPk+JHXYhcZ1Sru9S9neLGR7WmFV6p7z7dZbb7WDDoq72bsxNT3WXbMoQGmXHWBXNOOLMGhWFjJFeF/NHa7KrW27aEsZPWK7NDMJu/LIdMcuxOdKHa7VIoP183sbaxlaKXXI8IJdwS6oLGADVQb1N2ZNpgpsBfr4famDbrPbV3eW+3Oc5HJRb7rW37Oznn5lfHQsMRL0J0awtJM/MAGM6XVi9iH6UjNP8Ixkag8ZMcyssa8lG78HGX7r+0+E79qmqWQj7nVdvTbAruh245gBg4wt+IzbzOzh06THj/ejbT4PoBv67OhR3FUcsy4pdIcvOsDvfVwHJEtNMcOe1K0qeRltzuMKdeK9te/j8xR8ONlXalnGj2nGCM3mataZnYnNduy2Hg2lWbPzOcp0aXf08s6mq4iNx1iEe+ozx3FFL6eS1UuzguHHsFOS2aorcwCNPUaOxZ3cXVvwBejjqJfa97SJMcC2lzJmTwX0BzFESVcGQx2zxhaTJTrec+r+eMoxdVfW2hJcFpYMN4fWjvoHxoDn0DHguSN7x6MLdWJ2izZgAzVWom3YwLaseJwrZAJY5Lq2ofS7EGfUvvJMqcPviHlDptEiqPu1wjHiDXyuZrJpe0bHHK+zzePCfs9Y1JGdkudhLHR8NnfWqbPa73kW3U6Ust2AkAm5I3sVGQmRpVLfTcWnRMRMidrGUnbJkH1lgbexlL29tm/zrfLFj54GX/we68wwhSyXsqkwnuih91VHFtOYxYtYVjOYcQ/8SKnPoj8sxQBkvEAGsXsqC3GuU5ojlMZ+dyhknZrr/VDPF9QXx6zrQDKrz3Q/UWdjhH5AM+n5/GWW+69iRtDYV/xeY/I4zoVMzjVK/RMzhpX0MM51mGtpdhVkZ2U4p9lLYob3EuPaVOw+/UIcpGOBPIS4a4HI9qZoO2MGsL3B/pgbmzVzpB+H7+Kr6ozhzG3QH40z0Fv63mW9Y/0qZvcurRn0muM8u1CHMdSMkT5WdVbtuIZiVscOc4ar8pbYPjM7wX9/DVkuS1l8vI21PnP83O46dZu9rYOyxrULuSCWoC9VD7nO8sI54HKO/zpWTq2lTc/orNsB9xsDPn8fH/HjyorCPNWzstYyoGui+Pfutddu8KzDXmqmReyI+5GZwsSnZAlm1sQkJSaYmF2ztF7SNreO2Yj9uh2yTYYu+sr74HjJpLx+p1XrHnOmQY+vNLMn+NFSpq6YtUqBjmLDSrYQX9ArplbQD3rPtvoR2FtigFJ8S3tGWq7L82D3tV+i/8Mv69o3fec+YrHPD9cJ60Zt+0rraPikmKWwxACGvDDn03kZfa6ybNZpJ+McmDH4ptSJ612l9X76ajRcr4QYa5XmVd7mPnlfMDmV2D3GW4y32h7uH22XyEKRIS6iFCPq9fWavbLvTqc/Ps+PRrY6s942VGNG6sf3OOoXo7/QbK/MfxhD5FXnuzE7bPytWTNfiRnrNHnT2lBnPHw3a9YX4xhqnTPDMerqM9NH+FXVJ183nuf1t9AufWb8Rul9HUDXkYGYsdqs0XV0vDSmMQ5jPqL3jPMfb9+zljVVVtEPJRnH9qDjJSZK+pPnCgyMZta9ttA2/yUDJ35Vddd9/yz3kcU5CtfmOQpyWK938vtSpl/AuyjeW42b2Yv2bY3rnrea9R1kNh4zIHsMsVAyiG+z0FbFnrwLADFukWM1YwqZ89WGxXkYvkHj3Ot61FU9QrfjOw7NTsk1id90HoS/ijqhY4hOun3iXbRmXF3kurHBx+BEf/Y1pX5GBkrrt+gq/dk256dfRrzUuDIyGEk8Ocfbtq2HvHQcczzL+3WVzmfwsYwvOipzi1q322SL/uWdXGl+B+JzaWzNHO2iwjnqx+yjijBHqu2c9kW0NWd6u+fuuy8+2PW4fl8fGQE1torxZxvzHCitKfmx4/3367HNyq5NnzEe/J9FXCMqQf8XAhnGN4zIuV6ZbFtYcGsfXGIsaVkje4XL8kVtMRrPjGzGLNRmzf8h4FfxESp34blgvO1Yb/f4aZFnEd6gsVIv1lCN0Vi3YjzQtVK8UHqf2uvaLmMd69HIDrLI8+n/DvSK1Upo891tNiPOx9DR0hpXKXN4xKut0uMj9sMa11TQi9lA56JhTl2vMZXkmGfm/xPUtg95iWwV3jXOdxu4GXvS8j6nnvPoPBW9wT8j07p+G+f9yJneK9iz4vyq15pqaW4A4lxyd4h+g3GRttJndPUm+kPWjeq5QNTD0ro2/cFahtoFdILrlFiomNtHXY1MXHpOERl/WHMrre3saX+adb4vaPNbgFieOQG/13c2b7Y9nRsnEvsbq1atslNOOdfM3r6f73SiXX/9d+2oo47az/f5zcGe8ffsJ5x55pn28Y9/3L7whS/U/xxuZnbEEUeYWZVJXP9B/Oabb+7KKg4OPPBAO/DAA/dvgxOJxH5F6nEi8duP1ONE4rcbqcOJxG8/Uo8Tid9+pB4nEr/9SD1OJH77kXqcSPx2I3U4kfjtR+pxIvHbj9TjRCKRSCR+fbjbr/Pmk5OT9pKXvMSuuuoq++///m+bO3dux/m5c+faEUccYZ/97GfrY3fddZd9/vOft0c96lH/v5ubSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJKYNk1axAezPv98/9E1OTk7+um7+ohe9yK644gr72Mc+Zg9+8IPr4zNmzLCBgYoO7S1veYudd955dtlll9kDH/hAe/Ob32wjIyP23e9+1wYHB3tdusbOnTttxowZVtHifLJQo0TNCJzOZtBpLGqa2sc1VWYPV+V2P1dT0ipVRC9qR6VxRACpO1SoE+lOSpR50J5A/aX0NNBoOM1Uv1MgTYw0VZYMV+VaKKmg5XpCU4djz3LaKajvZgpdzi1ePtLL9VxPafGcVuN8p747e9SPizKe5pRLl9GfBbrO0/2+l/o9Zgn1xRi0MtDbQt2l4wOlCRQ6tFWpU5aHOk5n0kGt7vda5GO2oURPEyjva3oVlRGeEVqjEmXRVCjRoVaBlkgpdvaGUt37abbI3XbaCMUWYxdpZ/aNmqTR414UQ1DLQYFWoqwvUfaZddJWQcEWaVmUjgv5iBRzSv9GfeS9jRrRaf2g1zMzG0POuHYLDWMXXVQbJRW2a0iOBTrWIoU39dvkBV34oJdbCueiTrxaPq/00umY5rkebVGas0jHxBgo/SgyCA0Q4ys0jHOdQmcrdInonOpIpPqlL3UseUZ+X6C8f4WzYlyELS31IXaB9gglVW3LIx2Y0gjRxp96ybOWZAHZhDZQdSTScD0zHB83s5fuux4P32o2ctHuf1Aj2l+zpl8inXCBlr6ISK8JpkLpprEHcgI9oNuHgRObKuPYk+9XRZ9T3k0W6PBqKqlIf27WjHMbXTQ6zviozvA82Gtvj71S6kQaRvA8+UyfIYPcQ6lO4/PgZ0XG5vjv7+Pfa6avDzZ1Ii3ys/w6q9SHM5b87h5yjv7jOpFCT9sITrFu0OeBxn6W6GGRXtasbP+x26OFNkTqPuJApWKeCg0liLK+9/64ty+OPlgR42ylssUfR9l+rdRhXCNdWxtNJr9XWaDPop2TmN6GvUSmh6wbO0PJmMo497sNr2kKla4t2vJS39F+/IW3fa7EnFt5DvSYGGJUrsOYl2hQdwcdA6gqW6hkj/e2rS/1c6S8bJt7YSug8GujZkZehCp70HVyFzYCG6AT/aFw/xJFKH09EuqW6F1BKfaE+nXUS30e2tRGIUjf0baP2PTF1O+xTpvmz8x+7a1tdLFA/SHPsTfyVkK0hUrj2EZtujsoZSRySttLz4NMIlPajp+FushNac4VKV81jsOeDHtJ37fRwBOv6Nw4UAPPcf++rUQfSkx1hfUGfaXPw/2i/GvfEcdGe1tau+F6xHVtY9tGu9lGext/p+0gHg5z18Vib9fRf4F2eoHU2dTLx5QwaJUen7Mf58agV7xr1k0vrrSszEnw09gyjY2x09hZjQNBpPqN9zRr4oLS73v5CyFCXOoU76vb6NdpP/MGxu4GqYNM8zviQZU3gtVIZTsqdegznpWYWskb6bNhL3V80G2egz5/htQ51zrB9UKc2nFf2qVx7kfCOYeu6+2AHp12tK2z+FjUNkyfmfbzfBrL6zqK/k7HPfqWNsrsNpmK4F667hrkDVrwrlh/mvzxg241+x5xoLYjzu15rkOlDroVdU3GsB6PNgrygI6Yk7Ea8nJhuJe2EWCT9XmYL8d+1LkBcgZjaBt9O2tJvjar9O2gXg9umzvRVp1jMz+ObdUYgHHYk3inLQYGpXEKMfigP+subR/96Hagz+OXjjWHqdwfeHzc/+zmUG0quCb+VNcsevlxlQVsadu6BuAew4Vzvei01c4R5xCPIVOswe00s1nT4I8vN7MZfhQ7+Vap2WvN+vtSB7mno5EtXYtB7vhdYV7WMfc065y/MD8m7inFCcS+jCvPoTEncRs6S8yo60gaxyp0/k1/eDsW+D02XSV1wppQhz/EPjHm9IfG+8gbv0O3SnYSH8VYqH5zTeLcXmuSJei9RsK9kFEZ535fR2Y9YaH8fiPjoeujvcAaEvL35sI5R5/b1A6bEd9hAV03RY/HwzmxHR260Avci/7U5wttrWWc2G061ri+b5W94VkZb2SgMG+u53CylkMMtWPED2Bv9d0T1+I6H/ayLZb2ed7sc5pTvIvuuHZsKyDeYVxUtmMsxT1/KsdoWyn+YsyDjnYs2dHW4Ls77DXj6W3s8693lyoTtJuLM947pRLjEe2Svi8Y4YJVUfSroOQ72+JQxyK/5gbidmxo6Tfxem1riKX3m8xT8Q3YsJK/59rYxKms+0wVzLlYx6WNOiegbcjLZqt0+E37YW6MXaE9bWtvMZY2655/DIS6Woe1GPys2kk+Y4PxvWuaKsd77Lke/1eQk9kuU9vbxiyu2+q71xEv8Yst62CsdWwqrWvjl7lXaU2JvmIMRr3UOMHt/Ov9Xm8srYOh2/jcQptP9b67fKUf0Fi013pI6R5x3lF6FxbnKKX1QerQZl37o6+w/6ypaDxH39HnQ6ENu0Ocr3M99avEBchbKX7HhmJHuG4p/l5iZj83syftxzWutjU/EP8fRucotLvl3UYNl48BH7txXWtFhr1/lvhaxlqNdehrfJz6d+w0/RnfwZo1fieeK70nBsTvqs/YHOQdmTxd6sT1Ttqndu5e4f7YLrULjDk+WGPf6LtZYxKbzP9ZTXJ/nk/7AB8z4uUyL0s2MeqB6iGyEOdn+szMn/AJxCildfqSbGJ7sbfcU+dlPCOxGc+hce9457E5ft1tbX4A26Xtmeq75H1b40okphurVq2yU055k5ldsJ/v9FS7/vrv2lFHHbWf7/Obg/7dV9l/uOSS6h8Qh4eHO45fdtlltmzZMjMze/WrX23j4+P2ohe9yHbs2GHHHXecfeYzn5nSP4cnEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSid9UTFp34tfEvuLXmkH8/wemnl2pLctMzHSkGU58V3+9AydmnS2htEstZnQuZRRkdxK7ndp2CcXsGGbNTmV2drErXnaan+rZ0i+Pu9d1d5pf+zW+O+4834W7VLIDrPeSLDv1DjDZbXe8/349O638+Y6XW63nGdmxONqcm+fZErfEHfOyU37A7ztOVokzrQt0y2Z/5gV+XbU3m+NO94931jWTHbXs8COrhGZHAvSnj0XfcHNqkl3N7BRjx3BbtkyVySjDpUxdgGuys1WzA5DJqS0bRq/fS7/YCpu+bIdvs2ZnoWYEiRkdSntfGFB2bffKDqy/L2XjYgfe+8Jv2rKuqdyxCzJmE9NdjNiGKWT4IZPIxpg526zJLsbuSnY8qowgHzHT7hlSh12htIff66562h+zE5s144Nc0C61K/TxnmS+INvBZjn3jFC3LWsU+rzSy8MLdeKOfcl2s3i4Ktex+/ZSqYf+YPOmEsDw7CX/0fb76L9oo9qJwVCnhF5Z9jk+nRkd7udHkZc9yYhs1pVhu8/9z6TuYo/ZvHRjGfeNulXKNhV/o7ujp5ItCMTshYW2LfasB3W2St25jJwNeYmO6Vig/zyrjiU2gjijZF/4HfLbNi6lLFGAZ41ZlgtZpI5327EeO6OZqdBtdn1jt4ekDn1VygLM88QMoepPvV9P976/lOu1ZaOfStYCUMpMBabC5oEMfFOOtWU96QXiyp1mNmeaM4iDkLnOzLpZHNoy4bTF0IwlWQ40PsYvl3xTL5Qy/vTKfKxjiCzsCVNIC+r4uBDT14weI1W5cLg5txHdGA0/ElmqY+CQbaBDDuOchO8Fv9rv9qXOjK7ZVGJM9AjrRpuczwvf8TulLJkReq8hL2NmFY03iMna5lFul/pcJkrjA+YwTv69I5tPlOlSLN+WFRmgW8d5vWOmwRffap1xS7y/9ushoU5pLKINLmWpiTavkIm2llv8eSkzJ/aMcf5xOG7W2Ai/54nO7LGmNJZk61R7MORlnMe1ZTKPvs+s8ZExy5/6mJgBts33lvp1bxAz8ek1Gae2rN7MexjvPc0YH+WFmELjFtpBf5RsCPrzzFB3T7PMY/+Zy+rv98Tnt/1GfclOM5sxDXr8HeucvyCv3Is5l/ZrzNxXiuewwTGDfmnuBtzfz5I5ZJ1xOcacpSyK7n/6hEmpy/ZiC5VtCTsQ1zxeaN0Y8TJmZNZjPDvjUopJqDPspeosfR+zaJfmcpx7rhzDn8ZsyG1zHL9On2SVxH2OwQrm/aJZlsc8tuxiPlEQLxEX+HN0MOnF3zEWur7BuumIl+pHYt+EbP0d6JVJXNsIkxNzC70+7Y7z97a5dmn950ibNnYte4vV9m5wuKmAy53lZa1POl8lKzfrt8i/ziGx7dG3tM17FdjimNVY17jIxj+FGPgVPgYX7UHGyn6RtwnmtDETusrCaDhHW9XPI18xg59Z99yVZ9bMx5/vrNPnctuhD1wbG4pu6PjEGJp7aFux03GcYvxs1p51vddcq8Sg0jZPZb5AG1XXib/CvQZlDGumH+7xqfCbUhv3JPu5otcaDLHfdGUQf6c1uhbnXiW01YnjpDEffqstO2yEMkMxPjGO1HYQw+BIsNcltj3sCLKpvpe1lzZ/5rJTT4fcJs+UzIY7YiyhMklMgw3swfxmZt3vAkoxAP3AdVWfeVbW3JCp0hhGHVF55v70S2TqMGt0imNta5CRgcusWy5Ka8TxnUh8drPu+XKbf+6VsdSskel4Tx0DYuaSbmADrw7n6JfbzezkaV7jwl6zlqjrT3EtqSX7e43SPBXQr/ouy5+1zuIb4rkimA+pvDEeke1FWWNL77vNOtcHGDuuo3LCO7D4HlF9HTKA7MS5m1kzh6aN6LW8Y6ynwpGlVfsuZq0uxXi9MoCXMkOjW6pXXJv16yEv9V0Y8SjjjQ3RZ24bzwjGh/EV5tKutXdQypgaoXYbe1/Kch7fWfmzL5X3cKuj3Lf5bvR6rU1/BvG9Yc4uxVTEnGEdoCOm4ZnxnciEzq3jfPt53XUG3e/tmgpLRMzsrPUjQ4m+J422p765fKb/0Xl8Z2lOzDPzm68VzjFXiTbArGkz/VnKnh7HpRTn9lqL1HvEdunzxKzke/POpYT4Pt6su/17s9akQJZ0DZz2x7GbyhqivreLc5LSOiU28yarfPHzp0GPz7VOFtDArlSvGZfmkiUmgN1Bn5n7+jPDLKivSGqGKn6HzpbedxGj6do7/oNxKskAOr45nFMfFZ+xdJ04ly3pM74pzklVj9ym9g9X5QTPrOva3ItnLWUpBzETuFlvHZjK+6XSXDbaIJXfyDx8YeEe0Q5gpwqsOEUWHhDXVBVTsTm9nkP/NwpfEuck8wqfse1fK9Tpt0qP/zYziCd+Y1BlEH+jVeum+xPPyAziiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKx/zFpnRuHEtOBu/26G5BIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEonpwe9xBnFokaCZuq5QJ1LlgfnyOVJBleh2Ij0gdE9KOwKlA5QZkZbRrKECoVQKKKeImTtUlVu/WmgPtCM/tU4IVdfl0HfRLyUKSqeWOA9KIKfGWf1BqQNdjtPqTUJhM9RUWR/otOf41//RtkWaNaFQ3gJ9VqTtFEA1A/XTLvpFaIk3r+xsx7f86+SHmzpKF2dmdR9sKtGH+u/meN9tkyq0A4bdzWsL96LvuOemcLyEkvw+JJxTqjgoSRhXH4t5QpG1ZSqUr7SJcUJuvyp1lltFdXb+FK63O/yvmT3FPystDHLRiyLOrLe5W1D4jI4FOTazhiovUtXpDian1p7tMrBd+xLqndCeuSKTW/kQbUXhuTaiB9DDqM2gbegaslCgoFnobR71wzuUdorxhVYmUloqeFaVt+PCOfpTaMWghzrYv2+HCk3tL33mNHqL3RavU56n2I4SsP9QS98cSrOG/pFxxe4LXV993xIlIH3eRqcHJePHvUTeSvSHUZ8VHENOSveiHeg8lFTa9l70WxOh3FcMSjvQtRJFFjRLQ6E0a2THr1NTOClFOzLE71R/6CNolKANVdsVaeeiD9Z202Zoo1QPV4Q6JTgN1zrqIhtruuvUbcSWKAVYpKZS+zbspccbs/z7mMoLv4u0cUq3xvO3PQ/2iOvQroVSx9u9nmORqlfhbT7J7cTV3yzUKYFxgGKLMVV/6scujTZjVD7HfoVuuY0CkHhOrzsY6pToLqPN4Fn3leIQe3fbPl7HrPIJ9zEbcL9V0/phizQ+ZVwj3axZ4wuwq+iTUk4yZujoP1s3Ig0eULnFHiAT+E7VEeyB+5qZ7mtukSqTyH2Uf6VynQp93DK/3jfDcTOb+cqqhE673+V+o9oefod9Qj4e11QZjz6XNkaabz13TPhuVo8hcfpWKyBSuKpsP7dwLKItxgVQALotP8vH9wLVsXiPSDVq1lA0xjb/QVNlwK89Phqupzrs/bIt2I5Z0r9jbbFIpJmdClbb1GhBp4LzrJNGO0LnfsNeQqVIP0jsWutEoLUs9ge/L1CU1nLL79BdpTbkd/gabLxS5tIOH9812AMdQ+wBulqys1yHeEntfrTXJWrnSGcP1Ia4Pz/e27i+RN2KXS3ZwIgo2/rMxLPIUWnOhF3k9yVbyjUjValZN4WtU4gvkDWUTSvDPdED0cMu+eCcxozME6If0Gce4qZV0S8yWdO/q32N4HmmQv8ZKVwVfq/5y81+aWbfa7nMlPEBM3tD85W5/JbvF2tXiJSoJRuEbqBTzEN0HSxSmLuOjOmxODdRKvEIv95kvK5ZM+ZcT/Wgxzx5gawbbbrEP/hzzfF+6rDfzA/R9dKcHZmmjaXn+GD4zvxJ58Zxzqf2wNtxqn+9/Fz/oBS9cf7k4z15U1NlLGZX8ecYu0GO+XNMxPjgXKlDv4a1iw76XPfz/UN+PY5fInXoV2KSE+UccoVsEgdqnxFPfiOcU0pc9++1D9d4EkS/3DZXByWdf7hNT0xtZnaK2Ym+QLhmpxx3/RuL9dWfxLVqUHr2CP0tsdqQl4XYCn/+c18bGtd5KrIX7aTOiV0mL3Idqddo9V7U5zo+7hNq024OdVjbXCp1oImmHfTZVGRCEW2p2nZsBGu6pfVGrh3XDGJMYNb4OBRI4zDGiv5B7ttia3CKfOb5iRO4nvoBdJR2qI5hu6Kdvqpw3/BupDjO3Deu++vvPx9KRaCcr6FtjmsL6Dx99/PCdfcGN5rZC8I9pxCzz3x185m5X1d8q8C3DXupMsD9sOWsG2l87PIw6DZnV5v8I6+ltUjahmz6deeI7932zHA95GRIjvn9azPr190xWrgXsab2q75LUYj/mOnvvOhf1p7vLdXHLvUPyN1U3oe0zflZLzq8cI7xjXN1HUueddTLj8g5ZIb7jhTuEeYffcPerOGmyhg+dzyUEifWdpr+UR8VEde6dE3oonCure+Q30vlWPTDrsev8TWmO3c2Zn+vcV+rZA0fgyyUYr04f5K18olefaR9gM3Dj8Y4SG9FP9Cu0to5Nq+tzd7Gmf51h74LIJaO74BLvopnjXbXrPt9hcaicf0MmX6EdQNfy/xf9HE8vs9H10vv44E/14C8/x6PtgP/o+0kBii98+H+yMJQoR3Id4yvS+9WiMPiO0ezZnxj/5bWzuN8Zs0U6qgPLz1rPMfzuM1YrfYyxtVeYnflZ824Ps8qHX9Ty72nikGr1rjie8K4PmLWvVaIvMp6z0LWYoNP6PCd2NsfhlIwx23VNuKewhp2fU3sAx2lczdkoG0NERmkHWp7vB/m+jxsK/c8TurQD9gDZFzXkbEx6OozQ12zpv3UHQjHzRr/5+1grjGm12GOgR8I8beZNWNYugeIPqo0v4u6qXOLqcytuD/62/b+HJTeK7GmxBhglw6TOvgC+kqfp9RHZp19wO+RJX6jc5/RcJ3SGra3bWC52eROszueb/uOXda5Vh38xzhtfK0cZH0orIF02B7kHZ2NvtOskSWfl60rxYP0Q/TZOv/gmvgBfffkY1ZckwL4P5ePep1vZaEuchfXW8y652y0UdfX4/zhraGuWW3LJ+gf4hZdK0ZHiB20rR73LXaZ5jLbl0md2A+Mk9rtPwh12tZoo03WeRUxDPFo4fd93h/1GhtjWpjzI67jeg/qlWJd4P+PU89nSvagl28p/T8MY0nfPUPO0b9/0FnOfHZTZceFZnZH7+YmEr82/P/IID65n6//m4ff438QTyQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBK/Pkza9CWvTIDfo38Qf5h1ZMqudwmx04wdTrpDsVc2llJWo6lgafhe2nnIjqiQhcfMbILsD+zSK2QQ28pOr1KWAnYdstuUXYea5SjuuC7tsJ0fSnaLyo6x2b7zaDs7mXTnv6Pfd2hN+C7Abexskt2VC/x5NrHjWbOT+bH5Pq4/8evt0N1m3qZdK/072WVWSh12zJG1in7S3bPs7GV3ZSlTC7sXfRfutrD71cxszPt6c8woUNqhzT3p11E5R9+zg1Izc7ALP+wsnyPyX+9MPKSzzpZLbLdYJM+zgeuwGznuPjWrsgtOV7bDU6zJgqIOwe874P0yjh6rvNBnyD11dOeR6zy7S8fZ3a/jEx0RZvQecsz7cfsZ1g2yfp7YeXjrSPP5hOGqvIbx9Wv3Sd/XWbvoW80oEsG4uH7PEtke813AG0f9ALqmz8wzsnOUPijtHgcPlM/RHvFc5zSH2MVbZ4PAXmrmMGSabMvYFR3DuOMeXdOMQzEjSAkxwwn31l24PBfbXkXeZg5VZW2PYoYGsyZzONemn1/RVFkQ2QpgFlAd41nDjuq5Mj5bOXdzqKvtob7f6wz/fgm+6nabFtzzJWZ3xCwWpWzUw17iR3Tn8qM7q9a/H5Fj7P4tZceMmTj5nWYFm0rG5sPC95Xdvy1mRzPrzHaO3/O6NUGBth158x3DCzzr0ybdPY0/K2QLWOT2foN/H8N26G5vdl7HDF39hToRpcwvIZNsMdMzx0rXDeN0NbKo44TehV3+ZtbIN/1Y2ont/fqsZVW5ChvdFuvdVDhG+9mdXcoU0UumVLajv+Q32r8xBtG+i/aWfiGmnY6d4N81s3uZjdNHMduN2lbiDM3OD2Ifl+Jixoy4PWbg03v4fVuzMNCfsc1mjb8IWcaKwDchY5rZM8a8Gmsx1iu9RF5ENuJ9J0a669Qg/iMG2FI4x3hodo1eIGuBypS3p84czrlemdvNOp+5lNUgItoKIBnR4zNeEGLYIugPfXZkCdtXuHetJsgHz/xKuU7M+uax0Vhb+rItPT7vDhq3TFc2h0XW0CaVoO2LmVFcFmcuaQ7tQCeJb91uF7OoI8v0vWYiH/FyZahbkn/uj4xpljPG02OkQbeNu/Q6e8LMgO1R+x+ZhvBNmjUE2xD7QX2V27712ECyy2i2j5Xh96XsSDGj6MPDcbPGR5SyfYKNVbHEbena0hhG/S9lmHP/PNPnYB3MW2RqoT9p18qWdrVlsyMWoL/V5yAf3ucTeo+YKenwUGobo++VrJ+1joTM4UskFl/rtmHzCpverCxic7agf8gHbSxl+dsTMFdRu0AMjG7g0zX7NHba+wEmim1TtYUxC12vGNSsyeTk8rGpJLduS7ex5nFY97l6PsS465hGGSA+1higxGhgVo6NuOewnPMYoovZr8QeEOdPWof5IffgWQu++33+zM/rlYlV2+FjMm+4OQWz3wTzjtK8Lq6ZaAzYy5/rehbtjzKha7x+zTo7WBsDl587Y7gqL9G5T8xKT/yha0urbfr0+AqzNdhptfsxxmMdQPuO/qCtbesbpbVdgE9o8Yu1P2+7zpLwXbOloeus0RZ0tM99Q73Wha/QWHI0tJW+03Xt+Bwez3Wsp62sysFl/hP1i8hpYMuYKXFgHa8v6azTgTgnLzHbAI+FFnv/bJe+rNkdWfcqMYTwzMgJuv6zQh3WA8loVmIhBA8vfI5rj6U5dkQpCyPjETO+68+8zuqSTXffVmd4o06pf3nGuM4xjf541lBVjhHjHSonGXvso8cZO0rz37hWpfEGcV9kazHJvIksM7fV+RSZw+N6hmaaj+8/8GtiSwe9TejxoK//btPMk1FOaIeykSBTcX17baFO4R3dAvcBDPk48ZjEcTtCzDse6+rBBaHUexJ/cu02e8s4088au4YYvmZl03cK0ecfad2gzbSnlDXa+xzdGFN97vWeRo7XdpH2z4+VBZGJrBS38OzeP3PEJm9DXqNtNWue7cjO8jzqToceP8EqmxozvzKGuiY6EY7pmpKs55tZd7xsZqd6X12O/hcyh/O7OR5jbiO+jqzQZrbQ38FunMI7vdp3qU1mfKN9VDZl9J85lvqN+L4ZPNy6gf+i7/Tdqz/bArcnm9qybsZMnpIBE992gr9zusb7pYsdTn9PW1Wvuab3WemdXJ3VtW3tMJ5TGWENn/EtvTtCx7ERxHyFjLT17yLrscLr1O/cSxnAsWHy+9rXIme0S9baBryN48iSt3FcZTPazoke7dwb/JFV9BDcP8bSihgrFGKZOnN4zFJbYllljbkQU2/rFQfqmhD353ropcoLc/04z9RrtzGjuf5tRV4Yb4mzZ7nNGePdCHVLMo5NL73/4Nqu433+tYOF6urOumMlW8j7ZWwffqjk89r+/6BtXbHXerTeg3Eo9X2v+8eY3Kx37Ft6Rxih7cN2luKDyIBUmn/Qj9yf3+g9Yn/wLlrXO/2Zxz9o0/be2I6yipkHRN9EbKb6wzPyXC7T4yW5jfFc6b0xz849NEaLGfzD+3Qzq/uoi4nFrB5r3lnBcDih78qRJbc9W9BrHRP8eGSV1/Yxp/Cxn+exyBaVbY9FZns7ttOXaufcbs92+7C99B4+2h6NGb0/1vl15tHWEhsDz1OKs3l+5i0lWYhyW2L17MVkI7HRJOMR1zyeLJ+9r4tyBtAXbKKOT1x/8z7v03as9A9BtjvWwWIGcp45shtqHUfHO8hH2PTpcSKR+E3H79E/iCcSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJ3xxMWmeS0MR0oG9ycnLy192I/YmdO3fajBkzzOxss5PPa05cGbNQxiygZt1Zndsy0AB2P8nO5UE/tst38szy3T1jugvK29HvO+QnShme464pzQbGTntv83zf8bVZdwCxsxhF4jnkOrOeHdrGDqdCBvCYxbpj5/+of2BHk19vgfTLgV6yCfca7jna1Jnlu6aK2efiePhz9Ms96g3I7Gpjd5xmErwp1CmNr+/aOtHb80U/XMp6U4NscqXsSG2ZJvYE7FjTnWe9dsBNBaUsWntTRzNLkyXtfLv11lvtoIMO6vGb3mj0+HXWuSMwgp2Apb0vIevVScNVuUGqFLON7g3YpUfGCx3vUS/ph1KGrfh75LaUMQ+UsqHSD2SiQv5GWq4DRA/qbKxkNGCXsrR9ptfZwc7EtmxwtHVIjsVMF2Rf192n7GambeyC1Z2+PLP3+YA/e50N3qyxeVwHPRptqix0O11nC8BmlDLwuW09VTJ+XR4zl5d8DfoTs5S1gXZoFi1sDNdhh6/2Xbx2KZtEPEamIsZ03MxeOg16fLaZ4Y9jZnSzRnbiDnFFzN4Qv7f9Znf12n4Xf4vssJOc2KLNd5N1QDMZsXs3PodmdRkp3D+2b2+eayq/acl2Xo+htoPsasgp/aLyv8xLdKUtC0PUP83kj30c8lJkvbZLpczjEdGGlrJyR7tWymTp/VnvvNfd2v77mqWi1HcxGx6Zhq4q1GEM1N/TN+hPyHqzD/64U4fvKWfoO79en8h/1457iQ+6MoiQ3UUzt670kmfGLmlmkZjNu+QPe8VdhXGe6X1WzCDOeGAvS3aKsRvyUrMu0G5sB35UbQb2BHkrPM9C78eNMb59YVOnztrFMw57qf6De2CX0B/NJvHMUBdoVpJoR/R5mHcQO3DtUlawkN2iIxtKrywqpQztyFub794TG1i611Ri+Zh5o5S5KGZSVjuFD0CPrrPpi6mjHqObbXHcdPcnaMuW49ftl6yd9TwZPRryUjPVxQwypQyNjtpXaMaWYS/pj7YYvCVOqLPBRHuiss21Yx9qZh4ypJB9qMAUUqMUB+4JYvYrlfupZAklMwp66Hb7eKmyfipzrpgpuJTZKa4H8Owl+0TWW11D6cUYp+iVUaot/lpu3dBnnk49/ls5Q1/hR8n8pdl7pjLfAO7r5noGvlE5NRnHEFumGWeQAeZIJZaWOP+QDIsDLud1Mi5iRumzOhEnWXPIYKk6i30dDW0uZavDH6L7mtmQrInEG23rLlNZ94kyXjpWyCTYFUeWENdDeFa1t/48fT7vncRfqy2l/bSD/lCbGrPzldZNsVmMRUkOY0Z2zcKGb4h+qJQ9EZSyMPa6Z0kWuDZxk7JdHGZmPzezx0+DHr/Xmixpbc8zFZQy1fWSU80qPOwl4611sZnEJIyFxrdrQ522OXHUDWWMmwLTW+1XaSN1S2xLexKblGLoFiz2dqyLfabtQN7Jfkg/FfwHmTlJOt2xBl7KTBdBTEQftsUAtBHZ1v6JWQZ1DGPmMmyGykLbGk5E9K96L/cFc/3aW3n2uNZskp2PNUXV+ci2F2VruvzxO61xSC0xY4w5+4RZcpJ5Iv3AdXTOhI/0dzTHC4PFenwU4zTRWdfMGrtKW0sMDj8OdUoZOZE37sVajvoY5D3qfks27a7jZt1MdZ8v1IsZwLXP7hHqRhYosyYuwcegE6pHXJN7RUZIs9quzhquylqPS/PeOAYan4KQhdfMGt/QNj7WWWemx+I7NOP8QGgjKOhYV6bG0jyGYzzHqNQhDsS20g5lw+V3PJ/GGbRpJNyL/tn7tepGh99mVX/xLoJnJ07QGOAGL0vxRWm9yqyzX7GdHsvwzkVDt5plNtrUtlxv3FvXDvE/MVv/vqL0Hp1sluiNMjrF90j4frXJjJ2Pb99wVU7K+5w+n5NM4nOZG5QYs9wHw6i8TWObGDughyWWI/rum3KO2Ip4w5+ryPzLsZKPoh/i2kvbHAWU1tBjXFti72hDzLRayJRag+eSMaz/B4JnL61LIDv8btiqmPpJ+2GNC5RiYfwp7dH56e7Qlq22BHzjSMtvuOYyL1vYVfYZpYy6vdDma2gzMq02fdTLaMPUFmInkdvSs5bW93cHbQdxSnz/UmKHjH651D/e/mJG9IjSPCQyMfF8o1KHPmOcCqwxrYxOAV1MO73aptc1s2d5jLqK3zHeQ91tHVxuNrnT7LYZ+1GPIzQ+xNa0zeF6PbPGruF/rGDN3HGD1GHNI15H7QITOjLfi87XcwH6tZThve2dK8DOLwjfS3PA+P80aoOw85vDuUKm+BoFu1CvURVsV9f6FXGx/l9MvEfbujZjRjvamMQ8Nh8Yllthe7jOFOb+NTTeYMziu0KzWjdgeN8a398pIvunvpvo9X8AU/ENus7SxkCh2Le5cSIx3Vi1apWdcspymxoz9r7gdLv++u/ZUUcdtZ/v85uDzCCeSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJH4NmLTy5snEvuBuv+4GJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEYnrw+5VB/MoS5UukHS1RZIHrCnUinRiULx9uDu2C2srpyGr6NqVpcoqJiZ9aJ5Rq69GhVJrAMJSbub+2FZq2R3fW1e9jUFxAOwJ9nNKPQi0RqKlu0S/QYEDB5nQbm0pjAHUG/STUImNt9FeRStr7YGKn1IEyQ+n8zDqp0aENgo6lRGvq7VjTi5bSrBlPKLdK1FQ8K/Q/bVTtbYjUrYrP7sF1Is2ZUuYhC8gQ4yNUt0v996vjuH7J9g8mrKF3Umo1KHD8XE05p+0KtExXQ1FX2nkUTePh8pn7t1FcHdJyrteYC2XkEqdfXAstIPdvo/5aUzgWKGBn+nXv+Kumyni0R4V7bMPWQAu5ubvODqh8aGukxzNr+tXPDQxJO6ItpV1qr/4qnIP+R8fL77/QqVY3lmwONE/+uwGnOhwXip/6d9g+nlmp0JAh14nLlQY6+pYSfSLYE/po+vUecgx7ECkjT5E63CPSY2rfQeUEFTJjijwrZfy+wmn9Znl/dtGamnXrmFLE0W7GskTtjkxvCaVZ3Tf9Trc5Ubg/NJ/boMUsyH0t77TR7dKJQsG0Jlybc2tKshDpoUo2PlKP7Snd4B7Q0NVQGwh1Oc/F9ZRauhdNrR5f6eVTq6Km6S7JAvYSGmD1r1H+R5tTO6AMizRlKktQw7WFxNGeIZtKyRwourYTi2jf+XXG4zPqGEZq08Nb6hDrqSwRG/nvZ/rXHTZ9+IPXmN3tIKH65v6uB5OF35TihUliM+zjR6wbgRZ8gdPHdZhN+ohnxx8+W+owHkNe0g7tV/9c0/wh66LPg/65pkwtUbvRH9y/JNPIKzGj/p7+wIaPVsV88T9dvo12KC0ecRJ+nf5VijlHvz9XHRIpfaHfv/bHbm/nSXu2eHsW+LFivI8eYsNUbrkfdgkKQfW50fZh49WWRbtGfygNGfaE52EMSvS51CGuVYpe7L7r40Knrb1DqmymH0oxEfD+rH2OxmG7o/7bFwyY2aPkOz4fymuNs2lHG+0iMj3sJc+u9pZxRWehaS7Fy8ip90eHn4YiGFsY6ZvNGp8d7YrKv9uM+/vXHSVZ4rmwISWfyzFiRqHR7YovSv4Q+SQO5d46/35fuA51lXJ+2MsYEz1PPnNtZLJEFRzHQ5+51xxUx5lx5dr+rOu1fqSqB2p7Ph+OQXWq9KhxbsA4PVDqIHfEzvGeZt2xkdKG3mRl6PqCxyWDPr61j3hhj99OF/qtk6IUYcae8ezqNOOz8hx6HWTGx3krY6pz/DjX8XWsedL3W/Cf/B69VFv6fS+Zt0qMN/7VcI656FVSh3PXWSd0roRcxHn/kc3Hfp87TkSdUB3DPoc1vw46eb9XHS9w4pKmTt8ZXnfED2h/EMMQl9Kf0vZxn4PW8ubXnn1GU2c796OtxNAFezsZ10VU/pEXny8XYxrsLDLBWGhsjQzQHrHFg67Hu2JcW4oL3xq+a9/RbmSotMbrctHn4z15SedxM2v0BztHv6ptPdMaudpX/MCs/7zq40RpTgvwRzcUzvGsPIf6Oq6JLWUdQCnf+VywWbM8nh1z3ZjlPnhMK2E/om8ozHf7/PeTtCvqbglCIV6at5tZp03GvqGAr/Yyyo9Zoxsqb8R/9DV2RuKEdbQfX01somPobZrn19tCPx3SXWfS7ePYRwp14jOX1iLbaMUB/pPnoF91nSPGrDqG+IA4J1dZAviRGL8o8Osx3jZr/I+XZ7q9u1j6onUtKVynC+jIdK1x3Whm9/TPpVjPsSMcm9TYE5p05A2ZljhkoZdb3IatVzv0qVC2wfV5rl9nq/bTjzvrFME9iC9ou8okcwnmEaX17HAP/OnkL+Qgc7c/sC4Mum7vov3Iv8otviHKaWl+Rvtpq/j3WV6ORTsyIJ/9Hr8cDr/X9kS7yO+Vxp3YiDhF4zj0pU3XgctSLXfPbU6NRR9LvKMy+ooedZ4hx6iP3OKrtL+RgQWhjsaejCEyIXa/vkfUEcZJJ+B7i/+1Soej3uIzJWac5bFH0fYMhO/ocamu98c2zmnchE2P75D0HYnbzBP9HVj9Wkj9Kp+jLSytfw57ic1pe1eh65z4kJGqmO3ysV3jSca67V0auuF2bRKfIDHwZOwrrqe+hmf2vqJ/Z4o+7+Be+Gxiv1G5Dtem7jflHDLd31l2vIfEj8c4W/WKQYtrZPqODH+FbvCOTucojBXXQUf13SPxMO0qxV+/CHXjuzq9b2G9pZ730HeleTTPSHw9aNMXU59oZvexWhbrBhEDq0zuw7vr/mXN5664tLRGTJ+X3gMBdDteT9+1YPfb/i9gMHwvrV9hO6mr+txr7UPXlHiO+L8PqteuU69wvbuI52qL2QpYMlSVa+MJWSsbGK7K+l3LV6Ue/oL236sqOtQn/k8HcqJxCz/wGGCyFCNh//Ff+EEdQ/qXe/4i1FUE+9KB+I6y8J6rjqna5A4U3hWu8s/YzjqW+KF1YdcKmx5fbGb2cuuUSQafviN+K63fRh+jPpMxZFxL+hNkekfJTiBL2F3ufajUIY5D/+Qd/T0tgOfR9Wx0HZlqe/cbx3de97m5y6oSd/IVqRLnJjV0PRrdIBZnjUp0rVaJwjPXuhnnkDFm0mP0gdo0ro0soAevlDrxnZ6P87jKC7EZ7zh4LpWXK0Ld0UIdxo74QN9D+rrM1vg/O7p+FecvbbF9mx/hmvTHiaFdZk3cEt+tCRYsN/vlTrPvnN/SjkTi14FJa/xlYrqQGcQTiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJROJ3BH2Tk5OlPH+/M9i5c6fNmDHDzN5i7dkP9hXsfmK3X2knT9jlM1d2hZGFkeyAdcY5zRrCTj6yCuhuf7Z/sbuutOuQ3U3sJHphoW7YFVdn9NQsNewwZscGu+5091PMMMfOY81Qze/JRsRuKt2h7s8/17OxbC3taCMbDDvHhuScP+sK3y26vG2XKn3I8+nzeL/U2W64V1smvTYwFmSMV3kp7c7eA8z2Mdsed5brPWKGOzIS6M6xXtkkdCcxO+hKmdjAUjO7zcweZ7feeqsddNBBLXXLaPT4bDN7kh9VWfVsCfVOPnbWqiyxUx+dKu2ILmUI1t+aNbsfyc7EPVRXuTYyLhm7LWY7KGUwjyjVRaeGvSxl2OqB48X2rOeZvf2DbkN2telKKdNc1J/SDve2XbyMJ/3L80gmtGKWaL233p8+c/syUzJK7aA9PDtyr9dBTtldSn8PNVXm+G7MbVxHZapkg3shZvJvy9CAXdIsEGSfIJteYSd3T0gWlK6MPjHz0R1mdv406fF9/SjjK5kA67HrxdBRArtfdSfhD8M5zSoW9ZZsFTJu9U57dn2zg1l1jZ3L3IOdwhdKnZilll3JpXFqO0ecgby1ZVvjuWR8z/IMIhegt8QUmqG2lL2rF9Bxnl13OSOvZGooZX3iGfFH2NSutBACMiyobHBf7jkq55DTKNuldkTojvsCw0lPxKwLmgGgl10t7R5vy3QHShlYS9lKzBr5/7mZPWmv9LhTh7tSHpgN+LN2ZUjfHbC9+DiNRWImD6A+N2asbENbppVeGW2nAs24OJXYkDbHTOKlOsi7ZPzqyrjUkqmuK0OD9t1UMolEoGuljB695E/BGKiOYYemYh8PDcdLGRZoB/2rsu73PdmPFRmm+L1n1evzuh3Z7NwX9LvdrzMHqa+hX9psq+v6+9zHPK/UnkOkvN3Mnj9Nvlj1uMTQ4Kj9IXEYclNiY4jQbB/en12Z0UvZmiMjjbKiRB0tZcCMMjgV9oxSZhJkCLktZQWjP0qZtuij2D/6zDFzR8y4WGrjsJfqM/kd9q2U9S3aCs3Y0mutRPuFZ44+vBT34sciy5BZM1bck34alTq9xipmxdJr05eleQhQv0y8VsgO2xP4LLVFzOmHveSZS7bw4Vbp8V/vBz0GezLPJFYsZfb0ZyXDs16u9vUxi5xU6pndtWQ7yL6rjHqM3bCXI16qzkzlGQFyUfAbtZ1b6QemEKfX6y7nSh3WJdrmdaCUDYx++H/tvX+4XlV17zt22JDsSMiD5hAChOxw8ZZQwjUmahGRcMqxpRxaUAtFRTmCFVAaoccfFe9D65Ef7fVQ1CtBxZoWFSkKXuGBc4SW5CJyEZRIKqmCJpBi0AZySJDwI2TdP975Xe/3He9YM+vded+99wrfz/PkWTtrzbXW/DXGHHOud45RJ4IE5BH6jT3n4/2pfk5Ieb2NPJmXefN6IfJg6b3SR+XyHoNPoWvQSxgPl9K1XuxGv+aQA/k5qH2q9ACLsQYyz3Ni5NXrb++psV9z4y9ae70o1+6RrefHIYwt3Ib/WpE2ws83zdpeKGHDIGofecgqPWb697OeTNdOGm0db/Y2hVm1Lb6rtmuOXJ9KeT47lfUa9gDmI0646H1m1s53nbHF29cP0zWvjyDzbHOin+ai1kTreGb5MZPtFW/PPuWOdUE/g52Se06yrd6e1o2+SXmfn8qzDvnBNa4X6G3vyRx5eMbMjt51OZ79tNmvUB7kJ7KrXGRL1isjaX1xm/eQmFsfYWAHYi6K97N+85FTvTdSs+ooMWzLprnv3NRfN9TR47AZuY/C9oA9us2lNbOhpa1jEa2LYG4BD4ZJ1joie+CbiLdzuF68/EY2EcYU1F0u4i3ej7ars44U2eTR3CK11ZwktxtXBs+CXe5tPLaBvddCwPKDfgqd84g7z/fDfoHu4vUNP8+EzuFxNfIoDXw5fH8Z+3jcbVMjTz4KZ87eZHsHZUz3HZPswjBSYp1vAZmovuV7U/8aTnpyO9t6+A6Lvgh55rEKz8ysB5TzuhXpSH1gOJWxy5Myr7suTUe0WeYb1pJUL/en7wTD5LG+fAfqBfng9nHfg8qy8li3MrjPA9sX/Y3luMq+Zxnz3x2Tbu7wZI7yYHyFLmM5rBMVog5V7cueodE+0Zqot0O9R3Kzblsq5zGe6ef3pmnW1llL0xHfnBbQXUkH4vcZ4W8O6tBLlFYf6Tb6Nu3XD3jtY2k6Qn/n1qGrbD6z6jWqHB+hvzEe+z6RW+MC7EHfz3ui6DOQ20XBtV7Abx/2DK710vYpj0Npflnk7vVjlVm7PN7DdGQDoD6hH/jbqV+XY9AuWJNCP+s1AnGdeTf64G3Wyvd5fZDjddapM/x3gjp6JfeNBGC85/ZBv819m/Cg7dim8fogZ2cD1vv+my3yyPr6gXSEHRZ5hq6jn9DO/rcudWSef9vh5y9kAyw4s3Vci+dAD/DvG/BsP6/LgXfwWrMvK97FfdJH1kFfinQq3hHN9dE/onr238fwHLYfUH8o62vdebP2b+ZQRqyX1vldANvrvqxV3+92bTwWot9cd9119o53fMJa0SUGyQX285//zA455JABv2fyEH2REEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCiAGzwzodQ4p+MGWiMyCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBCiP7yMPIhvtjj8bi7kN8L+IIQZwmtEIUEQGgLhlThUnQ+bmFgX7HhY68OeRGHbgjBW30ohSd+WC5uCMiLEBEJ4HB+kTZQRVigsK0LovCv9/1qEueBQRj58L+qMQqgsSKHPfJk7QgGm8pdhnigMURnuHddSuQ49v53mkdTFL3Zp9qU0mxH+BPl/vXWT8lH8W/p/FLrSh3MZTccoXJPvb5kwMyOpPrZd352fsi9QeJlX4I+1Li3jw4CjL3BYPB/KMPXjGdQ+ZQSSXLjam60VmqQfDFs7XA2HgRtLGDAXiq/rmQy3sw+zFqlRhJbeko5R/vCuKKw3ziGMHtqew0Yj375/cci8B927EvdwfpD/9M6tj7rzZu2wnZCRkSDNnu5cECZt39HWcXMubCHKgzx/jq7h2ZBf6NYHrZpUT5tzIT2jkFkIb4zQQNvd/81sw/r0B+R3Jd0POYHOQAg0H5rarDukLoeLgu51OqyjTyJkmA+Tth/9DTlGHSIsEYfXw9+4b6zh9XbGwdYee6MwsS5M81AqazZsG0IeUXhUhG3cHIWJRX9AOKUj3f/5fenckgtbx/tH6TloD+hUyCqHZ/LhIFO5Rs5sn9qGd+VClzl5KceGoF6Gk4xsp/Hk00iHvoMwZRy2yssJZI3CaSOceFk/6FMcwgx/I8/QGVH5lqZjLuQqrqEuOSQh2jwaf7YE51w+MKZtxTsQdpDDgtUN62zW7hPoS1yupJ9Hks4o2y4KLzcSnEtkQ2Ci7yU9e2jq249ckc73azwOiPpiLXJh0aLwj2adu4ajENBmcTj6XCho6BHoYLzbh+o06w7FtjLzXA4zC8Maug+6mecNKE+yk219OubCJ6LuDwuuJTlcmPKxJminUp94O9eslJc5KU0ZxppDnVaFzjOz4TNbx+3QI2iDaP7hdQSPmZBnHwab8WEgoZtZzyXd9038H+M923endqYt/LyG2I4xGKHQe9EXZmVfOCu6hvCGsI0esf7J8Lut04bMhFeGvu8ad3IhaYNwhXOSjG3082+W563uiLrn9vF2JPrGkZQGz/R2HPdbnw8eu2GLIPQrysxhNpN9sTDlcU0K5306yfx1CAPr50o834TNDJngEKc+PwByxHb/pS4N8kpjuF3j0rCehO5B/8d9XC+YE8CG8HNKs3b7QM9Bxnhc8+HoI3xoULTdhXQO7eLDYrKs+rkWz1FwH4ckNesUSB/G+HF3NGuXI7VBl23h89bPsTgKg4r+ntpiEcnGAz5PqRxzqd9uQJpks2I68r/otm2w/yBrKYz7COn2TdCHKe0xaY58VzQvw5zvWDqHfMOuTGtexusiORsicUYq27UI2468U8j6Anny4xCP4a7uNnrb0awdGh7jO0K58tiAvhPpXW+f43msA2CvQEZS/Yy8oZ1kW7LXYTvchjoL1hJLPReFJQZYh4AtzmXGWABZwdyY5y6YX0IHRvN3jPkvurT8d2rvcB7k3xGEIN/k2/5H7sigXOgD99K1F83s2eCesfAm6w6xHhHpE8gbdPnsIK0LMz6S9FXH+iLaF32L5QpjixvHwrk5+g7kmMeIpItvzs0X/FobiOZ5nmjtI0fGtvOycE2SkRkntJNsdfJnkLmH22lKGcU4CNnndy5Nx5XpiDWi91AaPwfAcznEtR8HYRNz3b3SpcG4GtQBxoQNV9BJ6EmvI6L1bNggf+P+b9a9Vphr36WtwzeRhsaPdf4bB46sb09yx9S2s1Jf37GlXvfaGb+6zNrfnGAT3EgJ8BLIKOxAsvn8XPqY1AZ3cXmwDoJnc1/HmOLDnLO9gnzAVkPb8zv8fArrhGxzJntjA54DGy+yYUFkM9a4r1jb+f8TqC9BVa2DbKYyFyvohlR+fGsq/qbzvJm17dvcurEfU4LvXCUYLzBHYRsYZcWYt8ad5/SQa9Zvo63DRq9LWWeg7VN7l/P4nP71a29m7TEG5UA/YZlHH8IcI2pLv/aPe7xOqsKv9+T62Vj5C2uNgckGmZXshE1+HdWse77PcxZXj3f5dVMzG0n28Lb16YT/pszn/JHXR1Cv6dnbo/ZFXqE7YG9z3aPvYF0D+eDvBRgLlrrn8ntRxmSPDlGdlTbDO1zac9tpLM2l70falK/tUXvj2Wvc0aytC2GLYMzh9WHMd2F3ID9sm6Ndofvq2BbL6W+fPtXrZrYTUA43Z+r4juC/WaX/zz2tnWSDb3uvX8zib3BmnbptP3eN/493RM+uYn2NNMea2W9qpOsFtKP/5hTMcdZBJmATUb+flcaWTTndCfwaFa2JluNpytcZyWa8lp9b9a2UZRV9EePObVYN+pRfRzJrz7WCNbtK+5jrEusPn3Npojmkt0l4zgM5dHPJEZp/b0NZIRPRd/Q0Lx1Oa/gduhD9FfMZlJnXiKN6MOscVzFHSvZXUfUdYmegXr3sR3rO1+fW4G/oOV7PWp+OKGP0LQG/e0K9os5ZT0KOoHvSGtkM+p3Q1l7Xv+swYvEaF/omysNru6gPlDmXL9yX02GQWcgx1y/6MtYM17jzETzZgKwjjxgHWcYwTqR+UdqwdwRpAMYPrjv0K583/q5atQ4RfbN338qzdjPp0vW4LdnwWCcdJlkv5Za/j3kgz6jPzHf0/5Ke/RWUI9KFXjai73+PuiMDe/0H7v9m7T6Dvon7ud+iPd034CHS+wX0AOoTdc7l8boC17jd3XyqXP9ZROcesP6tcQnRbzLfLcWYkAdxIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGESFx11VU2f/58mzZtmi1evNjuuuuubPpVq1bZ4sWLbdq0aXbIIYfY1VdHm1LGj6GiKIoJzcGA2bJli82cOdPMPmadHsSjnfFV+N2M7PELu+pynov8jkC/c3KMdHjaxg7lpemY8+iG3W2BR51yJx52V2NXFu9cxs457BbEriX2Pu09VaDM6ykNdnxgN3IN708dYAe13xnOO229JxHk61RKg7rCrlB4eqCd2F077IMdsYem9ngEaSM3JN4TR8TR7ohdbpEnzAi/sxz1ezalwa5Zv1s0Ir13YfKCsoa9oGCHZHrnrFRnm1ZSmlXW8pJ2uT399NO2zz77WK+Ucnz402YPYVdjxptXCXt4QH3CWxXakPODHYrYtVfH42idnfPs4QE7+Hw9jNLfqQ8ek7wu3JXq/BjyclZ6kUF7Q57Zqzd2KtbZ1ez1Uq5+oUN4l2gv8ov6iLyFwKsMPJJEfR3vzUWAQL8/Mx15J6b36o024brzMj5acd7IuxLXU+Q1y4P3oR4ibxTe43emLWelfLyU/r+ZvUTW6QOoM+g+6DK0xTNmduyuy7F9zMx+K52NdCHaFeMQ6jzYGV56UvZ9glnpnmfWXR/eSwCD9oGHhVzaCN9PI2+1Xm/nojIkSs95vLsf7eI9ezBOb2dlN0qDXeY5T3cz3P+3Bue9p+GoL8D7Fuoj0vVen7DM1cmr81pVep7P2YeBfEP+4FmkbB++D153UHbs6ufJAMqBfoPysWcOV5/wbm9mdv+K9Ae8X3udNfbxuC3D37ZWuJIqTwFsD1Z5qYnIeeHKUeVphb2Qoq1qyFZPBM/zY8K+NJ5u9h4RIt3sI7hE/aQOyYvKjNQXtvqIOWbddiBsAe4bKNuT6QhZjWzps9z/zdq2GDzBejlgoA+ivuntrCovL/zOyGuIHyfQhjcHabxnhsgjjoc9D+N+tCXbpamOsp6GI/pkU3fNjR2hN+FeiOTZ12POeyf6IjwCZvJQ1iF7uURde73w+/Q3+n3kZRP9CuMg+gTLbLo/F9GjpI5dmCPX3z0YNzAORPWbGx9dpKBjaIy5y8sv0vL6yCp3bZv7f3Qu5xkOc/Oo7OhT0G9op2huC9kkj0el1y14U4neUbVuxGXudV2nX3L8CYujWaV+O5Jseu6bpb0SjQmJ0hZK8+bjk/6+I9fHU92fS3puufcoWMfjB9uuaBc/V4o8vGNMgn6JvMhDL13jzpuVY1s4r/O4MbzD89El6Q8fgYs9kCFvGNe4DdGnfcQ4xtcnnp2LNAJbYiWdw/1+bKuz7sR5xnO8DcterfAOzGn9XMGse07C7/BeySOdutAdUb9BZLPSgzj6AnsF87YZvKVz/f7KWnL8qT7I8V9bu6ysg6rsW8avVaNel1KaOna18zJey95hvO2KsZPz4XVNzu73dtw76BrO+Sg8ufUO7xHTrG1foF2jfl81Rzdr98G1Lk2Et394/EB/nZ6O3hvjWIGejGxh2PLeCxufy60Re3IRyQDPD71NH/U3b6egvvle5Bv1G3hKhH4OPeua9deufl06G303QD+NvEUD2MVrXRoeF/FMvCOKRIl6qeNFMYe303nMxDvgzQ56lvPj1nkiexnftT6R/v/fUmSDk+h7TBl1AOXhyEOInOHk5ngal0vbJc0BhtM9HX0i952sikivVHkY5nmz94aPdmYv+95rI9X9cLIvtmOMRftw/4Vdmp45I9nbW3mNGG3nPUzz3KCOfvWg37CXcaxZ/q1Lwzq1Tj/F+iDaG/nbZmZ/totrXE9bqw5hxyUv3+VUJbcWWceTMvcXrIvc4a7V8VAdef30dmEw312QZKKM4sz5gffS3FwHFRHMZUvPpuvdhcguzc0Jzuq8Nne0dcza5KkvLaD+tna5S+MjqvL7vd3N42Gd7/fe5uU29O16qDuada8nQB/wPKaObFTVa/Q9MmdX+vVBtr/gbRT1i3JF6669AA/i/7mPa1woB/KT6nUWjQ2lV3DvBZjxXuTRLnW+STN+PSH3HQT1Cb0bRVRC3+Q5Dp5VY/14ScpP6a2f+4mPOgvqlDn65gN8ZBmz7rWc3FqX9yocRcjBucjGcuNZx+9qfKQIyFyv7YyxHr89gMxQfs5OOuMaZ5scRZHA7sGYiTE7+qaGMTynn5AeUY6uDq4tTUfoK9Yh/ncRkZ2AvrjdWp6H/2QAa9VoF+Q50GHl+pWfy0a2q+8fHBkNv5nJ6X+/9pL7XhD9dsHXPeo3ijrgyXmNzgEZR33k5nnR95RUHyNp/rzN23Wctzr5gk3BtgjkxdvHPM9cn45Ya8N6btROdaIbRd/oPTlbeJ77P7ebj4B5hfu/WbdH9gvdeeKo1Mfv8eMIvbdr3ss6rOpbnF/X3rW5sRD95rrrrrN3vONjZvanA37Txfbzn//MDjnkkFqpr7/+ejvjjDPsqquusqOPPtq+8IUv2DXXXGMPPfSQHXzwwV3p161bZ0cccYS9733vs/e///12991323nnnWfXXXedve1tb+t3YWohD+JCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQghhZldccYWdddZZdvbZZ9uCBQvsyiuvtLlz59ry5X6jaourr77aDj74YLvyyittwYIFdvbZZ9t73/te+/SnPz3OOW/zMvMg/gG6gl2h2F3kvc2ade/Yj6izy8iDXafr6Zz3zBN5dnZe/WbR7qlNyctC6T0BO9jYUx12O2GHl/dqR5S7v7HbKOchK/Kqlco4nHZwb4fXafKAXKb3nnHYswh2NGEnKXuKwA6m3E7JKs90kXcY7DaHt44FlCbV1YzkrWArdp5FfQS7t+CFiPOHuvJeYdizAtoOfdJ7FjDLe0as4xU2PXtO8hKw0e+UrXq2Wd6jVOQ94WJr9bmZffKSdkSQAnWNtqvjaQv1xN6ivBdJ7w2Fn+28BJxwbjvJbXU8zEHGsfuQ68zvTISXjJWUBmVFefgdAOXBs/E89poAmYSMRp6qU/oZyYNG6OUy583b130vXuTqvIN3m3rPELl3QB6hH/i5aPvXu2ssz35nbOSNAuR2m44lqkTgoaH0eAdPi9u602Q9CVTVGc73y0va3dbyzmIW62js8F2ajtHOWOie1MePObN1vIv7JsoKXcY7mFPbzUi76NHtH7mX0mA8xbiD+7le0S/qeCPG2Aa5ZO9E3tsB9APXi/dAC3mo69kVO9xRv3j22iBtWSE1n23Wbkt+tm9fbkPsDIf8oi6jXfJeRtiLSS/2F2DvGEk/lnYPdlQfSWmQN+gM1BnbJHW8xwHv+SjnZSOzA39Rys8D3Ad8XXm92Q8P4vDmgPrAsyO7AZ4YUFYuXy/eBXL4yDZJnhZQn1y7Pv3hbaw6XppyQK65XBkPP2XUg5wncfQPeL6AXqjjmYc9lELWIx3YDyK7IxrHvH6D/B0apPWem2YH15xNv4A8IjyRjpshm5dafQ6jv9Ev6uj2nFf6Ot4/PVEkDLZP+uXp8Crr1HMZbyzltZx3ZpcWXqc7oqt5D4AoV6CTS/0Sebmo4027wjPpEuov9/v8sHcZeGMdSxvW8b7Let/XB+7n/u91euT53tdLzmNKHW8qeB7P36FDoV9hr3A5YWN6L0+5+XcuQoL3sMV1hzryXqdYjuDBCe+P7IyczQjqRCWBZywsCHKZ+b2DigTgx7ZorINd7+e50XiIdoZ+ZJvLey6uE5nM58Gse95xPv3tI8jkPGVHXsnGAvoO5gTRXBL5gL56kK55T9egzjoL49suV2f+Hr4P9XKvdQNbIhfVCucwZkPm2Ab2Xgahr0gHzF3aOm6AzooiG6COVqYje1xFeh8lL+q3sJeQ5148wpq16wNzwapoZdvM7M/7IMffNrPV6Ww0J0i6Z056x8bbKA3qGmMV+hbPyypsxtNpPLxuLJFCeuVY9/8oX348dOuWZrR2CVDWf7NufP9ge8N7ZuRxIxpjzXr3JAj8+BzZAGPx2F3lrbsuaBMew9enI3QZ2wmoT4zLqMOoLTFuQI5G6VpV1E2ex3g9vzP7uCZdXnT7NR7/T7N939I6mY1EBup4Hk46dO7Z3Zc2wKsk1yHayutHtsdSm3V58+YoL/55kLEn25eGzmwdCx/xlOe03tb0Hl35GgjWB7rWPKJ1J5Bbd819v8O1Ne4Yjav+G1jkKRs2Fvporp2djjfr1nOnkO65qU7/gi2F+sG4Fs3VfTuzvVLHpqqKtBNQej9E/+V28muHOX2Aaxx94/A+rXEl3bUgebFfC3uHxwPfP3is8RFOnOd6M7PtGK9QrqXpyN+efJ/BOM96z3v+ruPxHfMZtkV93UdzA9Q1om/kopNE3v5B6oPwcnkMXbrTezePvodCd6KdI8/dYyH3XQYyzpFxvD0KHcj6yeuaXr6FkQ18XNInd17irvHz8exUZ+X3+EguIbM3Btd8vwt0YDl+3B2kqSozz4nRP9CHLrL+fTe+xFpyDHvLyeMM0qVQfWUdwbbZs51mJH0z2oa+HNg7RyWdeQ/mg9F3XrzM97NIz9WJehmth/mxGmsPvM7po0dBnmjdaUZqn65vv8FazpxUnxt91Emztt23Ph3RN6K5Ds5Bv7BtUKVr2KZH/r3nYaaGfiyjw9eJJOaj2Jh1R7bNrbn1Ysvn1qHqrMHAS370PSazZl56I16RbjmzdXxkBSVCPxuxlk19cZ/WuN5NV2BT+XbhaBloj9y3dcif+w46RB6dC/8O6AUaw8s+nfrCoqR3H+Df+3j5ZVsxjbEXpP7+t7koq7nvZn49DrBsoA/6esmtWUf2sp8XRutZfj2C17N9/lMeh2ituUA+/O+mIs/quWikVXLHcx2s/0In4jnrKQ10RZ05G3QYf2PBmOCjk/J3Y9++gW6vFbHUk9EZZQRWrA9y395mrfF4f3kQF5OGlgfxj1pnJNFB8En7+c8fruVB/IUXXrDp06fbDTfcYKec0v4967Jly2z16tW2alW3vfjmN7/ZFi1aZJ/5zGfKczfddJOdeuqp9uyzz9qee+7Zdc+gieLRCiGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxMCYMmWKtTYgFWY2NKC3tJ7/4osv2pYtWzquTJ061aZOndpxbtOmTfbSSy/Z7NmzO87Pnj3bnnjiCYt44oknwvTbt2+3TZs22Zw5c3a9GD0yZdzfKIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEeFlzwgknmNlvzOynA3zL3WY2z77+9a/bzJkzO/5ddtlllXcNDXX+YL0oiq5zO0sfnR8vhgrkYDelOvwuQMgMhKLi8BgINYHQWlFoaYSzyIVrw3N86GQKg3JcCuVwZy5UhA+p+w669nWXBmFHgxBbCK19/8p0gt3dI0wOQif5EHpmXeFcyrAUHDoMYaoQMgMhTzi0B9IjTAxCXnDIlVzIMoTMQ/v48MZm1eF1ODxlCuVThs25o/O8mVWHc+EwQinsVK1Qo6jPqtCaTC58bg7f76LQMSlEyowUzmUr745Be0ThTzwoD+rMh5kZVBjtKqI68+FgDnRHs+6wNCnMzDD1/+3ob3gOylwn7HOvIG/IO/dnyPqou+cS+hvhBtHPEEqJw1X4UFYIJ8nyDB0BfYfnsE5L/WQkhWHsiOJTJRNRuE6QC72Hawi1enX3tZMuah1v9iHJzbrDU+J5HErT6w7c/zU6h7yhfyynaxQG2czKOphDfWkjwmq+1qUlvVeGa/N1yP0tyfZx6Z13ovI5zDLGiDr6BPWAd6Au+iXHV9H70ZdYt6K/V4TD7rgPY+4r3XnO91jxoUG93jbr1t0pFNQsCk+2aSwhu6G/WT6hc3y4wahvp7Fpzjvblzb6sQ3hbzj8lcvr/FTmdVadZszALlifjtCtj3Yn7YJDEo6mI+qHw5ej7dAvotBqkBeELEs6rCOcbhS+0eNC6x6X/t9h19WxJawiTV1SXuenPjhqLh9jl+O2DP+1teqywnY5ifRcqYOhV6IwdCAXStNf+whdqwp9fAH97cOq5ULEIWQV7H7OzwUWw+GAo7DVwNnyXSGz6+J1eZLnBSTPCJ0+N71jA+YG3P9hS38nHSF/LGMAtjPaIldOBnY5bJovpyPLKuyvHmSszOOrKQ1kHHoO9X0vpYGMuzr/P6nf/jcf3hj1/HG6AfOOnKz6cSRHsqNOOq196mbfLw41s2fN7E8HYFP7EI2RLoWexNyNx1m0B3bDR/UC2fpyxf/N2rIJ3Zyr36PdMdIF6OM+TKVZXrdX6SO2M3LhSwF0Bmw+yCjbaHgH3vmqdOTQoElndIWX5Hkv6syHtF1AadC+6O8818b7oc/Wtw5zyabZgPfmwuVWhe9lexf9C7o5F9bbE4UlBrkQrF6HmLX7NPotws3yc3vJG9YxUIdV9/TLpv7v1tEGM9L8B1OUbeh3uVDzuTmXb8vz6dr16Qj9GMynFqY1rjVelx0Y/I264n7CcsLPZr2PPuzm8R1zLsyPEbY6WmOqE/bdh/FN63HHUH7uwnoK+nY09/LvYn2Lvrg+HVEvHB68al2G54ej6QhZiNZ0fD6wvsh9EvlBHWJu4efTZm1ZQVtcRNdy9iDeC92V66/oH+gbXK81Qod3hUzO2YN4HuTZ941BzI15TvCUO0a2GdYcMP5FOrCODe7hdRH0aafP5pKMbViZ/sjZOyn9rPTfTdAhQX8+I6W9NvWbjvW4h9MfaDO0D4Wo7lp7zxGF50b5YT9GdoKzL8qw9JF+SfI3P+mKdTm7P7JN6oSP9/dFz/HncnYqZG09nUNf9PdlwpRXrmeZtdcjMOfi/p/TXZ7c2A+q7Lp+yfHT1tb7OV1UQx6zocRht8BWXEvXoIPRLpF+w1zm0nSE3cL52ebSJtkfoe8oZd5wP8KoR2s5WNtKc9GRM4PneE6hv/FMjC0cIh71CVu3al2A74vsOpQZdTaajlwvVfMG7rcpH8PpuB31wn3TjzfJTtiX1pA3o6yRPnE2+MLUX7psLbN2+6S+eDZ9b7vGp0e9nEDnqtqHQ3xjPEUdRvoqN28AkJtoLQh9D+2BcuC7xW/M7Hd3cY0Lc2PYRngH9BPbwNG8sgrMBXk9CmPaynTMjZ3ID8Y4/m6HOvY6J/d9CteW0jnkw6cle31O+v6yMVpT8gRjS/ktGt+LIQc834U+8/lgOxnte69LE33jqDM2+LT8TdqvIRLlWnkv63gYh7Z0nzs+yf8dqF+WQ68PMLfgtfw6Nh7GD9RvNEbVmQ+NBWrnBakvr8XcYqm1ZPj3+jAWX2ItOYae9t/GIzsjB+rsD9MRsh+tNVfZWGbdMg6dxmN4lY0VAX3N69BV31J4DpnafCit7xTov8HvJEo78Nl0jOwwP57yXAVzSOhp5I91KWQhmleCOuMHiOwe6FvMHbH2mNPp0TuhG252aaL1Qa97+DnIzxXpiHkIr4mCXtaT59Hfdb6rAbRZksv5o+1LlfqNbQDOdz9///FGuvJkOkJGonkZ+iv0I+o+knmMp7AZc78ZqAO+T7ENCjsWurnGXLKDqu8fmW8m+BbX9R3BrK0HYC/z79wg/7BZo3fAHsBaUGRvQxaiNdVo7d+sc+0PuiJal6kC9fIGOlc1Htb5zRnrdugn6D7/G5rg2TOoPFtRD//o0vK8Gb9t8fU5I0iDsQb9hn+7gzqDnot0gP9tYbQ+fpKZPWNmx45ZjoUYBJ///Oftgx/8S2utf+7R56c/bWb/t9133/dt4cKF9vzzz3dcjTyIv/DCCzZ9+nS74YYb7JRT2usWy5Yts9WrV9uqVd3j9pvf/GZbtGiRfeYznynP3XTTTXbqqafas88+a3vuuWfXPYNGHsSFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDjzp/+6Z+aWWHdDl77wZ1m9lu2ZMkSmzp1qu2zzz4d//yPw83M9tprL1u8eLHdfvvtHedvv/12e+Mb39iV3szsqKOO6kr/3e9+15YsWTIhPw43e1l5EP87M3uMrlTtmOEdW9hRhV1q2C0Uee/xnoEij9s571Pecwbg3YzYdZTbTYVdSrmdwymvi9Lu5AeuaV86Je1IumlXPYRW7YbnHYY4h9172K3Gu5+8xyTerep3Y3pvQFEaEHmerLOz3Kfp1YscPClgxyOel/PCiJ2kK9unFqa2W+M9VPE7sNsbfYG9AOEce3A2i3fcH+v+X2fXKjF8sVmxxeylmX3ykobdh9SX5h/UOq7D7nPUa7S72XtWYA9mOAf9gPpluazjgdl7YSS6vMFE3iSqnsO7Kv2zsVOYdwj6skZ6po6nrTpep/yu5qrdxAzrUi932E15ZnAfdlljdyjv4ET/hzyy10TgPU1EnhGgj6D/4RmO34V6wQ5b7m/eqzhkPniX7xMX0Pjxt+vTH5kdzKXHGPT/7Z3P5Wd3wTog7e5/e9pJ/U3cAw8Sz5nZp3Zdjmc/bfYr9DfU3dJ2wkUpH6VHXfTtg+hpuV27FSyk+ii966AN4YmM5edQlwbeASJZ9eMXe4GA5w/sGA7GsxNS3m6DDYJ+zGMD8o86gxzzzmOMSf/D/d+s29t6LnIFgM5hDydj9WztKL2sQR7RpjkPwt4TK6fPeUnzaS1IM5qO69ORvVOi/PDOgedkoquU/YZ1NfoU2iLS2z5tVN+4hvyQp/iyn6Gd0TdRv2P3Ptwei79tZq+gZ9bx7NaLB9ZcdIkI3/Z1+niV3W3WtYt+iNq5cO18TLrG6uk6pIH3Era/MOFbkY4oXzS3yPUB72kCfYnLDI8tGAfRXly/GJPcO+ZTmdd5nQP9xHoO/SyyZ70XicimwP3QXSxbAPUKL0DI88OUpsJTCuv/0jEVnpf6yzDNubZXyXNkB/k5ZWRve5vCrN0u6AMYY1ine/viaGt5Vzp5HKLysLf0SyvSsK2HstbxVuNkrJa9wlR5WmE5go1YxwNMap9haruyD/h35bxXg5y9nvMMivaErLJtXjW34P6G+zDPDepy31TXm71cM967+I+CayvSsU57Y44wm855LyoRaY4yktYnttXxWIc+8J/onO8nOc9h8Cqzks6hrbxnHbYTcF+u/7JOH+/oWpEnQe8hjuSnjAjl5ha1YP2N+9H2kSfmzLzZr++UkevYs7ifZ+L9t9E51LHX4eyhFLJQ5d3IrN2XMZBAf7P3w1+5ayBqA4zHTwXX6oD3Rh4Xffui//I82Lf9aUEa1NlF7v88F8OzUXb0dfYemso6ktaxtvHY7aM5ok+wfsOaXdILpSdLjp62NB1RH9ChvPaHuVrqH/umMm/Oye5Cd7SW1/jtW8zu6ccaF8txFCXSw2vEiG6GPoQ+zTaaHw8zfTz09tzL3DGHn5PkON79/47gGnQG6iPXhjlPjTkw90SeR+ka3l9nbuw9y0XtDFt+aTqOxYOdWdvOiNbT6thYfn7Kth5kFfZBNOaiT6Zx8aTRdEv0br+GGM2HxtL/Ihs26aWRNG8ubYpnzeztfZDjW8zs/nQWNj3341x0VEdXhCle00F9RN7kMabAPlmfjtFar7fnKILRKSn/N6G/op2iiJY92Nml/g3suDKia85zNuA1fN8vtgVpcmvdntycD3J7k/s/14v/1gMvlXVkjz1Ywk72ns3NuiPnJfnJrVmURPNUkOYj+5IXxnJsjCItAP9NIfAgPivlbRP6FMYqHueiuTDAs/33E5Rn7N6HO2WY17i8PfYe62LOaOsYRkiAPsP6D48/eHYuignsOERyWpGOPJ9a49Ki7nJRa5Avnot6GcE97KEa8x+8v060lzo/4qjj7Zy9G9f5Jul1YRT519cV7uF34Vpkt+BZo+noo77UpSqvERiPo7kwZAHz3jrzCfRpmjPNSnZ6GQk1t+aNsZY9n/Yyj2G90u+5sV/vjdajq2zNOus90TdP3IfnUl+Yv7R1XIf5D8rI8uzrN/heUMtzPcqORWpeC0G/r2M7e3L1grzyD5xgH2NMwNjCc8A6USmr1uNy3456xetF6LdzKE1VdCL23A2dUcfbOfCRXczKMo4k/b8N4weP29Adue8wVdGF+FwG2BWFtwVYt6MP3239k+NV1vrBXhVJd0XezstoFZEO8/Nm2KX824E636y8DZz7doP+z7o99x3Tk/vdyFjAOylKZJceiObsNX4b8l9SXX8Fz+P5LmQDz0YaXjv3v7mJIgd5Ox+ymhurIk/ZdfBRA5Cd3PeLKEI07IWU12zU8aieK9YIzqV8LEff9r9Zi/oz+i8iuvhvE2OPyiPEILnpppvsrW89w8z+zMy6f7Q9Np4ws2ts3bqHbXR0tKc7r7/+ejvjjDPs6quvtqOOOsq++MUv2pe+9CX7yU9+YvPmzbO/+Iu/sMcff9z+4R/+wczM1q1bZ0cccYS9//3vt/e97312zz332DnnnGPXXXedve1tb+tTeXpjeOdJhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQov+cfPLJ1trodreZ/cc+PfV2M3tdzz8ONzM77bTT7Mknn7RPfvKTtnHjRjviiCPs1ltvtXnzWps6Nm7caI891nZaPX/+fLv11lvtggsusM9//vN2wAEH2Gc/+9kJ+3G4mX4gLoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEmCCGhobsnnv+0Y466s1mtsTa0VjGyiNm9rg99dR9Y37CeeedZ+edd154bcWKFV3njj32WPvRj+pEWBofhoqiKCY6E4OkM8TQ6+iKD7MQhfPKhVDzuPC3HfQSSrMOCE3CYXsQ6gIh5hB6Ixd20Ie9NWuHvkR4qaheKjiOwlrcifAYPuQKh2TDOYQKwjs5FAfCmf2NS2vWDi3US2jDCN/OqX5HKKxeGS7E9xsOPYb2zfUFRxkmmcOJIKwRQgQhnAmHSERYoyB0X1fopuXpyO3tQ3nWCBMT4p9TleY3Zvaf+xQq7I3p7K8oBUIBoY5SWJW5F7WTbLg+/eFDL0UhaBDeBiH0ciHSotB5/lwUdhrk5BD9Hnt5KPRYGVYZJzJhcsqQUD7Mt1l1WEAOuY3+jrToLw+2k5Rh6JZbNwjd5EOan0RpEPZtP+ukTsht3uuEfg95zOm73DVHV1it6P1R/lI9Diddtj26H3oFfYPbBM/MhWjE+6EfEVboXEqT2v7QJBOPRPnYWX30M+TfAa2T+6Y8b+aQdz5MWi5UF/rQ2iCND5+dC6faC79Pf0P3og1PSEeq30NT3ynrHDqe6xk6IqNL56bnbEhh32ekvr41FyKLx1z0E8haLvQlQo5Bnmj82Xe0ddxcNS4ymX6778XuOWBX2+lU+hvhE6tCATIVocPMrLqMPH6gD/t6jcIB9xAquwz1vpJO1uknqFc/noxdjrvDdlbZyQuDv8dqE3nQp0fpXEp/TLp/dTrdEaUPfcnb4hxiEWNjnVDxdUBeuZ7RT9DPYUd+jdJgLFiajugvFPq1HBsQ8hLPpUJfkOoDRV+Deo1sV4B8scxCB6P/R/3X6+kL6BrC1lFoVDPrObxlJRyScIvLRw5XjjkkzwgT/a107m2RLX2YdZIL7RnhbWgfBpf4rykfn/4r63/43V5Af0s6dV+qs81XpD/OTEf0abbrfB0FYXNLcjo5UYYr9+ORWdlfy7EmmgfkQnq+0h2jPoU29PYfyxXekeydoTR/rwz9btaex28LzqE+ozpDe6xMR8jssZQmWhsAvj1ce2dhOXzSPQdE43tuLunt46jMSfcseGfruDaq19yY6/vAxUHapF+H07Xt0I+ZvlkS9Ek7K73v8AHKMcZn6F/uo1XzFpZVtNU/VqRl8Dw/BzNrt+9oOqLdHw/SoB44xC+HLCdOJ91z3TXBM80655lJlobT+Lcd4YQ5lLPPT9Qn/TpNNHfyPjh8CHsGNhKvDyCdXwO6htL49kA/o/XBuakNS3swN189yf1/C/2NOZbPfzQf8vQq8+DA4FxV+47SOfS9BzuTdpQZsrEyHZPuiMI2V4bVxv3bzOzP+yDHf2dmv5PO5taec3Ni9DMvu3WB3Ya+yHZ7lQ59Jf2Naz6PrAPRrxDyHu/iNWc/b8mt9Xp55LHuV+4a2o779nqXZlfx+TFrj6uYY2AcyM13M/Zg13NfHTwnjWtzUvjqjTx/gDy/wd3DpLoaSrq4YP3k06O92V7JyTaI1rE9qT3PX9o6fq5qPTfKD8uIr09vX06UXQ39H31zgQ5Ev2E5gk0Gu5D7vQ/JXoMTkp67rcew629P930T+jbXX3PrRXXwdnG0voI687qIzz3u0kZr4f4ajUdDaQ2+gH5CXyJ9W9qKqM/IloaueFU6or1YjoDXiS5PHXnNEZW5qh4C23UklWtb1E8wfmAcxf3ct13ZutaszNr1CT3D9/h1RdiBuL+fa1z+2bn+krOtvI3IdnaNbxAlWOdfmY78LRj1gXzAhubxuY5OrpJR7mtpLJiTvilsZLu0Th+s4ASy6W/DNyt8y/u3dPwy3YB6RBm9TW7WVb/Z/gtdAT0zStcwTvhvC/w+vAt9lO2Mfq0rQmd4+ylq59Rf5qRrGyMZQ7uifMG87LilreOdfL8r8/mpXj8XpbHOtAupndf4dtjP+mdTQ44hN1gnjeyDOr8nwH2oc6wZ8Fom6jW35o3fCuD9ufEQOhW6kNdvcV+07sn2gFks+36+EH33TmPmrFSH5Vpb9JuOfuFljMdwlDFaIwMYa2E35WyayAaNbHh+J7/Xfwfh70J3u2OUV7/+5OcKZtXrX7wGDd1T47tST79Nir4X+HVCXu/H2H+SmT1jZscOwKauWj+I+om7tuSd7VP3+36R+vgI6dJwnDDruf932YOsM/A+374fob9h96GM0NuZMT071uXW3quucZ6hMzAO+W9bZu2+CNuE74eOQdmhN7mfVKz9heDZkEcen31/z62v+9+lcX4w3/Dr4dzvsK6IuuN1cWcPn5Tq6uYXrRvkFb+F499J+Lksvx+g/0OXrnLn67LrcizEoBka+m1rjRF/uAtP2WFmXzCz/8OK4n/2JV9NZMpEZ0AIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCPHy5uGH/x9rbXDrZcOt50Eze96ee+47/clUQ3kZeRC/xcxOpCvYSZXz2lBnd53fSR7tOMQut/S8+Wm397poN5f35Mw7x7CzKec5A7sW4emOdy1BYBalI3Z8RflAObznX7N2efyOMfY8lO47KpXnHuSHn4NdVNixiR2cvIvW78hmrz253VsAeULdwUsUPwdlRJ0jX5GnLeTtAvd/s7a3NNwX7NDq8kKU62Npd/Hc5BWm9IBtZjY9HbEjj3YxLhxtHbt2ZDO+n6FN2YOe9zqCtmCvxHW9jPTJK8uip80ewM5U9s6V6rzLU3bUhmkn3pzUNzZSkq7yoMzBbtx9k0eDzWg73rmPXcToS+wJLe0yLXd1wovPjZTGedo+Pr3rjqi+P56O6NvsZR95cp7DZpFn9U3+mdiVyGWGhwrszqzy9m3WllXvPY3zEw3e3vMG/s9yXce7k/cIVLUL3Kzb8wTj00fPwf3Y5c3jiC9P5HHCe1oB7K05eanp8rLM+J3UkRcTN1YtSf3vfn5O1TvwvOfM7FN92An+bTN7KZ2Nxl7vsSXn4dOnzcHjoddv6AO8i9e/L+nrBbQ7OvRU6UHfGU1H2Atc9tTPR9LO9nJTc/T8nJcL71F9lK7Bw4T3VMFeJvxO9MizQh0PUN5bR6r7GWQnlF6iUT+ZsbMrr9z/IOu53fCeyHMx7j8tHaOd60gDnch5Rb/w3p951zfe6z2MsJ57Z2fSrnoyy+rC0gsYvPmifBgrtpjZrF30rvS0tdog5a30jICU3G/9GBV5o6gTxSTjNXFBev/aOp7lQKrPhae1T61J3vnL/l7Hy2UUNQa6HbJex4sj9wHoozpe1up4Gcx5EMiNkcC1T+m1eS2lQdvBdoiis+RIOmNWKnuXbRIBXcR1V8NTfaXXQsrzUDoWXv64njjSilk511hI3hzXrEx/ZPpQl+f8s+jil31q66+nw8voiq/zyMNJat/jklfKO9kDR5W3D5Z5eChKeqm021dQGq/D68hhpP9zEUZAWgcYfmvruJ11EPRTZL950HdWBPmogusXdYT6RF7Zm9d73DnkleffOId5B2wd9v4GeYHCjrydY66H/LCs45yfu7KNtdalzYE5Oewv1mXnuGvQpewxFWXMeAnPeccso3TAYwz0LnsIQnnwbHgh4sgP3lsu2oDrgMeCfsrxyXSlyhtr5G3Tw30JthXmAEvTMZozoX5SmfeleW85f0n94/z0jg5Pc97rIfcljMtYd+K+mJiV5krZcSPN2YZS3y51O9cL5nMr0zHyBom8Yo0O8/dgDO2KcMB2HGQeeiUXDSsas5Ae/RQ6p9fIO9Bd3kMj5xV9G/1+NB2jNsx5mvd8nP72ntxRZi4P2qeOB9gcPlLcbHc0s+NTP8XaSzlWcf870Fo29dw+yPEt1p6U0/pK2V+rohTlYDsM8tzvUKY5L3YYT86mNIGX9i68Lo90u/eQiLqPojr0ELWpFqwnIaPp2ZXRseoylsijOU/kvXhtZr37SneO7Tv/zCSrSyj65v0Ppz+S3h5J9nGlR76dgTrHWgZ7WKwxx1qU2uWBqvcPwoN4ru7T3PHtyZb5Zq5eUHZuHx/tNYpUgvE43b+Zn4n2xBz2gXRcRGkwFkDPQv/zukaVjTdWD6N11gMiD4DIo/foyf0EuhtjN+qcPYNiXpfmG8cl3dXhPRc2A/Ia6bQ6YxP0PKIPwtaJ5uNe31Ees95UqyIx8ZwA+hk6B/XEfQrABkG/4XlRnTIjr9AvsBt4zuTlJvLc6r/hQjaeNbM/6ZMH8chruydn9zi7DWtlx1CSOyvWGBbQ2F1rrRmgXda4I1P1/cGsXhvmZNSvUaN+onkDyHlWT+eWJDuow+sr0mM+GI2ZqEfYPZHHbVzz9kHkkRbf0C6ha6gPyAbKzP0PcxvkMTfO92JLR+sTdSJ/efv6VPd/s+524e936GfQr0nfLiBbD/22nGPjAted/zbYTw/iX7TWN/PRdAVlq/PNZzyBPLLH+ar1JtaFuWhyXndBX66nNCiz74s81kAPQBYgaysoDfopdHNq7yFKUvhvEuAd9DfeX2f9LDfm+bLyd/gqO5jXc7EGlXuHzwfGrKV0DboqN45g7RJ5hBw8TGm8h+lctPqczZn7TgY9AtsDbXEOpfH6JPJ2zmtkW8xsZh/k+K8tbgPoXcgx9y3o0LXuGtulWLt5q0vLoB79N6heo8/6ug9smtzcses7QZ05bcrjyIX0KrcGX+rE3HeHzHdnRINA0bfdSxcxHvpvp3xDDY5K77gn5wndR+GJ6GG96JT0zpv4nRgjIRvQ10dSmty8/WL3fzyb1sHmpDra2IvNl/tdzjaTtAAAPXlJREFUQO5a3bWBXZsbCzEeDA39jrX04Tt3ljTgRTP7nH3961fb6aef3t+MNQx5EBdCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQkw4//7vt5jZY2b2izHc/f+Z2d522mmn7TTl7o5+IC6EEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhJhwZs2aZa3wTLeb2Y4e7vyNmX3P7rzzazZlin4ePVQURTHRmRgkcbg/pirsmpnNTWEgNixPJ1LYxCEK71f4cPTvcP83a4f+QIgWhDPhME0AIXEQAoOf48Obc0hPnHNh9eZSKIsNPuRFLnQfno2QGRT2dm4KLbTh+nQCYVWi0N8If7IwSOPDm+XqzoeRM2uH41ifjgiPcSqlQZiRFEZlSQpFcz+H7akTjj7RFSq4DlHIllyooV0Mg1r221we8Q6EkEK4KM4PwlYhpDNCD3O4M59HyBPX779a/8J2foPyymE2q8rKMoKwNggfhPs5rIoPPQP5+RWluSYdUQ8cohHg/joh4pDmXDqH0J2QiSh0atUzf5/+9mHGfSg+s3YoHB8+jkMwQc8lWR9Z2jpui8L8oW8tpWu+zuqE1fMh5/haek5WHn3dc+huX3e4xiGD8V7kA2PE0ZQG/Rx9KxeyKNJh56fjjS5NEB7+7FTWa5Z3Xyvz6kMf1Qm5TTJySto1d1OVPPUz/O7J6SzyzmH+1qcjwl/NcP8PWJLqpyP0ZGZ8L8npW9QNdEVurEAeIVsc4sqHgoNeieo5c20kXdv2tXQC4bnmUaI6Yfl8mLQcKfzUkhPap8o6Rv9Ff4vCer3WXeOQbFXtGYX09ERlrtFPaoEwgzfROYyVsGEQlovHoVwoz7GAvol+zOH1EFo6Kmuqh/kppNw6315bzGx+n8Lv+jCzUdhZb7v2C+4nT7kj+Aj9jXB+0KHQPRzeEvWJus+FxU5lHUpjQpGT5+vpHOrB6x4Od+vDn2KM4THq712aTF8o7ZSoDbw+QJ+mUKenp3Bd16HfQR/UtYV9WaPwtzm9CHyYdaTl0KCQUR+6m0Mp+zJH78Z4jLCfkR2G+9anI2wJ1lvR3GhnnE9/49k8jvVzLD4geG/UBpATvA9tt5DSYD7o55eRTvfhNinEol2ajui/aG+2n2Cjwr6M+j+eCVsIOoDD+EKvsr4H6G8+3HqdeWM01uXCu1qNNKgHlAPv4LCoPnwpysD9t074aRDJBp4NmxO6iMdl2MqoKx8K1qzdtxEOELZNHTsmAvWBfkh2C+awI2ldY1vUxzF/gr5lmUNZoQ+gy/6N0kR9yKxzjOG+00855jUutAPWcCB/rAPdelHJ6+lvzI/R79B23N8wn/I2UgTqAesKvOaA+zHfjmw/vMvblUw01+qBMhR6L+s8EdClGBNSfxkabScpMPdDXkmXjqSQx6XZ5+0WJtlYs9IcbhOHb0ed+fbmuSz+9mtSHFoaOhTrAVE+gJ9/8xiBvhjJCu67qHVYlP77ALdFru3dc4Yv6szG2ynJN/FMyDzGLF4feIe7VlXmfsrxu9PZyN7ohUged1E2ukjPO+qt7VNlCGjYfJADts3RzqyPqnilO/JzqtZJc3Pi3PprNNZVhWBme93nI8prlb5lepmb16ArJHmYKB3RTpcGaXCN10Ixp8i1YVV/Y72C+kh1dUzK812c56oQ2Ryu2/e7ZFOcS+20HGurKPOZ7t5+yfFfmRk+r6Evsu6ADQEddqA7mrX7G+5HXldQGshd1AYfd9fSQDKH6mzj33ReCznL/d+Hno/AeMLPxToAZAJ1EOU9Nxf06/QjdA39xK/X8loz7kPfhK3H4wnGGPR3yCXLvB+/kI9tmXNReHucw7OTrHR8v4Od8IhL658V5cesPcYhH1in/BylifJv1iljqKPcmiqeg7qPvjVG60RVoJ1YJ6L8vg8g72OX40qbet9UD5thW7Gd4HX7BXStSj+yXOFZyCvahe0mr0PRbziUuh/Tct+g/DXWPej3GCsxJvA6C9oDc4Hcd65oDdB/d0nPOYq8990Dm/fMdLyixrtyZYYcoB+zTu7XOuWh7hh8zynx382YOvmI9Alw9l/5/YDnblW2SDSuRtf896jIPq767cOxlMbPGc+3XVmnNmM5/pGZ7W311mww1vr1g9x6GPoSt4Ffi4q+F0Cen3Rpc+2O/pvrU8TbU1t9E+td0EUzgsTIM95B+nZO0jHlnBj38/oK+pKzr4eovxTbOq+VNgrZnOX8G2vNGEe4D1TZs1y/kOdMuw+nd22HfcD2up9f5tY3UEaMi2wnQx+5eci+VC+bq/RaZJf5tbtIVjG2kK1W/jZkRZwfput7arQmlPvext/Q+mVTP22d9kKdOSzyuDQd8c2eZczr3txvb9C/oNtvo2sV3x3nU/usQz9DObi/+v6GOuRyQibHMk/kb2GQP/87LLYBMC5jzoW+GM2tYX+hLo+nNLlvaCC3LoE6gjxDxhZQGq+nq2xZs3rfmfy7uV7w/kz/R5uvgx6I1tkxp/5ccK3KFuHf5aBe/dxkT0oT/camCq9X/BjxnJldNGY5FmK82LZtm02fvr+19NCRO0ueuNXM/pcVxU8Hl7EGoZ/ICyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghJgUjIyP293//OTP7J+t0SFTFk2b2I/vJT6oc/Lz8eJl5ED+ZrqSdR0NpF0zo+c/vaPJeQM3CXXqVYPchdu/mvO+A/ehv7CyMdrdFHi93Rh1P1VGZwVi8YEe7EHP450Q7juvspKuzY6zKQwldmzPaOm58MJ0P6rvcpY13sRfrV6UjdpSiDLwrH8/sZZdbVC/YDYadXlE7gWjXXy/ei9L9h6YdcY+wt8w9zexZMzujT96V3pzOcv/pxVN3Lo3He2Q2q/bW8frg3OPuGFGnnSMvATlP2x7IKsrBHt7hudy/n3WP9yqe2xHqPZHniN7hPb5EXiXr6FL/HPa8WuX9hL12Yjdvbgem71PsNQSeEOGpBXWe8Yhe1u/XKA2u+XrlHa3oFzkPGFW6POehxDMIb4e5caiOR2gXpWLu0valbBQFjBvoF3U8mUU4+YW3hP+NkjyS+tJI2o38XDrfYX0hrznvoWirpem4Ih15B3zOm3aSpblph3FYPxgD4CUwV/cYYyAj6+ka8uTLQREOZqWoLP8h/X+t907B70e9YAw9LEiT82rkYX09mo69jHmR3kafemdwbQygLxUYTyO59h5PzNr9w4/5yPMWM5vZX+9KZd+MPG3BPq7joQfP4fJAF0NHHOr+7/82a4953wnS5MYm5BF6N7IrfWQR7LgPosWEkQ2AH08jL8vew0OEl/Wcne2jx5i16wNeF+DdIvcc1C97KVufjpBDLk/Vcxgf8SHqL3hmmsMdmnTqIzxOI/+5/ga5QZ/Y0/3frLTLF6Qd6Gtz8uy9kHD91pmXYQ6AtuDy4NlsLz1rZu/d9bF43tNmj+b6Fkekgb0FD1/wCBXZVui/OU9FnsgTTh372I2ZHR5bVqY/MC+qE1WEqfLYlPP8krNb6njOw7gKWWE5whjl38G6B334DpeGqfKKGhF57K1qF+4LKzPvByiHtxe433j7GPqWbWDvpTlFz+hY28Ez4XWT5jGlJyl4cuqlznJRUTCHvJfOoX2ON7NnzOzoPtjUn7VOjzpVkaE4khJAffxjkAa2TFpkLSPIsfxgPcTPrVlG0O9hkyBfrG/rzM1za1JVUaP4uWPxoJy7B+/wnkvN2noy8hDkn435auBpqPT8Bc+VLGMo2/p0hE3CNk7OUxHw3tvh4Z311Fjq7vjgXB2voQDzf67XwNu6mXV6tUd9eg/mXL94NuQ5ypePQgK7dAWl+bUNLhKAx8+XOWKin7+kOlhAbdBlw4zVa6YfFyPPVnivt9/NutbOu9ZNI6Bn2WMq+gJsgEgvYPxEH8B6CfeXrS5tZPf7a+wFG8/y3gXrRMyKvIeirnJr+74vcBtA//ty5Lye1yGKiAn9gmdfQWl8RCa8k9fakl7KRm5I9TgjjetwDLeddRpk1UVomkHv2urG93Lc77cH8W9ba2w3i/tSzsMdqBNtxhNFKoHdAlnheYR/dp181RkHcp5tvQ3Mdj/GH+hZrH1wPlO7Dp3dOhbX0DXIKOTQRz7hv9E3YTex/sd9qDvIN7clyubLmltT/f3gvK+ji60bH62YQV6Rx6jtoBswRmC853cjT3XsBd+Gkf739RLpDpQVnjjZtvZe3CM9iTxDF3OEqLm7uMZ1t7U8D6e+t2+yuzZDV3AEFngBhu6J+gBsRV7bAs57fAjqE3WP7wRs3+7Kt7CcLVEHXitYn46QLbQBR+6qWheJ1gH8uhw/B7au10vRc1LZ56bIMhssSFMH9Le1wTVvA3Bf8OlRP1G7477Ipk+U4xc8ebNt5Nd1cmsPvu7Ybsf8DmN3HW/0PPeDvvVljOai/Ox+29SHuRSRzVsV8TSy3XJrU5ijrXT38zfCNG6NwKbxEVDMKm20M6hvX5sbG1K6Jem/98P+OZPSQM9j7ER7cX+rsgcir8R1IjxBT2N8ZZlJds9IyuM25JnXNzBOeHuFf0uBcQfyw/oa47hfy4kicPu1Ysb3C9zPdYf3fs79P/q2nLOt5rn/+2/LZm1vqdH6pl+LzUUcTddOSP2HHWXDvl+S+m3ZpyiKVGkDHG1mvzGzk/skx2+kK6grvCuQ1XJeWSfySQ48G/Wb+12An1Pz+i36JPor98lojcIs/g5T57cY0EHQ32xDQ39gPIrG+5HgnFmnLvA6MLL7fZSA6HtBTs/6ayg7y6N/DnRFNMdHnlekYzS/QptFHsR7+a1AFOUF416qjzIyTR37I5obRPoRVK1V9xpl+xTb1bVqIcaTHTt22B57HGgtvXr0TlJfb2bTrSjuH3zGGoI8iAshhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIISYNU6ZMsdtvv9bM7rKWQ60qNpjZz23jxlvGJ2MNIdq+uRvDuxnhOfy2MGULv4Mv8kwy3f0/t/Pe7yqOvOf6a7yTNOfhxe/EjnYhYqen270Ugl2YqcwLaNcSspH1PY+d6N5TA+9SgwcDXy8MdojBK0bOqxfKFdXTg8E5gGf7HbLsiQO79FI97Jt2Ee59ZDsJvLF2ecA5gf7Gzm3vyYPbDztQM7vJSk8rqZ8ds7R97S7n1bLcYU73lx6p8I7kiaNjVyR2QXqvm7wL23lqeaQqz89VnB8LaUfcXOqTG9B2OS/p2F3ndwHnvHtHHtU86H+sX9AvfmXV4Jl1wl8gj8cG13Lyk9pqOO0E3R7ter0xOGfW9kJr1t4F73erRl4yvDcHs/aOUXh6QVtEefcev1lPoc6QN7QlyWGJ95IQ7Rz2Xg9WBmlAtDMWeYRHkGBn6VDy0F6gj+Z0Ouo3198C3T4rycKm5V2p23jdifGAvT1BpuC1B7vsUb6cV6Fe+N/N7LH0d86LFfIc7XqFHkJ/S31pA7eP91rF3gUA2iwaM53HsFNS/dzEfcl5vYbHyl/xTt+UfhvuYy8FIIpWYBZ62iq9s6A+eHckdkOjzXhXcdJHG3IRT7xXJ+/JlZ5TenHBLmuuO992qS2G39BOsik9exOenfNqijZE+XhHd84rQJWHen4Hdpnndld7b16RTQF5gUyl/rOAdo+v9d7A0zvnX9hOs25F61isd2lJ/89fmtLCixCXD+Mg6hM2CNr2N0Hee+U4M3sFPRPjGGyZyHs0ypHzVAT5zXlSijyyoQ/CpsJ4zDrWeaA6NPW7DrsF6b2Xgqg8Iy5tIFflhuTIC0TS98elfNzJ8xHotzreCuD9GvewdyXv9ZC9N4A7Kq5Fcghdk7O1ALcT8pGbI3k5jmx5PHM0/Reyy+2D8uS8aKX7DfoIbck2ThpT1vroJuxdCfKMsRF6t9dQZT49lwdjE8p6gnW28S7w6GWW91jKdQjd5+1a9ibhZRPtTXZcOSfxujAqUx2vGshXeu46vsd73VkZ3O/HnZzHL8A2mveQkhs/fH4YjD/oQ9BhTwZp8Q7YEg/QtZznJpDxHF7OLyFHsEnYbsE57y2qjoeeSP/7OjuX/oauwTshq5m5W3FFcBJjbNCnttfpZ67Oyggf0b2oq3/sTGtG4/rdll+47IX9rNPjj/OoHs4poGNy3gKTfTELHvdyZfXehEfbSbrMa/QbXvtCH8pFocrNQby+j6JreY99kTdFvzaV8+6HOmSPWYlZ6f2b8DzMU3meFs1zHWWdR16jfP79vMise6z1nvTMuubiC5L387Ws66s8ALJHTKwlpTzPT/WxLuo3kb3vI6NhzSDwurkgeSxbC8/qS+niynT0HsRJDkvnzOiLkWdFvBd2dtCnDr3YbMcWs19cHtzfK39hbZuP53XQfaMufZWXLzObm+yU7PJbbl058pBYFTky8mQGOUb/5/p19k7Wc7i3GQMv++btQLZDHgnOmcUeRpGG7a/UP4aT7tiOuV+UD3gWRX/hfosxzkcx4blbkvEZo+mWXL34OS23wSvd8Sl3rIv3vBTZtV6/sI3jI/NgrKB7sH61MZoTOErP4aiXaF7l6jdXhy/t/JVjY7vFHo8BCuLXFXm9h6OOmMVr2ChzaqdTXt2+dJNPA3Ieyeus8cFTZDQuHhic80BWoZPZA/jZwTmzTg/VSe5Cu8uDsS76fgfd6fNj1p7jQEbPtmrQdjnPqcg/npv77oD8BJFLT0+yct369qVSV2CeELUvdC/kGbYaR0HAPC7JYWjfQn69p2DWPTgHvY+8cr9F3a9MR/SlOtHPOD3mEl4X9+Ob077WmpMlQdrs7VPOK9oT42kkG5h/YG7C5cE44e/j78R4B9pytjtv1m0Dw56iddeuNeazgvNVNjjnB7oG7c1zDPSvf3XXIo+pKDNkNfpulrFT8C3wt9L/78DzWJc5mzcbXTT3bRr6+cUgzX4Wk1vLxDX2uO095iMNe+BP8lbaIq/sPN9xLsndSKr7bSspDfoLyoPv3myroQ9E0de8PQibivW313UuekyUV3ut9W9u/DvWWqv26xjoU2xDV7Vh5NXb96EoioKH13jTWLnNy2MUCcxxbWSTRx7E0/334zmQie8EaXNR2IGP4PVwkMaPf5FOh50AfcBylMavrjkB9yOUGXY27HW2t10EvTlnti9tRP7RX/EcrkP/zQf99iBKA12ONWHM8Vl+vF2LtoiiC+V0BfoF5DGar3r7ntb05ycdE87FXT5mwHN4lNZHRUU5oj5/t/X39x/ct7ytGay7ln0o+u5RRaSf0K9ynsOhI6BTUS/8G6DUF8KIWb5foDzR2PD37lpkc6b+sW+SlQ4P1ZhbwNaEHch2FMZsX6/8/eNr7lpk1/q1rWiNGLYn3sU6OdlNZbXU6L9dzzNr66EV6ZibB/k1Axp7IRtbff+P5nt4B/eb9HfX98cogjDOod15/MA59Lc60UAjz+oANiJ0iI/20k85FmLwHH/88dYar/9fi393U5jZd83sjbb//vuPZ9YmPfIgLoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEmHT8+Mffspantsg5wloz22xbt9ZxbPTyohE/EL/qqqts/vz5Nm3aNFu8eLHdddddE50lIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEADnyyCPN7Agz+yd35SUzu8O+8IX/bnvvvff4Z2ySM1QURTHRmchx/fXX2xlnnGFXXXWVHX300faFL3zBrrnmGnvooYfs4IMP3un9W7ZssZkzZ5rZx6wzjLYPw/qUO2/WDj+EcFMI5zCd0iCsRxSKEyBkEULPRCHrfYjfKLwXQuogpFQUTsgThUXy4YAjUA8IIcbhMeqEqEyhw4ZTKMJs+OZcOGGAsF4czsTnw4c+MrMFqV3WrkwnEMaI2xkhN3zozI/T3yg/wnLk8gpy5cpd86G2EAeXQzAh3OHKdKwTWqRXEJInhZBamEIOr1lJaSATkBW0AYd1uddaYa3+3J5++mnbZx8OR1+Pthw/YXFYVx8SriuedZt9U5/YnOuTngvob4T/jUJTg6owvBEI18Oh95A39NM/7OF5EQjDiDByUZjYOqQ8Lkh5LkM7m7XrAfVyoXWDsGY+7KCZ2TvTEf0+7ejqCM2OesF9KBe3AXQpQibd6J5v1tbbUQhB4EO/IpQTh6D7HxVpzdpth7IivBHrrWPduVy7oKwoD5e5qi9ySEKEOvJhyVjP+VBQyB/033Nm9qk+yPG3zeyxdBZ6ZmWQV+Dr0qxbT/ZIqQfQF7CDMBgzw3BgVeB+lmfoyZyeRv/KhYkdCxxabSy7JKMw8CAKSwZ8mLQoBOCv3BFpOfSeuWuAyzWajgjldwpdg4x7Gy8KWYr7kEcOuYiQbEEYuy5yYd98uPQIH5puNB2jsGA4x/WK0IiQW/Ql9MnfmNnJY5Ljtgz/nXXawpkQsGUoNZSZw2hXyVRki/cCxlUOGw397O3tHLk+HticJZAb1DmPDVXvz4Uohf4PwkqOpPrc5u0Gs3a/97Ymzz/QX32+XmvdrE9H1GtuDGWisI1WMb7vKnjm9emI/sN6ZTQd90zHSFY9qc6GyZbYjjnJU+4YhA8tQ3bzPAb9w7c3h2WFjLPuec7MLu/DWPy0tcMxmrXbtypELpOTDZDTt7lQzh7Y4H+bSYN2X0Hn/Djqx6UIDm+JkLw+3GxujPJpewV6BeM15xUyifEvJzPQGZG+gd2H/s/PwbP92PKgdYO8ReGnQW59BGMubN9Du5OMJHnrsr/YFkc5cD/61DxK86g792q6Br3q80r6qSv/eFed0Myn0t9oj9dbK4z22/sgx9eajbyrfWHb8vQH7FHYEmx34BrGBoyZNMbMSuWHSGyATbGSnoP7MA/CvIhDxaMPQeahD7hPRXNpAF2D50R9KadrAN6PusY45uc+TLBe0xUeFv1keTtNuea3Mh3RBhwm1tw1tvHQr3K6b7jzv8dc1DreFc3NHUdR374H+cb4hbznxsVo3uvyU/b7yEaKwPok3ltnrS1q9zpjS5V+ZL1S5/3HW8um/r0+yPHfWXtuHJHTObAf/djN9qBf8wYfob+xzpQZ38u1VaxH8Fqbn5tH+r+X+XudNWtfdl77cDZnCc9DoOCiNbbMemJJbp48KLwtk5s/1Jl3Al4DQd3XkN+5qZ03rKCTS9MR/STldQHpnrVVNkxu7MUYzussX3fnMC5d304ylNaxMddYkt5xP+plm5l9tA9y/JB165UD6e+kM8tw5bCbWFZdnR+X0t65gk6+Kh1zehp1tbTz3WbWlj/cH+n0Kl1aR8ZYr6CO0adgf91LadI75qeyrkO759YpI3w52KZH/0C9IO/cPrBnr3bXuF5wDnWYxuk5e7aTbET+8X7UR9Tnc3oGdj/sg+Pp2s0uTdQXUH+wIdCmb6A0Pk/QJ1wvsOnQN3meCqADtwXXesHPda6ha9BRj7j/43ve2Mfjtgw/aC0dC3vN2wJs66S6Ou6g1vHOh+ma153ReNbLNyO8F/XC3w18H4q+NSbZGkr/LWArvpXSQHdh3Fifjlwuv7bE9QGbE7LG9wFfn+iTPP6gv/v5S26uAHLjR525Qh1Yv+H71n9Kx2RTD13UTtK1xoU8sg5M/aJcL8I90RwyN65DftanY+53Dugn56ZjNGbiHNc91sJ8uXjddY07h/9zf/FzUbP+r3FBjqGfojViP8fKrfPk+hD0LfQT2iv6TUYvBHP0OixKfekBtBPrdJ8P6FCWWb9ehrHzSDqXxqGF6V1rrkjnucxYg/Hrwbzu478HRfi+VKctGW87R+uCft6N//M4hPTORupY18Z6r5eVyKbx8wiei+J+2NKQichegL3BYzDqCO0N3cpjON4L2YzaAOMO2mxn9fycmV3UBzn+mJn9h/aFofQbg2JFOhGtt6Z2+K/pv5+O7C70zxfdef6mhvrIjRd4DuymqF782vBrg2s3uf8z6b5jUrnuwvoZ2wBV82Ueq9AnH7ed42Tjv1Lf/jT0EP9GzKzzNzPog96Wzr2f0hyafu/0SNU8kfPo7cDcmkG0lnKYS5PyN5d+z7LBr/lhXGE9inKh7Dz/yM0BPHXWPnL4OQHqaQGl+UGctuvb3K6Nx0JMFI8//rgddNB8a+nmNEeze83sPnvxxY02POzXrcWk9yB+xRVX2FlnnWVnn322LViwwK688kqbO3euLV++fOc3CyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghGsuBBx5oZr9jZrebWWGtzQ6r7Oabv6Ifh1cwqT2Iv/DCCzZ9+nS74YYb7JRT2h4hly1bZqtXr7ZVq3budaxz5xl7HK/yCpPbcTxWsAMQu7Mjb2vw1LIlHXPeOpB2JZ3DziXs/sUOzJxnN+y04l3JufT9gHZDDqe8bscOK+ycz3k85V2mVTv6OA12hu3n0vCOVnh7QJ1FfQO7yrCjMNf3sHPua8E1PBu7wrCLK7cD0z+X00cefrhs/A7e4ec9gkTefFI9np12rV6zK/LQr53g11rbaynvmvW7iXMe6xLwnnVPlCb1wWPSjrrX0KXP1amHKk9OZtVePiLvP95rybGUBm1X5S0zB8sD2ryORwZP5DECu6LZywvel7xJzEm7zjdGXs6g67G7mcuTdkCPHN35+q3cJqmOhpa2jpFX0nL3Lbw2RLszqzxCRWWODAwvh5D9nCcc7PD+Nzrn2zPnud7D7YyxwdcH5z3ySMLP6VckgFvM7P50to4XRu9J36ztFSN5Zig9QVHdzUo7BTehzOx1B+l8/eY8F0P+WHbRzr14C815+sldA9gFDO8skQdY1CePp86LV5l37icos/eeQOMqPOhux7vwXPZA43Vf5KHB6Yqsp/ZePLRFejKH88pRepdnLx1+h3yiY5f1Ne5itDvee0wFkTcu5KuO9/Kc9zjP2Mfjtgz/tbV2xfcSmSYH+mCyV4aXti9t914KU9pZ57bTvJSOXZFBfp/+9l4xAy8s5diQG+chG7BPIWuB1+gqz9kh7DFiNB1z/bfKC2PkAdNH4eF7vD5BG7KHxeShaDjVTzYqUM7+GQuR1506Xh09kQcmD3tTgf2Vi+zh9WTkPTrnARa2TJJ11OsI6ZVSH3J798umdl5ZsjqmFy9nIBoz4Y0D5eqhLedTvZTeBevYEF5WzqFrmD/Nc2nMuusjsm+97kO/YXujQhY6xo8kYwuS3K2FVzB+DryV5NoJ/RzjBsqTu4frAzoil77Kk1VuDSXSVz6am5+rm3XbYXgHe59G/4LceY+J/P46XnMAe7tBmXvRa5HdA28y+1nLpj6vD3L8Weu05ZemYy5ahu+3kUflKnuUPB/NSTYmvGWektrnpmiMQLusT0de60L+MQ6xN214/ch5Oq2C7cE6UeDqzLG8x/zIUyPSoN8ludqXPApu9rYzy5P3upjLs38/2z3w1Hq9S8NzA6zDQTaxHnY2pYGHLej/qH78mhTyweXy3iUrbGsza5eLdSDyCO+nOQ+LeAfagL3aey9tT7m0Zu15M5ySwJMl64CzrCXfh/dpPL4sne0lYpVZd31G5fF929vvZm2ZisbjGhEf4R0a3Xd7lZexuvjxndd4UTa0ZTRPrLIPov5SJypKzp6DzezH3uj9IPLePihytjRkg73ajWU+x+0DnZFbH/FjZGrDk05oJ7l5LOvPUeRR/06fr37Z1Z+17nkZ67A6HkDZTjBrt0tuPsJgrQFtCB3PXtcxnnrbrI73Z7KNFqRxotIbvFm7n+GbRM428dG5ou8fgHUXyoq6gr5jfeC9a2K+yvlJY+OclNeNUbkiL538brPucbROP/aeyaN3UN2fkJ59G+YGeGe/ohCSV9YFyU4p2xntxPYhvNrjeyb0HpUBkWk2YVzFtzXyvl7aangH23poZ8wFUFdYg3vOzC7exTUueB5GOdDvTgnu8jKZk/UD3dGse10TfZrHYJTfRxPl6Kh+bpKLcgfZwLoY20aPuzSwF+pGpPTrXt5DtVn7GzbWuKK5hrf/vu7S+vQ7YU7qL6E8g1Tmo5Kdfg/bLchPVJ9V3x2Db0ZltA2kjXRYDm/nRGtufo6OuTbLA+73NhLP4yGHOX1dZw3Gz++itU3kcYGZPWNmR/fJpp5WM4+9gOdB97A96X/LgfZh+wuyXccWqPJ4zWAOyf3VlzUXQc/3lyiCJGQNZd1C19Bv/e8LeF0b83iMnVHZ60T580CXjtK53HwDbYexLWdTQdZ6GVffQX+vccc60ZPqrG9E64yj6ZixV05I843bVqTzdcpD/W0krd9ug22/Ph0jnfgea7XjkX2Q40us08t3xbxhl6M4RWu8nrFGoIDuw9rlUroGmcjp2ej7wliAPvLfhKPfT+GdZ6Yj9a3K70G5CKqc1q9Bog7YNqqaQ0bzzBTtoqzf3Fga6ZmKMYLX6Ren4/2534/k8NGAsOaQ+x0Y0rDOWO+eE+lLv6ab0607+24nD+KiubTGkTnW+h3R42a2wXbs+IUNDQ3t5M6XJ5P6Z/ObNm2yl156yWbPnt1xfvbs2fbEE0+E9zz//PP2/PPPl//fsmVLmE4IMXmRHAvRfCTHQjQbybAQzUdyLETzkRwL0Xwkx0I0H8mxEM1GMixE85EcC9F8JMdCCCH6yT777GOf//z/ZR/4wCfM7Bm7777v68fhGSb1D8SBb8CiKCob9bLLLrO/+qto59zz1rkD/7mKt22pkaZX8F7s2Imei2vP1Hg30j4bvGOLS5N7js/XztL3A2qDYos7h3c/Q+l9frjMwzXS4Jr3vsBp9nRpojpA+t9k0gBfLgb3/calrVPvUd+M2tm/N8qzPxeVPZX5hV7yWEXL2K8bsKBajqtk+Fl3rkaet+fSPNOZ5gW+VqcecvLn8+rv4Wu+XX4TpEE5qp4bEdVjvzyIR/WK96V63RGl2d6ZJixPKj90R9mdMmmi+ijbPifPVfVZ14O4l0PfXtGzkZ9Ih/n312kvzkNVfXDeq8afzn6463L8LL2jTr9FGq47l9eX/NhnQT9j+al6b67uo/6SGzeqyJW5Tn1gzEJ+pgT358Z3r1+iMvu6ozRFlZ2RsyX2DM67d+Rktif9FunJOul9Pmo8p+A+WSXzTJWMRXXn+1sdu3Bn6cx6GY+rZdjnqY5tlAN15/W3WXfbp7Q7KE04FnC+zNr9LZPXrF3gn+Pzxd6vcjZaFdx/6tRnle6Jxvcqe9usW59kxqqsjIJeylyHqDy96AOQm1sA1oV15mO+PqL6zdVZhb1SRHYCP7tfNvXzLl+9lLUOUT+uGltqPHdHVC917vftUsfejp4Z1UHVfKqGTo7Gj5e8rEb9NldWpPfl6XX8yKWv0k85+zYzzwxtkarn4B1cL/7ZuXlIL/2Xdc9Y9Fpk92D9alv5/P7MjevY8oxvw+ieGnayt7NfzOkJ33acBvlHvrjuK2yAnu3BOvfVmWP5/EfPRRrXB0LbJrI569iTPm001+llrc3LI+f1RZc2qh8vI5Ge2J655ol0YNX6WVQepN0rHXPrg/7//I7cOu7W8t39GY97GWc5r1V6n9P4vt3L3Dh6dgDGr7IqdnVu4PPDbTit4lodHRb1lzo6vo5+e9Ydc88cxHeHKnK2tJuDjTk/XGbfzyL8GJnuf3FX6yW3Fl/1/aCfa9W5uWid8rCdYFZvTGd8+kjWq3Rgj7rnpTo6C/2iTjl8mjrrpnwN74raecidi2Q+t1Zd9RyQ+zbXS73m5iFU9y96nTMWOzcHlaernf16vVlbJ3u9S/nZ4WUTaXNrKLnvHz5freOurXFVPfuZIG0vsp5bd/X3R/ray0ZunpmTNciG7zec3tsLddZQOE9ev7Ace7sgGqerdF+dcTUgK88glbnrO1GUD6bON5btFfnodWzwdRXpsKr65fxU1X3mW0ut/ET4+V2UlseIVrr+2NR189gLuW8tVTLKdd+LXextpD2DNNFvQ/yzo/WIqvzk1mJQvqjfVq2H8bUdmXzk8lhFr7ZrL7bIWMZV1pNjWbvoJQ33uxr2yotV6wE5qL+V6xdYD8jVYT/nxs9ZpwfxinnDLst3L7Zsr++qWnMza4fB3dV+UQc/XuTG1YwNW/k9KLDjwrS+PmBT15lDRmnq/LbD57HGWgGv2aGZxryuMYbfK3X9RjB6TnS/l82cbt3Z2kdvc2MhJhvve9/77AMfuNjMDrMlS5ZMdHYmNUPFJJb0F154waZPn2433HCDnXJKO6TXsmXLbPXq1bZqVXd4Ir/z7PHHH7fDDz98XPIrhMizYcMGO+igg3aaTnIsxORFcixE86kjx5JhISYvGouFaD6SYyGaj+RYiOYjORai+WiNS4hmo7FYiOYjORai+dSVYyFEc5nUPxA3M3vDG95gixcvtquuuqo8d/jhh9sf/dEf2WWXXbbT+3fs2GE//elP7fDDD7cNGzbYPvvsM8js9o0tW7bY3LlzG5Vns2bmW3kePEVR2NatW+2AAw6wKVOm7PwGh+R4/Ghins2ame+m5VlyrDwPEuV5fNgVOd6xY4f98pe/tKIo7OCDD25UuZvYVsrz+NC0PL9cx2Kz5rWVmfI8XjQtzy9XOW5aO4Em5lt5HjySY+V50DQx303Ls+RYeR4kTcyzWfPyrTUu5XmQKM+D5+U6Fps1r63MlOfxoml5frnKcdPaCTQx38rz4NlVORZCNIfhnSeZWC688EI744wzbMmSJXbUUUfZF7/4RXvsscfsnHPOqXX/lClT7MADDzQzs3322acRSphpYp7Nmplv5XmwzJw5c8z3So7Hnybm2ayZ+W5SniXHyvOgUZ4Hz1jleMqUKXbQQQfZli2tsGhNK7eZ8jxeKM+D5eU8Fps1M9/K8/jQpDy/nOW4iXk2a2a+lefBIjlWnseDJua7SXmWHCvPg6aJeTZrVr61xqU8DxrlebC8nMdis2bmW3keH5qU55ezHDcxz2bNzLfyPFh2RY6FEM1h0v9A/LTTTrMnn3zSPvnJT9rGjRvtiCOOsFtvvdXmzZs30VkTQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIScWk/4G4mdl5551n55133kRnQwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIISY1UyY6A+PB1KlT7eKLL7apU6dOdFZq08Q8mzUz38pzM2himZXn8aOJ+W5inneVJpZZeR4flOfm0MRyK8/jg/LcDJpa5ibmW3keH5qY512liWVuYp7Nmplv5bkZNLHMyvP40cR8NzHPu0oTy6w8jw9NzLNZc/O9KzSxzMrz+KA8N4OmlrmJ+Vaex4cm5nlXaWKZm5hns2bmW3kWQoj+MVQURTHRmRBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgix67wsPIgLIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEywH9QFwIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCF2E/QDcSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhNhNeFn8QPyqq66y+fPn27Rp02zx4sV21113TXSWzMzssssus9e97nU2Y8YM22+//ezkk0+2n/70px1piqKwv/zLv7QDDjjARkZGbOnSpfaTn/xkgnLczWWXXWZDQ0P2oQ99qDw3WfP8+OOP27ve9S571ateZdOnT7fXvOY19sMf/rC8PtnyvX37dvvEJz5h8+fPt5GRETvkkEPsk5/8pO3YsWPS5nlQTFYZNpMcjzeS4+YiOR4sTZHjpsmwmeSYkRwPFsnxYJAMdyI5HiyS48EgOe5kssqxZHh8kRw3l8kqw2aS4/FGctxcJMeDpSly3DQZNpMcM5LjwSI5HgyS4U4kx4NFcjwYJMedTFY5lgyPL5JjIYQYB4rdnG984xvFnnvuWXzpS18qHnrooWLZsmXFK17xiuLRRx+d6KwVv/d7v1d85StfKf7lX/6lWL16dXHiiScWBx98cPHMM8+UaS6//PJixowZxbe+9a1izZo1xWmnnVbMmTOn2LJlywTmvMUPfvCDYnR0tDjyyCOLZcuWlecnY56feuqpYt68ecWZZ55Z3HvvvcW6deuKO+64o3jkkUcmbb4/9alPFa961auKW265pVi3bl1xww03FHvvvXdx5ZVXTto8D4LJLMNFITkeTyTHzUVyPFiaIsdNlOGikBwDyfFgkRwPDslwG8nxYJEcDw7JcZvJLMeS4fFDctxcJrMMF4XkeDyRHDcXyfFgaYocN1GGi0JyDCTHg0VyPDgkw20kx4NFcjw4JMdtJrMcS4bHD8mxEEKMD7v9D8Rf//rXF+ecc07HucMOO6z42Mc+NkE5qubXv/51YWbFqlWriqIoih07dhT7779/cfnll5dpnnvuuWLmzJnF1VdfPVHZLIqiKLZu3Vq8+tWvLm6//fbi2GOPLQ2LyZrnj370o8Wb3vSmyuuTMd8nnnhi8d73vrfj3Fvf+tbiXe96V1EUkzPPg6BJMlwUkuNBIjluLpLjwdEkOW6iDBeF5BhIjgeH5HiwSIbbSI4Hh+R4sEiO2zRJjiXDg0Ny3FyaJMNFITkeJJLj5iI5HhxNkuMmynBRSI6B5HhwSI4Hi2S4jeR4cEiOB4vkuE2T5FgyPDgkx0IIMT5MmSDH5ePCCy+8YD/84Q/tLW95S8f5t7zlLfb9739/gnJVzdNPP21mZq985SvNzGzdunX2xBNPdOR/6tSpduyxx054/j/wgQ/YiSeeaMcff3zH+cma5+985zu2ZMkS++M//mPbb7/9bNGiRfalL32pvD4Z8/2mN73J/umf/sl+9rOfmZnZj3/8Y/ve975nf/AHfzBp89xvmibDZpLjQSI5biaS48HSJDluogybSY7NJMeDRnI8WCTDLSTHg0VyPFgkxy2aJseS4cEhOW4mTZNhM8nxIJEcNxPJ8WBpkhw3UYbNJMdmkuNBIzkeLJLhFpLjwSI5HiyS4xZNk2PJ8OCQHAshxPgwPNEZGCSbNm2yl156yWbPnt1xfvbs2fbEE09MUK5iiqKwCy+80N70pjfZEUccYWZW5jHK/6OPPjrueQTf+MY37Ec/+pHdd999Xdcma55/8Ytf2PLly+3CCy+0j3/84/aDH/zA/uzP/symTp1q7373uydlvj/60Y/a008/bYcddpjtscce9tJLL9kll1xip59+uplN3rruJ02SYTPJ8aCRHDcTyfHgaJocN1GGzSTHZpLjQSI5HjyS4RaS48EhOR48kuMWTZJjyfBgkRw3kybJsJnkeNBIjpuJ5HhwNE2OmyjDZpJjM8nxIJEcDx7JcAvJ8eCQHA8eyXGLJsmxZHiwSI6FEGJ82K1/IA6GhoY6/l8URde5ieaDH/ygPfjgg/a9732v69pkyv+GDRts2bJl9t3vftemTZtWmW4y5dnMbMeOHbZkyRK79NJLzcxs0aJF9pOf/MSWL19u7373u8t0kynf119/vX31q1+1r3/96/bbv/3btnr1avvQhz5kBxxwgL3nPe8p002mPA+KppRRcjxYJMfNpilllBwPjibKsJnkmGlKGSXHg6OJciwZ7qQp5ZQcDw7JcfNpQjklw4NFctxsmlJGyfFgkRw3m6aUUXI8OJoow2aSY6YpZZQcD44myrFkuJOmlFNyPDgkx82nCeWUDA8WybEQQowPUyY6A4Nk1qxZtscee3TtMvv1r3/dtVtnIjn//PPtO9/5jt1555120EEHlef3339/M7NJlf8f/vCH9utf/9oWL15sw8PDNjw8bKtWrbLPfvazNjw8XOZrMuXZzGzOnDl2+OGHd5xbsGCBPfbYY2Y2Oev6wx/+sH3sYx+zP/mTP7GFCxfaGWecYRdccIFddtllZjY589xvmiLDZpLj8UBy3Ewkx4OhiXLcRBk2kxybSY4HheR4fJAMt5AcDwbJ8fggOW7RFDmWDA8eyXEzaYoMm0mOxwPJcTORHA+GJspxE2XYTHJsJjkeFJLj8UEy3EJyPBgkx+OD5LhFU+RYMjx4JMdCCDE+7NY/EN9rr71s8eLFdvvtt3ecv/322+2Nb3zjBOWqTVEU9sEPftBuvPFG++d//mebP39+x/X58+fb/vvv35H/F154wVatWjVh+f/d3/1dW7Nmja1evbr8t2TJEnvnO99pq1evtkMOOWTS5dnM7Oijj7af/vSnHed+9rOf2bx588xsctb1s88+a1OmdIroHnvsYTt27DCzyZnnfjPZZdhMcjyeSI6bieR4MDRRjpsow2aSYzPJ8aCQHI8PkuEWkuPBIDkeHyTHLSa7HEuGxw/JcTOZ7DJsJjkeTyTHzURyPBiaKMdNlGEzybGZ5HhQSI7HB8lwC8nxYJAcjw+S4xaTXY4lw+OH5FgIIcaJYjfnG9/4RrHnnnsWX/7yl4uHHnqo+NCHPlS84hWvKNavXz/RWSvOPffcYubMmcXKlSuLjRs3lv+effbZMs3ll19ezJw5s7jxxhuLNWvWFKeffnoxZ86cYsuWLROY806OPfbYYtmyZeX/J2Oef/CDHxTDw8PFJZdcUjz88MPF1772tWL69OnFV7/61Umb7/e85z3FgQceWNxyyy3FunXrihtvvLGYNWtW8ZGPfGTS5nkQTGYZLgrJ8XgiOW4ukuPxYbLLcRNluCgkx0ByPD5IjvuPZLiN5Hh8kBz3H8lxm8ksx5Lh8UNy3FwmswwXheR4PJEcNxfJ8fgw2eW4iTJcFJJjIDkeHyTH/Ucy3EZyPD5IjvuP5LjNZJZjyfD4ITkWQojxYbf/gXhRFMXnP//5Yt68ecVee+1VvPa1ry1WrVo10VkqiqIozCz895WvfKVMs2PHjuLiiy8u9t9//2Lq1KnFm9/85mLNmjUTl+kAb1hM1jzffPPNxRFHHFFMnTq1OOyww4ovfvGLHdcnW763bNlSLFu2rDj44IOLadOmFYccckhx0UUXFc8///ykzfOgmKwyXBSS4/FGctxcJMeDpwly3DQZLgrJMSM5HjyS4/4jGe5Ecjx4JMf9R3LcyWSVY8nw+CI5bi6TVYaLQnI83kiOm4vkePA0QY6bJsNFITlmJMeDR3LcfyTDnUiOB4/kuP9IjjuZrHIsGR5fJMdCCDF4hoqiKHbVC7kQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIiWfKRGdACCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghRH/QD8SFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBiN0E/EBdCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQojdBP1AXAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIXYT9ANxIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE2E3QD8SFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBiN0E/EBdCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQojdBP1AXAghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIXYT9ANxIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE2E3QD8SFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBiN0E/EBdCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQojdBP1AXExK/v3f/932339/u/TSS8tz9957r+2111723e9+dwJzJoSoi+RYiOYjORai+UiOhWg2kmEhmo/kWIjmIzkWovlIjoVoPpJjIZqNZFiI5iM5FkKIZjJUFEUx0ZkQIuLWW2+1k08+2b7//e/bYYcdZosWLbITTzzRrrzyyonOmhCiJpJjIZqP5FiI5iM5FqLZSIaFaD6SYyGaj+RYiOYjORai+UiOhWg2kmEhmo/kWAghmod+IC4mNR/4wAfsjjvusNe97nX24x//2O677z6bNm3aRGdLCNEDkmMhmo/kWIjmIzkWotlIhoVoPpJjIZqP5FiI5iM5FqL5SI6FaDaSYSGaj+RYCCGahX4gLiY127ZtsyOOOMI2bNhg999/vx155JETnSUhRI9IjoVoPpJjIZqP5FiIZiMZFqL5SI6FaD6SYyGaj+RYiOYjORai2UiGhWg+kmMhhGgWUyY6A0Lk+MUvfmG//OUvbceOHfboo49OdHaEEGNAcixE85EcC9F8JMdCNBvJsBDNR3IsRPORHAvRfCTHQjQfybEQzUYyLETzkRwLIUSzkAdxMWl54YUX7PWvf7295jWvscMOO8yuuOIKW7Nmjc2ePXuisyaEqInkWIjmIzkWovlIjoVoNpJhIZqP5FiI5iM5FqL5SI6FaD6SYyGajWRYiOYjORZCiOahH4iLScuHP/xh++Y3v2k//vGPbe+997bjjjvOZsyYYbfccstEZ00IURPJsRDNR3IsRPORHAvRbCTDQjQfybEQzUdyLETzkRwL0Xwkx0I0G8mwEM1HciyEEM1jykRnQIiIlStX2pVXXmnXXnut7bPPPjZlyhS79tpr7Xvf+54tX758orMnhKiB5FiI5iM5FqL5SI6FaDaSYSGaj+RYiOYjORai+UiOhWg+kmMhmo1kWIjmIzkWQohmIg/iQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIsZsgD+JCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgixm6AfiAshhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcRugn4gLoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEELsJ+oG4EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC7CboB+JCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgixm6AfiAshhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcRugn4gLoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEELsJ+oG4EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC7CboB+JCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgixm6AfiAshhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcRugn4gLoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEELsJ+oG4EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC7Cb8/0378wqvfCMAAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 3400x600 with 23 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"imageAnalyser.center = (960, 1050)\n",
"imageAnalyser.span = (100, 100)\n",
"imageAnalyser.fraction = (0.1, 0.1)\n",
"\n",
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
"\n",
"dataSet_cropOD.plot.pcolormesh(cmap='jet', vmin=0, vmax=1, col=scanAxis[0], row=scanAxis[1])\n",
"plt.show()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Do a 2D two-peak gaussian fit to the OD images"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Do the fit"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"from Analyser.FitAnalyser import ThomasFermi2dModel, DensityProfileBEC2dModel, polylog2_2d\n",
"\n",
"fitModel = DensityProfileBEC2dModel()\n",
"# fitModel = ThomasFermi2dModel()\n",
"\n",
"fitAnalyser = FitAnalyser(fitModel, fitDim=2)\n",
"\n",
"# fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
"\n",
"dataSet_cropOD = dataSet_cropOD.chunk((1,1,100,100))\n",
"\n",
"params = fitAnalyser.guess(dataSet_cropOD, guess_kwargs=dict(pureBECThreshold=0.5), dask=\"parallelized\")\n",
"fitResult = fitAnalyser.fit(dataSet_cropOD, params).load()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"f:\\Jianshun\\analyseScript\\Analyser\\FitAnalyser.py:84: RuntimeWarning: invalid value encountered in power\n",
" res = (1- ((x-centerx)/(sigmax))**2 - ((y-centery)/(sigmay))**2)**(3 / 2)\n"
]
},
{
"data": {
"text/plain": [
"<xarray.plot.facetgrid.FacetGrid at 0x1c08392d070>"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAC5EAAAJOCAYAAACUDmK0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3ycZZ3///fk2KRNmqYlJ9qSQlvKSU6ynFwOinhcZcXT4rK6sh53v55+HhZ113oABE91l10Rvwr4VcHvfsHDrqigu4AIKiBFVCi0NtDStKUlaZM2TZpkfn/c1+e+r7nmnmmSNplM8no+Hnlc99z3NTP3TOYz132Y+/PJZLPZrAAAAAAAAAAAAAAAAAAAAAAAs0JFqVcAAAAAAAAAAAAAAAAAAAAAADB1+BE5AAAAAAAAAAAAAAAAAAAAAMwi/IgcAAAAAAAAAAAAAAAAAAAAAGYRfkQOAAAAAAAAAAAAAAAAAAAAALMIPyIHAAAAAAAAAAAAAAAAAAAAgFmEH5EDAAAAAAAAAAAAAAAAAAAAwCzCj8gBAAAAAAAAAAAAAAAAAAAAYBbhR+QAAAAAAAAAAAAAAAAAAAAAMIvwI3IAAAAAAAAAAAAAAAAAAAAAmEX4EXmZuOuuu5TJZNTb2zvhx+js7NSaNWsOaj3e8pa36KKLLira57zzztP73ve+CT/HjTfeqKampgnfH5iOiGGg/BHHQPkjjoHyRxwD5Y84BsobMQyUP+IYKH/EMVD+iGOg/BHHAICZgh+Rl6mZMkCnbRC94Q1v0BNPPFGaFUrxy1/+UlVVVTrppJMm/bl6enp06aWXav78+Zo/f74uvfTSA25w3nbbbXrJS16iRYsWKZPJaO3atZO+njh4xPDUme4xvHr1aq1atUpz587VggULdMEFF+jXv/71pK8rDh5xPHWmexy/5S1vUSaTyfk744wzJn1dcfCI46kz3eM4jGH7+9znPjfp64uDQxxPnekex9u2bdNb3vIWdXR0qL6+Xi996Uv15JNPTvq64uARx1NnKuP4iiuu0FlnnaX6+vox/385xlWeiOGpM91jmGNc5Ys4njrTPY45xlW+iOOpM93jmGNc5Ys4njrTPY45xlW+iOOpM1Vx3NXVpcsuu0zLli1TXV2djjrqKH3iE5/Q0NBQ0ftxjAtAueFH5Jh26urq1NLSUurVkCTt2rVLf/M3f6MXvehFU/J8l1xyidauXauf/OQn+slPfqK1a9fq0ksvLXqfPXv26Oyzz9ZnP/vZKVlH4ECI4fHF8MqVK3Xttdfq0Ucf1b333qvOzk5deOGFevbZZ6dknYE0xPH44liSXvrSl6q7uzv+u/3226dgbYHCiOPxxbEfv93d3frGN76hTCajiy++eErWGUhDHI89jrPZrC666CL96U9/0g9+8AM9/PDDOuKII3TBBRdoz549U7LOQJrZHMdDQ0N63etep3e9611jvg/HuDDdEMPji2GOcWE6Io7HF8cSx7gw/RDH44tjjnFhOiKOxx7HHOPCdDVb4/jxxx/X6OiovvrVr+oPf/iDvvSlL+m6667TRz/60aL34xgXgHLDj8hLYHBwUO95z3vU0tKiOXPm6AUveIEeeOCBnD633367Vq5cqbq6Op1//vnq6uqKl911113627/9W+3atSu+enj16tVjeu69e/fqrW99qxoaGrR06VJdf/31OcsfffRRvfCFL1RdXZ0WLlyot7/97erv7y/4eHv27NHf/M3faN68eWpvb9cXvvCFMb8P5513np566im9//3vj1+HlH913urVq3XSSSfpG9/4hpYuXap58+bpXe96l0ZGRnTNNdeora1NLS0tuuKKK3Ief9euXXr729+ulpYWNTY26oUvfKEeeeSRMa+fJL3jHe/QJZdcojPPPHNc95uIxx57TD/5yU/0v//3/9aZZ56pM888U1/72tf0X//1X1q3bl3B+1166aX653/+Z11wwQWTvo6IEMMRYjjXRGP4kksu0QUXXKAjjzxSxx13nL74xS9q9+7d+t3vfjfp6zybEccR4jjXRONYkmpra9XW1hb/NTc3T/r6znbEcYQ4zjXROPbjt62tTT/4wQ90/vnn68gjj5z0dZ7NiOMIcZxrInH85JNP6le/+pW+8pWv6LTTTtPRRx+tf//3f1d/f79uvvnmSV/n2Yw4jhDH+T75yU/q/e9/v0444YQx34djXFOPGI4Qw/kmEsMc4yoN4jhCHOebSBxLHOMqBeI4Qhznm0gcc4yrNIjjCHGcb7xxzDGu0iGOI8Rxrpe+9KW64YYbdOGFF+rII4/Uq171Kn3wgx/UbbfdVvR+HOMCUG74EXkJfPjDH9att96qm266Sb/97W+1fPlyveQlL9Fzzz0nSdq0aZNe85rX6OUvf7nWrl2rv/u7v9M//uM/xvc/66yztGbNGjU2NsZXEX/wgx8c03N/4Qtf0POf/3w9/PDDeve73613vetdevzxxyVFGyYvfelLtWDBAj3wwAP6j//4D/3sZz/TP/zDPxR8vA996EP6n//5H33ve9/THXfcobvuuksPPfTQmNbltttu0+LFi/WpT30qfh2FbNiwQT/+8Y/1k5/8RDfffLO+8Y1v6BWveIU2b96su+++W1dffbU+/vGP61e/+pWk6ArNV7ziFdq6datuv/12PfTQQzrllFP0ohe9KH6fD+SGG27Qhg0b9IlPfGJM/SVp3rx5Rf9e9rKXFbzv/fffr/nz5+v000+P551xxhmaP3++7rvvvjGvAyYfMRwhhnMdihgeGhrS9ddfr/nz5+vEE08c83pj/IjjCHGc62Di+K677lJLS4tWrlypt73tbdq+ffuY1xkTQxxHiONch2I83rZtm370ox/psssuG/M6Y2KI4whxnGsicTw4OChJmjNnTjyvsrJSNTU1uvfee8e83hg/4jhCHKNcEcMRYvjQ4xjX1CGOI8TxocMxrqlHHEeI40OPY1xThziOEMcHj2NcpUMcR4jjA9u1axcXWgKYebKYUv39/dnq6urst7/97Xje0NBQtqOjI3vNNddks9ls9vLLL88ec8wx2dHR0bjPRz7ykaykbE9PTzabzWZvuOGG7Pz588f13EcccUT2r//6r+Pbo6Oj2ZaWluxXvvKVbDabzV5//fXZBQsWZPv7++M+P/rRj7IVFRXZrVu3ZrPZbPbNb35z9tWvfnU2m81m+/r6sjU1Ndlbbrkl7r9z585sXV1d9r3vfe+Y1+lLX/pSzrzwtX3iE5/I1tfXZ3fv3h3Pe8lLXpLt7OzMjoyMxPOOPvro7FVXXZXNZrPZn//859nGxsbsvn37ch77qKOOyn71q1894Ho98cQT2ZaWluy6devidTjxxBMPeL8nn3yy6N/mzZsL3veKK67IrlixIm/+ihUrsldeeeUBn3vjxo1ZSdmHH374gH0xccRw/joRw5GDieH//M//zM6dOzebyWSyHR0d2d/85jcHXFdMHHGcv07EcWSicXzLLbdk/+u//iv76KOPZn/4wx9mTzzxxOxxxx2X99px6BDH+etEHEcOdps6m81mr7766uyCBQuyAwMDY+qPiSGO89eJOI5MJI6HhoayRxxxRPZ1r3td9rnnnssODg5mr7rqqqyk7IUXXnjA9cXEEMf560Qc55vI/5djXFODGM5fJ2I433j/vxzjmlrEcf46Ecf5xvP/5RjX1COO89eJOM43kf9vNssxrqlCHOevE3Gcb6z/X45xlQZxnL9OxHG69evXZxsbG7Nf+9rXxtSfY1wAykXV1P9sfXbbsGGD9u/fr7PPPjueV11drT/7sz/TY489Jikq3XzGGWfEZUEkHbIyHM973vPi6Uwmo7a2tjiLwGOPPaYTTzxRc+fOjfucffbZGh0d1bp169Ta2pr3WoaGhnLWrbm5WUcfffQhWVdfZ2enGhoa4tutra2qrKxURUVFzjx7LQ899JD6+/u1cOHCnMcZGBjQhg0bij7XyMiILrnkEn3yk5/UypUrx7Wey5cvH1f/kP8/N9lsNnU+SoMYnhhiuHgMn3/++Vq7dq127Nihr33ta3r961+vX//612ppaTmo9UE64nhiiOPCcfyGN7whnj7++OP1/Oc/X0cccYR+9KMf6TWvec1BrQ/SEccTQxyPbZv6G9/4ht70pjflZHvBoUccTwxxnB7H1dXVuvXWW3XZZZepublZlZWVuuCCC8iUPMmI44mZLXGM6Y8YnhhiuDiOcU0t4nhiiOPCOMY19YjjiSGOx4ZjXFODOJ4Y4jgdx7hKgziemNkWx1u2bNFLX/pSve51r9Pf/d3fHZLHBIDpgh+RT7FsNisp/4SofzLU+kyG6urqnNuZTEajo6N56xAqdAJ3qqStd7HXMjo6qvb2dt111115j9XU1FT0ufr6+vTggw/q4YcfjkvAjI6OKpvNqqqqSnfccYde+MIXpt533rx5RR/7z//8z/XjH/84dVlbW5u2bduWN//ZZ5/N2/BD6RDDE0MMF4/huXPnavny5Vq+fLnOOOMMrVixQl//+td1+eWXF70fJoY4nhjieOxjcXt7u4444gg9+eSTY74Pxoc4nhji+MBx/Itf/ELr1q3Td7/73QP2xcEhjieGOC4cx6eeeqrWrl2rXbt2aWhoSIcddphOP/10Pf/5zy+6Lpg44nhiZkMcozwQwxNDDBfHMa6pRRxPDHE8dhzjmnzE8cQQxwfGMa6pQxxPDHFcGMe4ph5xPDGzKY63bNmi888/X2eeeaauv/76on0BoBzxI/Iptnz5ctXU1Ojee+/VJZdcIknav3+/HnzwQb3vfe+TJB177LH6/ve/n3O/X/3qVzm3a2pqNDIyckjX7dhjj9VNN92kPXv2xFex/fKXv1RFRUXqlVzLly9XdXW1fvWrX2np0qWSpJ6eHj3xxBM699xzx/Sck/E6JOmUU07R1q1bVVVVpc7OznHdt7GxUY8++mjOvH//93/Xf//3f+v//b//p2XLlhW879q1a4s+dl1dXcFlZ555pnbt2qXf/OY3+rM/+zNJ0q9//Wvt2rVLZ5111thfACYVMZyLGE4cyhjOZrMaHBwc130wdsRxLuI4cajieOfOndq0aZPa29vHfB+MD3GcizhOHGwcf/3rX9epp56qE0888YB9cXCI41zEceJg43j+/PmSpCeffFIPPvigPv3pTx/wPpgY4jgXcYxyQwznIoYnB8e4JhdxnIs4PvQ4xjX5iONcxPGhwzGuqUMc5yKODx2OcU0d4jgXcZzrmWee0fnnn69TTz1VN9xwQ06mdQCYKfgR+RSbO3eu3vWud+lDH/qQmpubtXTpUl1zzTXau3evLrvsMknSO9/5Tn3hC1/QBz7wAb3jHe/QQw89pBtvvDHncTo7O9Xf36+f//znOvHEE1VfX6/6+vqDWrc3velN+sQnPqE3v/nNWr16tZ599ln9r//1v3TppZemZvuaN2+eLrvsMn3oQx/SwoUL1draqo997GPjGjA7Ozt1zz336I1vfKNqa2u1aNGig3oN5oILLtCZZ56piy66SFdffbWOPvpobdmyRbfffrsuuuiioldpVlRU6Pjjj8+Z19LSojlz5uTNDx1MGZRjjjlGL33pS/W2t71NX/3qVyVJb3/72/XKV74yp7TMqlWrdNVVV+kv//IvJUnPPfecnn76aW3ZskWStG7dOklR9ra2trYJrw/SEcO5iOHERGJ4z549uuKKK/SqV71K7e3t2rlzp/793/9dmzdv1ute97oJrwuKI45zEceJicRxf3+/Vq9erYsvvljt7e3q6urSRz/6US1atCgeq3HoEce5iOPERLepJWn37t36j//4D33hC1+Y8PNj7IjjXMRxYqJx/B//8R867LDDtHTpUj366KN673vfq4suukgXXnjhhNcFxRHHuYjjXE8//XR8zGpkZCQ+Ybd8+fI4AxTHuEqLGM5FDOcabwxzjKs0iONcxHGu8cYxx7hKgzjORRznmsg2tcQxrqlGHOcijnNNJI45xjX1iONcxHFiy5YtOu+887R06VJ9/vOf17PPPhsv849VcYwLQLnj8pgS+OxnP6uLL75Yl156qU455RStX79eP/3pT7VgwQJJ0tKlS3XrrbfqP//zP3XiiSfquuuu05VXXpnzGGeddZbe+c536g1veIMOO+wwXXPNNQe9XvX19frpT3+q5557Tqeddppe+9rX6kUvepGuvfbagvf53Oc+p3POOUevetWrdMEFF+gFL3iBTj311DE/56c+9Sl1dXXpqKOO0mGHHXbQr8FkMhndfvvtOuecc/TWt75VK1eu1Bvf+EZ1dXWNqYx9qXz729/WCSecoAsvvFAXXnihnve85+n//J//k9Nn3bp12rVrV3z7hz/8oU4++WS94hWvkCS98Y1v1Mknn6zrrrtuStd9NiGGE8RwrvHGcGVlpR5//HFdfPHFWrlypV75ylfq2Wef1S9+8Qsdd9xxpXgJswZxnCCOc00kjh999FG9+tWv1sqVK/XmN79ZK1eu1P3336+GhoZSvIRZgzhOEMe5JrJNLUm33HKLstms/uqv/moqV3dWI44TxHGuicRxd3e3Lr30Uq1atUrvec97dOmll+rmm2+e6lWfdYjjBHGc65//+Z918skn6xOf+IT6+/t18skn6+STT9aDDz4Y9+EYV+kRwwliONd4Y5hjXKVDHCeI41wTiWOOcZUGcZwgjnNNZJta4hhXKRDHCeI410TimGNcpUEcJ4jjxB133KH169frv//7v7V48WK1t7fHfz6OcQEod5lsNpst9UoAAAAAAAAAAAAAAAAAAAAAAKYGmcgBAAAAAAAAAAAAAAAAAAAAYBbhR+QzxC9+8QvNmzev4B/rlOu4444ruF7f/va3S7pumJ2mY7xMx3UyxDCmo+kYM9NxnQxxjOloOsbMdFwnQxxjOpqOMTMd18kQx5iOpmPMTMd1MsQxppvpGC/TcZ0MMYzpaDrGzHRcJ0McYzqajjEzHdfJEMeYjqZjzEzHdTLEMaaj6Rgz03GdDHEMAKWTyWaz2VKvBA7ewMCAnnnmmYLLly9fPoVrE5mO62Seeuop7d+/P3VZa2urGhoapniNMNtNx3iZjutkiGFMR9MxZqbjOhniGNPRdIyZ6bhOhjjGdDQdY2Y6rpMhjjEdTceYmY7rZIhjTDfTMV6m4zoZYhjT0XSMmem4ToY4xnQ0HWNmOq6TIY4xHU3HmJmO62SIY0xH0zFmpuM6GeIYAEqHH5EDAAAAAAAAAAAAAAAAAAAAwCxSUeoVAAAAAAAAAAAAAAAAAAAAAABMHX5EDgAAAAAAAAAAAAAAAAAAAACzSFWpV2CyjY6OasuWLWpoaFAmkyn16gCzUjabVV9fnzo6OlRRMf5rV4hjoPSIY6D8HUwcE8NA6TEWA+WPOAbKH3EMlD/iGCh/HOMCyhtjMVD+iGOg/B1sHAOYWWb8j8i3bNmiJUuWlHo1AEjatGmTFi9ePO77EcfA9EEcA+VvInFMDAPTB2MxUP6IY6D8EcdA+SOOgfLHMS6gvDEWA+WPOAbK30TjGCi10dFRHVFZqTZJD2SzpV6dsjfjf0Te0NDgpt4vqbaUqwLMYoOSvuTF4/gQx8B0QBwD5W/icUwMA9MBYzFQ/ohjoPwRx0D5I46B8scxLqC8MRYD5Y84BsrfwcUxUGrf/e531SupW9K6det09NFHl3iNytuM/xF5UvqkVtKcUq4KMOtNtBQRcQxMH8QxUP4mEsfEMDB9MBYD5Y84BsofcQyUP+IYKH8c4wLKG2MxUP6IY6D8TTSOgVLav3+//v6SS/RCSc9IunjVKv2ebOQHpaLUKwAAAAAAAAAAAAAAAAAAAAAAhbympkYVkk6UdI6kdZIefvjh0q5UmeNH5AAAAAAAAAAAAAAAAAAAAACmpYGBAd0t6YWSKiXNl3SapDecckpJ16vc8SNyAAAAAAAAAAAAAAAAAAAAANPSRfX1mivpGG/eCyQ9Jenee+8tzUrNAPyIHAAAAAAAAAAAAAAAAAAAAMC0s3v3bv1C0ouU+6PnuZLOkvSmP/9zZbPZkqxbueNH5AAAAAAAAAAAAAAAAAAAAACmnVfNn6/DJC1PWXaGpGcl/fSnP53alZoh+BE5AAAAAAAAAAAAAAAAAAAAgGllx44dul9RFvJMyvI5kv5c0t++7GUaHR2d0nWbCfgROQAAAAAAAAAAAAAAAAAAAIBp5VWHHaYjJB1RpM9pkvZIuvXWW6dmpWYQfkQOAAAAAAAAAAAAAAAAAAAAYNrYvHmzHpD0wgP0q5Z0rqR3vf71Gh4envwVm0H4ETkAAAAAAAAAAAAAAAAAAACAaeOiJUt0tKT2MfQ9WVJW0sXV1ZO7UjMMPyIHAAAAAAAAAAAAAAAAAAAAMC08+eSTWivp/DH2r3R975I0ODg4SWs18/AjcgAAAAAAAAAAAAAAAAAAAADTwmtWrtTzJC0ax32Ok1Qn6aI5cyZnpWYgfkQOAAAAAAAAAAAAAAAAAAAAoOQeeeQRPS7pvHHer0LSCyXdI6m/v/9Qr9aMxI/IAQAAAAAAAAAAAAAAAAAAAJTc6086Sc+XNH8C910pqVnSqxsaDu1KzVD8iBwAAAAAAAAAAAAAAAAAAABASd13333qkvSCCd4/I+lFkn4p6bnnnjtUqzVj8SNyAAAAAAAAAAAAAAAAAAAAACWTzWZ1ydln6wxJ8w7icZZJWizpVQsXHpoVm8H4ETkAAAAAAAAAAAAAAAAAAACAkrnzzju1XdJZh+CxXijpN5K6u7sPwaPNXPyIHAAAAAAAAAAAAAAAAAAAAEBJZLNZveUlL9ELJM05BI93uKTlkl7d0XEIHm3m4kfkAAAAAAAAAAAAAAAAAAAAAEritttuU5+k0w7hY54v6WFJf/rTn8Z1v6uuukqnnXaaGhoa1NLSoosuukjr1q074P3uvvtunXrqqZozZ46OPPJIXXfddXl9br31Vh177LGqra3Vscceq+9973vjWrdDjR+RAwAAAAAAAAAAAAAAAAAAAJhyIyMjeudrX6tzJdUcwsdtkXScpNccddS47nf33Xfr7//+7/WrX/1Kd955p4aHh3XhhRdqz549Be+zceNGvfzlL9ef//mf6+GHH9ZHP/pRvec979Gtt94a97n//vv1hje8QZdeeqkeeeQRXXrppXr961+vX//61xN8hQevqmTPDAAAAAAAAAAAAAAAAAAAAGDWuriqSiOSTp6Exz5P0r9J+sMf/qDjjjtuTPf5yU9+knP7hhtuUEtLix566CGdc845qfe57rrrtHTpUq1Zs0aSdMwxx+jBBx/U5z//eV188cWSpDVr1ujFL36xLr/8cknS5Zdfrrvvvltr1qzRzTffPJGXd9DIRA4AAAAAAAAAAAAAAAAAAABgSg0ODuouRT/2noys2AsknSLptccfr8HBQe3evTvnb3Bw8ICPsWvXLklSc3NzwT7333+/Lrzwwpx5L3nJS/Tggw9q//79Rfvcd99943tRhxA/IgcAAAAAAAAAAAAAAAAAAAAwpW6//XZVSDphEp/jzyWtU5T5e/78+Tl/V111VdH7ZrNZfeADH9ALXvACHX/88QX7bd26Va2trTnzWltbNTw8rB07dhTts3Xr1gm9rkNhMn64DwAAAAAAAAAAAAAAAAAAAAAF7du3T/M0uRmxGyRlJL3tbW/T6tWrc5bV1tYWve8//MM/6He/+53uvffeAz5PJpPJuZ3NZvPmp/UJ500lfkQOAAAAAAAAAAAAAAAAAAAAYMplNPk/Zs4o+sF4Y2PjmO/zv/7X/9IPf/hD3XPPPVq8eHHRvm1tbXkZxbdv366qqiotXLiwaJ8wO/lUmswf7wMAAAAAAAAAAAAAAAAAAABAWchms/qHf/gH3Xbbbfrv//5vLVu27ID3OfPMM3XnnXfmzLvjjjv0/Oc/X9XV1UX7nHXWWYdu5ceJTOQAAAAAAAAAAAAAAAAAAAAAplyFpOpSr4Tn7//+7/Wd73xHP/jBD9TQ0BBnD58/f77q6uokSZdffrmeeeYZffOb35QkvfOd79S1116rD3zgA3rb296m+++/X1//+td18803x4/73ve+V+ecc46uvvpqvfrVr9YPfvAD/exnP9O999479S/SIRM5AAAAAAAAAAAAAAAAAAAAgFnvK1/5inbt2qXzzjtP7e3t8d93v/vduE93d7eefvrp+PayZct0++2366677tJJJ52kT3/60/qXf/kXXXzxxXGfs846S7fccotuuOEGPe95z9ONN96o7373uzr99NOn9PX5yEQOAAAAAAAAAAAAAAAAAAAAoCSm04+Zs9nsAfvceOONefPOPfdc/fa3vy16v9e+9rV67WtfO9FVO+TIRA4AAAAAAAAAAAAAAAAAAAAAs8h0+vE+AAAAAAAAAAAAAAAAAAAAgFmiQlJ1qVdiliITOQAAAAAAAAAAAAAAAAAAAADMImQiBwAAAAAAAAAAAAAAAAAAADDlMuLHzKVCJnIAAAAAAAAAAAAAAAAAAAAAmEX48T4AAAAAAAAAAAAAAAAAAACAKZeRVF3qlZilyEQOAAAAAAAAAAAAAAAAAAAAALMImcgBAAAAAAAAAAAAAAAAAAAATLmM+DFzqZCJHAAAAAAAAAAAAAAAAAAAAABmEX68DwAAAAAAAAAAAAAAAAAAAGDKZSRVl3olZil+RA4AAAAAAAAAAAAAAAAAAABgymXEj5lLpaLUKwAAAAAAAAAAAAAAAAAAAAAAmDol/RH58PCwPv7xj2vZsmWqq6vTkUceqU996lMaHR2N+2SzWa1evVodHR2qq6vTeeedpz/84Q8lXGsAAAAAAAAAAAAAAAAAAAAABysjqXqS/zJT9mrKS0l/RH711Vfruuuu07XXXqvHHntM11xzjT73uc/pX//1X+M+11xzjb74xS/q2muv1QMPPKC2tja9+MUvVl9fXwnXHAAAAAAAAAAAAAAAAAAAAADKU1Upn/z+++/Xq1/9ar3iFa+QJHV2durmm2/Wgw8+KCnKQr5mzRp97GMf02te8xpJ0k033aTW1lZ95zvf0Tve8Y6SrTsAAAAAAAAAAAAAAAAAAACAibNM5Jh6Jc1E/oIXvEA///nP9cQTT0iSHnnkEd177716+ctfLknauHGjtm7dqgsvvDC+T21trc4991zdd999JVlnAAAAAAAAAAAAAAAAAAAAAChnJc1E/pGPfES7du3SqlWrVFlZqZGREV1xxRX6q7/6K0nS1q1bJUmtra0592ttbdVTTz2V+piDg4MaHByMb+/evXuS1h7AZCGOgfJHHAPljRgGyh9xDJQ/4hgof8QxUP6IY6C8EcNA+SOOgfJHHAMAxiKjEv+YeRYraSby7373u/rWt76l73znO/rtb3+rm266SZ///Od100035fTLZDI5t7PZbN48c9VVV2n+/Pnx35IlSyZt/QFMDuIYKH/EMVDeiGGg/BHHQPkjjoHyRxwD5Y84BsobMQyUP+IYKH/EMQAA01tJf0T+oQ99SP/4j/+oN77xjTrhhBN06aWX6v3vf7+uuuoqSVJbW5ukJCO52b59e152cnP55Zdr165d8d+mTZsm90UAOOSIY6D8EcdAeSOGgfJHHAPljzgGyh9xDJQ/4hgob8QwUP6IY6D8EccAgLHISKqe5D+kK2kG+L1796qiIvd37JWVlRodHZUkLVu2TG1tbbrzzjt18sknS5KGhoZ099136+qrr059zNraWtXW1k7uigOYVMQxUP6IY6C8EcNA+SOOgfJHHAPljzgGyh9xDJQ3Yhgof8QxUP6IYwAApreS/oj8L/7iL3TFFVdo6dKlOu644/Twww/ri1/8ot761rdKkjKZjN73vvfpyiuv1IoVK7RixQpdeeWVqq+v1yWXXFLKVQcAAAAAAAAAAAAAAAAAAABwEDIq8Y+ZZ7GSvu//+q//qn/6p3/Su9/9bm3fvl0dHR16xzveoX/+53+O+3z4wx/WwMCA3v3ud6unp0enn3667rjjDjU0NJRwzQEAAAAAAAAAAAAAAAAAAACgPJX0R+QNDQ1as2aN1qxZU7BPJpPR6tWrtXr16ilbLwAAAAAAAAAAAAAAAAAAAACTKyOputQrMUtVlHoFAAAAAAAAAAAAAAAAAAAAAABTp6SZyAEAAAAAAAAAAAAAAAAAAADMThnxY+ZSIRM5AAAAAAAAAAAAAAAAAAAAAMwi/HgfAAAAAAAAAAAAAAAAAAAAwJTLSKou9UrMUvyIHAAAAAAAAAAAAAAAAAAAAMCUy4gfM5cK7zumkbF8HIcnfS0AAAAAAAAAAAAAAAAAAACAmYwfkQMAAAAAAAAAAAAAAAAAAACYchWSqku9ErMUPyLHITQVH6dD9RxkNAcAAAAAAAAAAAAAAAAAAMDsxI/IAQAAAAAAAAAAAAAAAAAAAJTEZP+YOTPJj1+u+BE5xmimfVTG8nrIVg4AAAAAAAAAAAAAAAAAAICZZ6b9MhgAAAAAAAAAAAAAAAAAAABAGaiQVF3qlZilKkq9AgAAAAAAAAAAAAAAAAAAAACAqUMmcgQO1Udiul4Xsn8cfdPei+FDtSIAAAAAAAAAAAAAAAAAAACzWkbT9xenMx2ZyAEAAAAAAAAAAAAAAAAAAABgFiET+aw20X//eK75KPVHLMwcPpZ1L5atvNjrIUs5AAAAAAAAAAAAAAAAAADAWGVU+l+azlZkIgcAAAAAAAAAAAAAAAAAAACAWYQf7wMAAAAAAAAAAAAAAAAAAACYchlJ1ZP9a+bhSX78MsWPyGeV8fy7qw/R443lcaYL+5Yots77iywL3w++dQAAAAAAAAAAAAAAAAAAADD98CNyAAAAAAAAAAAAAAAAAAAAAFMuk5GqyEReEvyIfMY6VFnHiz3ORO83lvuPx1iygxf7BrD7jyWTeLjOB/vcAAAAAAAAAAAAAAAAAAAAwNTiR+QAAAAAAAAAAAAAAAAAAAAAplwmI1VXlnotZid+RD7jHGwG8PD+B9t3KjKSF3sOywJeLIP4RDKGF3rc8LH9x0+7PwAAAAAAAAAAAAAAAAAAwOyUyUhV/Jq5JCpKvQIAAAAAAAAAAAAAAAAAAAAAgKnDb/cBAAAAAAAAAAAAAAAAAAAATLlMRqrm18wlwdte1sby76se5/3D/uPpk/Zcxdax2LqNR51r96csGw5uW5+qlD7VY+iTtuxAj5PG7h+uHwAAAAAAAAAAAAAAAAAAADC5+BE5AAAAAAAAAAAAAAAAAAAAgKmXkVRZ6pWYnSpKvQKYiCod+Pf/1UrPGO7/Vaf82bI692fz68b51+j+6t1f4yT+FXrO+iJ90ta50Gsv9r6kvb/h/6C6QP+0/wnXdQAAAAAAAAAAAAAAAAAAAJTKPffco7/4i79QR0eHMpmMvv/97xft/5a3vEWZTCbv77jjjov73Hjjjal99u3bN8mvpjB+RA4AAAAAAAAAAAAAAAAAAABg6mWUno/3UP6N0549e3TiiSfq2muvHVP/L3/5y+ru7o7/Nm3apObmZr3uda/L6dfY2JjTr7u7W3PmzBn/Ch4ipD0GAAAAAAAAAAAAAAAAAAAAAEkve9nL9LKXvWzM/efPn6/58+fHt7///e+rp6dHf/u3f5vTL5PJqK2t7ZCt58HiR+Rlpdi/q3oc96kOlqXdN1zmP051gWXjfZzw8cZrf3B7uEif4eB2dUqfcN38x6tKmTdW/n3secN19x3McwEAAAAAAAAAAAAAAAAAAJQJy0Q+g3z961/XBRdcoCOOOCJnfn9/v4444giNjIzopJNO0qc//WmdfPLJJVrLGfe2AwAAAAAAAAAAAAAAAAAAAEBicHBQu3fvzplXW1ur2traQ/o83d3d+vGPf6zvfOc7OfNXrVqlG2+8USeccIJ2796tL3/5yzr77LP1yCOPaMWKFYd0HcaKH5FPe+PNPh72n2iW8bCP/zi2rG4Cj3MoM5GbQtnGfbZsIKVPeL+0xwmzg6dlCw+fNy3DufUnIzkAAAAAAAAAAAAAAAAAAMBU/Jr5uuuu07/8y7/kzPvEJz6h1atXH9LnufHGG9XU1KSLLrooZ/4ZZ5yhM844I7599tln65RTTtG//uu/5q3XVOFH5AAAAAAAAAAAAAAAAAAAAABmrHe+85369Kc/nTPvUGchz2az+sY3vqFLL71UNTU1RftWVFTotNNO05NPPnlI12E8+BE5AAAAAAAAAAAAAAAAAAAA9MIXvlDZbLbg8v/5n/+ZwrXBrJCRVDn5T1NbW6vGxsZJfY67775b69ev12WXXXbAvtlsVmvXrtUJJ5wwqetUDD8in7aK/Wuqx9C/OmV+OK9YH2vrUvrUBX2qgvnFnstf93BZOD/NcMq8/cGy/UWWDaT0GQj67A/m++vo3+9g2HOl/S/D57D3I+21AwAAAAAAAAAAAAAAAABwaJx00kk5t/fs2aMHH3xQ69ev19/8zd+UZqWAKdbf36/169fHtzdu3Ki1a9equblZS5cu1eWXX65nnnlG3/zmN3Pu9/Wvf12nn366jj/++LzH/OQnP6kzzjhDK1as0O7du/Uv//IvWrt2rf7t3/5t0l9PIfyIHAAAAAAAAAAAAAAAAAAAAPriF7+YOv8f//EftX//oUrCCngymna/Zn7wwQd1/vnnx7c/8IEPSJLe/OY368Ybb1R3d7eefvrpnPvs2rVLt956q7785S+nPmZvb6/e/va3a+vWrZo/f75OPvlk3XPPPfqzP/uzyXshBzDN3naMLwN5Wt9CGcDT5oUZxf0+dUX6hMvG0qeITHC7WFmCkZTM3dlizxFmFbds3nu9PgMF+lSn9Anfc//2cDAvLTN6KC27eKGs52nPBQAAAAAAAAAAAAAAAADA5Lrssst01lln6Qtf+EKpVwWYdOedd56y2WzB5TfeeGPevPnz52vv3r35nZ0vfelL+tKXvnQoVu+Q4UfkAAAAAAAAAAAAAAAAAAAAKCibzer444/X/v37VV2dkgwWmKipyEQeJjuGpGnwI/JnnnlGH/nIR/TjH/9YAwMDWrlypb7+9a/r1FNPlRR98Xzyk5/U9ddfr56eHp1++un6t3/7Nx133HElXvNDrdC/Iu3LdjwZyP2+Ycbw8WQZr0vp05iyzLGAqwy61BZZZRW47RtOmbaE3SOu3ef12e+eZDh8Hxu8acsyvju47a9IVbCsOrgt5WY3H6/xZhYPs50DAAAAAAAAAAAAAAAAAHBo7Nu3T88++6xGR0clSbW1tbrxxhv5ATkOvYyS35piSpX0R+Q9PT06++yzdf755+vHP/6xWlpatGHDBjU1NcV9rrnmGn3xi1/UjTfeqJUrV+ozn/mMXvziF2vdunVqaGgo/OAAAAAAAAAAAAAAAAAAAAAYs8cff1xvfetb9atf/SpnfiaTUTabjX9UDqD8lfRH5FdffbWWLFmiG264IZ7X2dkZT2ezWa1Zs0Yf+9jH9JrXvEaSdNNNN6m1tVXf+c539I53vGOqVxkAAAAAAAAAAAAAAAAAAGBGuuyyy1RTU6Pbb79d7e3tymQypV4lzHQZlfjXzLNXSd/2H/7wh3rJS16i173udbr77rt1+OGH693vfrfe9ra3SZI2btyorVu36sILL4zvU1tbq3PPPVf33Xdf6o/IBwcHNTg4GN/evXv35L+QCSv29qeVfAj7V6css3l1KfcJl4WtP91Y4HbY33sKPzH8nAO0UlJ+IHi4om/LcMr0ftfav33A6xPOs9v93nuXDd8X6+x/dmxeX8qThPYXWTYW9sJsvQ728cpPecUxgDTEMVDeiGGg/BHHQPkjjoHyRxwD5Y84BsobMQyUP+IYKH/EMVCeHnnkET3wwAM65phjSr0qACZZRSmf/E9/+pO+8pWvaMWKFfrpT3+qd77znXrPe96jb37zm5KkrVu3SpJaW1tz7tfa2hovC1111VWaP39+/LdkyZLJfREADjniGCh/xDFQ3ohhoPwRx0D5I46B8kccA+WPOAbKGzEMlD/iGCh/xDFQno4++mg9++yzpV4NzCaWiXwy/5Aqk81ms6V68pqaGj3/+c/XfffdF897z3veowceeED333+/7rvvPp199tnasmWL2tvb4z5ve9vbtGnTJv3kJz/Je8y0K9iiDZB/VG4a7OlgLJnI0/qkLSuUgbze61MoA7mfCtzSiYeZyL3M3fbQTcFd/Ld3boFlfh+brgraShU24k1bwu4wy3haJvJ+11oi8T1en/6gjSPCf6Ddwbzwtj9dqJWSrOJhGvXhIn3C+WnCvtPNPkmf1a5du9TY2HjA3uUVx8BsQRwD5W/scUwMA9MRYzFQ/ohjoPwRx0D5I46B8scxLqC8MRYD5Y84BsrfgeP45z//uT72sY/p05/+tE4++WRVV1fnLJ8/f/4UrCdmi5tvvln/9o5LdO9xk/s8Nb+WHl+/QUceeeTkPlGZKenv69vb23XsscfmzDvmmGN06623SpLa2tokRRnJ/R+Rb9++PS87uamtrVVtbe0krTGAqUAcA+WPOAbKGzEMlD/iGCh/xDFQ/ohjoPwRx0B5I4aB8kccA+WPOAbK04UXXihJeulLX6q0HMWjo6NTvUqYDYolH8akKemPyM8++2ytW7cuZ94TTzyhI444QpK0bNkytbW16c4779TJJ58sSRoaGtLdd9+tq6++esrXFwAAAAAAAAAAAAAAAAAAYKb6n//5n1KvAoApUtIfkb///e/XWWedpSuvvFKvf/3r9Zvf/EbXX3+9rr/+eklSJpPR+973Pl155ZVasWKFVqxYoSuvvFL19fW65JJLSrnqB6nY2149hmVVwW1/nrX1rq3z+tQFbYNr/bIUjbl9Mu5mk9dlXjAvvC1Jc4OnsD7+xYW2Gladxq4kKfYW7PemrdrNsGv7XbvP69MftL2u7fP62Lx5we2BtPfuuWCFiq3seAx70+FjDqfM3x/08T9TwwIAAAAAAAAAAAAAAAAAYLzOOeecUq8CZpuMSvxr5tmrpG/7aaedpu9973u6/PLL9alPfUrLli3TmjVr9KY3vSnu8+EPf1gDAwN697vfrZ6eHp1++um644471NDQUOSRAQAAAAAAAAAAAAAAAAAAMB5333130eXnnnvuFK0JgMlW8t/uv/KVr9QrX/nKgsszmYxWr16t1atXT91KTZrxZCAvlm08zEguJZmyw2Vp2bTDDOSN+X2sa1PQps0r1mdegVZKspXbc4XJ1H3DQetPW+bxMOu4P91boJWSt8PmzUnpY9PZ5mAld6es7EQUyyReVWA+AAAAAAAAAAAAAAAAAACHzgtf+EJls1llMpmc+dlsVpI0OjpaitXCTEYm8pKpKPUKAAAAAAAAAAAAAAAAAAAAoPR6enrU29urnp4e9fT0aPv27fr5z3+uM844Qz/72c9KvXoADiF+uw8AAAAAAAAAAAAAAAAAAAA1NjbmzTvvvPN0zTXX6P3vf78eeOCBEqwVZjQykZcMb/u0M5Z/ifWp9ubZdF2BVpIaXGtf8s35j2PdF7m2KbgtSQuDZYel9Gkq0M5NWZ05UZkLVY3ktmmGK5Ppfe592Odu97u21+vfW6Dd4fWx6Xm2Pq71niqetvsP5w+UhQ2nTO8v0icU9pWS/1naMvt8FHtMYDzC75y076BCfcYqjI20WCnUB8DEpcVqdcq8QohHAMBsZONnsf1vmw731ce7DR2OsTb2DqT02Rss8/uE8xi7AQAAAADTyXiOVaedH2U/FwAAYCosWrRIf/zjH0u9GgAOIX5EDgAAAAAAAAAAAAAAAAAAAD3yyCM5t7PZrLq7u/XZz35WJ510UmlWCjNbRrlJfzFl+BH5lCj0NhfL9JmWiax6DMuKZUJrDFp3nwavS5NrLau4ZR0/zOvTFvRZFMz359njNQ1KkuY19cVd6uv3ujWM2ipFGcgrlWQit+kR9w0x4n1TDKpWkjQwGr3Gvf310e1e7wXtcO9Rr7u91bXzki7xdLdrq4JWyv9X2eOlZiQfT7ZkyxRXLONc2ueEq+lxMIpVKKgLbvt9in2/1Lu2WJbykP85DuMlzKLoT1tr3ye7U/rsDvr4jwPMBBZXfqxaTIZx7S8LY70qpY8ptp0SxmyxWN2d0qdQjBKrAIBSC8fY5uC2P8/atLE32FcMk5dLcru0YysCYkOv7S7v85bZdNZmhGOwP/1c0KYtYxsaGL+DPcTKcR4AAACUq/Ecq06r4BW2B3t+Ke1Yc3iMOu2YNfvCAAAAvlNOOUXZbFaZTCZn/llnnaUbbrihRGsFYDLwI3IAAAAAAAAAAAAAAAAAAABo48aNObcrKirU0tKimpqaEq0RZryM+DVzifC2TxtjyVYepsiu95YVulq7oXAfu9nkdQmzitvtVq9Pe9AnbCXVtEVXcDc197q16HNP1eutzV73KqIrumsVZSv3M5Eby0A+7GUiH3Jp2/ZWRO9DX+M81yavubctenG7troX0uTeu61KWCbyOfGKya3Ige30prN2FX2xTOQ2L8zW7PcZDvoUy0Zl99+fsmws98fMk5Zl3DIkLgxu+9NBhkX/K8keZl7Qzk15WrufHz+FMivu9xaMuAeIE0W49dnj9e8PWksKkfMRL5Rh0c+0uDOYR3YJTDdpY7jFaGuB2960XQjc5C2yaYtfy3zqP4XFbZiQPI3F3b6g9ad7XdsX3PbvH8ehxeV2r5Mt2xbcJlYBAAcrHGtTxlO1BLe9jGp2t7wKXN7D2HS4DT3H62PTadWwQmFCtUFvWbh9vMe9vl5vUH/WvY5edztnX9b2J59xrY29/rhcaBsaKHdjOZ5WX6BPWgm7tOpcoWLHi4plTwwrdqXty7KtDACYbcYy9harBGvSzrFwbgVItn2LnVcKj1l788Jj1WmVou1cU9pmth2zLnY61PaPw/3lfq9PeIw6Dm+/gld4HJp9YgAAMLu1t7drZGREc+bMOXBn4FDgR+QlU1HqFQAAAAAAAAAAAAAAAAAAAEDpvfnNb9aHPvSh+PYnP/lJzZ8/XyeccIJ+97vflXDNABxq/IgcAAAAAAAAAAAAAAAAAAAAuu+++/Ta175WkrR+/XpdccUVuvbaa3XKKafofe97X2lXDjNX5ST/IRUJ4EuiWFm9sPxt2rK0PmHJPiu1Xe/1aczt2hS0krTQtVaW2yqQLfH6LHZtm92Oan4tXLwt7rKwYqd76F73sDskSQ1eea8GV0es3pXjrXH1xWo1pNCIi+JB1cbzhlQjSdrrXmOveyG93gvqrYmmdyyNnmtnU/QCB+YsSB48LCGeZiS4vT9lfo9NNASdipUnHg7mF1uRtD6UU5y97DNQqGygP324a913gPfxj2P+MNda7Dd5fZqC1koL+tW95xRo01Y57WNvsbQvaP2KgHtc21uglaQd7jU+69qdnVHb4/WJyxM+49ptQSslJQmtJdZwqNV502H8Hh603jKL37ag9acXBa2UH8fW+rFq07U6sDBm/dKg/UG7w7V+HFq47XCvfau1K5I+3TYRxuwzSR9tdi1lRDHT+duH9v0R7lMU238oVpY73D7dn9IHKGe20Zq2nXyEaxcni6pcjLUHXf194kJjbrGx18p054y9UYxV1A7KV1Wd7GgO74/2hUdHXIzvq3FtJrmDDX+7XNsT3JaS8Xira7u9Zdvcd0V3Z9Q+49oBr4+6XGvjsI3BfnlvG7P57sB0YfFvx8jC/ee0ebaT7G2vW7jNC1o/nu3gc7HDeiE/xgptX/t94tCymTtd+5zXKdwuTutj9ydWUc4syPx968ZgXthKSZDavKqUZcWE284DwXx/XtjuTulDHALpsdoQzGv0loX9w7iW8s+XpSm0L+zH5XjieXdwm/hGObH48beTw2PU3n6z9VsQLPL3iQvtNzd5fWy7Ojzn5G9nF9qu9kMsPK8UHp+WkvNIO8LW+37Z6qZtv3lrskhZi+0u14bnl/xpjlGjHBXbhrbgrC/SJ9y+LrZzHI6RadvS4fa2v3McjrlsZwPAZNm2bZuWLVsmSfrRj36kc889V5deeqnOOOMMnXrqqSVeOwCHEj8iBwAAAAAAAAAAAAAAAAAAgBYtWqRNmzZp6dKluv3223XBBRdIkioqKpTJZA5wb2ACMpr8XzPz0U3Fj8gnzVje2mJ9xpJt3M+iUOjqUD9VcDCrybX+leGWjTjMtuZfYG4XnS+JsqW1d2xxd0mutm5x2cgWuUu5Fyo3M3m0GtGV2JaJvM5dGVpZ5MrQIS896l73GvvcC+p37Q7vBe10GaTm2XM1Rs+1bXmS6W1XlZ/GtYAwcbhdxOonjLMr3AfCzBf+VbiFslv4/8vwyZTSJ8wmWWwZyl9aFogwY3Fnfh8LBcuiGFYR8KeLZTCOM0RkJUk1TVE81c3bG3eprYkqCNS4SgK1XnBU5qXyj4x4dUKsyoBVGBgcitqB/qSawlCv+/LqdSN6mDHCnw4zRfgZIzY35rY9x7gFfsaIMOOxLUvL3gaMRZgFtdNbFmRBtZj1E5F3Bm2x8bk9Gj/mLeqNFzXVR9NNLjVpvfv82hgs5cdvWuxa3A671sblvV7lkwH3ndXjNjT6R6PXvnOr98Wy1Y3nFpubg1ZKkrpYrHZZe0zSJ/tc0LkrWRbHrx+3QCmF2RIt05G/vb4wmDeWrGuFMpMfiG0zFsqsJiVZXPqC2352l3BZaspUYAqFY264vexNLyi8KB5j7bY/LttY7bah69qi8bWpsTfuYvu++fu93ja0bBs6NxN5mhH3HRJW5PKn+1waN9tH7h1qivvssnG4230X+YU9bDzeqNxlXV6fzZ1Ru8m18fax3ynchmYMxlQoVp2rxbWLc/v4h2nCfWAbipu8Pk1Ba18zfgWfMOla2Er5h3vSEp3a14ENr3u8Pr2ufdY9Wa97XTu9nQLbJ46TH1ocpu3vhvu5/vjOGI5SCLeX/eNgC4N5xSoLVOc+3Fgr6Y3lcL6FRpjxdJ/Xpy/oG293p1UNCNudKX3IpohyFlYFkQrHcVrMu+8DPz7tIS2DcW1u15z+xcpU22GvcFxOi2cbj1MPB4fxG8Z12jwq+KDUCh2rPsLrExyr7vQWhbvZaceq43NP0XmlOnes2t9vtv1la4udXwqPVeeeX3Lnk9y+cbKPnGwE9A1FXxq7drgDAeHxaSn/GHXOsWr3JWPHpq3N+rHeFbTsG6PUwu3qtDG3NZjnbvs/rmoK2rBKl5S/fZ22TxwKf3chJfvENs/G4LTKAvF+r//biHA/1yropW1nU40as0VapdvxVPBKO/cUBrcfR4V+EzWQ0qfY+Sliczq4+OKL9Za3vEWnnXaa7rnnHn3lK1+RJK1du1YrV64s8doBOJT4ETkAAAAAAAAAAAAAAAAAAAB0zTXXqL6+Xn/84x91yy236Mgjj5QkrVy5Ul/96ldLvHaYkaYiEzlS8bYDAAAAAAAAAAAAAAAAAABANTU1uvLKK/Pmn3DCCSVYGwCTiR+RT6liJeZtWfgvqS7SpyplWZGy9jbLSgvNdW2T9zBhGV9r27w+S6I6Qu0dWyRJHcptJanFlQZqdSWDFroSQQvjurr5ZcrqXWkSvyRZpStREpbulvLLkfW6F9IU1zDKLx1u5cIra7yyZ51Rs8teZFrZwrA0aVhm2J9nfbJppV+sk/3v7P+TVt6lKrg9UfY4lHspH/Y/s9JhVgPwcK9PZ9RkmnO7dOZ3yVuWUlKw4vCoHtii1ihW/Tiy6TBmG5I6YXllBu22lMRxaMT7DrPYHnT1RwdqorjZ21wf9+lrjmI9jPmdowvjPju3ui8tK0WYVnbQprvC217Z881uOtsZdH5GXifXUu4MIf97P6ztuTxqMt7n7SjXrsjtErcp8+Z3RnU2O2q64y425ra4dpFXns/iOIznOjc+SskYWePiuCooESpJw65MaDgu25gs5cdob0XU7uxIYnVHRxSr29UiSdqijuj20x3Jk3W574j1ym2f9FZonfsOXO/aAf9Nszt0BW2fgEPL3ya3Et1B+c+ceS25yzLe9rqFSVPQJtV388uFWolQv0x3od0Of7Ny0HUacO2gW/dipUF3BvMlKWsPaqVCt3sLw/Khdps4xKFi8efHWjj2uhLTC7wuRwVdVnjLlgfLOqPS2ws7vf3divT93dxt6B5JUoMLqnDfVMrfhg7Lc0tJiW4bg4fc9vJeb3vDSnbb2Gtj8Y4abzt56SLXRvO2ee9Z9xY3/na5begu5bZS/ni83t2/23/vNwed7AH87wW/JCkwVmmxbtNhzHtlue2Y1hLX2rEtf9e6PVhmYXOY16fJ2uj7oGJuFMf1DcnnuXaO2xeucMedUuLZjMTb1MngvXdvFMdD+6Lt66FeN/j3ezXE7ZDas661cXmr9+C2e2BDbrd7P57x3pdu970Yj88Wu/7+7jNBH2IXh0p4zEtK4jmMay/mM27cs1gNj11L49uWnhO0/qoVq8odHje21t+Gtk3dXmvd9vZO7/XscNMW1xbHWT/WLJCfCW5v8/pwTArTgR9k4b5wGNfePNucHU88+9P2tGFcS/nxnHYmdDho0+LZ5vUWaCWp173mHa61eO7xn8xi28bc7cFtKYln4hqHmgVbyvml8Fj1UV6XsRyrdg8zrzMa0Drq/fPEuceok/3mJDhsH9rOD9v+sn9+qTbnRGxi2NuWDveTB4Lzx5LUW9MkSdrhjlHvdMent8XH6aTt7vspPka93vvy6HJteIx6nbdNk3eMOtw39qc5NoZDJTzm7J8EPjy3rXPbpf7vPqy7Ddm2L+z3sTG6KWjneX3ytrOj/WdVFd431rCL433efm84HvcGrT9t29Ld3sHwbe4FdbvWNp39ITcbjstPKbezP02sYrqy8T1tW3xhcLs5pU+jcvintucG82w4LHYOyj/3ZGEf7jf7v7/KO8xk28A7U+YVaiVpt2vZdgZmjIxyv28wZSpKvQIAAAAAAAAAAAAAAAAAAAAAgKkz7kzkP/vZz3TBBRekLvvqV7+qd7zjHQe9UpCK/2uqg1bKvwzMv1TMsSvG7ErQpqD1p8OrTNuycZeWjujKyzADebuXibzDpT6yZZaBPC0rapgNtda7wtxYdibLUixJA+419limU9f62ZGTxyyS2a3GZXRrcxmQ97kUdX7Gif6gtafY4/VpCOYNhNnh/ekwI/lY/t/FcGVd+fOvErXLvTtde4RrvavHLVtamCnRzwbRGbbR56RlaX42iFaX/aRYrBbKSC7lx29aRQHLahxmMo6mo3mWzdiyG/uZIvKyG7t2R4WXYdGyR3REV9xvPyXIHCEl2Y27lNuuT7okCSLc1bjd4ZX8UvI/eyZoJbK0zVb2Oen05q1yrUvdYlkQj/a6nBB0dW3F0ckgs6y1y919U07rVwGxcbg1qAYi5cdxnOVlr5c90Z4uzMSUxmWTGHbD8t65SaWQvsqgWoC74n2Hkli1rC6WBXWTe2O2LG2P+3QtXRYte360rP9xl+7icW89fq/ceY97V84/fkrUZi1u7f/jB7u9R4yjGA/7/k/LqNaZO6/O246z7eowu0vysc/PwGZh42dQLpSJfI73OS6U4WXYu3R7nxsPw+wu/jawJYeyzYIwU6IkbXWvcevi3FaS+6qShi0NRZdr0zKdkt0F42H7VfYdn5JKPMyk5ncJxtzcjGpRLLUvLTzm2rRV4FrkgmPhGLahJyMTuW0n97u2Jx6Dk3SONh7b2LvF+/LZ0hFtK3e7dtOqaOwdetIbVxcHrX2HbfBW9nG3cMDuZ61fRsRinlhHMWHm8SB7mqQ4qKtcLHQqt/Wnl7k2rYKXG5/nLXZxXB+1C8ZQnavO2+8Lq3IVqsglpVfbG6x3x6Tqo9cTVuKSku3rOMb3RjHevzXZztZml8HNEqrZWPxU0iXZF27ObQeO8TqFWRPD8VpiGxpjU2jbudPr05nbNa0g35JgWVvQSnnb0hULo51cv2pAQ30Uv1aByz8OXVMg06nPxuFBF792u29vEqt7+6I4Ht3pDsbbNnRSoDPZnrY2jlnvOPIznW6Za+Ohs8t7IJtmmxpTqVjG0+A4dhjXUhLb7cGyIvGck6W8QGUQqwoi5VcGSRuXw/F4cMjF9T7vHFS/q7zX6+ZZHPd6D2RxHO4v+xlPt7rY3rwit83u9jpZHHe51h9zLXM5x5wxHuGx6lXesgLHqv3NQet+vGuXJzF2RMdGd/doY3Opa9POE9s5JztmnVbByzKR23Z2zWDyXFUjo5KkShfGI25XYbgyyZM3VGv7yVHMhuePJf9YtavS5faRrUKmP71lqds3XrokXta1uzN67MfcQbp1boF/rMGOUT/q9oU3hMenpWQ/ucu1HJ/GWITHwaSUk8BRs+jAXeJ9ZH+eG48rWnMrV0v5FfjC2I2m97o1LXy+2ITVufzff4TVb8Nzw/60VaqOq1RL0ib3WOGw6o/LXe79XO8CuMu1fX4qZfaJMR2kZRAPK3f5O85ujLGQsO3tsVT8STsHFVbw8n/SFGYJ9kO9UKWfYhW8dgbVfaT87eu4mImfibxQpR+/D/vHQFnJaAK/ZsahMO5M5K94xSv0//1//5+GhpIDrM8++6z+4i/+QpdffvkhXTkAAAAAAAAAAAAAAAAAAAAAwKE17h+R33PPPfrP//xPnXbaafrDH/6gH/3oRzr++OPV39+vRx55ZDLWEQAAAAAAAAAAAAAAAAAAAMBMY5nIJ/MPqcb91px++ul6+OGH9c53vlOnnnqqRkdH9ZnPfEYf+tCHlMlkJmMdy8zBftqqg9tVY1xm0/W5ff0uVunIVdKMSwnO8/o0Ba0rbTKvLb9kkbVWwttKk0lJCbNWV9LHyn3nlPce6Y1WY1eU1T6zxy1Iqxxq5VDmJDVOht3raGqMHmeHq73il04KSyQNB+WRpKQc0t7GqN28KChRKOWXWOl17dykS145l3g1/P9bVdBWh529ecNBO1Z2//1Fe2G6sEBMKcut5VFT1Zg7W0pKCR6VfpdoOvrstC+N4tHisMMrKWjlBa2UoMVsTqzG5cmsLVKmbNCVKRscjZdVFvgID81Jpq304ECti0eLSyVlfHtdHSUrU5aUH0xKd29zpZu2uZJu3UH5QX+6u9OVIlzv4rFYyVSrWvakV3t12L5vbR39L1wra0Z5pNkhLMftlQbNuM+Mlf0MW0k6yeZFwXLE0ugDt1wb4i6drmRep9JLhUpJPHeMRONx45akakxcxctC26rl7vLWw8qK2ThcbPhx8VvlhsrG+clzNc6PnuTwZvdkLdHrGGyNu2hLfVRDLS4R6tpN8kqEuvezqz5q158SfcFt6Dwq7jO02H0/WmgmXwfJtszv3cI+KxXqlQeP49ZilvKDCPklQu2DZuW5O6PGxmlvVl4rJWVCFwfLvPGnri0aYxc2WonQHtf2xn2stK+Nw7UuaGuUxGFamVApdxs4LA0algiNpqMdBRuDd+6Ogmxgq1fbcHPQdnlPaF9RG9z2aVdQIlSSslZWsCton0n65JQexOwWlu+1z5JXc7uqOXeWleU+wXuYoFT3/FVb40XLarokJWOvjbnj3YZeOBjV25y7220X25g73rE33IWcG7Te9KAbB3vq50tKynRL0nb3ntn2cm7J7mhctnG4pTl6XV2nd8Z9ug9z04vccZ8mtyD5ykj2hR9334s9fi30ENvLCPkfpnD72sV6lVfSNlgU7wvn7BPn9p3XGcVlR30Sz+HxKotnf+y1ZTYGJ2Px3riPleyucmOwPy6HkpLdNfG8gQLjsT8uh/vAO+qjdvuRyYb2Nje9ZSiK611dbkOjy1uB9YVa7/jVky5+hw8POvkPZHHMOA1jn1dv5y8O1uW5y5YU6dIZtDnzosFy4WI39lbkH7Ne5GpeW6z68WyxatvSNd6B6NoicWssbocU7QzbcauB+vq4T299kySprzV6P3a48dg/frVzNJreudm9H11uoO/ynqwraOMw7Ez6bLLpbWEn74FsGWMuJsIbe+Nt8M6g9WJ+SYEu3iHVvHmurVm8O+6ysNn2iXtz2mg62k8O943T4tn2jStTNrRH3Aa27RsP1kRxPVCTHDeyc0Z9HVE8h8elJWnHUBTPu7a6be/NLp6TQ3b5u7l2u8s7nmDTfcuDTpL0VDDPxl7/vBJgwv1ld6w64wWiHb4+zrW2v3yS9zDHZyVJi4+Mju3acWkpOW5t+8thKyXb2S1uHGp9LtoZzvibjjaM237ynqCVkv1kd6iryh3aqq1KzkHNnRPFwoK5LiYstOZvjvvYV1XPYVGMh+eQpPxj1Bu9jZEljdFrs/3k9e4Y9ehib+fcjvE1Be06773vK3ReyT8OxjHq2c0/fxHGs7fDm3Efajtdckx+lzjW4/3l3PPGUv5vOsJjXpK00G1f23i8wLUN3vblPDdtY7CNy1UFjlNLye82bNta8veJ57nWxuDkeLSNw9sr3LGuDm+fuCM3tjeNRvG8syuJdT3ujm3ZpvPjrn3S2yde597QTfbGdin3Tv48294mdjFR4THv8FyUFG9EN1Tndun0utghHNsmtz7+byBselH0eZ23qDd62PoknuPffbg23LYOp6Xcc082Hf7eY0DJfnPf7ii2B3Y0RTOedXG5TQk7ZJ93DsrbR9nkprvc7WHbPu5K+uRtjBOzE9Hd3a3LLrtMt99+e840gJlj3JnIJWndunV64IEHtHjxYlVVVenxxx/X3r17D3xHAAAAAAAAAAAAAAAAAAAATGsDAwP6xS9+kTcNHHJkIi+Zcb81n/3sZ/WJT3xCb3/72/W5z31OGzZs0F//9V/rec97nr71rW/pzDPPnIz1nGHS3vax/CsKZbH2p4PH8S9WrQ3mzQtaKf/q6Kbo6qum+l6vSzRtWV3sytRW77KwMAO5ZStv3Z1kh6myC1jDK8z3KZ+9LC85eFWUXE2LFkbpwWtaoivgqirzr2gdCa5k9a9oTbI7uStaF0Xtrh3eJXlNrg3fM//9tYvNLfuarfOw36k6aNP+l3bF20DQh8ziM0uYgdxPM+4uCa9z6RLCrONSckX5qtx23qodcZcl9elZINKyQVjMWqxafEtJJqem56LPZJwpws8G0R/M8ysKFLiIs9b7uqqtjbJGzJ3rHmiea71kLNn5UcaV3uYopuLsaykZFi1jhF0p35Jzxbx7PUt7JUldTZ2SpIEmL6tqGOv2leF/xa53V7YOkGFx9gozMKVkdTnJtccHt09KutScFGVaWtm8TpJ0tJ6QJC33MhocpdyML8ssO+reJJtK7Z/cxJaglRQXC9kZtH4ch/E70WyodgG4JVlzb1Otl+hhWUe0QsuWRu0zh3VJSrKPS/lZXePsU829cZ8nXrAyejnz3HepV+EgL5nLWsvo5Mds+CLJSA4bnzuDVhrT+Fw0G2oUXO0duZVB/OzGhbKgpmUiD7Mo1nqDb5JtLWpHUqrxDIbZE1MykVtWF6v4s7MxGnO3NSYZ2revzM1q3P20l1bSMira19ljrk0KLSTjaTyuLg86S/mZIhhXZxd/A8wGmSAbS8bLPmJxGGYg96uAuOmWlU9LSsZZSVrmxtowE3naNnScnckyqiWbnPlVQML9Xn/admGLDT+2PWpjnT/2un3jWvc2tC2MnqytJUl73tEeravF6sKc7f3cjFINbuPez7Jcc2T0HfPUHFdWocrbOQ/Zrus6Nxj3LU9ZGFbeIovi7GXx2+nNs8+M226zXb606lxBZQF/7F24Kho3llTkxnG7N/ZaVb1w2zN1nzjItla/N/nc1obHtIrFs32teduugy6m99ZHcZNkW2uK+4Tj8va4EleSdc32iTfVROPxlpUu+9rKZHze3rk0muh0M+wr1U8eHVflcts93ae4GX7GeNvg7oqfHbONfZjtw2PHuPzvfRe47e5msWNcy3P7LFyeZORsr7Bt527X5h7PkvKrZ1q24gU5mcijuK2Pt6WTsS7chjbFM6pF7YB3kLgnzlTsqvnYtrRfSa/CbUMvtQp6rirIGUmsxpUELDNiuE0tJdvVj7v/Qbf9L/yKSnZHsq5hLMK47vSWBeUC2oPZ/nRYWcCL+YrOaNDsaB1LPOdup0pJTM8LMpHnbLsG2U/TqnUllUHsnFFutS4pvzJIWmXMHTVuXF7qxuWluVVBpJTKIGE1kJx57lzRk96Gz7D9P2y7yR6ICl4wftWATtdaILqNPa94Znxs+kTXnhw1FScmO6xHt+Yeo/b3m21esf3mBZvctvLTboYdn/YzjNrHtth54vBYdXh8Wkr2l20/2e0j51StdEPjghaXtbwjOt+0bOlTcZdN9dF7FZ7blqRFwfZFQ2v0HbSu4ei4T/+cRbnrZpsQ/ingteF5pXAfWcqNbcweFsdpA6sbE5Z5iwpVFEg+kpp3QjSOdtbnnlfq9DL0hhX40j7/8f7yc9HxokwYu/60xbF9pNMq0Icx4p/XCePY7ZIOe/G8ozFauD212p5Vv3Xb1xXR9nXXkcmb13VkZ9Q+F7VDv3dP8rgSvw/ax6O+6u70Ov3OtWE1II5do5gw67hUcOz2K3jZoqOC2/6xMvcwNZ3Reef25iieF3nVM61CyKICx7r86TAT+Viq7vnTYSbyfr8KbqPbvm5skiTtODIaQ7d770tcgX5bNG+0y31B+OeXulwbb0u793e9dy64u1BFga6kD/vJADD+H5F/+ctf1ve//3297GUvkyQdd9xx+s1vfqOPfvSjOu+88zQ4mLYlCAAAAAAAAAAAAAAAAAAAAACBygN3waE37h+RP/roo1q0aFHOvOrqan3uc5/TK1/5ykO2YrND9RiWpfVJyzqeltE66GIXtdUGrZ+JPMhqVtcUXWXmX3lmV1mHmRH9bBBh5hfLQF7lZ0UdSyZySxBhXxD+ugYZUxuH3ZVvHcmVscOVdpVbbiYnP8NiuP69NVGWmF1N3lVm86pynz/tvbO3fk5wO+ditUIZyItlpycD+cxigRhmUTw86ZJxVzx3Krf1k+faFeYui+L8VVslSctquuIuhbJApGVRjK8sH4nip3G7dyVpmEUx7QrzPUHrx3GhCzb9K8sLZTWen3SxBJMLFrpMES1RBuaWliTmmyrTv5/877D6+KrZ6MujtjFq169Kru7vV+44F7+GkZR5j7v/V7bTWzhQoOXq1fLnV5cIs625ePYzqtl0ELMVxyVZXcIM5Ecrur3StZK03F1WfZS7OrptkwvAjd5zWSZyC/G0MdcupN7t2pQ4HnDxuz8/SZOq3Xhc5WK2Oi0TuWWEsK85u2jcy0SupbnrdfiK6AumfnmSNcpi1a5sr3Tx42ePGqmIVmj4+Kjdtc+rImLfQ/1Bu9YvceAy2MZviH1XkL1p9rE47nStBa1XWSBIihpnNfYzOblML3XHRONRZ2NXvKjQeOxnIg+zoKZmXdsbBW6c8dQ+22lVQMJt6bQsTW57dk9jhSSprzY/E/lONy5ucwG93UtVmmR3cZlOlybpMbqWdkbt8VE7tColq4tlUrS32sbVjad7nVqDzl2uJePp7OCPveHgsjinkZQfzmGrJLOpbS8v8wbUziArk1UBydmGHolSqDU+7baZLYy7lSi07eyPvTZWjacKiMWut50cT1trb0+SZEYLdrkMjUujbYr6+mTMtWwyVSkZGk1c0aAjWpHN+9xGTn8m6WTfRzac2vfUY97YG8ezvTE2BpOJfPYJM5D72dbcYBtmLvYrCoTb10dHH7jlrUk6IovbsVQWyKvOtTcJoFrbhi4WzxbHYVynSal0VTvXWre/6/Z7l873jnG52B5L1jXLtr7Jpa1a6H0hbFoZTW9YFMXxUJOL0SZvHW1zwI572bpu8lNcFcL4PLP5G5RhdT0Xu1VeNlTbdg4rhHgZEm2eVQ/orOiSlBurhbahW3IqY0afvbiigIvj2rQMidb6sZpWHTNkx7LC8dgblwfd9I763Azk27yMamH8WqxaFQEpqSDQtbwzepzH3fvtHUKMM9PZfrgdRnjMz2Bs47C19j/0s5xyvAq2zR1uTHsHpC227eMVVMiUlFdRoGZVtK23pDk/nvOq+3jjR5gh0R/H4izAbuOzYSTa+KwdTI5n17h4zhQbj10oDLt4HqyN9okHavMzkffGFQai1q+MmcS4xXW0AdNdk4zPFs+blkftzk73Pvv7MWFlEP/wtG1P77DKIPb/8s8HWmwzDs8u4fkmKa+SgI0VacmN44q30TiwrLXL65Kbgfxo71i1HaOOsxrvjs7VVKUdqw6rZvofUdu+Dqtmpo3PYznGNYZM5PGms1uPWm+/efmR0euoa4+2xf2Mq2nHpiVppD75hcs6d4x6YN+C3HX3K5L1uvYx+5/Z966fuTg8Vo2ZzT6c4QArqcoNDharJ3l3swzkQSUBf5/YYjU8v7QsJRO5tYs2uYM7/vmlMH7D2JXyf+9R7FiXCavuSflx7EKlyotnq7zX1hG1z1v6RLxs62HRHW37usulb/er4K53J+42NEdfhuvPiW4/tdjbSWlzx7tsPG5y7aPeuq5/npsIx+UurxPnmmDC6tYpFbxszA6r7kn5296roiBb3JG23xyVAQmr70VrsT1nXrFquPF52pFoPPS3tytdbI+k/MxpsNZV+KkcRxXc4ByUJHXbuafW3Lbr9M64z/Y/uTftcRezdu7Jr+AV7ye7++2wsbdYBS9iFyiZjCbwa2YcChXjvUP4A3Lfueeee1ArAwAAAAAAAAAAAAAAAAAAAACYXPx2HwAAAAAAAAAAAAAAAAAAAMDUIxN5yfC2l7XqlHnuX2oVpefkL8qrqOP3sTK1rpJI/byoRImVKommB9zD7HVdo3ImaSVOmkaieVVWzsgva2TTVt7IqnOllQ61dfdLfoX9XJ/GOUkZlb7DXElDK20YlF7xX4e9rlpXX6miNqmXNjrHPfic+E656+UvSyullvdC0v53B+LfZyIlRv0VokRp6diHx+puWcm61qRLm2utks7ioJXiSkc1i6PA6aiJyhG1e/XFrCRoWIosrXR3x97o/rVhaUEpKU9mMRuW8JaS2LQS9n65wUIft7Ryg/YdFJYrk5K3Knj+xj1JzNd2PBW19dG8sLSgb8QF67Br99YnpUq7OqMyS0P9rlRor1vQr0Rv0HZ7/8N4JfuCltJH5a/Bm7ZS0O7DaeF9mNel3bVBHHe0dsddrJxYHI9BKyVx29btPvhWGvRPSti8p13b7S2zh3IVy3a7Mfc5byy1YXjAtWmhG45iDW51Fnrx3Gwfc4vZtDKkFpr2JG7sXFA5kHRZFr3mva7M2V7llj2TvHLCNVG7a7FXMWerWyn7Tg1bSeoOv4vt/7vb68SYOfPYB9b/3g7q+Fa5ZSd4XY53bVAqVMcnH+6jOqKSd52uZOVRcQm8pExoOB77sd4+GE3P3TIazQhLhEr5JX6Llfo1VUEr5ZX6nTt/1LXJAG+lQdUSja+7O6LxcUtle9zHSgo+7WotboprLnqv1ZUuX3+WlQb1SjW2uZVylX7j0qDzki76fWfUZsNvIX/7+BlhpqrzpoOx1/Z7m7wuNg7bkBB//ydBsrAiCqSF2uHaZEe1xQ2WrXG7PaeVpMYtbvvTwtfGXH8b2qqEhtvO/j6tTYfluX3h/qVtJ/vb4mGpbnu8lCHMQr9lWVLG1EqMDsqVGnVjbX9KiVFrdy6KnmygbUHcR1tda/+DJtf6m099Nuba/zJt55qxd+byPwxWMtZ2fL2xYVEwKyzZK8Xjcs3x0XbbUc0b3F2SsdfG484CY7A/3bo7+h6oGss+sW0q+nFocTcY3E5jH/diJbstRLyS3VXuLbPxudWV7l7YnHyH2fdak3ok+cfBku1sOyZW2RzF2objozd6QF48Dwdt2vdKt5VbHyjQSsm+MMqffXAP9+bZZ8BtQ9e57/iUWB3LNvRRiuK40+3cLvPKwBc6ttUymIxn8Ta0xa+Nwf7x6DB+/Vi1VQqHobRtaIvfMGYl1bq4PdzF5uEdUbunI/l+2l4b7W/YtnPacQDbJrHtlg3H9kZtk/d9uaA2d73ShtXH3b7NQLHj0bYtzRg8u/jb2Rbbna61fePmpIubFcf1quC2N2/hqugz1VnR5R61K+5SaJ847fO/yAXwwueSg7KZMLbDfWNpXONxlYufqjlun3hu8lyL5rvp5miDf9DF97b6lrjPTjdYb3H7xkmbHJhrcRsTFs+bVkbt+vlHxX1Gm9zGgO0L+/8ei/E/uLbb/hlpJ6EsjjkOPTvYB8WL1XB/eVHQSsl+shsiFi6OYq7F2++1aYvNFiVjrh3PtuNYVXY8+mklNgXzLMS3e30KbF8PeLE74B/v8lR5H/86FyPVNi7b46Xtfxca76U4pDpqoxUbaq6JF9mxadtPTvaRk23oHY3Rm7zZ9pPTjkfb/8Hu1mMb/GnnHdiWntksbjtda9t43sngcOw9ybu7m645KfrAH9v8R0nSSq2Luyx329c2b3m8vd0V9zm82wWinWuy80z+PnG4n1xsO9sNnftdrA17sbbfHfeqdse6LI6r5yZ98vaNw1M4ktxQm7RLk0Vty9z+smsXuW1y20eWkv3k8HcjtUcm55ufmHO0m6pVQXYcb6PtF9mL3e91smniefYKj3sF56C8WXGsh60kHZ+VJC0+Mvf4V7Ht7LRzUPF29u4oRqrCY15S4d9vpfz+oyplc7S2NoqlxrkupubayWTvxLWL6UH3Nuyot23q/HNPtn3d5b4v/XNQG49cJknacGS0Xb29030h+Icu7CFtDH7U7Ruvf57XKTxW3eVaf8MFAGY2fkQOAAAAAAAAAAAAAAAAAACAHJlMJnUaOKQySpIrYUrxI/IpMZGs08UeJ+3fNobnCDOYzQlu+9OurayILqGskZfp111iZlmMbFmtd+mZXbFZbxmC07JB2HR4RbifHcIu2AyzrvnzdgfLvEzB9YflZlK3ts7LRF4brH/8euqS1zxQOTf3OdOyOdr7W+zfNCYTuSNZ26Y3//9jVy825Lb+NlZTgXZ+fp+m5l53M2oXyc9AtjNod+S0krRwJFpWa0kk0rJBbAvm2dWnfjKTMH7TMpGH8ZyWycni2S729L8PCmVU9DYgat30wqXR6xqstGyKSeqWPvee23u2wLV+Bsre5iZJ0vZFbkXsSvcm73mbgtbP+hz/f+uCllgtf/54G/x/bRzyx6p5YRv933MrfORW9pgXZ0FIBjRbFsdfWhyG81KuGrcM5Nv25d/d8iBY3kA/V4KxV18X9PWzSdhzNVtszglaKT+bxHNBK6mh1VURqc/NCuGP4WHGiLqmJJvDwDyXziWscOCvR16MhuVaJGJ1JgqzvEhxFoiMS3sQZn6QkkwvrrUsL5b5VJKOdlldLAO5ZXeJnq3LtVE6lyWDURaIuRtHk+cIs7qE2V2k/Go+aZnIxzP2FsruIiVJYl3b2OEySCx9Ku7SsSwaAFsqow0Ff1vExti8rC5Lk+3s9bVRhojRKrcixQ4M/N5l4smmZXWxbySyrc0caVWcbJ6rSmHf6X5SIPtM21e661M3L3/stX3aYpW34r57vcy6YTaWYlnG94yhj32kw0odUvKSawv0VZG+fpbkINbn7k6+e+oPs/ch9/2oS8lcbPOsatnAHC9zsY254djv/3/6Co25jL2zg5eqNx5w3CCT8T4DYTWfI1zb6d29M/qcWLWLYlnGrY3HYK9PXOmnWIbEQtW5ilUWKJAxUVJ+JmN/3vyg9bOtBdsAGfechy9Nxt7a9uiJq4IviRFvI8Cqcln1gaHG6MnXH5VkWhztd18atkvSG7T+9IBlz7I3xq/qU6zOEcpLSiW9OLWXW9bpbh7ldbFMxVbhx2UgP8rLyl0oM6JfWSCJ42jZgk3us+VnPA0rg4RVQaT88diP43Ab2qQdOw/3/9Mq6dlb5dYrzpQuadnSaGbTkl5J+fu2kn/M3artuRXriLtow7DLkDjsVsxC3y8IYN9Lj9mK2f8tLVbJsja7+IOMfWCPyF22wutiCTmXB7e96gMtx0ZBaZUFlrmx18+QGFYISctEvqjbDUD2kUwSIOcf9woyn0rKzzRcrOKPjcdpx/WC8bjWbbYsbU1ipbUjmm6q743aYD9Y8vaF43NQUVvZmqzYhuroy3PItpf87yKbttdlu8I7Or1O9nx7g05kPp3Z0vab3b5WuF/mV3wLqi7XVERjTdox6/DYdc6yPW5sC/d7/XmFWilvn3q3W9bnnRfaH7TxOngxYsem7axM/G74x5jsNdt3RZF9dNvOrmtOO1aQu9+c9p7ZOQCFVa6l5P8Qr1u4jyzlH8hjW3rm8Dcs7RMbbDz6VQNseO50rZ9ZtzPKSmz7xFap2t/ftTF3abAtHWcfl6Qng7ZYZYFgXN7tbU5a1duw4q2/WRqKP/3ed4cdNWh143GdjcVJEZD882QplewzLmw6V0Tb3SPNyReC7R/bPvFAXA03qYLb1xH9f7qXR1mO4/3f5BR7Mm1tn/3D0jZcGI9nF/8D2+naAuegpLxzT9ZWHJd8uI9ufcI9Sm4lr7SKfOHxsHj/WcqvZj2e/Wb/dxu2GRv+Bs2fDveXU/aba93+7eEtrpKXd4xrR3v0eizzuGVR9yunhNveG4517byj4z6qsxJEwTr71ne6CdviSDtAMLvPPR155JHa7b74/WkAMwc/IgcAAAAAAAAAAAAAAAAAAAAw9TLi18wlUlHqFQAAAAAAAAAAAAAAAAAAAAAATB1+uz9TFSsDPxZVWfcw+XX+wnlWStOfb9OVYblA/65hBZCxlPwtdv+U56gccetROZKzXlUp65rcdq+nyptfHS+Ue4Dc2xNGCM4+YXlB11YW6RKUFozmRTGalLYdzLkdTQ/mLKsNyuBKUv0eNx2WIfLLf9qyQaX39afDvlJ+pT1bVlWkT1rpI3sfwuf3y5S5x64ddK+1Pv812/tS50oLhu+hP8/eZ9VlctfBnw4rC0rScHWRhZhVCtXbTDFSZFCJl4UfqbSPVpFl1e5hgm+gAz5k2GdM9wnHyrTvuTDWvQcarsy91nEk5VnsfYnb4SIDc1rp4uTZgnYM/zCUIRtIrUSoX1JwcU4TVxjs9LpYye7l0efESoV2uvLc0XSX6xqVEjzKKyW4zC3r3L1ZklQVlgiVktKgNm970EqFy3V64+H+AlVuq/0wCkt1B2W6JUkLXetKCsbV+vwSo25b4uhl0WuubUzG03A722J1ULXxvMHWqGzoU8tdecH+TN5z5JUL7bbarX75QJseS7FUlL8i39MFvu/9MWI4GD9y7547bzhtfC42xhWSNmgWqkzt9wkfO21ftNCAnPZcrs2mrLO99tTXHPRJlVbls2AnzC5pJdqtdLcbbJq8RU1BuyC3qyTNW9Truljbk3M76h6VwF3kBpBFdnu3N8iEY621W5TfxyrqWrVWf6wK91Ptu8j/yIfx6+9f2ngcPk6xkEmJ/YW10c783uZoZfvc+9wXv99Sr3tjF8TvXdQuOKw37rNzkVuhJjfDSqo3KWHrPGAbD1Z43P8/2x4HsV++7ANm/19/Y9GV4bYYbXPtEq/L4ty2pSMqP93uBVmrC7ION89Kbvt98spw2yZ42ra0leO22E0ry22tf/yqUNylHZuyzdm0stzjKP29wG2zjizZ5J46GWdtm3lI0fZyWjz3LY2mt/cujWbY9vIOJey7a6tre9z/LX6j/OlCGyeYWRqCVkpi230+7Hu/zevS7trO3HZeZ/KBszgO43lJHKD585aMRG3j08nx2zj8u13rf1wtpu2zHcaclMR2sXNN4Xgc7iNL+fvJ9lxe5fZa97ydS6KVrWkecg+fv2MSbm8PefvGe5uj8fOpzvpoRq/35dNboN3pHdnL2jEOe4P6ghYzU9qxzP25s6z1D5ME+27hMVZJGnTjTzIe1eYtG3Ef0yr7uPrbt/ZQtUHr71IGy6rdWFmXcu7IP44t5Q7PdXb/8Ln89bF54boW2bf2X7ONx2Ec23vhL5Mdf0g7N7A/7hzM8MfeMe1coyz5n+RwP9m1/vBs0/OUt6xi7l53r71uUfR9X+8Fu82b59qGETcm+Puy4fbxc0Gb0me3Gwe3edu34ehja5H28Q/PT/kvOf7Uu/HVtlzr0vafrS3yejKundecjIf2vjS4k+HJe7c3r0/3PLdG89wXwzwl5gVtX9qxj3DHnbie2cJzUFJyHsrtFHcqt5W8c0/WRp+TZa1dXpfoXNNR7tzT0VrnHia/z5K90Tmo2rRzUOG5J9vuHst+c8o+bcwfT8Pta9umbvT6WHDbetg5KC+eF+2KYrRuWfRaa2qj7eyqIid843NQS5MxfPM+98baF5N9HfR6d7R9ie5ON2FviLfhH08Tx8CkmopM5JlJfvwyRSZyAAAAAAAAAAAAAAAAAAAAAJhFSI2KcQszjxXNDGpXoRfLzDaWCzDHkxbVe66RyiBDaUpmtUKZ1FKzmYaZpIpmNR0LrlKbvYLsiWmfpTABQU4igoy7W+5neiTns12Vuiwnm0RtdC1R1ZzRaEZaxogxZAyeUMLtWm+6UFbvtMwVYd+UdbUMxmmv2d4XyyJR9HvBvc+p/4Pw/5PzPwyzYxLrM4efsmV3btvrLqHu9brYlct25fSO6PPXu7Qp7mKZAHtca7d3eqkWLXviwuboqutMWiLlsBJASvISy+JyuMvWVOdd0W3ZHgZy75LDws6upXe5kdTsZWmqsyvKbd1ag9v+9MLgttentzZKZ9cbvC+9XvpDe88sE9tQr5ezoidoe4NWUvI/DDMXE7Mzk31yG4NWyRXHiwq03rRlPk2ym+6Muyy0WE1Z1jISpVSosswOYZs2Ly0TuXvIAcv84mLf/3YKh6iwyIkk1bnHaXYxW52WIbFQ1raUrBJV7ntgYWPymsPvtTAjrJR812137+vAIpfKMuW9j9vutDw19v/0U9ShvKVlVAu+r+2mn3XQMolYZZ3eqBnqr0+6NEefnb1uJMvJ6Omme11aVcvQ21OfpBhtm+8C0GaNpRpPWqUd2x5OG7tNuH08lgyJC4P5/rQLlb75Sba0MLNpf3x7XsE+fTbm9nrP0R+09r/w/z95Y+44yrZgBvADIKjelJYBMNz38way2jm51bis+pRfnSus2GVtVVrm4TBjabE++4I2rU/aPmSx/eawskFalqdC6+g9R8bNq1H6+5O2zG5XVng7tYUyNPr/p+pwoliZJJSv8P/rZ9Vz0zZczAlaf9m8rLtHlN0vLUNisiw3m6IkNex1g0tYGSct62DYZ2dKHzc27ffGqIFiGYudONOpjcNpsR6O+fZ++FnXgvVvWOiyINYnr9neh2LZJW2Zvb+aV6SSnv0vetIyJNo01QNmB/s/13vzGnKXNSm3TZvndt2a6nu9Lr1FW3/a9p8bn3NjlL/fa9NhZQFpfJnI/XE0ZDEaZiz2t6HHUhnE3T/j2qa50YGovtpkW3qhC8BC1UD8eduboliP942jjrltmPlUkvrsS8b+lxbXxcqBovylVWNzY4n9u3uDVsqrXNH7XFN0szk5Hr3QHYTZ6YJth3es2j67DY3R+HV4hwvItO3j8NxXWoUPN67aceU6P54LJeVOyzIeZjz1KhnlHX/uCFpvuqc9ih//+PyO+P1Y6Nrodq+SWN0x5Po/68Zj+57yt0VsOh7yg3MMkqiuN5P5xz4KVEfd5+34hvueXhyMDuZWCRgKqthIyXEvW7a3MvpsN9Z61T/C+Ek77jQ3t2+juz3gxXyhYj7+pznc4kzbw7BRrNEtrAueW1L+fsfcIstcm1ZZYCiouDCYUnFB+9yKFDsOEM+jsgDCc1BSfMDWzkE1udY//xHMm9+We54p6tLr5uUua/XOh9i8Wju/ZIvSqu2F56LGkIncj/n9wfhe7R0vqgtj08b1fu8OaRX8pNRzT3PnRr9jWbgkeu3+sfz8c1BWjTAZw7cvigb/ocPc/8Xe+8O852pybXzuyQ60p+03U+kHmFRTkYkcqXjbAQAAAAAAAAAAAAAAAAAAkGPjxo3aunWrJKmtrU3Lli0r8RoBOJQqSr0CAAAAAAAAAAAAAAAAAAAAmB6uueYadXR06KijjtILXvACveAFL9BRRx2ljo4OXX311aVePcw0GUVVCSbzD6nIRF5W0krgFBCWB/PnhVVz0irq7IvqqQyNunI+FTVelyiiwlI/e73yh1biZ7A2uk6hak5UYiSnnJCV2gvXq1hZX788WaGySl4Jv3g9gnJEfsmiEffg4bKRYe+bIywTlfbe2esYx78pHeWMZh7/fxqWF3Ql6rKtSRcr5WOlffqC+ZLU4xbtdSXn66O216sx2huU77Gyt/O8Ejvzal0p3OaoHlHGnjPte8GEpT6lpJyRxaFfAjiMl7QS3rVBOz9o/enmAq2krJvurY1KCFoJox7vfelzXxJW6sha/72z99Xe59SSj2Hppay3LO//fNBfDJg2/OJ7VtvL1f4adnG8zSs3uNm1i3Lb7YuSOpkNS8PS3dFzpJWct8975zHRA1elxVFYttOfdpXPqt2qt3qlv1vDUr/2cfW3KcLxOK20oT1XoRKh/rRdoHxk1DzTnpQX61KnJGmja+32Ji2J+9j0pufcvK5MvExdrn3GtVtd2yOP1XKz/6VfNhQznxdAlQVaP8bcvNo5g+5mFBw1Xqxa3Na6mM1ZNuimLdYsxvwxM4y/tDKZVjrQWuW2Uv6oUxXclpKyofY41fYcaesTtv73QrCuNYPJA9S60qj2HZb2vsTvo3tfB9K2E8J5FurZ6pRO/jzMDH55SPuetu/tw6PmWe//blU+7XvfxuDNyYdqe1M0Zjc0um1hNwZLyXgcfm6r/A9+e9S0VbmBNCyVK+WPx2EZUCmJt5SyxLHw8x9uL/vThcZgKR57d3dE+8abKpPxdIt7QVtcJ2u7vcHb5m0fdeU/N7vyn1uVsGkrjW7/i5xK3DbT/of2/2U7eXbw/8/BaDVSnd+t0LgoaXCfO4ZTn3vcxy/dPRiU87Z22NuXrQq3Z8Ntaik5zmT7gBbr/pgZKnbENe0Yl03bc9Wm9AnXLaVP1s0LS5kPeu9LuMxuDw4lffLec3ut/jbA/nAiLY6J7ZknJY6Hi2x/xR+PTMEuIwXO3ox4gTRcGR1jrq0cLfxc4ba8KbJdWe0tG3YvrVhZ7upwXE7bdj3Q+qSw1zdS5Msj7X2K+9v7uz+vi/ckNsExKqR9cIM4tpv+xy6825xh1yX5LNUU2Ceu8QbNvO3rtG3hwQKt338sfcJzT77wHJq9Ln//28bacP/dv2+wj187GH1P2f5w9NC5xw9sP9h/7/L2jYu996nfPYW+i/35xP3MYztb27x5wYmTZ9wx6yavS1NuOzQv2r/b9PxkP7G2JjeeK1NOPNvYNNIetUtqt8fLMrZdG+6nJl2S3UNrbXvbj+fwOJp97v0YCY9Vh+eS/Oe3U3H2UpcmXXa0RyudHI9Osmtu0FGSpPVa7pZ15rSStGt9m3WWe6DIJm89bHrY/nd28Po5rxPHqGcu/3s4PMbl2me988XPurbbtZuTRWqNgmFbW/ThbqrplZScC5aS88E2z45/1S5LxqgFIzkHbRJ+jIX7oi6OW71jU63uXOmAi+Pdri028tS5eK7z9tHrwji2U0b+MS6btvhd4i2zeS58t7ZHD7TFO8b1tLtDchwsOi623XuS7udcf3vPtwatPx2fcwrPN0nBQTHMZuHuXNq2XmXYZSRvuioYj3P6jLjp8Pxu2u8+wuAs0md/yr7ycJHgrnLLqsPnSjuvNI4+4Wv35xV6fySpsircyS+87vk43/SpT31Ka9as0Uc/+lG9+MUvVltbm7LZrLZt26Y777xTn/nMZzQwMKDVq1eXelUBHKRpk4n8qquuUiaT0fve9754Xjab1erVq9XR0aG6ujqdd955+sMf/lC6lQQAAAAAAAAAAAAAAAAAAJihvvrVr+ob3/iGPvjBD+rEE09Ua2ur2tradOKJJ+qDH/ygbrrpJn3ta18r9Wpipqma5D+kmhZvzQMPPKDrr79ez3ve83LmX3PNNfriF7+oG2+8UStXrtRnPvMZvfjFL9a6devU0NBQorWdCMvucaivUtqfMu0uw7KsfH6X8Couu/DRz6wQzLPMToP1NV6XKOP43ry2Lu4TZ/Z12YDrm6PLyDP+c4VXp9mVdWmZnNIyH9sVqC4Bml1RvqcxuTai361Hf5Bx2M+ansyry1k2tM97sjD7YrEs7sWyW8Qzi6WFmQgySJQPuwI8vMLcyyyw1X2om9xty564wHsYt6x/QbRw20rLZJxc0RxfUR5kd0m7AnOkOQqy1qooVqv8WAuzONgq7/H6WEbFtCymhT6eaRmU7bnC+PbnBRkjhr2rz7c1Rpek21Xj3SlZFLuDK8vjrIpKru7v3+ze9DCDcbFMiznZIYLMATkZNFHe/KwBllXAPqhu22TTiqSLfbbzMgUlAbBBR0uShpe6zC2uk59F0camOIN+Y9QuOTVJY7Kow6V6sI/7Fm9VLcOLfSTD7C7+dFqmYRNmZ07LRG6ZISzTi4WWnynCZYbYvTQ3G6qfZdyyuKx3WV42uCwvdluSnngueu+G1rr/wVrvOey6w8dd+6Qt8NN1PBXMI1Znh3Bj2JsVZjBLyQC+t99tKzbWuEdJtoGLbh/XR9mMahtdrKbFTzjPxj5/XHWxaSFW5WJ3wFvXQvlN6vxpN+Y2htV80ioLhG2RdR6oTbaz7X3I339I1sS+6wbc+xpX+PBfRLgtHlf/8Lepw+ofmDnSqoDYGOzG3h3e2NvlWtuuTMnUOzAn2rDuWhWlJaqqzx/04gpVbtBL24fsPywabFuao4G2sSXJ5BSPvTbm2vayP/aG3zVjGXvt9XgVuOJNkWAMHvSSV22rjwbibW5A9reP48oerk3Lumbj8s71Lvv7euW2UjLWdgVtTla8Z4J5ZFibHdLqZth2lwuS3sXJot6g3RHcltS/oylatDT64De5hU1eJ5u2rGu2v1zXmFQfaLPSPGGGwzQWj2ljeLgtXexx4gyu3rzwMW2gX+j1CasMpFQd2NYcDdYW6zvcA+yMDyxIO908q9hlt3ft8A462Htume96gzZnOjyu4W9TMy6XP/sfpsWxm+53x6F7ldtKyfjnsvP1DjVFbU1T3CWppLcguO31cceY57a674y0TKUjQWvSjj/tCVpJde6x6gpV5PPvX2i7XcrfFw5bKe/Ylr2+9AqDhd+XviG3QWDZD+397vWey6bjCocWoyn/S2J2lkg7uRH874sd443PIdnxq+RAsu3rWTUQu53bpz6nT3Zu9OHMjKUKbdq6pY254bmm2pQ+4fZ1sX308Ph4beE+e+emVe5NrxDivy+D4b5xWmZ1e+9TM0iGVQb2By1mNj/rbZdr3fg84I7BrPNOtlQHrbNLbfH0H49354cb8z/TYXVX2+bc1pwcq+5ojlInty5z55zsWHVaJvJwfzktE3lovJnIbbva7QrvOCwaQ7ekVOCyfWM/y3hyrDo6Rr1hNDpGvfP3hyfPsda1jwa3/fx48fmkcAfa32/mnO/sYHFr5yZcrA57R3Atbm1WSlFGi9t1J0e3R2qS4LBqATbehBWaJWnJ8ihul7REMVtlIeFl6VcYv/Zx9avtud3BOhfHdWn7xradXug8kz9dqOqeP52yrnuWRb8T2VSbe6zLzi9JSTyvc+fm7JyTnW+SvHNOv1du+7gS8Tkne0OeCm5Lud/PmPnC/Wdv2mLBdsd6vS427WKqr8fFamtyADiM37RK672V0XTjwu05j5daGTOssOPvRwfHrapdXFf758uK7TeH47JtgqTtNy8M2pSxe9i19lr7lP++9AbV6f3vuYHeBnuA3DbeRw6mo3u5dq83b3aOzz09PVq+fHnB5StWrFBPT0/B5cBMcM899+hzn/ucHnroIXV3d+t73/ueLrroooL977rrLp1//vl58x977DGtWrUqvn3rrbfqn/7pn7RhwwYdddRRuuKKK/SXf/mXk/ESxqTkmcj7+/v1pje9SV/72te0YEFysiKbzWrNmjX62Mc+pte85jU6/vjjddNNN2nv3r36zne+U8I1BgAAAAAAAAAAAAAAAAAAmHlOP/10XXnllRoaGspbNjQ0pE9/+tM6/fTTS7BmmLEymnaZyPfs2aMTTzxR11577bjut27dOnV3d8d/K1YkCbHuv/9+veENb9Cll16qRx55RJdeeqle//rX69e//vX4V/AQKXkm8r//+7/XK17xCl1wwQX6zGc+E8/fuHGjtm7dqgsvvDCeV1tbq3PPPVf33Xef3vGOd5RidaeQXaXm/4vqgmVpabD35/b1r9AOM4+nZVi0q7zdlVb97qqsvvrkSq3waq7eOHNRktWo3j2ZtbXN0ZMtGvEu4QozPaRdYV6or5R3JbllWdtZm6zHDrdOPcG65mRsCbKVD4y6967XezJb7TALYloW96LJxsOZaf/LQg42Y8TsvDJu+rEPil2ubdkbvCwQlhlik7uk3C6mTLuC083rruqUJI0cmX+FuWU6CVspyR5hn//exmi9WhuTq6SbXHbjKssKYRdN+1ethvGbdiVqoSvM/dcTZn5JuSLVrjbd0Rgt9L97trvLz7fE2cZzWyk/06Jdcb79Ce9S9TBzsWVY7PLWx6YH9qcsDNM+F8oJi/Jml4t3BfO979v1x0RtGBt+cr7eKBieOj666rD3+CZJ0s6aJO3gNpeezDLo2+d3ibzsLu0uu0t7FL8tg0kcz90+Gk2E8Zt29Xmx7IlhRvW0LE0Fxucd9cnrCWM1jEt/2rKhWqaI7ieSrKh5WSAeTRblZSLPbg5mSEmQ+ylwMHPtDlo/C4j7nu52Y3BatkD3ERpYFF34uu3YaKGf8XSeC27LeFrvZSmoVXSApWZplySpcTD/gEteZtIwY4OUxJiL30Y3BjemZYizNozdaIVyHzstS1NYScBC1M9E46Z7lkXvnR/HYdWPtOof9v02tNltC22NFyTyKoLYuOr/D3cHyzAz2f88TJvmpWLa2Jl+Vz+bihvr+vuj7cjfHe1VDWhN39/d7qU8sgy/9vldVBmlElvYvjPuY9MNI+57YVcU85m0KiDhPrA/Bof7wimZyK0aV19t7rr728m2zhZ/27w4tLi1mLUM5Jv2JvHc/7h7LBtGrX3MW9d1wbys/b/8dOVdrrVl7KfOLn7meYsXtx2W9VJub3Yx2aT0VpLmRcHRPS8aW2qb3TjrBVRYhcv2kUe8tIVDh0Xb061zo/WoTdsXtVULMyUWy+Tk7xOH0o5xFcq25mcitzHa7d4Ou3ZLY/L9VGj72s+iGC7bsts9UJe3Ql2uteIBtimd7H5Iw7YvbIN2SqU1YnwGsP9hWA1Eij+UfcF2nF/8qcm17jO9a0GUKXHTymSbzeK2xm0vVxb53IwcFsVvR20Us1VpWQuDqpU5m4xhplN/XE7N7KvcbehC+8JpGdWCbOPeZrKG3Ta0xW9arCaVQaL26ZT95l1dLmNsl3Jb/39g/5f4OMS2oJUYl2cbiz//+zrIUN9r50i8LpY918ZD99nqbWuKu/Q2Nrku0QDWEOwjS8l+clxF084dDeal/0sUq2hpcejHc1jpp9gxrmKZyMPxOKUKiE0PuuF0Z6VVAfGP6+XuP9h2+g6vj80b2uG+xOJsxUr+D/beW6WQnIJ64TgcnrDCzOb/n59J79LnZZB8wA1OFna9QStpYGt0/Ov3x58mSdq+MtmHDLc57Rh1h1ca06Zb3LmmRY3RB3jhqmS/Of6O2B19XqvGMj4XOcaVdfHbNz/Knt5XmZzb7g2q8ITH2yW/im3UbkzZhn5qizs2/Xv3pP6hZjs2HR6X7vGPVdkOsx2XtszFHM+afexDHcas93uAPnd+6f4gZv1pl/x1185ou/Ch471jQUvtc174PEwcv41RzHYcn9tK0sLnXNWQsOqev50dxm9a1b0wjm3XPK0aSXis2ts3tgrVVp3aP2Y3ln3ije641waXgXz7H93Gedr5pTADuX8cTOE5J843Ie28hX0e3Id4m/tQ+6F/mGtd+I7OjwJh04IkVutr3O+u3P5zpQuu1P1n93hLKqPnzqn4U+i4k799G1aztjYtns1YKnilHeMqUllg0E1vqo+qFxarnlnwWJckdbmVs5ANW0nqVjAz/K2HNFvH6n/7t3/ThRdeqNbWVp177rlqaWlRJpPRtm3bdPfdd6u+vl533nlnqVcTM0lGuVWHpoGXvexletnLXjbu+7W0tKipqSl12Zo1a/TiF79Yl19+uSTp8ssv19133601a9bo5ptvPpjVnbCS/oj8lltu0W9/+1s98MADecu2bo2OQLW2tubMb21t1VNPPZXX3wwODmpwMDlhtHs3pZGBckMcA+WPOAbKGzEMlD/iGCh/xDFQ/ohjoPwRx0B5I4aB8kccA+WPOAbK07HHHqt169bp5ptv1i9/+Utt3rxZ2WxWbW1tuuaaa3TJJZdo7ty5B34gYJoZHBzMG4tqa2tVW1tb4B7jd/LJJ2vfvn069thj9fGPf1znn39+vOz+++/X+9///pz+L3nJS7RmzZpD9vzjVVGqJ960aZPe+9736lvf+pbmzJlTsF8mk8m5nc1m8+b5rrrqKs2fPz/+W7JkScG+AKYn4hgof8QxUN6IYaD8EcdA+SOOgfJHHAPljzgGyhsxDJQ/4hgof8QxUL7mzp2rv/u7v9MNN9yg22+/XT/+8Y91ww036G1vexs/IMehl1GUEnsy/yRdd911OePS/PnzddVVVx2Sl9De3q7rr79et956q2677TYdffTRetGLXqR77rkn7rN169bUxNqWdLsUSpaJ/KGHHtL27dt16qmnxvNGRkZ0zz336Nprr9W6dVEd5K1bt6q9PSkltX379rw30Xf55ZfrAx/4QHx79+7d03ADpFj5uOoiy4rdb396H/9mWFLXqm2klT7qtTa6wqJ3UVPcZUdNbilCK/1l5QelpAxpWD5l+LCk5sCCuVH90ForlRKWN5KSkih2N3/8ceW7dzdHZcmsTKBfAnB7ULLb1tUvJWglzPoUlTXrebbJFiT6g9bKBPrrau9vXpVAr+xU3v8p7X86lj4zW3nE8cGy0jdptfecHa5MmZXG8j8KNm2fwb7o4prt/UmNn73L66NF9WFZ+/wYaXEleVpdKduFSkoKLmyMamcuaOyVJM1b5koMDnplSPeMSpIyaaW7cyuIJ/wSJO5aoqy7qGvv3Ogap77apNxgv8Vo/DoW5b0eK0For2tLUH5Q8soZ7Y7agfVRWca4ypgkrXPtetfa/2CD16dnf9DJr5JhpY78Ekezy+yIY2P/ZxsA9nrL3NWLm1w89wZlvqW8EvFWjvqh5W1xl/WrorJ6S2qi0oJJidC4vlYcvy2uba1NSuY1LenNadPKCdvYXWslxEfyg3ekMgrcERfAg64mWZ8NypIGFH332HfOjnHEql9G0aa3/8nNe9xdROiXCLXYXBfcjp44mGmx2uV1mr0xeiAzM4Zt8LT/u19W0gXgjhVRa9/3DV4XV83bxqzNc6K41JGFn3HEG+wsXvZWRjGyZFUUx4cvTMbcuNT906614cvrEq/+LtcW24YuVCLUex1x2ULbzm72+lgpQVsvtz5Z76OwpTmK7bTSoDa9XlHJZCsRuk5Hx326n3ClBy1ULcbXK9Hl2p5whl/z0d6Y2bftXMjMjmP73+8PWm96o4tnG+p6vS427caK0e5kR3PDiuMkSVuWu+3Ixqj1y3LHY637HrFt50Vezfkm9yRNlVHb0BytSF1zsp1gY66NwVUpG87DsrE3CuS97stoSEk2BNuXtTZtu9/2k23feJuS4ypWvrt7NHqtO9cfHi3w49Cmwwq9/vbxRpuwbeG0sdf+d8TqWMy8OO7zpm0crndtXbKox20720eoyNHLoeFo+/qJVdHYMtKRDHa2XbrXtWGsSEm8bKt3cb3KxfWyJJ7nbo/2dwuOwf60jcf2EffD2lbNXo+fU8NCOiwr7I3Lgy6kd9Tnluz293fDfeC08dnmrd8Wjcuj69x3oL+dbSW7w03pHV6fOLZtX3iba/3/M2ZOHNv/dZs3ry633dgZtf42Z4HDXt3DSfnpkWOjO9jYZmNdvxerFrfxsd3GaFu65fhkm751aTQeV9mQbdvQ/m5fGL9+HKfFbaHXE5blnu/1sbh1MTvsQnRbY/7xuLjUtotZP1bDUt22bPsfvfrej7r2D661OPb3jePxuSto/f8lcVvMzIljY8ev/Ixb9nlwcdfjtqX9Eu9NrrXPvTsUNDBvQdxl0/HR+1Jb444tuYAKzxNJyXautXvbk3jumBtNV6WMh3FMW4zby/Djudh4bCy2bTwO41rKH49tE7ol6dLTHn1nbXMzu108P51yjKtQK0ndW9yXRZdyW396k2vj8E37H9obRFybmRfDB2IffNtGs5j3BsTh6DiNHnXb3XaI2Y952/5z+37bVyTjz/bl0fQfl0cbhx310eA7lv3mpuTgjhrcSdeGxujzWt8Y7S/XxCdck/3kyiCQU4+5uW0I227wtyUKnVcqum/clWxna707Nh3uG/tjru0fF9w39qctZtk3HouZHcdhzPrf327aYvbh5cmiTe43JfaRsnMkjyYb3puPifpvXhW1C5dHx2SWVGyK+9i5pnYXv63B+WJJWti807VRzNsxL//8Ur37rrHfi9SMuG2B4cKf8ZGqaF2HKmvieYX233vjDZEkfsNjXVLhfeJNe5PPS//66Hsg7/ySv08cHqPu2x3MkJKDY3asi7G3mJkdxyY8ByUlG3IuNvueF7WPe8fBChz32jWSnCd+9Hg31jVG9wtjRfLPy7oxrtmdS272ziUvc/vNtukdbkJKyXa2bV8PBq2UP3z5r8GOcYXb1wu9PrZ97barB10Yb6lPfhuYF8cpx7hsv3mDOwcVH+v6g7dRv9a1dqzL9qP9mB+2N8C+i/mtBzDTvfOd79SnP/3pnHmHKgv50UcfraOPTs6Fn3nmmdq0aZM+//nP65xzzonnjzex9mQr2Y/IX/SiF+nRRx/Nmfe3f/u3WrVqlT7ykY/oyCOPVFtbm+68806dfPLJkqShoSHdfffduvrqqws+7qFOLQ9g6hHHQPkjjoHyRgwD5Y84BsofcQyUP+IYKH/EMVDeiGGg/BHHQPkjjoHy9MIXvlBLlizRTTfdVOpVwWxhmcgnWW1trRobGyf/iZwzzjhD3/rWt+LbbW1teVnHD5RYe7KV7EfkDQ0NOv7443PmzZ07VwsXLoznv+9979OVV16pFStWaMWKFbryyitVX1+vSy65pBSrPEZhur/xsgxqdv/hlGXDwe20ea7d52U2DzOP25Vj/kWRvUHrMgztakqySTR0RA+wzT1gjXKzSqQJs6ZJUr/Ljjyv3l1hPhI9nn9FatVIlO1puDLKSjxQWx8vC6+uC686lZIrT+0qtW0pWdes/46hqB3d6a5K6/VegE3bBfL23qVlcfevwIvW2pseDualZc47WIfysTD5tqfMC+J5R2fU7vEGsN6gtWxgXqbS/s3RldSPLY/aLZ3RlZutNclVvZYZwrJCLHIP4Gcij7MoBleWN9R6V5jXWoaI6Pug1guEQt8NaZkihhRdbZ529Wx4tXlahsVtQdWB+IrzvUnGiP4ud4V5l5uRliBxfdDaxeTDu1M62R3TsqFidrHvdv/S5SDjcV9Kxoiu6ty7ueTGWpF02eWyku/qjNrfdz5fkrSw08vuUmFZXaIvhEVjiOPcKiK58VtZmZKJPMgSlWSKS8Zny0qenw11UdzHsjPZvCTbkncAqcu1YailJW6JL6LvSllo88juAjOG7+iNK/LnhUVi9kVXAm/uT+K5b1X0+e+taZKU/rm3rEbWdhzmZYE4zFUUWBW1eZlPoweNhFkUi2WBMP4uSpgFokg2iD0t0bb49trcbWt/Oi2TWlecPTFqNw5F7a7fJxk08rI//CGYHz2oE6ZD9cdeMr3MTrYt7e9z2faaCxyrMLDTS19ox2W6XLsxWWSZwwY6o33gJ+I2yRrQ0pFbvafY2BuOuXXeutqYm+xT5wev7UsnVUCi7eUBFd43DreXJX9/Ofpe2v5ckj5xqMvtZ1iClS7XplUECIfXAf+9t43mMGNL2j4PEI7HKRUFul1mRDu25X/VF6ikt2H5cXGXHavc574md//QH6vCfeI4U2KtV1nAVfNZ4Np5tk/sVeeqHYzG7Cobj9OKywUZmYe9Td/B2tzjXmnZ1sJKP5bJeFtq1jWXRdFe82jymnc+HlQbCLOvSflVB/Kq/PgPQKzPLsX+zy5213vb0hYTYWUQ7/jV9h1RNtMdR7tsaa25lSWlJG4LZUqUpNZGNz43WqbT6MmaRnrjPg27ojE3k7YNbZmLi2Uit4zFLn6zbhu6b36SPbG3silqg+NWfqyGGYvDjORSklHtqS0ua/t696T+dnKYBdXieJPXJw7kcBAnZuGPxXYeKawwsDjp4seCfxfPrv3Rvt4fj7FMiVYVJDkvlIxxC3La7V7G020unlsbo89p07LeeFnj9iH3ZMpt/Xi2GC92CCis2BVkWI+ezD2M20/ubYwWpp2D2hafi4rG4LRqe5sUfd/ZPnL3nzqT5wor8KXFumU57rPtpi6vk+0f2/vob6djdrPvez/m7XPiPjc7jojaX3hjuH0G7Vh1p3d3N92/LNoufWKxtc+Lu1QcHgXiotbcc05+5uKwWmacwdjtI0tjO79k55UKZSSX/P3k6Dtn5+4ojgc2J+e/483acN/Ynw7bnDHX7vhU0InqHxiP51KmU7LaW9zaca+1bqz1Tj3Fcevm7ew8PKeVpLWdZ0iS6jqjH0HYtrSfidy2q+34V1xFICcTuR33itoqd36ppjKJZzMSV93LrXgrJfEcZiL34zn8TUjOMfht0Xb26DNuYO9SbivlbxY/mdInzkocPgDngjEW/nZYl2uD33pZFT5Jut8dt+5Vbuv9tnBgazRe/X7VaZKk7lVuX7Ii/3xMUs062m9u9yqF2PZ1XIl+efRkTd6Poxr2RjFea9vZtq+c9zsoj3/uyYZot1096MKxpz4p4RWOy2M5xpV6DmpvtL/c/7j7Hii2LZ1XRWRzSqcu13JO2XR2dqqtre3AHQEU9fDDD6u9Pam2cOaZZ+rOO+/U+9///njeHXfcobPOOqsUqyephD8iH4sPf/jDGhgY0Lvf/W719PTo9NNP1x133KGGhoYD3xkAAAAAAAAAAAAAAAAAAABj9o1vfKPUq4DZJqP8i9hLrL+/X+vXJxfzbdy4UWvXrlVzc7OWLl2qyy+/XM8884y++c1vSpLWrFmjzs5OHXfccRoaGtK3vvUt3Xrrrbr11lvjx3jve9+rc845R1dffbVe/epX6wc/+IF+9rOf6d57753y12em1Y/I77rrrpzbmUxGq1ev1urVq0uyPgAAAAAAAAAAAAAAAAAAAABmjwcffFDnn39+fPsDH/iAJOnNb36zbrzxRnV3d+vpp5+Olw8NDemDH/ygnnnmGdXV1em4447Tj370I7385S+P+5x11lm65ZZb9PGPf1z/9E//pKOOOkrf/e53dfrpp0/dCwtMqx+Rw2dlMVJqAoalTnLmDeS2We/+Vl4kLPk7N+kSVwKyMrVWum9eUkZo+5yolEhlc/T8hUqJRWtY6dam3j1lU7wsr7x3ZVTeqLKy8ONZ6e7oZeSWL+qJS4QmJYusnJGVOrFSoVYOJZqOSqLs2uxKo1hZmKRycTLdG7T9Xp99KfMk5Zar2R+0afWNwz4q0gczh19C1j4zu13rymENdCZdHnPT9nlNK69n3d0FUbsWR2VmdnUm5WaeaDtaktTS4Ur+ykoLJgGwIIjVeUGJQUmqdeUFrcxgrVfPaCzlBq1UmZUp26v8Uqf9QawnJU+b4j4W89u3uHje5L67/Opi4XsVtv50TzjD7xSWCKUMIdKE5UJTyg72uNKBPZ1Ru9aVLfMqBsfxbPMOj0rc7lySlB3c2eqmrQpOMhyqYmFUPrRhgYvfmmiwshKDklTj4rbKxWyx8d3G4yEXuznj86gbn3ujdsi1ejaTPICFTfgd5lcOs1KgXa61kBtIKwMXdpKS95zyvSjELzcZbn+5z81Gr6Rgr9uutiHSPr9e2dpdXdEY+9CqqO1a3hkv66yIpq2EoJUUbPG2AaxMaEtt1C5Y0itJWrhkZ9zHxl8rDVo/Eq1r7aBX6nc4tx2pym0labDWjbmVde4V52+v2/QO94Vi42xuScHoS6fbbW/nlOwejaZ3Pu6+n8Kygf60lRBc59o+P3ZtodUWtVhn7IXxPws2xlqMuxjLJmOmNna6tjn3LpI31rrWPtKLvX3iw6My9Nvbo9bGXBtvJWnBYb2SpHkVVpZ7wLX+2BvFbaXb16tKGXuH4xK/UQAnZbqTsdfi1/aNe59rivr2elXctrpx2L67vHKoeeOwtX5Z7i5boYFgRpfXyWKTMRjjYZ8X/ziHfXZcbPe42tsPJeOPbGjsdm3KPvGu9W4feHnUbnDluTsakzK+Ng7bGGz7xIu8feLw+JXtE9fXJp/x+tootsNt6jQW10NeyW6L6bx4ThmXbZ/YjmdZCW8pGY+37Y2W9Xe5Lyj/e65LufOsfdLrs8G12eeChV1eJ8Zj2HZseBzL+0xscvHb3Ri1ti/o7/ttjJrRx6OD1E8tX+Xa5XGXlqVR3IbluBcp2U5ucQ9uMWvLGiqT9WlodtvSzVHM2vEsKdkHDveF/eNXNl0oZv1pi83eIGb9Zd1xee6o3f50R/LE693GexijG+T1ca1tLg/vDhb4dyRmEfLPN2wrsMzrs74zau2wr4V+r3c3Nz2wMzpu+9iqJknSziPzxyrbJ7Z9ytaUfWMbl5sqkydpao+mG9pzj1HnbGePuO3sYbedPTIavZrKirjPSFUUYyOVUVzb8egB73h0X3AOKtxHlpJzTbafbLctrqVkP3nTc1E79KT7TvTj2faN1we3/XnxfrIFfZfXyaaJcRTix3x4bsPGCu+DZ8esH+x0bXOyzEIg3l92rbe5PtoejevbF1nr9p+bvNWw6fhcdDZqq5KxuKJ2UGlG/YNc+9z+8T6332thsMu7Q08wL+1c8OZgmb+9YvsdefvEaSefwm0k4GBtD1opidtHo2bABeCjRyRdHu2M2jp3XDs81iVJ7pTxwOHR2L253bWLkm3xOOZtOF/g2nlJfNbNc8eqXVtZceDzTPG29VByjGtoX7SfPNAfjcvqdfvNvd4ddwStf4zLpi1mLUT9eLbp7O6gU5fXyb4fiWccLBt/n3KtDVLe+alhF2+Punazi1n/OI1tD7ouO5dHAb3zqOSY96Mros90e3O0v2zb17YfLeUf97L95yYvyBrq3X5zfe5+sx/PlTnbFcmx62g6d/vafu/R7+03J7/3iFr7jde2lN9x2XZ19xa3fb0+OZ5W8NhW2nb2QLi/3OV1smm2pdPcf//9+vKXv6z7779fW7dGX7RtbW0688wz9d73vldnnnlmidcQM0pG0+7XzOedd56y2WzB5TfeeGPO7Q9/+MP68Ic/fMDHfe1rX6vXvva1B7t6h8w0e9sBAAAAAAAAAAAAAAAAAABQCrfddpve+MY36sILL9QHPvABtbW1KZvNatu2bbrjjjt0zjnn6JZbbtHFF19c6lUFcJD4EfmUsqxKxbKLK+jjz68Klg2MYVmSNUH9bpldmGVXdvd6D2Pd5wSt90kZqoqyJNgFnHIXn/tZWSw7Wpihwb+CzbIb1wUZ2YpdkTrkZVvbWyA7U1pWYssCkWQiTy6HjzO8hJnZ4heo5EpWS27TG7RSkoE8vvjErmRLy6Y1HCzz+4RZPoplHR8usmw8fTC99AWtXYnqZ4RxV0X3uCvKe1yqh7FkUWzz+0RfCNvbXDbFRbnZFKWxZTC26ZoxXIlq0q5Izc9EXh/36RuKvrT6eqKYH93pyij4mSIsbsMsx/5V6JZRMbz6POfC0q4Cnfyr/P0MtsCBWBwUyxjhBtSsZdL3MqZuWpzbxy7W9rK75GUgb0oWjTZF8bLL2ji7i3f/cMyvVD4LbXs5+4JWSsZDy+7SG7RSMp5a/HYHtyUl42iYGSct2zjxiINlg4Bl8woyGEtJFtT7O6O2y833x17Lou26WDYIKckI8XBnNK62tuZmPpWSbKhFs0AEFUFqKl01kPok80uh7KfDOdvr0TaAZYFIy6IYbl/bNvVOL+OpzYuzQHSlZIHoCm6nJUbcEc7wO4XfA2zfophwzA2rgUjJ58yNrzljrpuucvvPNr4WG3NdSIwuSsp87VwQTe8Mx9y0sddCs9ihAgvrtLHXvsIsEXqva/1x1ealZVsLt6Hj7eKU/Y+8ePTHYLIy4WD4O2QFqnPlVBRw43JXkMmz03sYm3ahPtAZpUvbsHhB3GXD4uMkSTVt0XMtbHYZT72xN8xEnprxNKjKNaZsa14m8kJVuXqVrGuf+wKx7Ey9u5ui17U56VOwWllaZYGwjTMY+zMtU5Y9oB/zjMcwFr+W3sv/nLhxY9gdv7JsiI81Jl06C7TLkuNG2zvdcavFUbt2cXQAdl5bkol8YX00uC0ItqH9SnrxNnRcUS/Zhk7LriaFlfRyq3KFx8D96bB6wM69ycG2/q1u42GzOx6dVmFwYzAvbCUvbm1mGLNS7vEHoBD7TrdtvbDyrRSPy5tWRO0OdzLJ32S0cajL2ugzvn350riLxfP6xdFY3lEfZUZs8R5oUVwt08bluFxkfoXbtIo/bj+5srLwWGXHpsNMiX4m8kLnoPx9YstKHmYk37YtyaI42uX2E2x7pcu1/m5vuP/sj915lQ3DbfNozYHxK3bM2o6RWQZyb6d4h/t873DzHrZl3jlp20Rtcq2FjVcwK28/eY4bF+ck2wCjVQV+ypBWvDmsyO3vYoT7y8+6dqfXJz6/m3Y+aFvQ2vYOGUtRKuG5ZBsjfuv1cfE7YJX4XKyub/H62LknF78Wo9554jiOrU2pZD8w12UQr3PBX+w8kwmPdfnTYQX4Xq9Pb9D6x7ji4TA8t+5vsIRxbC37uJgK9nnzj8EE23r2+48HVyRd1roY7VR6K2loWbSf/dRia6MqX37l67q2aLu6qbE3aovuN0cDa23K/rOdgxpOCfKwinWxCl7xOSirrLnVO1ZQqHpml/dkXQXa7HNFOoXVNFHMxz/+cX3mM59Jzar83ve+V9dcc43++Z//mR+R49CZhpnIZ4uKA3cBAAAAAAAAAAAAAAAAAADATPenP/1Jr371qwsuv+iii7Rhw4aCywGUD35EDgAAAAAAAAAAAAAAAAAAAB111FH6/ve/X3D5bbfdpuXLl0/dCmF2qJrkP6TirSkpvyRO+K/Yr3zDwbKqIssGglZS1tXGDkt2+Q9THcwLW8/QcFRKZNP+qETJUGtSssjK7oZlSPxywGH537QyosZKC1qJUCkpf2LP0e/anriWUlL210oJ7hiK6qXt2uyVXbOyoVbC20ou+lWNrAxSb9D6VcqsnFKx/0E8bX3C/1s4PVYTuQ/KR1hOS0rK6HW51n2m+7zy3o+5aSsRbOUD27yHsXJkFhKHubYp6TK6KCq3uWuea+e7BX7ZwTlB61cuqlY6/2Mbliyz1o+xXa7tCW4/6/Wx0oM7gnar1yeufhqWMvPLfxYqZQZMhrDsoJWf9sp/xgHnyg72ufqffc1Jl/XNuX3klfxyQ11+iVDvKSxuw22BNDZ8hTHrT/cFfXPGQwvWMMb8WAvnUZYXUyEs4Z1W8q4zarrdONvtHRx5sDqni19KUK776JJoPO1evCynlZSM0Yui7eH5i6JBq6Em3tAsuA1d621DV7qB1Vorzz3iDdCDrqSgbV+HZbolqW8o+rLYtcNtRGx12/v+uGrTaaUENwXz7G0d8OO5q0Anf2OcUqI4GGF5bn/axlxvPLXpYbeBvMmV+N20ML+PjZW2DT3X69LkWgspG3trvT421I/lyIy9DAsff7fZ5tm+frFSv/H2tR+HYWlfe3/8ut6U6sZUCuPWPn+bvT5dUZN1A+xGa70aveE+sO0ut3sP40J9qD3adu5eZK3XpylsowCsmZMEYs0cNx67eZUVIypkZDQaj4eHk3F5aJ8r/d0fjcfqd18WPd4dLSR7XWtjsF+6e2vQhiV/cx4z3Bf294ntDpT1xkSkjbldrn0saoa9WF3vSnWvd/Ns7PS6xHFs81qjndz+9iRY+xdF00/ZrCbXzlOiKfosV9S6stx1Q/Giyiq3DV2V+3kfGa7ypqO4HRyItqFHB12s9nqDeTgOW4x2J13ieRaGFnL+drbN6wtnPJXSKfy+BA6Wfab8bb+ducsGXOw+2pl06XL7xBarnUHrLetfHAXrE9Z6x6xr2nZLkhY2R8+Zdl6p0L6xlOwfh/vGPts/tvNMQ25D3faNo+logz0899Q71BT32bXVfel0u++BMK796a6g9fvY/nP8AF3ewnCsJtYxFWyfMW1b0dig3RjcltTj5vW4/eeNKX3ieKsL2okKz8/u9pbZPPteey6lz+6gj7+M7WGUC/94Txi/j7rWPxBlceditM/FaJ93fikvxtNiNozn8Rzs2p8yb69rw9iViseqTafdD5hO/HFle9A+6dpHve7uAFa4/5zx4jDeX3Zte3Bb0sBh0cGygUVR293kFvjHte14mp1DtuPZ/m8+whD3X46FtB02s33kYr/7sH1k/3B0eIzLWn/fOo75LtemnV+y95XzzBNx5ZVX6vWvf73uvvtuXXjhhWppaVEmk9G2bdv005/+VD//+c/1f//v/y31agI4BPgROQAAAAAAAAAAAAAAAAAAAPTqV79av/zlL/WlL31JX/7yl7Vt2zZls1m1tbXprLPO0i9/+UuddtpppV5NzCQZ5SYtnaznQB5+RD5pxpJlvFB63kLCDOT+/QcKLPOvvHTzBtzVaL0pq1cZzEsLzOHcdnSfy6a4pzPu0tfmMpDXR5epNblLyBqSdN0pmSIG3VMXztY06KVtK5Q1sTcnE3k03ftc1A5tdVfKpmVPtEwP21S4T6GM5JKUtYkwA7l/RVuYPi7MSO4rlq2cK94RZui1qyqf9PpYRkWXNbHHZVHs8TMt2qWn7vvBrixt8rrMC+ZZGE51JvJCmRV7vT5xf3vwMKO4lJ9ZMS0DMjGG6SCtksX2tI5OmP3Bu/o8a9kjXDaIvqr8PmNKQW7CscmPGVvXMFNE2uuxlpjDdFUsc4uNp7/zurtxNa4G0pksq3IxFmZ/OCzpElcIWRQNtrua2lzr9bFpG48tjP3KAoXC2A81G2sLZTCW8sfasNKHVDgbhCRl7cEtvVqxLBBkUkMphJnV/GmXKTUto5rNc9W51B1mX/P72zwL1vEeByjE35gOx9UwI1PavGLZ1sjKgummWEWBLtfauOylV+px07Yv/Ji7XeXFoY3DYeZiPxN5uE88z1XzmOMdo3KT/YUq/Pkvw/ihZtmZbHzuD1ppbOOyVeqKn6tY5a1wf5kMbZhM4bGX9d6yIH77bJu6Jeli8Wvjqg2zRasGuNbPRD4vCsrROVE7MMdLt1aoIudwynR4/MqP1ULHrXq9Pha3cdjZWJy2nVwoZsOVAyaDP1hZFnz7bNp+nhfPViXzMZcG8TEX334VkLYDtJKGFo2hQkhcbc+dmJmTZCK3aiFWYSCNVRYYdpV248oC+7wvAcuMGFb39cfesBKmZUb0w9nmxdW5bEGX18kWhhUGpOQ7gpjHdBNW2Cwm7dx2OK9Yn9BYzqsOFFkGzGZ+HIwnjotJi9+xSqu4TqxiNkuLS9vm/q1r3XZ21vvdxyarrBkeI/P6WKg2uTasoulPh7//GEsFaykJadsUt5fhV9bsdW24/5z1+uTtA4f7xv4yjmtPpuc///n69re/XerVADDJ+BE5AAAAAAAAAAAAAAAAAAAAgKmXEb9mLhHe9mljPFdTpmWmtn+lXVmVlk10d+68vur8LoX4CRsKZlxJ8v3390apIfoXNUmSdjZFmZAbGpOr5epchtJ6t86V7oH9TOSVbnrEpTUe9tIbD7n0i3Em8qHokri+niRD3Ogul00mzM7kZ0gM5xXrE2Yiz/m37Q7aYplXw//hZGQZ5wrd2SXt82bZSsKMw0UyJFqW8p60PvXB7ZSrye1rIK2KgXVPu6Dcwj4bLvA7h1kT7bX6GZjCOEzLtEjmY8xUad8DACZPWiWLx11rY6WX4WHYVQbZ5DIqbgoqhvj9bTxtcu14s0CMJUnTRLIoxuO0/5qtskdaRvGw6gcZTlFOLEjSYj1UrMJHXdCnWNa1YsZSqcrmFauKBcw0YXamp7xlFn/BuDzsjb3dbl5cUWBhcB8pjtGqYFFaFZBa5fLDO9wX9o+1heNxWDEkh30f7Q5u+9M2BqftEzMeYzrwx6XtQfuoa1OqgNi8PherfWl9bDs77TiYk3b8qlBxrmIZ1fKOY0mFj1ulxSGxinJkn20bc/1qF5Yh0SoJuFjt9ioLdLss5RarFqpp2cZt3ryUZfG+sQtov0KITY8lW2LYpu0TWzhaRvJnvT69rrVwtuzlOYN4mDUxrDQgJd8VHNfDTBUGG4CZhRgHpkZYWdPfFrd96SK/DRl283a4eTtSqlvnVbweb6WBQpVB0n43Fe4/p/2mg992ALMKPyIvmYpSrwAAAAAAAAAAAAAAAAAAAAAAYOrw230AAAAAAAAAAAAAAAAAAAAAUy+j3MqBmDL8iHxKWFmNibzdfkkOKw9i5T+KPV5a/U2bZ7X3XLnPnjGUHfEri4Sl7sMy95K0w7VN0fMPNC3IaSVJc6J6nxVz90ZrWh3VAa2s8uv55hoZTr4phva5koT91gbr46/TjgK3paT04M4CfdPmxe+H/8ZYaZWw/KjfZ3/QppV2KlSmPK08S1gLGUhjn52wzHeasLyRlHx3FCpd5PXJunY45ftpOPwOS1vHQjEi5Zcs2h/cDvsDAFAqaWPuU0GfImUCs7adXu/ahpT7hePzWPY1im1zFispuNe1fUX6UHIbs1m4vQ1gegjHqO0pfcJ94CLj87CNy2l9xlvaV8rdNw7H47T93UKlftknxkzVV2C6kDCew+1lr0/a8avhscTvWI7bFopj4hMzlf/Zfi5o0441N7q2OWoGXLupMemyqTno6+8TV6c/dG1+l6K7yWEY22mpfV4fm87ajHAslpLXuju4/ZzXJzx3xP4zAAAAJst4fhsyUeGGNvu7AFDu+BE5AAAAAAAAAAAAAAAAAAAAgKmXEb9mLhHe9pLyMw5ZaoTwCi0/A0qYvTctW0F1kWWFeFkcLCt5mCB70Otu02FG8l6vT1PQznPtXK9PXUaSNDonmjk0J2XV7BOalrB7X4HWz0Te49pdwTr66xrOe7ZIn/j50zJOhBmgimVzDDPSpGWfmmiWca7yw8EgiyIAAFPjUGfwHm8mcgAAMHnZmcaS+hTAocUxLWD6SYtLm34m6JtSBaRohRB3LqvP3e5Lq8pr0sblQhUF/PMyhSoLFDvnwzgPAACAmY5tXgCYafgROQAAAAAAAAAAAAAAAAAAAICpRybykqko9QoAAAAAAAAAAAAAAAAAAAAAAKYOv92fUlbSI+1tt3J4YZm9/WHHAzz23vGuVKAhavqqcx+2WHW+Xtc2eX3mBe3c3IeXJNW61ioRpr0tNm84aP3pfUHb7/Wxyoh7gnX1+/QWWNbr9cnaxO6g9cswDgTL0kob7g/asZR5Sesz1s8FAAAAZgfKBwIAMH0wLgMAMD5pJ6EAAAAAAMCsUlnqFZidyEQOAAAAAAAAAAAAAAAAAAAAALMImcinrbSs5cWyT4f/yvFkJN+fMt0YNQMuTfg+r8ugay27t2UZ7/X6hJnI5wRt2ryxfBr9RE62qoPBMj/LuCWs2BMsK5atPE5ysT+l097gtp8Ro1AGcv9xbN5wsCzthYVZq4r9/8lwBQAAAAAAAAAAAAAAAAAAykxG/Jq5RMhEDgAAAAAAAAAAAAAAAAAAAACzCL/dL4m0LOPGsk1XB33T+vvLBpRuLBnJh1OmbT3qoybbkHTpc+tm2bwt23iv9zDWPcw27mcit5dT69pqHZifjHskWGV7Cwa9PuE8W+d9KX3yZuwuMi/MNp42b39Kn0IZyItlGScDOQAAAAAAAAAAAAAAAAAAmIHIRF4yZCIHAAAAAAAA8P+z9/fhcVz1/f//WkmWLNmS5ZtYsmM5smMnTuIAIdDcUJK0JW5ToJSbQj+0abkpJd/QlpB+SpvmA4QACVAaDOUm5HPROJRPQtofd+1VaAltScqVtOUmSYEQE7tW4tiyHTuWb2JZsuT9/THnPXP27NnxrixptdbzcV26zuzM2Zmzq3nPmZndfR8AAAAAAAAAAADMInx3HwAAAAAAAAAAAAAAAAAAAMD0IxN53fC219WYNx3+K465ck6F+pWWDQeP2706Ryps41jOPFuf/9yOpCh2JuUh145DXpWhYPNtkSbPdWVz0Kw5qsxv6rgrx4LyqFfnaFAWYysdDsqDweNYHSuP5dSxZf7/LZznP1/BMgAAAAAAAAAAAAAAAAAAAGDy8SVyAAAAAAAAAAAAAAAAAAAAANOvoPJkxJgWfIl8xrDs05UykktZiu5Ypuq8ZSZcdyzld5jWO8xw7k9bdnKXmdzPej7mthVmKS94q6kmA7k1Ofay7K2xjOTRLONh5TBbeGxeWDdWxxrkZ2gPs4vHso1XykCe9wJjyFYOAAAAAAAAAAAAAAAAAAAaXEFT/23mwomrzEZN9W4AAAAAAAAAAAAAAAAAAAAAAGD6kIkcAAAAAAAAAAAAAAAAAAAAwPSbjkzkiOJtn3HGXBn71xxz5Zygri9vmRkO6hzzlnUE86xue+T5Nu9QpI61v6P0cXFOVmUseI1jc1Qba2P4OsYidcLX49cZnkCdvG1V0x5FllWqk1cXAAAAAAAAAAAAAAAAAAAAqA1fIgcAAAAAAAAAAAAAAAAAAABQH831bsDsxJfIG1KYkVyaWJbqvKznYUbzY5FlYUbyYa+OrfNQ8DiWbTzcfl5G8liW7lgbw2VhJvG8DOJh3VidatYTzo+1K69OpboAAAAAAAAAAAAAAAAAAADAxPElcgAAAAAAAAAAAAAAAAAAAADTryC+zVwnTfVuAAAAAAAAAAAAAAAAAAAAAABg+vDd/RlrLDIv/Hcd86bnBM9ridQJ1x379w8HdWLPnxOUw8Fjf91zKjxWpG6twvco77Ueq/A4Ni+sW2neidZTqZ2Vnh/Kex4AAAAAAAAAAAAAAAAAAECDIxN53ZCJHAAAAAAAAAAAAAAAAAAAAABmEb6731DyMohbRuswI3mtwozbsW2FGbfDjOT+vPD5k5mJPGyPqSYjeS1Zy2PrzltWqV2VtlupHQAAAAAAAAAAAAAAAAAAAKcwMpHXDZnIAQAAAAAAAAAAAAAAAAAAAGAWqeuXyG+99Va9+MUvVmdnp5YuXapf//Vf1+bNm0vqFItF3XTTTVq+fLna29t1xRVX6Cc/+UmdWjxTjKlytupjwV/e86zOsPdndcJlY97fcBV/R9zfQfdn8w9G/g6d5F9snZX+qmm7/fnvY6X3x/8bC/5i/5NKYs8DAAAAAAAAAAAAAAAAAAA4hRWkYvPU/iGurl8iv//++/WOd7xD//Ef/6H77rtPY2Nj2rBhg5577rm0zkc/+lHddttt+tSnPqXvfe976u3t1ZVXXqlDhw7VseUAAAAAAAAAAAAAAAAAAAAA0Jha6rnxf/qnfyp5fOedd2rp0qX6wQ9+oMsuu0zFYlEbN27UjTfeqNe85jWSpLvuuks9PT26++679fa3v70ezQYAAAAAAAAAAAAAAAAAAABwkooFabyu32aevWbU237gwAFJ0qJFiyRJ27Zt065du7Rhw4a0Tltbmy6//HI9+OCD0S+Rj4yMaGRkJH188ODBKW51PY1505X+lce86TmR54XPPRaUsee0BHXC9cXaMxysL7ZsshyLzIu1sVL9WN1q6uRtv5b2YHbFMXBqIo6BxkYMA42POAYaH3EMND7iGGh8xDHQ2IhhoPERx0DjI44BANXgS+T101TvBphisajrr79eP//zP6/169dLknbt2iVJ6unpKanb09OTLgvdeuutWrBgQfrX19c3tQ0HMOmIY6DxEcdAYyOGgcZHHAONjzgGGh9xDDQ+4hhobMQw0PiIY6DxEccAAMxsM+ZL5H/wB3+g//7v/9Y999xTtqxQKJQ8LhaLZfPMDTfcoAMHDqR/27dvn5L2zjxjwV/MseCv0nP9v/A5xyJ1ht2fX2c4+AvrTvdfpXbF2lbNa670np4oC3ne/wdm9sYxcOogjoHGRgwDjY84BhofcQw0PuIYaHzEMdDYiGGg8RHHQOMjjgEA1RprbprSP8TNiATwf/iHf6i///u/1wMPPKAVK1ak83t7eyUlGcmXLVuWzt+zZ09ZdnLT1tamtra2qW0wgClFHAONjzgGGhsxDDQ+4hhofMQx0PiIY6DxEcdAYyOGgcZHHAONjzgGAGBmq+vX64vFov7gD/5AX/nKV/Sv//qvWrVqVcnyVatWqbe3V/fdd186b3R0VPfff78uvfTS6W4uAAAAAAAAAAAAAAAAAAAAgElSLBQ03tIypX+Iq+s78453vEN33323vv71r6uzs1O7du2SJC1YsEDt7e0qFAq67rrrdMstt2jt2rVau3atbrnlFnV0dOiNb3xjPZveAMZcmfcvPhaZN6fCeqrhr6+W9Ux0N6ylbSb2mmtZX97zJ7I+AAAAAAAAAAAAAAAAAAAAYHrV9Uvkn/3sZyVJV1xxRcn8O++8U29605skSe9+97s1PDysa6+9Vvv379dFF12kb33rW+rs7Jzm1gIAAAAAAAAAAAAAAAAAAACYLMVCQePNzfVuxqxU1y+RF4vFE9YpFAq66aabdNNNN019g05JsWzYtWYnl0ozi092hu1asnufrIlmVp/sdQMAAAAAAAAAAAAAAAAAAAD1UdcvkQMAAAAAAAAAAAAAAAAAAACYnYqSxkUm8npoqncDAAAAAAAAAAAAAAAAAAAAAGAmeOCBB/TKV75Sy5cvV6FQ0Ne+9rXc+l/5yld05ZVX6rTTTlNXV5cuueQS/fM//3NJnU2bNqlQKJT9HT16dApfST4ykc9KYznLKu0Sx3KeM6fGbcwEea+nGjP99QEAAAAAAAAAAAAAAAAAAMxsRRU0NsMykT/33HN6/vOfrze/+c167Wtfe8L6DzzwgK688krdcsst6u7u1p133qlXvvKV+s///E9dcMEFab2uri5t3ry55Llz586d9PZXiy+RAwAAAAAAAAAAAAAAAAAAAICkq666SldddVXV9Tdu3Fjy+JZbbtHXv/51/cM//EPJl8gLhYJ6e3snq5knjS+RIxBm2K5mF5loVu9YBvOJONms4pWQbRwAAAAAAAAAAAAAAAAAAGDqFDR+in2d+fjx4zp06JAWLVpUMv/w4cM644wzND4+rhe84AX6wAc+UPIl8+nWVLctAwAAAAAAAAAAAAAAAAAAAMAUGxkZ0cGDB0v+RkZGpmRbf/mXf6nnnntOr3/969N569at06ZNm/T3f//3uueeezR37ly95CUv0RNPPDElbagGXyLHCYxV8TdRxybp72RN9usCAAAAAAAAAAAAAAAAAADAiRRV0Liap/RPkm6//XYtWLCg5O/WW2+d9Ndzzz336KabbtK9996rpUuXpvMvvvhi/fZv/7ae//zn66Uvfan+9m//VmeddZb+6q/+atLbUK1TK/87AAAAAAAAAAAAAAAAAAAAAHiuueYafeADHyiZ19bWNqnbuPfee/XWt75Vf/d3f6eXvexluXWbmpr04he/uK6ZyPkSOQAAAAAAAAAAAAAAAAAAAIBpV5TSbOFTqa2tTV1dXVO2/nvuuUdvectbdM899+jlL3/5CesXi0U98sgjOv/886esTSfCl8gxCcZqqDuVu1wt7QAAAAAAAAAAAAAAAAAAAEB9FablS+S1OHz4sLZs2ZI+3rZtmx555BEtWrRIK1eu1A033KAdO3boC1/4gqTkC+S/8zu/o0984hO6+OKLtWvXLklSe3u7FixYIEl6//vfr4svvlhr167VwYMH9clPflKPPPKIPv3pT0//C3Sa6rZlAAAAAAAAAAAAAAAAAAAAAJhBvv/97+uCCy7QBRdcIEm6/vrrdcEFF+i9732vJGlwcFBPPfVUWv9zn/ucxsbG9I53vEPLli1L/975znemdYaGhvT7v//7Ouecc7Rhwwbt2LFDDzzwgH7u535uel+ch0zkmGZkCwcAAAAAAAAAAAAAAAAAAIBUVEFjMywT+RVXXKFisVhx+aZNm0oef+c73znhOj/+8Y/r4x//+Em2bHKRiRwAAAAAAAAAAAAAAAAAAAAAZhEykQMAAAAAAAAAAAAAAAAAAACYdkUVND7FX2eunFN8diMTOQAAAAAAAAAAAAAAAAAAAADMImQiBwAAAAAAAAAAAAAAAAAAADDtipLG1VzvZsxKZCIHAAAAAAAAAAAAAAAAAAAAgFmETOQAAAAAAAAAAAAAAAAAAAAA6qBAJvI6IRM5AAAAAAAAAAAAAAAAAAAAAMwiZCIHAAAAAAAAAAAAAAAAAAAAMO2KKmhsyjORF6Z4/Y2JTOQAAAAAAAAAAAAAAAAAAAAAMIuQiRwAAAAAAAAAAAAAAAAAAADAtCuqoHG+zlwXZCIHAAAAAAAAAAAAAAAAAAAAgFmEr+4DAAAAAAAAAAAAAAAAAAAAmHZFSeNqrnczZiUykQMAAAAAAAAAAAAAAAAAAADALEImcgAAAAAAAAAAAAAAAAAAAAB1UCATeZ3wJXIAAAAAAAAAAAAAAAAAAAAA067Il8jrpqneDQAAAAAAAAAAAAAAAAAAAAAATB8ykQMAAAAAAAAAAAAAAAAAAACYdkUVNEYm8rogEzkAAAAAAAAAAAAAAAAAAAAAzCJkIgcAAAAAAAAAAAAAAAAAAAAw7YqSxvk6c12QiRwAAAAAAAAAAAAAAAAAAAAAZhG+ug8AAAAAAAAAAAAAAAAAAACgDgoaV3O9GzErkYkcAAAAAAAAAAAAAAAAAAAAAGYRMpEDAAAAAAAAAAAAAAAAAAAAmHZFMpHXDZnIAQAAAAAAAAAAAAAAAAAAAGAWIRM5AAAAAAAAAAAAAAAAAAAAgGlXVEFjZCKvi4bIRP6Zz3xGq1at0ty5c3XhhRfq3//93+vdJAAAAAAAAAAAAAAAAAAAAABoSDP+S+T33nuvrrvuOt144416+OGH9dKXvlRXXXWVnnrqqXo3DQAAAAAAAAAAAAAAAAAAAMAEFSWNq2VK/4r1fpEz1Iz/Evltt92mt771rfq93/s9nXPOOdq4caP6+vr02c9+tt5NAwAAAAAAAAAAAAAAAAAAAICGM6O/RD46Oqof/OAH2rBhQ8n8DRs26MEHH6xTqwAAAAAAAAAAAAAAAAAAAACcvILG1Tylf4hrqXcD8uzdu1fj4+Pq6ekpmd/T06Ndu3ZFnzMyMqKRkZH08cGDB6e0jQAmH3EMND7iGGhsxDDQ+IhjoPERx0DjI46BxkccA42NGAYaH3EMND7iGACAmW1Gf4ncFAqFksfFYrFsnrn11lv1/ve/P7JkJDIPwPRI4q9YLFZVmzgGZiLiGGh81ccxMQzMRPTFQOMjjoHGRxwDjY84Bhof97iAxkZfDDQ+4hhofLXFMTAdii4TOaZfoTiDjwajo6Pq6OjQ3/3d3+nVr351Ov+d73ynHnnkEd1///1lzwl/wbZjxw6de+6509JeAPm2b9+uFStWnLAecQzMXMQx0PiqiWNiGJi56IuBxkccA42POAYaH3EMND7ucQGNjb4YaHzEMdD4qo1jYKrdc889et+n/0g3fvcXp3Q7b239/+lnjz+h1atXT+l2Gs2MzkTe2tqqCy+8UPfdd1/Jl8jvu+8+vepVr4o+p62tTW1tbenj+fPn67HHHtO5556r7du3q6ura8rbPRkOHjyovr6+hmqz1Jjtps1Tr1gs6tChQ1q+fHlV9Ynj+mnENkuN2e5GazNxTJunEm2eHrXEcSyGt2/frmKxqJUrVzbU627E/xVtnh6N1ubZ2hdLjfe/kmjzdGm0Ns/WOG60/5NpxHbT5qlHHNPmqdaI7W60NhPHtHkqNWKbpcZrN/e4aPNUos1Tb7b2xVLj/a8k2jxdGq3NszWOG+3/ZBqx3bR56tUaxwBObTP6S+SSdP311+vqq6/Wi170Il1yySW644479NRTT+maa66p6vlNTU06/fTTJUldXV0NcaD2NWKbpcZsN22eWgsWLJjwc4nj6deIbZYas92N1GbimDZPNdo89SYax01NTVqxYoUOHjwoqfFet0SbpwttnlqzuS+WGrPdtHl6NFKbZ3McN2KbpcZsN22eWsQxbZ4OjdjuRmozcUybp1ojtllqrHZzj4s2TzXaPLVmc18sNWa7afP0aKQ2z+Y4bsQ2S43Zbto8tU4mjoGpUFRB4zP/68ynpBn/rr/hDW/Qvn37dPPNN2twcFDr16/XN77xDZ1xxhn1bhoAAAAAAAAAAAAAAAAAAAAANJwZ/yVySbr22mt17bXX1rsZAAAAAAAAAAAAAAAAAAAAACZJUdK4muvdjFmpqd4NmA5tbW163/vep7a2tno3pWqN2GapMdtNmxtDI75m2jx9GrHdjdjmk9WIr5k2Tw/a3Dga8XXT5ulBmxtDo77mRmw3bZ4ejdjmk9WIr7kR2yw1Zrtpc2NoxNdMm6dPI7a7Edt8shrxNdPm6dGIbZYat90noxFfM22eHrS5MTTqa27EdtPm6dGIbT5ZjfiaG7HNUmO2mzYDwPQqFIvFYr0bAQAAAAAAAAAAAAAAAAAAAGD2uOeee/SeT1+n//3dX53S7fxB6xf0s8ef0OrVq6d0O41mVmQiBwAAAAAAAAAAAAAAAAAAAAAkWurdAAAAAAAAAAAAAAAAAAAAAACzT1EFjau53s2YlchEDgAAAAAAAAAAAAAAAAAAAACzCJnIAQAAAAAAAAAAAAAAAAAAAEy7oqQxMpHXBZnIAQAAAAAAAAAAAAAAAAAAAGAWIRM5AAAAAAAAAAAAAAAAAAAAgGlXVEHjfJ25LshEDgAAAAAAAAAAAAAAAAAAAACzCF/dBwAAAAAAAAAAAAAAAAAAAFAHBY2rud6NmJX4EjkAAAAAAAAAAAAAAAAAAAAAzGD/+q//qq985SsaGBhQoVDQqlWr9LrXvU6XXXbZhNbXNMntAwAAAAAAAAAAAAAAAAAAAIATKrpM5FP5dyq45ppr9LKXvUz33HOP9u3bp2eeeUb/7//9P/3CL/yC/vAP/3BC6yQTOQAAAAAAAAAAAAAAAAAAAIBpV5Q0dop80XuqfPWrX9Wdd96pv/7rv9bv/u7vqlAoSJKOHz+uTZs26f/7//4/XXnllfq1X/u1mtZLJnIAAAAAAAAAAAAAAAAAAAAAmIHuvPNOXX/99XrTm96UfoFckpqamvSWt7xF1113nT7/+c/XvF6+RA4AAAAAAAAAAAAAAAAAAABg2hVV0LhapvSvWGObHnjgAb3yla/U8uXLVSgU9LWvfe2Ez7n//vt14YUXau7cuVq9erVuv/32sjpf/vKXde6556qtrU3nnnuuvvrVr1bVnh/+8Id69atfXXH5a1/7Wv3gBz+oal0+vkQOAAAAAAAAAAAAAAAAAAAAAJKee+45Pf/5z9enPvWpqupv27ZNv/qrv6qXvvSlevjhh/Xnf/7n+qM/+iN9+ctfTus89NBDesMb3qCrr75ajz76qK6++mq9/vWv13/+53+ecP179+7V6aefXnH56aefrn379lXVVl9Lzc9oMMePH9fOnTvV2dlZksIdwPQpFos6dOiQli9frqam2n+7QhwD9UccA43vZOKYGAbqj74YaHzEMdD4iGOg8RHHQOPjHhfQ2OiLgcZHHAON72TjGJgaBY2rud6NKHHVVVfpqquuqrr+7bffrpUrV2rjxo2SpHPOOUff//739bGPfUyvfe1rJUkbN27UlVdeqRtuuEGSdMMNN+j+++/Xxo0bdc899+Suf3R0VK2trRWXt7S0aHR0tOr2ps+r+RkNZufOnerr66t3MwBI2r59u1asWFHz84hjYOYgjoHGN5E4JoaBmYO+GGh8xDHQ+IhjoPERx0Dj4x4X0Njoi4HGRxwDjW+icQw0spGRER08eLBkXltbm9ra2k563Q899JA2bNhQMu+Xf/mX9fnPf17Hjh3TnDlz9NBDD+ld73pXWR374vmJvOc971FHR0d02ZEjRybU7lP+S+SdnZ1u6l2STv4fDWAiRiR93IvH2hDHwExAHAONb+JxTAwDMwF9MdD4iGOg8RHHQOMjjoHGxz0uoLHRFwONjzgGGt/JxTEwFYrTlIn89ttv1yc/+cmSee973/t00003nfS6d+3apZ6enpJ5PT09Ghsb0969e7Vs2bKKdXbt2nXC9V922WXavHnzCevU6pT/Enk29EmbpLn1bAow6010KCLiGJg5iGOg8U0kjolhYOagLwYaH3EMND7iGGh8xDHQ+LjHBTQ2+mKg8RHHQOObaBwDjeyaa67RBz7wgZJ5k5GF3IRxVSwWy+bH6lQTj9/5zndKHu/du1eFQkGLFy+eYGsTTSf1bAAAAAAAAAAAAAAAAAAAAACYgKKkcTVP6Z+UfGG8q6ur5G+yvkTe29tbllF8z549amlpSb/oXalOmJ28kqGhIb3jHe/QkiVL1NPTo6VLl2rJkiX6gz/4Aw0NDU2o3ad8JnIAAAAAAAAAAAAAAAAAAAAAmAqXXHKJ/uEf/qFk3re+9S296EUv0pw5c9I69913n971rneV1Ln00ktPuP5nn31Wl1xyiXbs2KHf+q3f0jnnnKNisaif/vSn2rRpk/7lX/5FDz74oBYuXFhTu/kSOQAAAAAAAAAAAAAAAAAAAIBpV1RBYy5b+NQp1FT78OHD2rJlS/p427ZteuSRR7Ro0SKtXLlSN9xwg3bs2KEvfOELkqRrrrlGn/rUp3T99dfrbW97mx566CF9/vOf1z333JOu453vfKcuu+wyfeQjH9GrXvUqff3rX9e3v/1tffe73z1he26++Wa1trZq69atZZnLb775Zm3YsEE333yzPv7xj9f0Optqqg0AAAAAAAAAAAAAAAAAAAAAp6jvf//7uuCCC3TBBRdIkq6//npdcMEFeu973ytJGhwc1FNPPZXWX7Vqlb7xjW/oO9/5jl7wghfoAx/4gD75yU/qta99bVrn0ksv1Ze+9CXdeeedet7znqdNmzbp3nvv1UUXXXTC9nzta1/Txz72sbIvkEtSb2+vPvrRj+qrX/1qza+TTOQAAAAAAAAAAAAAAAAAAAAA6qCg8Rn2deYrrrhCxWKx4vJNmzaVzbv88sv1wx/+MHe9r3vd6/S6172u5vYMDg7qvPPOq7h8/fr12rVrV83rJRM5AAAAAAAAAAAAAAAAAAAAAMxAS5Ys0cDAQMXl27Zt0+LFi2teL18iBwAAAAAAAAAAAAAAAAAAADDtiipoXM1T+tfofuVXfkU33nijRkdHy5aNjIzoPe95j37lV36l5vXOrPzvAAAAAAAAAAAAAAAAAAAAAABJ0vvf/3696EUv0tq1a/WOd7xD69atkyQ99thj+sxnPqORkRH9zd/8Tc3r5UvkAAAAAAAAAAAAAAAAAAAAAKZdUTolsoVPpRUrVuihhx7StddeqxtuuEHFYlGSVCgUdOWVV+pTn/qU+vr6al4vXyJHHVWz+41NeSsAAAAAAAAAAAAAAAAAAAAw/YoqaIwvkZ/QqlWr9M1vflP79+/XE088IUlas2aNFi1aNOF18iVyAAAAAAAAAAAAAAAAAAAAAJjhFi5cqJ/7uZ+blHXxJXIAAAAAAAAAAAAAAAAAAAAAdVDQOF9nrgvedUzAdO42k7WtsUlaDwAAAAAAAAAAAAAAAAAAANDY+BI5AAAAAAAAAAAAAAAAAAAAgGlXVEHjaq53M2YlvkSOwKm6S1TzushWDgAAAAAAAAAAAAAAAAAAgFPfqfqNYQAAAAAAAAAAAAAAAAAAAAAzWFEiE3mdNNW7AQAAAAAAAAAAAAAAAAAAAACA6UMm8lmJf3tc3vsyNm2tAAAAAAAAAAAAAAAAAAAAmB0KZCKvEzKRAwAAAAAAAAAAAAAAAAAAAMAsQkrqU95M+RfPmaT1HJuk9dSq0vtIhnIAAAAAAAAAAAAAAAAAAICJKKqgMTKR1wWZyAEAAAAAAAAAAAAAAAAAAABgFpkpaaoxaabjXzpZWcWnc9tTlcE89n6TnRwAAAAAAAAAAAAAAAAAAOBEiipofIq/+1qc0rU3LjKRAwAAAAAAAAAAAAAAAAAAAMAsQiZyAAAAAAAAAAAAAAAAAAAAANMuyUTeXO9mzEp8ibyhTcW/b84UrHMmqOZ1HZukbYX/l7FJWi8AAAAAAAAAAAAAAAAAAABw8vgSOQAAAAAAAAAAAAAAAAAAAIBpV5TIRF4nfIm8oUz2v2uyso7PtN1oopm/896Pk8lS7r8/ZCUHAAAAAAAAAAAAAAAAAABIFDQ25V8iL0zx+htTU70bAAAAAAAAAAAAAAAAAAAAAACYPjMthTQAAAAAAAAAAAAAAAAAAACAWaCogsb5OnNd8K7PeCf7L5pT5+3XQzVtHqtxneH7eKzG55uwbbW2A5hqMznmiRcAAAAAAAAAAAAAAAAAACbDTP62IAAAAAAAAAAAAAAAAAAAAIBTVJKJvLnezZiV+BL5jFOPzOMT3ebJZjmfDpUyhue95mqyHcde+0Syk1s7yLCM6dDoh/ypGGUAAAAAAAAAAAAAAAAAAIDZp9G/UQgAAAAAAAAAAAAAAAAAAACgARUlMpHXSVO9GwAAAAAAAAAAAAAAAAAAAAAAmD5kIp8xTvZfMWeKtlXLeie6jZM1lrOsmvYfCx7ntb2WbYXrzRPbZt62gEpm+2G90usnngAAAAAAAAAAAAAAAABg5ilojEzkdUEmcgAAAAAAAAAAAAAAAAAAAACYRWZ7yto6mWlZx2vNNj6R9k80o3key/RdS3ti2YhrySAebquazOS1ZCSPbYsMyoiZaYfviWT9n04THWEAAAAAAAAAAAAAAAAAADBViipofMZ9H252IBM5AAAAAAAAAAAAAAAAAAAAAMwifHV/Wk1HBvLJyjw+FRnMq11vHj9jcC3bryZrua07b71hJmV/fZWyGcfWV0tGZjKSYzoO1VMxWsBUbWOyM5rH3l/iDQAAAAAAAAAAAAAAAACmWpKJvLnezZiVyEQOAAAAAAAAAAAAAAAAAAAAALNIXb9EPjY2pv/zf/6PVq1apfb2dq1evVo333yzjh8/ntYpFou66aabtHz5crW3t+uKK67QT37ykzq2GgAAAAAAAAAAAAAAAAAAAMDJKkoaV/OU/iGupZ4b/8hHPqLbb79dd911l8477zx9//vf15vf/GYtWLBA73znOyVJH/3oR3Xbbbdp06ZNOuuss/TBD35QV155pTZv3qzOzs56Nr8GE3mb50zSevPWk/f8ydr+RNY7mcaq2O4xV4avZyys6K3nWGRZNc+vZj2V+OvPWzca32Qfmqc77qZaNfF8smqJZwAAAAAAAAAAAAAAAAAAGktdv0T+0EMP6VWvepVe/vKXS5L6+/t1zz336Pvf/76kJAv5xo0bdeONN+o1r3mNJOmuu+5ST0+P7r77br397W+vW9sBAAAAAAAAAAAAAAAAAAAAnIwC2cLrpK5fIv/5n/953X777frZz36ms846S48++qi++93vauPGjZKkbdu2adeuXdqwYUP6nLa2Nl1++eV68MEHZ/iXyCf61p5sBvCJZB6fymzl1aynFpOVjdt/bvg6KmUm958Xe+1hBmR7/mRnJK923WgMMzXreF27B0+t+3il13+yGcrzjgcAAAAAAAAAAAAAAAAAgIkoqqAxvkReF3X9luCf/umf6sCBA1q3bp2am5s1Pj6uD33oQ/pf/+t/SZJ27dolSerp6Sl5Xk9Pj5588snoOkdGRjQyMpI+Pnjw4BS1HsBUIY6BxkccA42NGAYaH3EMND7iGGh8xDHQ+IhjoLERw0DjI46BxkccAwAwszXVc+P33nuvvvjFL+ruu+/WD3/4Q91111362Mc+prvuuqukXqFQKHlcLBbL5plbb71VCxYsSP/6+vqmrP0ApgZxDDQ+4hhobMQw0PiIY6DxEcdA4yOOgcZHHAONjRgGGh9xDDQ+4hgAUI2iChpXy5T+Fev9Imeoun6J/E/+5E/0Z3/2Z/rN3/xNnX/++br66qv1rne9S7feeqskqbe3V1KWkdzs2bOnLDu5ueGGG3TgwIH0b/v27VP7Isq0aGIJ3ue4v4muO3x+S+QvrGt/sbr2F9at9nntwV/eeib6Z+uuph0n+5orva+x/0Et/4tKzz3RvhCu+9RS/zieDif7v6sUF7VsO+9vppistk70vaqmbYiZHXEMnLqIYaDxEcdA4yOOgcZHHAONjzgGGhsxDDQ+4hhofMQxAAAzW12//XbkyBE1NZV+j725uVnHjx+XJK1atUq9vb267777dMEFF0iSRkdHdf/99+sjH/lIdJ1tbW1qa2ub2oYDmFLEMdD4iGOgsRHDQOMjjoHGRxwDjY84BhofcQw0NmIYaHzEMdD4iGMAQDWKksbVXO9mzEp1/RL5K1/5Sn3oQx/SypUrdd555+nhhx/Wbbfdpre85S2SpEKhoOuuu0633HKL1q5dq7Vr1+qWW25RR0eH3vjGN9az6RETzT4+kfXV8rxY3VrWXSlrdjXPPZFq3rOxKurYdo9NcNvVbCNk24q9BltfXrtagroxtbyuk309mFone6idaNbsyT4u1VulWMh7ndXE2InWfyJ5xwEAAAAAAAAAAAAAAAAAAGaeun6J/K/+6q/0nve8R9dee6327Nmj5cuX6+1vf7ve+973pnXe/e53a3h4WNdee63279+viy66SN/61rfU2dlZx5YDAAAAAAAAAAAAAAAAAAAAODkFMpHXSV2/RN7Z2amNGzdq48aNFesUCgXddNNNuummm6atXQAAAAAAAAAAAAAAAAAAAABwqqrrl8hPDRN5C+dMcH3h82qpG6s/0Ton245a5D3/WIV2jOWsJ3zOZLJ1h+2YE6mjCnVjam17NevE9DjZQ2wt8VPLtiYal9PRZVQTC6G82Ii1udI2Yuuf6DGDOAQAAAAAAAAAAAAAAACAEymqoLEpz0RemOL1N6amejcAAAAAAAAAAAAAAAAAAAAAADB9yEQ+rSaSgbyabOGxerXUmWi28Voykld6TrVi2YDD7VWT+ftkVco27m+3mjqV1hfW99X6usiEXD+TPULBRLdRzTpPphs42ZEGqonrmHCfrmXEgtg2asl+XusxhTgEAAAAAAAAAAAAAAAAgEqKKmicrzPXBZnIAQAAAAAAAAAAAAAAAAAAAMD5zGc+o1WrVmnu3Lm68MIL9e///u8V677pTW9SoVAo+zvvvPPSOps2bYrWOXr06HS8nCi+uj8htb5tlbLk5q2nmgzkeXVqef5krSevTkw1WYxjmbpDYQZyP1NwmAW4mjqTpZos49PZHkytiR5OJytb+ERGOqi1HXlqef2xUQOqUcvxwMS2EWYTj61vskYECLdBXAMAAAAAAAAAAAAAAACAKUoaV3O9m1Hi3nvv1XXXXafPfOYzeslLXqLPfe5zuuqqq/TYY49p5cqVZfU/8YlP6MMf/nD6eGxsTM9//vP1G7/xGyX1urq6tHnz5pJ5c+fOnZoXUQUykQMAAAAAAAAAAAAAAAAAAACApNtuu01vfetb9Xu/93s655xztHHjRvX19emzn/1stP6CBQvU29ub/n3/+9/X/v379eY3v7mkXqFQKKnX29s7HS+nIr5EDgAAAAAAAAAAAAAAAAAAAKAOChpX85T+1WJ0dFQ/+MEPtGHDhpL5GzZs0IMPPljVOj7/+c/rZS97mc4444yS+YcPH9YZZ5yhFStW6BWveIUefvjhmto22VrquvWGU8vbNWeC6wmfF6s7p4plsefPqaFOuCz2evKWxdZdyck+f6yK51idY5E6lZ4fzj+R2LorCdftvwfhemLtmBPUzTPR14Pq1HoYzdvfa1lnpfXUcnyZ6LYnuu568vf/sK2xOKombmqJw3C9J1o3AAAAAAAAAAAAAAAAAGCyjIyM6ODBgyXz2tra1NbWVjJv7969Gh8fV09PT8n8np4e7dq164TbGRwc1De/+U3dfffdJfPXrVunTZs26fzzz9fBgwf1iU98Qi95yUv06KOPau3atRN8VSeHTOQAAAAAAAAAAAAAAAAAAAAApl1RBY0fb57SP0m6/fbbtWDBgpK/W2+9tWK7CoVCaTuLxbJ5MZs2bVJ3d7d+/dd/vWT+xRdfrN/+7d/W85//fL30pS/V3/7t3+qss87SX/3VX9X+pk0SMpFPunpnIA+XzcmpU0128YluK1xfzGRlRc7LRG7LwjbHshJPVebhvAzI1WQZn+yM5JXWhdpM1sgE1axvso4rJ7utWtZTzfMmaz+sJst43ggFsddc6Xl5cRh7fh5GCQAAAAAAAAAAAAAAAAAwuxWL0thY85Rv55prrtEHPvCBknlhFnJJWrJkiZqbm8uyju/Zs6csO3moWCzqr//6r3X11VertbU1t25TU5Ne/OIX64knnqjyFUw+MpEDAAAAAAAAAAAAAAAAAAAAOGW1tbWpq6ur5C/2JfLW1lZdeOGFuu+++0rm33fffbr00ktzt3H//fdry5Yteutb33rC9hSLRT3yyCNatmxZbS9kEpGJHAAAAAAAAAAAAAAAAAAAAMC0KxYLGh+bWV9nvv7663X11VfrRS96kS655BLdcccdeuqpp3TNNddIkm644Qbt2LFDX/jCF0qe9/nPf14XXXSR1q9fX7bO97///br44ou1du1aHTx4UJ/85Cf1yCOP6NOf/vS0vKaYmfWuz1hT9TbNqWJbc2pcNieyrFKd8HGleeG2w+fH2hN7XqU6edpdeSynzljONist8+fnrdtYu6upa+uOvdZKy8J2xuS9Ln991bQx9j6gOrUcD6rZ3/PWlxeH1WyrUv28dtW6jZNR635bi7w4tG3lxUGlmM+Lw2qeH0M8AgAAAAAAAAAAAAAAAMBM8YY3vEH79u3TzTffrMHBQa1fv17f+MY3dMYZZ0iSBgcH9dRTT5U858CBA/ryl7+sT3ziE9F1Dg0N6fd///e1a9cuLViwQBdccIEeeOAB/dzP/dyUv55K+BI5AAAAAAAAAAAAAAAAAAAAgOlXLGh8rLnerShz7bXX6tprr40u27RpU9m8BQsW6MiRIxXX9/GPf1wf//jHJ6t5k4IvkeearIzDJ5OxO9aG2LIwA3lelvFq1lMpa3le2+ZUmI7VrZVlJI9l6q0mU3Be5uFw3kSzlYcmkpE8tiy27YlkUMbE1br/TiQDea3ZwU8mS3k166t22WQJtxHbf09m3/ZjpZrXc7JxGG6LjOQAAAAAAAAAAAAAAAAAgJmDL5EDAAAAAAAAAAAAAAAAAAAAmHbFGZqJfDZoqncDAAAAAAAAAAAAAAAAAAAAAADTh0zkJ21Ohfmxtzasm1enmmVzqljWMoV1amlrTKX3zncsZ9mYK9uDuv56bV7YjjFv2pYNV9GeifC3Fb7mMZVrCZbZc/Lei4kKt4VStRwiq9mfY+vMe141dSerTjXHpxM9p1Z5+/R07Jt5MVYpDn3h8SWvrbXEsf/eE5sAAAAAAAAAAAAAAAAATl3FYkFjx8hEXg9kIgcAAAAAAAAAAAAAAAAAAACAWYRM5GXq9ZZUyujrzw+zg+cti2UrD+e1B/Pznl/rtiZL3jorZU72M/eGWcpt2ZGc9VqdWDbgk81anpfV2FTKbpyXYT2WrXgqM5if6iY7A/nJjkww0TrhsolmKc/bfiWx/bWa9YX7cjX7fTXbqtVEYqyaDOK1tpXRAgAAAAAAAAAAAAAAAACcworS8XG+zlwPZCIHAAAAAAAAAAAAAAAAAAAAgFmEr+5PSK2ZeitlCs7LChxm+fbn5S3Le357hWXtXp1K28jLRJ6jkLOs+cRPT41H5hXDGbGs6SYvm281GYcrmWh24PB5sf3mZNpVK7Id126mZCDPyyQ+kWNPpeeeqD15qqlfKUu/n627lv20lkz8sUzi1QjbPNG2AgAAAAAAAAAAAAAAAMAsVSxIY7V8oRSThUzkAAAAAAAAAAAAAAAAAAAAADCLkIkcAAAAAAAAAAAAAAAAAAAAwPQjE3nd8CXy1Mm+FeHz59S4DVs2p8LjEy0L57VHtllpmb+e9mBerE6g4Eo/hsPqsZdezVs+doLHknTMleOuLMZWNCco/Y0PB8uOqVxLUDemPWfZicS2mdeecJn/esI3KW89KDVZh8SJHA/y6tSyLO+4ENt2NcFaKf5P9v3y99VwG3n7dhjHsfVM1v4ebtNfb7h9/zWE7Y8dvGppa956AAAAAAAAAAAAAAAAAACoDV8iBwAAAAAAAAAAAAAAAAAAADD9ipLGCieshsnHl8hrkpONe0LrmejbH3t+LVnGbVlHZD1hJvKIMPN4rDktFerEhG9DXqJdP2GvZR6fGzzPf/6xyLyKDaolw29eRvLJCquwPXnZxmP1JpKxuNptnEpq/X/VkpV7sjKQ5627mjq1rK9emcgrrbuaLOOxDOCV1pe33bzM6LVmG680WgAZyQEAAAAAAAAAAAAAAAAgVdTUfx2qOMXrb1BN9W4AAAAAAAAAAAAAAAAAAAAAAGD6kIkcAAAAAAAAAAAAAAAAAAAAwPSbjkzkiOJL5Cf9FoTPnzPBbdjzWoLH/vpaKtTJW9YeqdMRLPPbF7S/4MrmSJW5wbK85iiom6ctZ9m4Nz0WlMci22wJ6hx1ZcnQBLH3OlxRJcORedUczY6duErZ9mPPmZOzrFLdausjE4trU81+EquTt7+Fx4PYcyodM3LiOffYUc3+P5EYyROLlTCQY3XCZXn7c956JsJfTy3xZ/z3LGzTRNYHAAAAAAAAAAAAAAAAAEDt+BI5AAAAAAAAAAAAAAAAAAAAgOlHJvK64UvkVcnLQjyR9VSTDTgvq3A1y2JZxitlII+8PstAPjeoKmWZwsNm+BnEKyUsnugeFztAhEmIxyN1LVF4uH0/gXjZutvDGVWyleY93xpbzT5VS3blWJbxk83APNkZnGeaqTz85f1/a8kOHj4n75hRzXGllm1Vk4n8ZI+NsX083K6//1Xat2PZvU92/40NbRCKxV+lZZOdXTwvozkAAAAAAAAAAAAAAAAAAPn4EjkAAAAAAAAAAAAAAAAAAACA6VfU5OfoRFX4EjkAAAAAAAAAAAAAAAAAAAD0i7/4iyoWixWX/9u//ds0tgbAVOJL5BMSe9vm5NQJl9XCf25LUPrL2ivU6cipE2lXuGhuUPp12oK6LZE6zTl1ajEWmWe/PBkP6gxH2nE0eI7P6tt60v6vvbxutCGVlsVebN7za3GyP7uxfwg/38mXF7vh/zdWNyfWypblHVdidcJ5sTrtJ6ib157YsSfc9snyY8z2xXDd/j5q7ZisOKpGGCOx1x5rT9jWWMxVej3+NohRAAAAAAAAAAAAAAAATJ8XvOAFJY+fe+45ff/739eWLVv0O7/zO/VpFE594yeugsnHl8gBAAAAAAAAAAAAAAAAAACg2267LTr/z/7sz3TsGAkRgVPJLP4SeTUvfbKy7YbbzMsqHC6rpo4/XSnzcGz7kSr29DDLuJ+J3KYrZST3l4UZyX21vL1h1nF/3WNBHf/1WAZy2/5IzjZsPfackhE5YlnJ/Y3G6uRlJ86rU4t6ZGZudCcb+7VkIM97ft42KsV63ugDE81WXs22pioTua9SbMTaGga7v/+H8yY7RqqJaym/jZWeP9E2chwAAAAAAAAAAAAAAADA1HrrW9+qSy+9VH/5l39Z76bgVFMUX32qk6Z6NwAAAAAAAAAAAAAAAAAAAAAzV7FY1Pr168lGDpxC6p6JfMeOHfrTP/1TffOb39Tw8LDOOussff7zn9eFF14oKTnwvP/979cdd9yh/fv366KLLtKnP/1pnXfeeXVueSUn+5bmZSkO03v7dcJswu1BGVlnmLxcyrKKV8pILmWZyCtlJPfrxxKqm1h28pBlHrdt+b82CTOQW92jXp1qMpBXalf0ly3hC+rwlh2pUMc3FpQnu7/EOuRqsjXXgizHExfL/B3Ki+dwmR+slbKLV5OtPJZlPG890yHcXuy9C+Mm3Nf9ZcM52wrfl7y61agmDsP5lZ5X7XoAAAAAAAAAAAAAAACAqXP06FE988wzOn78uCSpra1NmzZt0pw50/29IpzyyEReN3X9Evn+/fv1kpe8RL/wC7+gb37zm1q6dKm2bt2q7u7utM5HP/pR3Xbbbdq0aZPOOussffCDH9SVV16pzZs3q7Ozs36NBwAAAAAAAAAAAAAAAAAAOIU8/vjjestb3qL/+I//KJlfKBRULBbTL5UDaHx1/RL5Rz7yEfX19enOO+9M5/X396fTxWJRGzdu1I033qjXvOY1kqS77rpLPT09uvvuu/X2t799upsMAAAAAAAAAAAAAAAAAABwSnrrW9+q1tZWfeMb39CyZctUKBTq3SSc6shEXjd1/RL53//93+uXf/mX9Ru/8Ru6//77dfrpp+vaa6/V2972NknStm3btGvXLm3YsCF9Tltbmy6//HI9+OCD0S+Rj4yMaGRkJH188ODBSWxx7O2qNDSDP78lmBc+jq2nljqx+mHpKQSL/NW0u7KtwmP/eXODMtac5pxthXVjwgOD//iYK8ddeTTYpiSNaOKGY9sN30+/ki0bq1BK2YsNX/TJHgH99dWyLmvzsdxa021q4riaw12leK4m9qs9nFY6DlRzzPC3ES5rD+bH1lNNnRzh+WBztFb1xiPziuGM2DHQ2jwWPI6pJh6m4gwkXGfYZqk8/mJ1anGyz59cU9sfA5hqxDDQ+IhjoPERx0DjI46BxkccA42NGAYaH3EMND7iGGhMjz76qL73ve/pnHPOqXdTMFvwJfK6aarnxv/nf/5Hn/3sZ7V27Vr98z//s6655hr90R/9kb7whS9Iknbt2iVJ6unpKXleT09Puix06623asGCBelfX1/f1L4IAJOOOAYaH3EMNDZiGGh8xDHQ+IhjoPERx0DjI46BxkYMA42POAYaH3EMNKazzz5bzzzzTL2bAWAaFIrFYlne1+nS2tqqF73oRXrwwQfTeX/0R3+k733ve3rooYf04IMP6iUveYl27typZcuWpXXe9ra3afv27fqnf/qnsnXGfsGWnID8maT5VbQqLxtvLdmIJ5qJvD2o0+7VCbMIx5aFpbcNyyIcZhCfm1VJp+2tCjOS+/PCjOR+VuLwZYQZyWsVZh2XyhN9Wx0/+/hwMC98XG2dw64si5bhyPSR4HEspXm47FikzpHgcayOcpaF2cXzfqpTTSbyk/mpz1FJH9aBAwfU1dV1wtr5cTy34vPyTVUm8mqW5R0PYuup9Hw/ECtlIPfX01HFeirws45XM6JA2KyYvF0o3G0t1qvqofwYsxVUiiO/flg3bz3HaqjjC5fF3oSZFKt5ZkIcAzg51ccxMQzMRPTFQOMjjoHGRxwDjY84Bhof97iAxkZfDDQ+4hhofCeO43/5l3/RjTfeqA984AO64IILNGdO6XeqFixYMA3txGxxzz336I0f+LT04e9O7YZe26qtmx/X6tWrp3Y7Daaab1VOmWXLluncc88tmXfOOefoy1/+siSpt7dXUpKR3P8S+Z49e8qyk5u2tja1tbVFlwFoDMQx0PiIY6CxEcNA4yOOgcZHHAONjzgGGh9xDDQ2YhhofMQx0PiIY6AxbdiwQZL0K7/yK4rlKD5+/Ph0NwnAFKnrl8hf8pKXaPPmzSXzfvazn+mMM86QJK1atUq9vb267777dMEFF0iSRkdHdf/99+sjH/nItLcXAAAAAAAAAAAAAAAAAADgVPVv//Zv9W4CZpuipLF6N2J2quuXyN/1rnfp0ksv1S233KLXv/71+q//+i/dcccduuOOOyRJhUJB1113nW655RatXbtWa9eu1S233KKOjg698Y1vrGfTIybyVvrDPITPnxOpE9b1nxPWjzyvOXja3KD0p61Ouyv9HwWG82xT/nqag2WxJjfrxMaDdfsHCps+Gll3KPY2Vrttf/u2rfQHVv5Gbdo2NhaU/nTsDQnrVNPovCOnPf9YZFuz5Yh7soe42PMr/V8mspOdaLt5ARTGui3riKynPagbUXBlGLuxzcdit5aXfywyL9zGWKSuxWTZDxzbvWlbwbAr7f04UqF+rBEx1pBqX2jsRYbbCGN9NscqAAAAAAAAAAAAAAAAZoLLLrus3k0AME3q+iXyF7/4xfrqV7+qG264QTfffLNWrVqljRs36rd+67fSOu9+97s1PDysa6+9Vvv379dFF12kb33rW+rs7KxjywEAAAAAAAAAAAAAAAAAAE4t999/f+7yyy+/fJpaglmjqMo5OydzGyhT1y+RS9IrXvEKveIVr6i4vFAo6KabbtJNN900fY0qUylLeEyYFTg2L+/5eRmq87KNV3hewZu26m1BVT+rcJidPExk7D+/PajjZyJvCermJVSvRiwrcfiSh3VibTnLbBth9nN/WXPwuOSFhZnHY1mFW4JlYdbyWJ2ZIkwRfaqYzAziplImcX9e3nGh0jK/ThiAHcFjv07Oa6zUVD9WwqfnHaaqkTeyQBg2saTcx4LHJcLGDleYH6680gpryUDuP79S/ZON6zBrecypGqsAAAAAAAAAAAAAAACYar/4i7+oYrGoQqFQMr9YTL6Fe/z48Xo0C8AUaKp3AwAAAAAAAAAAAAAAAAAAAFB/+/fv19DQkPbv36/9+/drz549+pd/+RddfPHF+va3v13v5uFUVFSS/Hcq/xBV90zkAAAAAAAAAAAAAAAAAAAAqL+urq6yeVdccYU++tGP6l3vepe+973v1aFVAKYCXyKfMeZUmN8SmbbSf86cyDxJzZGnzwket0fqzw1KvxlWvy1Y31yvTvi8sIyxbcd+9TEWeb7NO5azzmrYeqzNtr7YW2+v1dpYVKRSWHnMqzNWoYyx59f6Am37eeuerG3NZpN1+AwDMm9Z3k4ZC+jgeGAjzPjHBaveEizzVxMuq7D6siaGwl3S393ClxiL70rrju7qsfg70RNjG5jo86uJv4nEKlCN2HlCGOzVHHtMrG8Ig9Tfj23ecGQZgHJ+HNrNmM7gsX+Tpj2o0x6UUsVrg6hjQTnsLRsOykOROgeD8pC3zK8HnIrCc3A/DsN5HcFzpPz+OBT2vX58hfPC0p+mXwYAAAAAAAAAABOzZMkSPfbYY/VuBk5FRfExVp3wJXIAAAAAAAAAAAAAAAAAAADo0UcfLXlcLBY1ODioD3/4w3rBC15Qn0YBmBJ8ifykncxbmJf9s5qsgbGsxI5lHPZX0xZUzcsyXikjuV8/zEAeq2PzbH15LysvKW8sO3gsO3m1/G2EGcjtPRiP1LHnNQePJWUvrpaMi7EM02HG19iblleHbOInL9yp8nbcWPbAcF5s1IC8bVTKah9bT3tOHSfMQB7LMl5p9IDYsvC5vjBbeV79vJEFYu2olPh7OKdOyYutWClnftjosZxl1cReXqzGRgQgW/nsFuugK2UplqRFwTx//w/nxWJjImKZTg8G8+zxs5E6h4LHuQENNBCLXz9Gl7pysStPd2WPV8fFsYXoEld2e1Vser4r57my06sT6/P9ZknlA+McDUpJOhyUQ0EpSXtdmSYg9+P4aVfuceVuV/rHA5smazlmCguUsF9d5NVZFJSLI3Uci8PYdfPcoG7sXNquSyvFrJTFX9p12vlkrO99NrIsnGd16YuB2tUysgAAAKhO7B5ZDSN0Tmjkn9g8exwbFYj+HQAAAMCp5YUvfKGKxaIKhULJ/EsvvVR33nlnnVqFUxqZyOuGL5EDAAAAAAAAAAAAAAAAAABA27ZtK3nc1NSkpUuXqrW1tU4tAjBVZtGXyE/0UqvJ/D1ZYtuq1L5Y5uHY8yu0Py85spV+tjObZ5kMu1252KuzMFgWllKWGdGyn4fZ1/L4GdUsocOIKw97yyzb2gFX7g8e+yx7W5g9XcoSRcwJ6sbel6oixlYUy1wRriiWuTh8ft42TDV1Z1N242r+URON+ck6bFbKSO4vqxS0eXUiwmyksSzjeaMGhMvCJvjy3p5wd8sLjVj4hO2xY4WfZMaOGWW7ds7IDdGhDsIDQ2zog2pGDQhNVsxVM/pAXhp3zCy2E1v20p7gsZRlMLZlLiuqn3m4OyjnR5aFMe/3h5VGDfF3Mesj04zF7aWlJA25dudlLk4zFlumU8tOvMer9GywjGzFmGnC2JWy7OL9QSmpxdXvc49XBKX/9GWu7HXlEq9Omp28KElq7U4Cqn3+kbRKW+uoJKnZBW1zyRA7pUaV3OgZGU3K0aNt6bLhIXeQGXJ9ypBbsFeZXUH5tHc82LXWzXPlgJt/SJ6BoNzhyt1enZInAJPAOtCw75WyQFxRWsfvc636aa7MGzXAShs1wD93zRsNyFTKQO53h3YNnPa9rjPf672uZ9z0Pvd4V7YoW5fF3Y6g9JfRH+NUE44AZkHqB324LMyAGltPnljGUpsXjvTjx1reMgCZ8AZYV86yDm9ZGMcTzVxcKVbz4hmYjcIM4n6sWj/cETz264X9ciwTed7wXKZStnF/XhizB706Ni9vtL1wHvdqAQAAMNkqnR+3R+qE58u1fgcmPIeOjdRTzTUx58Uz3bJlyzQ+Pq65c6v5sh8wCchEXjdN9W4AAAAAAAAAAAAAAAAAAAAA6u93f/d39Sd/8ifp4/e///1asGCBzj//fP33f/93HVsGYLLxJXIAAAAAAAAAAAAAAAAAAADowQcf1Ote9zpJ0pYtW/ShD31In/rUp/TCF75Q1113XX0bh1OTZSKfyj9E1TomBSqqZrjaaupU8y+ZE5QRzZHV2XS3K3uDUspG7A5Lv07viCRpcW8yjn1305AkqdMbZn6+m+5ww5C0KXlOq0YrNnncNXpErem8UbVJko64YQsPaX66bEgLk/JI8oIO71qcLNhVyFa6KyifDh5L2QFi3JU2uor/9o64sjlYNu7VKdrERMLK35g1yNZzTDiVhPtHbIjcSnViQ2XnDJldCBZZVX+kGZu2fTs2YlG434ebVqRuTFjffxyOeJS3DWNtP+rNC2OzGC7wNxYuG4vUyYvH8D2faKzaujlbObXZ/7knKCXp9KB0yxZ6VcI+O9aHLwnKBd4yG/W325Vzg9JvYktRJca8ftV206NBOeTVt9OBA67cG5SS1z93BeXarM5+m9jtyh1B6S+zkjjCVFrkSovVfleek1Vpdx3pGpWWknSmK203t6evyWJuwYpkX+5p3SNJWur27SXal9bpdgFnZWd63n0ka4abbgvOvZu9k9fw3Hu01Z13t3akdYa7ktezf2W3JGnIHUT2pQcaaZ+Sc/Dd7tg1uHN5tsGBNle6x1uCUpK29CflE65MjxVP+JVcafFPzKMa1rFZ7K7wlp3hyv6kKHRli/qD6laenlVRnyutO1/myiw01LT4OUlS50IXo63JtbEfq3Z93Oz25ZaSC8zEmIvVcfd6jrgTdrtWlqRDR5KO/vCQ6/D3umXRvteVT3vLtrtyh3tBT7ty+wu9Ss+6ciAod0TqADOFHQfsQtdifZFXJ5xnJ86LvTo2L7gG9K9Xqxn9N7zMPBZZlrJhfQ9682zaYs1OvPd5dQ4FdQ8JODVYkFk8Wsz6sbqoQun183Z5Oz8opSx+rYvNu5Vv8Wtdt39vyqYt/NL49oP+2Qrl7kgd4hmNzALLi8OKser3z4tL53m3psrid54r2706YRznfmTjKo25FfjxbPF7WKXLDnt1ykLTYndfZF6lUspinetcNLLYCXIYiLHPufKEMXEsMn84ZxmA2sRiNbzgDeO70vPCx+HnqLHPVS2ewwvnYa/OWGQecCryT3ArXQv759A518LhKu0c2kLU/7y40vc9/FvXYRiOeMvCME5nTPT8mGvhetq9e7dWrVolSfrHf/xHXX755br66qt18cUX68ILL6xz63BKsi+RY9qRiRwAAAAAAAAAAAAAAAAAAABasmSJtm9PstB84xvf0Mte9jJJUlNTkwqFQt5TATQYMpFPulp+SZ2XziSWhreGf1e3K/u8ef1BuSZ47M1b0J+kJ1veOpiU2plW6XEZURa7X4pZ2Z2lDFWnS8VgWdas9LMfNgdZ1mKZyIfTDOTJL+uG0heWTe/tSNK97Vm9VJK0e3WW3XWnkkyIO3cnqeGOD7if1A14G97qym2utERqfvP87BNSlf+K2L4Qpp0KS9RXpQzgMXlpTML/fWw91WwrL9t4hXX752lhpuHYCAWVMpBHsxMHz6nmECZlu3de4u5wG7Efj7dH5vntibUxGlphVvE5weNYg2JDFFTKaB6uq5LYdieyHsw8/s661JWWxjTIfCpJnXNKZ1kZS5jaFyzzMpG39yb9cHfXULJa75fZNm1lLEux9cvNwb497gV02FeH/bQ/nfbdB7uTuru81OphFlTLgPqkt2FbNtBTWh7ys6JapuIngydJ0h5Xko0CE2H7dL83z06eXebxJS52z/eqrHPl+uCxJK1LUjGcsTw56VzlTkj70gDIzrmXubLH7cc9XkbC7Nx7yLXUxffBbF9vsawPdg6bd6rp+vyiy9R2aEF2Ln6o2eI5SfFmGcj3eRkfLQN5et69fFm6bPvy5KA1cGmSpWD7keTx4R956Zo3u/JxV/7YlT/1RibYYtMDNsOVfrbyPcJs5p982vWgpQ632PX2qSXBrH7v6eFIArasPwukxW7UgKVNpTHa7Q3NUc2oAbVkIrfM42EfLEmHOjpLyn3LkxjdGxs1YDQ5NznwtDcqyoC7iLDQGnClH2JbXQabLa48ZAe/n3qVwv6YuMR0CjMySeWjAC0NHksquP682z22Lq47q5KuOsx8Ghvlq5r7RdZlx+47WWbTw+6aYsi7thhy7bZRBtLTff98NxypZ0/wWCKTE2YuC7ZqRvByGdW808qykUEsnk/z6nS70kbu6vSWVbqPFmPxG47WJXlx7MohV+717vfsda/tGVdaiA566xmze0LhqFx+PNu0ZWvjHjPqLeyPY/Ec9MfWF/sDC1jcWjx3e8tsOsxE7sezZSKvZqQQE0tqatfW1mU+50o/E/lQUO51r/0Z75zEki4Ww7j243lPUNnPwkifjXoIRwHxs5lWGs0nVqc9KCPyvn9UrLRgODJ9MCj92AlH+IjV4T4yTnVhJnEpi9Uwjv14Do8HsUzklUYfiAmzjPvnsGHm8dgoXYdyloWxTVyjEVQ6h/aHxlxRWie8fJbKz6Fj59KVzqFjX0sLw9gP1XDEav+a2L42ZufOz7jjwz7vg++9btrucdnnxkU/ZsN7zLF7zozmM9Ve+9rX6k1vepNe/OIX64EHHtBnP/tZSdIjjzyis846q86twymJTOR1w5fIAQAAAAAAAAAAAAAAAAAAoI9+9KPq6OjQY489pi996UtavXq1JOmss87S5z73uTq3DsBk4kvkAAAAAAAAAAAAAAAAAAAAUGtrq2655Zay+eeff36kNjAJisoGJsG04kvkNZlz4irTqqV8st+VNiz3mqyK1pWWTecl44f09WxPq6xy41b3aXu0lKSlboi9HjdMyGI3xsiSdJg9qfNIMp5f2wE3w4YvGVHGhh8Ih0Npy6oU3TAqhxYkQ3YPNXeny9LhuN0YLbvdMIiDWp7W2a6+pOxJym09/ZKkgfNXpXUOP+7GcbGhuje7cosyNm1tttfhD2uaDqdg+8lkDY9k6+MoObNVe3wI68UOw3MqlLFxhALNkSo2z0YS82IsnWdDF3W7cp5XJxy6uy2YH9tW7O2wXTgc8leKDN3tSn8kwSFXPhc89tm65wSPS4Y8tIVjQRmTV9dedCw2q9kfahmDxbbFuC0zk/1/bJixfm+ZdcSuY17oHp7pVQn77LCUpP6k41m2fKckqcf1xUu9IbuWuP54seuPu70g6XTBZGW7jkiS2jSa1ml2AdOcs5+NugPAiJJ+eVgdkqRD3gHBpofcAWVfV9Jf7+3Kxhnfc1bSZ1sfPrjT9d0D3gFqS4XyiayKBtybt3dtZKE9YcCVDO+NPBbHNvafBeDzsiqdLsbXu8fnufICbzUvSIr29cl4fWd3bU4Xnamtbs3Jvtnv9s3+dB/NzrmXK4n1hdvd+eRObxt7gvJAUEpZX2nnrLHdPjj3Lriya0F2XOha4M7vF7ty6ZNyDUyNuOmdHcskZeffkrTNHQ8HlJx7b+1IDn5bLsoOcFsvSubteWxlMuMRt+Bhr6027yfJ+jRowzh6w4On8e/ayFCls4T1P/3ePNu/zkmKhe68bJ1XxabPLq3qL1u8Jhlivq+p/Jp4maw/3uPKpF9e7F0T23Wy9cfWB3d4+2arC1K/P64k7HuPuFKK9L3uWnmvKyVpj103tybl9tVZrO5c7eL355N5Bx7vTRb81GuAHc4et9K9r1u84+ShfpU+ccCVT2Z1iE2cFP862IbWXupKGxLXH+rXTbe7/dXt2mnpT1u4hEP/SuXXyeE1spRdJ1dzKRgb6tem7RrY+vX9Xh0b4ndf8HjQG4p8d7+b58oxi7mnszraEZTPBiUwlcLzbimL235Xur683Quo/qC0p2TdWXYYsNLie0l2Q3rBkiSoOluTG08d7trYn251/XJzelOp3Li7AWal3y8fcTfbDh9PDhaHhpJydG9XtgIbqnvQlRaOfqgOuNe/vd89duVer076BOtrB1y526vj31wDJpN1iP51WdgfW+nt/8tcGfbLfv9s/bL1x6d5y7orlHO9OvPdRXBLEsetc/0PpkqNHUvi+Pi4Oz6NeTfYD7t5Fkax+9I2/YwrLUb9MLRY3+3i2vrpvf1eJeuHLa53eMt2B3WIa5ys8H52T1BK2Xm2zfPi2MLfYrQ7KP3p+UHpx2re50nGPn6xMLbT2xHvHPiwmx5yr2dIpaWUxWYaPgddGYu1MOb8ae4tY6aLXTdb0FoH6/fdiyqUXmDaKit9XixlnzeHnxfHjLt1j7knxT4vrvS5seR95mtxHItVK+0C+lCkDveoMJ3CvneFt8zOmd21cKGrvEp/8LTYNbF12Xa+nfbT2bnw/G73eXFHUsbuT1f6vHjcO76MunvVI+5AMHw865fTa2BX6plCUvrnx7uC0m697/D696fdZ7/2WXAaxv5nwXYtbOfQ9sEZ8Q1gcn3mM5/RX/zFX2hwcFDnnXeeNm7cqJe+9KXRut/5znf0C7/wC2Xzf/rTn2rduuzDyi9/+ct6z3veo61bt+rMM8/Uhz70Ib361a+estdwIk112zIAAAAAAAAAAAAAAAAAAACA2W18iv9qdO+99+q6667TjTfeqIcfflgvfelLddVVV+mpp57Kfd7mzZs1ODiY/q1duzZd9tBDD+kNb3iDrr76aj366KO6+uqr9frXv17/+Z//WXsDJ0nNmci//e1v62Uve1l02ec+9zm9/e1vP+lGzU61ZDl3v9jys7Gsq1Cuz6rY9IqzkuyHlgXRsiJKUr+2SaqckVySlh9J0ia0WSyE2RCl7EedzwWln2XJAtN+iWp7o5cBueCmLSNi19JsIyt73PTyJMvZrtMWSCrNRB5mP+x3j7d0ZK9n6wuTX/RtOT3Jgnj8NLfRbq+t9kta+4W8JTedkh+w5WU3nsh6+FV8/VVzqJ2kgSH8Q4n9EnxJUPpZXcJ5YV2pPItEmjki+9WqZXNpdtldrPSNuywuVo4e9X6ifjT5taqG3C9R7RflfnalIVfuCpbt8upYxpfdQZ1nvDppSITDIMyJVArjx/8/WYyG2coxe9ivoYNfiCs7+VOL+0W5ZTjNyXhqZfuaJDNaf9dAWsWyEodZipd6P9u2EUEWp2UWQFkm8tJsax1Hso6seay0NOMt5dNHOpLXfiTNRJ6lYSzPhpocUHan2WuybKg7XZ+9fXnyU/mdy7M+fGB9vyRpeItL355mPvUaZ4lOLTvqT733fizMqmGdt59dhl+iz27+Md3i2ILTZdZd5mU9eEFQvsgeZ8NdnLn6MUnSWW6nPFePpcvWuHPus90yOwdf+Yx3Ev0/rtzmSjvfzk5dsz7OnmaJU57z6rh+9JjrqocjSdfmuHPwdju/tW55gVfJwsfCycLYy0Te5hKIr1o1WFJK0rmrkte/xR0ft7phGPzrj5/pLEnSY+eeK0navCI5UA73LkzrlGWf+55lQH6h11j7X1m/POBKMrSdmmxn7Hel37G6edYt26iK/rXxeaXLlp6b3ejJRgmIXxv702FG8sUjWd87b8/xZMJiNDZqgMWmXSfnjRow1/VZ89wK/JGDglg9uDQ5t97XnGUitz43K5ely+x6eXtr0h8PPK9fkrRlXTZ0yoEfuwuGfjfDDpv+tcWPXZac7Re5GZbxqsOrNOBKMh6jFraTL/Xm9bvSdkaXimlJpEpfaZWSZOWVsqEuqZylyc6tW73h9ixjU2vOyAJh5mIbYUAqH2Xg0JHknPrw3u5sBXvdASHM1uRfEz8dlAOuf3zaO0/eb9MDQRnLwkg/ipMVZh7vd2XJ0FtJ0Rcs8kfwCi+33VPs+lmSlnaVjp4ZGykkHCGk09vHw0zkrYqcRDuWgc2yr0UzkTclcbx/Ubckad+i7AC176zSETZ3jiYHowNPexlgt7h7ZJVG6ZKkLe7A9oQrx+ycKDZKF3GNkxXGc5htXEqDM8yeGMuiaE9bFjz257mwae09mC7qdP3y/KbSOM4b8Sdv9D2L51j/bCPyWVzbPS8baUCS9j/TLUk6vs+doMf6Z5u2/jnNtOjVedqd72yPZaccCJ4QZkuWuDeNymyfiozYE55Le7diKo7w4U/nfa5k95dsnXOTfbR1fjYKSPh5UnNLUmd8LLtnV/a50mHX5x727utZ12Zd/pAr/TgMP0/a7o5TO/yRQlw/mp5e+EOEVMp0yrUt6i3MbuxnGQ9v6kZGHbCn233X7qD0p2sZnauaj72t6/Y/Uq6UgXzIq5PGvIvfIS+O9/cHK4/1mRa/dtBgpA9MpXAEvchw1J1zSmfZtbB3K6fsUro/+VxqwYps3+5pdfeo3b69JBgpU4qNXJ3ESpt3/ZudO5d+32PcG2KgbNTMJm/UzEXuc2J3LTy0Oin3eaNm2rXw7t3J+3N8wB1gBrwN2rRd0trHSlu8N2a7TT8dVPZXRHZyACfntttu01vf+lb93u/9niRp48aN+ud//md99rOf1a233lrxeUuXLlV3d3d02caNG3XllVfqhhtukCTdcMMNuv/++7Vx40bdc889k/4aqlFzJvKXv/zl+uM//mONjmYfijzzzDN65Stfmb4wAAAAAAAAAAAAAAAAAAAAAMhVVPIb6an8q8Ho6Kh+8IMfaMOGDSXzN2zYoAcffDD3uRdccIGWLVumX/qlX9K//du/lSx76KGHytb5y7/8yydc51SqOfXtAw88oKuvvlrf/va3dffdd2tgYEBvectbdO655+rRRx+dijbW0SRlBp609bpfUbYEv0STyjOPv8DK7BdjZy1Psh6G2Q/PTtN3Sme6X2ZZtrX+g8kvtlq2KWMZEncGpZ+JPMyIaL8S9RO4hIEZZkGUsl+qW+knnbJpl/2wty/JyNa7OkvttnSZZZ6xX90lv7YrzTKT/OKstSdp3M/mJNkPR+X9ajVkv4L1f6y2N6w0J1IJU6ua2Kol638t661VXjsqZcj2nzOntIplZ/ETlFgSCcvk1J9TZ1kSkIvdr1W7m4bSKvbr1DBbk2VoksqzNLVExgAZS7OuJY0eTjOGZhmbrLQMxoeUZXWxX6fu3Z2Ux3cENZXV/wAAgn9JREFU2V2k7EelZdnXvDo2b5d7D4djsRr+D2IjBIQZyGNZynHq8bIS6wxX2q+cXaaShV4d65+DjKd+NtSm85LOclXPgCQ/A+pAWiccGcQykS9PO+EsK/mSg0k/2BIbIcS6SOuf/X7Z+rYgfFuavWnXV7e1JfGycJ6LmwVZZjf7IfmY66f3diWd+B4vu0WYDXW7O1BtTw9Y0vKu5LUNvLBfkrTt9KQ83uulXrXsNt1BKUk/dhk39ruM0tEUGJZBhr56dvIyroTZjC2Oz/Oq2LRlIH9Rcvw/Z+WP0iqWeTwspeyc+6yRpJz3uMtS7CcJtOkwI3kW6jrmpne4eLY8E37eI8vRZnt2XnLjOe54YGe+i7xtpbmqXOx32fl3FqrpubhLZCytzhYtWZdcBCw+55Hk8aLyzBdlGR+7kvKxi89N6xwuSWWlrJv1j1fbLOvicIVSIjPbqcD2yn5Xuv97oT+rsj4on+/KC7IqTc9Pdvw1PbFr4q1uC6WZyGP98sLtbv8KR+nyp60M+2B/2h+xKxSejlo36I8aEFwvdy11I3ktz0YGWOWmdy1Lrvn9Ptdej2UkTzO3tmb9++YXJqMGPLnE3Yjodg3KTtfLr+m3WFzGrqcskMnyhBjbZ4LMiOn5t5Seg1sX0R+UXpWyZd41cfuKJM2gZTC20X38vqpS5mI/S7HdW6om06llLo5lIrdr4EMdLmvTyu60jk3vdS96z7NJ0I8+7d2/GjhB6U9v6U/KQ/Y+b4lUCjOe0peiGn7n0O9Ku5FtI/54VSqNrLnOr5PE2xnLk/7Z+q6V3kghy9Lr5KTPi2Uit3vDC11cz/fvEY+7DGwjLnNxhdG6pGyUrpG2JEfPcJuXdc3i2JXp/SzvnNbmpdfGre7aeHXWP9v09p9PysOPu+f/2GtIOGLXj9y50paLvEqnB5UGXOmnQAYq8eM5zEBuce11rJX65f6sSnrtaPPc01tXZNnGFy8qHWVvSRUjCrR796rTz3xy7lWHRtxJ7KjXP4cZFtPR95q60zr7e5LpIVfuO9eNyLc7+zArvY8d3qv2Rx2zefY2D3iZZPeG2WXt/+Lfp7SY5h7X7ORfc4XZ7NOUpVmVzvbSWWEZm+cnMu9LYmvpcvd5kotLv88NY9Tu//ixGo4WkMrCsGyUgOFFpZ8lSeUjY6YjZB7PMp7u2+UOUNvdBeuAW+B3hzYvTWLqHd9sethizG7iPZnVKctSDkwl6wvC7OKxUQfcNaONDBAbsdqe3u3K07w64cgCloF8rlfH5lX6eFUqv5y0x/59MTs9t8vtoaD0p/cGpeSNWO2Oc3v7k3K436tksWoHAItZP1u53W2nX0UtwhGspbJhtdpdP11yvRuUZ5c+RZLmr0t29L6Oyp8T27T1x/a58cKce1zWL7d5I+tVk4k8HJXL/05H+YjV5dfENkrmnp7k4LO9x41YfVE2DO7g//QnEzZKV2zE6nSe66cHre/+qVcpzE7OKCIApJGRER08eLBkXltbm9ra2krm7d27V+Pj4+rp6SmZ39PTo127dilm2bJluuOOO3ThhRdqZGREf/M3f6Nf+qVf0ne+8x1ddtllkqRdu3bVtM7pUHMm8osuukgPP/ywnve85+nCCy/Uq1/9av3xH/+x/vVf/1V9fX0nXgEAAAAAAAAAAAAAAAAAAABmrMHBQf3qr/5q2TQw6aYjE3lRuv3227VgwYKSv1tvvbViswqFQmkzi8Wyeebss8/W2972Nr3whS/UJZdcos985jN6+ctfro997GMTXud0qPlL5JK0efNmfe9739OKFSvU0tKixx9/XEeOHDnxEwEAAAAAAAAAAAAAAAAAADCjDQ8P69///d/LpoFGdc011+jAgQMlfzfccENZvSVLlqi5ubksQ/iePXvKMonnufjii/XEE9nw5L29vSe9zskWG1M414c//GG9733v0+///u/rL/7iL7R161b99m//tp73vOfpi1/8oi655JKpaOcs5g9H54YasuE+/f3GRkTpLy1XLM/Gw7NhPm0Y7jVu2I4zveFq17ihu1c944a9/plbsM3blk2HQ3b7o3PZiGVuyO5hN0z3cDbSr465IYrmuL2wxZVd87I66VDdNvqa/5ptNMADQelt4/SxpCHNfcnGbIiVUWXDD9gQaKPBUGhb15yd1tGQa5wNh2Svb8hrj00zsi9Scyapjh2qveOBHQf6g3JNViWdTkcrTIJj2fLyYY2sXOoCeYk39tfiYDjvcPjBpGWlQx2VDT+o8mEH/TgMhzoKhx2UsqGOdrtOc3dPchAYVDas0c6DyfTwFjem2oBbkPXF2YhFW1VaZ8A7wBRteLKnNX3s/1zrQcT2oWNTsG5k7D30hyDrd6ULsoUuRtd7VdYH5QuSon39/rTK2V2bJUlnup2y33W0q7wx563vtr7cyoXbvaH0LLSr6JdlI/P4wwRa/xnuJv7ZooWtDVPoTk3S4QwluVBVi+une5cmG+1dfiCt0teXtH+7klFsbJhx/9jTrf2uHJIkdfYkx57N7Vn/PDx3YWkbY4fUH7v/y347GPqxYi+WIX9nF+tPY8Nyu53aRrzzB1oKhtxetrI0Hv1pi9n+SBzPe+J4MsNG0/NH1bP+ys63/ycpdnjxbGsMB8idrAH4/HclHQDZHStOd+f/a7Jw1hw7nrjzff9c3ELMfjPdf37S6pGu8nOA8FzgUEfWkp+u6U4mnnHBbiOL+iOM2nX28OnBQv+dYZjCxuRfE1e48O33qtjh3vre85Oi6fnPpVXO7kkudM/W5pJSyvrj7Ho5ebzyGS8QXWym4W/Xxtlpdhac1gfb7vecV8em/f44ZH1cpT5YSvvesuvm5V4ddzzrXZ0E8JJVWSAv7BqSJHW4frDNBXJryTCmSUC3rEzO87eOnZssGPOyIhwNSnt9g/1eQ2xcYjt4WF9MH4y8WHeBXfCu2c50pQ3tu660asn0mqIkaXF/EqTLmvxr4uT+l52P2vXvYu+81Ib9ne/23+yaONtvLW4qDfkrZdfEVlrf50+n/aAbC3woHS/cuyZ2N8T2LHLXxouy92XnuuRmwYEtbnxyu/7Nbv1lQ5fbsWOrO4nedo5Xyfph+7/Ywci/yCBuEbKbtf3evHNK59nD87wqF7gyvX5OYvaM1Vn/bNfH4XWzfy6+0k0vcx1yj9tfFw56+2rYP3vntWm/ZaV1UeXhrJY2K5Nz+3nzD6fLlsxz04vc/XX3tox4h7DdHcnMna6ztmvj7d4FiE1v7UgOeNte2J88XpMd6IYfcccIu36xuD7Na+yP3cJDdvIQxrWUXRNz3wjG+oHYfTBXWr/c71UJ++czgsde/db+5Hxw2aLSmE2mK/fLdp8o7J/9ftnuW7e6/rmliv55LPLZUXa9msTNYfe+7PfuWdv9631aIinrp/f1LEnr7OxJYn1Pf7JsdIWLR/+etVW3VfsX59aPb+93ExbHsRthdi18KLIMpx7bUfq9eTbtOt1Ot7/458nhubOV3seirWtLY9TOm6UsRpe60uK32/vQNPw8Kfa5Umv6eVLl/sdi0j7DHXGPD3lBEn6uZOfNe5sWp3X2LE+OWTuXJ/G48yJX7l6W1jm+1X0obTH3uNcQi9fN7v3c8rykHO73KtlNvgFXWv9KPOJk2XnbIm+enVyeHpQrsiqdwazeoPSnbXV2HrnEq2PT813ZncRs63wvnue6eG5x949aXN/bFOl7j7u+d8z1vUezvnf4sLtOPuzm2Wn2kLeCZ1xp5/R7vWW7gtIuF/z7yE+7N6Rox4gBV/r3JWyafhXVCM+d/fsrbnqZO2+zPjjns2T7DLm/ayCtEn523Bdc/0rZ9z2sX7Z+euGR7MK3LbwWjnzHquK1cLM3bfeo7ftc/ufEbnr/aUkcZfezsotiO2ceDK6Jt3nnNAOrt7symbenf2WywDvMld3j+okrH/f+B8XwHpd16v49LgAzhmUin2JtbW3q6uo6Yb3W1lZdeOGFuu+++/TqV786nX/ffffpVa96VdXbe/jhh7VsWXbtcckll+i+++7Tu971rnTet771LV166aVVr3Oy1fwl8k984hP62te+pquuukqSdN555+m//uu/9Od//ue64oorNDIycoI1AAAAAAAAAAAAAAAAAAAAAMDMc/311+vqq6/Wi170Il1yySW644479NRTT+maa66RJN1www3asWOHvvCFL0iSNm7cqP7+fp133nkaHR3VF7/4RX35y1/Wl7/85XSd73znO3XZZZfpIx/5iF71qlfp61//ur797W/ru9/9bl1eozSBL5H/6Ec/0pIlS0rmzZkzR3/xF3+hV7ziFZPWMJhIJgH7MaaficCmu60ccbOzX0WGv/q2x7FfhpdlS4tlMw2XeXWOuTrPul+uWY4xP0eR/XCkxTKSu/KQl4Wt02V+6Yr9ysR+6Wbvh/361W+r+8XZwsVJQ7o7hpKyil/D+7+eHe12vz6xX9LZtuYqYz9c44eop7iTzS5e6bA7JzLtduB2t3P1e1XCzBD2Y8p1WZWmM5MAWtUz4J6elH6WpjATuf1adUka6NmvVNNYGUl28nkHj2cbs1+CV8pkLGUv3Upv1IExNz3UZdnWuiWVZnXZ436dar9S3enSsfuZyLd3ucxNL3S/Vl3fL0k68Lj3s3pLBmHJnSyrRJaUQtpqmYstTc5A5IXl/fytmuzgaCyxITHcL8oLQebifq+KxaqLzdZ1SY94ZleWCrB8hJDSzGqS98vyI0kW37YwA6pU3Qgh1ndbzPrZUO0X5XmZyK3vDftDPwGGxdLSoPQSAC88kJwRdK5MMsF2dJVmiEqmR93mx13zXHaKruyn7j9blxwER4+6/4GfyfVwUA65OkU/i1aYDZVsirOD7dQd3rz20kXh+aU/7crw3DE2r+Rc/Fm3f1kshJke/GkXswfdruknSrHpyc5AbmKnstar2enuHq/Np9vxxY4D2SlEWfy3uGWdXSd+z0oyU7nz8tFOF8fB/0JSdlwatlbGMiyiMcXy4/eULvKzj6wIyn73jJ6sY7Rz33CED386PXd+1j3vf5SxZCXVZCK30sXNs178HHR9rp0x5p1C2xGr012DlozgZW+LxVw4QoCU9ZGuv2/xNtZ3TnJ+MdZh2RdLM7xJWfbFNMNbf7ckad8zXr9qmZ+eCUvvWmfMGhmOFkAfPHvZ8do/R7OTaHc91r6odLZU+VrYuyaevy7ZKfs6SmN9eSRLU5hFsaqMp+NeJvIRl3XNxVZzJKDHW0rLIx1ZlrMsE3lpBvLo6FzuGLhHpZmMJWl7q7smPteVvUk5usTLqlIp06l/j+txy8yWd3+DzMUw6fg1rvSzrvUnhRsZxEbnSktvuvUFSQd21iIbKeRnaZXwetkel/Thla6X/ZPpCv2zpJoykZddG/v9smVgC0YKafNGCFm5PGnAypVJ2b8suf4fSIc/kgbce2fHI8vI3NmVZT3felmS9nnPfJeRzeLYT6JoJxOPuOPAofNVLhylC7OX7Tx2/8s/0e5PCstAHmYdl8rug4WjgkjS0tWl/fEyVc5yHMtEbvet866/24MRdtKRQsYj2VCbK48UYufF2UghpdmOpez+tWUi73H9s59pMf0sblGSVXKwOzkg7Jvvnf+ECRL9OLZjjsXztmqGt2bEn1NbOPqHf6LsgtK6lMh5cprxNLhn3b9oIK0Sfp4UO4e2MnfUAJf9tM363NjImHn56dqC0t0LGvH63v0dSedbaWQAKft8qWwUkJ5sFJCBnv5k3jp3Dt3vnUP3uzIcLXyzV2f7RW7C5tnxZMB7QYySh1qEGcj943+/K08vXbbMq2KLbDcPM5LH5tn14pLsOm/+kiFJUmdH6X3bdu/+rY0Iko3O5TKSR06mx5pc39uavL7R1tZ02ZGuYBSQ464PHsruD47udTFmh5xdyoTXu2EpZfeUB1xnO2zHUP8+cqV7ynwRBCY2op6dGHvXxJaB3EbjCq+NvenF65PrsbOakmvhNd6wcuHot6vcZ8glmcjHk/Pprqfc6JK2yO96Ko2amTdydfgdDynrl3MykS9cOuzK5Fr9zOXZCPA7FyUXzNYfL03vx2UfMNl5v51TbD0rib+t873znrk2TJh7HLuN9VM70NkLit2Np38GZoyiZtzXrN7whjdo3759uvnmmzU4OKj169frG9/4hs44Ixl+bXBwUE899VRaf3R0VP/7f/9v7dixQ+3t7TrvvPP0j//4j/rVX/3VtM6ll16qL33pS/o//+f/6D3veY/OPPNM3XvvvbrooovKtj9dav5EPfwCue/yyy8/qcYAAAAAAAAAAAAAAAAAAAAAQD1de+21uvbaa6PLNm3aVPL43e9+t9797nefcJ2ve93r9LrXvW4ymjcpSMsGAAAAAAAAAAAAAAAAAAAAYPoVFR8VEFOOL5HnCsfnmOz15g0Je5KrHisdgs+ftnJMNlR1W1mdsiFJsirZvOYKpaQ5LUEZGdk2nBUbcL7dtjs3srAlWGbb99vq5o20JcMghe9BMt3i2lP6vowd815Q2NixyPyy11jv8RUYTrix+Du3G3Ks3UVFbLhBmw6GHVx6bjZEhg3xa8MZhcMcSeVDEVq55JlsaNx0qKNweKPYkL821FHeUL/2Ur3hBlvcsEZLFiTbXbLIbX9pNqzRc8sfkyQNuvF/w2EH/eltbhi3pa3J0EcDz+tP62zpScZaPX6aa0C3WzBfGRsV7XFXDvarnI2HbC+o3jGPqWH/XxuCstNbtrikSEcS9EcU7C0tly7a46rsSatY3NlQXTZkrz+M77KRpE7ZsNz/o8zOoNzjLQvj1kpvqNBhF7/Hgvid43WH7dbnWl9rw5P5xwObtsOIHRcifaa9u8vWJo0eacs68WE33Gc4ZPAh738wtGihJOnpXvf/8YdhtP+DvY32f9q72Ktk67L/r71R9KGntnDIOm/a9n8r/VGfg/O/ETestQ1v7U+HpSQdmdckSZo373gyIzzP9addF2Xnwp3eUIK2tx4MmjgVA1Tb+XlX8LjTb7P15zbP70+D12PLqnnPRvw6R90bER5P/CEW02NX7EQdjcl6CX9o0GBsd9vf/P0unDc/2Rf84e3DIe/ne8tseExbVrCuwR/R0qb3VSiltB8+5ubtcf3jQa9KGMexOxBzgnldbr8f9vb/ssHsY9fx4dCii7JFba6NnR1J5x2+B/50+p41JeW+hd425qeV46Uk7bfhvIP/JWYh21FtiPnTvWX9rorbUW2U2rO9KucH89zjxet2ZGtpGnBrS0q7/u1LT6azc3E7B8+Gz92b1llyMAnglvBc2j8HHgnKiBa75eZeetu8rPdeaNMLkoAcWfykJGlvR3buus+d0C51bbVrYotZqTxWOxcl5ZYXZEP9Hp7rRpkMb3f6XaedJm2xI0x4pPKndwizle1E1qlYHPdnVeyWzZqg9O5xNZ2X3FQ6c1FyH+ts/cyVm9M6Z7npNe5e15luWO/e7V4gbnNleN2cje6dXSdbn+3HsXXMdi3rzi+Pebv9nPC+eHi+K5X3tXaYW+7VsWl3TtF7IGlIx9rH0iodzUckSa3uwNKS8wnayPrk3PnAUXdR7J8nHw7KR9zZfdE/7trJzXDwGLNHGM92/Pf3EzfPRoPvD0qpPNbXFCVJy1YPpFXC/ji8Ly2V3yPzh7Xv1n5XDkmSOkeSvm7eweNZO2x/t37Z4riae9Zt3n1xd377XFdyPX+oLTmxHUpvKEv7lPSrC4NzaP8ao0NHSsq2ptFk02dlDdrTYgfMQmmbY+23GB/0rwQOBqXF826vDtfJjc9itN+VFmxrsyo2y86X7TOk87zVuGX2eVL4WVKyhYGSMnYOXfZ5kr+7hdfNkfvR6edKebtmeD/a9bltC7IqvQuSlfcuTcri0uRceveirNKgSj9Xih170mPOoqTRW3/+zHTZvm53PAzvOfiXtHYc2XZOzgsy9LWoht2VDftnKTvJdPPcZV5J121dS78rV0TqLLNlSZ/dvmRIktTdNZRWCe8TWWn9miS1Kunb2lyQN7tOqznS+Ybf1ziijnSZ3RNOPx9qcn3vou60zlB3Mr1/QVIen++djM+tUMbYde8Od/dteIW30A5Mw0Fl/4A1FXfk0Ti8m6vhuXO79z2w/qC0a2HvHteCdbskSWc2Jf3xGne9a/2zPy/sn09/xrsh/VRQ7glKf9r65eeCUqr8EYt/H2lehVLKPo9dWloWvK7v9L6k3Z0r3fHEXf+2eScKseOHJI0tzz64fvKoeyOPunNoO0/2TunT6e39biI8b5am9pM2ADUpikvXOmmqdwMAAAAAAAAAAAAAAAAAAAAwsxQKheg0gFMDmchnDPv1YvgvifzSaciVe715Nr3LHifr2bciy1i0uyn5BZz9WjQvu1h7X/JLtnlHXfYG/1ce9oOvMBO4n/3N/bh7kfsF2yL75VpORqZoNkb7ga39WHypt8x+0Ge/ol0ZlJLG3PSe5uSJu92Tdnsr2uOmLWOElcf3eT+X2xuUQ670f8GWZng52WzE4U9qyG58arNA8jLjFlzqgn6VllnisOzXqS6LxLKztrnZWZYm+3VqpV+mJtPJ83qfccEa/kJVKv+VaixbUxjj1WSOiGVpspi3+PZift7y5Hi0pi/JTr50pcsQ1+xnohmS5P8KPjmGlvxqtSc5iG2dk2SRGE036rGwOxqU+/2f5/OL1NkhzP8ZyYYaJtL0qwRZUMPMQ0n1ZLosa6DXP6fZlCzWLP5i6UwPBnX8aVcOWzZU75flsdzMUum4KS2ufpdlSVZEmJEtliU2+GW7vb7O0ypnPG2PvHfptHt/Nd87jwr/H5YFdW8so609z14tP289tdle7geQS4FQdMt2uX3Bz6D0dGk52JtkLlqyqLwfip5ntyXTa1a6FVgc5AzJZZkO13r9cpfrjy3PhTXRz19UKbuxH9+2t4ch4veKYe65011/PcfPorjKlSuDx1KWCMvN23VasgJ/FJGdQSYoK/f4mXW2uwsFu9ax/4V/PbTfJuwdsXfhkHAKq9elUvOJq4R18m6+VDNGWXhGMie2wryNVNPmHOMTuX3EwADIZT2OXQtHMp1adxFmPPWnXV+zYE3SSVj28aTKgCuT695V7vEyL9ugZVS0kYJ6jiRlm5+5uNKoXH6WpjCLYmy/D0f986+Jbdp18G3ubTndP89YnnR2dk5h17sd3jWpZX8LszWNdWQHga1rkunho24ogTBLsT9trysdnSvvAoQ+d/bpCkq3A/ufI1pGRAv1YLQuSVrSk+znlv0zGxkgOxm3GLVsoWX3sfzp7cHjWCZyGzHEu25+1q6XVVrGzqEtjC1noj9ST5e9HeGxwr8vHl4DuBDtahtNZy1flTT8SDBKl58B2ab3tSZv8IEV7g3f5fXb9l4vDsq9fua88OoCs094ZRjJeNoZzEozl3qrWVFaLu4vHfFDKs/+a+WykmzAlTORLx5JLgTnPevulcVGCKl0r7qa/jkyms+8BcddmWzERvqQpI42649t9IB4X+yLjZg7ssKNKHDYBa3frVq/PFShlKRh+8fYCUsswyJ9dWPy72UGmYftpHiZV8XNkiXRts+VvOTYYQbyWMbT8Bzaz0TedzAZ+rEl7GvzMp3GzqEtRv0RNEIVMpHLy0QeZjwtuLJ3eXZgWLjSxW9HaQZli1kpErd+Kj73Wdy+sdNL2xwb/cNCbW+/m8gbk4zPlxAqGbPdlWFGcind8a3KaUHpVUnPye280D9muHnze5O+dnFH0s8u9DqZSpnI27391z6HzfrBMfdqyvtDGxV+1AW2P3qHZSA/4tZt6/NjtdVG9HCf9/q3iI+P+RfaiseqTYcZmIf9462912F/6tchfmen2OfFQYx2e4ts2uLO4vG0YlplSauLP7c327nvEm/vtnnpdfNBd37sX++GI1bnjVxtp9d5mcjD8G2LTMf65bB/z7k33NWSxPPSvuR1+SMThCNUp9e/3vdq9rlj1+El7o2197fb24hN2+dKxfBehpT9P4nrSlavXq2DBw+WTQOTjkzkdUMmcgAAAAAAAAAAAAAAAAAAAACYRchEDgAAAAAAAAAAAAAAAAAAAGD6FVW/UYhnOb5EXhPbS/MGm84bD+9ktimlw0nudcOUPe0tmu9KGzbEDe+1ryUbDnjr8+LD5415Q+bZsEFH2pJhQvrXJ8OV9S72xgK00dKqGQYlHP7WH7bT3qoahvP1RibJ2rHSlW6Y4/2rsqFjtruZW9y4bQNaJUnamo7jJm3W2SXl4P/0Jwse97a1xZUDrrT33h8fqagKjkWmOeLB2P7qDUFWaXgxf2jQ/qSYvyLZCcPhP/1pG2YwLCWpd9DF9v+4GeGQv1LZUL/p8EaxIUKtjB1u7FATDj8oZUMc2dsQDhPur9sNfdQ1kgxv1Lc2ez3jzaVDgY64jYyqNa1jwyAdWZS890/2u7FYh7zxlodcuS94POQd/4vhUGYMb4SI4LTA9k2/7x13HWC4zB/Stugm/VHBJcmrkk1b6Z9+BKciLe7xHG/+mGtr3lmO1W8JT21i2wrb47c1YK/Pf83h+2DvU+l7F6w0b2gjhj1CynYG/+Q1GBp00I3x+1OvSltpOdqS1H3sRedmdfzR71S6v1qfdOi0pN85c1EyRHDXomwozvT8drkrrX9elVXp2VNaWl/ljxx3yPWVR9J2lLNQtZjvcjMW+cMO2vTSoFzu1bFz8VVBKam4Nim3LkpOYra4MZQ366y0zs/cOfhjOrek3PPDlWkdPerKH7vyp0EpKTtBH3DlDlfSPzcu23P9/6ENb+t2+Odc7A55VYbCMtm5D63s9Kp0R8vYvO6lyUVti39eGg7Dbde5kXNgi7Eed+xo92K1y8Vq3lWiPT89Srlr5Hb/ujkYurusjNXxrq1H3HTe+5ING7pQknT4uHs/93vbGArKw0EpiaG7Zzv/pLEzKL2dsj2YFRty210fN52eBGJPa9IxLrV7Z/KG+JUtS8rlGkzr2LQNA9xi18L+aUJ4LWy7sb9vjwRlXucbDvnrT9vxxbbhDSc8b/x40ublrv3ZCL8pu/a1csSVJcMBdyXv+ZMr7FrYNcy/x7U3KHe5sugPn24nPvYPOyTMVu2l5Vxv0dygylyV1QmHqLeyw+sjOtyZbTqMvQ2L7d9rDu9NxYblDuYd8pZV6qH8cA7PodNlR7M67S7G54THhVg7wmVendbx5LW2NSeV2txrb/fel1a3Aiub2pLy+FzveBv+D9KLfn/49fAGvX+85mJ6dgiuidP+2dtP5geLuoPSm25anOzM3U1DbvaQV2UoWi706ix2HdBi1/kuHsk6qXl7kv6w7P5xzn3k9Dw9r38O711LWf8cxPM8Hc/qLEraNt5W+X60TQ+7/tjOrQ8pu0bpbh1KXsaS5Hxbp3k3z+30prtCKUnD9r+z0vr+vDt9aAz+8dr+v3ZO5v6/3V6V01wZfL7U1JN1MhZbdr68ND1v9s+lS8+vlx/JzqFbws+HrcyqZOfO4Tm03x/G+vNQ8Ll32Xmzv86jQemvxsX6sr6ksSNt7vNw7zx52L3XsRgdauqWJO3rdW9sr2vYLmXs+qXblXsjn/+l/8PdAuL847Z1UsH5tj8dnl/7/ZjtwvODZfO9OvOTAOzoSM637RzcP+dsd+fiWTns6h5J69h0s+t00/P2CPtcpy09/8/6zBb3/ObgJtt4yfdZ7Do3eQ86OrM4Pjx/Xvy1+q95XoWy5BQ4fM87IpVsmvPl2cViNLYvuGWxa+LwUmtuFiMWL21pOVIyPzavxfpOv88Lr0HD0q+fV2csKPPY66l1G0Gd8LVL/vtS+tr996W5ZcxWUNoe/3soNm2HkTG+JgkAMRwdAQAAAAAAAAAAAAAAAAAAAEy/ouJJSzHl+BL5pMnLUj5WYZmfZyz8pWLs5132i0+XYmGb98tlq2artB9oeVmR9gwl2fyG1ncn5aKk3O2lJxt0aQUtg/eAS3fctyzL9NuzLPl19LKR5NfaZZkfpPJMxbFfwlnQhxlT/V/m2Q+yLQuil5hqzDV7d1cyc6dLSTXopUa017HNvQ7LRG6vS5K2jCZZyQ/82P0c3zIc+pnIbdoykluiw2iSpVp+mpeXc45frc4OkWOG/ajZfhU9L3gspb8e7+w45B4eclUOeVUOudUdKXncOe7tuGGWs1iW8TBjRBVZwnM79VjWtVDsV6JW344HbvudB7Jfm3YuKn0/wtKftl/TN81L3p/j870G2XbDX+f7x6fhshROOCXZ8dn6YP/A7wLnsOushlRalswrzYLqZzHJMnt2u3JhyWNJGlqUrGjhYteOWEa18JfcOSMCzHFNX+THoXvesaD78bOVl2V+CftpKeurK5VSWRbUITcyQGkm2NL3IZYBJp227Il+NsihoEyXeSlg0/+n/X8ZKWR28bPfPhksc/vCludlsypkEhweWphW+cELLpUk7V1t56fZeWl4nr2tuV+StGr9QFqnb31yzr1ku9thn0qfnLFERZYV1fWHXV6/3BVmNszLthaOBuQfF8LRgGKZyN30c6uaJEnb2/rSRfZat7oM5DY6kD325/3s2SQj+egj7sDyiLeNR4LSzteLA14lS0tuJ+z+xQkam9/32gmpC4RhN0qXn/nLrtUsc7FLEjbYne2bnStLzxFLs7ok080WOG6X7F+bDQXWEp6rWtz4oxGE8ROL1ZPJXDzRUQPc2/Dc2qZ00UBb6XVydv3cn9axeLZy3xY36tmAt41taeVEmrnYP97aQcxi1O+XceqbE5kOs1kr28/DrGndKqvTubDytV95ptP9JaWUXR+3hNfCfjdS6bo5L4tiNfHsZ2CqdA7vD7zjnueSJqq7Y0hSkMXUvVY7h867Jm7vTsrh+QvtyZnwPoSVh/z052FmNrKwzT7h9bIr/fu/R4MqkQyhYQb9MLNgMt3hVpPMK7p9tBC7b1SpjMzr9HbXYy7W7eiUd7fH9naLCP/aes4E2hGrM9pcOpLASJrJOHtfRtOMx0l5fMS9IXn/g/Sy1++f8z6TwKnLv+ET7vmRCAjvj4b3iLzptvbSLIHtXqbSMIN+mN00WfVoSZ2O57zM3+FnX3mjDkwkE3lsma2vLXgsqW1e0rb2NsvgGoycoMojLsSuQ1rnJi9wdK53gAvf+9gohGWNjo0sgMYU+x+6eTZs5dzyRWGiVItLKcvoaZl+26L7ZOlIGM1+/FTKLJqXDTWWJTz2PP81xNj+758D1JB5tW0kidm2ttJjUTJdmvHUz4Rs003ujTje0lbaHinnEBrLLM3nSkCeslFogRnDLqhi3+Oya2LvHtehoLSqh7OOzK5909HU07L8mtjmPdeV3Nudt8A7T7Z7WeH949j9q7z7T5VGCIl9Xpx3vbugwmN/2pXha0+mw/cleVxyTXzUNSQ8/49dG6T/sti4Y3w+DADcPQAAAAAAAAAAAAAAAAAAAAAw/Yoit0Gd8CXyaZWXrXwi6/Eydm13mZss+4JlRfKzFrrEaaMDSd2frrlAkrR13Zlplb5FScqwPpc6bLmSbOPLXClJPS7t4dK2JIPYkr5kY919Q2mdMNNR+OttKfvVtv2SdMyVoyr/1V2YpTWZTjIl7XFp1nYryULnZ3y07ORp1rTRpDywpTetk2YZf8KVlrxwa1YlzaRm72s0A3k1ZsqRbqa0oxFVE8cTGZkgUsVWE8uUMmaLKsePLRt3h/r0cbP3U9Iw00os43alLDN+podwl4q0tWy0gVh2jHDdsTpBW8e9nix8P+zxSPR9ScrjtoJYWIQJmI7FFvLL1FOb/Z/twO+nJHSZNPe7Ptj63B6vypLSck930kdZBlQpy4rfEWReivWZWpN0SAub3a+k/TO58Nfe/i+6LRuqZVHMyWQ+J4yFan5ZHstEHmZB9bOhuiyo+1cl/XyY3VTK+nDr12Mjjux5yk0PuBlZktjs/2FlmnByt1fJ/p/2/6B/nL0s84CdCEZifvs5STnognwgeIokPZ6kgHpy/TpXnp0uemz1uZKkfvfEVS5lb196oplNL+tLzr2X9yU78BLtTessdiekC59xbba49kcIqSYbqgn790g2iOcWJVkt9rUlB7N93tAC4Tm4H8dhbFtW4y27s+uP45vdgcSyi4elP73f/k+WdfwJr5Jlk/czKuLU4P9PLQW/ZSRxWUe2rc2qxLKSSfI7tJ8picfxleXnipb9NLsGTa4793d1p3X6np/Eau9yF3h2uZxdNpcn3I5lLg6zoOSMIpIbqxaS1t9HMpEX3fT2RcnCWKymMepGC9iqLFZt3tM/cyMJPOwWPOq1Y3NQpvcjBrxKO1xpbxB97+wV3pLMuUUZW+QuqVtaksCx8+WWSLbAcFlJnbH04joR6zvDDImxRL3h8/JG57LX42dctNgO1+2vJ1jWPO5eX/OJX7OfRTGd5967vPe3cuMrPRGzi/XRdo/adXrF/qyKncbaYd9GqfCu3fb0JueTi5e7e8zBKAKS1OlueqfXzYuSbZ++el9apyzuYqNeBteyc7xz6J7wOrlS9jWpvH/2+2UbYCG8Nl7q1VkZLw+ubE2rWP9s59l2Lbzbu+lgy3aPupU/7V60f21s77n9D9K3zL+/wQghs9NJnofl9HXjY6X3X8dz+ozs3nVOHW9RSzgRy8odzhuP1AlVk/k4R3gPvhq5dfPuVWOWiY0c4eYV3cNDkepB5u/hIW90x65kOvwM9pA3HG44KuSReVmf29XlMpaHGU79691Kg1v4sWZ97bygbuyUM290rnC0zAXBfG/eoa7S1zzsZTwte82RbKjHn3PzwtEQpHi2dbeV8mk+V0Il/r4RxHxsX7KMx7H9z44NhyuUUpoN+ciRZN9u7Sj/TodNx66pjfVp9p0QG0UnVjf8TNvqJq+qNBtxPB47Suse8rI+V3qt/msOj1llWYqTtZeWRyKV6JhnJ/u/+9dOwQ3gXSuyRfa1JLses1ujy7Iqdk3c2VX6HasOb6Qe+yzZRtBoaUtiq29ldvGX3uG2U8xYlvBgxPea+nD/2noio2au9Oq46V2nJZVjnxMPpp8Pl5b+NfHw0250vfBewzPettJpi+fY9S+fK1Vy11136dd+7de0cOHC6PIvfvGLmjdvnl796ldPc8sATLamE1cBAAAAAAAAAAAAAAAAAADAqe7Nb36znnrqqYrLBwYG9LnPfW4aW4RTnmUin8o/RM2YL5HfeuutKhQKuu6669J5xWJRN910k5YvX6729nZdccUV+slPflK/RgIAAAAAAAAAAAAAAAAAAJyiCoWCduzYoSeffDL6t3z5cv3gBz+odzMBTIIZMe7o9773Pd1xxx163vOeVzL/ox/9qG677TZt2rRJZ511lj74wQ/qyiuv1ObNm9XZ2VlhbZWc6KcENjRQxfFaT7DeWt5K25b/HFvPnJw6LUHpt9UNr7HfDdcz5Gbv8qpsdeXjruxPitH+bDyvrf3nlZStK5IhPJYu2pPW6XFjrSyWDTG635VDaZ1siJXSYVXa3BBGMTbMkT+U+LAbHsyGJRpSd7rMpve7co8btmTf8cVpnX0DbszupwtJOaDSUpK2u9KGjrH3bMirY8M95Q5LfKxCmTfuYGxZpSHMxiJ1qvmJDEOizWyRIcgOB3Fs5d6siu2ne3uS/X1xzxJJ0kJvx93rxs21eLSy3R/6aPmTkqS2aobcDocl8ob8TYc4smHSYkP+Vhp20J+28F3kyh6vzvJ4ubsri3kbvsiOB/Z4n7I6e5W8V+mxYm+bLZBXKTEUlCUhdzA205nOuKtmW/yc7uTZ/3u3N8/ORVw/OtBTOluSbBQ92+9bkkDY2rImq+P25awfTIbuG44Mz2dD9y1ftTMpewbTOm073YSV3qje6chcB4LSj1WL3/A44I+sa0OV2esJhwiVsvi1sHOvb2R5VmVnxzLX1GSmDU82YCcnkra56QGtkiRt1ZlJudN7737sDiw/dY8fzxal5z0DNiMcK86fx5DdMHa8tP3EH+LdzRvrT8ofuX3xx15ndaYrz3HlmkK6aHBdsi8PrknKh9a8VJK0dOXOtM5yF8BLlZx723n3Uu/YY+fcC09LyvmnlZ53J9NJX98aDDVa+krjw4bmDeNr/an1pf4863N3euMwbt+dxPbxAdfRh9cjkrQlmGePD/nDBz4RLBxIW4jZ5tkTV9myNiltt7fzVH93GXL98frkunfv+uxccU9rMr5mOEymP5Smxery01zMnpbEaM/zs+vm7meTfbgQjGZaMjSo9cOV+mAp64etD84ZhnTMDQ061JUMQe4P7blHpa/Lfz02Hfa9Awf70zrDP3bDVf5Y8VLK4jg9PflvV27xKg24kviF9bmR+xvjc0pnHS2vYvNGjib92GhH0o/595RGXd9mpZ1Tl9RpS6bntbl+x2Irq5LNC9sRi9mRoI4v75q4rcIyvx1zS8vR5tLX50+PqPT98Ouk8466eTnvb/m/h6G74bN9wDo7O4f2Loq3u355vkrLkn07ebB1bnIy3byofN+y6+Wy6+ZlA2mdvgXJuNVt4ZDZ3jDhsq46vEb2p8P+OSYvnu362E4vrB3eNXE67Ybw3nFaUtnvn+0a2Prnn+lsSdIWZdfEW48ndQ782I2Rbn1x7Hx7wJXFZ4MZUnZtTP88e4X3qCPDudvucdiVR4PH3vTo4aTPPbLIlekNMumwO0ZYOeyucf06dg1q17Yd87L2dC1wnzHlfcRi59DVxLMJ73lJWWyH97+8+2CHupJ2h59lHfKOhYfcwc/qhHX9+vbexd7X9N8yEjyWlHXa4f+Q/rrx+f9ou7C0Ds1d8+3OPudNu+PTXNltZfZ58+4lyfM6O+Kf5UrZ57nNdtLr3SPuW5V8sLqwZdgqJ/z+0O4Rh31u7Jo4jOfYR+PhNmL3o+0SONL37l2WxGF4TRy7Ns7uB2QnEYPPBp83P20LvHbY583pZ/PPBqWU3YeOHGcBSaXHbdtPbL/x9yXXzwyvSMpn3Gw/DueWVo32dc5hd793vNedd3dlQW/XkNZvWdnhfd7c6o4ZbS6w7djRHLlwDs/pR70G2bxD6XlC5Dsix5Pp/c8k5fHd3ou2+NsblP53Zp4JyiFb4MdlGL+HInUwu/nxaOexrj8uev3yFjcdxt/crMqwkvuuW1+wpmQ144rFYbIti5H9Hd1pneXrkk5p+dLkfKFgpwvZLevsVCLsl/3+2cI2PI30++dq+uXgc+L9y7Lz/d2us8764+Ti2P+c2KbtmniruxYefGxVtq0fudLuUdv179asSvYdkAFX2smS/5k/58x5XvGKV6hQKKhYLJYtqzQfmLCipv7rVuyyUXX/Evnhw4f1W7/1W/q///f/6oMf/GA6v1gsauPGjbrxxhv1mte8RpJ01113qaenR3fffbfe/va316vJAAAAAAAAAAAAAAAAAAAAp6QvfelLWrduXb2bAWCK1f1L5O94xzv08pe/XC972ctKvkS+bds27dq1Sxs2bEjntbW16fLLL9eDDz54inyJ3P81U14G8rB+mK1JkpelQVL2q4lnvHmWrcB+aWkZSXq9Or2l5WhP8jO3p0/Lfi33dK/7BZz9cuy0ZGOt3Vmmkvb5LkNEa+mv1/0siOEvT2OZyNNsUUeSX5keHvIy2Qy5ekPB64pka07n2S/Ch7w69qu6MJuDn50i/LVd7q9Swv+P/3+qJst4WLean9iQbTwxkZEBplJePNuySHbjQ/1JGSZwmp9VsV+nHp+b/LxzoD15TnNXti9ZjI277WcZR7MMZMMdSWz1rUtSJCxZ4AJhqTKWrcGaGMvWZHFUS9Y1/5fuYRYXO7742aJcFonn+pokSYNt5VkUt1nWxDSLYlKWZGlymZz2PX56MsMyGMcSJFqZZpPwf1Vs05OV1YVfuM5s9v/xf5XcEq/yo57yeWGmoENZAGw9P8mCOrSuOymbknKfl+k3y/Cb7PeWAbWnI2vP0jXJT8kXr0k6vSUHsyBtsV+W2yHH+jw/E3ml+I39stxKOy55P6ofsyT/XQtKXsce78ASvp5Y5pc0jo8nZRqzP1Jms0rnbfaWWWyP7Q5mDHiVbBnxh0r8zCJhCj+XYbe4wqtyhitdxsUW7xy9PyyT4NrTtzKtsmeFmw7OydWbBeuCJckoQJ2tSSBnIwCdOPOLz869w4zkfva3NNOLy+5yyJ2Lj+7ygn5XUG7PFqXnMgOufDp4LMkNaqTyztevZKkyyPQCE56HHSlfts0NCWD7q59xKNg3DzyRXRQ/sjaZ3rIuOX9c3pH0uX3ezp2NGuAykLt9dLE3DMiSRUl/3LkoidH5a0pHB5LKM7vlxaqVWdan8myONkqX9b3+aDzZiD2lGcklrx9+NilHn3Dvmd+vhplNrXzCq5P2uVuChX66G+J4dhuOTIeZ1SQdqjA61/6sis07vLc7WbSy283uTqtYTHS70uLPj4109I6lSZ85b+x4ssA/PbTz4XBkAC9rVNmoXHm3J8JzaSnL3GRdbJjB2Js+uDS5prfRx2KvechlsQpH8fPnje7tshmlZWxe+q/zR/AJsyhyTj17hSOF+Du+u+f90/6kjN3udHEzejjZJ3/8ghdJkoZWL0yr2H5bfi2ZnUv3dTwlycu+ti7prxc+4x17qrm3ZWVelmN7ibERQsLR9lzsPre0Ka2yp630dVjpZ10LR+yye1tbnz0zrTP6YxfHj7gZdm38E689lpHtkL3ovGtjzF5hfxzJeDrkUgoOucf22VN2+8rL+pkEydCSbknSvo6skmU8bk8zHwfZjpV9jhTLgDzqRuXqbkuuiVusX/WzJ4b3qicpE/mYK23kHynrj+0c3LIq+ucb2bIe95zy8/Whg93JxGCLrThj0/uCx0P+CzgUlDlZ5dFg/I7IYtJusLjz5kPnZ1WecH2v7dPhINeSDo8l++Bj693oNYty7gml55fd6TLbd5f1JX3tkr5k51zyjJdCP8x0OpWZyF0oFd1hat+i8tG5LKt4/v3o0s+XtuzO+tzjP3Ebtn41dj/asp4OW9wNBKWUXR9z7oxqWH8cG6W+vXTeXn9o5wrC0b6ksu9JDB9OzsGHl3gjarjpbPSCI64F2f04u8eV9etjruUnHiEzNnKWHY8OH3cjZXrfEUmvZWNZxm366eCxf896wJV2f3DYLk6e9iqFFw6MIoCQfxzfUbGWDrl71I+4Tio2qrs7fbP4+/G65Jp43+ryz4nt3u5gdPTM5Fq4Z1Gy/y5elHTGi9dlJ5YLjyQdclvYL/vHhdiI81JuJvKxyEg9du5g58t7Svrl5UGZ9NPWF/uvza6BRx93sR8bGTO8FvZHCkmvga20/xcjcVXr7LPP1vOe97x6NwOzRVHxEUAx5er6TcsvfelL+uEPf6jvfe97Zct27UrO6Hp6Sk94e3p69OSTT1Zc58jIiEZGsl7t4MGDFesCmJmIY6DxEcdAYyOGgcZHHAONjzgGGh9xDDQ+4hhobMQw0PiIY6DxEcdAY3rf+96n3t7eE1cE0PCaTlxlamzfvl3vfOc79cUvflFz586tWK9QKJQ8LhaLZfN8t956qxYsWJD+9fX1VawLYGYijoHGRxwDjY0YBhofcQw0PuIYaHzEMdD4iGOgsRHDQOMjjoHGRxwDjem9731vWfJfYEoVlQz2MJV/iCoUi8ViPTb8ta99Ta9+9avV3JyNQzc+Pq5CoaCmpiZt3rxZa9as0Q9/+ENdcMEFaZ1XvepV6u7u1l133RVdb+wXbMkJyJ+pdJzYSubkLIslbp8TLIs9P1zWHqnbUmFZu1envUIZmxdphy0Kh92dF6ljw4/YyED+W9cdzAsfx7YRDpsWTkvxIUJt2kZA84dRORyUNnqQPxSajT40klPnaFCG6/Ofb8uiURMO+WiPj0XqhOVYpE44vqtfJ5znbyM84h1TuWrqnOg5tTgq6cM6cOCAurq6Tlg7P44r/+gkU80gC3mxWk2dvNgP58WGF6sU81I2XvWKpFjmHq7zqtgoeucHy9Zl/6cVKwckSf3aJkla5cbn6vPG7LLp5drpNpWUPd6Q84tHkiGO5j3rhvUOhyGUyocIzRvq144v/r/Shjhyu8eYG35wb1c29pEN+xkOO2jDNUnZsEbb3HCD6dC/R7Khjw7/yA39ZMMMPh6U/vQT9nosrge8SjaEWSyOK8VvLFZjMR6uJ3xOXp2YyTgTmu44biQWs/2uXOMtW5sUYRz78bwmmOceL16TDX/W17TdrSaJ0XRIMm/I6aVueokL0m5vTNtONySXlTbMYIfX2TWnQwWX7i/j3rFx3A0zaEMJ2rCmh+QNbeim84Ypy4YgT96YwWDYMkna8zM3LPkWlZaxWLVl/pCEaQDbQns//WG6Z9tVQvVxPLtieDJZvLihCeXfWLHp00vLgncOYD/mXxI8pdtbTXdQxs7Xc4YsToXn3uF5tz9t5ZAr/WG1bQhzOz/whw9NDzEWdzuC0l8W9qsoR19cHYu/flee4cq1WZV2dw5ufbDfdfcH8/qDUlL7iv2SpKVdpX3v4jQQpG4ldTpdAFkf3OEN9WtD/LZVHCM0G+LX+uNh1wcfcX2wPx0OM25DjEvSXndg2fNsct4yOuDtQzZar3WZA8Fjf17Z+bFfyRYyJGhlxHHGOrB+V/qB6Ib6Xeb6SDtPXu9VWV9atq9PYq6/ayCtEl4L97vSrn+l7JrYzqXtWnjhoNcfWWhbVxUO+etPx+5tmRquidPwzcJYe09LOvvwXHpn5Jo4vRZ2wwBvTW8iSNt290uSjv/E3RC0YYB/pIwN/2vn2/vt/fipVykcBni29OHE8Yl1etP9rrQYd/G9xDsHdrN0tivDe11Ser/L7nVZ7PbpqbSKXSdbjIfXyFLWV4fXyP50q/t/tYwn98GaI/E87uJ5pK1VknSkObtPf9i9frs2tmvifelJftZHh0N4+0ORp/F8MCmHf5oMbZ7ez5KyuLV5FpZ+91zWsVt/vUezF3FcWXBfOtY/265sp9dV3ONasC67UOxrtfvRpTHr989hv7zYuwhdEsSx3f9qH8nOszueS+K3EN6rzuufXVlsyxYdmZfk4TrUlsSzxfd+7yLdzr3tvpfFvH/POuu7S2N9+5Es5g9vcW+sxfFWr43WH4fL9vv3hW2hjeQ84MpndWqa7fe4rN+x691+b5mL1U73vpxdOltS+T1qVy5eV34/2vrcZV6MhvemLWYXevejwz43vR89np0zto0k18TW11o57t3HqtTnDnvXxOG1cHr9mx7TyuPQzqVL+t7RZPrA4+4GnX/qW+nzJP9e9bDFW6X70knLIdEX1yq85yxVvNec9uHKTsttVm9Q+tO2utNcucSr0x2WSbA2tWX/k47OZN9ubkmWtbS4z5uaxhUaP57c6xobS8rRo1nnO3zYxfZhNy+8Ly3l34/eG8yzz4z8j4XsPljR4nHAlbF71lZyj6sccVzZ6d50vyuDm83+d+itrw7Pr0vOs5MvKC1dHf9uh5SdO1v/vDjyebFNh/eq7T61lH1O3KLS+LX71JI06m5u2efFeZ8TDym5lq2mXx58NjuHHn3C7VfWB1u3GuufbVlZX+wvnG33r6pRWxwDU+2ee+7RG9/xaeni707thv6pVVu3PK7Vq1dP7XYaTDXftJwSv/RLv6Qf/ehHJfPe/OY3a926dfrTP/1TrV69Wr29vbrvvvvSL5GPjo7q/vvv10c+8pGK621ra1NbW1vF5QBmPuIYaHzEMdDYiGGg8RHHQOMjjoHGRxwDjY84BhobMQw0PuIYaHzEMdCYfvEXf1F9fX0VE/0COHXU7UvknZ2dWr9+fcm8efPmafHixen86667TrfccovWrl2rtWvX6pZbblFHR4fe+MY31qPJVbJf/udlNI9ljbV/haVCmBOpG6YS9P99Vj98vscybdvTwizdseYcjSwLsxTarz39xOj2fPsxWpi0OZyuJMwMEUv0G2aT8Nts84aDuv7bGmYit+f4P6yz55dlID9WYdoXS60+kUzg1dTBzGf/x0oxL5VlBxl0PxH3M4MOBaX9ovrpLLCeXpP8onXn2ckvNwd6kgxkfibyMNNLmOVFkrrbko10L9vvyuSxn8E4/JVqmMlYyrInhpmMpfJsxvbLVD+ri2VzqZStyZ+2LC5pBhc/A1OYuTgsJblEGirPnOr/MrWaDMbVZBuvxmzLltxoLF7CESm8ZYPuF+aDLp3DgFfFkgLaL6dd1X392S/Vbfq/+5MUhz095ZmYLG7tV+R5mcgn+styi+NRucwvVWQit3K39wtzy8C2e3cy7/iAy4I44G3YpsOsqFsjdYq7gxn+NNlQMZ3seL0nKKUsTWAwGknRyyAz6H7pP+jm/ch++e9nmbF5FneR8/68QZJC1kVZ6BdjC8Pjm3+uciiY5x8Dw3n0Z5gOzwblgCu9FCXD/Un5Iyu9UQMs05Jlg1kRlJKGVyTZU57sdWU4eoAkl2BFTQuSvtsyMnV0lGcir9QHS+WZyNM++EiWde3wkDseDLkPYobcgmoyMUlZV/l0UO73WzIQVLbHfion+lrUwvYX24f8m0rWH/YnZTjKnZRl83Z93nBzEnQDfoZFtxqLn5E0S1JeJv9kPUuWZefZi5e5LIoHkzhuOdlM5PY6/M9O3enwmMtIPtSVZB3f66UiT8+h3Xl1bDSfMMPpgMtwZdnHJen4Zrex8Np4wGuPTe8PZ/iZ2RhFBJX4/YH1v7a/uH1or5fd+N9dujXbFy2TmJ8AeU0SQE+fmcx8uj8pf7A2O/dcuqg061osE3mYdc3PRG4ZUtvarH8eLyl9dm8rvDb2p+24YtfIpSOElI7YtfNIEruHB7yUjwOuzLt/ZcnV7Do5vTaODSdC1jVUw2I1Z6Tcvf2lVfI+53GXlAfGspSno2uSDnC4K4mVWPbCsn7Zi589wX2vNMtxm5eJvC3Zz23En2ri2coRr4O2toUjDMQykVs/bbG+27s4qJRhMc2uKGVxHIv1sK8u65+l8hH4/GtznHrsWG47h9/3uulDLkv5910/65/GDQRPd+eF+84svx/92NpzJWX9rJR9nmT3puOjcw1JKr8f3d6cxWpbR2mfG5PFZtLn2mdJRyKZyMM+d2/JsSOJyTTz6e4kHtP70lJ1cWh9b3q5EMt0OpBuFZgc4T1nqXzU80NBKemQ64t+6u4t2z0hPxP5kqC0sDnNq2MjZ7l7XZqfdP7H52YnAYfnuliKjU5fSfjdDClrvl1jxzKR2/TeoJSy763sDpaVnALbjS87MNr76t/j4noXJyN27yT4zsH2M7Iq292NZ7sWthHjSkbPLEiS9vSvLCkfWZF9oLNghbsGbi3NQB7LRJ72y3YdXPJ58YlHrg6vhf3vfRwKzp3D82RJ2rs7mT6+I/h8+GllKo2aOeDVGbYYtf44HJVHOnVH5pke/f396u3tPXFFYLIcF1+PrJO6fYm8Gu9+97s1PDysa6+9Vvv379dFF12kb33rW+rs7DzxkwEAAAAAAAAAAAAAAAAAAFC1v/7rv653EwBMkxn1JfLvfOc7JY8LhYJuuukm3XTTTXVpDwAAAAAAAAAAAAAAAAAAAIApVHmgIkyhGfUl8pnBz4lfzfjvxobymOhbas+3bVo7WiJ1YmPjhvUjY9jbSCZ5o+7Y047m1Ak3aSOT+EEcDlUUC/DmKrZh7Pn+S7bpY0Edv+3hMEj22kcidSqV/rrLDEemj1Uow2m/YYrUOZZTJ3zxMdVsC6XCOLb3MO9YUM37Gnt+pZj3t2/71EBSHFqUVXnYDXW5vbRKych5/Ulx/MfJMEA21O/TK7Kxj9r7k7Evl3aVDvFbOuzgflcOSfKHH8z2fxvyqFU2/GD5+2JDHNnwRv7QoMPBsKVWDnlDg+4NhwQdTYbwPvB0NjSoBgquVLz0p58OHhf9eLaFleI6Ji/WT1S/mvmY+Wycvce9eTYMnu1Tbkiybd4wZdvcPBsusM+V/d5qXJXjvUk8D65YlZS9q9IqP7aRpJYkndz87mzYws6OYNjQ3OHJKp+VZ/FbefjQQ0eS+D085EaO2etifZcyNj3oShvZzR+mbMCVdpxLhyT0Kz0ZzPOHc2R4MsxU1kdGhhitSnieHznvH2sp3VRN7TqWM4/zSTSiZ4NSysa+tPNr73xyr5ve64bxftiVBS/G0j43KLu9Tbjp4/OTvvtwWnp17Jq4XZWFYWjXsv71aji0b1hKWT/6TPBYUnbOG/anfp8bvo8cDzBZbJ/yr5uDPs7Ol2OCe0HDzy1MF/10jbuuXNmdlC4w95UMa59cVy51+32PG144ek3cNSRJ6uhKYsbOraXs/Lol55x63AW9XQvbubWUnU+H18L+NXF6LeyOWbtd2we1PK2z001vdxcVe/7HXVw8XsgaYofAxyuUyUodu8kw4MrYcQHIY/2FXfTZEN4DXh238w266+TBtUn5kNdB9gel27VHV3SlVZ5200/3uvte1r0vy/qsdned3NnlSu9c3O5ptbnOttW7Xg5l8ZzE8ah3jyuN59Gk0z+w1x2X9mZ10n7YQiq8NpYq37/ar0glK3cEpZT/YQAQsnixY3zs8y53Ymqx6p+X2u5moWXnqQe8KkNJTGxdkZR7+5P+bU9rdk/H+ri8e9WdbuXZveryfrktvVdt/XPle9ZhXCcvp/S+V+yedXh+Ed7DlqSdR5L++fDT7sJhQKWlVN7lbvWW2bz9YeUtXqXwOMv5+uwQ9rNSFr/Wgbj7p4Pe/WiL30fc4/6g9KZHT3f9a5/f57q+1l0bty45KEnqXjSU1gk/T4rdj251fW5Lzv3oMReb1tdajB5WNmp52edKz3Ynz9mVtTm9H/10hVIqj01/2SG7KN8SVPLfe+IP08k6W+t8Lfb3eXWsL0r6Ve3vKS2lrKs/zZXdQelPz3Olhd9cr87coMz7ykyl73hI2cuy+1/hPS9/Oiwlr6+092V3UErZfS97r+y9q/U+PVAN2xet/7B+w/9Sh7vvtd3dh97en5T+NXFfadW07M3u9xzoSTrmA8tcB51zz1rzk0Bsne++4zHX+7y4JVnW0pIE59hY0hePj2WBPe7mjQwn/fLx57LPiTXk2jTkHtv9aP/wVM3nxDa9P5wRu3C2uOZe1VR46KGH9IlPfEIPPfSQdu1K/nm9vb265JJL9M53vlOXXHJJnVsIYDLwJXIAAAAAAAAAAAAAAAAAAADoK1/5in7zN39TGzZs0PXXX6/e3l4Vi0Xt3r1b3/rWt3TZZZfpS1/6kl772tfWu6k4VRTFbzLrZJZ9idzfy6bzpdeSqbia7NFhtvFw+gTbCLN6+0+dSAbyYPXRdTdH6oSsbl5ybl+YeTz2a9VK2cXzEizGMpEXFbBfDMaywYfL8tKnT1ZWR46g06+aLOVhXV8tow6Yg+V19raXln6Gkt6gtF+kej8wH16WZHx5stdKt2BJVifMahxmNJbKM5DnZY6IZV2zeZal6dD+5Gfsxw/My55oWZp2VSilyr9WHfTqpFkXLVb3BY+l/JEfQsQv8oRZOy1ztv8Lc8t4GmY+9YK1s7SqlrnSj1VLKtGdxNPhhVmWs8PdrqJlP7VFfl8eO72Q4t1YOLLHYa/OkCv3B4/9X5hbHFpsWhKIkkQPYYaIMKOSlP2ynMxqmE2q6ZsA5LP42ROUkvQjV1rn6zKXFb1RgQbd9KBlNVtUWrdknmP9a6zvrWaUrvD6N3q9atcW1qH6na/Ni2WmCpfRr2I6WTzuzqnj9slta7NZttsOuXJvUErSriTIBs9MRu/Z3Z9kX1vek2XutszjS5U3OleyEcuiGMt4Ws01sWVRtIynR7wDwnCQ4TSW6TTMcGpZ1Hd6mcj37HQXDFvcCf+AW+AnKrVpuySx+wj7j0UqWRkb+QeYiP9/e/cfJVdd34//tSFhE34kFCgJGMBgqYjYU0xQQBRbJR6lPfib+gP8AbYU0ADnVEVsQatEPa1EKkLxeEAqAvWYFvBwKvFX/AFVTyRK5eOvGkykCfkiPxIk5Of9/rFzN3fv3pnM7O6dmffu43HOnrt773vuvGZ2nnN3Zu+83uVjcPH7/EH5o8bQwiwEv2p0T/xVvq5xnN09+UDzmUIO2v0id8sBQxfYsv/QcmNxhpD8+066J+bL4mvi/DCad15+vLSMGN2Jreo9ruEZ81rNFKLbGnXJH3/FLn/lN4Uay8eeuXvI6sbfw483fi4/xovfN+L8xIONjonz5w0PeXDe0PvgBx2YH5d3H+DzDuR5R/J8tsyRMwsMvWFVVyfyzYUOyOXZQ3736NDxettvW3RAfrD0c3FdeRkRkW0qrSzPzBdhxiB2yzOaP06qOp42XvdubrwPfX++LBx78z9VG5uG34+O2H2MbcR228FDj/eNB+x+3G884Iihb9rpXNzqNXGz18LF95F/31g+3liWZ+KKaH7MLT4/bcn/Hq6a2aN8PHbspV+UZxEp/i+5/Pdj/k+kwntWO/L3uMrvdRXewMr/Ls5zXP4/U8Tuf3t3kuuqt7nLWX+ytIwovA+W39ZiHsv/kyt3G48Y3cUduql8nC5+X/pn8I7C/4nXNF4Tr5k7ckzxveZms2YeUBiT53e/xgzyM2c3loUxzV4LV50aVfV/4jxi5eNz1XF51OwBVa93y/8vLubZ3751++AHPxgf+chH4r3vfe+obUuWLIlPfOIT8Q//8A9OIodJYFqvCwAAAAAAAAAAAACg937961/HGWec0XT7q1/96vjf//3fptuhY3kn8jq/qDTFOpGPV1Xr7mbdiIvde8bSqbiqM3m5VXfxkV3+pOSMijGNdfmnM9vpOl5VXrkDedXdkn/ytHzTqx5x7XR1qfq53Hm83AijuK1ZR/LifraWfh7Vfby4sbwsFtCs23hUjG11HeX91PFMVlVb2WR9Bu2kk3hR1QN+PNdf3m9RuS1wVQBKYx4r3J78k5t5g4kDSsuIiD8srSt/MjVid1fjfRvL/RuDqjpGFNc1U85cxOhPlD9e+jlid/eIx5v8HDG6k9NwjotPDO3MGtAsv1VjqpTzO9GmcnZT1+oT5vkB9sDSMiI2N77fnHcWrBiTP5+Vu0FENO/4UszseLqgVnV+ebK8rfi4LXeDqPr0eHmMrhAAdNPm0vKhZgNj9zF8esW6xnJH4zi9uThmRmnZSqvZrLaUtpW6Q44aD/2o+BjN85Y/hvPuYoU/Oh955tDyd42/h8sdPiMi1jWWjWbau5459Efxb+f/0fCQ/Pv95g+9wDxgn8cjIuLgQsfT/RrX+weNF5+zGh3I9ylkLO94On240+noTuR5h9O8I3ne3TRid4fTvDt5dSfyodfij28aWrflt38w+jaXO5yWl8Xv8/tn+G/xqkH572LElEFQk/Kxt/i6OT9+lmYBeazwmvix8uvkik6Lufww3eq9rU66JxYPueVObJXvTZU7IpaXVeu8JqYXqo7Pm0rLwuN2xzOHlr9qtC5+qPF37rrdQ4YPMeVZMw/fPSTvarx+XmN58ILdGw8Yqmm/gx+PiIh99hk6Ls8qzBCSdyAfy/F5W6Gtat6VfHjGkE1Dx+ctj+/uRB6PN56f8r9FyrNpRoyePTPfVrxfhv/8yf+mf7BiY3mWPsdn2tFqFpD/11iWZ9mKiC2N739Vfj86YndwZ41YjPi/Uvn96Py96uJL4mazf1S9fG31f95mHU9HHDrzH1p1My0feytmB4a+V3yslh/T+XGkeLJHnv/SjHzFMTsa6x6bNXI5Yj/59+2cHNLqHIinSuvyHBYDvbnFtvL7B/6GJiXl18TFaeWavCbeUpj9Zl1j3bpynouzZ+bbSlkdKHzfzv+LWx4Wy9msOq6WZ9Isz5RZvDy99KxnPSv+8z//M973vvdVbl++fHn80R/9UeU2IC1OIgcAAAAAAAAAAAAgrrzyynjjG98YK1eujMWLF8chhxwSAwMD8fDDD8dXv/rV+PrXvx7//u//3usymUyyqK9XJy05iRwAAAAAAAAAAACAOOOMM+J73/teXHXVVfGpT30qHn744ciyLObNmxcnn3xyfO9734sTTjih12UCE8BJ5C3lH21oZ2rpXD5vR6u7tuojE+XrqBpTnhOknel/qsY0phPKp9J8umJIuYxZFdvyq6qa4rN8N1SV0c40KOXZBXdUfL+9NLZqVu98W9U0Z+VpRyunXmk2Lfj2ijHlqZd2tDGm04/RtBpf3jYVp1hrJ4d1XWe7yrVtr9hW9Rgqj8mfO6qm85kx8uL5bECPF4bkM/bluytP3Vu1rmpMnud2ni7LmY1oPhXhk4Ux+U3cWvq5uJ8sSsqZK16wvK04pnzft3pOrrr8nsZWaed5n8ktf2yWp6gtKk8TWJg+N5+ObHNj2+bi9GTly00v/VzUzt8k5YPmlopt5enKqqYpKx9XASBFVccxU8vD+OVT2Janv40YfjGbPWNoueaZQ8sHC38D57P+zm8sG0Pj8MJu5g4tnjz04KHlwUPL3x5UmIb1D4deaE7bd2ha7f3/YCjfg3tvGx6ydwx9v1fj7+Ppo97QitjReOG8s/G3+LbYe3jbU0/tM7Rs/C2/64l9hzY8UtjBI6XlhtIyIuK3jeW6xjJ/SbG+WEl+Pz5YGvTbijFek9Iv8sfio6VllfLr3eLr3sb3W/Jl8fVv/n35PbdWyu/xRkQ81Vi287rZa2FSVH5Pp+L4nB9gtzQOvr+av3vI/zbyNy9GLg8q7ObQxvLgxvKAwrYDhjL65AGNY/d+jfX7Fcbk71sPNpbleBeV37bdWthWfo86Xz5eGJN/Xz5O/3+FMfndkh+P8/fps+JzQH4czo/LDxe2bWws8/fWHJ+ZKJ0cX4vH0/1Hrtsye+RyxPhm70tHtA5nucbyMbfT96PzdeXnMJhK8vwU37Mqv39V9bdws/8rFcd08jd0rupv6WbnUBQzW/U8AJNdJ8fsXNWxt5zfxraskN22/tRsdb5TOaNVWSclixYtiptvvrnXZTBVZDH6XFG6YlqvCwAAAAAAAAAAAAAAoHumcCfy8XQqLn5CKr98q67l5Q6eVdfZTifq8uVadSduZz+NWoude/POCp10IK+66eUO5FVdxztp5pKr+rRJ+YNsO9vYVuxEnn/ftINxcUftfOq1VXfi8u+s1Zh2PpE31k/rddr5fKopPz8U769mHXo7+WR18Tra2daqRUre3WifFvstZb2YkfwhnGe9/BxQXFcuo9MZBlrNLFBe16pbeXnbqOwWB1VNMdBstoCqMc0Kmwg+bctYlLuVtfNJ86JW3SDa+Rui2XHM4xkAgLqUZ+yJ2P13cL7uN0OLvDN5RMS6QxrLRvfT/HXvvN1Dhrue5h1PD2gsDy6MOWAgIiJ27TfUHfyJxnJEx9Py7Fzj7XT6eGlZ/L7cibzYrTzvcLojv5KqbqbldbqOM9mUOyyaHQTqUe6GWPw+75ydH3N+tXtI1uhSvr5xnF6fH4wL/4z6g8bygNKy+H25A/m+hTHlpoutZtEsv9dc9b+jZh3JI0Yfs/Pj8oinnvxvmYdLy6ou7vk6z130m6rO3+PVyf/o/a0K3VH1P1MdvyFNZs8EEpSFP/17RCdyAAAAAAAAAAAAAIApZAp3IgcAAAAAAAAAAAAAeqYbncizmvefKCeR16b4iG52N29vsr6oeNlySqr2W56SpJ1fcWEOvzwo+VVtKf0cETGzsczLr5qqt51pAsc7S1l5msGq2ZWebrKtOCXhqCeHfMdV0zQ91eLKtpeWrcaM5Rmv1eOlatt4n1WnyvwQxfuu6oHaTH7/tJqjuhPF6y7/Pqv2V77eqsfArNLPjesoPubLWa/Kc56xvWKkVndXq6euXLHknaVtrfLc8oCe77T85PVUYUz5RpezWxzTLNftbpvoHLVz3IBWqsIFAACpyV/PPdRYPtxYPlgYc+DI5Za5Q8s1B+4esqaxLn/9nL+MPqCwm30by/0by/0ay8HCmPJr6VZvFZRfbkZE/L6xzF/35rMLP14Yk38//Kf8psby4cKgRxvLjY3l70rrizsHgLo8WloWD4yzG8v8wHpQY1k4Pj/W2PbYgaXLlL+P3cfumYV1e5W2tfO/qPJbxhG737PeXBozwqbSsnzbizv4XennTYUx3qtjKvK4BwAACrJwWlSPTOt1AQAAAAAAAAAAAAAAdI9O5G0pt9wuKncjbjW2/FGJTtofVCl3Ha+6XKsxVdcxq3pTsUvw9tLQqi7F5ZvfqhNTO6ruhnLnpnJH8qoxLT/U3qyDccToDuTlDsZVlxtvd+NWxfp0fnvamRGgncsXL9ss42PtaF51+bJ2Zh1opXz5ivrKWW8nz+Xu4e1qJ8+54nU07UDeKofl7BbHj3fWgE66jbca207n+U54fgAAAKaa/HVQsevno6UxecfT2c3XbcmX+xfG5ONnNVlGjO19gOLr+vJ7Unln0mLX8PK6cufT4rZO3jMAgLoV368sd+r+TWNZPK7m3+9fsW2fkeu2lJYRsfsN7KppN/dUY9X/c7Y0WUbsfv+5fAwujnFcBgAAgD3KYuznojEuOpEDAAAAAAAAAAAAAEwhOpEDAAAAAAAAAAAAAN2XxcjJzOgaJ5EPP/LqvCuaXcdEPuqb7as4hV+zKfOqLlua7i+rGP5kY7nXyKEjLl6+yXvF+BSnLCiX3Wq2wZby+yW/YH6hpwpjytMWlsdWFVB15dvbGNPsMu1ua7bPVvvZ02VprtVzyETdn63202oqzPx3nk/xmY8t7q9J1qse2gONZVWOO5m5u+qhmGc7q9jWdAetQv9UizHl+6Gcy6ptVftpVle74zsxUfsBAACYqjaXllXy18jF99NmlNaVXkc3XddM1XtC+bry69UtFWO8dwPAZLSl4vtHW4wvvx8/1uNyWTvv8ToWAwAAAJOHk8gBAAAAAAAAAAAAgO7TibxnnETekbzbQFX3gnI34mJnghmlMeX1VdfRqXZ+lXnHpKpuxM32l4+ZNXpIuWPxztFDKruUt3uVVSa8g3HE6O7i5e5PxfHly7fqCDXWbuO6W9SjnVkHmmW8qnN3q+eDdrZ1op18t+pInnflrnouKme7RVirupRHi3UTotPu4M0y2s5+qrrAddKtvJVWMxO0GtMJzxEAAADjk7+uatWtHADovWZT1QIAAADQCSeRAwAAAAAAAAAAAADdl8XY+y8zLk4iH9ZOl+KJVvWoL19/u90TWnUh3tN1FJU7KFd12s23TR/5c1Un8KoGv7mBVjVG8312pJ3u4E+1MabcnbzqfhlLl+R2upWPt4OxZ9fuaNWtPCq2lbX6PXXSRaWqg347z2utpgIoZb1WrfJTrq2c3VaXbzWmnW7lnWZV7gAAAAAAAAAAAOhfTiIHAAAAAAAAAAAAALovi4idvS5iaprW6wIAAAAAAAAAAAAAAOgencjHZHvh+xmlbTsay+Jdu700tmpM+fLN9l++/rItpf3M6mBssaZ8Xbn24rby2KrbU1V/Q9aitI7kNZZrLipv216xbUtpW/F+aXYd7Yypuq6qy5f30+76iVBVx1RW9bjPlR/v7WSk6vJlrZ6OJ+p3X5X5cv1bSj9H7K6talt5TDvaedy3ynOrzDfLWHFM+X5oledW932rHJfrKV+m1Zg9je/k8gAAAAAAAAAAAH3OKVA9oRM5AAAAAAAAAAAAAMAUohP5KFVduVtp1bF4T2OrPjrRalu5rk67EzfrHN6qE3nVmHZuRzudi8tjq3TSobeq43A7Y9rpXDyWMa26G5d12p24nTE6GFdr1SV8PKpmKBhrxpvpNKvjGdPOjAtVJirP7XTrrzPPZa32U65rT9uajWk1FgAAAAAAAAAAYBLKYmqeytgHdCIHAAAAAAAAAAAAAGj4zGc+EwsWLIiZM2fGwoUL4zvf+U7TscuXL4/TTjst/vAP/zBmz54dJ510Unz1q18dMebGG2+MgYGBUV9PP/103TelKSeRAwAAAAAAAAAAAADdtysittf81aHbbrstLrroorjsssvivvvuixe/+MXxyle+MtauXVs5/tvf/nacdtppcdddd8WqVaviz/7sz+Iv//Iv47777hsxbvbs2bF+/foRXzNnzuy8wAkyvWfXnIS8P/5Y7qZib/3y5fNH5IyKy5W3terRX9zvGB7lbcn3W3V7dpTGFJVv20TNNVB1XeV1O9rYtr3FunbGtLquVvvZ0/7K+2x3zJ7GM1o7+W6V1bE+PzTbZzd/b63yXHV72nlMjlcnj/uxZKwqq+Uxne6nVa3tbBsP87cAAAAAAAAAAACTxM5eFzDSJz/5yTjnnHPi3HPPjYiIZcuWxVe/+tW49tprY+nSpaPGL1u2bMTPV155Zdx+++1x5513xvHHHz+8fmBgIObNm1dr7Z3QiRwAAAAAAAAAAAAAmLS2bt0amzZtGvG1devWUeO2bdsWq1atisWLF49Yv3jx4rjnnnvauq5du3bF5s2b48ADDxyx/sknn4wjjzwy5s+fH3/xF38xqlN5t+lEPmHG27G4PKZqfxPdebaqrvK6qo7o5c7F5fVV27ZUjOlEJ523x9qJvHyZdjoXt7pcJx3I2+luPJG/f12MO1P8XTTrsl81M0Cr/JR/v3XMLFCurZ1u4+10Iq/j0DGWTuRVl23WMbzVzAIT1YG8nVyZRQAAAAAAAAAAAGCErP6ruO666+Lqq68ese7yyy+PK664YsS6Rx55JHbu3Blz584dsX7u3LmxYcOGtq7rn//5n+P3v/99vPGNbxxed8wxx8SNN94Yz3ve82LTpk3xqU99Kl70ohfFj3/84zj66KPHdqPGyUnkAAAAAAAAAAAAAMCkdd5558U//uM/jlg3ODjYdPzAwMCIn7MsG7Wuyi233BJXXHFF3H777XHIIYcMrz/xxBPjxBNPHP75RS96UTz/+c+Pf/mXfxl1cnu3OIkcAAAAAAAAAAAAAJi0BgcHY/bs2Xscd/DBB8dee+01quv4xo0bR3UnL7vtttvinHPOiS996Uvx8pe/vOXYadOmxQknnBC//OUv91x8TZxE3pYdjWU7d9f2xnJGG/vZXtg2Ywxjos1te6qjSn69VWObbSvW2k4dnTz8Wu1ve+nnqrHlmlttK++vals7Y6rq6aTWTozlMgwp/g7G85RYtZ+q54NWudmTqhy2U0dZVVbrqrldzTLe6nmlnRy2ylgnzwvtXGercZ08h7XSznMrAAAAAAAAAAAAY7H33nvHwoULY8WKFfGa17xmeP2KFSvijDPOaHq5W265Jd75znfGLbfcEqeffvoeryfLsli9enU873nPm5C6x8JJ5AAAAAAAAAAAAAAAEXHJJZfEWWedFYsWLYqTTjoprr/++li7dm2cd955ERFx6aWXxkMPPRQ33XRTRAydQH722WfHpz71qTjxxBOHu5jPmjUr5syZExERH/rQh+LEE0+Mo48+OjZt2hRXX311rF69Oq655pre3MhwEnmHOulI3ul+yt1/OxnTrmZd0qs6F7eqo9W2qn0204tO5FVjmm2r6g5cV+fiVp2IdTDuL61mG9jTZYqXG+usA+PRTpfx8vqidjLb6n5p5/E63vy0c/l2sjpROZ6o36H8AgAAAAAAAAAAdMOZZ54Zv/vd7+LDH/5wrF+/Po477ri466674sgjj4yIiPXr18fatWuHx//rv/5r7NixIy644IK44IILhte/7W1vixtvvDEiIh5//PH467/+69iwYUPMmTMnjj/++Pj2t78dL3jBC7p624qcRA4AAAAAAAAAAAAA0HD++efH+eefX7ktPzE8961vfWuP+7vqqqviqquumoDKJk5PTyJfunRpLF++PH72s5/FrFmz4uSTT46Pf/zj8exnP3t4TJZl8aEPfSiuv/76eOyxx+KFL3xhXHPNNfHc5z63h5W3o6qrcFlVB/BW3cabjSmOq+pqPBbtdBlvdV3NuuZWdVbvpJ5WxtspuLytk7GdXlerMc3Gtnu5TvbDSJ3MNtCqI3mr/XRj1oF2r7N4vZ2MidLYok5q7fTxP5ZZB9qZPWCir7Nd432eBgAAAAAAAAAAgLGZ1ssrX7lyZVxwwQXx3//937FixYrYsWNHLF68OH7/+98Pj/nEJz4Rn/zkJ+PTn/50/PCHP4x58+bFaaedFps3b+5h5QAAAAAAAAAAAADA+GQx1JCzzi+q9LQT+X/913+N+PmGG26IQw45JFatWhUveclLIsuyWLZsWVx22WXx2te+NiIiPv/5z8fcuXPji1/8YvzN3/xNL8oGAAAAAAAAAAAAAEhWT08iL3viiSciIuLAAw+MiIg1a9bEhg0bYvHixcNjBgcH49RTT4177rmn8iTyrVu3xtatW4d/3rRpUw2V7ih8385dmH+KYUYb+8z3V3WZ4vV2W9VtLn86o1WtzS4zUTUVVV1HeWzVmPK6qv3XNWZP4/d0mU720/+6k+NWynlspVW+W+2nfLlWGWtnTJ2a3caJfIw1ux2trmO8OW7neaGd/bQ7fk+X6WQ//a/3OQbGQ4YhfXIM6ZNjSJ8cQ/rkGNImw5A+OYb0yTEA7cki5fOkUjat1wXksiyLSy65JE455ZQ47rjjIiJiw4YNERExd+7cEWPnzp07vK1s6dKlMWfOnOGvww8/vN7CgQknx5A+OYa0yTCkT44hfXIM6ZNjSJ8cQ9pkGNInx5A+OQaA/tY3J5FfeOGF8ZOf/CRuueWWUdsGBgZG/Jxl2ah1uUsvvTSeeOKJ4a9169bVUu9uO6L9T0Bsjz13oS3vb3vFV3ls1fh2xuyo+NrS+MrHPNX4Kl5/PqbZZbfE6Jq31PDVbN+tbk+rr/LtmagxRc0eA83Gt7rM5NX9HDczlnxPxO+3rsdi1Zhyxpvlu5zxZnls56vq8nt6LmpV81jvl05+B+WxzZ5nJyLHrfaTjv7JMTAWMgzpk2NInxxD+uQY0ifHkDYZhvTJMaRPjgFoTxadnX82li+qTO91ARER7373u+OOO+6Ib3/72zF//vzh9fPmzYuIoY7khx566PD6jRs3jupOnhscHIzBwcF6CwZqJceQPjmGtMkwpE+OIX1yDOmTY0ifHEPaZBjSJ8eQPjkGgP7W007kWZbFhRdeGMuXL49vfOMbsWDBghHbFyxYEPPmzYsVK1YMr9u2bVusXLkyTj755G6XCwAAAAAAAAAAAABMmCwidtT8RZWediK/4IIL4otf/GLcfvvtsf/++8eGDRsiImLOnDkxa9asGBgYiIsuuiiuvPLKOProo+Poo4+OK6+8MvbZZ59485vf3MvSK+QPsnbu0rw1/owx7q/q8r14kLe6HeX2/61u63ivv5Mxre6ndsa2us7y+E7GtlNPuzzhTbzifTrejJd/P/n+qn7f+eWrng/qnmKjuP928jtR9bSzn/Fmrdn48Wa+Sif3i+wCAAAAAAAAAABTTRb1nw9HlZ6eRH7ttddGRMRLX/rSEetvuOGGePvb3x4REe9973tjy5Ytcf7558djjz0WL3zhC+Puu++O/fffv8vVAgAAAAAAAAAAAACkr6cnkWdZtscxAwMDccUVV8QVV1xRf0ETYiwdySOad/pt1QG51eXH2rm4VVfkZtq5za26LLcylk+XdNJtfKyXq+M62rn8ePZL9030rANVv+exZLZTnTyvTdR1tdKNGQE66VbeyeXHs08AAAAAAAAAAIDJRifyXpnW6wIAAAAAAAAAAAAAAOiennYiBwAAAAAAAAAAAACmqiwidvS6iCnJSeS1KT6g27mb81b8M9rcZ3m/5Vb++X6qgpVfrtft/yc69O3cnlbX2eryzS433uvsZD9j3TcTK7/PO3n6LP5+m2W81XNG1eOjWcZbPS+MVzvPU+PddzvGkuOxZr+dy3eyn073CQAAAAAAAAAAABPPSeQAAAAAAAAAAAAAQA/sit43RZ6anETeFZ10Lm7WUbzVfqv23S+di7upk66+Y+k6PpGXb2c/rehg3Htj6UgeMf5ZB/a0n36efaCVic5NP3Yeb3e/AAAAAAAAAAAAUC8nkQMAAAAAAAAAAAAAPVJ3c86s5v2nyUnkXTWWzsXFTrcT1bm4vL9W4Wung3E7++mmTrsDT1TH4bo6F3eyf7qvVefvVsYy60A7ua7a53gz3sn+xqqurt4Tld1O9jfe6wAAAAAAAAAAAIB6OYkcAAAAAAAAAAAAAOiBXTG+Br2M1bReFwAAAAAAAAAAAAAAQPfoRN4TOxrLTu/+8ictZrRxHUXl66v65EZ5n1X7Ke+vnz8B0qr+sk5uR137Het10F/GkvHi46RZttvJdbN9NttvO4+zXmR9rI//dmrsRn7Hcl0AAAAAAAAAAABTTRbOs+oNncgBAAAAAAAAAAAAAKYQnch7qvjJibH8KtrpXNzs+ppdZ7Ouu2PtYNxKO7d5oj9d0o2u4DoXk+vVrAO5dmYfKKsj6xNlLNmqs6N5HdcLAAAAAAAAAAAwlWQx/vO1GAudyAEAAAAAAAAAAAAAphCdyAEAAAAAAAAAAACAHsgiYkevi5iSnETeN8oB6PRXU27lP2MM19nqejudKmCs1z8e453OYCz1TNQUCp4AJ7fi73csT7tVj7OxZKyd6x7rY7qdesZ7Hc2MNz+9eO4AAAAAAAAAAABg6CTyiT6njHZM63UBAAAAAAAAAAAAAAB0j07kfSvvbDvWX9FEdS6uUmc347r1umNxTufiqWu8sw7kJmr2gbKJfM6ZaBOVGzkGAAAAAAAAAADoD1k4F6s3dCIHAAAAAAAAAAAAAJhCdCLve1WfrpjoTsHtdDAu6uQTH914iNX1CZQ6Oiv7tAxlE5XxVo/XTjI+WR6jE53fyXK/AAAAAAAAAAAA9JMs6jlfkz3RiRwAAAAAAAAAAAAAYArRiRwAAAAAAAAAAAAA6IEsInb0uogpyUnkSaoKy3h+la2mAZgxjv1GpBHsuqZBSOG205/Kj53xPlXXmfFeqnMKE/kFAAAAAAAAAABg8nISOQAAAAAAAAAAAADQA1nU21CUZpxEPmlMdOfiXDvB7LdOxr16MtG5mLpM9OwDRWPJSx2Z7+UfAbILAAAAAAAAAADA1OIkcgAAAAAAAAAAAACgB7rRiTyref9pmtbrAgAAAAAAAAAAAAAA6B6dyCetHRXr6vp11/0JkH5Udf9CN5Ufg918Ok898/ILAAAAAAAAAADQH7JwTldv6EQOAAAAAAAAAAAAADCF6EQ+pTT7pIaHQTWfbCElrR6vUzHj8gsAAAAAAAAAAND/sojY3usipiSdyAEAAAAAAAAAAAAAppCp2J4WAAAAAAAAAAAAAOi5LCJ29LqIKclJ5ETr8E2Fh4gnHya7dh7jKWVdZgEAAAAAAAAAACaHLCK297qIKWlarwsAAAAAAAAAAAAAAKB7Umo9S0900vG3Xx5OuhRD5+QGAAAAAAAAAACAbsvC+Wu9oRM5AAAAAAAAAAAAAMAU0i+to5kUfBIEAAAAAAAAAAAAgHbtiojtvS5iStKJHAAAAAAAAAAAAABgCkniJPLPfOYzsWDBgpg5c2YsXLgwvvOd7/S6JAAAAAAAAAAAAABg3HbU/EWVvj+J/LbbbouLLrooLrvssrjvvvvixS9+cbzyla+MtWvX9ro0AAAAAAAAAAAAAGCS6bQB9sqVK2PhwoUxc+bMOOqoo+K6664bNebLX/5yHHvssTE4OBjHHnts/Md//Edd5bel708i/+QnPxnnnHNOnHvuufGc5zwnli1bFocffnhce+21vS4NAAAAAAAAAAAAABizXRGxveavznTaAHvNmjXxqle9Kl784hfHfffdFx/4wAfiPe95T3z5y18eHnPvvffGmWeeGWeddVb8+Mc/jrPOOive+MY3xve///2O65sofX0S+bZt22LVqlWxePHiEesXL14c99xzT4+qAgAAAAAAAAAAAAAmo04bYF933XVxxBFHxLJly+I5z3lOnHvuufHOd74z/umf/ml4zLJly+K0006LSy+9NI455pi49NJL42Uve1ksW7asS7dqtOk9u+Y2PPLII7Fz586YO3fuiPVz586NDRs2VF5m69atsXXr1uGfN23aVGuNwMSTY0ifHEPaZBjSJ8eQPjmG9MkxpE+OIW0yDOmTY0ifHAPQniwidnThOtqTN8B+//vfP2J9qwbY995776iG2a94xSvic5/7XGzfvj1mzJgR9957b1x88cWjxjiJfA8GBgZG/Jxl2ah1uaVLl8aHPvShii1bK9YB3TGUvyxr74lYjqEfyTGkr/0cyzD0I8diSJ8cQ/rkGNInx5A+73FB2hyLIX1yDOnrLMdQt1mzZkXE+oi4puZrGnrMlz/QNDg4GIODgyPWjaUB9oYNGyrH79ixIx555JE49NBDm45pts9uGMj6+Nlg27Ztsc8++8SXvvSleM1rXjO8fsmSJbF69epYuXLlqMuUP8H20EMPxbHHHtuVeoHW1q1bF/Pnz9/jODmG/iXHkL52cizD0L8ciyF9cgzpk2NInxxD+rzHBWlzLIb0yTGkr90cQ92yLItvfvObsX379lqv5+CDD44777xz1IebLr/88rjiiitGrPu///u/eMYznhH33HNPnHTSScPrP/rRj8a//du/xc9+9rNR+//jP/7jeMc73hGXXnrp8Lrvfe97ccopp8T69etj3rx5sffee8fnP//5eNOb3jQ85uabb45zzjknnn766Qm6pZ3p607ke++9dyxcuDBWrFgx4iTyFStWxBlnnFF5mfKnAvbbb7944IEH4thjj41169bF7Nmza697ImzatCkOP/zwpGqOSLNuNdcvy7LYvHlzHHbYYW2Nl+PeSbHmiDTrTq1mOVZzndTcHZ3kuCrD69atiyzL4ogjjkjqdqf4u1Jzd6RW81Q9Fkek97uKUHO3pFbzVM1xar+nXIp1q7l+cqzmuqVYd2o1y7Ga65RizRHp1e09LjXXSc31m6rH4oj0flcRau6W1GqeqjlO7feUS7FuNdev0xxD3QYGBuLP//zPu3Jdxx13XFxyySUj1pW7kEcMnXC+1157jeoQvnHjxlGdxHPz5s2rHD99+vQ46KCDWo5pts9u6OuTyCMiLrnkkjjrrLNi0aJFcdJJJ8X1118fa9eujfPOO6+ty0+bNi2e8YxnRETE7Nmzk3iiLkqx5og061ZzvebMmTPmy8px96VYc0SadadUsxyruW5qrt9Yczxt2rSYP3/+8LROqd3uCDV3i5rrNZWPxRFp1q3m7kip5qmc4xRrjkizbjXXS47V3A0p1p1SzXKs5rqlWHNEWnV7j0vNdVNzvabysTgizbrV3B0p1TyVc5xizRFp1q3meo0nx5Cy8oebmhlLA+yTTjop7rzzzhHr7r777li0aFHMmDFjeMyKFSvi4osvHjHm5JNPHsvNmRB9fxL5mWeeGb/73e/iwx/+cKxfvz6OO+64uOuuu+LII4/sdWkAAAAAAAAAAAAAwCSypwbYl156aTz00ENx0003RUTEeeedF5/+9KfjkksuiXe9611x7733xuc+97m45ZZbhve5ZMmSeMlLXhIf//jH44wzzojbb789vva1r8V3v/vdntzGiAROIo+IOP/88+P888/vdRkAAAAAAAAAAAAAwCS2pwbY69evj7Vr1w6PX7BgQdx1111x8cUXxzXXXBOHHXZYXH311fG6171ueMzJJ58ct956a3zwgx+Mv//7v49nPetZcdttt8ULX/jCrt++XBInkY/X4OBgXH755W21oe8XKdYckWbdak5DirdZzd2TYt0p1jxeKd5mNXeHmtOR4u1Wc3eoOQ2p3uYU61Zzd6RY83ileJtTrDkizbrVnIYUb7OauyfFulOsebxSvM1q7o4Ua45It+7xSPE2q7k71JyGVG9zinWruTtSrHm8UrzNKdYckWbdagb6SasG2DfeeOOodaeeemr86Ec/arnP17/+9fH6179+IsqbEANZlmW9LgIAAAAAAAAAAAAAgO6Y1usCAAAAAAAAAAAAAADoHieRAwAAAAAAAAAAAABMIU4iBwAAAAAAAAAAAACYQqbESeSf+cxnYsGCBTFz5sxYuHBhfOc73+l1SRERsXTp0jjhhBNi//33j0MOOSRe/epXx89//vMRY7IsiyuuuCIOO+ywmDVrVrz0pS+Nn/70pz2qeLSlS5fGwMBAXHTRRcPr+rXmhx56KN761rfGQQcdFPvss0/86Z/+aaxatWp4e7/VvWPHjvjgBz8YCxYsiFmzZsVRRx0VH/7wh2PXrl19W3Nd+jXDEXLcbXKcLjmuVyo5Ti3DEXJcJMf1kuN6yPBIclwvOa6HHI/UrzmW4e6S43T1a4Yj5Ljb5DhdclyvVHKcWoYj5LhIjuslx/WQ4ZHkuF5yXA85HqlfcyzD3SXHAH0im+RuvfXWbMaMGdlnP/vZ7IEHHsiWLFmS7bvvvtlvfvObXpeWveIVr8huuOGG7H/+53+y1atXZ6effnp2xBFHZE8++eTwmI997GPZ/vvvn335y1/O7r///uzMM8/MDj300GzTpk09rHzID37wg+yZz3xm9id/8ifZkiVLhtf3Y82PPvpoduSRR2Zvf/vbs+9///vZmjVrsq997WvZr371q76t+yMf+Uh20EEHZV/5yleyNWvWZF/60pey/fbbL1u2bFnf1lyHfs5wlslxN8lxuuS4XqnkOMUMZ5kc5+S4XnJcHxneTY7rJcf1kePd+jnHMtw9cpyufs5wlslxN8lxuuS4XqnkOMUMZ5kc5+S4XnJcHxneTY7rJcf1kePd+jnHMtw9cgzQPyb9SeQveMELsvPOO2/EumOOOSZ7//vf36OKmtu4cWMWEdnKlSuzLMuyXbt2ZfPmzcs+9rGPDY95+umnszlz5mTXXXddr8rMsizLNm/enB199NHZihUrslNPPXX4j49+rfl973tfdsoppzTd3o91n3766dk73/nOEete+9rXZm9961uzLOvPmuuQUoazTI7rJMfpkuP6pJTjFDOcZXKck+P6yHG9ZHg3Oa6PHNdLjndLKccyXB85TldKGc4yOa6THKdLjuuTUo5TzHCWyXFOjusjx/WS4d3kuD5yXC853i2lHMtwfeQYoH9M61ED9K7Ytm1brFq1KhYvXjxi/eLFi+Oee+7pUVXNPfHEExERceCBB0ZExJo1a2LDhg0j6h8cHIxTTz215/VfcMEFcfrpp8fLX/7yEev7teY77rgjFi1aFG94wxvikEMOieOPPz4++9nPDm/vx7pPOeWU+PrXvx6/+MUvIiLixz/+cXz3u9+NV73qVX1b80RLLcMRclwnOU6THNcrpRynmOEIOY6Q47rJcb1keIgc10uO6yXHQ1LLsQzXR47TlFqGI+S4TnKcJjmuV0o5TjHDEXIcIcd1k+N6yfAQOa6XHNdLjoeklmMZro8cA/SP6b0uoE6PPPJI7Ny5M+bOnTti/dy5c2PDhg09qqpalmVxySWXxCmnnBLHHXdcRMRwjVX1/+Y3v+l6jblbb701fvSjH8UPf/jDUdv6teZf//rXce2118Yll1wSH/jAB+IHP/hBvOc974nBwcE4++yz+7Lu973vffHEE0/EMcccE3vttVfs3LkzPvrRj8ab3vSmiOjf+3oipZThCDmumxynSY7rk1qOU8xwhBxHyHGd5Lh+MjxEjusjx/WT4yEp5ViG6yXHaUopwxFyXDc5TpMc1ye1HKeY4Qg5jpDjOslx/WR4iBzXR47rJ8dDUsqxDNdLjgH6x6Q+iTw3MDAw4ucsy0at67ULL7wwfvKTn8R3v/vdUdv6qf5169bFkiVL4u67746ZM2c2HddPNUdE7Nq1KxYtWhRXXnllREQcf/zx8dOf/jSuvfbaOPvss4fH9VPdt912W3zhC1+IL37xi/Hc5z43Vq9eHRdddFEcdthh8ba3vW14XD/VXJdUbqMc10uO05bKbZTj+qSY4Qg5LkrlNspxfVLMsQyPlMrtlOP6yHH6UridMlwvOU5bKrdRjuslx2lL5TbKcX1SzHCEHBelchvluD4p5liGR0rldspxfeQ4fSncThmulxwD9I9pvS6gTgcffHDstddeoz6ttnHjxlGf+umld7/73XHHHXfEN7/5zZg/f/7w+nnz5kVE9FX9q1atio0bN8bChQtj+vTpMX369Fi5cmVcffXVMX369OG6+qnmiIhDDz00jj322BHrnvOc58TatWsjoj/v67/7u7+L97///fFXf/VX8bznPS/OOuusuPjii2Pp0qUR0Z81T7RUMhwhx90gx2mS43qkmOMUMxwhxxFyXBc57g4ZHiLH9ZDj7pDjIankWIbrJ8dpSiXDEXLcDXKcJjmuR4o5TjHDEXIcIcd1kePukOEhclwPOe4OOR6SSo5luH5yDNA/JvVJ5HvvvXcsXLgwVqxYMWL9ihUr4uSTT+5RVbtlWRYXXnhhLF++PL7xjW/EggULRmxfsGBBzJs3b0T927Zti5UrV/as/pe97GVx//33x+rVq4e/Fi1aFG95y1ti9erVcdRRR/VdzRERL3rRi+LnP//5iHW/+MUv4sgjj4yI/ryvn3rqqZg2bWRE99prr9i1a1dE9GfNE63fMxwhx90kx2mS43qkmOMUMxwhxxFyXBc57g4ZHiLH9ZDj7pDjIf2eYxnuHjlOU79nOEKOu0mO0yTH9UgxxylmOEKOI+S4LnLcHTI8RI7rIcfdIcdD+j3HMtw9cgzQR7JJ7tZbb81mzJiRfe5zn8seeOCB7KKLLsr23Xff7MEHH+x1adnf/u3fZnPmzMm+9a1vZevXrx/+euqpp4bHfOxjH8vmzJmTLV++PLv//vuzN73pTdmhhx6abdq0qYeVj3TqqadmS5YsGf65H2v+wQ9+kE2fPj376Ec/mv3yl7/Mbr755myfffbJvvCFL/Rt3W9729uyZzzjGdlXvvKVbM2aNdny5cuzgw8+OHvve9/btzXXoZ8znGVy3E1ynC457o5+z3GKGc4yOc7JcXfI8cST4d3kuDvkeOLJ8W79nGMZ7h45Tlc/ZzjL5Lib5Dhdctwd/Z7jFDOcZXKck+PukOOJJ8O7yXF3yPHEk+Pd+jnHMtw9cgzQPyb9SeRZlmXXXHNNduSRR2Z777139vznPz9buXJlr0vKsizLIqLy64Ybbhges2vXruzyyy/P5s2blw0ODmYveclLsvvvv793RVco//HRrzXfeeed2XHHHZcNDg5mxxxzTHb99deP2N5vdW/atClbsmRJdsQRR2QzZ87MjjrqqOyyyy7Ltm7d2rc116VfM5xlctxtcpwuOa5fCjlOLcNZJsdFclw/OZ54MjySHNdPjieeHI/UrzmW4e6S43T1a4azTI67TY7TJcf1SyHHqWU4y+S4SI7rJ8cTT4ZHkuP6yfHEk+OR+jXHMtxdcgzQHwayLMvG280cAAAAAAAAAAAAAIA0TOt1AQAAAAAAAAAAAAAAdI+TyAEAAAAAAAAAAAAAphAnkQMAAAAAAAAAAAAATCFOIgcAAAAAAAAAAAAAmEKcRA4AAAAAAAAAAAAAMIU4iRwAAAAAAAAAAAAAYApxEjkAAAAAAAAAAAAAwBTiJHIAAAAAAAAAAAAAgCnESeQAAAAAAAAAAAAAAFOIk8gBAAAAAAAAAAAAAKYQJ5EDAAAAAAAAAAAAAEwhTiKnL910001x0EEHxdatW0esf93rXhdnn312j6oCOiHHkD45hvTJMaRPjiFtMgzpk2NInxxD+uQY0ifHkDYZBpi8nEROX3rDG94QO3fujDvuuGN43SOPPBJf+cpX4h3veEcPKwPaJceQPjmG9MkxpE+OIW0yDOmTY0ifHEP65BjSJ8eQNhkGmLycRE5fmjVrVrz5zW+OG264YXjdzTffHPPnz4+XvvSlvSsMaJscQ/rkGNInx5A+OYa0yTCkT44hfXIM6ZNjSJ8cQ9pkGGDychI5fetd73pX3H333fHQQw9FRMQNN9wQb3/722NgYKDHlQHtkmNInxxD+uQY0ifHkDYZhvTJMaRPjiF9cgzpk2NImwwDTE4DWZZlvS4Cmlm4cGG8/vWvj1e84hVxwgknxIMPPhiHH354r8sCOiDHkD45hvTJMaRPjiFtMgzpk2NInxxD+uQY0ifHkDYZBph8pve6AGjl3HPPjauuuioeeuihePnLX+4PD0iQHEP65BjSJ8eQPjmGtMkwpE+OIX1yDOmTY0ifHEPaZBhg8tGJnL62adOmOPTQQ2PHjh1x0003xZlnntnrkoAOyTGkT44hfXIM6ZNjSJsMQ/rkGNInx5A+OYb0yTGkTYYBJp9pvS4AWpk9e3a87nWvi/322y9e/epX97ocYAzkGNInx5A+OYb0yTGkTYYhfXIM6ZNjSJ8cQ/rkGNImwwCTj5PI6Xvr16+Pt7zlLTE4ONjrUoAxkmNInxxD+uQY0ifHkDYZhvTJMaRPjiF9cgzpk2NImwwDTC4DWZZlvS4Cqjz66KNx9913x1ve8pZ44IEH4tnPfnavSwI6JMeQPjmG9MkxpE+OIW0yDOmTY0ifHEP65BjSJ8eQNhkGmJym97oAaOb5z39+PPbYY/Hxj3/cHx6QKDmG9MkxpE+OIX1yDGmTYUifHEP65BjSJ8eQPjmGtMkwwOSkEzkAAAAAAAAAAAAAwBQyrdcFAAAAAAAAAAAAAADQPU4iBwAAAAAAAAAAAACYQpxEDgAAAAAAAAAAAAAwhTiJHAAAAAAAAAAAAABgCnESOQAAAAAAAAAAAADAFOIkcgAAAAAAAAAAAACAKcRJ5AAAAAAAAAAAAAAAU4iTyAEAAAAAAAAAAAAAphAnkQMAAAAAAAAAAAAATCH/PzDNqeKUQknSAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 3400x600 with 23 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fitCurve = fitAnalyser.eval(fitResult, x=np.arange(100), y=np.arange(100), dask=\"parallelized\").load()\n",
"\n",
"fitCurve.plot.pcolormesh(cmap='jet', vmin=0, vmax=2, col=scanAxis[0], row=scanAxis[1])"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.DataArray &#x27;OD&#x27; (odt_hold_time_4: 11, runs: 2)&gt;\n",
"array([[1081.79635997, 917.52224339],\n",
" [ 0. , 642.32993101],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ]])\n",
"Coordinates:\n",
" * odt_hold_time_4 (odt_hold_time_4) float64 0.1 0.3 0.5 0.7 ... 1.7 1.9 2.1\n",
" * runs (runs) float64 0.0 1.0</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'OD'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>odt_hold_time_4</span>: 11</li><li><span class='xr-has-index'>runs</span>: 2</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-4924b5f1-a84f-4639-9f14-c766cd9475df' class='xr-array-in' type='checkbox' checked><label for='section-4924b5f1-a84f-4639-9f14-c766cd9475df' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>1.082e+03 917.5 0.0 642.3 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0</span></div><div class='xr-array-data'><pre>array([[1081.79635997, 917.52224339],\n",
" [ 0. , 642.32993101],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ]])</pre></div></div></li><li class='xr-section-item'><input id='section-b6db66f4-f019-4b60-b817-33c539f00d5b' class='xr-section-summary-in' type='checkbox' checked><label for='section-b6db66f4-f019-4b60-b817-33c539f00d5b' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>odt_hold_time_4</span></div><div class='xr-var-dims'>(odt_hold_time_4)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.1 0.3 0.5 0.7 ... 1.5 1.7 1.9 2.1</div><input id='attrs-a93c09f5-d6ae-41eb-b41d-b862f4cc907e' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a93c09f5-d6ae-41eb-b41d-b862f4cc907e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-02a4ee37-83d8-47b1-b535-4ab68e398767' class='xr-var-data-in' type='checkbox'><label for='data-02a4ee37-83d8-47b1-b535-4ab68e398767' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>runs</span></div><div class='xr-var-dims'>(runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0 1.0</div><input id='attrs-6e931ca9-70f7-40b9-90d4-a5bd53e2c84b' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6e931ca9-70f7-40b9-90d4-a5bd53e2c84b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4da1c7d7-fb8b-4b40-995e-be37cc1e3918' class='xr-var-data-in' type='checkbox'><label for='data-4da1c7d7-fb8b-4b40-995e-be37cc1e3918' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0., 1.])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-53772ea8-4589-48cc-a655-6d167aae7396' class='xr-section-summary-in' type='checkbox' ><label for='section-53772ea8-4589-48cc-a655-6d167aae7396' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>odt_hold_time_4</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-f8d56961-2b1e-40ac-a36f-bde7f2151590' class='xr-index-data-in' type='checkbox'/><label for='index-f8d56961-2b1e-40ac-a36f-bde7f2151590' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1], dtype=&#x27;float64&#x27;, name=&#x27;odt_hold_time_4&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>runs</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-f51daf65-7029-4136-9560-011ac03b573e' class='xr-index-data-in' type='checkbox'/><label for='index-f51daf65-7029-4136-9560-011ac03b573e' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.0, 1.0], dtype=&#x27;float64&#x27;, name=&#x27;runs&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-84443327-f0ac-4677-a595-45749cf22e63' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-84443327-f0ac-4677-a595-45749cf22e63' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.DataArray 'OD' (odt_hold_time_4: 11, runs: 2)>\n",
"array([[1081.79635997, 917.52224339],\n",
" [ 0. , 642.32993101],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ]])\n",
"Coordinates:\n",
" * odt_hold_time_4 (odt_hold_time_4) float64 0.1 0.3 0.5 0.7 ... 1.7 1.9 2.1\n",
" * runs (runs) float64 0.0 1.0"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fitModel2 = Polylog22dModel(prefix='thermal_')\n",
"fitAnalyser2 = FitAnalyser(fitModel2, fitDim=2)\n",
"fitCurve2 = fitAnalyser2.eval(fitResult, x=np.arange(200), y=np.arange(200), dask=\"parallelized\").load()\n",
"fitCurve2.sum(dim=['x', 'y'])"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\data\\AppData\\Roaming\\Python\\Python39\\site-packages\\numpy\\lib\\function_base.py:2246: RuntimeWarning: invalid value encountered in _get_fit_full_result_single (vectorized)\n",
" outputs = ufunc(*inputs)\n"
]
}
],
"source": [
"value = fitAnalyser.get_fit_full_result(fitResult)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: (odt_hold_time_4: 11, runs: 2)\n",
"Coordinates:\n",
" * odt_hold_time_4 (odt_hold_time_4) float64 0.1 0.3 0.5 ... 1.7 1.9 2.1\n",
" * runs (runs) float64 0.0 1.0\n",
"Data variables:\n",
" BEC_amplitude (odt_hold_time_4, runs) object (2.5887280763470244+/...\n",
" thermal_amplitude (odt_hold_time_4, runs) object 1083.3440773230598+/-...\n",
" BEC_centerx (odt_hold_time_4, runs) object 43.30005082229525+/-n...\n",
" BEC_centery (odt_hold_time_4, runs) object 49.62090849228923+/-n...\n",
" thermal_centerx (odt_hold_time_4, runs) object 43.878855163885156+/-...\n",
" thermal_centery (odt_hold_time_4, runs) object 48.78771309646883+/-n...\n",
" BEC_sigmax (odt_hold_time_4, runs) object 4.603910530224281+/-n...\n",
" BEC_sigmay (odt_hold_time_4, runs) object 5.170438723671074+/-n...\n",
" thermal_sigmax (odt_hold_time_4, runs) object 13.533799535681206+/-...\n",
" thermal_sigmay (odt_hold_time_4, runs) object 16.240559439120037+/-...\n",
" thermalAspectRatio (odt_hold_time_4, runs) object 1.1999999997268018+/-...\n",
" condensate_fraction (odt_hold_time_4, runs) object (2.389571448696065+/-...</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-9aac7c41-b914-49cc-967f-37643aa05e8b' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-9aac7c41-b914-49cc-967f-37643aa05e8b' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>odt_hold_time_4</span>: 11</li><li><span class='xr-has-index'>runs</span>: 2</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-4a0df00d-2cae-4dd2-afec-e8c8d280f34d' class='xr-section-summary-in' type='checkbox' checked><label for='section-4a0df00d-2cae-4dd2-afec-e8c8d280f34d' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>odt_hold_time_4</span></div><div class='xr-var-dims'>(odt_hold_time_4)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.1 0.3 0.5 0.7 ... 1.5 1.7 1.9 2.1</div><input id='attrs-d4f17955-8df5-443f-a8a3-c4e02ab85044' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d4f17955-8df5-443f-a8a3-c4e02ab85044' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9a5a2ede-8829-4c99-92bb-db786a1bbb09' class='xr-var-data-in' type='checkbox'><label for='data-9a5a2ede-8829-4c99-92bb-db786a1bbb09' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>runs</span></div><div class='xr-var-dims'>(runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0 1.0</div><input id='attrs-4375fe24-0aee-49a3-bf42-902205677825' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4375fe24-0aee-49a3-bf42-902205677825' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c989a1d7-3283-43d6-8375-819716440f56' class='xr-var-data-in' type='checkbox'><label for='data-c989a1d7-3283-43d6-8375-819716440f56' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0., 1.])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-12cb1b51-8705-4950-ad38-cf980c55684a' class='xr-section-summary-in' type='checkbox' checked><label for='section-12cb1b51-8705-4950-ad38-cf980c55684a' class='xr-section-summary' >Data variables: <span>(12)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>BEC_amplitude</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>(2.5887280763470244+/-nan)e-08 ....</div><input id='attrs-06712ef6-3d94-4b9b-b2ad-42aee82e316a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-06712ef6-3d94-4b9b-b2ad-42aee82e316a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-766b42c1-f45e-49c1-8bcc-c289032a34c6' class='xr-var-data-in' type='checkbox'><label for='data-766b42c1-f45e-49c1-8bcc-c289032a34c6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[2.5887280763470244e-08+/-nan,\n",
" 330.3191146123149+/-3.369741775896686],\n",
" [818.0241456126987+/-nan, 407.5479724699931+/-3.9838381201561566],\n",
" [786.5239297257692+/-nan, 783.196781996065+/-nan],\n",
" [743.7531049561449+/-nan, 766.6455734287413+/-nan],\n",
" [762.5471821213941+/-nan, 752.6346492081383+/-nan],\n",
" [781.8282933590472+/-nan, 733.6948302174906+/-nan],\n",
" [732.7088855555297+/-nan, 696.67059861035+/-nan],\n",
" [756.6239103143953+/-nan, 706.7371707070671+/-nan],\n",
" [719.4959313235112+/-nan, 606.200362434321+/-nan],\n",
" [699.6043254620331+/-nan, 327.5541254003689+/-nan],\n",
" [656.9970424791854+/-nan, 641.50562730806+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_amplitude</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>1083.3440773230598+/-nan ... 0.0...</div><input id='attrs-330495d6-c24f-46c9-b579-9ae530baeb94' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-330495d6-c24f-46c9-b579-9ae530baeb94' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6e3d880a-8cdd-4262-958b-01748e52578c' class='xr-var-data-in' type='checkbox'><label for='data-6e3d880a-8cdd-4262-958b-01748e52578c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[1083.3440773230598+/-nan, 921.1630705757537+/-6.908180021239722],\n",
" [0.0+/-nan, 644.4891215750944+/-6.701415934447466],\n",
" [0.0+/-nan, 0.0+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_centerx</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>43.30005082229525+/-nan ... 44.1...</div><input id='attrs-73c663ba-7ad3-448c-bc6e-5e9b30f0819c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-73c663ba-7ad3-448c-bc6e-5e9b30f0819c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9178389d-711a-417a-9952-aba9a125de96' class='xr-var-data-in' type='checkbox'><label for='data-9178389d-711a-417a-9952-aba9a125de96' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[43.30005082229525+/-nan,\n",
" 46.639416750738654+/-0.02481403969789939],\n",
" [43.848376338724066+/-nan,\n",
" 42.68227442061798+/-0.023904378076890005],\n",
" [44.636976187755764+/-nan, 44.65061354650483+/-nan],\n",
" [42.16021959553298+/-nan, 46.85028917297581+/-nan],\n",
" [44.64695075740388+/-nan, 45.560582010777935+/-nan],\n",
" [43.03521940505446+/-nan, 42.1531922426084+/-nan],\n",
" [42.653729244078015+/-nan, 44.02078149279512+/-nan],\n",
" [42.11790167726749+/-nan, 42.67311853575036+/-nan],\n",
" [44.83966815739852+/-nan, 43.18153200380379+/-nan],\n",
" [43.87102994804314+/-nan, 43.50545048437619+/-nan],\n",
" [42.34964293469418+/-nan, 44.13623568768891+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_centery</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>49.62090849228923+/-nan ... 46.2...</div><input id='attrs-0d797e28-e7f5-4375-82e8-868ad1678c4d' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-0d797e28-e7f5-4375-82e8-868ad1678c4d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-196e5b8d-1944-4a54-884e-1f39fae3f44f' class='xr-var-data-in' type='checkbox'><label for='data-196e5b8d-1944-4a54-884e-1f39fae3f44f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[49.62090849228923+/-nan, 44.63420666306719+/-0.08479274206116942],\n",
" [49.980023208530646+/-nan,\n",
" 48.90286310644981+/-0.08105262745064175],\n",
" [48.63653907666492+/-nan, 47.50489252819764+/-nan],\n",
" [47.95822627861859+/-nan, 49.665511709814226+/-nan],\n",
" [46.64025092496687+/-nan, 46.41326285304787+/-nan],\n",
" [48.050194555038466+/-nan, 47.414050067728795+/-nan],\n",
" [46.498858292012194+/-nan, 48.18302916952895+/-nan],\n",
" [48.25396622497712+/-nan, 49.460989981355006+/-nan],\n",
" [48.14381293146851+/-nan, 44.95354995514117+/-nan],\n",
" [47.8988900451357+/-nan, 47.28159148600039+/-nan],\n",
" [49.40361365289534+/-nan, 46.21170586185637+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_centerx</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>43.878855163885156+/-nan ... 46....</div><input id='attrs-3f4372fc-e223-4b39-aac5-63ea6b7409e6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3f4372fc-e223-4b39-aac5-63ea6b7409e6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a7c9c6bc-4130-42c7-952d-28755cb3ebcc' class='xr-var-data-in' type='checkbox'><label for='data-a7c9c6bc-4130-42c7-952d-28755cb3ebcc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[43.878855163885156+/-nan,\n",
" 48.21785721678167+/-0.11372708523178264],\n",
" [47.083418743209265+/-nan,\n",
" 44.908530778481655+/-0.14652473539888153],\n",
" [46.4204704644393+/-nan, 45.219256341922815+/-nan],\n",
" [45.664192800680524+/-nan, 49.13015405897451+/-nan],\n",
" [46.57928297616949+/-nan, 48.021797313291685+/-nan],\n",
" [45.804742921345+/-nan, 45.216213750320996+/-nan],\n",
" [45.888433981895396+/-nan, 46.243925129183424+/-nan],\n",
" [47.37219695365278+/-nan, 43.868997761766934+/-nan],\n",
" [47.07932512228833+/-nan, 46.61849312668256+/-nan],\n",
" [47.04160127981655+/-nan, 46.539457735053304+/-nan],\n",
" [46.9063863648665+/-nan, 46.62839498709959+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_centery</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>48.78771309646883+/-nan ... 45.8...</div><input id='attrs-495d1825-236d-4b09-af5e-f827c477c1bd' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-495d1825-236d-4b09-af5e-f827c477c1bd' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-aa2d6acc-5530-4816-93a8-5891268dc6db' class='xr-var-data-in' type='checkbox'><label for='data-aa2d6acc-5530-4816-93a8-5891268dc6db' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[48.78771309646883+/-nan, 46.70019438388887+/-0.13474784266512813],\n",
" [50.15145295689747+/-nan, 47.933648886512984+/-0.1818313748768025],\n",
" [47.90134584306616+/-nan, 45.958811701233934+/-nan],\n",
" [48.31500748161067+/-nan, 48.71667514883619+/-nan],\n",
" [47.33388224542202+/-nan, 47.250077258141765+/-nan],\n",
" [47.20492733785264+/-nan, 45.79103389119996+/-nan],\n",
" [46.797403449594114+/-nan, 48.66194291578028+/-nan],\n",
" [48.858405378727056+/-nan, 46.73933219672723+/-nan],\n",
" [46.33012645561285+/-nan, 45.25893119030533+/-nan],\n",
" [49.11597972139846+/-nan, 46.14288400584766+/-nan],\n",
" [48.5847379030555+/-nan, 45.851362234956945+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_sigmax</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>4.603910530224281+/-nan ... 10.7...</div><input id='attrs-a7c9f4ff-d65e-4b56-9e49-213c66733290' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a7c9f4ff-d65e-4b56-9e49-213c66733290' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1972c3f8-2524-48ec-91b1-b821bfec0f05' class='xr-var-data-in' type='checkbox'><label for='data-1972c3f8-2524-48ec-91b1-b821bfec0f05' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[4.603910530224281+/-nan, 8.352649113045219+/-0.05135922760852204],\n",
" [12.869137283829513+/-nan,\n",
" 9.275465120626505+/-0.05031110384700545],\n",
" [11.653403598581653+/-nan, 12.014253999720493+/-nan],\n",
" [11.337947962972816+/-nan, 10.268355381769636+/-nan],\n",
" [12.497772981394547+/-nan, 11.348775895088973+/-nan],\n",
" [12.22304710591207+/-nan, 13.066521177521397+/-nan],\n",
" [11.41957691411171+/-nan, 10.859955180409774+/-nan],\n",
" [12.242691001581354+/-nan, 13.251947044975832+/-nan],\n",
" [11.416923759534004+/-nan, 10.384080677114543+/-nan],\n",
" [10.136653406603052+/-nan, 10.570415495244704+/-nan],\n",
" [10.496509075367303+/-nan, 10.78547616946959+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_sigmay</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>5.170438723671074+/-nan ... 26.8...</div><input id='attrs-c26b1822-faf3-47bf-8856-2b8d901e0f8a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c26b1822-faf3-47bf-8856-2b8d901e0f8a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6799f251-4b6f-4477-a719-5260707b938d' class='xr-var-data-in' type='checkbox'><label for='data-6799f251-4b6f-4477-a719-5260707b938d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[5.170438723671074+/-nan, 24.49629654797614+/-0.1423704022374025],\n",
" [29.588882220244468+/-nan,\n",
" 26.095564300343387+/-0.13421172201262788],\n",
" [27.97557134117523+/-nan, 28.242419712090662+/-nan],\n",
" [28.045938169523964+/-nan, 28.48361656978289+/-nan],\n",
" [28.0764639245163+/-nan, 27.83533144848427+/-nan],\n",
" [28.803147704090247+/-nan, 27.152445717103042+/-nan],\n",
" [28.2491106970502+/-nan, 27.207209464773143+/-nan],\n",
" [28.424564964416394+/-nan, 27.906132928577513+/-nan],\n",
" [27.245792720648637+/-nan, 27.08539895692601+/-nan],\n",
" [28.564362856932362+/-nan, 24.258760472025855+/-nan],\n",
" [27.489249684926634+/-nan, 26.86146149801174+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_sigmax</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>13.533799535681206+/-nan ... 19....</div><input id='attrs-8a7a88d0-9fcc-44bf-80b5-e2b6a8d8c4dc' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8a7a88d0-9fcc-44bf-80b5-e2b6a8d8c4dc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b55b4c2d-8e38-429a-8e9e-d5722432bb79' class='xr-var-data-in' type='checkbox'><label for='data-b55b4c2d-8e38-429a-8e9e-d5722432bb79' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[13.533799535681206+/-nan,\n",
" 22.057116908148686+/-0.18884704218447057],\n",
" [24.92966931091163+/-nan,\n",
" 20.822327664670464+/-0.24630874375159836],\n",
" [21.706258139609965+/-nan, 22.110517694368017+/-nan],\n",
" [21.166487479001695+/-nan, 22.831687033363398+/-nan],\n",
" [23.087169453301087+/-nan, 21.216796714447945+/-nan],\n",
" [25.12748632667367+/-nan, 25.859579965756392+/-nan],\n",
" [22.998792990092884+/-nan, 20.2869507037467+/-nan],\n",
" [20.431350504917173+/-nan, 26.790451793056842+/-nan],\n",
" [24.684318172829713+/-nan, 20.74077356521508+/-nan],\n",
" [20.427277520052307+/-nan, 21.499283167684585+/-nan],\n",
" [18.853214886479396+/-nan, 19.994979623726802+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_sigmay</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>16.240559439120037+/-nan ... 23....</div><input id='attrs-3ac64044-9086-429e-ad54-f7e5efb32b0b' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3ac64044-9086-429e-ad54-f7e5efb32b0b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4379152d-38ef-4fbd-b5b1-4777e7942a1f' class='xr-var-data-in' type='checkbox'><label for='data-4379152d-38ef-4fbd-b5b1-4777e7942a1f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[16.240559439120037+/-nan,\n",
" 22.717828926376836+/-0.18021693674512695],\n",
" [28.98328885126515+/-nan,\n",
" 21.986226693384694+/-0.23913745363300817],\n",
" [23.905505753928075+/-nan, 25.998065232689004+/-nan],\n",
" [24.229551148953487+/-nan, 26.16620726339814+/-nan],\n",
" [27.704603343961303+/-nan, 24.756163594649202+/-nan],\n",
" [30.1529835920084+/-nan, 31.03149595890767+/-nan],\n",
" [27.59855158811146+/-nan, 24.344340844496042+/-nan],\n",
" [24.517620605900607+/-nan, 32.14854215166821+/-nan],\n",
" [29.621181807395654+/-nan, 24.888928278258096+/-nan],\n",
" [24.039855937387976+/-nan, 25.7991398012215+/-nan],\n",
" [22.623857863775275+/-nan, 23.99397554847216+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermalAspectRatio</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>1.1999999997268018+/-nan ... 1.2...</div><input id='attrs-1336a010-aa0c-4382-94c1-e50f8cabba2d' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-1336a010-aa0c-4382-94c1-e50f8cabba2d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-333825cb-049d-46a7-9f37-9e30183c8b78' class='xr-var-data-in' type='checkbox'><label for='data-333825cb-049d-46a7-9f37-9e30183c8b78' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[1.1999999997268018+/-nan,\n",
" 1.0299545956518035+/-0.011056405532581637],\n",
" [1.1626022186575602+/-nan,\n",
" 1.0558966820356512+/-0.015451505492218236],\n",
" [1.1013185967002246+/-nan, 1.175823451628689+/-nan],\n",
" [1.1447128945220844+/-nan, 1.146047912498191+/-nan],\n",
" [1.2+/-nan, 1.1668190975214965+/-nan],\n",
" [1.2+/-nan, 1.2+/-nan],\n",
" [1.2+/-nan, 1.2+/-nan],\n",
" [1.2+/-nan, 1.2+/-nan],\n",
" [1.2+/-nan, 1.2+/-nan],\n",
" [1.1768507043481151+/-nan, 1.2+/-nan],\n",
" [1.2+/-nan, 1.2+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>condensate_fraction</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>(2.389571448696065+/-nan)e-11 .....</div><input id='attrs-c2847abb-415b-4118-921e-0d4ced058b4e' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c2847abb-415b-4118-921e-0d4ced058b4e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3c24cfb5-201e-4fc9-b4a1-b8526e745134' class='xr-var-data-in' type='checkbox'><label for='data-3c24cfb5-201e-4fc9-b4a1-b8526e745134' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[2.3895714486960645e-11+/-nan,\n",
" 0.2639423225690389+/-0.0028205468881768573],\n",
" [1.0+/-nan, 0.38738935611383174+/-0.004067944117027406],\n",
" [1.0+/-nan, 1.0+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan]], dtype=object)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-e826ef88-4db0-4c80-b11a-ef9194959099' class='xr-section-summary-in' type='checkbox' ><label for='section-e826ef88-4db0-4c80-b11a-ef9194959099' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>odt_hold_time_4</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-e59f2ebf-47ad-447e-89ad-a12316d4b69f' class='xr-index-data-in' type='checkbox'/><label for='index-e59f2ebf-47ad-447e-89ad-a12316d4b69f' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1], dtype=&#x27;float64&#x27;, name=&#x27;odt_hold_time_4&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>runs</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-6a0644ff-012b-476f-ac39-b21aab0edb72' class='xr-index-data-in' type='checkbox'/><label for='index-6a0644ff-012b-476f-ac39-b21aab0edb72' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.0, 1.0], dtype=&#x27;float64&#x27;, name=&#x27;runs&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-f376e18b-2fc5-46f0-b5ef-6b84034e2d55' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-f376e18b-2fc5-46f0-b5ef-6b84034e2d55' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (odt_hold_time_4: 11, runs: 2)\n",
"Coordinates:\n",
" * odt_hold_time_4 (odt_hold_time_4) float64 0.1 0.3 0.5 ... 1.7 1.9 2.1\n",
" * runs (runs) float64 0.0 1.0\n",
"Data variables:\n",
" BEC_amplitude (odt_hold_time_4, runs) object (2.5887280763470244+/...\n",
" thermal_amplitude (odt_hold_time_4, runs) object 1083.3440773230598+/-...\n",
" BEC_centerx (odt_hold_time_4, runs) object 43.30005082229525+/-n...\n",
" BEC_centery (odt_hold_time_4, runs) object 49.62090849228923+/-n...\n",
" thermal_centerx (odt_hold_time_4, runs) object 43.878855163885156+/-...\n",
" thermal_centery (odt_hold_time_4, runs) object 48.78771309646883+/-n...\n",
" BEC_sigmax (odt_hold_time_4, runs) object 4.603910530224281+/-n...\n",
" BEC_sigmay (odt_hold_time_4, runs) object 5.170438723671074+/-n...\n",
" thermal_sigmax (odt_hold_time_4, runs) object 13.533799535681206+/-...\n",
" thermal_sigmay (odt_hold_time_4, runs) object 16.240559439120037+/-...\n",
" thermalAspectRatio (odt_hold_time_4, runs) object 1.1999999997268018+/-...\n",
" condensate_fraction (odt_hold_time_4, runs) object (2.389571448696065+/-..."
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"value"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get the result of the fit"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: (odt_hold_time_4: 11, runs: 2)\n",
"Coordinates:\n",
" * odt_hold_time_4 (odt_hold_time_4) float64 0.1 0.3 0.5 ... 1.7 1.9 2.1\n",
" * runs (runs) float64 0.0 1.0\n",
"Data variables:\n",
" BEC_amplitude (odt_hold_time_4, runs) float64 2.589e-08 ... 641.5\n",
" thermal_amplitude (odt_hold_time_4, runs) float64 1.083e+03 921.2 ... 0.0\n",
" BEC_centerx (odt_hold_time_4, runs) float64 43.3 46.64 ... 44.14\n",
" BEC_centery (odt_hold_time_4, runs) float64 49.62 44.63 ... 46.21\n",
" thermal_centerx (odt_hold_time_4, runs) float64 43.88 48.22 ... 46.63\n",
" thermal_centery (odt_hold_time_4, runs) float64 48.79 46.7 ... 45.85\n",
" BEC_sigmax (odt_hold_time_4, runs) float64 4.604 8.353 ... 10.79\n",
" BEC_sigmay (odt_hold_time_4, runs) float64 5.17 24.5 ... 26.86\n",
" thermal_sigmax (odt_hold_time_4, runs) float64 13.53 22.06 ... 19.99\n",
" thermal_sigmay (odt_hold_time_4, runs) float64 16.24 22.72 ... 23.99\n",
" thermalAspectRatio (odt_hold_time_4, runs) float64 1.2 1.03 ... 1.2 1.2\n",
" condensate_fraction (odt_hold_time_4, runs) float64 2.39e-11 0.2639 ... 1.0</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-8ce51918-aad5-40c8-9ca5-54c87dab5cfb' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-8ce51918-aad5-40c8-9ca5-54c87dab5cfb' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>odt_hold_time_4</span>: 11</li><li><span class='xr-has-index'>runs</span>: 2</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-1ec63109-845b-433a-aa27-5f23cf2b32d2' class='xr-section-summary-in' type='checkbox' checked><label for='section-1ec63109-845b-433a-aa27-5f23cf2b32d2' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>odt_hold_time_4</span></div><div class='xr-var-dims'>(odt_hold_time_4)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.1 0.3 0.5 0.7 ... 1.5 1.7 1.9 2.1</div><input id='attrs-b5be8374-f7f1-4501-89ec-627c19f5101a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-b5be8374-f7f1-4501-89ec-627c19f5101a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bcde028a-999a-4066-8feb-8ff0a134f409' class='xr-var-data-in' type='checkbox'><label for='data-bcde028a-999a-4066-8feb-8ff0a134f409' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>runs</span></div><div class='xr-var-dims'>(runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0 1.0</div><input id='attrs-03e68017-e8b9-42a0-8aed-c8c3d4179647' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-03e68017-e8b9-42a0-8aed-c8c3d4179647' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-62675086-16c5-4d9a-97a1-970345c401fe' class='xr-var-data-in' type='checkbox'><label for='data-62675086-16c5-4d9a-97a1-970345c401fe' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0., 1.])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-ae4ff0a8-db56-4a0f-a312-c26167360651' class='xr-section-summary-in' type='checkbox' checked><label for='section-ae4ff0a8-db56-4a0f-a312-c26167360651' class='xr-section-summary' >Data variables: <span>(12)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>BEC_amplitude</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>2.589e-08 330.3 ... 657.0 641.5</div><input id='attrs-8f9a75f0-2fdc-41e1-a663-16609a855be6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8f9a75f0-2fdc-41e1-a663-16609a855be6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8dfb6ba0-b47a-44a7-955f-ccb861f6dfba' class='xr-var-data-in' type='checkbox'><label for='data-8dfb6ba0-b47a-44a7-955f-ccb861f6dfba' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[2.58872808e-08, 3.30319115e+02],\n",
" [4.85991864e+02, 4.07547972e+02],\n",
" [5.41829812e+01, 1.29161843e+01],\n",
" [5.32965114e+00, 1.89817031e+01],\n",
" [7.62547182e+02, 7.52634649e+02],\n",
" [7.81828293e+02, 7.33694830e+02],\n",
" [7.32708886e+02, 6.96670599e+02],\n",
" [7.56623910e+02, 7.06737171e+02],\n",
" [7.19495931e+02, 6.06200362e+02],\n",
" [6.99604325e+02, 1.98902282e+02],\n",
" [6.56997042e+02, 6.41505627e+02]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_amplitude</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1.083e+03 921.2 685.9 ... 0.0 0.0</div><input id='attrs-54f0a207-9b1f-4853-bdbc-a3b44d0b19f4' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-54f0a207-9b1f-4853-bdbc-a3b44d0b19f4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8ccf275a-c7db-470e-8c9d-4613457c1335' class='xr-var-data-in' type='checkbox'><label for='data-8ccf275a-c7db-470e-8c9d-4613457c1335' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[1083.34407732, 921.16307058],\n",
" [ 685.88616347, 644.48912158],\n",
" [ 904.64350522, 900.41641903],\n",
" [ 842.3171615 , 878.05278032],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 0. ],\n",
" [ 0. , 254.40717727],\n",
" [ 0. , 0. ]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_centerx</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>43.3 46.64 43.67 ... 42.35 44.14</div><input id='attrs-2f7b8104-5f82-4d2d-8df8-2d26239c117e' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-2f7b8104-5f82-4d2d-8df8-2d26239c117e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d8bc3e16-e404-4c1d-a5e1-af0a6186873e' class='xr-var-data-in' type='checkbox'><label for='data-d8bc3e16-e404-4c1d-a5e1-af0a6186873e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[43.30005082, 46.63941675],\n",
" [43.67267043, 42.68227442],\n",
" [44.49538663, 44.73007319],\n",
" [42.02375324, 46.76134207],\n",
" [44.64695076, 45.56058201],\n",
" [43.03521941, 42.15319224],\n",
" [42.65372924, 44.02078149],\n",
" [42.11790168, 42.67311854],\n",
" [44.83966816, 43.181532 ],\n",
" [43.87102995, 43.41141356],\n",
" [42.34964293, 44.13623569]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_centery</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>49.62 44.63 49.86 ... 49.4 46.21</div><input id='attrs-add27d3e-944a-4afa-98b7-59531bb5fa16' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-add27d3e-944a-4afa-98b7-59531bb5fa16' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4a5e608d-13ee-4161-bffe-9e8e599d05c9' class='xr-var-data-in' type='checkbox'><label for='data-4a5e608d-13ee-4161-bffe-9e8e599d05c9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[49.62090849, 44.63420666],\n",
" [49.85705296, 48.90286311],\n",
" [48.12462906, 48.29135974],\n",
" [47.89748359, 49.91644058],\n",
" [46.64025092, 46.41326285],\n",
" [48.05019456, 47.41405007],\n",
" [46.49885829, 48.18302917],\n",
" [48.25396622, 49.46098998],\n",
" [48.14381293, 44.95354996],\n",
" [47.89889005, 47.38369685],\n",
" [49.40361365, 46.21170586]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_centerx</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>43.88 48.22 46.04 ... 46.91 46.63</div><input id='attrs-03f49807-0be4-4338-93c7-25393dc73cbe' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-03f49807-0be4-4338-93c7-25393dc73cbe' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e3dfe0ae-2df5-454a-b784-c62bd842fb6b' class='xr-var-data-in' type='checkbox'><label for='data-e3dfe0ae-2df5-454a-b784-c62bd842fb6b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[43.87885516, 48.21785722],\n",
" [46.04360494, 44.90853078],\n",
" [44.81891483, 44.73264934],\n",
" [42.33536249, 46.99425649],\n",
" [46.57928298, 48.02179731],\n",
" [45.80474292, 45.21621375],\n",
" [45.88843398, 46.24392513],\n",
" [47.37219695, 43.86899776],\n",
" [47.07932512, 46.61849313],\n",
" [47.04160128, 45.19703678],\n",
" [46.90638636, 46.62839499]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_centery</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>48.79 46.7 50.11 ... 48.58 45.85</div><input id='attrs-580c244b-916c-4815-8744-129ac3a53f67' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-580c244b-916c-4815-8744-129ac3a53f67' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1b689cc9-2c77-4f81-b7f5-6bc1f357cc4a' class='xr-var-data-in' type='checkbox'><label for='data-1b689cc9-2c77-4f81-b7f5-6bc1f357cc4a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[48.7877131 , 46.70019438],\n",
" [50.11228918, 47.93364889],\n",
" [48.60558591, 47.42479999],\n",
" [48.07852839, 49.52158272],\n",
" [47.33388225, 47.25007726],\n",
" [47.20492734, 45.79103389],\n",
" [46.79740345, 48.66194292],\n",
" [48.85840538, 46.7393322 ],\n",
" [46.33012646, 45.25893119],\n",
" [49.11597972, 46.6231204 ],\n",
" [48.5847379 , 45.85136223]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_sigmax</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>4.604 8.353 9.783 ... 10.5 10.79</div><input id='attrs-edd22b17-c9e7-46d3-8829-ae18d88f0c5a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-edd22b17-c9e7-46d3-8829-ae18d88f0c5a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2c6aa538-de3c-45ee-a1e4-d26589573173' class='xr-var-data-in' type='checkbox'><label for='data-2c6aa538-de3c-45ee-a1e4-d26589573173' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 4.60391053, 8.35264911],\n",
" [ 9.78316062, 9.27546512],\n",
" [ 3.63459544, 2.29632255],\n",
" [ 1.92776218, 2.10852719],\n",
" [12.49777298, 11.3487759 ],\n",
" [12.22304711, 13.06652118],\n",
" [11.41957691, 10.85995518],\n",
" [12.242691 , 13.25194704],\n",
" [11.41692376, 10.38408068],\n",
" [10.13665341, 8.31755421],\n",
" [10.49650908, 10.78547617]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_sigmay</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>5.17 24.5 27.92 ... 27.49 26.86</div><input id='attrs-e74d7445-77dc-481a-9cc5-b692ac38721a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e74d7445-77dc-481a-9cc5-b692ac38721a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b42935a4-8b47-4dea-89c4-42394cc54b02' class='xr-var-data-in' type='checkbox'><label for='data-b42935a4-8b47-4dea-89c4-42394cc54b02' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 5.17043872, 24.49629655],\n",
" [27.91910633, 26.0955643 ],\n",
" [11.28195197, 6.63511505],\n",
" [ 5.66143735, 6.20607996],\n",
" [28.07646392, 27.83533145],\n",
" [28.8031477 , 27.15244572],\n",
" [28.2491107 , 27.20720946],\n",
" [28.42456496, 27.90613293],\n",
" [27.24579272, 27.08539896],\n",
" [28.56436286, 22.28223522],\n",
" [27.48924968, 26.8614615 ]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_sigmax</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>13.53 22.06 21.53 ... 18.85 19.99</div><input id='attrs-41c9d041-341e-41d2-a3df-fdbe5155ab14' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-41c9d041-341e-41d2-a3df-fdbe5155ab14' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-35671589-ab86-4c04-baf0-290a140be547' class='xr-var-data-in' type='checkbox'><label for='data-35671589-ab86-4c04-baf0-290a140be547' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[13.53379954, 22.05711691],\n",
" [21.52672143, 20.82232766],\n",
" [12.35782731, 11.64979579],\n",
" [11.03986395, 11.17134348],\n",
" [23.08716945, 21.21679671],\n",
" [25.12748633, 25.85957997],\n",
" [22.99879299, 20.2869507 ],\n",
" [20.4313505 , 26.79045179],\n",
" [24.68431817, 20.74077357],\n",
" [20.42727752, 16.48271091],\n",
" [18.85321489, 19.99497962]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_sigmay</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>16.24 22.72 22.83 ... 22.62 23.99</div><input id='attrs-accbfd0f-619c-4b56-8615-c8c7dadb34bf' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-accbfd0f-619c-4b56-8615-c8c7dadb34bf' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-967a499c-04a3-4e03-a6f6-ba9e7fc7d0b7' class='xr-var-data-in' type='checkbox'><label for='data-967a499c-04a3-4e03-a6f6-ba9e7fc7d0b7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[16.24055944, 22.71782893],\n",
" [22.82543105, 21.98622669],\n",
" [14.82932114, 13.97973361],\n",
" [13.24783439, 13.4055875 ],\n",
" [27.70460334, 24.75616359],\n",
" [30.15298359, 31.03149596],\n",
" [27.59855159, 24.34434084],\n",
" [24.51762061, 32.14854215],\n",
" [29.62118181, 24.88892828],\n",
" [24.03985594, 19.77925309],\n",
" [22.62385786, 23.99397555]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermalAspectRatio</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1.2 1.03 1.06 1.056 ... 1.2 1.2 1.2</div><input id='attrs-3d01d652-68b1-4ec2-aafb-cfa49200f957' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3d01d652-68b1-4ec2-aafb-cfa49200f957' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bb639d5d-09a2-41a0-a508-ba611ccae709' class='xr-var-data-in' type='checkbox'><label for='data-bb639d5d-09a2-41a0-a508-ba611ccae709' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[1.2 , 1.0299546 ],\n",
" [1.06033012, 1.05589668],\n",
" [1.1999942 , 1.19999817],\n",
" [1.19999979, 1.19999779],\n",
" [1.2 , 1.1668191 ],\n",
" [1.2 , 1.2 ],\n",
" [1.2 , 1.2 ],\n",
" [1.2 , 1.2 ],\n",
" [1.2 , 1.2 ],\n",
" [1.1768507 , 1.2 ],\n",
" [1.2 , 1.2 ]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>condensate_fraction</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>2.39e-11 0.2639 0.4147 ... 1.0 1.0</div><input id='attrs-8763a04b-ccfc-433a-aacb-1ad79fa645c6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8763a04b-ccfc-433a-aacb-1ad79fa645c6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b8e4caa8-2b67-407b-81d3-d72154c6f658' class='xr-var-data-in' type='checkbox'><label for='data-b8e4caa8-2b67-407b-81d3-d72154c6f658' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[2.38957145e-11, 2.63942323e-01],\n",
" [4.14711986e-01, 3.87389356e-01],\n",
" [5.65096834e-02, 1.41418189e-02],\n",
" [6.28758471e-03, 2.11605055e-02],\n",
" [1.00000000e+00, 1.00000000e+00],\n",
" [1.00000000e+00, 1.00000000e+00],\n",
" [1.00000000e+00, 1.00000000e+00],\n",
" [1.00000000e+00, 1.00000000e+00],\n",
" [1.00000000e+00, 1.00000000e+00],\n",
" [1.00000000e+00, 4.38778141e-01],\n",
" [1.00000000e+00, 1.00000000e+00]])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-59913daf-3cb3-48aa-b78f-1c2bf4b6c3d5' class='xr-section-summary-in' type='checkbox' ><label for='section-59913daf-3cb3-48aa-b78f-1c2bf4b6c3d5' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>odt_hold_time_4</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-7a7675ae-5cba-469a-97a1-a08e7feff7dd' class='xr-index-data-in' type='checkbox'/><label for='index-7a7675ae-5cba-469a-97a1-a08e7feff7dd' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1], dtype=&#x27;float64&#x27;, name=&#x27;odt_hold_time_4&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>runs</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-52d65964-421d-4286-a9b0-efb50d356f2f' class='xr-index-data-in' type='checkbox'/><label for='index-52d65964-421d-4286-a9b0-efb50d356f2f' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.0, 1.0], dtype=&#x27;float64&#x27;, name=&#x27;runs&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-37cf692b-3b78-4c08-aeaf-017d722e3e5d' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-37cf692b-3b78-4c08-aeaf-017d722e3e5d' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (odt_hold_time_4: 11, runs: 2)\n",
"Coordinates:\n",
" * odt_hold_time_4 (odt_hold_time_4) float64 0.1 0.3 0.5 ... 1.7 1.9 2.1\n",
" * runs (runs) float64 0.0 1.0\n",
"Data variables:\n",
" BEC_amplitude (odt_hold_time_4, runs) float64 2.589e-08 ... 641.5\n",
" thermal_amplitude (odt_hold_time_4, runs) float64 1.083e+03 921.2 ... 0.0\n",
" BEC_centerx (odt_hold_time_4, runs) float64 43.3 46.64 ... 44.14\n",
" BEC_centery (odt_hold_time_4, runs) float64 49.62 44.63 ... 46.21\n",
" thermal_centerx (odt_hold_time_4, runs) float64 43.88 48.22 ... 46.63\n",
" thermal_centery (odt_hold_time_4, runs) float64 48.79 46.7 ... 45.85\n",
" BEC_sigmax (odt_hold_time_4, runs) float64 4.604 8.353 ... 10.79\n",
" BEC_sigmay (odt_hold_time_4, runs) float64 5.17 24.5 ... 26.86\n",
" thermal_sigmax (odt_hold_time_4, runs) float64 13.53 22.06 ... 19.99\n",
" thermal_sigmay (odt_hold_time_4, runs) float64 16.24 22.72 ... 23.99\n",
" thermalAspectRatio (odt_hold_time_4, runs) float64 1.2 1.03 ... 1.2 1.2\n",
" condensate_fraction (odt_hold_time_4, runs) float64 2.39e-11 0.2639 ... 1.0"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fitAnalyser.get_fit_value(fitResult)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: (odt_hold_time_4: 11, runs: 2)\n",
"Coordinates:\n",
" * odt_hold_time_4 (odt_hold_time_4) float64 0.1 0.3 0.5 ... 1.7 1.9 2.1\n",
" * runs (runs) float64 0.0 1.0\n",
"Data variables:\n",
" BEC_amplitude (odt_hold_time_4, runs) object None 3.37 ... None None\n",
" thermal_amplitude (odt_hold_time_4, runs) object None 6.908 ... None None\n",
" BEC_centerx (odt_hold_time_4, runs) object None 0.02481 ... None\n",
" BEC_centery (odt_hold_time_4, runs) object None 0.08479 ... None\n",
" thermal_centerx (odt_hold_time_4, runs) object None 0.1137 ... None\n",
" thermal_centery (odt_hold_time_4, runs) object None 0.1347 ... None\n",
" BEC_sigmax (odt_hold_time_4, runs) object None 0.05136 ... None\n",
" BEC_sigmay (odt_hold_time_4, runs) object None 0.1424 ... None\n",
" thermal_sigmax (odt_hold_time_4, runs) object None 0.1888 ... None\n",
" thermal_sigmay (odt_hold_time_4, runs) object None ... None\n",
" thermalAspectRatio (odt_hold_time_4, runs) object None 0.01106 ... None\n",
" condensate_fraction (odt_hold_time_4, runs) object None ... None</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-4a24d302-891c-4b55-b33d-b8fa9f1b7b5d' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-4a24d302-891c-4b55-b33d-b8fa9f1b7b5d' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>odt_hold_time_4</span>: 11</li><li><span class='xr-has-index'>runs</span>: 2</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-8b7bdb60-3dc2-4ee6-a4cb-02f2af4d1194' class='xr-section-summary-in' type='checkbox' checked><label for='section-8b7bdb60-3dc2-4ee6-a4cb-02f2af4d1194' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>odt_hold_time_4</span></div><div class='xr-var-dims'>(odt_hold_time_4)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.1 0.3 0.5 0.7 ... 1.5 1.7 1.9 2.1</div><input id='attrs-fed65f17-9009-43d2-a087-fefebf4e0882' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-fed65f17-9009-43d2-a087-fefebf4e0882' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2d908c3f-95c5-4b88-af13-41e88f1f1351' class='xr-var-data-in' type='checkbox'><label for='data-2d908c3f-95c5-4b88-af13-41e88f1f1351' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>runs</span></div><div class='xr-var-dims'>(runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0 1.0</div><input id='attrs-c743ba54-ef51-4638-8959-c11977453d48' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c743ba54-ef51-4638-8959-c11977453d48' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d1584a89-1b27-4802-8811-863c43631318' class='xr-var-data-in' type='checkbox'><label for='data-d1584a89-1b27-4802-8811-863c43631318' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0., 1.])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-935c5226-4577-473a-a6bb-30f6cd26019f' class='xr-section-summary-in' type='checkbox' checked><label for='section-935c5226-4577-473a-a6bb-30f6cd26019f' class='xr-section-summary' >Data variables: <span>(12)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>BEC_amplitude</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>None 3.37 4.406 ... None None None</div><input id='attrs-c06296d0-3246-4499-a797-21ad727caefc' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c06296d0-3246-4499-a797-21ad727caefc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-24547109-dbfe-4e74-bb93-d11a3abe254e' class='xr-var-data-in' type='checkbox'><label for='data-24547109-dbfe-4e74-bb93-d11a3abe254e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[None, 3.369741775896686],\n",
" [4.405566543882409, 3.9838381201561566],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_amplitude</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>None 6.908 7.163 ... None None None</div><input id='attrs-f1707311-2833-42d9-a5af-12b0809982f0' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f1707311-2833-42d9-a5af-12b0809982f0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-fcbb737d-0075-46fa-a883-a16f2a1ed088' class='xr-var-data-in' type='checkbox'><label for='data-fcbb737d-0075-46fa-a883-a16f2a1ed088' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[None, 6.908180021239722],\n",
" [7.1631524860274824, 6.701415934447466],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_centerx</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>None 0.02481 0.02296 ... None None</div><input id='attrs-3bc3e69b-1045-458f-827e-26ab52b3b08c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3bc3e69b-1045-458f-827e-26ab52b3b08c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-749be1bc-2a46-4349-991a-9229ffd81011' class='xr-var-data-in' type='checkbox'><label for='data-749be1bc-2a46-4349-991a-9229ffd81011' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[None, 0.02481403969789939],\n",
" [0.022964344902726534, 0.023904378076890005],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_centery</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>None 0.08479 0.0795 ... None None</div><input id='attrs-d8ec53ca-1619-4fba-bb9c-ab199a752468' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d8ec53ca-1619-4fba-bb9c-ab199a752468' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0a2245d0-5e4f-4632-962a-542654c8203b' class='xr-var-data-in' type='checkbox'><label for='data-0a2245d0-5e4f-4632-962a-542654c8203b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[None, 0.08479274206116942],\n",
" [0.07950492037358668, 0.08105262745064175],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_centerx</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>None 0.1137 0.1506 ... None None</div><input id='attrs-e788ca3c-8ea6-41c1-afb1-6bbe39630bb7' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e788ca3c-8ea6-41c1-afb1-6bbe39630bb7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-92f566ab-3fa2-4c94-ade3-113e026c7245' class='xr-var-data-in' type='checkbox'><label for='data-92f566ab-3fa2-4c94-ade3-113e026c7245' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[None, 0.11372708523178264],\n",
" [0.15063309674050376, 0.14652473539888153],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_centery</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>None 0.1347 0.1894 ... None None</div><input id='attrs-dd0c5a3c-a91b-4466-afd7-5c70c2760ba3' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-dd0c5a3c-a91b-4466-afd7-5c70c2760ba3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f303369d-aba9-4eea-90ad-50c894f07cdc' class='xr-var-data-in' type='checkbox'><label for='data-f303369d-aba9-4eea-90ad-50c894f07cdc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[None, 0.13474784266512813],\n",
" [0.18936637840887163, 0.1818313748768025],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_sigmax</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>None 0.05136 0.04877 ... None None</div><input id='attrs-41ee306e-1965-4463-b473-44bfe3398ab8' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-41ee306e-1965-4463-b473-44bfe3398ab8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3aa58fdc-6d18-441e-ba61-872bea88adeb' class='xr-var-data-in' type='checkbox'><label for='data-3aa58fdc-6d18-441e-ba61-872bea88adeb' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[None, 0.05135922760852204],\n",
" [0.04877051594634713, 0.05031110384700545],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_sigmay</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>None 0.1424 0.1319 ... None None</div><input id='attrs-fc811dc1-8dda-4e60-8305-d6eb3080880a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-fc811dc1-8dda-4e60-8305-d6eb3080880a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-943ccd97-a6f1-4e34-bdff-b78235f19265' class='xr-var-data-in' type='checkbox'><label for='data-943ccd97-a6f1-4e34-bdff-b78235f19265' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[None, 0.1423704022374025],\n",
" [0.13190872611813256, 0.13421172201262788],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_sigmax</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>None 0.1888 0.2553 ... None None</div><input id='attrs-b9c5e85a-16a4-4766-a696-b171e32fa352' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-b9c5e85a-16a4-4766-a696-b171e32fa352' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-24fead53-4fea-4efc-8075-f1c65f65d23c' class='xr-var-data-in' type='checkbox'><label for='data-24fead53-4fea-4efc-8075-f1c65f65d23c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[None, 0.18884704218447057],\n",
" [0.255322105533515, 0.24630874375159836],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_sigmay</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>None 0.18021693674512695 ... None</div><input id='attrs-0b1ab248-63b9-449d-a124-19219eff0cb5' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-0b1ab248-63b9-449d-a124-19219eff0cb5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bdd77e4a-d20a-4d24-b5a9-3f3f224ea91e' class='xr-var-data-in' type='checkbox'><label for='data-bdd77e4a-d20a-4d24-b5a9-3f3f224ea91e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[None, 0.18021693674512695],\n",
" [0.2488363469846332, 0.23913745363300817],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermalAspectRatio</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>None 0.01106 0.01554 ... None None</div><input id='attrs-3dedf3d9-5ad7-44db-9462-c1d8f75d2427' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3dedf3d9-5ad7-44db-9462-c1d8f75d2427' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-32875bdb-be54-4056-97ec-171931b77423' class='xr-var-data-in' type='checkbox'><label for='data-32875bdb-be54-4056-97ec-171931b77423' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[None, 0.011056405532581637],\n",
" [0.015544745441584365, 0.015451505492218236],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>condensate_fraction</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>None 0.0028205468881768573 ... None</div><input id='attrs-68f8ad0f-35fc-4f4c-8dde-5eeda8476872' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-68f8ad0f-35fc-4f4c-8dde-5eeda8476872' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1aed0c7e-8377-4180-b524-58da3a49ebaf' class='xr-var-data-in' type='checkbox'><label for='data-1aed0c7e-8377-4180-b524-58da3a49ebaf' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[None, 0.0028205468881768573],\n",
" [0.004059881769920059, 0.004067944117027406],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None],\n",
" [None, None]], dtype=object)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-d17fc933-4782-4f05-9b93-f88b234a87c2' class='xr-section-summary-in' type='checkbox' ><label for='section-d17fc933-4782-4f05-9b93-f88b234a87c2' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>odt_hold_time_4</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-8f85c754-902a-46ae-901f-85f4a31a393b' class='xr-index-data-in' type='checkbox'/><label for='index-8f85c754-902a-46ae-901f-85f4a31a393b' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1], dtype=&#x27;float64&#x27;, name=&#x27;odt_hold_time_4&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>runs</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-37a69866-255b-45a9-8eec-bff1b605e666' class='xr-index-data-in' type='checkbox'/><label for='index-37a69866-255b-45a9-8eec-bff1b605e666' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.0, 1.0], dtype=&#x27;float64&#x27;, name=&#x27;runs&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-04d5ef27-6e2e-492e-aed1-70cbb7577c5d' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-04d5ef27-6e2e-492e-aed1-70cbb7577c5d' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (odt_hold_time_4: 11, runs: 2)\n",
"Coordinates:\n",
" * odt_hold_time_4 (odt_hold_time_4) float64 0.1 0.3 0.5 ... 1.7 1.9 2.1\n",
" * runs (runs) float64 0.0 1.0\n",
"Data variables:\n",
" BEC_amplitude (odt_hold_time_4, runs) object None 3.37 ... None None\n",
" thermal_amplitude (odt_hold_time_4, runs) object None 6.908 ... None None\n",
" BEC_centerx (odt_hold_time_4, runs) object None 0.02481 ... None\n",
" BEC_centery (odt_hold_time_4, runs) object None 0.08479 ... None\n",
" thermal_centerx (odt_hold_time_4, runs) object None 0.1137 ... None\n",
" thermal_centery (odt_hold_time_4, runs) object None 0.1347 ... None\n",
" BEC_sigmax (odt_hold_time_4, runs) object None 0.05136 ... None\n",
" BEC_sigmay (odt_hold_time_4, runs) object None 0.1424 ... None\n",
" thermal_sigmax (odt_hold_time_4, runs) object None 0.1888 ... None\n",
" thermal_sigmay (odt_hold_time_4, runs) object None ... None\n",
" thermalAspectRatio (odt_hold_time_4, runs) object None 0.01106 ... None\n",
" condensate_fraction (odt_hold_time_4, runs) object None ... None"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fitAnalyser.get_fit_std(fitResult)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: (odt_hold_time_4: 11, runs: 2)\n",
"Coordinates:\n",
" * odt_hold_time_4 (odt_hold_time_4) float64 0.1 0.3 0.5 ... 1.7 1.9 2.1\n",
" * runs (runs) float64 0.0 1.0\n",
"Data variables:\n",
" BEC_amplitude (odt_hold_time_4, runs) object (2.5887280763470244+/...\n",
" thermal_amplitude (odt_hold_time_4, runs) object 1083.3440773230598+/-...\n",
" BEC_centerx (odt_hold_time_4, runs) object 43.30005082229525+/-n...\n",
" BEC_centery (odt_hold_time_4, runs) object 49.62090849228923+/-n...\n",
" thermal_centerx (odt_hold_time_4, runs) object 43.878855163885156+/-...\n",
" thermal_centery (odt_hold_time_4, runs) object 48.78771309646883+/-n...\n",
" BEC_sigmax (odt_hold_time_4, runs) object 4.603910530224281+/-n...\n",
" BEC_sigmay (odt_hold_time_4, runs) object 5.170438723671074+/-n...\n",
" thermal_sigmax (odt_hold_time_4, runs) object 13.533799535681206+/-...\n",
" thermal_sigmay (odt_hold_time_4, runs) object 16.240559439120037+/-...\n",
" thermalAspectRatio (odt_hold_time_4, runs) object 1.1999999997268018+/-...\n",
" condensate_fraction (odt_hold_time_4, runs) object (2.389571448696065+/-...</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-3222f126-7015-4613-bd15-b26f8e3c31fb' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-3222f126-7015-4613-bd15-b26f8e3c31fb' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>odt_hold_time_4</span>: 11</li><li><span class='xr-has-index'>runs</span>: 2</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-70706daa-a5bc-4d06-a035-25b08e68fb8d' class='xr-section-summary-in' type='checkbox' checked><label for='section-70706daa-a5bc-4d06-a035-25b08e68fb8d' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>odt_hold_time_4</span></div><div class='xr-var-dims'>(odt_hold_time_4)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.1 0.3 0.5 0.7 ... 1.5 1.7 1.9 2.1</div><input id='attrs-7bece6d1-b679-4b1d-b529-d8f133bfee4c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-7bece6d1-b679-4b1d-b529-d8f133bfee4c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-fcabea11-b978-455c-8acf-a0a8e6881cf5' class='xr-var-data-in' type='checkbox'><label for='data-fcabea11-b978-455c-8acf-a0a8e6881cf5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>runs</span></div><div class='xr-var-dims'>(runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0 1.0</div><input id='attrs-d688076d-165e-4332-b532-28f6b4438093' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d688076d-165e-4332-b532-28f6b4438093' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6b296814-66de-4202-9ef9-7a27a1be9a90' class='xr-var-data-in' type='checkbox'><label for='data-6b296814-66de-4202-9ef9-7a27a1be9a90' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0., 1.])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-6520953f-80c3-4cf1-aa35-202e608534dc' class='xr-section-summary-in' type='checkbox' checked><label for='section-6520953f-80c3-4cf1-aa35-202e608534dc' class='xr-section-summary' >Data variables: <span>(12)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>BEC_amplitude</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>(2.5887280763470244+/-nan)e-08 ....</div><input id='attrs-22f46653-3434-47b7-99a3-63e9b9ca8c00' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-22f46653-3434-47b7-99a3-63e9b9ca8c00' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-95fd2236-e9e9-4360-a91a-2bcb7b2a0630' class='xr-var-data-in' type='checkbox'><label for='data-95fd2236-e9e9-4360-a91a-2bcb7b2a0630' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[2.5887280763470244e-08+/-nan,\n",
" 330.3191146123149+/-3.369741775896686],\n",
" [485.99186440895227+/-4.405566543882409,\n",
" 407.5479724699931+/-3.9838381201561566],\n",
" [54.18298121481062+/-nan, 12.91618426327025+/-nan],\n",
" [5.329651142234264+/-nan, 18.98170308605742+/-nan],\n",
" [762.5471821213941+/-nan, 752.6346492081383+/-nan],\n",
" [781.8282933590472+/-nan, 733.6948302174906+/-nan],\n",
" [732.7088855555297+/-nan, 696.67059861035+/-nan],\n",
" [756.6239103143953+/-nan, 706.7371707070671+/-nan],\n",
" [719.4959313235112+/-nan, 606.200362434321+/-nan],\n",
" [699.6043254620331+/-nan, 198.90228173317684+/-nan],\n",
" [656.9970424791854+/-nan, 641.50562730806+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_amplitude</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>1083.3440773230598+/-nan ... 0.0...</div><input id='attrs-4d17cf59-49f4-4b4e-9da7-61c3a1e7d2fe' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4d17cf59-49f4-4b4e-9da7-61c3a1e7d2fe' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-781b238b-8524-482a-917a-42499a508122' class='xr-var-data-in' type='checkbox'><label for='data-781b238b-8524-482a-917a-42499a508122' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[1083.3440773230598+/-nan, 921.1630705757537+/-6.908180021239722],\n",
" [685.8861634655618+/-7.1631524860274824,\n",
" 644.4891215750944+/-6.701415934447466],\n",
" [904.6435052246203+/-nan, 900.416419032038+/-nan],\n",
" [842.3171614986505+/-nan, 878.0527803246405+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan],\n",
" [0.0+/-nan, 254.40717727230435+/-nan],\n",
" [0.0+/-nan, 0.0+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_centerx</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>43.30005082229525+/-nan ... 44.1...</div><input id='attrs-a1e92b3a-b08b-43f4-b493-8f5cae2082a8' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a1e92b3a-b08b-43f4-b493-8f5cae2082a8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ba0516c8-4995-443d-b654-793fa75a330f' class='xr-var-data-in' type='checkbox'><label for='data-ba0516c8-4995-443d-b654-793fa75a330f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[43.30005082229525+/-nan,\n",
" 46.639416750738654+/-0.02481403969789939],\n",
" [43.67267042930716+/-0.022964344902726534,\n",
" 42.68227442061798+/-0.023904378076890005],\n",
" [44.49538662724631+/-nan, 44.7300731915568+/-nan],\n",
" [42.02375324206722+/-nan, 46.76134207244452+/-nan],\n",
" [44.64695075740388+/-nan, 45.560582010777935+/-nan],\n",
" [43.03521940505446+/-nan, 42.1531922426084+/-nan],\n",
" [42.653729244078015+/-nan, 44.02078149279512+/-nan],\n",
" [42.11790167726749+/-nan, 42.67311853575036+/-nan],\n",
" [44.83966815739852+/-nan, 43.18153200380379+/-nan],\n",
" [43.87102994804314+/-nan, 43.41141355641146+/-nan],\n",
" [42.34964293469418+/-nan, 44.13623568768891+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_centery</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>49.62090849228923+/-nan ... 46.2...</div><input id='attrs-6f432856-5694-4158-b782-b85c2a81973f' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6f432856-5694-4158-b782-b85c2a81973f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-cfa11cf7-737b-43bf-89fa-3a3e53cb2daa' class='xr-var-data-in' type='checkbox'><label for='data-cfa11cf7-737b-43bf-89fa-3a3e53cb2daa' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[49.62090849228923+/-nan, 44.63420666306719+/-0.08479274206116942],\n",
" [49.85705295725956+/-0.07950492037358668,\n",
" 48.90286310644981+/-0.08105262745064175],\n",
" [48.12462905727586+/-nan, 48.291359740781324+/-nan],\n",
" [47.8974835936954+/-nan, 49.916440575871775+/-nan],\n",
" [46.64025092496687+/-nan, 46.41326285304787+/-nan],\n",
" [48.050194555038466+/-nan, 47.414050067728795+/-nan],\n",
" [46.498858292012194+/-nan, 48.18302916952895+/-nan],\n",
" [48.25396622497712+/-nan, 49.460989981355006+/-nan],\n",
" [48.14381293146851+/-nan, 44.95354995514117+/-nan],\n",
" [47.8988900451357+/-nan, 47.383696846790166+/-nan],\n",
" [49.40361365289534+/-nan, 46.21170586185637+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_centerx</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>43.878855163885156+/-nan ... 46....</div><input id='attrs-c4d113ef-3d7a-4214-a334-48749a96270d' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c4d113ef-3d7a-4214-a334-48749a96270d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f0a6575e-dbae-4062-b7cc-a2e329760f32' class='xr-var-data-in' type='checkbox'><label for='data-f0a6575e-dbae-4062-b7cc-a2e329760f32' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[43.878855163885156+/-nan,\n",
" 48.21785721678167+/-0.11372708523178264],\n",
" [46.04360494406567+/-0.15063309674050376,\n",
" 44.908530778481655+/-0.14652473539888153],\n",
" [44.818914825661366+/-nan, 44.7326493427528+/-nan],\n",
" [42.33536248942856+/-nan, 46.99425648876918+/-nan],\n",
" [46.57928297616949+/-nan, 48.021797313291685+/-nan],\n",
" [45.804742921345+/-nan, 45.216213750320996+/-nan],\n",
" [45.888433981895396+/-nan, 46.243925129183424+/-nan],\n",
" [47.37219695365278+/-nan, 43.868997761766934+/-nan],\n",
" [47.07932512228833+/-nan, 46.61849312668256+/-nan],\n",
" [47.04160127981655+/-nan, 45.19703677526844+/-nan],\n",
" [46.9063863648665+/-nan, 46.62839498709959+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_centery</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>48.78771309646883+/-nan ... 45.8...</div><input id='attrs-fe9dae46-9c8c-468c-af7a-0262d9aa1d69' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-fe9dae46-9c8c-468c-af7a-0262d9aa1d69' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-39a7f20d-d8cd-48b3-9e66-21f4a2ef8fb6' class='xr-var-data-in' type='checkbox'><label for='data-39a7f20d-d8cd-48b3-9e66-21f4a2ef8fb6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[48.78771309646883+/-nan, 46.70019438388887+/-0.13474784266512813],\n",
" [50.112289177254645+/-0.18936637840887163,\n",
" 47.933648886512984+/-0.1818313748768025],\n",
" [48.60558590547917+/-nan, 47.42479999423601+/-nan],\n",
" [48.078528392333645+/-nan, 49.52158272107226+/-nan],\n",
" [47.33388224542202+/-nan, 47.250077258141765+/-nan],\n",
" [47.20492733785264+/-nan, 45.79103389119996+/-nan],\n",
" [46.797403449594114+/-nan, 48.66194291578028+/-nan],\n",
" [48.858405378727056+/-nan, 46.73933219672723+/-nan],\n",
" [46.33012645561285+/-nan, 45.25893119030533+/-nan],\n",
" [49.11597972139846+/-nan, 46.62312040198454+/-nan],\n",
" [48.5847379030555+/-nan, 45.851362234956945+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_sigmax</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>4.603910530224281+/-nan ... 10.7...</div><input id='attrs-ee71c2d1-ae4e-46cd-af2b-3803546d1aa8' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-ee71c2d1-ae4e-46cd-af2b-3803546d1aa8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bd0837e7-42c3-436c-8045-a66fbfb0e4ed' class='xr-var-data-in' type='checkbox'><label for='data-bd0837e7-42c3-436c-8045-a66fbfb0e4ed' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[4.603910530224281+/-nan, 8.352649113045219+/-0.05135922760852204],\n",
" [9.783160618178648+/-0.04877051594634713,\n",
" 9.275465120626505+/-0.05031110384700545],\n",
" [3.6345954409126575+/-nan, 2.296322550497831+/-nan],\n",
" [1.9277621794936328+/-nan, 2.108527190040693+/-nan],\n",
" [12.497772981394547+/-nan, 11.348775895088973+/-nan],\n",
" [12.22304710591207+/-nan, 13.066521177521397+/-nan],\n",
" [11.41957691411171+/-nan, 10.859955180409774+/-nan],\n",
" [12.242691001581354+/-nan, 13.251947044975832+/-nan],\n",
" [11.416923759534004+/-nan, 10.384080677114543+/-nan],\n",
" [10.136653406603052+/-nan, 8.317554207998212+/-nan],\n",
" [10.496509075367303+/-nan, 10.78547616946959+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>BEC_sigmay</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>5.170438723671074+/-nan ... 26.8...</div><input id='attrs-3d60f219-6f3b-4f69-9c3c-7869ec90b0d4' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3d60f219-6f3b-4f69-9c3c-7869ec90b0d4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-661fd93c-3930-4f37-a375-76fde0a84c86' class='xr-var-data-in' type='checkbox'><label for='data-661fd93c-3930-4f37-a375-76fde0a84c86' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[5.170438723671074+/-nan, 24.49629654797614+/-0.1423704022374025],\n",
" [27.91910633445377+/-0.13190872611813256,\n",
" 26.095564300343387+/-0.13421172201262788],\n",
" [11.28195196851584+/-nan, 6.635115053116057+/-nan],\n",
" [5.661437348413206+/-nan, 6.206079957191367+/-nan],\n",
" [28.0764639245163+/-nan, 27.83533144848427+/-nan],\n",
" [28.803147704090247+/-nan, 27.152445717103042+/-nan],\n",
" [28.2491106970502+/-nan, 27.207209464773143+/-nan],\n",
" [28.424564964416394+/-nan, 27.906132928577513+/-nan],\n",
" [27.245792720648637+/-nan, 27.08539895692601+/-nan],\n",
" [28.564362856932362+/-nan, 22.28223522070913+/-nan],\n",
" [27.489249684926634+/-nan, 26.86146149801174+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_sigmax</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>13.533799535681206+/-nan ... 19....</div><input id='attrs-012eea9a-8e86-478b-8f77-f99c109889f4' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-012eea9a-8e86-478b-8f77-f99c109889f4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4b842cb4-e5f9-461f-9c97-5d8f1f7ed859' class='xr-var-data-in' type='checkbox'><label for='data-4b842cb4-e5f9-461f-9c97-5d8f1f7ed859' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[13.533799535681206+/-nan,\n",
" 22.057116908148686+/-0.18884704218447057],\n",
" [21.526721430672524+/-0.255322105533515,\n",
" 20.822327664670464+/-0.24630874375159836],\n",
" [12.357827310273686+/-nan, 11.649795791973553+/-nan],\n",
" [11.039863953939202+/-nan, 11.171343482889819+/-nan],\n",
" [23.087169453301087+/-nan, 21.216796714447945+/-nan],\n",
" [25.12748632667367+/-nan, 25.859579965756392+/-nan],\n",
" [22.998792990092884+/-nan, 20.2869507037467+/-nan],\n",
" [20.431350504917173+/-nan, 26.790451793056842+/-nan],\n",
" [24.684318172829713+/-nan, 20.74077356521508+/-nan],\n",
" [20.427277520052307+/-nan, 16.4827109098726+/-nan],\n",
" [18.853214886479396+/-nan, 19.994979623726802+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermal_sigmay</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>16.240559439120037+/-nan ... 23....</div><input id='attrs-2ca63c64-6f17-4686-9ef4-5bae14a674d4' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-2ca63c64-6f17-4686-9ef4-5bae14a674d4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0aa2e171-8473-457d-a864-4afb74a58964' class='xr-var-data-in' type='checkbox'><label for='data-0aa2e171-8473-457d-a864-4afb74a58964' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[16.240559439120037+/-nan,\n",
" 22.717828926376836+/-0.18021693674512695],\n",
" [22.825431045519323+/-0.2488363469846332,\n",
" 21.986226693384694+/-0.23913745363300817],\n",
" [14.829321141349977+/-nan, 13.97973360823843+/-nan],\n",
" [13.24783438856341+/-nan, 13.405587500869597+/-nan],\n",
" [27.704603343961303+/-nan, 24.756163594649202+/-nan],\n",
" [30.1529835920084+/-nan, 31.03149595890767+/-nan],\n",
" [27.59855158811146+/-nan, 24.344340844496042+/-nan],\n",
" [24.517620605900607+/-nan, 32.14854215166821+/-nan],\n",
" [29.621181807395654+/-nan, 24.888928278258096+/-nan],\n",
" [24.039855937387976+/-nan, 19.77925309184712+/-nan],\n",
" [22.623857863775275+/-nan, 23.99397554847216+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>thermalAspectRatio</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>1.1999999997268018+/-nan ... 1.2...</div><input id='attrs-8802b781-dc6d-4ff4-983e-f538fc8bb9b1' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8802b781-dc6d-4ff4-983e-f538fc8bb9b1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bb7d7f9e-8133-4045-af26-14c6469247fd' class='xr-var-data-in' type='checkbox'><label for='data-bb7d7f9e-8133-4045-af26-14c6469247fd' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[1.1999999997268018+/-nan,\n",
" 1.0299545956518035+/-0.011056405532581637],\n",
" [1.0603301166426728+/-0.015544745441584365,\n",
" 1.0558966820356512+/-0.015451505492218236],\n",
" [1.1999942035944793+/-nan, 1.199998168025413+/-nan],\n",
" [1.199999786576751+/-nan, 1.1999977909014952+/-nan],\n",
" [1.2+/-nan, 1.1668190975214965+/-nan],\n",
" [1.2+/-nan, 1.2+/-nan],\n",
" [1.2+/-nan, 1.2+/-nan],\n",
" [1.2+/-nan, 1.2+/-nan],\n",
" [1.2+/-nan, 1.2+/-nan],\n",
" [1.1768507043481151+/-nan, 1.2+/-nan],\n",
" [1.2+/-nan, 1.2+/-nan]], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>condensate_fraction</span></div><div class='xr-var-dims'>(odt_hold_time_4, runs)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>(2.389571448696065+/-nan)e-11 .....</div><input id='attrs-f3de1d42-6b66-401e-ba4a-24f9d71b7389' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f3de1d42-6b66-401e-ba4a-24f9d71b7389' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7b8ce570-6d2a-42a2-aeb3-dbf991c83fc4' class='xr-var-data-in' type='checkbox'><label for='data-7b8ce570-6d2a-42a2-aeb3-dbf991c83fc4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[2.3895714486960645e-11+/-nan,\n",
" 0.2639423225690389+/-0.0028205468881768573],\n",
" [0.41471198610184434+/-0.004059881769920059,\n",
" 0.38738935611383174+/-0.004067944117027406],\n",
" [0.05650968343189731+/-nan, 0.01414181889124356+/-nan],\n",
" [0.006287584714239031+/-nan, 0.021160505462270888+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan],\n",
" [1.0+/-nan, 0.4387781410287576+/-nan],\n",
" [1.0+/-nan, 1.0+/-nan]], dtype=object)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-0dd45cfb-e37c-41a2-8fda-a93106db7475' class='xr-section-summary-in' type='checkbox' ><label for='section-0dd45cfb-e37c-41a2-8fda-a93106db7475' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>odt_hold_time_4</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-f3cdebaf-570c-44a5-b544-b6414e846dfd' class='xr-index-data-in' type='checkbox'/><label for='index-f3cdebaf-570c-44a5-b544-b6414e846dfd' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1], dtype=&#x27;float64&#x27;, name=&#x27;odt_hold_time_4&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>runs</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-a2d16270-76bb-4e00-b591-5063b0a6dc69' class='xr-index-data-in' type='checkbox'/><label for='index-a2d16270-76bb-4e00-b591-5063b0a6dc69' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([0.0, 1.0], dtype=&#x27;float64&#x27;, name=&#x27;runs&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-c55cad70-1ccb-4318-bfb9-837439498cc5' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-c55cad70-1ccb-4318-bfb9-837439498cc5' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (odt_hold_time_4: 11, runs: 2)\n",
"Coordinates:\n",
" * odt_hold_time_4 (odt_hold_time_4) float64 0.1 0.3 0.5 ... 1.7 1.9 2.1\n",
" * runs (runs) float64 0.0 1.0\n",
"Data variables:\n",
" BEC_amplitude (odt_hold_time_4, runs) object (2.5887280763470244+/...\n",
" thermal_amplitude (odt_hold_time_4, runs) object 1083.3440773230598+/-...\n",
" BEC_centerx (odt_hold_time_4, runs) object 43.30005082229525+/-n...\n",
" BEC_centery (odt_hold_time_4, runs) object 49.62090849228923+/-n...\n",
" thermal_centerx (odt_hold_time_4, runs) object 43.878855163885156+/-...\n",
" thermal_centery (odt_hold_time_4, runs) object 48.78771309646883+/-n...\n",
" BEC_sigmax (odt_hold_time_4, runs) object 4.603910530224281+/-n...\n",
" BEC_sigmay (odt_hold_time_4, runs) object 5.170438723671074+/-n...\n",
" thermal_sigmax (odt_hold_time_4, runs) object 13.533799535681206+/-...\n",
" thermal_sigmay (odt_hold_time_4, runs) object 16.240559439120037+/-...\n",
" thermalAspectRatio (odt_hold_time_4, runs) object 1.1999999997268018+/-...\n",
" condensate_fraction (odt_hold_time_4, runs) object (2.389571448696065+/-..."
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fitAnalyser.get_fit_full_result(fitResult)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get the Ncount"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate the mean and standard deviation"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGxCAYAAACDV6ltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABC8UlEQVR4nO3deXgV5f3//9fJvpAcsnBOEgiLLAEMooJCENnXitRqiy1tKkpxBUsRLdb22+ivFUur2EJdPwgqIrZVXAoNi2wioBJBQSAsggRIyEJyspKTZX5/BEYOIUCAcJLM83Fd5yJn5j1z7puTkZf33DNjMwzDEAAAgIX5eLsBAAAA3kYgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlufn7QY0FdXV1Tp69KjCwsJks9m83RwAAHABDMNQUVGR4uLi5ONT9zgQgegCHT16VPHx8d5uBgAAuAgZGRlq06ZNnesJRBcoLCxMUs1faHh4uJdbAwAALkRhYaHi4+PNf8frQiC6QKdOk4WHhxOIAABoYs433YVJ1QAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRF5U6q5U+xlL1X7GUpW6K73dHAAALItABAAALI9ABAAALM+rgWjmzJm64YYbFBYWJofDodtuu03p6ekeNRMmTJDNZvN49e3b16OmvLxcU6ZMUXR0tEJDQzV27FgdPnzYoyY/P1/Jycmy2+2y2+1KTk5WQUFBQ3cRAAA0AV4NROvWrdNDDz2kzZs3a+XKlaqsrNSIESNUUlLiUTdq1ChlZmaar2XLlnmsnzp1qpYsWaLFixdrw4YNKi4u1pgxY1RVVWXWjB8/Xtu2bVNqaqpSU1O1bds2JScnX5F+AgCAxs3Pmx+emprq8X7+/PlyOBxKS0vTgAEDzOWBgYGKiYk56z5cLpfmzZunN998U8OGDZMkLVy4UPHx8Vq1apVGjhypXbt2KTU1VZs3b1afPn0kSa+++qqSkpKUnp6uhISEBuohAABoChrVHCKXyyVJioyM9Fi+du1aORwOdenSRZMmTVJ2dra5Li0tTRUVFRoxYoS5LC4uTomJidq4caMkadOmTbLb7WYYkqS+ffvKbrebNQAAwLq8OkJ0OsMwNG3aNPXv31+JiYnm8tGjR+snP/mJ2rVrpwMHDugPf/iDhgwZorS0NAUGBiorK0sBAQGKiIjw2J/T6VRWVpYkKSsrSw6Ho9ZnOhwOs+ZM5eXlKi8vN98XFhZejm4CAIBGqNEEosmTJ+vrr7/Whg0bPJbfeeed5s+JiYnq3bu32rVrp6VLl+r222+vc3+GYchms5nvT/+5rprTzZw5U08++WR9uwEAAJqgRnHKbMqUKfrwww+1Zs0atWnT5py1sbGxateunfbu3StJiomJkdvtVn5+vkdddna2nE6nWXPs2LFa+8rJyTFrzvT444/L5XKZr4yMjIvpGgAAaAK8GogMw9DkyZP13nvvafXq1erQocN5t8nLy1NGRoZiY2MlSb169ZK/v79Wrlxp1mRmZmrHjh3q16+fJCkpKUkul0uff/65WfPZZ5/J5XKZNWcKDAxUeHi4xwsAADRPXj1l9tBDD2nRokX64IMPFBYWZs7nsdvtCg4OVnFxsVJSUnTHHXcoNjZWBw8e1O9+9ztFR0frRz/6kVk7ceJEPfLII4qKilJkZKSmT5+uHj16mFeddevWTaNGjdKkSZP08ssvS5LuvfdejRkzhivMAACAdwPRiy++KEkaNGiQx/L58+drwoQJ8vX11fbt2/XGG2+ooKBAsbGxGjx4sN555x2FhYWZ9bNnz5afn5/GjRunsrIyDR06VAsWLJCvr69Z89Zbb+nhhx82r0YbO3as5s6d2/CdBAAAjZ7NMAzD241oCgoLC2W32+VyuS7b6bNSd6W6/7/lkqSdT41USECjmeMOAECzcKH/fjeKSdUAAADeRCACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyBCvZS6K9V+xlK1n7FUpe5KbzcHAIDLgkAEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsz6uBaObMmbrhhhsUFhYmh8Oh2267Tenp6R41hmEoJSVFcXFxCg4O1qBBg/TNN9941JSXl2vKlCmKjo5WaGioxo4dq8OHD3vU5OfnKzk5WXa7XXa7XcnJySooKGjoLqKRKHVXqv2MpWo/Y6lK3ZXebg4AoJHxaiBat26dHnroIW3evFkrV65UZWWlRowYoZKSErNm1qxZeu655zR37lx98cUXiomJ0fDhw1VUVGTWTJ06VUuWLNHixYu1YcMGFRcXa8yYMaqqqjJrxo8fr23btik1NVWpqanatm2bkpOTr2h/AQBA4+TnzQ9PTU31eD9//nw5HA6lpaVpwIABMgxDzz//vJ544gndfvvtkqTXX39dTqdTixYt0n333SeXy6V58+bpzTff1LBhwyRJCxcuVHx8vFatWqWRI0dq165dSk1N1ebNm9WnTx9J0quvvqqkpCSlp6crISHhynYcAAA0Ko1qDpHL5ZIkRUZGSpIOHDigrKwsjRgxwqwJDAzUwIEDtXHjRklSWlqaKioqPGri4uKUmJho1mzatEl2u90MQ5LUt29f2e12s+ZM5eXlKiws9HgBAIDmqdEEIsMwNG3aNPXv31+JiYmSpKysLEmS0+n0qHU6nea6rKwsBQQEKCIi4pw1Doej1mc6HA6z5kwzZ8405xvZ7XbFx8dfWgcBAECj1WgC0eTJk/X111/r7bffrrXOZrN5vDcMo9ayM51Zc7b6c+3n8ccfl8vlMl8ZGRkX0g0AANAENYpANGXKFH344Ydas2aN2rRpYy6PiYmRpFqjONnZ2eaoUUxMjNxut/Lz889Zc+zYsVqfm5OTU2v06ZTAwECFh4d7vAAAQPPk1UBkGIYmT56s9957T6tXr1aHDh081nfo0EExMTFauXKlucztdmvdunXq16+fJKlXr17y9/f3qMnMzNSOHTvMmqSkJLlcLn3++edmzWeffSaXy2XWAI0NtwoAgCvHq1eZPfTQQ1q0aJE++OADhYWFmSNBdrtdwcHBstlsmjp1qp5++ml17txZnTt31tNPP62QkBCNHz/erJ04caIeeeQRRUVFKTIyUtOnT1ePHj3Mq866deumUaNGadKkSXr55ZclSffee6/GjBnDFWYAAMC7gejFF1+UJA0aNMhj+fz58zVhwgRJ0mOPPaaysjI9+OCDys/PV58+fbRixQqFhYWZ9bNnz5afn5/GjRunsrIyDR06VAsWLJCvr69Z89Zbb+nhhx82r0YbO3as5s6d27AdBAAATYJXA5FhGOetsdlsSklJUUpKSp01QUFBmjNnjubMmVNnTWRkpBYuXHgxzQQAAM1co5hUDQAA4E0EIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgCWxg0wAUgEIgAAAAIRAAAAgQjAZcPpJwBNFYEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIANDgePAvGjsCEQAAsDwCEQAAsDwCEQAAsDwCEQA0MczHAS4/AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAAGdR6q5U+xlL1X7GUpW6K73dHDQwAhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8rwai9evX69Zbb1VcXJxsNpvef/99j/UTJkyQzWbzePXt29ejpry8XFOmTFF0dLRCQ0M1duxYHT582KMmPz9fycnJstvtstvtSk5OVkFBQQP3DgAANBVeDUQlJSXq2bOn5s6dW2fNqFGjlJmZab6WLVvmsX7q1KlasmSJFi9erA0bNqi4uFhjxoxRVVWVWTN+/Hht27ZNqampSk1N1bZt25ScnNxg/QIAAE2Lnzc/fPTo0Ro9evQ5awIDAxUTE3PWdS6XS/PmzdObb76pYcOGSZIWLlyo+Ph4rVq1SiNHjtSuXbuUmpqqzZs3q0+fPpKkV199VUlJSUpPT1dCQsLl7RQAAGhyGv0corVr18rhcKhLly6aNGmSsrOzzXVpaWmqqKjQiBEjzGVxcXFKTEzUxo0bJUmbNm2S3W43w5Ak9e3bV3a73aw5m/LychUWFnq8AABA89SoA9Ho0aP11ltvafXq1Xr22Wf1xRdfaMiQISovL5ckZWVlKSAgQBERER7bOZ1OZWVlmTUOh6PWvh0Oh1lzNjNnzjTnHNntdsXHx1/GngEAAEkqdVeq/Yylaj9jqUrdlV5rh1dPmZ3PnXfeaf6cmJio3r17q127dlq6dKluv/32OrczDEM2m818f/rPddWc6fHHH9e0adPM94WFhYQiAACaqUY9QnSm2NhYtWvXTnv37pUkxcTEyO12Kz8/36MuOztbTqfTrDl27FitfeXk5Jg1ZxMYGKjw8HCPFwAAaJ6aVCDKy8tTRkaGYmNjJUm9evWSv7+/Vq5cadZkZmZqx44d6tevnyQpKSlJLpdLn3/+uVnz2WefyeVymTUAAMDavHrKrLi4WPv27TPfHzhwQNu2bVNkZKQiIyOVkpKiO+64Q7GxsTp48KB+97vfKTo6Wj/60Y8kSXa7XRMnTtQjjzyiqKgoRUZGavr06erRo4d51Vm3bt00atQoTZo0SS+//LIk6d5779WYMWO4wgwAAEjyciDasmWLBg8ebL4/NWfnrrvu0osvvqjt27frjTfeUEFBgWJjYzV48GC98847CgsLM7eZPXu2/Pz8NG7cOJWVlWno0KFasGCBfH19zZq33npLDz/8sHk12tixY8957yMAAGAtXg1EgwYNkmEYda5fvnz5efcRFBSkOXPmaM6cOXXWREZGauHChRfVRgAA0Pw1qTlEAAAADYFABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALM/vYjZavXq13nvvPR08eFA2m00dOnTQj3/8Yw0YMOBytw8AAKDB1XuE6P7779ewYcP09ttvKy8vTzk5OXrrrbc0ePBgTZkypSHaCAAA0KDqFYiWLFmi+fPn67XXXlNubq42bdqkzZs3KycnR6+++qpeeeUVffjhhw3VVgAAgAZRr0A0f/58TZs2TRMmTJDNZvt+Jz4+uueeezR16lTNmzfvsjcSAACgIdUrEH355Zf60Y9+VOf6O+64Q2lpaZfcKAAAgCupXoEoNzdXrVu3rnN969atlZeXd8mNAgAAuJLqFYjcbrcCAgLqXO/n5ye3233JjbIiwzC83QQAQBNX6q5U+xlL1X7GUpW6K73dnCal3pfd/+EPf1BISMhZ15WWll5yg6zq9hc26sHBnXRLj1j5+XJ7KAAArqR6BaIBAwYoPT39vDW4MNXV348KpR8r1q8Xb9PfVqTr3gEd9ZNebRTk7+vF1gEAYB31CkRr1671eJ+bmyubzaaoqKjL2SbL8PH5/kq9h4d00sLPDinjeJn+8P4O/X3VXt3Tv71+0bedwoP8vdhKAACav3qfmykoKNBDDz2k6OhoOZ1OORwORUdHa/LkySooKGiAJlrD/YM66tPfDlHKrd3VumWwcovLNSs1XTfNXK1n/rdb2UUnvN1EAACarXqNEB0/flxJSUk6cuSIfv7zn6tbt24yDEO7du3SggUL9PHHH2vjxo2KiIhoqPY2a8EBvppwUwf9vG87ffTVUb24dr/2ZhfrpXX79dqnB/STXm1074Cr1C4q1NtNBQCgWalXIHrqqacUEBCg/fv3y+l01lo3YsQIPfXUU5o9e/ZlbaTV+Pv66Pbr2+i2a1tr9e5svbB2n748VKC3Pjuktz8/pFuuidP9A6/S1XF2bzcVAIBmoV6nzN5//3397W9/qxWGJCkmJkazZs3SkiVLLlvjrM7Hx6Zh3Z1694F+eufevhqU0ErVhvTRV0d1yz82aML8z/XZt3lcsg8AwCWq1whRZmamrr766jrXJyYmKisr65IbBU82m019ropSn6uitPNooV5at1///fqo1qbnaG16jq5v21IPDOqkoV0dHhO1AQDAhanXCFF0dLQOHjxY5/oDBw5wxVkD6x4Xrn/87DqtmT5IP+/TVgF+PvryUIEmvbFFo/6+Xu99eVgVVdXebiYAAE1KvQLRqFGj9MQTT5z1btTl5eX6wx/+oFGjRl22xqFu7aJC9ecf9dCG3w7WA4M6KizQT3uOFWvav77SoL+u1YJPD6jMXeXtZgIA0CTU65TZk08+qd69e6tz58566KGH1LVrV0nSzp079cILL6i8vFxvvvlmgzQUZ+cIC9JvR3XVA4M6auHm7/TahgM6UlCmlI926h+r9+nufu31y6T2sodwLyMAAOpSr0DUpk0bbdq0SQ8++KAef/xxczKvzWbT8OHDNXfuXMXHxzdIQ3Fu4UH+enBQJ91zUwf9J+2wXl6/XxnHy/Tsyj16ad1+je/TVr+6+So5w4O83VQAABqdej/LrEOHDvrf//6n/Px87d27V5LUqVMnRUZGXvbGof6C/H31i77t9NMb4rV0e6ZeXLtfu7OK9OonB/T6xu90+/Wtde+Aq3RVqxbebioAAI1GvQPRKREREbrxxhsvZ1twGfn5+uiH17bW2J5xWrsnRy+u2a/PDx7X4i8y9M6WDI1OjNEDAzupRxvuZQQAwEUHIjQNNptNgxMcGpzg0JaDx/XSuv1atStby7Znadn2LN3cOVoPDOyopI5Rstm4ZB8AYE0EIgvp3T5S/9c+UulZRXpp3X59+NVRfbI3V5/szVXP+JZ6YGBHjeju5F5GAADLqffDXdH0JcSEafad12rt9EG6K6mdAv189FVGge5fmKZhs9fpX1sy5K7kXkYAAOsgEFlYfGSInvxhoj6dMUSTB3dSeJCfvs0p0WP/+VoD/7pG8zYcUEl5pbebCQBAgyMQQdEtAjV9ZII+nTFEv/tBVznCApXpOqH/7787ddNfVmv2yj3KL6l9M04AAJoLAhFMYUH+undAR33y28F65vYe6hAdqoLSCv39473q98xqPfXRTmW6yrzdTAAALjsmVaOWQD9f/fTGtvpJ73il7sjSi+v2aceRQr326QG9semgt5sHAMBlRyBCnXx9bLrlmlj9oEeMNuzL1Ytr92vj/jxz/e0vbNTw7k4N6epQzzYtuToNANBkEYhwXjabTTd3bqWbO7fSpv25+tmrn0mSdmcVaXdWkeas3qeo0AANSnBoSFeHbu4SrfAgnp0GAGg6CESol57xLc2fZ96eqA1787R+T47yStx698vDevfLw/LzsemG9pEa2q0mIPGYEABAY0cgwkX74bWt9bMb26miqlpfHDyuNbuz9fHubH2bU6JN3+Zp07d5+tPSXWofFaIhXWtOrd3YIVIBfszlBwA0LgQiXDJ/Xx/16xitfh2j9cQt3XUwt0Srd2drTXq2Nn+bp4N5pXrt0wN67dMDahHop/6dojWkW83jRFqFBXq7+QAAEIhw+bWPDtU9/Tvonv4dVFxeqQ17c7V69zGtSc9RTlG5Ur/JUuo3WZKknm3sGtzVoaFdnbo6LpyJ2QAAryAQoUG1CPTTqMQYjUqMUXW1oR1HXfp4V83o0deHXfrq5Ov5VXvVKixQQxIcGtLNof6dohUayK8nAODK4F8cXDE+PjZd06alrmnTUr8Z3kXZhSe0Nj1HH+8+pg17c5VTVK53tmTonS0ZCvD1UZ+rIjWka83E7HZRod5uPgCgGSMQwWsc4UEad0O8xt0Qr/LKKn1+4LhW787W6t3Z+i6vVJ/szdUne3P15Ec71bFVqIZ2c2pwgkO920fI35eJ2QCAy4dAhEYh0M/XvNfR/xvTXd/mlmj1rppw9MXB49qfU6L9Od/qlfXfKizITwO7tNKQrg4NSnAoMjTA280HADRxBCI0OjabTR1btVDHVi00acBVcpVV6JO9OVq9O1tr03N0vMSt/36dqf9+nSmbTbouvqU5etQtNkw2GxOzAQD1QyBCo2cP9teYa+I05po4VVUb+upwgTl6tDOzUF8eKtCXhwr01+XpirUHnbxqzaF+HaMVHODr7eYDAJoAr07EWL9+vW699VbFxcXJZrPp/fff91hvGIZSUlIUFxen4OBgDRo0SN98841HTXl5uaZMmaLo6GiFhoZq7NixOnz4sEdNfn6+kpOTZbfbZbfblZycrIKCggbuHRqCr49N17eN0PSRCVr265u16fEhevpHPTSsm0NB/j7KdJ3Qos8OaeLrW3TtUyt09/zP9ebm73S0oMzbTQcANGJeHSEqKSlRz549dffdd+uOO+6otX7WrFl67rnntGDBAnXp0kV/+tOfNHz4cKWnpyssLEySNHXqVH300UdavHixoqKi9Mgjj2jMmDFKS0uTr2/N6MD48eN1+PBhpaamSpLuvfdeJScn66OPPrpynUWDiLUHa3yfthrfp61OVFRp07d55ujRkYIyrUnP0Zr0HI9tfrdku5xhQYoIDVBkSIAiQwMUERqgqJN/hgf5cdoNACzGq4Fo9OjRGj169FnXGYah559/Xk888YRuv/12SdLrr78up9OpRYsW6b777pPL5dK8efP05ptvatiwYZKkhQsXKj4+XqtWrdLIkSO1a9cupaamavPmzerTp48k6dVXX1VSUpLS09OVkJBwZTqLBhfk76vBCTV3wH7KMLTnWPHJq9aOKe27fFUbNXXvbz16zv34+dg8wlJNYPJXZGigIkP8T4anQEWE+pt/Bvpxag4AmrJGO4fowIEDysrK0ogRI8xlgYGBGjhwoDZu3Kj77rtPaWlpqqio8KiJi4tTYmKiNm7cqJEjR2rTpk2y2+1mGJKkvn37ym63a+PGjQSiZspmsykhJkwJMWF6YFBHHS0oVb9n1kiSfjOss4rLK5VX4lZ+iVvHS9w6XupWfkmFissrVVltKKeoXDlF5Rf8eaEBvops4TniFBkS4LHs9JGo8CB/7soNAI1Iow1EWVk1j3ZwOp0ey51Op7777juzJiAgQBEREbVqTm2flZUlh8NRa/8Oh8OsOZvy8nKVl3//D2JhYeHFdQSNQsuQ7y/NnzTgKoUEnP1X/0RFlQpKK5RXUq78kgodL3XreHG5jpdW6PipZR4hyq3KakMl7iqVHC9TxvELm6vk62NTRIi/IkI8T9dFhQYo4mSACg38ftTJMIxL+wsAAJxTow1Ep5w5l8MwjPPO7ziz5mz159vPzJkz9eSTT9aztWjqgvx9FWP3VYw96ILqDcNQ4YlK5Ze4zzLidNqyUrcZpIpOVKqq2lBusVu5xe4L+pwbn/5YbSNDFR8RrLaRIYqPDDn5Z7DaRIQoyJ9TdgBwKRptIIqJiZFUM8ITGxtrLs/OzjZHjWJiYuR2u5Wfn+8xSpSdna1+/fqZNceOHau1/5ycnFqjT6d7/PHHNW3aNPN9YWGh4uPjL61TaHZsNpvswf6yB/urffSFPV7EXVmtgtKTIanYMyyZIarUrdyicqUfK5YklZRXaVdmoXZlnn2k0hEW+H1IighW/MnQFB8ZopjwIPlyeg4AzqnRBqIOHTooJiZGK1eu1HXXXSdJcrvdWrdunf7yl79Iknr16iV/f3+tXLlS48aNkyRlZmZqx44dmjVrliQpKSlJLpdLn3/+uW688UZJ0meffSaXy2WGprMJDAxUYGBgQ3YRFhXg5yNHeJAc4ecehSp1V6r7/1suSfrvlJuUU+RWRn6pDuWV1vx5vEyHj5eqqLxS2UXlyi4qV9p3+bX24+9rU+uW34ekmtD0/QiTPdifq+oAWJ5XA1FxcbH27dtnvj9w4IC2bdumyMhItW3bVlOnTtXTTz+tzp07q3Pnznr66acVEhKi8ePHS5LsdrsmTpyoRx55RFFRUYqMjNT06dPVo0cP86qzbt26adSoUZo0aZJefvllSTWX3Y8ZM4YJ1WgyrmrVQomtax+uhmHIVVahQ8dLlXG8rObP/FJlHK95Hc4vU0WVoYN5pTqYV3rWfYcF+Sk+oiYctT1tZCk+IkRtIoI5HQfAErwaiLZs2aLBgweb70+dorrrrru0YMECPfbYYyorK9ODDz6o/Px89enTRytWrDDvQSRJs2fPlp+fn8aNG6eysjINHTpUCxYsMO9BJElvvfWWHn74YfNqtLFjx2ru3LlXqJdAw7HZbGoZEqCWIQG6pk3LWuurqg1lFZ4wR5VOBaWM/JrwlFNUrqITldqZWaiddZyOc4YHmiNKbU47Ldc2KkTOsCCvXC1XXW3IXVWt8opqlVdVyV1ZrfLKarlPvsyfq6pUXlF9Wu2p9VVmbUl5pbnfLQfzdUP7SO5wDliQVwPRoEGDznn1jM1mU0pKilJSUuqsCQoK0pw5czRnzpw6ayIjI7Vw4cJLaSrQJPn61Jwua90yWEmKqrW+zF2lw/mlp52KOznKdPJV4q7SscJyHSss15aznI4L8PVRm4hgtTkZkk6fjL7060xJMsPI93+ePcCUV56qqZK7yjPYnB5gyiurVVndMFfd/fK1z+XrY1O32DBdFx+h69q21LXxLdUhOpTTikAz12jnEAFoeMEBvursDFNnZ1itdYZhKL+04vuAZI4w1YSmowVlcldV69vcEn2bW1Jr+0f/8/WV6IJstppgFuDno0A/XwX6+SjQr+Z9wOk/+9asP3O5j02at+GgJKlVWKByisq140ihdhwp1Juba27x0TLEX9fGtzRDUs/4lrIH+1+R/gG4MghEAM7KZrOZN5S8Nr5lrfWVVdXKdJ3wCEoHcou1dHvN/b36dKg59XR6WDkVRALPFlb8T689PdCcLeT4mtv5+9ouafSm1F1pBqK10wfKVVaprYcKtPVQvrZmFGj7EZcKSiu0Nj1Ha097DEzHVqG6rm1NQLouPkJdnC3k5+vVx0MCuAQEIgAXxc/Xx5yArY41y0rdlWYgmn/3DXXeALOxstlsimsZrLiWwbrlmprbfbgrq7U7q9AjJH2XV6r9OSXan1Oi/6TVPEw6JMBX17Sx69qTo0jXtW0pR9iF3c8KgPc1rf9aAcAVFuDno2vatNQ1bVrqrn7tJUl5xeXallGgbRkF2nqo5s/i8kpt/va4Nn973Ny2dcvgk+EoQtfGt9TVceFctQc0UgQiAKinqBaBGtrNqaHdam7uWlVtaH9Occ0I0smAlH6sSEcKynSkoEz/PTnB3N/Xpu5xdl0X39I81RYfGcyEbaARIBABwCXy9bGpizNMXZxhuvOGtpKkohMV2n7Ypa0ZBWZQyitx66uMAn2VUaAFG2u2jQoNMEeRrotvqWviW6pFIP9pBq40jjoAaABhQf7q1yla/TpFS6q5au9wfpm+PBmOtmYUaOdRl/JK3Fq1K1urdmVLqrlqrosjzJyHdF3bCHVq1cIr93s6k2EYKq+sVpm7SqUVVSpzV6rUXaVSd1XNMneVSt2VKqv4flnNz5UqOvH9/Z4Wf35I17eLVNeYME4hotEgEAHAFWCz2cxJ6D+8trUk6URFlb45Wqith/LN+UhHCsqUfqxI6ceKtPiLDElSWKCfep48zXZtfEslxNS+TcIp1dWGTlSeJaSc+rmOIFNWceayypPLPcNN1WW4B9RT/90lSfLzsamzM0yJceHq0cauxNZ2dY9lnhW8g0AEAF4S5O+rXu0i1KvdaQ+nLjxx8jRbgbZl5OurDJeKyiu1YV+uNuzLrbWPsXM/1YmK04NN1RVpe4Cvj4IDfBUS4Gv+GeLvV3tZgJ+C/X3l52vTsyv2SJL6d4rSzswiHS9xmw8t/vfJq/V8fWzq7GihxNZ2Myh1j7Vz93A0OAIRADQijvAgjbw6RiOvjpFUc7+nPceKtTUj37z0f3/O9zfC3JddXOe+gvx9zEAS4hFUTgYX/1PL/M5Y76tg/zOX+X3/s79vve+5VOquNAPRK7/srWB/Xx11ndD2wy7tOOLSjqM1f+YWu7U7q0i7s4r0n7SabX1sUqeTIalH6+9HkkKZa4XLiN8mAGjE/Hx91D0uXN3jwvXzPu0kSZmuMiXNXC1JmndXb0WEBtQeofH3bRTzjupis33/WJlRiTXhzzBqnr13KiRtP+LS9iOFyi0u155jxdpzrFjvfXnk5PZSx1YtzIDUo7Vd3ePCmZCOi8ZvDgA0Mac/NiSpY1STuwFmXWw2m2LtwYq1B2vEyREySTp2MiRtP/J9UMouKte+7GLtyy7Wkq3fh6QO0aHqcdpI0tVx4QoL4jErOL/mcRQBAJotZ3iQnN2DNKy701yWXXhCO466tP1woRmUsgpP6NucEn2bU6IPth01aztEh54cRQqvmZvU2q5wQhLOQCACADQ5jvAgDQkP0pCu34eknKLymrlIp40mHXWd0IHcEh3ILdFHX30fktpHhejqkyNJPVrblRhnlz2EkGRlBCIAQLPQKixQgxMcGpzgMJflFZdr+xGXvjlaaJ52O1JQpoN5pTqYV6qlJ+8iLkltI0OUeHIUqUdruzq2CvVGN+AlBCIAQLMV1SJQgxIcGnRaSDpe4va4sm37EZcyjpfp0PFSHTpeqmUnH1B8uozjpUqICb+STccVRiACAFhKZGiABnRppQFdWpnLCkrd2nHk5Hykk0Hpu7xSc/0t/9ign93YVlOGdJIjPMgbzUYDIxABACyvZUiA+neOVv/O0eayLFeZ+p68vUFltaE3N3+nf6dlaEK/DnpgYEfmHDUz9buzFgAAFhF+2u0NXr/7Bl3ftqVOVFTrpXX71X/Wav1zzT6VuivPsQc0JQQiAADO44YOkXr3gX76v1/2VteYMBWdqNRfl6drwKy1en3jQZVXXplHpqDhEIgAALgANptNw7o7tezhm/X8ndeqbWSIcovL9ccPv9HQZ9fpP2mHL8vDb+EdBCIAAOrBx8em265rrY8fGag/3ZYoR1igDueXafq/v9Ko59crdUeWDINg1NQQiAAAuAj+vj76Rd92WvfoYM0Y3VX2YH/tzS7W/QvTdNsLG/XpvlxvNxH1QCACAOASBAf46v6BHbX+scGaPLiTQgJ89VVGgX7+f5/p5/+3WdsyCrzdRFwAAhEAAJeBPdhf00cmaN2jgzWhX3sF+Pro0315uu2fn+reN7Zoz7EibzcR50AgAgDgMmoVFqiUsVdr9fSB+nGvNvKxSSt2HtPI59dr2r+2KeN46fl3YhHuympt3J9nvs8tLvdaW7gxIwAADaBNRIj+9pOeum/AVXp2xR6lfpOl9748oo++OqrxN7bVQ0M6yRFmvbteu0ortHZPtlbuPKZ16TkqKv/+Xk7r9uQoua93niFHIAIAoAF1dobppeRe+iqjQH9bka5P9ubq9U3f6V9bDuvum9rrvoEdZQ9u3ne9PpRXqlW7jmnVrmP6/MBxVZ52e4KoFgHKK3ZLkn6QGOutJhKIAAC4EnrGt9SbE/to4/5czUpN17aMAr2wdr8Wbv5O9w/qqLv7dVBwgK+3m3lZVFcb+upwQU0I2pmt9DPmT3VxttCwbk4N7+5UZ0cLJaaskCSv9p9ABADAFdSvY7SWPBillTuP6W8r0rXnWLFmpaZr/qcH9fCQTrrzhrYK8Gt6U3xPVFRpw97ckyNB2R7zgXx9bLqxfaSGdXdqWDeH2kV9f1qssTz+hEAEAMAVZrPZNOLqGA3t5tQH245o9qo9yjhepj988I1e/eSAfjO8s8b2bC1fH5u3m3pOOUXlWrM7Wyt3HdMne3N0oqLaXNci0E8DE1ppRHenBnVxNPqH4RKIAADwEl8fm26/vo3GXBOnxV8c0j8+3qdDx0v1m3e+0ktrv9X0kQka1s0hm61xBCPDMLQvu1grdx3Tqp3HtDWjQKfflLt1y2AN6+bQsO5O9ekQ1aRGughEAAB4WYCfj36Z1F4/7tVG8z89qJfX7Vf6sSJNemOLrmvbUo+OTFC/jtFeaVtlVbW2fJevVTtrJkUfzPO8bcA1bewa1s2pYd2c6hYb1mjCW30RiAAAaCRCAvz00OBO+kWfdnp5/X7N//Sgth4q0PhXP9PNnaP16MgEXdOmZYO3o+hEhdbvqZkPtHp3tlxlFea6AF8f9esUpWHdnBrazaFYe3CDt+dKIBABANDI2EP89diorppwU3vNXb1Pb39+SJ/szdUne3M1OjFGj4zook6OsMv6mUcLyvTxrmNasfOYNn+bp4qq78+FRYT4a0hXp4Z3d6h/51ZqEdj84kPz6xEAAM2EIyxIT/0wUZNuvkqzV+7Rkm1H9L8dWVr+TZbuuL6Nfj2ss9pEhFzUvg3D0DdHC7Xy5Kmwb44WeqzvEB2q4d1rToX1ahfR6Cd4XyoCEQAAjVx8ZIieu/Na3T+oo/62PF0rdh7Tv9MO64NtRzW+T1tNHtJJ0S0Cz7uf8soqbf72uFbuzNLHu7KV6TphrvOxSb3aRdTMB+ruVMdWLRqyS40OgQgAgCaiizNMr/yyt7Yeytdfl6dr4/48Ldh4UP/akqGJ/TvoF33b1tomv8StNenZWrWr5lEZJe4qc12wv68GdInWsG5ODenqUNQFhKrmikAEAEATc13bCC2a1Fcb9ubqr8t366vDLs1ZvU9vbPrOrJn/6UGt25OjLQeP67QnZcgRFqhh3Z0a3s2ppI5RCvJvHnfHvlQEIgAAmqj+naN1U6ebtPybLP1txR7tyy421/11ebr5c9eYMI3oXnMqLDHOLp9mPh/oYhCIAABowmw2m0Ylxmp49xi988Uh/W7JDklS0lVRGnm1U0O7ORUfeXETr62k6dxCEgAA1MnXx6bbrmttvp83obcm3NSBMHSBCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyGnUgSklJkc1m83jFxMSY6w3DUEpKiuLi4hQcHKxBgwbpm2++8dhHeXm5pkyZoujoaIWGhmrs2LE6fPjwle4KAABoxBp1IJKkq6++WpmZmeZr+/bt5rpZs2bpueee09y5c/XFF18oJiZGw4cPV1FRkVkzdepULVmyRIsXL9aGDRtUXFysMWPGqKqqyhvdAQAAjZCftxtwPn5+fh6jQqcYhqHnn39eTzzxhG6//XZJ0uuvvy6n06lFixbpvvvuk8vl0rx58/Tmm29q2LBhkqSFCxcqPj5eq1at0siRI69oXwAAQOPU6EeI9u7dq7i4OHXo0EE//elP9e2330qSDhw4oKysLI0YMcKsDQwM1MCBA7Vx40ZJUlpamioqKjxq4uLilJiYaNbUpby8XIWFhR4vAADQPDXqQNSnTx+98cYbWr58uV599VVlZWWpX79+ysvLU1ZWliTJ6XR6bON0Os11WVlZCggIUERERJ01dZk5c6bsdrv5io+Pv4w9AwAAjUmjDkSjR4/WHXfcoR49emjYsGFaunSppJpTY6fYbDaPbQzDqLXsTBdS8/jjj8vlcpmvjIyMi+wFAABo7Bp1IDpTaGioevToob1795rzis4c6cnOzjZHjWJiYuR2u5Wfn19nTV0CAwMVHh7u8QIAAM1TkwpE5eXl2rVrl2JjY9WhQwfFxMRo5cqV5nq3261169apX79+kqRevXrJ39/foyYzM1M7duwwawAAABr1VWbTp0/XrbfeqrZt2yo7O1t/+tOfVFhYqLvuuks2m01Tp07V008/rc6dO6tz5856+umnFRISovHjx0uS7Ha7Jk6cqEceeURRUVGKjIzU9OnTzVNwAAAAUiMPRIcPH9bPfvYz5ebmqlWrVurbt682b96sdu3aSZIee+wxlZWV6cEHH1R+fr769OmjFStWKCwszNzH7Nmz5efnp3HjxqmsrExDhw7VggUL5Ovr661uAQCARqZRB6LFixefc73NZlNKSopSUlLqrAkKCtKcOXM0Z86cy9w6AADQXDSpOUQAAAANgUAEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsz1KB6IUXXlCHDh0UFBSkXr166ZNPPvF2kwAAQCNgmUD0zjvvaOrUqXriiSe0detW3XzzzRo9erQOHTrk7aYBAAAvs0wgeu655zRx4kT96le/Urdu3fT8888rPj5eL774orebBgAAvMwSgcjtdistLU0jRozwWD5ixAht3LjRS60CAACNhZ+3G3Al5ObmqqqqSk6n02O50+lUVlbWWbcpLy9XeXm5+b6wsLBB2wgAALzHZhiG4e1GNLSjR4+qdevW2rhxo5KSkszlf/7zn/Xmm29q9+7dtbZJSUnRk08+WWu5y+VSeHh4g7YXAABcHoWFhbLb7ef999sSp8yio6Pl6+tbazQoOzu71qjRKY8//rhcLpf5ysjIuBJNBQAAXmCJQBQQEKBevXpp5cqVHstXrlypfv36nXWbwMBAhYeHe7wAAEDzZIk5RJI0bdo0JScnq3fv3kpKStIrr7yiQ4cO6f777/d20wAAgJdZJhDdeeedysvL01NPPaXMzEwlJiZq2bJlateunbebBgAAvMwSk6ovhwudlAUAABoPJlUDAABcIAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPMs8y+xSnXrCSWFhoZdbAgAALtSpf7fP96QyAtEFysvLkyTFx8d7uSUAAKC+ioqKZLfb61xPILpAkZGRkqRDhw6d8y+0qSosLFR8fLwyMjKa7cNrm3sf6V/T19z7SP+avqbYR8MwVFRUpLi4uHPWEYgukI9PzXQru93eZH4JLkZ4eHiz7p/U/PtI/5q+5t5H+tf0NbU+XshABpOqAQCA5RGIAACA5RGILlBgYKD++Mc/KjAw0NtNaRDNvX9S8+8j/Wv6mnsf6V/T15z7aDPOdx0aAABAM8cIEQAAsDwCEQAAsDwCEQAAsDzLBqIXXnhBHTp0UFBQkHr16qVPPvnknPXr1q1Tr169FBQUpKuuukovvfRSrZp3331X3bt3V2BgoLp3764lS5Y0VPMvSH36+N5772n48OFq1aqVwsPDlZSUpOXLl3vULFiwQDabrdbrxIkTDd2Vs6pP/9auXXvWtu/evdujrjF9h/Xp34QJE87av6uvvtqsaUzf3/r163XrrbcqLi5ONptN77///nm3aWrHYH372NSOwfr2r6kdg/XtX1M7BmfOnKkbbrhBYWFhcjgcuu2225Senn7e7ZracVgflgxE77zzjqZOnaonnnhCW7du1c0336zRo0fr0KFDZ60/cOCAfvCDH+jmm2/W1q1b9bvf/U4PP/yw3n33XbNm06ZNuvPOO5WcnKyvvvpKycnJGjdunD777LMr1S0P9e3j+vXrNXz4cC1btkxpaWkaPHiwbr31Vm3dutWjLjw8XJmZmR6voKCgK9ElD/Xt3ynp6ekebe/cubO5rjF9h/Xt39///nePfmVkZCgyMlI/+clPPOoay/dXUlKinj17au7cuRdU3xSPwfr2sakdg/Xt3ylN5Risb/+a2jG4bt06PfTQQ9q8ebNWrlypyspKjRgxQiUlJXVu0xSPw3oxLOjGG2807r//fo9lXbt2NWbMmHHW+scee8zo2rWrx7L77rvP6Nu3r/l+3LhxxqhRozxqRo4cafz0pz+9TK2un/r28Wy6d+9uPPnkk+b7+fPnG3a7/XI18ZLUt39r1qwxJBn5+fl17rMxfYeX+v0tWbLEsNlsxsGDB81ljen7O50kY8mSJeesaYrH4OkupI9n05iPwdNdSP+a2jF4uov5/prSMWgYhpGdnW1IMtatW1dnTVM/Ds/HciNEbrdbaWlpGjFihMfyESNGaOPGjWfdZtOmTbXqR44cqS1btqiiouKcNXXtsyFdTB/PVF1draKiIvMZbqcUFxerXbt2atOmjcaMGVPr/16vhEvp33XXXafY2FgNHTpUa9as8VjXWL7Dy/H9zZs3T8OGDVO7du08ljeG7+9iNLVj8HJozMfgpWgKx+Dl0NSOQZfLJUm1ft9O19yPQ8sFotzcXFVVVcnpdHosdzqdysrKOus2WVlZZ62vrKxUbm7uOWvq2mdDupg+nunZZ59VSUmJxo0bZy7r2rWrFixYoA8//FBvv/22goKCdNNNN2nv3r2Xtf3nczH9i42N1SuvvKJ3331X7733nhISEjR06FCtX7/erGks3+Glfn+ZmZn63//+p1/96lceyxvL93cxmtoxeDk05mPwYjSlY/BSNbVj0DAMTZs2Tf3791diYmKddc39OLTsw11tNpvHe8Mwai07X/2Zy+u7z4Z2se15++23lZKSog8++EAOh8Nc3rdvX/Xt29d8f9NNN+n666/XnDlz9I9//OPyNfwC1ad/CQkJSkhIMN8nJSUpIyNDf/vb3zRgwICL2mdDu9i2LFiwQC1bttRtt93msbyxfX/11RSPwYvVVI7B+miKx+DFamrH4OTJk/X1119rw4YN561tzseh5UaIoqOj5evrWyutZmdn10q1p8TExJy13s/PT1FRUeesqWufDeli+njKO++8o4kTJ+pf//qXhg0bds5aHx8f3XDDDVf8/24upX+n69u3r0fbG8t3eCn9MwxDr732mpKTkxUQEHDOWm99fxejqR2Dl6IpHIOXS2M9Bi9FUzsGp0yZog8//FBr1qxRmzZtzlnb3I9DywWigIAA9erVSytXrvRYvnLlSvXr1++s2yQlJdWqX7FihXr37i1/f/9z1tS1z4Z0MX2Uav6vdMKECVq0aJFuueWW836OYRjatm2bYmNjL7nN9XGx/TvT1q1bPdreWL7DS+nfunXrtG/fPk2cOPG8n+Ot7+9iNLVj8GI1lWPwcmmsx+ClaCrHoGEYmjx5st577z2tXr1aHTp0OO82zf44vLJzuBuHxYsXG/7+/sa8efOMnTt3GlOnTjVCQ0PNqwFmzJhhJCcnm/XffvutERISYvzmN78xdu7cacybN8/w9/c3/vOf/5g1n376qeHr62s888wzxq5du4xnnnnG8PPzMzZv3nzF+2cY9e/jokWLDD8/P+Of//ynkZmZab4KCgrMmpSUFCM1NdXYv3+/sXXrVuPuu+82/Pz8jM8++6zR92/27NnGkiVLjD179hg7duwwZsyYYUgy3n33XbOmMX2H9e3fKb/4xS+MPn36nHWfjen7KyoqMrZu3Wps3brVkGQ899xzxtatW43vvvvOMIzmcQzWt49N7Risb/+a2jFY3/6d0lSOwQceeMCw2+3G2rVrPX7fSktLzZrmcBzWhyUDkWEYxj//+U+jXbt2RkBAgHH99dd7XGp41113GQMHDvSoX7t2rXHdddcZAQEBRvv27Y0XX3yx1j7//e9/GwkJCYa/v7/RtWtXjwPdG+rTx4EDBxqSar3uuusus2bq1KlG27ZtjYCAAKNVq1bGiBEjjI0bN17BHnmqT//+8pe/GB07djSCgoKMiIgIo3///sbSpUtr7bMxfYf1/R0tKCgwgoODjVdeeeWs+2tM39+pS7Dr+n1rDsdgffvY1I7B+vavqR2DF/M72pSOwbP1TZIxf/58s6Y5HIf1wdPuAQCA5VluDhEAAMCZCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAGsTatWtls9lUUFBw0fto3769nn/++Utqx4QJE2o9dfxMgwYN0tSpUy/6M0493RxA00UgAnBFNJfQcLaQduedd2rPnj3eadBZfPrpp/Lz89O1117r7aYATQaBCAAuUXBwsBwOh7ebIUlyuVz65S9/qaFDh3q7KUCTQiACcEHKy8v18MMPy+FwKCgoSP3799cXX3xhrl+2bJm6dOmi4OBgDR48WAcPHjTXrV27VnfffbdcLpdsNptsNptSUlIu6HNLS0t1zz33KCwsTG3bttUrr7zisX779u0aMmSIgoODFRUVpXvvvVfFxcV17q+kpES//OUv1aJFC8XGxurZZ5+94L+DQYMG6bvvvtNvfvMbsx9S7dGvlJQUXXvttXrttdfUtm1btWjRQg888ICqqqo0a9YsxcTEyOFw6M9//rPH/l0ul+699145HA6Fh4dryJAh+uqrry64fZJ03333afz48UpKSqrXdoDVEYgAXJDHHntM7777rl5//XV9+eWX6tSpk0aOHKnjx48rIyNDt99+u37wgx9o27Zt+tWvfqUZM2aY2/br10/PP/+8wsPDlZmZqczMTE2fPv2CPvfZZ59V7969tXXrVj344IN64IEHtHv3bkk1YWnUqFGKiIjQF198oX//+99atWqVJk+eXOf+Hn30Ua1Zs0ZLlizRihUrtHbtWqWlpV1QW9577z21adNGTz31lNmPuuzfv1//+9//lJqaqrfffluvvfaabrnlFh0+fFjr1q3TX/7yF/3+97/X5s2bJUmGYeiWW25RVlaWli1bprS0NF1//fUaOnSojh8/fkHtmz9/vvbv368//vGPF1QP4DQGAJxHcXGx4e/vb7z11lvmMrfbbcTFxRmzZs0yHn/8caNbt25GdXW1uf63v/2tIcnIz883DMMw5s+fb9jt9np9brt27Yxf/OIX5vvq6mrD4XAYL774omEYhvHKK68YERERRnFxsVmzdOlSw8fHx8jKyjIMwzDuuusu44c//KFhGIZRVFRkBAQEGIsXLzbr8/LyjODgYOPXv/71Bbdp9uzZHsvO7Nsf//hHIyQkxCgsLDSXjRw50mjfvr1RVVVlLktISDBmzpxpGIZhfPzxx0Z4eLhx4sQJj3137NjRePnll8/brj179hgOh8NIT08329CzZ88L6hMAw/DzdiAD0Pjt379fFRUVuummm8xl/v7+uvHGG7Vr1y7l5+erb9++5ikkSZftlM0111xj/myz2RQTE6Ps7GxJ0q5du9SzZ0+FhoaaNTfddJOqq6uVnp4up9NZqx9ut9ujbZGRkUpISLgsbT1d+/btFRYWZr53Op3y9fWVj4+Px7JTfUlLS1NxcbGioqI89lNWVqb9+/ef87Oqqqo0fvx4Pfnkk+rSpctl7AVgHQQiAOdlGIYkeQSeU8ttNpu5viH4+/t7vLfZbKqurvb4/LM52/KGbOeZztbuc/WlurpasbGxWrt2ba19ne/qvKKiIm3ZskVbt241TxdWV1fLMAz5+flpxYoVGjJkyMV3BrAA5hABOK9OnTopICBAGzZsMJdVVFRoy5Yt6tatm7p3727OhTnlzPcBAQGqqqq6rO3q3r27tm3bppKSEnPZp59+Kh8fn7OOlHTq1En+/v4ebcvPz6/XJfMN0Q9Juv7665WVlSU/Pz916tTJ4xUdHX3ObcPDw7V9+3Zt27bNfN1///1KSEjQtm3b1KdPn8veXqC5IRABOK/Q0FA98MADevTRR5WamqqdO3dq0qRJKi0t1cSJE3X//fdr//79mjZtmtLT07Vo0SItWLDAYx/t27dXcXGxPv74Y+Xm5qq0tPSS2/Xzn/9cQUFBuuuuu7Rjxw6tWbNGU6ZMUXJycq3TZZLUokULTZw4UY8++qg+/vhj7dixQxMmTPA4jXU+7du31/r163XkyBHl5uZech9OGTZsmJKSknTbbbdp+fLlOnjwoDZu3Kjf//732rJlyzm39fHxUWJiosfr1NWAiYmJHqcUAZwdgQjABXnmmWd0xx13KDk5Wddff7327dun5cuXKyIiQm3bttW7776rjz76SD179tRLL72kp59+2mP7fv366f7779edd96pVq1aadasWZfcppCQEC1fvlzHjx/XDTfcoB//+McaOnSo5s6dW+c2f/3rXzVgwACNHTtWw4YNU//+/dWrV68L/synnnpKBw8eVMeOHdWqVatL7sMpNptNy5Yt04ABA3TPPfeoS5cu+ulPf6qDBw+eNdwBuLxsxpU8qQ4AANAIMUIEAAAsj0AEwCs++eQTtWjRos4XbfJ09dVX19mut956y6ttA5oDTpkB8IqysjIdOXKkzvWdOnW6gq2p0RjbdMp3332nioqKs65zOp0e9zwCUH8EIgAAYHmcMgMAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJb3/wMmU3vf61fP3AAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
"\n",
"Ncount.load()\n",
"Ncount_mean = calculate_mean(Ncount)\n",
"Ncount_std = calculate_std(Ncount)\n",
"Ncount_mean.plot.errorbar(yerr=Ncount_std)\n",
"plt.show()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Do a 1D fit"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<table><tr><th> name </th><th> value </th><th> initial value </th><th> min </th><th> max </th><th> vary </th></tr><tr><td> amplitude </td><td> 1.00000000 </td><td> None </td><td> -inf </td><td> inf </td><td> True </td></tr><tr><td> center </td><td> 0.00000000 </td><td> None </td><td> -inf </td><td> inf </td><td> True </td></tr><tr><td> sigma </td><td> 1.00000000 </td><td> None </td><td> -inf </td><td> inf </td><td> True </td></tr></table>"
],
"text/plain": [
"Parameters([('amplitude', <Parameter 'amplitude', value=1.0, bounds=[-inf:inf]>), ('center', <Parameter 'center', value=0.0, bounds=[-inf:inf]>), ('sigma', <Parameter 'sigma', value=1.0, bounds=[-inf:inf]>)])"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def gaussian(x, amplitude=1.0, center=0.0, sigma=1.0):\n",
" \"\"\"Return a 1-dimensional Gaussian function.\n",
"\n",
" gaussian(x, amplitude, center, sigma) =\n",
" (amplitude/(s2pi*sigma)) * exp(-(1.0*x-center)**2 / (2*sigma**2))\n",
"\n",
" \"\"\"\n",
" return ((amplitude/(max(1e-10, np.sqrt(2*np.pi)*sigma)))\n",
" * np.exp(-(1.0*x-center)**2 / max(1e-10, (2*sigma**2))))\n",
"\n",
"fitModel = NewFitModel(gaussian)\n",
"\n",
"fitModel.make_params()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"ename": "KeyError",
"evalue": "'sin_mod_freq'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
"File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\dataarray.py:805\u001b[0m, in \u001b[0;36mDataArray._getitem_coord\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 804\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m--> 805\u001b[0m var \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_coords[key]\n\u001b[0;32m 806\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mKeyError\u001b[39;00m:\n",
"\u001b[1;31mKeyError\u001b[0m: 'sin_mod_freq'",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32mf:\\Jianshun\\analyseScript\\Example.ipynb Cell 29\u001b[0m in \u001b[0;36m3\n\u001b[0;32m <a href='vscode-notebook-cell:/f%3A/Jianshun/analyseScript/Example.ipynb#X34sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m fitAnalyser \u001b[39m=\u001b[39m FitAnalyser(fitModel, fitDim\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m)\n\u001b[1;32m----> <a href='vscode-notebook-cell:/f%3A/Jianshun/analyseScript/Example.ipynb#X34sZmlsZQ%3D%3D?line=2'>3</a>\u001b[0m params \u001b[39m=\u001b[39m fitAnalyser\u001b[39m.\u001b[39;49mguess(Ncount_mean, x\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39msin_mod_freq\u001b[39;49m\u001b[39m\"\u001b[39;49m, dask\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mparallelized\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n\u001b[0;32m <a href='vscode-notebook-cell:/f%3A/Jianshun/analyseScript/Example.ipynb#X34sZmlsZQ%3D%3D?line=3'>4</a>\u001b[0m fitResult \u001b[39m=\u001b[39m fitAnalyser\u001b[39m.\u001b[39mfit(Ncount_mean, params, x\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39msin_mod_freq\u001b[39m\u001b[39m\"\u001b[39m)\u001b[39m.\u001b[39mload()\n\u001b[0;32m <a href='vscode-notebook-cell:/f%3A/Jianshun/analyseScript/Example.ipynb#X34sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m plot_x \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mlinspace(Ncount_mean[\u001b[39m\"\u001b[39m\u001b[39msin_mod_freq\u001b[39m\u001b[39m\"\u001b[39m]\u001b[39m.\u001b[39mmin(), Ncount_mean[\u001b[39m\"\u001b[39m\u001b[39msin_mod_freq\u001b[39m\u001b[39m\"\u001b[39m]\u001b[39m.\u001b[39mmax(), \u001b[39m100\u001b[39m)\n",
"File \u001b[1;32mf:\\Jianshun\\analyseScript\\Analyser\\FitAnalyser.py:491\u001b[0m, in \u001b[0;36mFitAnalyser.guess\u001b[1;34m(self, dataArray, x, y, guess_kwargs, input_core_dims, dask, vectorize, keep_attrs, daskKwargs, **kwargs)\u001b[0m\n\u001b[0;32m 485\u001b[0m \u001b[39mif\u001b[39;00m input_core_dims \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 486\u001b[0m kwargs\u001b[39m.\u001b[39mupdate(\n\u001b[0;32m 487\u001b[0m {\n\u001b[0;32m 488\u001b[0m \u001b[39m\"\u001b[39m\u001b[39minput_core_dims\u001b[39m\u001b[39m\"\u001b[39m: [[x]],\n\u001b[0;32m 489\u001b[0m }\n\u001b[0;32m 490\u001b[0m )\n\u001b[1;32m--> 491\u001b[0m x \u001b[39m=\u001b[39m dataArray[x]\u001b[39m.\u001b[39mto_numpy()\n\u001b[0;32m 493\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mfitDim \u001b[39m==\u001b[39m \u001b[39m1\u001b[39m:\n\u001b[0;32m 495\u001b[0m guess_kwargs\u001b[39m.\u001b[39mupdate(\n\u001b[0;32m 496\u001b[0m {\n\u001b[0;32m 497\u001b[0m \u001b[39m'\u001b[39m\u001b[39mx\u001b[39m\u001b[39m'\u001b[39m:x, \n\u001b[0;32m 498\u001b[0m }\n\u001b[0;32m 499\u001b[0m )\n",
"File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\dataarray.py:814\u001b[0m, in \u001b[0;36mDataArray.__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 812\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__getitem__\u001b[39m(\u001b[39mself\u001b[39m: T_DataArray, key: Any) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m T_DataArray:\n\u001b[0;32m 813\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(key, \u001b[39mstr\u001b[39m):\n\u001b[1;32m--> 814\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_getitem_coord(key)\n\u001b[0;32m 815\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 816\u001b[0m \u001b[39m# xarray-style array indexing\u001b[39;00m\n\u001b[0;32m 817\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39misel(indexers\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_item_key_to_dict(key))\n",
"File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\dataarray.py:808\u001b[0m, in \u001b[0;36mDataArray._getitem_coord\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 806\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mKeyError\u001b[39;00m:\n\u001b[0;32m 807\u001b[0m dim_sizes \u001b[39m=\u001b[39m \u001b[39mdict\u001b[39m(\u001b[39mzip\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdims, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mshape))\n\u001b[1;32m--> 808\u001b[0m _, key, var \u001b[39m=\u001b[39m _get_virtual_variable(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_coords, key, dim_sizes)\n\u001b[0;32m 810\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_replace_maybe_drop_dims(var, name\u001b[39m=\u001b[39mkey)\n",
"File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\dataset.py:185\u001b[0m, in \u001b[0;36m_get_virtual_variable\u001b[1;34m(variables, key, dim_sizes)\u001b[0m\n\u001b[0;32m 183\u001b[0m split_key \u001b[39m=\u001b[39m key\u001b[39m.\u001b[39msplit(\u001b[39m\"\u001b[39m\u001b[39m.\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m1\u001b[39m)\n\u001b[0;32m 184\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(split_key) \u001b[39m!=\u001b[39m \u001b[39m2\u001b[39m:\n\u001b[1;32m--> 185\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mKeyError\u001b[39;00m(key)\n\u001b[0;32m 187\u001b[0m ref_name, var_name \u001b[39m=\u001b[39m split_key\n\u001b[0;32m 188\u001b[0m ref_var \u001b[39m=\u001b[39m variables[ref_name]\n",
"\u001b[1;31mKeyError\u001b[0m: 'sin_mod_freq'"
]
}
],
"source": [
"fitAnalyser = FitAnalyser(fitModel, fitDim=1)\n",
"\n",
"params = fitAnalyser.guess(Ncount_mean, x=\"sin_mod_freq\", dask=\"parallelized\")\n",
"fitResult = fitAnalyser.fit(Ncount_mean, params, x=\"sin_mod_freq\").load()\n",
"\n",
"plot_x = np.linspace(Ncount_mean[\"sin_mod_freq\"].min(), Ncount_mean[\"sin_mod_freq\"].max(), 100)\n",
"\n",
"fitCurve = fitAnalyser.eval(fitResult, x=plot_x, dask=\"parallelized\").load()\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"Ncount_mean.plot.errorbar(ax=ax, yerr=Ncount_std)\n",
"fitCurve.plot.errorbar(ax=ax, fmt='--g')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitCurve = fitCurve.rename(dict(x='final_amp'))\n",
"plot_dataSe = xr.combine_nested([Ncount_mean, fitCurve], ['plot'])\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"plot_dataSe.sel(plot=[0, 1]).plot.errorbar(ax=ax, hue='plot', x='final_amp', fmt=['ob', '-g'])\n",
"plt.show()\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Select data and remove bad shot"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_dataSe.where( (Ncount_mean[scanAxis[0]]<2e-4) & (Ncount_mean[scanAxis[0]]>1e-4) )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"img_dir = '//DyLabNAS/Data/'\n",
"SequenceName = \"Evaporative_Cooling\" + \"/\"\n",
"folderPath = img_dir + SequenceName + '2023/05/17'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"groupList = [\n",
" \"images/MOT_3D_Camera/in_situ_absorption\",\n",
" \"images/ODT_1_Axis_Camera/in_situ_absorption\",\n",
" \"images/ODT_2_Axis_Camera/in_situ_absorption\",\n",
"]\n",
"\n",
"dskey = {\n",
" \"images/MOT_3D_Camera/in_situ_absorption\": \"camera_0\",\n",
" \"images/ODT_1_Axis_Camera/in_situ_absorption\": \"camera_1\",\n",
" \"images/ODT_2_Axis_Camera/in_situ_absorption\": \"camera_2\",\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataSet"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"shotNum = \"0023\"\n",
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
"\n",
"dataSetDict = {\n",
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
" for i in [0]\n",
"}\n",
"\n",
"dataSet = dataSetDict[\"camera_0\"]\n",
"\n",
"print_scanAxis(dataSet)\n",
"\n",
"scanAxis = get_scanAxis(dataSet)\n",
"\n",
"dataSet = auto_rechunk(dataSet)\n",
"\n",
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
"\n",
"imageAnalyser.center = (280, 959)\n",
"imageAnalyser.span = (350, 350)\n",
"imageAnalyser.fraction = (0.1, 0.1)\n",
"\n",
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
"\n",
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n",
"Ncount_mean = Ncount.mean(dim='runs')\n",
"Ncount_std = Ncount.std(dim='runs')\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n",
"\n",
"plt.ylabel('NCount')\n",
"plt.tight_layout()\n",
"#plt.ylim([0, 800])\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def sinc_func(x, amplitude=1.0, center=0.0, sigma=1.0, offset=0.0):\n",
" x = np.where(x==center, 1e-15, x)\n",
" return amplitude * ( np.sin(np.pi*(x-center)*sigma) / (np.pi*( (x-center) )* max(sigma, 1e-15) ) ) + offset\n",
"\n",
"fitModel = NewFitModel(sinc_func)\n",
"\n",
"fitModel.make_params()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitAnalyser = FitAnalyser(fitModel, fitDim=1)\n",
"# params = fitAnalyser.guess(Ncount_mean_1, x=scanAxis[0], guess_kwargs=dict(negative=True), dask=\"parallelized\")\n",
"params = fitAnalyser.fitModel.make_params()\n",
"params.add(name=\"amplitude\", value= -5000, max=np.inf, min=-np.inf, vary=True)\n",
"params.add(name=\"center\", value= 4.24, max=np.inf, min=-np.inf, vary=True)\n",
"params.add(name=\"sigma\", value= 100, max=np.inf, min= 0, vary=True)\n",
"params.add(name=\"offset\", value= 7000, max=np.inf, min=-np.inf, vary=True)\n",
"\n",
"fitResult = fitAnalyser.fit(Ncount_mean, params, x=scanAxis[0]).load()\n",
"freqdata = np.linspace(4.21, 4.27, 500)\n",
"fitCurve = fitAnalyser.eval(fitResult, x=freqdata, dask=\"parallelized\").load()\n",
"fitCurve = fitCurve.assign_coords({'x':np.array(freqdata)})\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n",
"fitCurve.plot.errorbar(ax=ax, fmt='--g')\n",
"plt.xlabel('Center Frequency (MHz)')\n",
"plt.ylabel('NCount')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitResult.item()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import lmfit\n",
"\n",
"def sinc_func(x, amplitude=1.0, center=0.0, sigma=1.0, offset=0.0):\n",
" x = np.where(x==center, 1e-5, x)\n",
" return amplitude * ( np.sin(np.pi*(x-center)*max(sigma, 1e-5)) / (np.pi*( (x-center) )* max(sigma, 1e-5) ) ) + offset\n",
"\n",
"def _fit_1D(data, params, x):\n",
" \n",
" print(x)\n",
" print(data)\n",
" \n",
" res = fitModel.fit(data=data, x=x, params=params, nan_policy='omit')\n",
" \n",
" print(111)\n",
" \n",
" # print(res.items())\n",
" \n",
" return 1\n",
"\n",
"def fit(dataArray, paramsArray, x=None, y=None, input_core_dims=None, dask='parallelized', vectorize=True, keep_attrs=True, daskKwargs=None, **kwargs):\n",
" \n",
" kwargs.update(\n",
" {\n",
" \"dask\": dask,\n",
" \"vectorize\": vectorize,\n",
" \"input_core_dims\": input_core_dims,\n",
" 'keep_attrs': keep_attrs,\n",
" }\n",
" )\n",
" \n",
" fitModel = NewFitModel(sinc_func)\n",
"\n",
" if not daskKwargs is None:\n",
" kwargs.update({\"dask_gufunc_kwargs\": daskKwargs})\n",
" \n",
" if isinstance(paramsArray, type(fitModel.make_params())):\n",
"\n",
" if input_core_dims is None:\n",
" kwargs.update(\n",
" {\n",
" \"input_core_dims\": [['x']],\n",
" }\n",
" )\n",
"\n",
" if x is None:\n",
" if 'x' in dataArray.dims:\n",
" x = dataArray['x'].to_numpy()\n",
" else:\n",
" if isinstance(x, str):\n",
" if input_core_dims is None:\n",
" kwargs.update(\n",
" {\n",
" \"input_core_dims\": [[x]],\n",
" }\n",
" )\n",
" x = dataArray[x].to_numpy()\n",
"\n",
" return xr.apply_ufunc(_fit_1D, dataArray, kwargs={'params':paramsArray,'x':x},\n",
" output_dtypes=[type(lmfit.model.ModelResult(fitModel, fitModel.make_params()))], \n",
" **kwargs)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"params = fitAnalyser.fitModel.make_params()\n",
"params.add(name=\"amplitude\", value= -6000, max=np.inf, min=-np.inf, vary=True)\n",
"params.add(name=\"center\", value= 4.24, max=np.inf, min=-np.inf, vary=True)\n",
"params.add(name=\"sigma\", value= 1, max=np.inf, min= 0, vary=True)\n",
"params.add(name=\"offset\", value= 6000, max=np.inf, min=-np.inf, vary=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitResult = fit(Ncount_mean, params, x=scanAxis[0]).load()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def sinc_func(x, amplitude=1.0, center=0.0, sigma=1.0, offset=0.0):\n",
" x = np.where(x==center, 1e-5, x)\n",
" return amplitude * ( np.sin(np.pi*(x-center)*max(sigma, 1e-5)) / (np.pi*( (x-center) )* max(sigma, 1e-5) ) ) + offset\n",
"\n",
"fitModel = NewFitModel(sinc_func)\n",
"\n",
"fitModel.make_params()\n",
"\n",
"data = Ncount_mean.to_numpy()\n",
"x = Ncount_mean.carrier_freq.to_numpy()\n",
"\n",
"fitModel.fit(data=data, x=x, params=params, nan_policy='omit')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.where(x==0, 1, 2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}