analyseScript/20230509_Data_Analysis.ipynb
2023-05-19 09:34:58 +02:00

3670 lines
669 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Import supporting package"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import xarray as xr\n",
"import pandas as pd\n",
"import numpy as np\n",
"import copy\n",
"\n",
"import xrft\n",
"\n",
"from uncertainties import ufloat\n",
"from uncertainties import unumpy as unp\n",
"from uncertainties import umath\n",
"\n",
"import matplotlib.pyplot as plt\n",
"plt.rcParams['font.size'] = 18\n",
"\n",
"from DataContainer.ReadData import read_hdf5_file, read_hdf5_global, read_hdf5_run_time\n",
"from Analyser.ImagingAnalyser import ImageAnalyser\n",
"from Analyser.FitAnalyser import FitAnalyser\n",
"from ToolFunction.ToolFunction import *\n",
"\n",
"from ToolFunction.HomeMadeXarrayFunction import errorbar, dataarray_plot_errorbar\n",
"xr.plot.dataarray_plot.errorbar = errorbar\n",
"xr.plot.accessor.DataArrayPlotAccessor.errorbar = dataarray_plot_errorbar\n",
"\n",
"imageAnalyser = ImageAnalyser()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Start a client for parallel computing"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"D:\\Program Files\\Python\\Python38\\Lib\\site-packages\\distributed\\node.py:182: UserWarning: Port 8787 is already in use.\n",
"Perhaps you already have a cluster running?\n",
"Hosting the HTTP server on port 65030 instead\n",
" warnings.warn(\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px;\">Client</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Client-06ca1baa-f5d4-11ed-9390-9c7bef43b4fb</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
"\n",
" <tr>\n",
" \n",
" <td style=\"text-align: left;\"><strong>Connection method:</strong> Cluster object</td>\n",
" <td style=\"text-align: left;\"><strong>Cluster type:</strong> distributed.LocalCluster</td>\n",
" \n",
" </tr>\n",
"\n",
" \n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:65030/status\" target=\"_blank\">http://127.0.0.1:65030/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" \n",
"\n",
" </table>\n",
"\n",
" \n",
" <button style=\"margin-bottom: 12px;\" data-commandlinker-command=\"dask:populate-and-launch-layout\" data-commandlinker-args='{\"url\": \"http://127.0.0.1:65030/status\" }'>\n",
" Launch dashboard in JupyterLab\n",
" </button>\n",
" \n",
"\n",
" \n",
" <details>\n",
" <summary style=\"margin-bottom: 20px;\"><h3 style=\"display: inline;\">Cluster Info</h3></summary>\n",
" <div class=\"jp-RenderedHTMLCommon jp-RenderedHTML jp-mod-trusted jp-OutputArea-output\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\">\n",
" </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px; margin-top: 0px;\">LocalCluster</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">e8410166</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:65030/status\" target=\"_blank\">http://127.0.0.1:65030/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Workers:</strong> 6\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads:</strong> 24\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total memory:</strong> 55.88 GiB\n",
" </td>\n",
" </tr>\n",
" \n",
" <tr>\n",
" <td style=\"text-align: left;\"><strong>Status:</strong> running</td>\n",
" <td style=\"text-align: left;\"><strong>Using processes:</strong> True</td>\n",
"</tr>\n",
"\n",
" \n",
" </table>\n",
"\n",
" <details>\n",
" <summary style=\"margin-bottom: 20px;\">\n",
" <h3 style=\"display: inline;\">Scheduler Info</h3>\n",
" </summary>\n",
"\n",
" <div style=\"\">\n",
" <div>\n",
" <div style=\"width: 24px; height: 24px; background-color: #FFF7E5; border: 3px solid #FF6132; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px;\">Scheduler</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Scheduler-c2d7c34b-da7d-4218-ac9a-8a33f289f15b</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm:</strong> tcp://127.0.0.1:65031\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Workers:</strong> 6\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:65030/status\" target=\"_blank\">http://127.0.0.1:65030/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads:</strong> 24\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Started:</strong> Just now\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total memory:</strong> 55.88 GiB\n",
" </td>\n",
" </tr>\n",
" </table>\n",
" </div>\n",
" </div>\n",
"\n",
" <details style=\"margin-left: 48px;\">\n",
" <summary style=\"margin-bottom: 20px;\">\n",
" <h3 style=\"display: inline;\">Workers</h3>\n",
" </summary>\n",
"\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 0</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:65062\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 4\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:65067/status\" target=\"_blank\">http://127.0.0.1:65067/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:65034\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\Jianshun Gao\\AppData\\Local\\Temp\\dask-worker-space\\worker-v4ohhhqe\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 1</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:65066\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 4\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:65077/status\" target=\"_blank\">http://127.0.0.1:65077/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:65035\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\Jianshun Gao\\AppData\\Local\\Temp\\dask-worker-space\\worker-b3vo1gqh\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 2</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:65064\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 4\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:65075/status\" target=\"_blank\">http://127.0.0.1:65075/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:65036\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\Jianshun Gao\\AppData\\Local\\Temp\\dask-worker-space\\worker-65l26hd_\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 3</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:65065\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 4\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:65071/status\" target=\"_blank\">http://127.0.0.1:65071/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:65037\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\Jianshun Gao\\AppData\\Local\\Temp\\dask-worker-space\\worker-6q6tun74\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 4</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:65063\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 4\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:65072/status\" target=\"_blank\">http://127.0.0.1:65072/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:65038\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\Jianshun Gao\\AppData\\Local\\Temp\\dask-worker-space\\worker-efysz1ue\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 5</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:65061\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 4\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:65068/status\" target=\"_blank\">http://127.0.0.1:65068/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 9.31 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:65039\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> C:\\Users\\Jianshun Gao\\AppData\\Local\\Temp\\dask-worker-space\\worker-i87d0xvj\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
"\n",
" </details>\n",
"</div>\n",
"\n",
" </details>\n",
" </div>\n",
"</div>\n",
" </details>\n",
" \n",
"\n",
" </div>\n",
"</div>"
],
"text/plain": [
"<Client: 'tcp://127.0.0.1:65031' processes=6 threads=24, memory=55.88 GiB>"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from dask.distributed import Client\n",
"client = Client(n_workers=6, threads_per_worker=4, processes=True, memory_limit='10GB')\n",
"client"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set global path for experiment"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"groupList = [\n",
" \"images/MOT_3D_Camera/in_situ_absorption\",\n",
" \"images/ODT_1_Axis_Camera/in_situ_absorption\",\n",
" \"images/ODT_2_Axis_Camera/in_situ_absorption\",\n",
"]\n",
"\n",
"dskey = {\n",
" \"images/MOT_3D_Camera/in_situ_absorption\": \"camera_0\",\n",
" \"images/ODT_1_Axis_Camera/in_situ_absorption\": \"camera_1\",\n",
" \"images/ODT_2_Axis_Camera/in_situ_absorption\": \"camera_2\",\n",
"}\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"img_dir = 'F:/'\n",
"SequenceName = \"Evaporative_Cooling\" + \"/\"\n",
"folderPath = img_dir + SequenceName + \"2023/05/09\" # get_date()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Check the stability of our BEC"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The detected scaning axes and values are: \n",
"\n",
"{'runs': array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.,\n",
" 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21.,\n",
" 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32.,\n",
" 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43.,\n",
" 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54.,\n",
" 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65.,\n",
" 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76.,\n",
" 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87.,\n",
" 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98.,\n",
" 99., 100., 101., 102., 103., 104., 105., 106., 107., 108., 109.,\n",
" 110., 111., 112., 113., 114., 115., 116., 117., 118., 119., 120.,\n",
" 121., 122., 123., 124., 125., 126., 127., 128., 129., 130., 131.,\n",
" 132., 133., 134., 135., 136., 137., 138., 139., 140., 141., 142.,\n",
" 143., 144., 145., 146., 147., 148., 149., 150., 151., 152., 153.,\n",
" 154., 155., 156., 157., 158., 159., 160., 161., 162., 163., 164.,\n",
" 165., 166., 167., 168., 169., 170., 171., 172., 173., 174., 175.,\n",
" 176., 177., 178., 179., 180., 181., 182., 183., 184., 185., 186.,\n",
" 187., 188., 189., 190., 191., 192., 193., 194., 195., 196., 197.,\n",
" 198., 199., 200., 201., 202., 203., 204., 205., 206., 207., 208.,\n",
" 209., 210., 211., 212., 213., 214., 215., 216., 217., 218., 219.,\n",
" 220., 221., 222., 223., 224., 225., 226., 227., 228., 229., 230.,\n",
" 231., 232., 233., 234., 235., 236., 237., 238., 239., 240., 241.,\n",
" 242., 243., 244., 245., 246., 247., 248., 249., 250., 251., 252.,\n",
" 253., 254., 255., 256., 257., 258., 259., 260., 261., 262., 263.,\n",
" 264., 265., 266., 267., 268., 269., 270., 271., 272., 273., 274.,\n",
" 275., 276., 277., 278., 279., 280., 281., 282., 283., 284., 285.,\n",
" 286., 287., 288., 289., 290., 291., 292., 293., 294., 295., 296.,\n",
" 297., 298., 299., 300., 301., 302., 303., 304., 305., 306., 307.,\n",
" 308., 309., 310., 311., 312., 313., 314., 315., 316., 317., 318.,\n",
" 319., 320., 321., 322., 323., 324., 325., 326., 327., 328., 329.,\n",
" 330., 331., 332., 333., 334., 335., 336., 337., 338., 339., 340.,\n",
" 341., 342., 343., 344., 345., 346., 347., 348., 349., 350., 351.,\n",
" 352., 353., 354., 355., 356., 357., 358., 359., 360., 361., 362.,\n",
" 363., 364., 365., 366., 367., 368., 369., 370., 371., 372., 373.,\n",
" 374., 375., 376., 377., 378., 379., 380., 381., 382., 383., 384.,\n",
" 385., 386., 387., 388., 389., 390., 391., 392., 393., 394., 395.,\n",
" 396., 397., 398., 399., 400., 401., 402., 403., 404., 405., 406.,\n",
" 407., 408., 409., 410., 411., 412., 413., 414., 415., 416., 417.,\n",
" 418., 419., 420., 421., 422., 423., 424., 425., 426., 427., 428.,\n",
" 429., 430., 431., 432., 433., 434., 435., 436., 437., 438., 439.,\n",
" 440., 441., 442., 443., 444., 445., 446., 447., 448., 449., 450.,\n",
" 451., 452., 453., 454., 455., 456., 457., 458., 459., 460., 461.,\n",
" 462., 463., 464., 465., 466., 467., 468., 469., 470., 471., 472.,\n",
" 473., 474., 475., 476., 477., 478., 479., 480., 481., 482., 483.,\n",
" 484., 485., 486., 487., 488., 489., 490., 491., 492., 493., 494.,\n",
" 495., 496., 497., 498., 499., 500., 501., 502., 503., 504., 505.,\n",
" 506., 507., 508., 509., 510., 511., 512., 513., 514., 515., 516.,\n",
" 517., 518., 519., 520., 521., 522., 523., 524., 525., 526., 527.,\n",
" 528., 529., 530., 531., 532., 533., 534., 535., 536., 537., 538.,\n",
" 539., 540., 541., 542., 543., 544., 545., 546., 547., 548., 549.])}\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEHCAYAAABiAAtOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4eUlEQVR4nO2df9QfR1noP09CmpLEAn1rA602kVZQrwrYIi33gqWtXi0Hvd5zyo+GIkIJBFsplCvXGylYCSKWghQRQ6Fg30ihBy2gXJDaBlGoUFAvIvKjpS2k0F9QaJo2QN65f+wu2WxmZmdmZ/e7332fzzlzvu+7Ozu7O7+emed5ZlaMMSiKoihKTlbM+gEURVGU6aHCRVEURcmOChdFURQlOypcFEVRlOyocFEURVGyo8JFURRFyc4DZv0AU+CII44wGzduTLr23nvvZe3atXkfSMmKltF8oOU0PJ/+9KfvNMb8sO2cCpcMbNy4keuvvz7p2p07d3LyySfnfSAlK1pG84GW0/CIyM2uc6oWUxRFUbKjwkVRFEXJjgoXRVEUJTsqXBRFUZTsqHBRemfHDti4EVasKH537Jj1EymK0jfqLab0yo4dsHkz7NlT/H/zzcX/AJs2ze65FEXpF525KL2ydet+wVKxZ09xXFGU6aLCRemVW26JO64oyjRQ4aL0yjHHxB1XFGUaqHBRemXbNliz5sBja9YUxxVFmS4qXJRe2bQJtm+HDRtApPjdvl2N+YoyddRbTOmdTZtUmCjKckNnLoqiKEp2VLgoyjJEF7YqfaNqMUVZZujCVmUIdOaiKMsMXdiqDIEKF0VZZujCVmUIVLgoyjJDF7YqQ6DCRVGWGWNZ2KpOBdNGhYuiLDPGsLC1ciq4+WYwZr9TgQqY6aDCRVGWIZs2wU03wdJS8Tu0l5g6FUwfFS6KogyOOhVMHxUuiqIMjjoVTB8VLoqiDM5YnAqU/pipcBGR3xWRK0XkRhExInJTS/zHicjVInKPiHxHRD4kIo92xD1KRP5CRO4QkftE5HoROcMRd7WIXCgiXxGRvSJyg4j8nois6v6WiqI0GYNTgdIvs97+5dXAN4HPAA/2RRSRE4GdwC7ggvLwOcDHROTxxpjP1uIeDvwjcCRwMfA14EzgPSLyHGPMZY3k3w38GvB24BPAScAfAMcBz05+O0VRnOhu2dNm1sLlWGPMjQAi8u/AOk/cNwLfBZ5ojNlVXvMe4PPA64BfqsX938CPAb9qjPlAGfdtFILjIhG50hizuzx+OoVgudgYc355/aUicjfwEhHZboz5eJa3VRRFWSbMVC1WCZY2ROQ44LHAlZVgKa/fBVwJnCYiD61dciZwQyVYyrj7gEuAw4HTG3EB3tC4bfX/M0OeUVEURdnPvBj0H1v+fsJy7jpAgOMBRORhwNHlcVvcenrV37uMMV+tRyz/v7URV1EURQlg1mqxUI4qf3dZzlXHjk6IW8X/D8d9dwE/YjshIpuBzQDr169n586djiT87N69O/laZRimVEZXX30kl176cG6/fTVHHrmXs8++kdNOu30S951SOU0CY8woAvDvwE2Ocy8HDHCK5dwp5bnzyv+fUP5/oSXuivLcVbVj+4B/cNz3H4C72579+OOPN6lce+21ydcqwzCVMlpcNGbNGmOKDVeKsGZNcXwK951KOc0TwPXG0S/Oi1qs2ihiteXcoY04MXGrv21xq/h7HOdGiW4GqLiY1ZYrutXL8mRehMut5e/RlnPVsV0Jcav4trhVfJt6bZQsx80AVZiGM6stV3Srl+XJvAiXT5W/J1nOnUih6vo0gDHm6xQC4URHXIDrG2kfLSI/Wo9Y/n9UI+6ocY0QX/Si2TxP3yxHYdqFWW25MrWtXnRAE8ZcCBdjzJcpOvkzRKQy2FP+fQZwjTHmG7VL3gUcKyJPqcVdCZwL3A18sBEX4LzGbav/Z1J1UiqwayR4113TbACqboljVluuTGmrF9uA5qyzil0GjjiiCPMidHoXki5jzBABOAv4vTLcBnyr9v9ZjbiPB/YCN1B0/OeVf+8GHtWIuwDcBNwD/D6FV9e1FDOc51qe4wPluUuB55a/Brg85D1yG/RTDaAbNhx4TT1s2JD8iKNFxP6uInnvMyVD8eJiURdEit++jfmu+27Zkv85hignXxtrhiGcJVLJ5WSBx6A/a+Gys+zEbWGnJf5JwN+XAuUe4MPAzznSPhq4HLgTuJ9ii5mnOeIeCryqFEh7gRspPNRWhbxHbuHiqsBtAmJx0V3Rc3e4YyA1n2KZknAZA6EdW6wgzFVOvvu6BjTzNqjL1XZGK1ymEnILly4j8oWFsEozqxFsTsbo4jqFfO2bkI4tpWxzCJe2+8bMXMY8qMs161fhMmfCpcuoIqRRzmq9Qx8M0ZmHdlpTytc+CenYUtpADuHSdl9bGevMRYVLb2EsNpf69b4Odyh10lQI7bQ0X8Nosw0uLqaNrHMIl5D7Vu2rOu56lzEPLCZvc5lK6GOFfp8j8qEM4VMhtNPydTSqKttP2+h/zZpw9W6dIWYutnepynZhoQhDlXPXPiJHH6PCZQ6FS5/kGmEvF/tC15lLU+h0HdFOId/ro39bWFgYp82lL1xl6js+BhWsCpc5FS59dSJbttgb9JYt4WmMpXIPQRebi2s2k6oqm1q++2bRY/QW6wNXmW7ZYp/hVTOkMahgVbiMWLhs3fq54JGJiF0AxDaGHDOX5WRf6OIt5hqZp6og5yXfQ+tkzveZV5dxVx6sXOmuP7nrVSoqXHoOqcJlcdGY1au/bx2F+lQsXT2/cthclpPdpkunlVsYzEO+h3osuoziqTOxeRUusWtnfEFnLhMLqcLF1fG4prz189WocMWK+EoW4q2T+uxjG0HnoEunlVuNNQ/5nuLOW3WwXdRQ8yhcFhfdM5TYmYvaXCYYUoVLzhFLzEg2xFunrZJOTffvo2unlVOHPw/53ja76ktADi1ccnhrudqhz+ZiG2TOyrFDhUvPIffMJUcI2Sqm615kY/Ra6uOZxjYiHmO+12kTHn2p9oYspxxC3mdrqdtebZqMkJneEPVEhUvPIafNJVcIrUhj0OHnagSukeDatd3WH4xNuIyd1C1U5mnmkuMdYtperI1qqBmuCpeeQ1dvsRSvEF9YWAi/v2/05OqMh1bzdPU8aobYRjZW4RK7NmIMz1ad66PjG7KccgzKUgRU6DU+e27OuqHCpefQdZ1LbttLTIVxrXlpNpjKBXpoA3XM/WLyMUYA99VpdRECMWsjxmaTMSb83WNWwA8pXGLWmeRcCBkq1ELbQte6ocKl59BVuOS0vaxd679fs6K3eabVK6/PTlMXBjEdZqrx1zYCi83H0EbVR6fVVUjHvuusvMlSBKhPBeTLr6GEy+KiMatWHfw8hxwSr56KEZ7GdJ+55K4bKlx6Dl2FS5v3lq0y2GYcq1b5G2/sfWz3bVtRHdthphp/bR1Nm3eNTUCFllFuuursY2e7s1gHk1IfUtpCxVDCxTfgCY3bLOfQvOoSr4+6ocKl55Bj+5f6aK2ywSwsFKMhV0XKtTI/VsC4jqd0mKnGX9d9XN41rhBTRjmJ2X3XVr7zMHNJ0fvHvlc9v4YSLjH2ltC4MW0nRaXo01LozGXEoc+NK3MaZ7vadirbi0sYpBo5Y42/bWFhoXjOEEeJEHwDgOo3tmy62ppcqhlbmJXNJUXvH1tHxzRzsXXSoXG71tGQfqIPRwoVLj2Hse2K7KpovpFk6Gi/bt8ITb/rqDnFTtSc8bneO4RQ1WXsN3e6uuv68sHn7deWv7kEUYreP+aaHDaXWJtHdU3oDgOhHbpvlX7IO4QKjdxlrcKl55BTuHQtfF9F850LbdSxK//7GDVv2RI2wvXNXNrsU3VinC5iBKmvrENmgb48yCXkupCi9/d13Lm9xdqez5cPPqeDFFd6X9600degLgQVLj2HXMIl1QAao1d1VfRQdURbhe1rFBzqQWTrIGzHFxbihEvoPXMZzkP04zGGZRd9d0wpev/UOhQrXEIGDG35kCv/uqQzy4XQKlx6DrmES2wFy+kREtLQco5o651MW0ef6uXWdFFO3X23r5mL731DXF1zzDqG7pj6nCnFCpeYAZVL0PnSaF4Xa1sMzReduUw45BIubQ09xfYQWtFslXvVqvyfbQ3tOOukeLk10+vSAPuwufiImZF0nSnmmP3E0tfsto+ZS7NNNttEaBtctcrv+dklX2IFU878V+HScxhi5pI6eo/p9Ppq9HV8DdrV0YeMMOtxbDOhLiP0nN5iIXk85GwiRdin3qfvupXb5hJS71at6uaF2cXVOOWa3DNHFS49hyFsLrGj92anN0TjrpNi23F1nm3vHtI4XGmEeFXZnC7qI9bqmzpt+RrasH2zidAOxBeveX7dOvv9ctpdhnD0cH3Vte3ZXN5iqQIjJjTrfN8ahNwqNBUuPYchvMVSRkchXmJ94PL42bIlbebiG2GuXGn/9HNMGm150hwA+NaX+PLVJ+Da9O8hahXXtc31MUOs3A5575w2gWLHiqWsdXwIAdPMg5B7dhE2OTwM66hw6TkMsc6lbTTrq7xDG/xc96sEjK1zXrnS32ByGObrgtvlpmzLkxDVZUi+hu6T1ZwZgfuLo6FrlKpniukwu9SPel7nFF62wdfiovs+Ke+Q6pnYJhBCBgddBpEh+Mo/RRircOk5DCFc2kakPj390B5BbR40zc5z7dqwhmdMu13KpeLoYoOpDPqxDhTVvdtmbM136LL/W1tHHuNSHTIjtBH6DrEdv6sN+Molto67Zt1VPbWl77p3s/7ZbHbNupk6W2o6YLg0IG1lE1smKlx6DrmFi69iuHTKvk53LDMXV2OPeb620b/vXKr32NatnwveaqWtw2m7ri9VTNvMZe3a9BlhTPl3STslb2K93nyz7uYASMSYU0+117t169JcjrsMLnxpNO/hq4MxqHDpOeS2uaTYR3zXdbW5xDoDxKopYmYRPrtFaAfbll9N1q+/L7iBd/UcyqWGiem8fKN/nx3M5TnXlj+pRumUvIn1eou9R1Mt2TYLDxnUNGfgIVsZ1dPosgBXZy4jCzmFS5dC9wmBVG8x10iq7u5rS9u2RUuKqivkeVIN1KF5IrLkTbfuLdZVALSlEfvV0srhof6ep556oEDwbadjE/Cpo+vUmXJbvqxdm0/V03Xm2DaoSlFRN4WN796hs5JcTj4qXHoOOYXLLLdysNFmAPTtkhzaecdWdFu6XQztbfhmLinePnCwW3HdLuOqA227T8d2ePV0Y2YuKR1wqootRJBVA52mt1jzPUIGVn3bvHLMGHxl5Ssbm1dizE4ZNrIKF+BZwEbP+Y3As2LTnefQRbg0ffP7+OZCF9o6phivKx++ih4ipNo6hS5uqS6bi207FpvRt+1ZfEZkm+G3D7vMwkK4gI8Rbm1l1lauIe9addyuQUCsLWlxMX6G2Baq9uAr6xDB1+YxGTKQqAZ+tr4mtp3kFi77gDM9558G7ItNd55DqnBZXDRm9ervH1C4NpfFPrZhsT2LraF36chi729b22HrrF3bZtQ749Dt0315sF+dtHTQc6xbd/AzhBj9bV5YsaPZvkbX9Xf0jWJD64RLrdnWQdYJEWTVQtjDDttrNbrH5K0vj0O3fml7r5g88MVtCqVQoWgbSMTkTZ3cwmWpRbg8E/hebLrzHFKFi6uR1lUmbV+jzEGbM4CvorrWX1T63/o9fPag2JGibySYkj+xHXbTSB7z/JV6ok2dF6qHP1AQxuVjyPs17xvqkl0J0VC1pa1jix3cNAVAbN66OnObsHXVvaaNK1ZIV8IyxJhfX+eWq+xjVPB9CJdnOM49GHgXcEtsuvMcUoVLiH3F10ByzWLaRs6plbR6PltnVI3gQ7/NYgu+Tqtuiwlx6U6ZoVXXpswibDNUV/5XhNqwcqnNbPePedfU/Gm7Z1Nl6Hvurs4izfpqu6ZZJqFq3Bxl1EcYdOYCvKJUh4WG14akO5WQe+ZSL9xQHWoX2oRczOJB2/P11QhCtnNp/u9yQEi5f5/rUmLsMraZYK587yqAU2wXzVmCq7MOGZy1zcpD7J31dNvaWshMui+1Zmi98r3n4DYX4NeAy4B3lDOXj5b/18PbgTcCZwISku5UQk6bS+hiv3ro4uLpq2h11VPMIsIquFRmOYPv87A5jrflex/rUmz2orZ6YOvAchqlUzrDLnkTskNA6KzENbvow5065Jn6GpC46lLou4/BW+xa4NTY66YccniLgd0zKKQRpLgptwmM5uhuqMZQf6fQxWO5ZiIpNpc+8sZmYwu5rrnDc4j3UExwCSubgTjHfeszBZeAaNbh0M9Xp5ZbW1vzXds24wq9f2hcX16Eqljb0HUuPYeu61zaFhy2dWIpM5cQf/hZTd+rTiXEeOyyrcR2HpVRPKTxNt2kU20uMfFjZ4FV/bG9k8veU21Z0pau7T4xhv6Y4NqYc82aYjFo83joivzUDt7X1tqEefVsPkceX72I2QkhJi+60ItwAdYAPwU8AXhiM6SmO4+h68wl1F2y2Fb84JCywaCvEbQt+MoVbJ1cXR3S1nG7Gk9sRxc7CwlxhfZ1AKE7GdveNyZ+3ZMo5vs+qU4SscZ+m/0rRwhxM/bNwlzv36aqC60/Pg/QUPfmXHnRldxqsbXAW4C9DmP+kq5zCce3+rs5BY9dD+GjrSHkGoWuXbu/IYscvKFfSidXf8YK33oAX/6GGIhT8tyXVmqH2tXtNNRYG+veHWrfsaXRx4zHt81Pm3tvfVYas4VRF++v+j1jyrWuBg3Ji1yqsDq5hctbSwHyN8BLgN+whdh05zl0ES6+fauaHVjOrWFSjfSuSm5TUYAxD3jAgf/HeKO0NbTqvVNUUzbhkKJKczXU1Fmfr0xcHUWM4T50IBLaEYXaBNs6sy4u6a73TFXtts1ku7pou+4XW29Cliz4lgPk8DTNLVzuBHbEXjfl0MfMxeb2mHPmYkzYqDGkwce65LrWGMTaTap0Yjty3+izizNAPU2XCtMXqk0kU3YoTt28syuhZRRCjGtwSL1sc7tte27fPWJcmGPahM/l3Je3rutcnwSoQuwnCZrkFi67gefFXjfl0NXmYqsUrgVboXFjaGuobSPkWJdcm9oidE1K/XyMKqHpSeXCZj+J7SCMSe9wXB1CyH5YddVPyDPmoE3912Vk7HOZ7cteUy8Hn+2lj/vV3zvlY3q22V/Is3Ypo9zCZedyWyTZFrp6i7WpIOrnQ/baiiXUE82ni+8ycwkxIIPbVbtNCLh0/b50Q/LG1UF00b9X6YRuIRJTniGLAGNx3au5A28qrtl1JWD6WmtU5XkXF+sYG1lbOwvZXzBVFdtlwJFbuJwI3AGcEHvtVEOfnzkOVXl0qSAu+4vNG8u13sDWAXT9bnibCseXN67V69V1LqOuzROsudDV9byViiGHl12X8vR1ZLmJNf6npO+yQ9XrZ0yer1zZPrNsLgOIVf36PArb4qaqv1OFbBdVaW7h8nbgX4DvAx8D3lkeq4e3xaY7z6FP4RJaoWMqSIyAaFu161NdtHmDtb2ja3Vxm5qubdQcsnamTvOzCFu2+IVxDntAlwbvm03k9BSq6MMLqSLUppMyCHDlv88O0eaZVT1TqE3PptZOHWxNYeayFBDUFTmQNuESOhrxVZA2V8z6QrjQGUxFjo7MpQawfXogZK2HqxHGqO/qneXWrZ87KK3UDzbVOzCfh1TXmWjIvmuu0bnPM6wvIeIi1GPQmIMHASkdbdvCw7a89ZVb6IwkZrAV82xt9SAFXaHfc5j1zKVtDUKoWi3U9lInVPiFzIByeeC4vNFiPKrq/69e/f0oVV6osKw6s9wNvpmfPkeMULVW3+ovFyH1v3qP0E+Gh6bnwmdT880uQmckofWnzZboaoc5BwgqXHoOs7S5NL8N0qw0MWq1kFX7TVL10G2j4FT9savDi8kHV4cTkl5dTRMqLPv+GJyvU+s6ms5luHfhs7k0y705w8zpWt4k1F08VMjb3juk/tSdXprq4xSngFhUuPQc+hQuxrSPlHyjyhi1WsrMJbYBVzaLtpXPsQbatgYTkg9ts6W29/Z1SDHeQrY87jLa9AmQ0NF0jMtxqCdeKC57YDOsX3+f9dpUjzJfnQ/97HWMetJHW/7b0gxVh3cht83lmoDw97HpznMYQrj4RtS+ziOkUXaxuVTPF+uy29aYfQI1pYG0Cc4qDZ+TgOu9Qzr9tvxxzQxjtiCx4eqYY1ehxxjWQ9YmteWjL2/dAnHJmxexarLY2XrTEaCLPTJ05uJzww/RYHSx7RljTG7hchPwlUb4auk9tgTcDnwlNt15Dn0LF1fFqGYtvtFnm3CxfZipfk3MNx5CGq+vMTQbs69BxY7iQ2cavmev0kmZRaQYgtsGFan3bNvVOdTmYiu7UCHkS7fNvuC6h23m0rxXjHBxqThD669vtuGylbhmGa48aXuHNg1GF69EY4wZRC0GrAZ+F/gi8LBc6c5D6Fu4tK1bSFF7+DqSVNr047GqodxG5BDB4Bttur5i2TbSrt8/Zo+nmI7MRuhoNXTmsLjYbjeI8e5qe0dfZ28rB5tXX5MYRxGX7aKrXa5Z5qGqZZsxPmQXCd+6nlHNXNoCcDnwrtzpjjnMaubS1thCddWxFaw5yqobCbdsse8iUF917up0QlUmfeJr6L51E7G7CIe8k6+jDimznItT60LU966xa4hibCH157blYaiKOcRBoG1BbIiqsm1/uSovYpxNmoTmXai3WSxDC5fnA9/Mne6YwxA2l7bOyzXSDGlIsQswfaOstpG8ayTYdX+0nISOCNtC11FhV0GcOlqN9YSrl23I101D7pXy3CFtyZh2ARi6b51vgBBSh6p212UtW0z+5XZDNsYMLlxeA+zOne6YQ9/CxZi0EXxoxYvpBEPS9HnZ5PQi6pNUV2hb55GKS5A3v4njips6Wu1jhbhPVRjy3CEDkNC21CYw6s/peyeXPTJUzVW5cYe0qRw7eXetjzZyG/SPcYRHAy8F9gAfjE13nsMQwiWFkA4yxoMnNE1bJe5jxtKnyixmROj6BHHXmYsx7YbeNq+vlNFqqmdRzCLB+jvV1ahVh+3zknOVe2hbink/nzHc1X5i6o5r92/XmpQ2+9jCQr/1sUkf27/YvkBZfYXy88BxsenOcxircEl1hfSp4VJnLjEqnlDjeN8bJsas3+n7WdpmBTm9gVLzNqTTDlWr+oSl69litAAx7xdb32NnvVUdb5vVhz53V/f1GHILl1cCr2iEC4BzgF8CVsSmGXHvdcD/AT4L3FN+uOzjwLMBacR9HHB1Ge87wIeARzvSPQr4C4rdnu8DrgfOCH2uvoRL15F5H51EaOfQJNQ4HTrDSR1dx7A//5dabRh9zaJChFzMSvv4dw9/n5CyCxmcpNi7NmwI+3xF7Pu1zVxsAjxm5lJ/fp83oi/dlPaTq75OYoU+sIJiF+Z95c7Lm4HzgH8GDPBHtbgnAvcDNwAvLsMNpaD5mUa6hwM3UnwE7cIy3Z1lmr8Z8mx9CJdcI/OUStQ2CvZ5i7nS9zW4euP0xaun3cUTyqdWsL1DVUZ9z5ZshHZUNpXZLBwl2kbNOWxZrnKP+fBeKCkz9dhZb/1ZfemH1PkQ9WjO1fpTES4nlR3+6xvHDymFw921Y58sZytH144dXR77u8b1ry3TfUrt2MoyjbuAdW3P1odwGWJk7iKn/r7CNwKsv5Ov86mvgE7Jn1Sjd72M+rTz2IjpjG269pj93FzEXNdWLimj+vq7+GaPrk+GQ7qASV0nFqpCDhU6IXkb8ry+kNK3ZBcuwFrg94H/V474d5d/vxJYm5JmwD3/eykE/pfl3CeBXeXfx5XxDvqmDPC20i700NqxrwFftsQ9q0znqW3PlipcFheLBmFrtF116KF2C1ucnJ5HdXLsKRaTVpOYxl5vaH3axdrI0UG51Jkh5Rd7XcisN2VUX59luvfRW/J20CkDgRQPuLb8S7HJhJZFl/qSYp/LbXM5HPhc2UnfVqqqPlb+vVSeOzw23YD7PgT4VmkXOYPCQ+0ngD8sVWXPK+M9oxQKZ1vSeF557snl/w8r/1+0xP3x8twftz1binBpqyipI/PquraOt+3+TcGTa4Vvm9BbXPQ3ANezh+iVUxvakMKl+cwuPXzsu6TOhNvsb82yDKknLrVqqJeTqw75Zi4pdbW6V1dVqO15fQ4ube22rf2kCO/U/PEJFynOhyMibwK2AOcCf26M2VceX0lhr7gEeLMx5rejEg679xOAS4FH1A7fAzzLGHNVGed84CLgdGPM/21cfzrwt8DzjTHbReR4CuP9a40xL2vEXQPcS7HbwJmWZ9lM8b6sX7/++CuuuCLqXZ7+9BO57bZDDzq+fv39XHHFdVx99ZFcdNEj2bt35Q/OrV69j5e+9AucdtrtB11ni+9KO+T+TU455RcwRg46LmK45pqPOu/p4+qrj+TSSx/O7bev5sgj93L22TcCsG3bTwIH3+uww77L+9738aBnt+eHsaZro57W7t27WbduXdS7peAq81/+5a9z3XVHHJBPl176cGse2Fi//n5uv311Uvm5yh0Mq1cvHfCsK1cusbQExqw4IOYDHrDEy172nwAHlXdVl6+++khe85qfYN8++7W2Ot/kb/7mMF73usfgKuPUumqrpyHP05ZmaFnX7xXyLPU4IoalpQPz1Iavb/HxpCc96dPGmBOsJ11SxxWAWyiEiuv8duCW2HQD7/0Y4L3AHwO/DjwX+AzF2ppfLOO8nKIXOcVy/SnlufPK/59Q/n+hJe6K8txVbc+VMnMJUXvl0HXbRv6h9w9Jv4s3km1E6Fs93WYUDjFsNq+NtbmkvGeoV1Ls9z5iVJe5Zy4xHl3V2pWUmbrvk8NNrr32Wu+WK33bK0NmFc1ZaYwNLGUW1WbDHJW3GLAXeIHn/AuAvbHpBtz3ZyjchF/QOL6GwqB/E4Uh/vxSKPyKJY3Ty3Oby/+PL///I0vcNeW5v2x7thThkruzDmnk9W3jY++f21MqRTfcZiRtUznU46V4i8USmmdtqgyXwLc995Yt+zv+arPNKm5T8LR9SsH3DjHlFqKWy7FOpyqnIdd5VISombu2nxT7Tw6h7SO3cGmbufx5HzMXCvdjAyxYzl1SnjuWObK5NBt7tXtp7GiibYO8eqjfP7Sy1zvsXNu2xBo1bYvnms9+6qnt6aYI7xThEjMTCRGGoff0bTjZ3Pdr1aqw0XOMzcD1/G3CI8dgq+4ynvLZiC6egKlecjHvl+K51rf7fG7h8qcU3255PrUFk6UaaTPwPeBNsekG3PfDZWd/pOXcn5XnHkl+b7GntT1bqnBp21Qy1JsntKMONYw24/RROX0jqlh1WaViSHUbbSNWuMTORGK3F3Hh68BSDcgx79hFLRdbz2x1t1pEGTpbDHGccDm4NNNrE545ZmYhAt2lQu2ijvORW7gsUHyzZR/wDeCjZfhGeewLttlF1wC8vuzsf6dx/MHArcA3gZXlsU9RrGk5qhbvqPLY1Y3r/7hM17bO5VvAD7U9W061WEhlSUkntWPNrb6raBtlNyt/6si3/rwxHVWdWOESOxPx2TViysyXRzEzxZiZUqiKMaTTj7FP2dLauvVzQfXV5W3oqzepLsAhM5cu7x0rrHIPFrMKlyI9DgO2Ubgd7ynDvwOvAg5LSTPgnhsoFjUuUXwz5gUUW8F8pRQOL6zFfTyFbegGilX855V/7wYe1Uh3gcJecw/F2p3NwLVlms8NebacBv3YyuJLJ+WLjaHpp/jEN8nhsNCms2/rLEMaW6xwCZmJNN1xc6yYTpm5dC3bmDLsonYKec9qzVjbO8XmRarACrG5tM2YXHmYUtd9755u653ACv3iPTgWeGepyvpeORP5B+B/WuKeBPx9KVDuKdVqP+dI9+hSYN1JsW3MZ0LUYVUY48wlddFYaPp9e940SfU2asuHkPfLNXOpZiIulZLP3tZVhRk7Wg+5b9/6fBduAbLkVbf6bD++9hc6wGoroxjbVVv7Ss373IPFLMKFYlW+dysUio0le1mhP+aQaxFlM6SuoLYtKExl6A6krTOL6ehC8iGkseWwudQ7+RiX47b0bHFD8y/EzpB7oW8OfDOXUFuQq8xt79rne3bp7FNmgqObuZSG8u8Cr26Jt61URx0bku5UQq7tX1INbbnUDbNIP6d6qK/GFvq10DajaciAwvbcfXZuvjxrsxP4Oumcz2GL67K52NIK+dR3paJKtRelMrSAHp3NpTSm7wJWt8Q7tFRZtbrvTimM9XsuY8Jl/A1ZM9HnSDiHzSW0waY6X/Rp9/LRZjvKVV4pHZ6tPrnKyfceNkFSlVPd7T6nh1XXd89xz1zvkkO4fBb4k8C4rwf+LSTuVIIKFz+uBhQyohyiE3V1KFWjayuj0NFnqsfW2NRPvtX5uR0RYojdYbxpj/MNdvro8Nvq3TyQQ7jsplzVHhB3M7A7JO5UggqXNPVKSkfb5/O7RpBtZRQ6s0j12JqV4dx1X99zpzxTrpmZ79tIIc4LbeWTsx7Oqkxzk0O47MGy4t0R92xgT0jcqYTlLlzaGkqsh84sGpzPy8j1WYS2a5sj0VSPreraPu1qLnJ6OLnoY+bSfG5fHatoq6c5Z9Bj8cLsSg7hcgNwcWDci4EbQuJOJSx34dLWUHwdd7OzXbFi/9br9b2xbOTscEMFYMreYL6V3rHrHMZA7lF3rvR8XwwNERhDzlxmZUfLTQ7h8g6KFfghrsjfAC4LSXcqIdUVuehkluZOz9qkraG0ueameIvl7uBiVFa2TsY3om/rmGY1K2kj1S08971CqYRLrBrWN7PsS+DHzFzGWj+MMVmEywkUW7t8BMeHwCg+5vURin3HrIsVpxpihcs86VtDKnZIQ8mVTkrc0PfMsWvCVEak81RHKyrhkrJQsmIoI3to/o69HHItonxFufXKt4HLyi1VngO8qJzZ3F2ef3lomlMJscJlXvStQzeAmI65j068y8ylYl7Kto2c7zHUyDt15jIrwZ97wDULsm3/UgqTr5dCZKmczVR/3wr8Zkx6UwmxwmVeRrdDT91nOXPxpRkjNMc+0gylba+20HIeMj/qNpc+NuqcBWPvK7LuLQasAk4GzqHYOPKc8v9VsWlNJUx15hJiS8mtd4/Z5iR3p2VLc9UqYw47bG/UO45ZRx6Kb21ITJ671jL1UdfrzjGhgmXsgn/sfUVW4aKhu3BZXLR/uGlsldxXsXN07rZOOKZj7qMTj1n5PWViPK5cHd3iovsa38g7tVzr5eTzUJwnwT/2mXAOg/77I8P7QtKdSkgRLimfnB0aX8XuOqIae6OpsxyFizFFWYTsouASFCnec6n1YnHx4H36XGuK5kGo1AkRtrOaLecQLkuRYV9IulMJU1WLGeOutKm64C4uu7NiTMJl6E4kxA7lKjOf3cP13Cmeh661QtV+YHXBMvaBTAqzHKgNohYDfgH451K4fC1XuvMQpmrQ95EiIENULWPMg7EIl1l0Im2Gcd/9faqp2Pv51ky1Cb15Gsyl0Ka+7nMw0qtwAX4a+NvSc+xuYCvwwK7pzlMY68ylz4qV0tF1GQXPkrEIl1l0km2zzNyec23vGONmXAmkeR3MhbbfmN2rcw9GehEuwI+W61u+R/H1xtcDC6npzXMY4yJKl+eT72uHKfeIEV5dRsE5iX3usQiXWXSSXetqbF633S/FxXgeZy4x+e56v9iP0qWQ2xX5IcBFFJtZ7gMWgY2x6UwpjHH7lxxrNnLTZRScC1ej9X2vYyzCZVad5JB2nqYTwcLCgfeLmblU182T80hF7BqzmN2rcw5Gcq3QXw28DPhmaVf5MPDo0OunHMa4cWXoCG/I0dsYGnnK+o2xCJcx5F+fhLxfjM2lmfY8uSDHzlJt7zfEYCSHt9hzga+WM5VPAaeGXLdcwhiFS8wIb8hGN+tGHpon9UY4FuFizOzzz0auZwrtDOv3q3bQbgaf08A8kEMwDDEYyeWKvK/0BjsfeElLeHFIulMJYxQuoSO8KbtoNllcjNPZV6NEXxmNsbMfkpwdWIpNaV7WjMWSK19H7y2m61zmT7gY074ILvRDVVMhZjYXMnOZupoqhJyql9S0+rZfzop5GLj4hMsKwnhSZDglMF0lkR07YONGWLGi+N2xwx7vvvsO/F+k+N2woWi6Nm65JddTjgvfe61Zc/D/27b509u6FfbsOfDYnj3F8eWCK09T6tC2bWnlsGkT3HQTXHPNR7nppuL/KVC919IS8/leLqmjYbwzl9ARc+qagSnNXOqjP59rpm+U6CqjeV0/4aLNU8tG7jrUZbQ+JtvYcgHduHJawiW0QXf5QuQUCLE7hbyvq4yGEM5DqUYWFw/eTDXEfjGmOqTCZXhUuExMuISOmFP2aZqKYDHGv7gs5n1nZXMZsuPust/bWOqQCpfhUeEyMeES47I5llHlLMiltpqVt9iQakufF928qPlUuAyPT7iEGvSVERFq+Ny0CbZvL4z3IsXv9u1zaBhM5Jhj4o7XqTtMPP3pJzodJnIaXZtOGjffbI/Xh8OFL09C8ktRmqhwmUNihMbce5x0IMb7qN6xH3EEPOc5ReduDNx226Fs3uz2yMvBjh2wefP+e958837PviZ9dPbbtsGqVQcfP+SQ/fkV6qGoKICqxXKEsa5zUcLUVqELTmex+3Cfi1ybebNli9tbzJVHIR5lQ6FtaXhQm4sKF8VN6OLKPm0PbUItt00n1h7ny6Ox2PG0LQ2PT7ioWkxZ9oTaMPq0Paxc6T7eh1ozdgGoL4+W28JRJQwVLsqyJ0RohKwU78K+fXHHuxK7sr4tj6a6q4OSjgoXZdljM/yvWgULC4VRff36+3v3stuwIe54V2I96Wx5FHKdsnxR4aIse2zed5ddBnfeWaijrrjiut697FL31RrqflUeLSwcfK7vWZ0yn6hwmTDqOhrOrF22h16TlHK/TZsKgbu4uHzXTinhqHCZKLZ1E32v1ZhHxiSAhxZwtvuF5MesBbEyH6hwmSi6HXw7KoAPxJYfZ50FL3zhrJ9MmUdUuEyUnN/ZmCoqgA/Elh/GwFvesnwFrpKOCpeJ0mVfreWCCuADcb23MfCiF41HfTg1xqSazYkKl4kytPfRPKIC+EB8733XXao+7IMpq2ZVuEyU5b4jcggqgA9k2zb3ZplNlrP6MCdTVs2qcJkw6tXjRwXwgWzaBC94QbiAWa7qw5xMWTWrwkVZ1qgAPpA3vxkuv3y/wF1YKGwBNpar+jAnU1bNqnBRFOUAKoF7+eVw332F4G2ynNWHOZmyalaFi6IoVmz2ACh2al7O6sOcTFk1+4BZP4CiKOPEpfdfWppG5zcWNm2aZn7qzEVRFCtTtgco/aPCRVEUK1O2Byj9o8JFURQnD3zg/r8XFqZjD1D6R20uiqIcRLVyvG7Qv+++2T2PMn/ozEVRlIOY8spxZRhUuCiKchBTXjmuDIMKF0VRDmDHjmmsyp/qbsPzgtpcFEX5AZWtZd++g8/Nk6dY02ZU7TYM6pAwFDpzURTlB0xlVb7ajGaPCpdlhKoJlDamsipfbUazR4XLMmHKHyVS8jGVVflTeY95Zu6Ei4gcLiIXiciXReR+EblDRK4VkSc04j1ORK4WkXtE5Dsi8iERebQjzaNE5C/KtO4TketF5IxBXmggVE2ghDCVVflTeY95Zq4M+iKyAdgJrAPeBnwReBDws8DRtXgnlvF2AReUh88BPiYijzfGfLYW93DgH4EjgYuBrwFnAu8RkecYYy7r962GQdUESgiV6mvr1qJuHHNM0SHPk0oMpvMe88xcCRdgkeKZf9YY83VPvDcC3wWeaIzZBSAi7wE+D7wO+KVa3P8N/Bjwq8aYD5Rx3wZ8ArhIRK40xuzO/iYDc8wxhSrMdlxR6kxll96pvMe8MjdqMRF5IvDfgNcaY74uIqtEZI0l3nHAY4ErK8ECUP59JXCaiDy0dsmZwA2VYCnj7gMuAQ4HTu/lhQZG1QSKogzJ3AgX9nfyt4jIB4D7gHtF5Isi8sxavMeWv5+wpHEdIMDxACLyMAp12nWOuPX05popf5RIUZTxMU9qsUeWv28FvgT8BnAIcD5wuYisKu0jR5Xxdh2cxA+OVfaZmLhzj6oJFEUZinkSLj9U/t4DPMkY810AEbkKuBF4tYi8E6iUP3stadxf/q5p/IbEPQAR2QxsBli/fj07d+4Meokmu3fvTr5WGQYto/lAy2lczJNwqTb8flclWACMMd8SkfcDz6KY3VQOt6staRxa/u5p/IbEPQBjzHZgO8AJJ5xgTj755IBXOJidO3eSeq0yDFpG84GW07iYJ5vL18rfb1jOVZ5jDwFuLf+2qbOqY5XKKyauoiiKEsg8CZdPlr8/YjlXHbsd+FT590mWeCcCBvg0QOnOvKs8bosLcH3KwyqKoixn5km4XEVhb3mmiKyrDpYeX/8D+KIx5svGmC9TCIQzROSoWryjgDOAa4wx9dnPu4BjReQptbgrgXOBu4EP9vVCiqIoU2VubC6lbeWlwJ8D14nI2ym8xbaUv+fWor8IuJZiRf4l5bFzKYTp+Y2kX0MhdP5SRC6mmMk8g8IF+WxjzD09vZKiKMpkmRvhAoURXUTuBH4H+ANgiWI9y5nGmH+qxfu4iJwMvKoMBvg4cIYx5t8aad4lIv+VQsj8FsXWMv8BPN0Y8+7eX0pRFGWCzJVwATDG/BXwVwHxPgGcGpjmLuCsjo+mKIqilMyTzUVRFEWZE1S4KIqiKNlR4aIoiqJkR4WLoiiKkh0VLoqiKEp2VLgoyhywYwds3AgrVhS/O3bM+okUxc/cuSIrynJjxw7YvBn2lFuo3nxz8T/oJxSU8aIzF0UZOVu37hcsFXv2FMcVZayocFGUkXPLLXHHFWUMqHBRlJFzzDFxxxVlDKhwUZSRs20brGl8D3XNmuK4oowVFS6KMnI2bYLt22HDBhApfrdvV2O+Mm7UW0xR5oBNm1SYKPOFzlwURVGU7KhwURRFUbKjwkVRFEXJjgoXRVEUJTtijJn1M8w9InIHcHPi5UcAd2Z8HCU/WkbzgZbT8Gwwxvyw7YQKlxkjItcbY06Y9XMobrSM5gMtp3GhajFFURQlOypcFEVRlOyocJk922f9AEorWkbzgZbTiFCbi6IoipIdnbkoiqIo2VHhoiiKomRHhcvAiMgKEXmxiPyniNwvIl8VkdeJyNpZP9uUEZFHiMiFInKdiNwhIveIyL+KyFZb3ovII0XkKhH5lojcKyIfE5FTHGk/SEQuEZFdZZl+TkS2iIj0/2bTRkTWiMiNImJE5E2W81pOI0V3RR6e1wO/Dfw18DrgJ8v/HyMipxljlmb5cBPmOcBvAe8HdgDfA54EvAp4qoicaIy5D0BEjgU+DnwfeC3wbeB5wIdF5FeMMVdXiYrIIcBHgMcAlwCfB34FeDOwHnjlEC83YS4E7Iv0tJzGjTFGw0AB+C/AEvDexvFzAQOcOetnnGoATgAeZDn+qjLvz6kdew+wD3h07dg6il0YvkDpCFMef2F5/bmNdN8LfJdiBfPM338eA/BzFILjJWUev6lxXstpxEHVYsPyDECANzSOvxXYAzxz6AdaLhhjrjfGfNty6t3l708DlCqyXwV2GmP+tXb9buBS4BHAY2vXn0lRdm9tpPsGYBXwtAyPv+wQkZUUefoh4K8s57WcRo4Kl2F5LMXM5ZP1g8aY+4F/5cDGoAzDj5S/t5W/PwusBj5hiXtd+ftYKOxnFKPrfynLsM4nKUbKWqZpvBj4CeAcx3ktp5GjwmVYjgLuNMbstZzbBRxR6oaVAShHxy+nUL38ZXn4qPJ3l+WS6tjR5e9DgAfa4pZlfGctrhKIiPwY8PvAhcaYmxzRtJxGjgqXYVkD2AQLwP21OMowvAE4CbjAGPOF8liV/7ZyapaRL24VX8sznrcANwIXe+JoOY0c9RYblj3AkY5zh9biKD0jIn9AoXLZboz5w9qpKv9XWy5rlpEvbhVfyzMCEXkm8IvAE40x3/NE1XIaOTpzGZZbKVRftkp+NIXK7LsDP9OyQ0ReCfwecBnwgsbpW8tfm5qkOlapV74F3GeLW5bxEdjVNoqFMs8uBj4IfENEjhOR44ANZZQHlccejJbT6FHhMiyfosjzn68fFJFDgUcD18/gmZYVpWB5BfBO4GxT+qPW+CyF+uQky+Unlr/XA5hiTdJnKNYoNQcMP0/hGahlGs4DKda0PBn4Ui3sLM8/s/z/bLScRo8Kl2F5N4VnynmN48+j0PnuGPqBlhMicgGFYLkceI6xLFgtXVk/AJwsIo+qXbuOolP7Egd6+72Louw2N5I6j8JR4N0oodwLnGEJLyzPf6j8//1aTuNHd0UeGBG5hELX/9cU0/9qhf4/AafYOjylOyLyW8CbgFsoPMSa+XybMeYjZdzjKDqm71HsqPAdigHAzwBPNsZ8uJbuIRSrxB8FvJFi5ffpwK8DrzLGvLzH11oWiMhG4CvAnxpjzqkd13IaM7NexbncArASOJ9iBfFeCl3vxcC6WT/blAPwDopZoyvsbMT/SeB9wN0Uxt5/BE5zpP1gCsF1a1mm/0ExgJC+32s5BGAjlhX6Wk7jDjpzURRFUbKjNhdFURQlOypcFEVRlOyocFEURVGyo8JFURRFyY4KF0VRFCU7KlwURVGU7KhwURRFUbKjwkVRFEXJjgoXRVEUJTsqXBRFUZTsqHBRlBEhIitFRL+KqMw9KlwUZUaIyLNFxIjIaSLychG5geKTu08tj7/Dc83JtWOvLI89UkReLSJfE5G9IvJvInK6JY1nicgnReRuEblXRG4UkR0i8sM9vq6yzNDPHCvK7LkIWAW8lWLb+C8kpvNOiu3nLwIOofhWyVUi8ghjzE0AInJWGe9jwAUUX2j8UYrt548E7kh9CUWpo8JFUWbPA4HHGGN+8B13EUlJ507gKabc6lxErqX43snzgd8t4/w6cA/Ft4O+X7v2gpQbKooLVYspyuz5s7pg6cCfmNo3NIwxnwJ2Az9ei/Ntii8yPlkSJZiihKDCRVFmzxczpXOj5dhdwELt/1cDNwNXAXeIyHtF5GwR+aFMz6AogAoXRRkDMbMWnyp7n+P4D2YoxpgvAT8FPJnC9rKBwtbznyJybMRzKIoXFS6KMk6+CRxuOf7wrgkbY/YaYz5ojDnfGHMChaA5CnhJ17QVpUKFi6KMky8CJ9XXvIjIQ4Df7JKoiBxhOfyZ8tcmzBQlCfUWU5Rx8iZgEbhGRC4HHgw8j8Je8tAO6f6diNxN4Yr81TLdZwMGuLxDuopyACpcFGWEGGN2iMhRwDnAxRTG+guBJeBxHZL+M+CpFO7Jh1MY/P8FONcYc22nh1aUGlLzXFQURVGULKjNRVEURcmOChdFURQlOypcFEVRlOyocFEURVGyo8JFURRFyY4KF0VRFCU7KlwURVGU7KhwURRFUbKjwkVRFEXJjgoXRVEUJTv/H5IWUwlr8ZIlAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"shotNum = \"0007\"\n",
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
"\n",
"dataSetOfGlobalDict = {\n",
" dskey[groupList[i]]: read_hdf5_global(filePath, groupList[i])\n",
" for i in [0]\n",
"}\n",
"\n",
"dataSetDict = {\n",
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], datesetOfGlobal=dataSetOfGlobalDict[dskey[groupList[i]]])\n",
" for i in [0]\n",
"}\n",
"\n",
"dataSet = dataSetDict[\"camera_0\"]\n",
"\n",
"print_scanAxis(dataSet)\n",
"\n",
"scanAxis = get_scanAxis(dataSet)\n",
"\n",
"dataSet = auto_rechunk(dataSet)\n",
"dataSet = swap_xy(dataSet)\n",
"\n",
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
"\n",
"imageAnalyser.center = (959, 876)\n",
"imageAnalyser.span = (100, 100)\n",
"imageAnalyser.fraction = (0.1, 0.1)\n",
"\n",
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
"\n",
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD).load()\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"Ncount.plot.errorbar(ax=ax, fmt='ob')\n",
"\n",
"plt.ylabel('NCount')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"dataSet_cropOD = auto_rechunk(dataSet_cropOD)\n",
"\n",
"fitAnalyser = FitAnalyser(\"Two Gaussian-2D\", fitDim=2)\n",
"params = fitAnalyser.guess(dataSet_cropOD, dask=\"parallelized\")\n",
"fitResult = fitAnalyser.fit(dataSet_cropOD, params, dask=\"parallelized\").load()\n",
"\n",
"fitValue = fitAnalyser.get_fit_value(fitResult)\n",
"fitStd = fitAnalyser.get_fit_std(fitResult)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"BEC_Ncount_val = fitValue['A_amplitude']\n",
"BEC_Ncount_std = fitStd['A_amplitude']\n",
"\n",
"thermal_Ncount_val = fitValue['B_amplitude']\n",
"thermal_Ncount_std = fitStd['B_amplitude']\n",
"\n",
"BEC_width_x_val = fitValue['A_sigmax']\n",
"BEC_width_x_std = fitStd['A_sigmax']\n",
"BEC_width_y_val = fitValue['A_sigmay']\n",
"BEC_width_y_std = fitStd['A_sigmay']\n",
"\n",
"thermal_width_x_val = fitValue['B_sigmax']\n",
"thermal_width_x_std = fitStd['B_sigmax']\n",
"thermal_width_y_val = fitValue['B_sigmay']\n",
"thermal_width_y_std = fitStd['B_sigmay']\n",
"\n",
"BEC_center_x_val = fitValue['A_centerx']\n",
"BEC_center_x_std = fitStd['A_centerx']\n",
"BEC_center_y_val = fitValue['A_centery']\n",
"BEC_center_y_std = fitStd['A_centery']\n",
"\n",
"thermal_center_x_val = fitValue['B_centerx']\n",
"thermal_center_x_std = fitStd['B_centerx']\n",
"thermal_center_y_val = fitValue['B_centery']\n",
"thermal_center_y_std = fitStd['B_centery']"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEHCAYAAABiAAtOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABAg0lEQVR4nO2de7heRXnof282ySaXghIlXGp2LLQGtUIVK7SnJAhtrdZaz1Oqsi0qYCqoLS2c2opSi8a2XpCqrTZ4N/H6aK23aktNqFapotLjsdYLGNRglYtoYiAEMuePtZaZvfZc1zfr+7797ff3PPPs/a01a9asNbPmnXnnnXfEGIOiKIqilGTJqDOgKIqiTB4qXBRFUZTiqHBRFEVRiqPCRVEURSmOChdFURSlOCpcFEVRlOIcMuoMTAL3u9/9zLp16zpd++Mf/5iVK1eWzZBSFC2jhYGW0/D5/Oc/f6sx5v6ucypcCrBu3Tquu+66Ttfu2LGDjRs3ls2QUhQto4WBltPwEZGbfOdULaYoiqIUR4WLoiiKUhwVLoqiKEpxVLgoiqIoxVHhoiiKohRHhYuiKIpSHBUuiqIoSnFUuChDYePGKiiKsjhQ4aIoiqIUR4WL0jvbtsG118I118C6ddVvRVEmGxUuSq9s2wabNsG+fdXvm26qfquAUZTJRoWL0iuXXgp79849tndvdVxRlMlFhYvSK9/6Vt5xRVEmAxUuSq+sXZt3XFGUyUCFi9IrmzfDihVzj61YUR1XFGVyUeGi9MrsLGzZAtPT1e+Zmer37Oxo86UoSr/oZmFK78zOwlVXVf/v2DHSrCiKMiR05KIoiqIUR0cuylDQEYuiLC505KIoiqIUZ6TCRUT+TETeKyI3iogRkZ2R+I8SkatFZLeI/EhEPiYiJ3niHiMibxORW0TkThG5TkTO8sSdFpHLReSbIrJPRG4QkReIyNLBn1JRFGXxMWq12EuB24EvAPcJRRSRU4AdwC7gsvrwc4BPisgvGWO+ZMU9AvgUcCRwBfAd4GzgPSJyrjHmza3k3w08AXgT8BngVODFwPHA0zs/naKMMY2XalVZKn0wauFynDHmRgAR+X/AqkDcVwN3A6cZY3bV17wH+ArwSuDXrLh/CjwQ+C1jzIfquG+kEhyvEJH3GmP21McfSyVYrjDGXFxf/wYRuQP4YxHZYoz5dJGnVRRFWSSMVC3WCJYYInI88EjgvY1gqa/fBbwXOFNEjrIuORu4oREsddx7gdcARwCPbcUFuLJ12+b3U1PyqCgLiXHxVK37/EwuC2VC/5H13884zl0LCPAIABE5Gji2Pu6Ka6fX/L/LGPNtO2L9++ZWXEVZ8KinamUYjFotlsox9d9djnPNsWM7xG3i/5fnvruAn3adEJFNwCaANWvWsKOj4nrPnj2dr1WGw6SV0cUXn8LevYfOObZ3L1x88V0ce6yrT9YPV199JJ/+9IPYv38JRx21j/PPv5Ezz/x+5/QmrZwWOgtFuDTeqfY5zt3VipMTt/nfFbeJv8J1whizBdgCcPLJJ5uNHcf2O3bsoOu1ynCYtDL6vqf9/v73Dx3ac27bBq96FezfX/3+3vcO5VWvejAnnPDgzq6BJq2cFjoLRS3W7Agy7Th3aCtOTtzmf1fcJv5ezzlFWZCMg6dq3edn8lkowuXm+u+xjnPNsV0d4jbxXXGb+C71mqIsWMbBU7Xu8zP5LBTh8rn676mOc6cABvg8gDHmu1QC4RRPXIDrWmkfKyIPsCPWv49pxR0qakmj9ME4eKpOHT3pN7BwWRDCxRjzDapG/iwRaSbsqf8/C/iEMeZ/rEveCRwnIo+34k4BzwXuAD7aigtwUeu2ze8FZ0Oz2D7Ixfa8JZidhVNOgQ0bYOfO4W+BMA6jp0Hw1TmtiwcZ6YS+iPweMFP/vD+wTEReUP++yRjzdiv6HwLbqVbkv6Y+9lwqAXkxc/krKqHzDhG5gmok8xQqs+LzjTG7m4jGmI+IyIepFkwezsEV+ucBW40xnyrztMpiYaGsfB92/uz30giz886rTKJnZirBYgu5Zi3Ovn3VWpz2+WHlVemIMSYpULlceWjg/EOAy1LTq6/ZQaXScoUdjvinAv8K7AF2Ax8HHu5J+1jg7cCtVFZfXwCe5Il7KPASYCeV5diNwAuBpSnP8YhHPMJ0Zfv27c7jW7caMz1tDBgzM1P9TsG+bno6/bqFStf3lIOvjHxs2FAFZS6u9+J7V1u3GrNiRVWuTVixIly+ueWUm1c7b3adW7++ijuMujhuANcZX/vuOzEvIhwAzg6cfxJwb2p6kxRKC5cuH9Yg1y1UhvW8C1G4jEMebHIb3pmZueXahJkZ/zXDEC6uOgfGHH304vr2GoYlXJ4G7EtNb5JCaeGS82HZH4HvutWrO2dvrOnSAHUhp9Eal95rSLgMW/B06QSIuMtWxH9NKeESKkNfnfOF0nVx3AgJl+CEvogcJiJrRaSx4Vjd/G6Fk4BZ4Nv+1JRUuppp+s7fdttkuvYYN3PWheBWZRQ+xbqsaRnVWpxYGebWrUVtWu2TOpVQ4s+BexPDAeCSUHqTGkY1cmn3sFavXlw9qHEbuYTyM8zRgq/nPSq1qW8UAuF5jVHMucTqlI5c5kJg5BKzFttR/xWqCf1/AP5vWz5RTbBfa9Q1fRE2b656S3Zvr22m6ephLQ1sbebqQS10i5iU9zRMQiOpdeuGkwdfzxvCI4g+rbDWrq3y0Wba5xeDNGuyPoiNhl11zsdCMq3uBZ/UaQfgzcCjUuMvptCXtVjT43Pp7n09qCVL0ntQ4zbp24VxshYLzXkNax4m1PPuMo9RAtcoZOlSYw45JP5OcuroMEYuxlR5TRmxLITJ/EHbALrOubSE0DOMMf/Rl5BT8vD1sA4cgCWtUnX1oLZtg3/7t4O69xUr4D736SOn/TLqxYA2roWBS5fC7t3l52F8i/VCPe9RzWO0PQKsXg0icM891e+bboJzzoETTph/7Y4dwx1ZpyzunJ0Nj7qmp0dfF8cCn9QB1gJr279jwZfeJIdRmCI3PWFXLznWm/eZUy5f3vkxJppBrMV882CD6uJ9Pc5Qz3vUpupNnn15nJ4eLP1hWIs1rF/vfoZly8q/z740DCVG/XQxRaaaoL8XWNb6HQy+9CY5lBQuGzb4BYfdIMUqd6hChiYlcyvZJKjWYgyyzqUPVVSoUYgJkHEwlQ5N8A+Sp2EtomzYutWYqamDeW86dqXp4xsr1dEICZfQhP7lVJP197R+Kz2zz7O7TKPy2LYNvvlNd5y7764maHfu9Kfvmly1z517bvV/bFg/TPccC8n4wM6jbzK7qyrKNWF/zjnV/7Oz8Ynw2Vm46qr5+ewDX5n53gnMNUAYd7XSVVfBqlXV/yed1M/7tL+xQw+FBz4QvvKVg+e7fhdDMe7wSR0qNddy33kN5UYuds9kwwZ/z25qypgLLnCrtHJ6xXZvyxdiCy+HrWIp1Xvrks4gPeLS7ynV/HocRpS5q9wHVRuWHLmk0Dxfn2qr9ntasmRu3Ynd23e+1IiajhP63wSe2PwQkU+IyBmFZJri4IQTqgl24xkf3nsvvP71cTPIWK/43nvjebnttrB31/POG95mTzkL/8bNK23MvX1ufsdt4aiPUJm134kL3/OMW/lCWaMD+/lco4sDB+BpTxvcIGQoxh0+qUPl7PFp1u+g+5fFHAYZuVx66Ze9cyxdQkqvOHUhWKhH1HXUlEtuz789CrSfoet8g69HnNNj9cXN7fX6ym5qanxMX1PLLDS/OD2d/76GOXLpa+4qZb6ueZ8XXBA33Ok6N5cKHSf0vwK8Dzi8/n0AeIov/mIOXYVLVfj3FBMshxySVjlS1BK2esKVZorRQQlyV+H7hIvLACL1Y+pLuHRpoEJlNy6OEkPWYPY72LChKhdXI9d4Gm4zCuHi6qT0oRLO8bjRdOR8eUjJ4yitxS4k0ULMCvf40pvk0FW45LqSGEQYtLEXacaCq1K65m0G+cBK6Ibtj2X16rmL9Jr/uwjDEsKlfZ2vUU0tu1D5j5pcdy+uRs7VSYg1hsMSLn24HfItNF22LP/7z8ljn4sog40msBHYDLypFh7XUK3U94ZQepMaugqX1Ma93QDlCgMf9kfb5MU32d9USl/P2TbD7FJhc9dttHvBOaOxmJBq41uL1LXXl2puHmKQ5/HlqdSkdEqZte9n/3btl5IijLsKl9xJ8dLv3piwd4cu9TnUKStZ1p2Fy5yIOufiDcMauTSNWMp1ub2oww+vQmykkNIjyq28XXTDbbVJ13mr3JFLM+pou9nJGXWE8praQJXuPZdscHyC3h5Jrl9f1TeXqjCnk2A/7zCES8iac5CRS+i7c9W3WB5SnKiWKPNSwmUGWJEafzGFYcy5rF8/97qlS8Pxu/aiYo1Wipoqp9J20Q23JzIvuCD+/nx5zp1zGWTUUdIEN8VMNYcNG9yNfVdiQtQO9qg3t8Nl17suwiXFm0V7FLV8effOhY+QJ4emQ9Ou87HFsr48jp1w0VBeuBhTWYulfERta6DYcLlrL8o18W03WrGGNVddlKsb7qr+8oUUmkZr0FFHrOHMbaBcc1++VeKhhsR+rpJbY7t63L7QeJbIVRUPMnJJ8WbgqmvtPA5qLeYSBE244IKD8XKtH9evn+/81lWHB8m/Cpeew6CLKFM/Qrvix8wUQ5Ul1NBs2FD1zJr0m2F5Q0gllGNF0+QhdzFXSSOI1B06t2/fXmTUUcLtSXtuItRQ+66zcT2XyNxGrSu5ZTU9nafeHHTOpcTeLYOMFlPeU6xOhcq13WHow9JQhUvPocQKfXvYm9KAhVzuxypJqEL6JvSbHrFriB5TaYTc/efOHXQxgighXFIamliDXMJho112OY1SrsFEqsowRJeyck3c+57PZy2Wqu6JdWxS89+865CRQtf35OtkxUairk5eH9oOFS49h1KOKzdsMOboo+OV2Rj/vEuKV1bfmovYfaemDk7KTk/PHdEYkz4KsXtVU1PzzS1DvaiSI5fUeant27cnNTSx3l+XeZKQFVUsP77rbL17bDQ1CF1GLm2T43b+liyZX+8acoVLiZFLk0fXnNWg+QiVQWOAk5teie/BRoVLz6GUb7EU1Yvdo+zizt2np+1SIduNaUrP3GfPn7JxlO/6riG18Uwdudhpunqxhx8+d9TXFtCuxihUN0KCwW6oQ9Z2oeca1NtCTlnZHZdm4jxlbYtNo2IObbIXy58tvFLz3+TXvu/RR+flI6ejaM9N2XNkKR2GEt+DjQqXnkMp4ZKqb45ZboF/dOKbEynRQMc+VmPC7ktyLMwGdZmTo2NOnXOxG2SfcGmOu1SL7WvsBivF2airoY5dF1KVlFiQ2db9r18/X/26cuX80atdb1LVTZde+uVsKy6XNVh70jymtjrjjPT6lqqSPuQQ9wht69b576q9zYbvG1u5ssz3YFNUuAArgAcDvwKc1g656U1CGIVvMWPii9XalTi0UKtrbyek8mqvko99qDmV2254u4ScezXqFt8eOu0G2WU6bTccIvPz3h69pahHmxBLOxZcxiS5jU3MSMQ1ImuEbUw9lSpcDjtsXzCdlLy7zHQPP7wycnGNHM84I/19+77L2P1tfJ2BlSvnfncuVbPv2kH80pVa57IS2FI7tHS5fjmAbhaWRc46l3Ylba5PsWBqKk7XhjiWfpumZ547qTjIGo+ueU7Ri9u6/BRngiVNpVPrw/Ll4UWwsWALqC6mqbFGMxQ/12LQP2d4ICuddnq+UVaTP7uz1KijuswrNe+4GSW1hYvPYMaY9Pu4VM2hutGVUsLl7bUAeR9wEfA0V0hNb5LCKHyLuezWfZWn6YWW9L4Mfp1wSMUXEi6hRiDVSsp+3hRnlanCJWRJZ5dH6XecE2ILa2PBpcdPJVe42ORYDNqNZOqcYajTYs+FpXQK2mreQa0XbQHTPF/InD8n7baLpNA7GvXI5UfAVanxF1MYpm8xV6VLma9pekptFciSJX6njtPT1YcXEhS5zybSzRAhpafbbnA2bJi7ZqfdaKZOFl966ZedDXezBsj+gAcpz2EEn4Bsv9OUtS6uHr+r0+PrpdvlEGpQQ0YNTbyu6tZGuOR0CmwDlVzfX67ySPGE3Nwz936p80ddVWOlhMttwKbU+IspjNIrcsrkvl1B29eGnAI2DUKul9vQszWNT+7Ea4qOvr1eJLQaOWfB55o1dwbfaZOvQQwjUkPKvI8rLF1a5dP17kMdgViZuOqOy5tv0+MPTWj7BH1sonpmJjyfGKLL3J09wg5NkpcOzXtKje/qrIXiD20/l3kR4b3AG1PjL6Ywyv1cYg4lfQ3IkiVzfXS59MkNMcMBY+Y3GjEBkmNi6rIuCu1l0VwTWo2cOnrasMEYny6/ea++RjYUpqbyG7XVq5v8dAuNOsduUFNGvP66m3d/34S2/a5d55rjobSrXvnccnKNftrPkOqexvVOhtGZaN839Z6+9UCxdiLXQrCUcFkL7AT+EFiaet1iCMPwLZZS0X2NW6hn2q6Qy5fP/wh9jiGbD9NnwtlWwbTNK1OsgHxrAOz8u4RTqYVkGzYYs3SpvwOwenV+I9ssnMy5LmV9U0qwzZS7vI9YXcupt23TXHt0at8r9p6mpqq4D3jAHm+dcNWtLu/RLoeSC3pTw4oVaaMl+3tsz+mEBGru2qZipsjA2cA9wN3ATcCNrXBDTnqTEoblW8wVbL24Tw2Uk55re9mUj9AWTKHGJ7QiPcd82s6vK71BGr3579M9cnF5F0htoHJHIKtWzR31dbnvoO8jtUxSg2vrhNjkti9UnZB7nHXCNyfUNd8NJV0R5dafWBzb6q2xJLTfa055hyg1cnl6bXJ8J3A9sN0VUtObpFDC/YutqrBVVC6b9XZFc3lOzbGu8lWyLh/h9HRcGLkmD31qsq5uV2K9XVfvz27sYg3b6tXdRxAzM3GLuthOn8NQyfh08H00qo1A6FJvV6/2z5/55ta6lp09hzOKkUvX0NZIDLInkU0p4fJ14PPA/VKvWSxhUOHStq9vf2Qx1YA9VE+1xklttAe1hgmlbTeUvsYh12tBk17IbNg14dwI6RTroUa1l/IO2yoo28IvtLtiyjxXH2bPKS5L+mpU22szUq4JWTuGJvq7hka4hMovZwHssIO9JUPOvKePUsJlL3BhavzFFAadc0nZaTGmRokNZ12rxoe92M+X59AeManWUakT6yFzz9T5k0YQpTRc9sS9y0zXdd6YNAu9vkYQsbUpoXmwkiH2fLH60cVbQUqemu/RZ4Yds7AcdbDXp6WuRfJRSrh8EXhBavzFFAYRLj4z11xdd8pEnMuia5SL/po8h+LkjFxCqia70Szx4TcCJiVuW9/tEn5ty54UK67QqDLHF1luPTImb0TbVycmVn+7jFxic1ku9z52R3AU31SX+/lc6+RSSricBdwM/HTqNYslDCJc2uaToY88tAiqq5PBmBrIpc8uFXJMK0OhcbsS+8gGmYPy5T+1kW2eNXWVdIqRh0u9Bwcn/7uoZ1LrUY4/rdS9inJCrF6G5lxcoVkQG1KpNh2KnPkdV8ix1kt5vymLqF3PUoJSwuUy4HPAbuBtwF/Ux+zwwtT0JikMY+TS9DBcveVB9u8O9bRsNyr2zpQlPoqSfrhS0rHfZ+qII+UDzVkrEcuj3Ui1yyS0iZvt/qdt6r18eV6ZxMx3G1IFtL1wsss7Xr3a7VUi5qPOZy3me4/tNVvr17u9FHdZyGnXlwsumNtJdC0HyK2DzTPmqCpto5pBRi+lhMuBhKCOKzPxzbm0hYVdAXL2rAgR6mnZE39dXGSkNBoljAVSPuqUfdG7mII3H2iOKiTFBX6OwG3mmkKLD5vG0jXP0wTX5m+hRic0im6n25RTbnnbwtY+Huv5u76H5llS5nHa9T5l5BWb32mEk73tgmvOJvcd2Z2mru93HITLTEpITW+SQklrMZewsM+HVtLnEmqUQ73oLo3wIGt5fKGZmEz1NRZ75i4hx7+bfU2p+6esoG/egb17Ydtk3dXAxBqdWN7aQsCnxouVW67q1Oepe8OGtPK3y3T58rR6G+vkNEY6beHSfs+5mgF7GUIXrYI98u3SUS22iFJDP8LFmLDPpRTdchdilbHUfMuyZf2YNDejq1RfYynP3CWkeElo57nLfWIub0J1xmWBaBMy9vA1OqEyXbXK//xtq8XQZl2x+/jeU/t9hPY6CZVpjjCKlb/PMtAmt/NjC9ISfs5y25PiwgVYDZxch9Vd0pikUEK4+EipbF0m87tMAuY0fMMKvrkb30fSlyWPa+2AKzTrJHyL2GINaUovM8V/VGgFe8r7DOn4Q6NJlxovpn7LLYv2mieXY81YfW0EVEq9bjoMjfoxp+62yzB3PtCecylVl3Pak5LuX04ErnFsFLYDeFhOWpMU+hQuORUsFbsxKSEUBlE1lehtucxDfQ1vV6/COQ1FaPK6Katmd8P24tmYRWCKfjzHq0HOAlu70Ql5IQ51XHI7Qrl1K3Vb7ZQ6lXO9PTLM6cDEBCFUo0DfSDA1n0uXppun57QnpeZcHlpbiu0H3g+8uA7vr4/9EHhIanqTFPoULikVNeeDTTWXjO3z0m7gYvkMuegY1DTTt2+969n7XIOQ0vi21xc0k8Z2vge1CExtEHPXgdiNTmxkEvI+kEOK6raJc9hh+7J2X/SFmAFISp66NOShOuOySrTzGcrT1FRVp3Lmu1IpJVzeD9zuGqHUgud24H2p6U1S6FO4xCbCY27F2/gqcHvTIt8+L67tU1Py2ZhgukYXrg8nx6wydVV53x4J7IYi5NLGZ6DRfp9dLQJTjSdyV7A3I6fYuij72Qa1aowJv2aSvBoFzvVe3cV9kctIxi6vPtbrNMS2ew6NzmPrp3znU+fxfJQSLrcCLw6cfwlwa2p6kxT6Ei4p+vvUdQkNKbpwX+PnmgxNXcCY654mVYccm6huSOmhpzREMzNhX1axZ4o1/LbX6K4moi7TY19+cxodu5xdHqF91mDLl8fz29XkOWYmnKt2PeQQd+PaZVOxlGC7YomNdkPvylWvbKe2obyP3Fqs9ob87MD5ZwN3pqY3SaEP4ZLS0+6y+VasArvu2+ixUxsiX5wY7Q8nplpwWRv5njv2cTV6+pDfsVDZ+Hp89jOlCsyu3hba97Q7C7leg9vv1bdQ1d7TJ2dho+8duSi16DU1tD2N9z3qjX17KQ2+bw6vIfTdj8M6ly8D/xQ4/0/Al1PTm6TQh3DJ0ZvHGrv2YrpQ3FAlHKTnltJgtm3/Q+k1jWaq2/BUc+WtW+f3vg855N6gqsTXcLYFS2oDNYhrjpDq0Zdf3zk7/6H6mOol2lU2bZWTa/dEY+aOHIaxtfAwNwVrq1NT3kf7Hdo7i7o2/MvpEOVQSrg8r16F/w7gIcBUHR4KbKutxv5PanqTFPoQLqkNuUja5LFvhXa7oQmpzQb5yOyeYEOoxxSyumnmWFLUCA05H5f9sc7MVF4UfHlsT8bbaXRded115JLayfA9S6j3Gluoakye2byvowP+BrW5Zlhm701euxoFXHBB2sR+u7zb32v7G213WtqdoWXL3KriVO1GDqWEyxTw7sbNS20htr/+/wDwLmBJanqTFEY9cgkJhK1b/RXcpV+OWax0/bBd6yRSetKhCUffvXw9/3avMPRx2R9waF7MtdJ6UDVKey6tfR8fqRZqXQjVR3vCOfbctmVfyp45OfloP/OgC3ebvHZZ2NioHGOGFa4OTmwjL7scfc94yCFhl0ClKLqIEvhV4G+Bj9bhtcCZuelMUhjVnEsjPEJrDnLmbZr7hir2IB+rvYDQl4/Qc9sruGPrQXx0scIKlZFrdXmuea/rObrMp6XsAZNDu4fsS789HxVzg9+kHXs3rtFurHOTut12SsjxvODyLhCrB65OROg6Vych5RlKjFB8DCxcgJW11+NfT4m/2MIgwuXEE38QtJSJWWE18bqs9nY1xu2RTvsDGFT/HHqmkPVSMzfSfFgh4wLfx9RV79wWLiGVTun3kZPn0LsbVLgY459Yty2ejPEvVO3ir649ggnVv8MO22e2bp2rrmwL5lTjAFenK/YdtklxkplzXVO37efp8iy+8u1CKbXYXcD5qfEXUxhEuKxcuf8nzgRdpKx29gmEnHmbJp1YQ+Ybstuu1WPm06F8pH5YoeD7aHLmaGxcwqXUegdjus1zuXqxvobTtuhK7cX6RksxM2yfKqipk7mjiamp+flyXX/GGfOdwDZ1pl0fcjwj2/f1xXf5sDMm3vj71LeDaCJCz9RmnITLl9GdKJ2hq3CpGoMDP/mIfJPeIQuvkEDI0U8bk25nH5psNCbd5NZ1n0E/rJBpZWyRmg9buOT0uku891ieUy26mtB2j+IiVKdCDXPsWVLz6Cp7u475PBg84Qnfdq6mb39XuSO8kEAMjXxj78vXqfG9/0HnkNo7opaY3C8lXJ4N3KSOKssIF18v0yVgjPFXhtgEfGyle4oLCdcK4ZiZZBdPto2wdFm/pKQX259i0JHLoDp833sPzXPFyjdXRdKUXYjQPWNqy1gdKmEQ4svDkiX3eq9vq7hy1KO++9kbbvkIPVPIaMP1vYfeXXPOZ7xjW4j6FkN3ETClhMs5wBfrlfqvBJ5VH5sTUtObpNBFuIRMFHOGqrGPOWdhW6why/kguzTEzXU5rl/aeYxZoQ0y51JyvUM7X755LpfgWbKk2sI41+dVqOxT61TM4MJX32Ijl5S8x02D3VuGN++0XT9ja3tS3keM0Ejcvp8rP+28pCyEdJVP6j5KXUzgSwkX3YnSE7oIl1Ah5wiXWG88psaw8VXMkIuNUIVsfzAxQRd6Hl+wVRkpwqOLOqARLik9R/u+KW5iYnluC56VK8vtwZ5rGGDPq/hMxV0NWcwRpO2vLhRipsGhkYurvrsEietY1xFvSvmmLGxuSNV22OWTo0Hosni3lHDZkBJS0+sSgFXA84EvUXlovhX4NPB0QFpxHwVcXcf7EfAx4CRPuscAbwNuqd3cXAeclZqv0iOXnIYvVnlT3Jm002urvkJmo7EKmTLhbFsb5fS+U92ruxaphQR4+3xs5OJSUfkW0LUbjdzRYm6INdquBjJ1hJfaETjjjPnp527eZefVl78nPOHbwetTcC2M7TridT1v25w+xWw79r5Dk/U5nbWhjVxq0+OHWr/XAst98fsOwBLgk/WizTcBm4CLgP8ADPDXVtxTauu2G4A/qsMNtaD5+Va6RwA3AnuAy+t0d9RpPiMlbyXnXLpU4NBcSK5w8aWZ6qwxlJ6roVy1Ks/UObRr4SDqCxufcEnphYbWV9ibSjXp9+URwb5nqAFLWXDq6+jkWCP65hdSn9Hl76udv+3btwddw8S+pXadH3TE63re5v8UU/Z22XSp36llNNQ5l1rNdbb1+17797ADcGrd4L+qdXxZLRzusI59th6tHGsdO7Y+9s+t619Wp/t469hUncZtwKpY3kpYi/lCauPtsuIKbYwVqpCpPeacCpna64pZmoV01IOoL1wr7RvstUgpjUyO+XAXS7Gc0Hi79nUOQp2M0DsJ5d0VGvVlO+Q8Y7u+uToBofoTU+HGRiclTHdzrA0HGbnErmnqRqgep9BVuNwOXGj9PjBi4fLrtRCY57+sFgS76v+Pr+O90RHvjfVzHGUd+w7wDUfc36vT+d1Y3kqscxm01+1afxLa8KtrhbSvz6mQOc/n6302DaGvIcjZ7rhNSGi1F7r6GplYg+laBBfKc07jHXKrb0z3EWzomVP3jWmCLVQaQpZYufW2GWGGGlPfM8Um3n3vIIccNafPyWdu/XZpSEQqgxCfX7wcugqXfwV2An9IZQl2AHgdDgsxhmAtBtwX+EE9L3JWraZbD/xlPap6Zh3vKbVQON+RxjPrc4+rfx9d/97qiPuz9bmXx/JWwv3LIL3u0PVNZcqpkLHeZMyUNSd/Pp1/22Js6dI08+su7l1CE9QrVhjzgAfsSfoIm8Yn1JD7hKIrzzmm5LGGZ5DOS8iyyh4thyaPG3VtOx1fvlMFhE3ut5SinoS8TlRIAKV2FkL1Nkc95xNmZ5xRzoFlSLhIdX4+InIi1e6TD6wPGUCckQ9ijDFTkTidEZFfAd4A/Jx1eDeVUPtAHedi4BXAY40x/9S6/rHAR4DfN8ZsEZFHUE3ev8wY87xW3BXAj4F3GmPOduRlE9X8DGvWrHnEu971rk7PtGfPHlatWsXVVx/JK17xIPbtO/j6pqfv5ZJLvsqZZ34/ms6jH70BY0LFU5XzmjX7OP/8G4NpPvnJp/C97x0aTGv79muiebLxPd+RR97FEUfs58orr58X/6UvPQFj5ufZ96wihoc97Id84xurOP74PVx55fVcdNFJAPPSD+VrPvF3d/XVR/Kylz2I/fuXNLmZc/6QQw6wYsU9/OhHy+Zdu2bNXezZcwgAH/7wp+bk+QlP+CXnNWDm5cfOQ/ucr0zXrLmLo4666yf3cz2Xq9we85jv8tGPHs3+/UtYuvQARx11F2972+e48srj+cd/PHbO809NHeDAAeoykznpXHLJVwHm5fsNb/gZb37f9a5rHe8j/i0deeRd3H77NMcfv4ff/M2b59zzzjuXeN5z/B3ZhOpb7BsVMTz/+V+Jfu+xOt3g/47nNuU57Uyb008//fPGmJOdJ31SpxY6U1Q9+NOoRi4vZrTWYr8AvA94OfBE4DzgC8Be4FfrOC+s396jHdc/uj53Uf37V+rflzviLqnPfSCWr1KOKweZNEzpFaWOOGLD91zrK9/zpW70lfqs9uS1b61AalqxkULO+2rylrIbYHvb41CaLnzPGxrZdOlth0bDOdZgrnmoWH59z33iiT+Yc72rLjSbauVsq23v0hoi9v2GyjN175Ycctc9dYFCpsjbgTNS45cOwM9TmQk/q3V8BdWE/s5aGF5cC4XfcKTx2Prcpvr3I+rff+2Iu6I+945Y3kp6Re6q102xPsuxmmqvr/B94LkCMWRRlWMd51or4dp217U/vU2XSfPUidb2u++ygLCL5+fQe3OppULl17WBSrUGixmWpNattnBxsXx5OC+++SNXp8WV15Q1Vq5OyNKlaXu35JLTceq6QV0R4TLqQGV+bHC4nwFeU587jgU65zIIqROFqZO3DS4LtNjHkiogUlYbx57ZNhvNcQ9j08VfU6qJaPu5uq5byZ0zC2G/25TyG7SB6uoZOIeDdeGAt/FP9YbsGtGkuErJsYa0vyfXiMll3t5FyLjKt2RnxRgzMcLl43Vjf6Tj3Ovqcw+ivLXYk2J5G7VwSW0AcoVLg69iD2KEEJpgPvxwE/QU3dBlV8J23roIl9yRi09llOMAM3WTsxxSym/r1vkNbk4DFXo3gwhJO38pI4bUcm03/jF3Ng1dDCZiZtOh9Ws57yfVOrELkyJcXlU39n/SOn4f4GYq0+mp+tjnqNa0HGPFO6Y+dnXr+pfX6brWufwA+KlY3kYtXHJd6+fiEy59+FyamUkTLoOMAlKeIXR9zpyLqyfdHhGmNHquleODklJ+bfXo6tV5DZTv3fg2ysolRUDmjmpTF7nm5iPlvbTzVOK9ueazhmEtFmw0xykAM1SLGg8Ab6dynPl84Ju1cLDX5PwSsI9qVf5FdbiBahX+ia10V9fzNbuBv6CyANtep3leSt5GLVxyTBzb9KHTTRm5+HqcZ5xx8LdvG4KcZ47lrUs6vucJeQ+IPXus0SvZIMSevXlHoVFBrknsoD1wHymNf+wdh7wb56i7SnhatvOUIghTcH3jJRaEGmMmQ7hUz8FxwFtrVdb+eiTyb8D/dsQ9lWqtzp5acHwceLgn3WNrgXUrlduYL6Sow5owauGS2gtyVchBKtkgcy7N9XYDZQsWO3TZ7jbVrXjuCKjEHEGoYWlbi6WsYelKLN0cTwMxSjVmbVIa/1iZ5nqrCI3SUgVuqP6m1McS9bAEEyNcxjV0FS4pFi6x631uSVLMfHOtcXwmroOkYR8L7UXRxteotL0kp+QtVSdfokE3Ju6pOnUVe9nJ8PnvqJSvNmP6Ey4pjX9MLRZ7j8McNTajqFQru77eaypFhAvwCQKmyMDpwCdS05ukMA7CJZe+emSD5Df0MQ2S/xRcAuagKbPfCqkLucKiZCPvog+DjWHisxZr5qnWr/d3XGyP3MPOs2t7C9vwI2Wt2aQIl6BvMeBJ6H4uyaSYT6Zd363B70uX3CW/zQeSM3KJpZlLW7jYE6clVJfte5XQz5dq5LssvCyRfklcHTXbCGJQ32p9EKu/bWOKdhn0MaLKZVjC5feBvanpTVLIFS4l5ioG/ej7soLpkt+m8cnd+tm+dhBi+SstXJp7DuIjqpSKrmQ+fQyrd+3zdtFly4FhEXs3vrVmo6wTNp2FC/AwDjqlDDmuvAj4WuhGkxxyhcugDXaJBj81jRyVTBf1SmhSP2QtVpLYu+hDuBiTZ8Uzyl7qoOrXYeU7tO+OL4xaxZf6boc5D5dDqM2vvOX5eSLw5/X/ph6d/L4n7m7gDyLpKcC3vpV3vPT1AJs3w6ZNsHfvwWMrVlTHbdauhZtumn/92rXp9/Ll66abqjzs23fw9y23wPLlsGwZ3HFH+j0GwfV8oeOjYHa2CguJbdvml++mTdX/fT7LpZfOrdc+XPV92OzY0S1eiTagd3xSpxJKzFA5pNxINXJ5CfOdVZ4GPBw4NJTWJIdxHrmEekYpvcrU4XcorZBlzDj0vmJzPX2NXNqMgw69JMPuXTf77uS44wkx6snyEAth5JLcgAJPA9alxl9MocucS2i/kpTrU/WtKTrdQb29xvLjs4wZlR68/cyhRsiY4QiXcdGhl6RvKzeb6pu6J9hpaUKKwBh3QT8u9aWIcNFQVri0F/jlmkSmjjpKfSA+IbRhg3/CtO2jqh1vVCOXXP31MITLuPRESzKsZyo9xzIuDXeMcRCAxYQLsJLKs/DLqJxAvqkV5jmLXAxh2GqxhpjKq+8PxCUwQj3UlG1x+/6IXR/kKKzF2gyzl9+FLiPgYTXSqS58SnjsHjdGrborpRb7ReD79dyLL+g6lwRKNSShitX3B5LSW8z149V37yvU2IV6gYt55JLq8n2UVm4p++Hk3HvcBf04UUq4fAq4A/gd4IjU6xZDGNXIJUTfH0hMULh6iaFGYBjD+q6+shbrnItrZOqbcwsJkL571yG3+F3uPa6CfhwpJVzuBF6YGn8xhWEvokyh7w+ki6DoIpBKEhO4XYVLqcZz69ZuPe2SNM8SGpkuWXLQs3FKXe5TuLiMY2Awty7jKOjHlVLC5XtYbu01dBcuxgzu/iUl/T4/kC7Cq4sqrSR9jFxKu6BxCZdh6tWbe6XMY8zMpG+m1TUfMXz5HNStyzhMlucyivmXUsLldcA/psZfTGHULvd99PmBdBVeuUYAJemaZ18ZlRTgobTajUafjUiTdu4maqXLMfUZ+1T/jnqyPJeFLFwOAz5DtV/9cYCkXjvpYVyFizH9qyS6Cq9R6bW75NlXRiWfIdQDb+e3rzKNCf6cMEg55pSRzo9UjGqkVUq4HADujYR7UtObpDDOwiWFQRqrrteOUq+dm2dfGZXsNaeOFA5uA1C2EclZKxILg259kFMvdH5ktO+glHB5C/DmWEhNb5LCQhYuo9Qtj+repYTLMEYufTbkJe7vG12VzkdsLq/P+ctxZ5SjN12h33NYqMJlHHp9C0GvPao5l2GooBpCI6dmd8/169PnhUrnIzYadO3nslgY5bocFS4qXJyovjqNYVqL2WnFtuct2YiERi52+n2PNgepk6PWAoyKcR25LIn7Ta4QkbUpITU9ZTRs3FgFWCBuu0eI/a58zM7CKafAhg2wc+dgruTbaf3N31Ru4WPkbH/gY/NmEImn3+Tx8MNh3bryrvM3b57/zOPgGn+cGdd3FtvPxWYnYBLiTXXLitIHGzfC9dfDSSfBM58J115b7a+xbh0ccQTcdtv8a0o0VouJ1D05cmka7vPOq8ps9WrYvRvuvvtgnFKNyOws/Pu/w+teN/d4O/1G2J500uD39OUDDj7zzEx1/7YQa/LR17tfSKS+s6HjG9K0A/Aiqo3D7PBi4B3Aj4FrgT9PTW+SwjirxdavP6iTbetmly6d7515sVna+LDVP2vW3Dk276RvtZRdX9rpp7qDGQauOZ7FqhYbJfQ95wL8DNUK/seVSG+hhXEVLr496fuy9FlIjNqj9DiT6uF4VO/GJ2BVuAyfkHDJUYuFRj83isjfA38BfKREmspgbNsGr399PN7tt8Npp1X/T6qKIVeF4tomd+/e6vjIVQ1DwPWeQlsHD/PdhLZOPvbY/u+vpFNEuNTsAh5cMD1lAC69tOpXxli7dnKFClSNkT3P1MwftI/ZDaMaOswn9uwl302oMxAS/G95S7k8KIOTbC2WwG8DPyiYnjIAKR/7OFiU9Imrl/uMZ8C5587v+W7bdvA6n0HDYjV02LgRli0Lxyn1bprOwDXXVILfLhdQwb+QSB65iMhlnlNHAI8GHkq1Q6UyBqxdWzWcPsbGoqRHXL3c/fvnx2urdTZvrgSOfe2kC2If9shPxD0aLvVuQiqvpmx89XqxCv6xxjcZ0w6Ed6C8GXg+MJWa3iSFcZzQd03AilST/IuFHM++7YWI42otVppcwwbXQr1hbuMQMrbQCf3hQyHfYjOOsBZYlZrGpIZxFC7GzG0gp6cXj7VTQ46/rNBq5klttGJmzb73Nz3dT35S3Ziotdj4EBIuyWoxY0xAyaKMI7OzcNVV1f+TPGnvw6XeWrq0Uu/0sRBxIZGigvLNY9jvriSpKq/Z2clW504K2RP6UvFwEfmdOjxcxOc4Qhk1O3YsTsECVQO0ZQtMT1e/Z2bgzW+GN71p7rEtWxZfYxWyumoYtmHDuLoxUbqRZYosIo8B/o5KJWazU0QuNMZ8vFjOFKUAvl7uYhMmbVKsrjZvhnPOgQMHDh7rs7EfWzcmSidyrMV+GfgglauXvwG+XJ96CPB04IMicrox5tOlM6kofbIY/VSlqqBsncTq1ZUzzT4b+8Wqyp3EOpgzcrkM+B/gUcaY79onROTlwH/UcR5TLnuKovRBzNz6hBPga1+bO2q5887h5G2SGtjFTM6cy6OALW3BAlAfuwo4pVTGFGUYxBbtTSqu+ahm7mnbNvjv/54rWGD+nIxShkmtgzkjl2XA7sD5H9VxFGVBkGIxNcm45qOad+JDV8KXZZLrYM7I5SvAk0VknkCqjz2pjqMoC4IUi6nFRshBJehK+NJMch3MES6vo1KN/auIPE5EHliH3wT+tT73d31kUlH6QP1UzSfkMkjNgsszyXUwZxHlG0TkZ4FLgP/liPJyY8wbi+VMUXpG/VTNZds2v/+wqanFuR6obya5DmYtojTGPA84AfhT4O/r8DzgBGPMn5bPnqL0hy7am4tvmwYReOtbVbD0wSTXwez9XIwxXwNe3kNeFGWo6KK9ufhUMcZU72QS12KMmkmugzmLKB8IPNQY8yHP+ccDXzLG7CyUN0XpncW6aM+FT0WzevXw87KYmNQ6mKMW2wz8SeD8xcDlg2VHUYbPYva/ZrN5c+XYs83u3XDhhZO5FmNcmMQ6mCNc/hcQ8h32z8Bpg2VHUZRRMTsLhx02//jdd8PrXx/evVNR2uQIlyOp3L/4+D6wZrDsKIoySm6/3X28PdE/KWsxlP7IES53AMcFzh9PeAW/oihjTo4J7CSsxVD6I0e4fBJ4pogc1T5RHzsf+FSpjCmKMnxcprG+3ZomYS2G0h+5E/qrgC+KyCUicmYdLgG+WJ97aR+ZVMqxceNBk1JFaeNyaPmsZ03uWgylP3JW6F8vIr8DvBl4GdBoYQW4FTjLGHNd+SwqijJMXA4tf/mXJ3MthtIfWYsojTEfFpG1wK8DP1sf/hrwz8aYIe32oHSlce29b19lTqoNhJKK7luv5NJlhf6dwAfKZ0Xpk0l27a0oPtSrwOjI8i2mLFwm2bW3oriY1E24FgrBkYuIfDAzPWOMecIA+VF6YpJdeytKGx2pj56YWuw3M9Nz+FRVxoFJdu2tKG1CI3UVLsMhqBYzxiyJBeB04HP1Jd/tPcdKJybZtbeitNGR+ujpPOciIg8VkY8AnwAeBLyQgxZkypjhWr+gmz8pk4pvRK4j9eGRLVxE5AEi8haqhZNnAK8GjjPGbB6GObKIHCEirxCRb4jIXSJyi4hsF5FfacV7lIhcLSK7ReRHIvIxETnJk+YxIvK2Oq07ReQ6ETmr72cZNrOzcNddlZ+onTtVsCiTi47UR0/Ofi73BS4FLgSmgXcCLxjm/i0iMgPsoPIG8EaqNTaHAw8DjrXinVLH2wVcVh9+DvBJEfklY8yXrLhHULmtORK4AvgOcDbwHhE51xjz5n6fSlGU0kzyJlwLhahwEZFp4CKq7YzvA/wL8DxjzPV9ZszDVqo8P8wYE5rfeTVwN3CaMWYXgIi8B/gK8Erg16y4fwo8EPitZiM0EXkj8BngFSLyXmPMnuJPoihKr+jCz9ESVIuJyHnAN6h8ht0A/Kox5tdHIVhE5DSqPWVeZoz5rogsFZEVjnjHA48E3tsIFoD6//cCZ7acb54N3GDvsGmMuRd4DXAE8NheHkhRFGWCiY1crqIyL74OeA9wooicGIhvjDGvKpW5Fk0j/y0R+RDwG8CUiHwduNwYs7U+/8j672ccaVwLnAs8AviIiBxNpU5zLa+61krvPQXyryiKsmhImXMRqgb2kbGIVIKoL+HyoPrvVcDXgacBy6i2V367iCyt50eOqePtmp/ET4418zM5cRVFUZREYsLl9KHkIo2fqv/uBk43xtwNICIfAG4EXioibwUaVdk+Rxp31X9XtP6mxJ2DiGwCNgGsWbOGHR2dF+3Zs6fztcpw0DJaGGg5jRdB4WKMuWZYGUmgMXN+ZyNYAIwxP6jd1JxDNbpp1uVOO9I4tP67t/U3Je4cjDFbgC0AJ598stnYcZOUHTt20PVaZThoGS0MtJzGi4XkuPI79d//cZxrLMfuC9xc/+9SZzXHGpVXTlxFURQlkYUkXD5b//1px7nm2Pc56IrmVEe8U6jmhT4PUJsz76qPu+JCZcygKIqiZLCQhMsHqOZbnioiq5qDtcXXbwNfM8Z8wxjzDSqBcJaIHGPFOwY4C/iEMcYe/bwTOE5EHm/FnQKeC9wBfLSvB1IURZlUsjcLGxX13MolwN8D14rIm6isxS6o/z7Xiv6HwHaqFfmvqY89l0qYXtxK+q+ohM47ROQKqpHMU6is4843xuzu6ZEURVEmlgUjXKCaRBeRW4E/AV4MHKBaz3K2MebfrXifFpGNwEvqYIBPA2cZY/6zleZtIvLLVELm2VSuZf4LeLIx5t29P5SiKMoEsqCEC4Ax5v3A+xPifYbKsWZKmruA3xswa4qiKErNQppzURRFURYIKlwURVGU4qhwURRFUYqjwkVRFEUpjgoXRVEUpTgqXBRFUZTiqHBRFEVRiqPCRVEURSmOChdFURSlOCpcFGWBsHFjFRRlIaDCRVEWANu2wbXXwjXXwLp11W9FGWdUuCjKmLNtG2zaBPvqzbhvuqn6rQJGGWdUuCjKmHPppbC3tdn23r3VcUUZV1S4KMqY861v5R1XlHFAhYuijDlr1+YdV5RxQIWLoow5mzfDihVzj61YUR1XlHFFhYuijDmzs7BlC0xPV79nZqrfs7OjzZeihFhwO1EqymJkdlaFibKw0JGLoiiKUhwVLoqiKEpxVLgoiqIoxVHhoiiKohRHhYuiKIpSHBUuiqIoSnFUuCiKoijFUeGiKIqiFEeMMaPOw4JHRG4Bbup4+f2AWwtmRymPltHCQMtp+MwYY+7vOqHCZcSIyHXGmJNHnQ/Fj5bRwkDLabxQtZiiKIpSHBUuiqIoSnFUuIyeLaPOgBJFy2hhoOU0Ruici6IoilIcHbkoiqIoxVHhoiiKohRHhcuQEZElIvJHIvLfInKXiHxbRF4pIitHnbdJRkR+TkQuF5FrReQWEdktIteLyKWudy8iDxKRD4jID0TkxyLySRF5tCftw0XkNSKyqy7TL4vIBSIi/T/ZZCMiK0TkRhExIvJax3ktpzFFd6IcPq8C/gD4B+CVwAn1718QkTONMQdGmbkJ5lzg2cAHgW3AfuB04CXA74rIKcaYOwFE5Djg08A9wMuAHwLPBD4uIr9hjLm6SVRElgH/AvwC8BrgK8BvAH8HrAFeNIyHm2AuB9yL9LScxhtjjIYhBeAhwAHgfa3jzwUMcPao8zipATgZONxx/CX1u3+Odew9wL3ASdaxVVReGL5KbQhTH7+wvv65rXTfB9xNtYJ55M+/EAPwcCrB8cf1O35t67yW0xgHVYsNl6cAAlzZOn4VsBd46rAztFgwxlxnjPmh49S7678PBahVZL8F7DDGXG9dvwd4A/BzwCOt68+mKrurWuleCSwFnlQg+4sOEZmieqcfA97vOK/lNOaocBkuj6QauXzWPmiMuQu4nrkfgzIcfrr++73678OAaeAzjrjX1n8fCdX8GVXv+ot1Gdp8lqqnrGXajT8C1gPP8ZzXchpzVLgMl2OAW40x+xzndgH3q3XDyhCoe8cvpFK9vKM+fEz9d5fjkubYsfXf+wLLXXHrMr7ViqskIiIPBP4CuNwYs9MTTctpzFHhMlxWAC7BAnCXFUcZDlcCpwKXGWO+Wh9r3r+rnNplFIrbxNfyzOf1wI3AFYE4Wk5jjlqLDZe9wJGec4dacZSeEZEXU6lcthhj/tI61bz/acdl7TIKxW3ia3lmICJPBX4VOM0Ysz8QVctpzNGRy3C5mUr15arkx1KpzO4ecp4WHSLyIuAFwJuBZ7VO31z/dalJmmONeuUHwJ2uuHUZ3w+32kZxUL+zK4CPAv8jIseLyPHATB3l8PrYfdByGntUuAyXz1G981+0D4rIocBJwHUjyNOiohYsfw68FTjf1PaoFl+iUp+c6rj8lPrvdQCmWpP0Bao1Su0Owy9SWQZqmaaznGpNy+OAr1thR33+qfXv89FyGntUuAyXd1NZplzUOv5MKp3vtmFnaDEhIpdRCZa3A+cax4LV2pT1Q8BGETnRunYVVaP2deZa+72Tquw2tZK6iMpQ4N0oqfwYOMsRLqzPf6z+/UEtp/FHvSIPGRF5DZWu/x+ohv/NCv1/Bx7tavCUwRGRZwOvBb5FZSHWfs/fM8b8Sx33eKqGaT+VR4UfUXUAfh54nDHm41a6y6hWiZ8IvJpq5fdjgScCLzHGvLDHx1oUiMg64JvA3xpjnmMd13IaZ0a9inOxBWAKuJhqBfE+Kl3vFcCqUedtkgPwFqpRoy/saMU/AfhH4A6qyd5PAWd60r4PleC6uS7T/6LqQEjfz7UYArAOxwp9LafxDjpyURRFUYqjcy6KoihKcVS4KIqiKMVR4aIoiqIUR4WLoiiKUhwVLoqiKEpxVLgoiqIoxVHhoiiKohRHhYuiKIpSHBUuiqIoSnFUuCiKoijFUeGiKGOEiEyJiO6KqCx4VLgoyogQkaeLiBGRM0XkhSJyA9WWu79bH39L4JqN1rEX1cceJCIvFZHviMg+EflPEXmsI41zROSzInKHiPxYRG4UkW0icv8eH1dZZOg2x4oyel4BLAWuonIb/9WO6byVyv38K4BlVHuVfEBEfs4YsxNARH6vjvdJ4DKqHRofQOV+/kjglq4PoSg2KlwUZfQsB37BGPOTfdxFpEs6twKPN7WrcxHZTrXfye8Df1bHeSKwm2rvoHusay/rckNF8aFqMUUZPa+zBcsA/I2x9tAwxnwO2AP8rBXnh1Q7Mj5OOkowRUlBhYuijJ6vFUrnRsex24DV1u+XAjcBHwBuEZH3icj5IvJThfKgKIAKF0UZB3JGLSFV9r2e4z8ZoRhjvg48GHgc1dzLDNVcz3+LyHEZ+VCUICpcFGU8uR04wnH8ZwZN2BizzxjzUWPMxcaYk6kEzTHAHw+atqI0qHBRlPHka8Cp9poXEbkv8IxBEhWR+zkOf6H+6xJmitIJtRZTlPHktcBW4BMi8nbgPsAzqeZLjhog3X8WkTuoTJG/Xaf7dMAAbx8gXUWZgwoXRRlDjDHbROQY4DnAFVST9ZcDB4BHDZD064DfpTJPPoJqwv+LwHONMdsHyrSiWIhluagoiqIoRdA5F0VRFKU4KlwURVGU4qhwURRFUYqjwkVRFEUpjgoXRVEUpTgqXBRFUZTiqHBRFEVRiqPCRVEURSmOChdFURSlOCpcFEVRlOL8f5sSPQwZzi5mAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"<xarray.DataArray ()>\n",
"array(853.42940839)\n"
]
}
],
"source": [
"total_Ncount_val = BEC_Ncount_val + thermal_Ncount_val\n",
"total_Ncount_std = BEC_Ncount_std + thermal_Ncount_std\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"total_Ncount_val.plot.errorbar(ax=ax, yerr=total_Ncount_std, fmt='ob')\n",
"# plt.ylim([0, 1100])\n",
"plt.ylabel('Ncount from fit')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()\n",
"\n",
"print(total_Ncount_val.mean())"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEHCAYAAABiAAtOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2iElEQVR4nO2de7weRXn4v08OyYEkFSSQWKIkAoK3FpGLINVys1aotdoW1HgBhEi41OtP24abCGgVEAtCCVhETypQpYD9WZFgQvFnKUbBnyJFhCaxqNwEJIQESKZ/zC7Zs2d3dmZ39n3ffc/z/Xzmc867Ozs7u3N5ZuZ55lkxxqAoiqIoMZnS7wwoiqIow4cKF0VRFCU6KlwURVGU6KhwURRFUaKjwkVRFEWJjgoXRVEUJTpb9DsDg8p2221n5s+fX+vaJ598khkzZsTNkNI6Wm7dQ8usv/zgBz942BizfdE5FS4lzJ8/n5UrV9a6dsWKFRxwwAFxM6S0jpZb99Ay6y8isrrsnC6LKYqiKNFR4aIoiqJER4WLoiiKEh0VLoqiKEp0VLgoiqIo0VHhoiiKokRHhYuiKIoSHRUuiqIoSnRUuCiKoijRUeGiKIqiREeFi6IoihIdFS6K0mGWLoX582HKFPt36dJ+50hRLOq4UlE6ytKlsHAhrFtnf69ebX8DLFjQv3wpCujMRVE6y+LFmwVLyrp19rgSD50d1sNbuIjIe0RkvuP8fBF5T5RcKYpSyZo1YceVcNLZ4erVYMzm2aEKmGpCZi6XA691nH9NEkdRlB6w445hx5VwdHZYnxDhIhXnpwKbGuRFUZQAzjoLpk8ff2z6dHtciYPODusTqnMxRQdFZBvgMOBXTTOkKIofCxbAkiUwbx6I2L9LlqgyPyY6O6yPU7iIyGkislFENmIFy1j6OxuAR4DDgSt7kGdFURIWLIBVq2DTJvtXBUtcdHZYnypT5DuAL2OXxN4D3ALcl4tjgLXArcBXI+dPURSlb6TCevFiuxS2445WsKgQr8YpXIwx1wHXAYjIPOBMY8xNvciYoijKILBggQqTOnjpXERkJrAK2LbV3CiKogwo2f0u221ng+59Kcdrh74xZq2IHAF8t+X8KIqiDBx5bwiPPLL5nHpGKCbEWuynwPyW8qFk0B3BijJYFO13yaJ7XyYSIlw+AywSkV3byowSf0ewCipFaY7Pvhbd+zKeEOHyUuAXwI9F5Osi8mkROTUXTmkpn5OGmDuC1XVFN9EBweDhs69F976MJ0S4nA7sjt2J/1bgY8mxfFAaEHNHsLqu6B4xBwQqpOqTf3eHHjpxv0sW3fsykRDh8mKPsFPsDE42Yu4IVtcV3SPWgEBnrfUpendXXAHvfe9mbwizZtmgnhHK8RYuxpjVPqHNzE4GYu4IVtcV3SPWgEBnrfUpe3ff/OZmbwgPP2xDm54RymaeXZmR6vdcekBIZYjpL6oXriu6UtG7QqwBgc5aw8jW49UlQ+Q1a6rre932kL/u+OOLZ55lx33u0/N9OsYY74DdF/MXwGeBy4B/zIUvhqQ3yGHPPfc0dVm+fPlz/4+NGTN9ujG2Ktgwfbo9nmdszJh584wRsX+L4oQyNmbMrFmb7z1rVpx007R9n61tYry7bLn1+t7ZtGK803nzxqeRhnnz6udtEKlbZlmK3nlRmDWruGwWLdr8vkXCy67o/vl00jAyUq9cq56xbrsFVpoyeVF2YkJEuzv/R8BGrGv99G/2/42+6Q16iCVcfBt5Wx11mwJgUDqwWM9Yp6Nq4/02EVbptXU7ul4QUxjXLbPs/bODL1fnWxavTBD4toeydhQSRJrfo067jSVcLgI2AEdhlfebgDcAuwFjwH8C2/imN+ghlnApq3j5ytBWR92mAPB9traJ9YwhHVW2Ey8bYfa6I3eNgGPNhJvmr6iDnjp18/F0ZO6b31Dh4jtLyb6/NC9VQqRuxx+Sbt2Zi8896rTbWMJlNXBp8v+sRLgclDm/ArjYN71c2tsC5wA/B9YDDwHLgdfl4r0GWAY8AfwW+BbwqpI0d8B6dH4IeApYCfylb556PXNpq6NuUwAMyswl1jP6dlS+HVSvZwqDUh5FhHbqvu8vVLiEzBLy763uDKPuzKVo5rlokRXG2eNTp1a/J5/ZWeyZS4hC/wXA95P/n03+bpk5fy3wpwHpAc95W/4B8F7ga8DxwNlYR5lzM/H2BW7GzppOBU4DXgLcIiK/l0tzW6wftLcBFwMfwH4W4GoROSo0j00oU6ofeuh4Bd62JS5Bm1p2+SqI6ygiYxkM+N67TCE5paQWN313ZfmqcgWS0kvrrKVL3YroXtH0nWVp4/35vou0HmefZ+1amDZtfDyp+D6vT3soa0fHHTfRsGf//Sfe85ln4AMfaKaUF2lhn06Z1MkH7FcmP5T8PwW7RPb+zPkTgHW+6WWuuwW78/93K+Ldhp2tzM0cm5sc+3Yu7mcAA7w5c2wkSeMRYGZVvmLNXIyZuMa7aNHEUdzUqcZMmxZ/5OujE2iiN2i6fu5779CRb1Ody6JFE9OcNi18eSTGDLHqHVe9m17NXMry4TNqrvv+QmcuZXmZMWPiOy56nnQJz9WWQ5ciq4xusuVftiyWr/P5OlP1jhctCnqNz0GkZbGbSZbFkt+3Av8BjALTsTqXn/iml6Tx+kQInJT8ngpML4i3SxJvgjUa8EXsEt0LMsf+B/h5Qdx3J+kcXpW3mMIlT1lhz5q1uULMmGHMlCn2+MhI/cI3prpz6udyiu+9fZYkRkbiWIuNjZXfIy0j386x6Tv0Eb6u/GStmWJaIRYRQzEd+v5iCZe0Q/dR9KfvMI07a9Z4gZMKJp937hoYzJpVLLyq2kBWwPnEb1IfYgmXxcCjwGjy+/CkU38Su+S0EXifb3pJGp9OOvu3AN/ALrcZ4GfAuzLx3pEcP6YgjWOTc4clv383+T1WEPclybnPVuWtzZmLawRhTPGoGcIFjG8F76divureVYrzmPlNy63qfmUj2jZmnq6BSIqrIynqnGJYs42OmnEdbVU+6oaqWUCocHHlMaQTd5X1okX+lnptCGTfEKN+uoSL1/dcEs4GzjHGbAAwxlwtIs8C70oEy9eMMVcFpAfW0gzgUuAerN5lGvAR4CsiMtUYczlWOQ9wf0Ea6bFUPxMSdxwishBYCDBnzhxWrFjh9xQ51q5dy4oVK1i2bDYXXLALv/3tVOyXotN1cfPc7yyzZ69nxYpbueSS11O0v/WSSzZx+OH/7pWHZctmc845u7Fhw8hz933f+zZy1113c8ghD+buuy8PPLDlhDTS/LSJ694nn3zfuGeoTqtZftNyW7PmDykqH4th7tyb+dCHZnPZZTvx4IOjzJ69gWOOsV//zh+bO/dBTj55Ytx8GZRRlpdHHjGcfPJdAIi8FGMm1pc5c9ZzzTWwbt3497tuHXzkI+uZOzf8Xbnq1ezZOxWWZRjj24YxTLhP9t2lZeZLWX2bMmUT69b5q6Cffnr87/Sd3nXXfVx88cvIl1n2fLYuPPDA6IS4bTJlyiaMkXH1s2Y3V02Z1OlFwFp+GeBeYFrm+POxs6RfYXvZU5J4BxWkcVBy7oPJ79clv88oiDslOXdtVd6azlya6Ah84pdthqwa6afT+Kq15V5ZOrnuHTKqK9PThCwHpeWWLkeWvXff5yrbb5Jd4667ZJnmpayOpe+jajYRuqnWtYxZxyIsNOSXyWKYIsfMs0snUtYe23xfRfeLCTGWxSZcCFsBW9W9PknjG0lnf2bBuSuScy/DzmQM8KaCeIcm5xYmv/dMfv9dQdzpybl/qspbU+ESui6fbeC+FTRVMKc0MfdswzuAL2X39m14aQdZto8i/6xleXje8zZ436vqearKIRUwLqFe9TyukAovX11VfsBRhs8y5owZ9fJcp3Nssokyffbs336EXgoY38GRL9GECzAbu5nyl9ilsI3J7OIiYE5IWkl6Fyed/YkF51J9zGvpoM7Ft8IUjSTKdC5FITuSa8sOv23KrGWqnifbEY6NTbT/933WmJZoY2PNO6oYs4D0OWPvL/ExwPAVaHm9hU+byZff4sV31hoU9WKWFRKaWNSVWa0VhfyAtClRhAt2f8n9WCX+XcA1SbgrOXY/sJNvekmaRyWd/acLzo0l53YhvrXYEVV569XMpaxjX7TIr5PKCqcmI6CyBtr2jKZMKEybVqwYLXtvTZT+dYRyDCHlymNTRW/2OUOXGF310mcJ1acezphRbKLvGiAUmdCPjj7rjJN/ByEuX3oVsgMB15JsURlnjXxc7cWnbOsQS7hcg909/2cF596anLvGN73kuudj96n8D5m9J8nsYy1wd+bY95O4O2SO7ZAcW5ZL97OJECna5/Io8DtVeeuFzsXXqZ2rwsSYuZRZttTRxRQtObiEkivPVbqjOstGRQ2rrlDOC91Ylj9pujE6LN93XfR+q8q4jp4oG8rSzpZp2tk2MaEftFlKUT3O5jXkeldbDX33dYglXB4HznWc/xzwuG96mesWJoLgJ8CHgb/Gupp5GvijTLzXYjdu3gt8MAn3JkJo91yas7A7/J8APpHcY3lyHy9z6RimyEUjs6rNcCEdVpHOxWdpKF+5y85VzZyKNntVKZjzuO7vGsHPmhX+rDHNQYsEcozOpo4xg+s58/sxfJfsQka3+Xp78MH+I2jX8qJrH4mr7vj67et3KNu8WGfAFDpwiKVnjSVcHgOOc5xfBDzmm17u2rdhN2U+mQiEbwP7F8TbD7gpEShPADcAry5Jcy7wFeDhZFb1Q5/lsDTEdLnvI2DqWLEUVYayipluMMw31KYNJCvgfHQkeapmLmXvZebM8AZY1nhcOq4ZM/x1A3V1LUWbP30svYpCVuD77sfZYouJ77dXuos63hiqBHC+nsVQmLehdD/44PHPnBWmRftoXHkLzV/Z5wNCBUws4XIdcJXj/FV4mPh2JcSaufgujZU1lFAvqKEbImMImDQvVRW8KA9ls62RkfFWR+nySFHDqwpVVHVS+QFCVXkWdUplSldXgz744PplMjJSLoDz5ZR3aeKjs/AdUITUn5A6mebBR+cSe+YSOmN2tYeyJa2iMnHV05hLsiHEEi4vTparzgVmZ47PBs5LlqHm+6Y36KGJcEktWEIKNGTncFNrnpQmpq75RuK6d1XF9c3HyEj47MCnsbjefcgyWrYTCFn6LKOXyzmu9+TSvcWaFfiWR/4aH2uxNnQuVcu5Ie/dtfSbf44yj8htlUUVsYTLfcADbDZBfiQJ6e8HkjjZcK9v+oMW6gqXotGUTwjxeVSlUC/rCKqm3k3CyIgdaYfqXFz5jtFQmloOpct+Pu9uypRmPuDy9HqDXVm5tL0HpO7MxZiwzyTEMJQIqXtpPrfc0h2vanDjmrWkVpVdn7msSJTiQcE3/UELdYVL3UIua8B17NKLhFGvLGYOPjjMWqzpe3OFol3wdYRq0fp0ke4i30h9l5faXHLyDUWCuFd1JsQwBMYPVOpsoqwSlrEEUFqWrmU0H6MZnw25MfLbN53LZAt1hUsbI6OqJQufWU2oNUlRpZ06tXr39chIcf6yDakonzHfV969Sr/MUPNOF33zUte8NHY966Vwy3dsVRuJ03eamv37CuyqtF2fMw6Jk4ZB2k/j8z5DUeFSI/R65lKn8Ms6nyIXJaFCL69EzAqGqoZflb98ZxJjvXjmzGKLq3669ciH0LX49BnSTrLtZ6mj+/ANRVZ3+ZB1/+7TjkSMefWrH67loTrEC0a+XPoh+OuWZ9Wyb1G5h6DCpUZoonOBTa1UlpDveORHzaEjqKyvqJBGlK2ovgr+JgLZ5cBz0Bt/aINvW1/Q5sylyuIpDeGGAv5tramJcv767PO0UTYhMyRXXqvaQqieJYsKlxqhibVYqHCpWr8vqwi+FXrq1PpWVqEdzBZbVG9yS0PagTZpmEUM2oylTsh+OM63Y87uY0p/+96vbL9JrE4zZNARstmzbh6McX+V0tdC06dc6oTsDMm1vaDoPZUZoRQtaTf1fq7CpUZoIlzmzHkqqBNJK7mvh9a2/SNlK1ydzsVXMPnEcz1nmXl1l2csUL6sU+Vrre6zu75GGOuZQkbSbYV8fWlqoRnyHHUFvV0JCQtp/osEZOyvkqpwqRGa7nPx2RTlMhv2GQ2FzHjqdDjZvyEhu6TmGnVlTSjL/Jul6fiOJGOOIkOcCNZ5t0XvZsqU8s2Pqb4rf13+XdYtryJ8dR+u82WzorZmly6di49Jsq8OIvR9hzxvk8GCa7NvkyWwIlS41AgxHFdWjRBcm6d8K1Z25jMoIVuBXfHK3Ko02XzYZBlnyy2fGTcAKHuvTZeKUks2Xy+22fuWXRfDPX8RVSPnVLCVnXfNiuLMYDYV5qeJOb5vB1ynHvheU+UNwqWPcQmxJsr7IlS41AixfIu5cFWu0FFWaEcVGlyj7Xyl9zU6aNKwy2gyc5kz56lxablmXT7v2rXO7fv9jaJ3U/aMdWYCPmvursGLa4d52d6ZbKefX6aJMVAqq0M+dSNEBxFa10KtBX02V9atQ7GoLVwS54+/dnlDTuKdh/2AWPAHwwY1tCVcfJe88q4fqqa5be9JyC51ZTuAGTPcfqnqNIAmVN3PtaFNZJPXOwf/jXhl8UIFga8erOxcmeNSn460bCNgqjh25aeqbIq+0VJUfiGOSstG51XvLVQHUadu+5R7Ovjw8SsYanQR+lnrKpoIlzOB3wDPq4j3vMQVzOmueF0KbQiX0MpYtbO8juI9dRdRR1eTjjRDvamG7CnIb8KsQ/69+ToAzM9c6phhh75Tn/TynV7ozMW13BjyTou+FlqVH59850fTZct+IRsXi6iagdV5N2V7wVz5q9LHuj5ZUNTWXPdyzZxjKPabCJeVwKWuOJm4/wB83yduF0IbwiV0duFjFFCVdraS5t2xV029QzrQbMedz1+d71PEsmYpomwEvXjxnYVxq2Yw2SWe2AKmrkVcmZeFpqanvu8zf78q3U22rF26SF+PxEUjdJ+d97HejavOuGaPrplImf6qTnuNVS+aCJffur7hkot7HDU+FjaooQ3hEtLxlFkqla2ZhlhU5Ym1pFZUYevuhM6nmW2Evsr9svdUNNIcG3PPOF35C32PdZT4Zc9RZ+d+zHV3n2VeH/9Y2frq6hBDBir5+u/z3mO9m7Ex9+pA6KzUVRdiGfTUefYmwmU9cLQrTibu0cB6n7hdCG1Yi/l2PlWVMo+rw/ShzX0HMc1NyxThvkK06DlT66K03LLv00fJnG2QbRhU+DT4OrPPulQt1cZ43pgGC9n359MJ599N3YFMmZ6qrF77LG+7BpYxyqFOvWgiXNYAn3LFycQ9G1jjE7cLIfY+Fwjzr+SzPp1fBy+qrL6ECL9+htCPp2WpsmpKBwWherGq9EMad9Hvqk6tVxZ5bQ5C8mVRdp+6gtR3Bp1vXz4DmSYDyfx9Qyzv8nloOpDr9czl6uS7LFtUxJuaxCv9UmXXQls79KdOLV/yylagqopd1dCbTO+zjaNoqSvEcqdXbliqRl0+a/7Lly+v1Slky6Tu7CWrZC177zH2izTRK9QRnqH+sdJ66+osQ016fcvF14zeRwDVrb+u2XXVLKqJ8O+HzuVgYFPyLfppJXGmAl9OPhh2kCu9LoUmwkXE7VusaA06uzyT4qpMVQ091mapojyENO46+znqhLwwDV2+EbHCpY5wyDbMOhsjfcvWNWDw0cGk78JniadJuWeNHFJlvk8dyM/UqpaIRMJcLVXlOXtvY9y6n6qyaqIHK3r3dWZRVXnIl1MdGm2iBC5NBMy9wGnAnwEHAW8BTk+ObwQuqUqrS6FN32LpDKVMcPis81Y19JhK2zwhI9j0eWJ6Eaga1dcZwY2MuD9PPWOG/3q4r86mrIx8OjUXRc/v44bedb3vDMTHwaPvLMLnvS1fvrxRXSoa6KXP4HP/GHq2ooFlvh659kvVmcnEsoxrKlwEOANYlwiZjZmwKTn+CUCq0upSaOJy/3nP2+CsTFUjUB8TZFcH35a5aVrRqz4YVvScsfU5LuFb916jo8+WGgw0+SZGqCVfnZlLnuwmvJERt78y3/uXfZEzZFNmSNm4Ov6U5cuX1x64uKzPysye81+GdZWVy+tykVDKbxUIHSC5ZjJpPUjzls6Gmpr9x/rM8fbAkcA5wJLk75HA9r5pdCnUES4+FaKq4/dpfC73Iak+p8lUt85zVT1nTEuqqk62yb2ywjtkSagqT2UNuckSSIzyygpFH0V0SIfUdEm1aoZvzGYjDF/LrGyosy8pv0HTVVZ1ZoAhjmuLgsuXWzbPsQyB1LdYjVBHuLjWX31HB76VPd8JVu3gT6mzHBdS0WPPJuo0gCb3KpuBtDFTrOqYsmURsqO6jlGCj26symLJ59nqKPdd5M3HfdNOhUTou3JtBfBtUz4DlSYDpCbGH6HL6U0U+jsAW7riZOLOnuwK/aZr5cb4V/Z8mk0sW6pGyyECL3uvfOfok44rjq9fLJ+lxVA9SFmjrDtTdFlD5T8UFrq3p07HVKeMXYQurfnqg/LkN776tJ+pU93LT776nrr45LFqoFqlrC/LZ2xDoCbCZSPwzszvrYH/D+xTEHcBsNGVXpdCzJlLSIX0XdLIp+kj2Fzry668+y7VVTXYIp9J+U6/rCMN7WDLlptGRzc/c75DGx191nuZx3em2KSMs2UYowNxlXNIXnxw1ceysinzXeYiL1x8hGT2a6lpecRemnRRVf7p0laTrQhl5RTbEKiJcNmUEy6zkmMTZigqXOJVyDqdWJVgGxurbnSuziCGn7MyfUbR8+c7mqYjSZ9nKPItVkaTgUSsJcKyDqSqHjbVSbXxfuq2nTozF9/niKHwdqXtyp/P/V2z3zozl57qXFS4hDM2Zk2RY1ZI3w7Z1TirGl1VJQ1paG2Y0oZ2sHl8Ojvf7/A0fcZYxg2uDtJVXnWFW1OjgjYs5PJl5lt3Yu0Da0JbKx11dC51XfGrcKkR6s5cbIXZVMvHlytN1+glO8spm0347i1oMpKpUqr6WLIYE9b5+TZEVxopIcKl1zOXqr09IYQuy6WhyQy8rQFJUZm5RvR1OvC2aLLS4dvuq65t2j+pcKkRQoWLq8GG6AayVkFVS2IhlbOqQ/Ndsqrz/KGNx3dkH9LBujahpYQIlzodQ6hFUzbdWN/fyOfFRznci8441swlxVWH8ntV+kmdNtemPigUFS41Qqhw8em889QdQaZphTTIusLPB5+RYkiHUaWQrtPBuvKTEiJc0uf2zU+Tsm670/BRDpctxcYSeLF0LilldWjKlMERLHWJsZwWi6bC5VvA3ydhSWJBdk3mWBq+NZmFS9Vou2h6X3ftO00rdCkhO3KOuWwX2mlWLXWEdDS+HVxsnUsodcq6l52Fj4I5Hz/26Nm3LLPx5sx5qpYOssvE2PIQi6bCJSRMWuFSZ+ZSV7FbZ+bSlLKG31anGcOIITRum8KlTlnH/t55FSH1qV+jZx8T3bq6iK4wLDOXeaHBlV6XQh2dS5kLirI13jod89Spbt9ebfkVa7rBso38hS6fVQmsfs5cyvxN9XK07SusXbOctkfPVWbuTd3mtGV6HJNBmpWp+5caoY61mGuTYhE+S0rpXoy04fZjpOtq0CECMnb+Yiv+2xQurrIu2qGef8+9Iu/wsugzEDHdh4TiWhJqMqIfpA7bh0ERhCpcaoReuX9xWYullSamJVYdqnZb++pcYucvtslym8LFmHKdVxOPy7HzV9XBut55Lzpj12y1iS5ikJaaukQj4QLMwH675U3AaHJsa+xnjW8F7gSuAHarSqtLoV/uX0LS7VVjqHquEBPbmPkLEWw+HUzbwqWM2C456uJTf1157cXouWz5edq0sM8K5BkkJXmXaKJzeSGwms3fb/kvrIPKlQXK/N8Au7jS61Lop/uXPCF6jTYaQ8hafJXr89j5y8/8mriJ6Zdw6fdsIMWngx2EEX6IZ+WRET+l/iA8VxdpIlw+DzwLnAt8FPg18O/A48DhyQxmO+BYYAPwJVd6XQqD5P6l3zOXsTF/p4L5uL1urE02N4ps6sv6ddkMbFCsxdJyK1ui7bVuog139IPwXF2kiXC5G7gs8/svklnKaQVxLwF+4UqvS6HJZ45jj4D7qXOp21nH+hhR3Tw32dzYVj5d+RoEBW1VPUvfSxt5DUmz7v6wqgHOIJRB12giXNYC78/8npcIlzcXxD0WeNqVXpfCIAkXY4orfi8aQ+hywaCMwn3p1XJIV0bGVfqztmbGTZ0v9nvpeLLSGfcvwHTgPsAAFxac3w24FngUeBK4pSgvSdytgQuA+4H1ieHBIkB88jJowiWUWIInVNHZtbXrXily9b2UU+fd5Jcyi773E/odHCUcl3CZwmBxBrB90QkR2Rn4HrAf8Bng/wAzgRtE5JBc3GnAjcBxwFXASdglvouA09rK/KCwdCksXAirV9vmtHq1/b10aXhaO+4YdnzNmrDj/Sb0+eqi76WcOu9mwQJYtQq+852bWbUKLroIliyBefNAxP497jiYPn38ddOnw1lnxcq54qRM6pjNM5fzgLcl4b3JsVMzx9JwPg1mLsCrscYDH6Zg5gJcjbVYe1Xm2EysNdvdZGYkwPFJGifl0vg68DQengS6PHOJOUoOXbLo2gi9V8tV+l7KafJuqtqa6lHahYbLYhtzYZPjeC3hAowAPwD+FZifFy7YvTbrgZsKrj0lib9P5th3sctmW+bivi6J+7GqPHVZuIQsafj68BpEBXmd/Lmvb89arJkVW287xrLNnm3df9Gi+t+r6Xdba8IwCL4mwuW9ocGVnuM+H02EwfwS4bJfcuzMgmvfkJw7Ifk9BVgHfLcg7mgiBP+5Kk+DLFyqKqXvSLAtQdDLRuPzDL75KSu3WM/TBSFdZOXn+qR1jHsW6UrybmfK6Kpw6YqBRxUu4SL2fP8QkRcDPwHOMMb8nYjMB/4b+IIx5sQkzp8DXwOON8ZcnLv+5Vhl/aeMMX8rIrOAh4GrjTFHFNzvQeDnxpjXFpxbCCwEmDNnzp5XXnllrWdau3YtM2fOrHVtFeefvwvXXTcXkOeOjY5u5KMfvZtDDnkQgGXLZnPOObuxYcNIaRyAt799Xx54YMsJ95gzZz1XXnlrK/mPTdUz+L4LKC63kOtjErtsli2bzWWX7cSDD44ye/YGjjnmvnH5L3rOMmI+f9PnbLOttckwtD2AAw888AfGmL0KT5ZJnV4F4Abgx8DU5Pd8Js5c3p0cO7rg+p2Sc+cnv1+U/P5yyf3WAHdU5WsQZy5jY/4WMD6j5GFweVH1DK5ZXP4dLV5854T0+6UriVk2TX2Gtfn8TZ+zqzOXYWh7xrhnLn21FhORd2GXtRYZY55xRF2X/B0tOLdlLo4rbhp/Xcm5gWbxYlsFi8hb1qTWNJs22b8LFky8ppcWQW1R9QxlFkepBV3Wou6cc3abYFHXLyuvmGWzeDGsy9X4devs8ZTQ54n1/MNQB+swGZ67b8JFREaxlmjfBH4tIruIyC7YjZoAWyfHtgF+mRybW5BUeuz+5O+jwFNFcZN7bpeJ2ylcDbpOpTzrrO6balY9Q9l7GRmZ2OFu2DAyrsN1Xd92JxCzbHwEZOjzxHr+YaiDdZgUz102pWk7ANtgl6+qwkexJsdV1mKvyRxLrcVGc3FTa7GPV+VvEJfFypYuir5x7qs8HgaLlSq3KkVLQmXLPflliX4qXmOVjc/Snq+LoTTEVurXfc6uLosZMxxtj0H8ngswFeurLB8WJQLg35Lfuybx/xlr8rx7Jo10n8vPGL/P5YQkjaJ9Ls8A86vyN4jCpawDmDnTr0MNqbzDUPFTip4lRJfS9XfhWx/yzxn68bt+0GXhMgzUEi7YjZKvzPzeEdiqLH6sQIFCPzm+C9at/wPAX2M3St6O3Xj5xlzcadjPAjyD9eh8DHBNku4nffIxiMLFGD+nkE2V0E3NQ7tA0TOOjj7bOcHhSx0B2QVzWRUu/aWucMn7FduY/d1WKBMuybmXAdcBj5HsZQEOKUlnG+BCrL5mA/BT4ESGwLdYlfBoaokSsvzWZXysxSY7gz5rU+HSX1zCxaXQfyzpoFOkOFpcjDGrjDFikj0uuXN3GWPeYozZxhgz3RjzB8aYZSXpPGaMOdEYs4MxZtQY83JjzIXJC+k0VQrapkrosvSNYYLCu8vkLera3LcyiCxdCvPnw5Qp9m+R7zkfq0NFKWILx7nbgY+JyFSsBRbA60TEdQ3GmC/HypxSzI47WtPZouNgLU4WLhxvDRViiVKWPgyuo0UljKVL4aij4JlkA8Dq1fY3qABR4uCauXwYuxT2OeBL2KWq9yf/l4XL28ikMp4qM8YFCyZ6iF2yxL/TOOsse10RXbPD9xmdT0Y+8IHNgiXlmWfscUWJQalwMcb8CNgV+w2VA7DLYmcBBzrCQe1mVwE/4dFkOWPBAuuuPC9gumaHH/PTA8PGI4+EHe83OkjoHlVLXBuBe4B7RORmYIUx5uae5ExxsmBBu8sXF10E++9vdSxr1tgZy1lndWvJxLUzvUvPMdlJBwlpWaaDBIC5RduqlYHAe4e+MeZAY8xNbWZGGSy6rszt2ge6esmsWWHH+4mP+xpl8Ahy/yIiU0TkKBG5XkR+koTrReRIERm0r1oqk5zJ4L+pLp//PEybNvH4I48M3rKTDhK6ibdAEJGtgJuAy4BDsd+o3zr5/4vAMhGZ6ENaUfrEpPDfVJMFC+Af/9Hq62C8fm3QdFM6SOgmIbONk4E/xO54394Y8yJjzIuwjiDPwSr9daKqDAxNreaGnXTZc968id62B2nZSQcJ3SREuByB/QDXx4wx6b6XdLPix7HfuH9H7AwqShO6rjfqBYO+7KSDhG4SIlxeCKxwnL85iaMoSofowrKTDhK6R4hweQzrPLKMXZI4iqJ0CF12UtogRLjcCJwgIm/MnxCRP8K6yr8hVsYURekNuuyktIFzE2WOk4E3At8UkduBO5PjrwD2AB7GuulXFKVjtL0pV5l8hGyiXA3sBVyJdQvz7iS8BPgqsHcSR1H6jroL8UPfk9IWITMXjDFrgAUiIsD2yeGHhsGNvTI8uNyF6Oh8M/qelDaptas++U7Mg0lQwaIMFOouxI9hfE86Exsc1GXLkKCNajODvm9jUCj7Zk/Z8UFHvWAPFipchgBtVOPpwr6NQWBkJOz4oDOMM7Euo8JlCNBGNR7dt+HHxo1hxwcdnbEOFipchgBtVOPRfRt+pE4rfY8POjpjHSxUuAwB2qgmou5Cqhm2Gd6wPU/XCXG5/x0ROdhx/kAR+U6cbCkhaKNS6jBsM7xhe56uE7LP5QDst1zKmI11ya/0mLTxdPmTxEp/GLad+cP2PF0maBNlBdsAGyKmpwSgjUpRlEHCKVxE5PeBV2UOvU5Eiq7ZFjge+Gm8rCmKoihdpWrm8lbgtOR/A7w/CUU8AfxVpHwpiqIoHaZKof8l4EDgIECAs5Pf2XAA1qHlHGPMt9rKqFKO7s5XFGXQcM5cEi/HqwFE5CjgZmPMqh7kS/FEnQ8qijKIhLjcv0IFy+Chu/MVRRlEgqzFRGQG8E7sN1xmYZfKshhjzPsi5U3xQHfnK4oyiHgLFxHZB/hXYDtHNAOocOkhO+5Y7MV2Mu/OVxSl/4S4fzkPmAYcDmxnjJlSEDrqT7W76O58RVEGkRDhsidwrjHma8aY37SVISUMdXmhKMogEiJcfgs80lZGlPqok8bhQc3KlWEhRLhcA7yxrYwoymRHP/qmDBMhwuXjwGwRuUBEdhaRvKWYoigNULNyZZgIMUV+DGsNtg/WjxgF8sUYY2I6w1SUSYOalSvDRIgg+DJWuCiK0gJqVq4ME97CxRhzZIv5UJRJz1lnjXflA2pWrnSXvn7mWER2FZEzRORWEXlIRJ4QkTtEZHHiDSAffzcRuVZEHhWRJ0XkFhE5qCTtrRP90P0isl5E7hSRRaorUgYVNStXhomQHfpek3NjTMgK8dHACcD1wFLgGayn5TOBw0VkX2PMU8n9dwa+BzwLfAZ4HDgWuEFE3mSMWZbJ6zTgRmAP4ALgLuBNwEXAHOD0gDwqSs/Qj74pw0KIzmUVfjqXkF36XwM+ZYx5PHPsH0TkHmAx1pXMhcnxT2G/drmnMeYOABH5MnAn8AUReakxJs3fMcDewF8ZYy5Ijl0qIl8H/lZELk88PiuKoigtECJczmCicNkC2Bl4C/Bj4N9Cbm6MWVly6iqscHklPOcw80+BFalgSa5fKyKXJXnbG7gtOfVOYB1waS7d84G3AUdgZz+KoihKC4Qo9E8vOyciOwH/AZQJi1BemPx9IPn7+8Boco88tyZ/9wZuE5EpwKuBHxpj1ufi3oYVkHtHyqeiKIpSQBSFvjHmPuAS4BNN0xKREeAUrG7ln5LDOyR/7y+4JD02N/n7fGCrorjGmA3Aw5m4iqIoSgvE3PB4P/DyCOmcD+wH/K0x5u7kWOr3d0NB/PW5OK64afzpRSdEZCGwEGDOnDmsWLHCO9NZ1q5dW/tapX9ouXUPLbPBJaZw+TPg0SYJiMgngROBJcaYT2VOpZb/owWXbZmL44qbxl9XdMIYswRYArDXXnuZAw44wC/jOVasWEHda5X+oeXWPbTMBpcQU+RTS05tCxyEVb7XVpKLyOnAycDlwHG5079M/hYtZ6XH0mWwR4GniuKKyCj2Y2c3182noiiKUk3IzOV0x7lfYwXD39XJRCJYTgOuAI7JmBSn/Bi7zLVfweX7Jn9XAhhjNonID4E9RGQ00bOk7IP9NHMswwNFURSlgBDh8uKCYwb4jTFmbd0MJDOi04CvAEcbYzZNuIk1Of4G8DYR2d0Y86Pk2pnYPS33sNkMGeCrwP5Y/ckFmeMfxBoKXFU3v4qiKEo1IabI0TcdisgJWAuzNcAy4J057ywPGGNuTP7/G+Bg4Nsi8jnsx8uOxS5/HZab7VwKHAWcJyLzsTv0DwXeCpxpjFkV+1kURVGUzQQr9BPfXHsAOyWH7gNuL1jK8iHdb7Ijdkksz81YNy4YY34uIvsDnwb+GpgG/BD446zrlyTu0yJyCNaNzDuAWcC9wEnAF2rkU1EURQkgSLiIyB9j/XPNy51aJSLHG2NuCEkv8bR8ZED8u7DeAHziPoa1PDsxJE+KoihKc0KsxfbHOph8Evg81qcXwCuwAuJ6ETnQGPO92JlUFEVRukXIzOVUrFXYa4wxv8qeEJHPAv+ZxPnjeNlTFEVRukiI+5fXYDc3/ip/Ijl2KZvNghVFUZRJTIhwmQY84Tj/2ySOoiiKMskJES53AW8XkQlLacmxI5I4iqIoyiQnRLhcjF0au0lEDhORFyfhT4CbknMXtZFJRVEUpVuEbKK8TEReAnwU+IOCKJ81xnwxWs4URVGUzhK0z8UY83ER+SJ2r0nqDuY+4HpjzM9iZ05RFEXpJsE79BMh8tkW8qIoiqIMCd46l0S/8mbH+TcnfrwURVGUSU7IzOUs4EXAN0rOfwTrgPI9TTOlKIqidJsQa7E/AFy+w74NvL5ZdhRFUZRhIES4zMa6fynjQWBOs+woiqIow0CIcHkM2NlxfhfcO/gVRVGUSUKIcLkFOFZEXpA/kRw7BvhurIwpiqIo3SVUof9m4HYRORe4Izn+KqwyfyZwdszMKYqiKN0kZIf+HSLyF8DlwGeA9MuTAjwM/KUxZmX8LCqKoihdI3SH/r+KyI7AG4GXJId/BnzbGPNU7MwpiqIo3aTODv2ngGvjZ0VRFEUZFkIU+oqiKIrihXPmIiLXB6ZnjDFvaZAfRVEUZQioWhb7k8D0THUURVEUZdhxLosZY6ZUBeBA4PvJJb9qPceKoijKwFNb5yIirxSR/wt8B9gNOIXNFmSKoijKJCbYWkxEXgR8ElgAbAT+HjjTGPNI5LwpiqIoHcVbuIjI84HFwPHAKPBV4GRjzKp2sqYoiqJ0lUrhIiKjwAeBjwPbADcCHzfG3NFmxhRFUZTu4tS5iMj7gJ9jfYbdC7zBGPNGFSyKoiiKi6qZy6VY8+KVwNXA7iKyuyO+McZ8LlbmFEVRlG7io3MRYO8kVGEAFS6KoiiTnCrhcmBPcqEoiqIMFU7hYoy5uVcZURRFUYYHdVypKIqiREeFi6IoihIdFS6KoihKdFS4KIqiKNFR4aIoiqJER4WLoiiKEh0VLoqiKEp0VLgoiqIo0Rla4SIiU0TkQyLyXyKyXkR+ISLnisiMfudNURRl2Bla4YL1cXYe8FPgJOCfgb8CviEiw/zciqIofSf4S5RdQERegRUo1xhj/jxz/L+xX858O/BPfcqeoijK0DOsI/h3YL05n587fimwDnhXrzOkKIoymRhW4bI3sAm4LXvQGLMeuAO/zwcoiqIoNRlW4bID8LAxZkPBufuB7URkWo/zpCiKMmkYSp0LMB0oEiwA6zNxns6eEJGFwMLk51oRubvm/bcDHq55rdI/tNy6h5ZZf5lXdmJYhcs6YHbJuS0zccZhjFkCLGl6cxFZaYzZq2k6Sm/RcuseWmaDy7Aui/0Su/Q1WnBuLnbJ7OmCc4qiKEoEhlW4fB/7bPtkD4rIlsCrgJV9yJOiKMqkYViFy1WAAT6YO34sVteytOX7N15aU/qCllv30DIbUMQY0+88tIKIXACcCPwL8E3gZdgd+v8POMgYs6mP2VMURRlqhlm4jGBnLguB+ViLkquAU40xa/uXM0VRlOFnaIWLoiiK0j+GVefSc9QLc/8RkV1F5AwRuVVEHhKRJ0TkDhFZXFQOIrKbiFwrIo+KyJMicouIHFSS9tYicoGI3J+U750iskhEpP0nm1yIyHQRuU9EjIhcWHBey60DDOs+l37wOaxO51+Ac9ms49lDRA5RHU9POBo4Abgea7TxDHAgcCZwuIjsa4x5CkBEdga+BzwLfAZ4HGvwcYOIvMkYsyxNNPHmcCOwB3ABcBfwJuAiYA5wei8ebhJxBrB90Qkttw5hjNHQMACvwPoy+3ru+ElYq7V39juPkyEAewFbFxw/MymHEzPHrgY2Aq/KHJsJrAbuJlkyTo4fn1x/Ui7dr2O9PMzr97MPSwBejRUcH07e+YW581puHQm6LBYH9cI8ABhjVhpjHi84dVXy95UAyRLZnwIrjDF3ZK5fC1wG7Mp456bvxJbjpbl0zwemAkdEyP6kJzHCuRT4FnBNwXkttw6hwiUO6oV5sHlh8veB5O/vA6PAfxTEvTX5uzdYXRp2NH17Up5ZbsOOjLV84/Ah4KXYLQRFaLl1CBUucVAvzANKMho+BbvUkn4gbofk7/0Fl6TH5iZ/nw9sVRQ3Ke+HM3GVmojIi4FPAGcYY1aVRNNy6xAqXOLg64VZ6T3nA/th9zelXq7Tsigqs3x5ueKm8bVsm/MPwH3YT5OXoeXWIdRaLA61vDAr7SIin8QusSwxxnwqcyotiyLHpvnycsVN42vZNkBE3gW8AXi9MeYZR1Qttw6hM5c4qBfmAUNETgdOBi4Hjsud/mXyt2hZJD2WLqc8CjxVFDcp7+0oXqZRPEje4XlYF02/FpFdRGQXNn8nZOvk2DZouXUKFS5xUC/MA0QiWE4DrgCOMYn9aYYfY5dL9iu4fN/k70oAY/cn/RC7Xyk/eNgHayWo5VufrbB7Wg4D7smEFcn5dyW/j0HLrVOocIlDv70wKwkicipWsHwFONoUbF5NTFe/ARwgIrtnrp2J7cTuYbzl31ex5biQ8XwQayhwFUpdngT+siAcn5z/VvL7ei23bqG+xSKhXpj7j4icAFwIrMFaiOXf+QPGmBuTuLtgO6JnsN4VfosdDPwecJgx5oZMutOwu8J3B/4eu9P7UOCtwJnGmFNafKxJiYjMB/4b+IIx5sTMcS23rtDvXZzDEoAR4CPYXcIbsOu55wEz+523yRKAL2FnkGVhRS7+y4DrgMewyt3vAoeUpL0NVnD9Minfn2IHE9L2c03GgPVkPmGHvpZbd4LOXBRFUZToqM5FURRFiY4KF0VRFCU6KlwURVGU6KhwURRFUaKjwkVRFEWJjgoXRVEUJToqXBRFUZToqHBRFEVRoqPCRVEURYmOChdFURQlOipcFKUPiMiIiOiXEJWhRYWLorSMiBwpIkZEDhGRU0TkXuxndg9Pjn/Jcc0BmWOnJ8d2E5GzReR/RGSDiPxIRA4tSOM9InKbiDwmIk+KyH0islREtm/xcRUF0M8cK0ovOQeYClyKdRV/d810rsC6nD8HmIb9Psm1IrKrMWYVgIi8O4l3C3Aq9quML8K6nJ8NPFT3IRTFBxUuitI7tgL2MMY89+12EamTzsPAm03i0lxElmO/cfJ+4G+SOG8FnsB+S+jZzLWn1rmhooSiy2KK0jsuzgqWBnzeZL6VYYz5PrAWeEkmzuPYrzAeJjUlmKI0QYWLovSOn0VK576CY48AszK/zwZWA9cCD4nI10XkGBH5nUh5UBQnKlwUpXeEzFpcS9YbS44/N0MxxtwDvBw4DKt7mYfV9fyXiOwckA9FqYUKF0XpL78Bti04vlPThI0xG4wx3zTGfMQYsxdW0OwAfLhp2opShQoXRekvPwP2y+55EZHnA0c1SVREtis4/MPkb5EwU5SoqLWYovSXC4Ex4Dsi8hVgG+BYrL7kBQ3S/baIPIY1Rf5Fku6RgAG+0iBdRfFChYui9BFjzFIR2QE4ETgPq6w/A9gEvKZB0hcDh2PNk7fFKvxvB04yxixvlGlF8UAyFo2KoiiKEgXVuSiKoijRUeGiKIqiREeFi6IoihIdFS6KoihKdFS4KIqiKNFR4aIoiqJER4WLoiiKEh0VLoqiKEp0VLgoiqIo0VHhoiiKokTnfwEE44nW8iW6uQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"BEC_Ncount_val.plot.errorbar(ax=ax, yerr=BEC_Ncount_std, fmt='ob')\n",
"plt.ylim([0, 750])\n",
"plt.ylabel('Ncount of BEC part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEHCAYAAABiAAtOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA64klEQVR4nO29e7geRZXo/VvZJDuEHEQ3JkqUHQEBL0dAAeFzMIFEUfDyOTPKKOoBwTjh4ngbUcNtkMAcB1EHZTwBxwvJKDoq4mVUbsnBD6PkCI4fIKBI4gTloiCEXIRknT+qO+l0+lLVXb3f9917/Z6nnnfv7urq6q7qWlVrraoSVcUwDMMwYjKp1xkwDMMwxh8mXAzDMIzomHAxDMMwomPCxTAMw4iOCRfDMAwjOiZcDMMwjOiYcDEMwzCi03PhIiJaEtYVxN1PRK4SkYdF5HERuVFEjipJ9ykicomIrBWRjSJym4gsFBHp/qkMwzAmNjv1OgMJNwJLcseeyP4jInsDNwFPAh8D/gS8E/iBiLxaVa/NxJ0CXAMcBFwC3AG8GrgUmAmc28lTGIZhGACI7wx9EbkeWKyq15WcPxI4S1ULRxIV6SrwRVU9oSbeV4G/Al6iqrcmx6YDtwEbgf01eRgROQX4DPBuVb0kk8bXgdcCz1XV1SH5NAzDMPwJUYvNxfX6y5gBzGmaERGZkgiLonO7AK8DlqeCBUBV1wGXA/sCh2QueQuwHrgsl9QngcnAcU3zaRiGYdQT0+ayG7Cp4bV/jRMGj4nIA4mt5CmZ8y8ChoEfF1y7Mvk9BEBEJgEvBm5R1Y25uD8FlO0FkWEYhhGZSpuLiLwIODBz6AgRKbrmacApwO0N8vBT4GvAr4BdgWOA04A5IvL/JKOTPZK4awuuT4/NSn6fCuxcFFdVN4nIQ5m4hmEYRgfUGfTfAJyT/K3Au5JQxGPAu0MzoKovzR36koj8J7AY+Lvkd1pyrmhklI5OpuV+y0ZRGzNxtkNEFgALAHbeeeeXPPvZz67NfxFbtmxh0qSeO+IZgVi5DR5WZr3lrrvuekhVn150rk64fAFYDghwPXABzgsriwLrgNsL1FBN+SecUDsWJ1zWJ8eHC+JOTX7X536L4qbx1xedUNUlJF5rBx98sK5atSos1wnLly9n7ty5ja41eoeV2+BhZdZbRKTUMapSuCQeVauTRE4EVqjqvVFzV3zfJ0TkPmD35NB9yW+ROis9lqrBHgY2FMUVkeEkzRXxcmsYhmHk8RpPJl5c/wq8rdvsbL3fVOBZwP3JoV/g1FyHF0Q/LPldBaCqW4CfAQclwiTLobhRWLMhiWEYhuGFl3BJjOqPAA/EvLmIjJSc+ihuVPXtzP2/DcwVkQMy108HTgbuxjkGpHwZZ1dZkEv3PbhJmFdGyL5hGIZRQsgM/Rtw81j+V8T7nykihyVprwGm47zFjgR+gptdn/JhYB7wQxH5BPAobob+LOBY3X426GXAicDFIjIbN0P/GJyDwvljodozDMOYyIQIl78HVojIPwAfV9VHI9x/OfB84H8AI8Bm3ChkEXBx1kFAVX8lIi8D/hH4EDAFp/56VXbplyTun0VkPnA+8OYk7V8Dp+Nm7huGYRgdEiJcrsN5Wp2JG3E8yI5eV6qqe/smqKrfAr4VEP8O4PWecR/BzZc5zTd9wzAMIw4hwmUNzu3YMAzDMCrxFi6qOrfDfBiGYRjjCJvaahiGYUTHhIthGIYRnSDhIiIvE5HviMiDIvKkiGzOhSe7yqhhGIYxOHgLFxF5OW4+yktxc1AmJf/fjJv1/v8DV3SQR8MwDGPACBm5LAJ+h5uXckJy7AJVPQx4FfAc3MZdhmEYxgQnRLgcClyuqg8CW7LXq+oPcaOWj8bNnmEYhjGIhAiXYbatPJzulfLfMudvBV4SIU+GYRjGgBMiXH6HW6kYVX0ct5DlCzPnn4VbFNIwDMOY4ITM0L8ZeFnm/x8C7002i5mEW2blJxHzZhiGYQwoISOXzwEPicjOyf8fwW3K9QXcXi+bgA9GzZ1hGIYxkIQs/3INmS2OVfUeEdkXtwz+ZuBHqvqn+Fk0DMMwBo1WM/RV9XFVvVpVv2uCJSLLlsHUqSACs2e7/w3DMAaIEJsLsHUf+rnAXsmhe4AV2b1XjBYsWwYLFsCmxCFv9Wr3P8Dxx/cuX4ZhGAGELv/ydpw78vdwm259Jvl7rYicED13E5FFi2B9bpuc9evdccMwjAHBe+QiIsfhjPdrgIuA25NTLwD+FviciGxQVdufvg1r1oQdNwzD6ENC1GIfAX4JHJbb4vhqEbkU54b8EcCESxv23NOpwoqOG4ZhDAgharH9gM/nBAsAiTH/88C+sTI2YVm8GKZN2/7YtGnuuGEYxoAQIlx+X3Negftb5MUAZ7RfsgRGR5232Oio+9+M+YZhDBAhwuULwIkiMj1/QkR2BU7EjV6Mthx/PNx7L2zZ4n57JVjMJdowjIaE2FxuBF4D/CKxsfwyOf48YCHwEHBjsu/LVlT1f8fIqDHGmEu0YRgtCBEu12T+/p84NRi4jcIARnNxJIkz1Dh3Ru+oconOC5e5c93v8uXud9kyF2/NGueIsHixCSTDmGCECJcTO8uF0Z5ly+Ckk9xIY3S0fYPu6xK9bBmsXOnuO3s2HHMMfPGL2wSTjXgMiF8/jf5HVS0UhJe85CXalBtuuKHxtY1YulR12jRV2BamTXPHmzI6un16aRgdrb6vSP11fcqYl9tEoYv6mTCwZbZ0qerw8LZvI8K76AXAKi1pQ1utLRYbEZkmIveIiIrIpwvO7yciV4nIwyLyuIjcKCJHlaT1FBG5RETWishGEblNRBaKiBTFH2i6mNXv4xJddF9VCrFJoBMXW3Vie8rsmePMYaavhAtwHvD0ohMisjdwE3A48DHg74HpwA9EZH4u7hSc/edvcZM6TwfuBC4Fzukq815kPbDS0NYTq4tZ/T4u0SHp2yTQiYutOrE9E0TY9o1wEZEXA++hvPG/ENgNOFpVL1TVS4EjgPuAz+RGJCcDhwDvU9X3qeplqvqXwDeAj4jIaEePUU2+x5LStudS1nC3bdDrXKJ907dJoL2l1y7lXdXPQWWCCNu+EC4iMgRcBnwfJwDy53cBXgcsV9Vb0+Oqug64HLcywCGZS94CrE/SzPJJYDJwXLzcB1DUY0nx7bkUNRRjMavf975F2CRQRy8a+X5QwdiqE9szUYRtmTFmLAPwAeBxYHYSFPh05vzhybHzC659RXLu1OT/STjB8qOCuMPAFuBrdXnqxKBfZuzOGsOrqDKMLl3qDIMi8Q2EPvcte6YmhvweGTs7NQ53aNSuxMcxYyzoqH4OpEG/V3WhA6gw6PeDYHlOIljOSP4vEi5/lRxbWHD985NzFyT/jyT/X1lyvweAm+ry1YlwqWqEfT74XjUUTT3HmnwwXXx4nsKq04aqV2VX1qGp68gMCH0vXObMcSHPBPAWC94srAM+i9tw7OKKOOmYelPBuY25OFVx0/iFuhwRWQAsAJg5cybL00mBgaxbt67w2hlvfSv7XXQRQ3mbC7B5eJg73/pWHqi455w1ayhyddM1a1jRMK8+eN131ixmvPe97HX55Qw/8ACbZszgnpNP5oFZs7ZNrvTgsPe/n6kFxs6N738/K2fN8k5nxrXXst/HPsakJ54Ats30ZfVqNp90EnfecQcPzN/OD6S03GLQq7I7bMYMpt6/45J/G2fMYGWk+2bf9aaZM125595tV5R+az3M03Z5uOkml4dnPGP7PMyaBd///vYXdFgPekKZ1AHObhDOKkuv5B5vxamp/iJzbDbjdeSiqrpwYXHvtajnku3djIw0H/G0pW2vO6SXFqOnXTT68cj7uBy5dK2C6bGKp7DM+kHtFJKHAR7F0EQtljT6oWFzWXoF6Q8nDf13gH0yYU4iHK5I/t+N8WJzWbpUddIk/wpX10D6CKgYtPlYQ6+N0QjXqR9LhNW4tLmk9+7KHtdjm05hmfWDnck3D/0gCFvQVLiMNgll6RWkv1siFOrCB3DzWTYC1xWkc1YS76WZYz/C2XGGc3GPSOKeUZe/ToRL2eijqNL7NJD50GWlbNpAhX7oMT62OseJXoxcVP3e4aD1Ynts0ykssy7yFFouvnnoB0HYgkbCpeuAcwn+64KwMBEA/5H8v28S/2vAZuCATBrTgdXAXYBkjp+apHF67p5fB54AZtflL7pwKVKHFVW4bCVuErpQVYWmNzKiutNO1fms+tDL0vLNZ51gznq6Zd7BbYsWtXsHTcg/65Qp7QTrWBPSOHYgOMdk5NKkw+ObhwF3uOhL4VKaoQKbS3J8H+CPuA3JPgScAtwCPImbWJmNOwVYlQiSj+MmVX4jSfejPvloI1xuW7Ro+49o4UK/3vQuu+zYuIQGn0rp+7H4NgahKjzfD73pKKZqzbP0OQriPDk83Hu9fMxGcSwIqUsdqH/GxObSRFj55qHXI5cybzZPogoX4OBkZHAmLQ36JekXCpfk3POAbwGPpHYVYH5JOrsBn8bN4N8E3A6clh3hVIXGwmXpUtdItREQbYJPpWzqWpyNl/1IQlV4vh96mw+vTgXVNu0YPXDf99bvvVgfdV9HjWilfTOWnanp6MJXDdpLW1zLehxFuAA7J6qqzSTGezKGfAIN+v0eGguXJrYSn5B3BKhqtIsqjY+6Lfux+KqWVP1GZWn6IZW4jcqg7sNp02DEagx831s/j1x86Uj9MybzXLoeXXTpcFF1zwj1OJZwuTARIufhPLq2AG8DjgaWAz8B9vNNr99DY+Hi22CEhLTi1cVZuFB1aGjHc5Mn+6nbRkb87pX/uHwEapMPselH7fPhNE07ZkPj89667sV21bDlhXuIM0sAXsKlbQ99wD26ColUj2MJl7uBryR/jyTC5ajk/50S+8eFvun1e+ibkUtaias+zqVLi4XKWIRUqFXZDkI/xGxjkBd0kybVp9VQ7Vdpc6kb+TXpgRc1WpMnu7Iua+xjGsWLnExiNJplz9WBs0KtcIklGHoxuuiSSCPJWMJlI8kkxsSesQV4Veb8B4Hf+KbX76GNzWVLm8Z6aGjHxqVofkwa5s0LN6bHDtOmuYYq/fhGRoobSB/jYZUxPi/QyhpZ3w8nbTCS81vKGmwfw3sbT6SyRisvSIqEeF1DWSaMli6Nu7Fb9j5lHZ3syLhLb7EsvTaY9yt9NnJ5MHXtBYYSL613ZM6/C9jgm16/hzbeYg+9+MV+jfLIiPMQS/+fNMk1IHmqRkO9GrGEVkrfHnfZs9ap6rKNbKh7bFMVmm8D3wQfIVv37quereqZfHuvVSPMJuk2GJU9fMABqvvv376jMdHoM5vLSuCSzP8/B76X/C3AD4C7fNPr99C5t1ja2/cp4C7sOE1ClSCrm7fiW5HbPGvayIbcz0cQ+U7KjClgQtSrZe++6tmqnin7Hssa7dju500au6VLdXPRiH7y5G1zo8rqbJcjl5buvWNGBFVfLOFyfuLWO5T8f0qiGvs18KvE2F87831QQuc2l6reY77i98PIpa7HW/WxVl2Ttxe1ES51k1Gbeo35lmnMEUzIeyh791XPVjVCLJkH5DU6LAvZBj/ENXxkpFyt11QdnD5HF0Igpk1sAIglXKYD+wE7ZY69D/gZcDNwhu8ckkEInXqLpY1BXcOWVv6lS93HWRR33rzuRzZZI3qTHmZV/sqeq0nIN0Q+I8O2c36qriuizE08P8nTVz3YdJ22MrVbqpatey8hdc5n5YHQ9KoWci0KQ0M72jFjC4EBn7PShKiTKCdK6Gzk4msbyFaW1Dhell5bAVOVfhryKpGQ4XRZQ+A76tpll/rG3dfdOttAps/iO8M867Dgc48mjgFpKHLUSFWp2fuPjFR7uFU9W/6ZsiOLumerewehNrCu5odlQ9UyO3Xvsoo6T8KunQd6KNRMuDQInXmL1emty2wxPqGpgEmp+sB99PAl76NwdBKyzE2qqikTRkNDqtOnh6WXz+PoqG7xFZZN1WShDWjWAy/b4w5pSHw6Ak1UTEXCPD/6SvFRPbZRc8X8Npq4zdflO+aCmUVekj30iIu9/MsrEnvLWV0s/9IvoY232KZdd/Uv7KKPv00vbvLk7T3QfENacaviVH1IZQ1XlS7d9zmbqGJ80svhPdu7qT0kNP9F+WzSkNR1CJrWN1/XYt8857+FUNUXFK/PF+O9l+Hz7tq4qdcJrqrzZUItoq0pls1lf+CO3LIvjfdz6ffQeuHKNsPUto1o0+unTSu/dmio/kPK6uzrniUdjdTZXHw8f0KcGirKwVu4hDR66TtpWo6+daOsIfFRjbWpZz40VdvUNa4jI7ph5swdhVuoCrPNc7Wob7W0VRXm1b8+Di6BxBIuK4B1wOnAgbTcz6XfQ+sl99u4+Y2F/rlpY+ITx0cVNDRUvlxN6l5aphvPhhCHgJpy2FpuVb18H4GYDU1GkUWNQ937LFNb1q3s0EYVVdcjz/aQ07kood/D0qXFz5A02pUdgqbPNzTUXvB51Lda2npO+njWtbTNxBIuG4BzfOMPeuhsJ8oyt8o6L6d8xWla6do0JKFqrPTZmnzgVQ146vnjI3wCPp7fvv719deXvYOyfDQtqylTdrTPlU1YzC5YOlarNRSNUsvqepM9eYrSyXdERmv24Kmqr3Xq47J6U2e8Lyu/ouvr3kXbTqZvOi1sM7GEy3+RbCU8EUKrSZRpw9jUL99nOZU26ozQ0LTxyuY15nycVG1R99H4ev/MmaO6//7ljhhZF+exCPl8+9q6QhqjGB2UqgY4ZK25rMt9ViB55KFyPbiqZ/RRCxbZhELrf931dc4YTTsLIba+Fg4HsYTLRcA1vvEHPTQSLlWVJ7QXUmegbVLpRkaaXZfd7CxUh50+f8zRVvpuquJUfbBl3jf9EIrUW2XryuXrSK9GtHlCjNxVI7I276xOJejz3vKNbug37Ht91bdetNGgj7BYuHCb0B6Akcsw8G3gm8CRwHOAPfPBN71+D42ES1XlCf1wqnoTVZVFRPX5zy++3/Tp4XNi2tgM0pAuxtk2HXDCav/93UdTZeAvoiu10ZQp8Z4v1ZX75LNt4+cT6rz6QpwO8mH//eOUR9k7K1uJOa0/Pt9tk+fKvjtfNVqZqqxpmWYdYarUx31ic5kE/GPiLVYafNPr99BIuDRZbqOqYqoW62h9FnGcN69ZpcxX0LZpVH3oTYLvSKOIrhwl0gVHYzSUTW1baV2JKTyzRuGQXvdYO6RUCcC8u3S2/mRtQT4rH4Q+l8/k36KQvXes0Wi6lQNs65T1kbfYRYkAWQV8EjinKPim1+8h+sgl9MOfMqV8+RKfXnJbG0eT0UbdPbO2i6b5C1leJ0+XaqOsnaxp3kNViGX2jlijqPRdhk7eHEvHAtgmIMreuW++yiaB9uK50jocU1CXuSZX2a1qiCVc7gf+3Tf+oIfoNpf0fEhlKdO1x2w8isLkyc3tJL6TuspcelOh2nTUVOXF1HWPOv14n/nM4vPz5u3Yiy5yV/fJ5y67lNfDJs85Zcq266q80cqWJEpVQFnjfJFDylhvEZFtUNtMeCzyWuuys5J+KzEdd7JpVq0rF0As4fIYsMA3/qCHNt5ihRO7CuK1EhJ119Ytj1/X0DRxQqibMFikxilbJ6vJ/dPQqx51qkaqKjPPOlR7ryJX17aOE6p+6q+lS4s7PkND27scFy1VMpZOB/kG03eeVv6dFn1LPqPQsm80dIWHkKWN6tKqKuP8HDUPYgmXa4BP+cYf9NDJPJcymjbiVROjynr/6cgg7VVW7XcROmEwe11R3lLhEeLrH9uDqGziZowwNFQvvHw/Xp+OR1ZYLV3a3qZV9b6zjW7TTlFMG16T+uC74Gj2nTb1ykzredWKFyHvrapsR0a2/6aLnHB87TiBnmOxhMuLgN8Df+l7zSCHqMIl25tPZ6aXnQ/5WLK9+yIjXdXIIKWuouVX4a0LaSNU9kx1e6nn1z1qOnop8yAaS1tA1cdbJ2B9BXt6XVtVaSqofEYuvXx/bUJdI912odHQdxW60kORS3K+LfFReVXVlcA5L7GEy/XA3YlRf02yHMz1uXCdb3r9HqIJl7JGNi3stqqath4fdR9Q0w2imiwWmFdBpD2ypu+lS9tU1ngf8qxVQi9fjiE97TbPstNO1ZN9s55Ggx522aV8cnJejdf0HtkGus7Jp+17zY806ub21HVaejRyuRf4TV3wTa/fQzThUjcXI4aROTXAN8FHuKUVrmt9eZkaL1TnnKoFA++/ucrrKBuy6qgmk2Njz6vwzbfP86R1om7vk16FGEKu6FsJrS++DbSPk08bNW3eSaYuXlV9bTDnxfZzaRAae4sNDW1bRqTuQ1CN12D7GovL8l01d8R3uZU2oeoDC21QGjoD3LZoUdgck1ADtY+rsc+yJKGhTh3UdMJuL0LIPKCqNLKECpaiZf3L6kdalkVegbEcTHxHQXXnG3RQWwsX3BbH1wMn+cT3Dbhtk5clS/n/CVgP/BK4GHhmSfyrgIeBx4EbgaNK0n4KcAmwFtgI3AYsxHMr5mDhEmr8jjlyyVaOokrsm/+6j7ErbyufzZZC0mvSux0d3bYqsm85TpvmP6oaGdk2M7yu9xhjAmz2vqlxucp5o4xeLClTVxfa1sN8b9/3GdN36fvN1o0EYn77bb/LBp5iqqoxXZFjC5d5idC6ALcB2YJEIKwD7gNmZOLuDfwhmW/z4ST+LcATwPxculOAnybnLgbeCXwDUOBcn7wFC5fQihLL5lJVwdLKXbU5ULJoY2kesstIjI6231I5H/KOCWVxuuxB55dvj2lfSI2pMVRNTYRslpCJkE3rddch29EZHa3e9bUujdDna6IeTq8p+gb7TXAH2ltUVWMJlxuBi3zjtwnAGxNB8MHMsa8mzgQHZo5NB1YDd2ZHJIngUeD0XLpfB/6Mx74zwcIltKJkaat3heoJl2VeST7qsC717XnddJnNpWyGeKyQ9Ei3Cpe2H/2kSdsMxmXLizRxy226+VVeFeNTH6pm5ofmOU0vhtDOLd2/YebMsOvznaXQ+6u2E7jDwy4P/SZY0rIKJJZwOSpRXR3pe03TAByaCIcLk/93SVRbO3ij4bZbVuDQzLEfJWqzqbm4R+SFVlnodORS1EPwHZ4X9XpDBEAv9v6oepZ841blOh3TDlHwXrbuDdK2tx5DdVMU2iwimnp85bdtqBpNZetKk7lYeeHl26D6xps2ze3B4/ueizpLTTz9+uHbKctfm05qD0cu/wr8Ihk9/Az4SnIsGz7nm14u7anA7sCzgFcm6i4FjkjOH578f37Bta9Izp2a/D8JZ7v5UUHcYdx2zF+ry1NnNpcq3WbR8tpVH3v2Aw4Vbv2i7gj1UOnww94wc2ace/TT+60KPl5mRfNyfN9Bvlx930nAIqcbZs6MM/IPea6y9zHWqw8UHS/TYNSFss3NaoglXLZ4hEarIgOnJQIiDb8Bjs+c/6vk+MKCa5+fnLsg+X8k+f/Kkns9ANxUl6co3mJFFaJu/Z6s4CjaJKzqupAenM8SMGM5t2HePP9Z+9l3FLFR2Vpu6ZyHrAD3Xcqjzf41Vc8SawmQ0NBmFJbvOISkk13puOJdboHm77vp+0ifpWh15bEIqat9TIHa0Nu0SriIO99bRORZwP44G8pBwOuAL6jqp5LzbwO+hHMo+NfctXsBv8YtTfMeEXk2bpLnFar69oJ7rQH+qKoHFpxbgHMqYObMmS/5yle+0uh51q1bx/Tp05lx7bXsdfnlDD/wAJtmzOCek0/mgfnzG6XpQ/5+kzZsYMqjj+4Q78+77sqWnXdm6v33l6a1ZWiI+17zGp75/e8ztGlTebxJk3hy+vTC+zw5dSpDGzciHnlX2C7e5uFh7vzAB2rf14xrr2W/iy7aLo/5tPL/+7Blp5345RlnbL1/0X02Dw/zu1e9it1XrtyhjI945SsZeuIJ7/sp8MSuuzL50Ud3yPva17+eWVdfjZR8q02ez5eNM2cCVNaVqjxsnDmTlZnvKF9Hh++/v/C69El10iQmbdlSee/Nw8NsHh4urIOx2ThzJvecfPIOdSFLF+WRvo9Nyf0fmD+fOUcdVVongtMXYcX11wdfd+SRR/4fVT24ONESqdPLgFtqZhPw4eT/wRi5JNSuLRaytlYbqozkPvuP5FVuVavllnkhtRll+OqAOxrJFHpblbl653uyRT3pqt510bmszalqscF587pRC8WYmV9nJI6lPmy6y2pIaLqrbOz7x3530MjeoqpKzEmUOOP6fOB4YGbo9QH3WQn8Nvm7/20uGSqFSxN30DZULQdR96EUrRBb1bjWzbEJnb/RwHslunrEBx91T3a+SdHaT3UffNl1oav+VgXf3QtjNlqxbGip+q6LTka2/ObMiZsuhKk8s++zaPJnk035WrQ/0YQLbhLiI0kDvZlkAiMwA+fN9c6Q9Gru9XPg8eTv6dR7i700cyz1FhvOxU29xc6ou39nwsV36Y9YVFWqscxTE714k/vH7lX6jDJ97pkXFFlB7FNG+euyev40X2UG99SGVOQOXWbTi/EefRut7HM1vVe+roQKrXTyalkeYk9uzdavUHtp2fNl51SFrjTRkCjCJVFNbQG+Cbwj+fuozPmrgO/6ppdc84yS40cmwuu6zLGvJccOyBxL57ncxfbzXE5NhEjRPJcngNl1eetMuPgsaR4Tn33mx2I0FdpYNfReadQTLnPxLdqmtui9NNknxOfdlHkWFj1j2dyJos3qqkaXPl5hqaNJF41W2bsYGtomVKtW1c4/i+/in9l3NJYbmmXz6uNAkqpq68oo7VBUfQsRvvFYwmVl2tgndo28cDkTWO2bXnLNN5N0LwDeBfwdznD/52SEdGAm7j7AH3Ez9D/Ethn6TwJH59KdgtuO+Qng48DJbJuh/1GfvE2okYuqX8PThrazy0PwbVTSBrxo75sqe0O+rEJHLkX59VGNhdwvfYex3bzrVHVFHmJFI7+q4z5pJnV1qyty3XOVdSBCt6EoS6PMzlZX98ryXmcv9UnfZ+vtlu1OLOHyOHBa8neRcDkJ2OCbXnLNm4DvAL9N1F4bcGuLXQLsWRD/ecC3EsGzPlF/zS9Jezfg07hlZDYBt+NcnrtZWyxDX9lcxlqYheaj7sNr4/iQVyNVfWBLMzuI1rmWFtmi2vYQfe+l6t+IhZTxnDn1veGy/UOqZvwX1fWiHnV+hOUpkII25ivrdLQ1lGcJvbZsQnXdyhkh96gr0xbEEi6PAu9O/i4SLmcBD/mm1++hc2+xLkcJ+XuVfeBj4bFWlQ+RcmNmkfdPWyFc84FtXbgypPeefb4m85NSqtRBTScj+jYcPqqwJmVQ9UyhwrCkHm9dVcEXn85WiGo1q15Or23SyMdabqfJfVsQS7jcmNpU8sIF56H1n8B/+KbX72FMtznumrwwq+s5jlU+qtyYfVVSIdQ0LDfccEN9w130nmK4llc1Kk0nI/q8qyaNmW8ZNFETlVFSLltXVfCl6v759+Iz6i0ayTW12VTV+y5CH9lcjksEykeB5yZ/z8ctg//1xNj+at/0+j2MK+GSp19UZSlFjbNvI5CnagXoGpXkDTfcUN0gFgmO/fffccmNph9t1XPny6ZO7+6bhyZeYb4jopgjl5Jy2RKq1qlq+IsoE76TJhWvtlH2zEXOITFDqPtxJG1FFOHi0uH8RKg8mfndnPx9dkha/R7GtXAZa4+1Jvh4ueXxGUFUqCQrRy5lqjBfYeCLT9mUGXuz78i34agSpk2EQJamNpcixmLkUlRnQjtiVeXX1uV6dLTcMcF3TbHIHchowsWlxYsTD6zvAt8DPgUcHJpOv4dxLVz6beRSRNUHUkQER4lSm0uZKqyqJ9pUUPuUTd1oI+TeVfeL4XxSJsxD7Y4l73tLmVAIfd6y56sSBCHp+3oYjoxUbz3RxpjfZjv0EqIKl4kSxrVwGWuPtSaECsAIAnNrufk0fHWNVFNB7VM2dQ1MyL3LHC3SdPILePayjqTlks1jaP0NddioK+eibSGadk7SeFX2xlBVY5GAiogJlwZhXAsX1ThG6C4JFYARVH1B5eazNUJT6sqmqsGrmjtRdb82jfZY16W2HYns89bVGR9hlG+0fUdlRfGqlpcpW6G6TNUYs9NTQkyby57AYtyukNfhtijOhh2WZxnUMO6FyyAQojqJOXLxoex+kyaNjdddmc2lbkuHKpq8w16MgmPYDKtUTPnn9XHVjtFo190nvYfPPCAfwRmBWN5ir04mOm5J5rz8pij4ptfvwYTLgBHL5hJyvyrdeBVVHm0h96/atdPn+nwDVTUaKxuZ9MJ+F+OeZWlUjfzqVrX2pejd142QQgX2GJVLLOFyK/Bf49F4XxRMuAwgoUbiHMHl1mQuTj+oI0PnFlU1dL3wPIwxWgo11KtWq9LaetB5rCBRmaaPsOpgRBlLuGwEPuAbf9CDCZeJR3C5hTas/eJIUeWpFLq0jI9jQxfPl3QktjR1NGiqAmw6Wq27b9MRUVWdatnZ8iGWcPltuvzLRAgmXCYeweXWA4+2KFQJxdBGz8fgPW2am2zaVhVYQONvramgb6uOjL3tRI/rVJVwmYQ/V+CW3TeM8cWyZTB1KnOOPBJmz3b/+7B4MUybtv2xadPc8SLWrAk73hV77ll+fHQ0LI3jj4clS2B4uDzu+vXwy1/CihVh77dL0nyPjoKI+12yxB2vu+6hh7Y14w89VH9NlrJ3PzISVpdS+qVOFVEmdXCeYdmwL/Bj3KrERwHPKYizw0rGgxps5DJBaKuqCrGh9MvIpU6V4jMSaTL3p8n7raEvv7WmSxA1UWP18cilSriku01mw5aS41tDWXqDFky4TBC6/jizwidko6uuqRKK+UbOdwXtEJVPpPc7Jt9aiHefT2cjplNHj+14VcJlp4pBzXmAxhohGUZf0qVaYdkyWLAANm1y///hDzB5Muy0Ezz5pFPFLF4cplaJxfHHl9+36Nyll9anueeesHq13/37QW3jw7JlsHKlK8OpU+Fznyt/b/nyXr3a/Q/bX1P17uvyctJJLv183Vm0yL3TPffsXZ3KUyZ1JnqwkcsEocuRS7+owcYKH5XaII1cypbGKZuo2mV594unYQ5iGPRF5GwReWHF+ReIyNlRJJ5hjBWhRvkQ+tnY2gV54/7oKCxc2N377ZpFi5wzQhZV+Oxni50SuizvorysX++O9ykh3mLnAi+qOP9C4JxWuTGMsSbTICr4ew35UOWVNV45/njYuNE1wvfe69RpTbyy+oEyoaBa3Kh3Wd4D2FEJES51TMXt72IYg0XSIK644QbXIMZq+LocFQ0Sxx/v3uuWLXHfb9dUCYWiRr3L8h7AjkqlcBGRXUVkTxFJn2Ak/T8XDgSOx020NAwDqudSJHNrEOmfuR/G9ixe7MqniKJGvencGd+8DFpHpcwY42w1nEOF2zE7uimPm+VhzKA/8RizcutT4+wg0nmZLVzYfO+Y2PTDunQ5aOiKDLA8+RXgbOCbwH/m5ROwDlipqje1E3WGMQGoMs4OisooJnPnut/ly3uZi2IuvRRe9rL+cPVt6sLcIyqFi6quAFYAiMgo8FlV/clYZMwwxi0DaJztjOw8ktmz+2eORpYBa9T7BW+DvqqeaILFMCIwgMbZTiibdGj2p3FBTG8xwzB8GETjbBcM4NwNw5+eChcR2VdEzhORlSLyoIg8JiK3isgiEdmlIP5+InKViDwsIo+LyI0iclRJ2k8RkUtEZK2IbBSR20RkoUiZ+4dhjBFFkw0HZe5HTEw9OK6pM+h3zTuAU4GrgWXAE8CRwPnAm0TkMFXdACAiewM34ebSfAz4E/BO4Aci8mpVvTZNVESmANcABwGXAHfgtmm+FJiJmxBqGL3D9Pjla5FNNPXgOKXXarF/B56lqser6iWq+llVPQ5YjFsN4KRM3AuB3YCjVfVCVb0UOAK4D/hMbkRyMnAI8D5VfZ+qXqaqfwl8A/hI4pxgGEYvMfXguKZUuOTXEksmS+4c8+aqukpV/1Rw6srk94XJvXcBXgcsV9VbM9evAy7H7TVzSOb6twDrgcty6X4SmAwcFyH7hmG0octJh0bPqRq5nMv2a4n9BnhDp7nZxrOS3/uT3xcBw7jNyvKsTH4PARCRScCLgVtUdWMu7k9x83IOwTCM3jOoS8MYtVQJl0dwaqiUMTGEi8gQcBbOtvJvyeE9kt+1BZekx2Ylv08Fdi6Kq6qbgIcycQ3DMIwOqDLo3wJ8UEQmAw8nx44QkbqJl19qmadPAocDH1HVO5NjqWJ2U0H8jbk4VXHT+NOKTojIAmABwMyZM1necMbwunXrGl9r9A4rt8HDyqx/qRIU78MZwD+R/K/Au5JQhgKNhYuIfBQ4DViiqhdmTqXO8MMFl03NxamKm8ZfX3RCVZcASwAOPvhgnZsuSxHI8uXLaXqt0Tus3AYPK7P+pVS4qOrPRWRfYC/gmbh1xhYD15Zd0wYRORc4E/g88Le50/clv0XqrPRYqgZ7GNhQFFdEhoHdSZa0MQzDMLqhTsW1GbgbuFtEVuC8taI3zIlgOQf4InBystpmll/g1FyHF1x+WPK7KsnzFhH5GXCQiAwndpaUQ3G2o1URs28YhmHkCFlb7EhVvS52BpKtkc8BrgDeoapbCu69Dvg2MFdEDshcOx03p+VunCdYypdxdpUFuaTeg3MUuBLDMAyjM4Jm6Cduvv8D55K8V3L4Hpxt5ktFgqEmvVOBfwDW4NRtb8mtznK/ql6T/P1hYB7wQxH5BPAobob+LODY3GjnMuBE4GIRmY2boX9Mku/zVfXekHwahmEYYXgLl2QC5feAl+MM979LTh0DHAu8XUSOKZhbUkU632RPnEoszwrcMi6o6q9E5GXAPwIfAqYAPwNelV36JYn7ZxGZj1tG5s3ACPBr4HTgMwH5MwzDMBoQMnI5E5gDXARcqKoPA4jIbrhRxd8Di3BzVLxQ1ROAEwLi3wG83jPuIzjPs9N80zcMwzDiELK22HHAV1X1g6lgAdeIq+oZwFdxowTDMAxjghMiXJ7Ftm2Pi1jBtmVbDMMwjAlMiHB5BNin4vw+SRzDMAxjghMiXK4BThWRo/MnROSVwELgB7EyZhiGYQwuoQb9o4HvicgtwG3J8RfgNuV6CDg7bvYMwzCMQcRbuKjqahE5GLdp12txy9oDPIabtPgRVbX9SQ3DMIywSZSJ8Dg+2fXx6cnhBwuWazEMwzAmMEHCJSURJg9EzothGIYxTggx6BuGYRiGFyZcDMMwjOiYcDEMwzCiY8LFMAzDiI4JF8MwDCM63sJFRK4XkXkV548UkevjZMswDMMYZEJGLnOBmRXnZ+CW5DcMwzAmODHVYrvh9rk3DMMwJjiVkyhF5EXAgZlDR4hI0TVPA04Bbo+XNcMwDGNQqZuh/wbgnORvBd6VhCIeA94dKV+GYRjGAFMnXL6A2yBMgOuBC0j2tM+gwDrgdlXdGDl/hmEYxgBSKVxUdTWwGkBETgRWqOq9Y5AvwzAMY4AJWXL/i11mxDAMwxg/BK2KLCK7AG8BnguM4NRlWVRVT4qUN8MwDGNA8RYuInIo8B1g94poCphwMQzDmOCEzHO5GJgCvAnYXVUnFYShbrJpGIZhDBIharGXABeo6r93lRnDMAxjfBAycnkU+EPMm4vIh0XkayJyj4ioiNxbE/+lInKtiDwmIo+KyPdF5MCSuHuIyJdE5EER2SAiq0TkjTHzbxiGYRQTIly+ARwd+f4XAEcBvwYeroooIocBK4DnAGfjJnc+F7hRRP57Lu7TgB8Bfwn8C/B3uLk4X01cqg3DMIwOCREuZwAzROQSEdlbRPKeYk3YW1VHVPUVwH01cf8Z+DPwclX9hKp+Ang5zong47m4H8IJoTer6tmqugSYB9wMXCQi0yPk3TAMwyghRLg8AhyKW0PsLuBJEdmcC0+G3FxV7/GJJyL7AIcAX1PVtZnr1wJfA+aLyDMyl7wF+LWqfjsTdzNwCW4dtGNC8mkYhmGEEWLQ/xJulNALDkl+f1xwbiXwDpzDwXdF5JnALGBZSdw0va/GzqRhGIbhCJmhf0KH+ahjj+R3bcG59NisBnENwzCMDgiaod9DpiW/RfvFbMzFCYm7HSKyAFgAMHPmTJYvXx6cUYB169Y1vtboHVZug4eVWf8SMkN/T594qrqmeXZKWZ/8Dhecm5qLExJ3OxLD/xKAgw8+WOfOnRucUYDly5fT9Fqjd1i5DR5WZv1LyMjlXvxsLl3M0k89yYrUWemxtQ3iGoZhGB0QIlzOY0fhshOwN/B64BfAf0TKV56bk9/Dgctz5w5L8vV/AFT1dyKyNjmeJz22qotMGoZhGI4Qg/65ZedEZC+cJ1cnjbaq/kpEVgFvFJGzVPW+5L57AG8ErlfV32cu+TLwARF5beqOLCJDwOk4l+rvdZFPwzAMwxHFoK+q94jI/wL+Afiu73Ui8jZgNPn36cAUETkz+X+1ql6Rif53wA24GfmXJMdOx83VeX8u6X/ECZ1/E5GLcWqwN+NckE9W1ce8H84wDMMIJqa32Frg+YHXnATMyR37aPK7AtgqXFT1JhGZC5yfBAVuAt6oqj/PJqCqfxCRl+GEzKnAdOB24G9U9crAPBqGYRiBxBQu/y8164PlUdW5gfF/jFvGxSfuWuBtIekbhmEYcQhxRT675NTTcItPvhD4WIxMGYZhGINNyMjl3IpzvwfOBP5nq9wYhmEY44IQ4fKcgmMK/FFV10XKj2EYhjEOCHFFXt1lRgzDMIzxQ7BBP9nH5SBgr+TQPcAtqtqrFZMNwzCMPiNIuIjIq4BL2TY3JeVeETlFVX8QLWeGYRjGwBLiLfYy4GrgceBTwG3JqRcAJwBXi8iRqnpT7EwahmEYg0XIyOVsnFfYS1X1d9kTIvJPwE+SOK+Klz3DMAxjEAnZ5vilwJK8YAG3WCRwGcWLRRqGYRgTjBDhMgWoWpPr0SSOYRiGMcEJES53AH8jIjuo0pJjxyVxDMMwjAlOiHD5F5xq7DoROVZEnpOE1wDXJecu7SKThmEYxmARMonychF5LvAB4C8KovyTqn4uWs4MwzCMgSVonouqniEin8PtPJkuB3MPcLWq3hU7c4ZhGMZgEjxDPxEi/9RBXgzDMIxxgrfNJbGvvLbi/GtFZHaUXBmGYRgDTcjIZTHwbODbJeffD6wB3t42U4ZhGMZgE+It9hdA1dphPwRe3i47hmEYxnggRLjMwC3/UsYDwMx22TEMwzDGAyHC5RFg74rz+1A9g98wDMOYIIQIlxuBd4rIM/InkmMnAz+KlTHDMAxjcAk16L8WuEVEPg7cmhw/EGfMnw5cEDNzhmEYxmASMkP/VhH5a+DzwMeAdOdJAR4C3qiqq+Jn0TAMwxg0Qmfof0dE9gSOBp6bHL4L+KGqboidOcMwDGMwaTJDfwNwVfysGIZhGOOFEIP+QCEik0TkvSLySxHZKCK/FZGPi8guvc6bYRjGeKdy5CIiVwemp6r6+hb5ickngHcD3wQ+Djwv+f8gEZmvqlt6mTnDMIzxTJ1a7DWB6Wl9lO4RkRcApwPfUNW/yhz/DfDPwN8A/9aj7BmGYYx7KtViqjqpLgBHAjcnl/yu8xz78WacF9snc8cvA9YDbx3rDBmGYUwkGttcROSFIvJd4HpgP+AstnmQ9ZpDgC3AT7MHVXUjbn7OIT3Ik2EYxoQhWLiIyLNF5AvALcA8nJppb1Vd3EfuyHsAD6nqpoJza4HdRWTKGOfJMAxjwuDtiiwiTwUWAacAw8CXgTNV9d5ustaKaUCRYAHYmInz5+wJEVkALEj+XScidza8/+64iaXGYGHlNnhYmfWW0bITtcJFRIaB9wBnALsB1wBnqOqtcfLWCetxqzgXMTUTZztUdQmwpO3NRWSVqh7cNh1jbLFyGzyszPqXSrWYiJwE/Aq3ZtivgVeo6tF9LlgA7sOpvoYLzs3Cqcz+XHDOMAzDiEDdyOUynHvxKuCrwAEickBFfFXVT8TKXAtuBl4JHIpbzRkAEZmKW2jzf/cmW4ZhGBMDH5uL4LyrfDysFDd5sddcCXwEp867MXP8nThby7KO799atWb0BCu3wcPKrE8R1fJ5jyIyJzRBVV3RKkeREJFLgNNwM/S/x7YZ+v8fcJTN0DcMw+iOSuEyyIjIEG7ksgCYjfMouRI4W1XX9S5nhmEY459xK1wMwzCM3jFuV0Uea2wV5t4jIvuKyHkislJEHhSRx0TkVhFZVFQOIrKfiFwlIg+LyOMicqOIHFWS9lNE5BIRWZuU720islBEpPsnm1iIyDQRuUdEVEQ+XXDeym0ACN7PxSjFVmHuPe8ATgWuxjltPIFb++584E0icli6ioSI7A3cBDyJ21n1TziHjx+IyKtV9do00WQ1h2uAg4BLgDuAVwOXAjOBc8fi4SYQ5wFPLzph5TZAqKqFlgF4AW4ts6/njp+O86B7S6/zOBECcDDwlILj5yflcFrm2FeBzcCBmWPTgdXAnSQq4+T4Kcn1p+fS/TpulYfRXj/7eAnAi3GC433JO/907ryV24AEU4vFwVZh7gNUdZWq/qng1JXJ7wsBEhXZ64DlmpkQrM7R43JgX7Z3vX8Lrhwvy6X7SWAycFyE7E94Eiecy4DvA98oOG/lNkCYcImDrcLc3zwr+b0/+X0Rbn28HxfEXZn8HgLOlobrTd+SlGeWn+J6xla+cXgvsD9uCkERVm4DhAmXONgqzH1K0hs+C6dqSTeI2yP5XVtwSXpsVvL7VGDnorhJeT+UiWs0RESeA/wDcJ6WL4Zr5TZAmHCJg+8qzMbY80ngcNz8pnSV67QsisosX15VcdP4Vrbt+SxwD3BxRRwrtwHCvMXi0GgVZqNbROSjOBXLElW9MHMqLYuihU3z5VUVN41vZdsCEXkr8Arg5ar6REVUK7cBwkYucbBVmPsMETkXOBP4PPC3udP3Jb9FapH0WKpOeRjYUBQ3Ke/dKVbTGB4k7/Bi3BJNvxeRfURkH7btE/KU5NhuWLkNFCZc4nAz7l0emj2YWYV5VQ/yNGFJBMs5wBeBkzXxP83wC5y65PCCyw9LflcBqJuf9DPcfKV85+FQnJeglW9zdsbNaTkWuDsTlifn35r8fzJWbgOFCZc4XInzPnlP7vhYrcJsJIjI2TjBcgXwDi2YvJq4rn4bmJvdQkJEpuMasbvZ3vPvy7hyXMD2vAfnKHAlRlMeB95YEE5Jzn8/+f9qK7fBwtYWi4Stwtx7RORU4NPAGpyHWP6d36+q1yRx98E1RE/gVld4FNcZ+O/Asar6g0y6U3Czwg8A/hk30/sY4A3A+ap6VoePNSERkdnAb4DPqOppmeNWboNCr2dxjpcADAHvx80S3oTT514MTO913iZKAL6AG0GWheW5+M8DvgU8gjPu/giYX5L2bjjBdV9SvrfjOhPS9XNNxIBbyXyHGfpWboMTbORiGIZhRMdsLoZhGEZ0TLgYhmEY0THhYhiGYUTHhIthGIYRHRMuhmEYRnRMuBiGYRjRMeFiGIZhRMeEi2EYhhEdEy6GYRhGdEy4GIZhGNEx4WIYPUBEhkTEdkI0xi0mXAyjY0TkBBFREZkvImeJyK9x2+y+KTn+hYpr5maOnZsc209ELhCR/xKRTSLycxE5piCNt4vIT0XkERF5XETuEZFlIvL0Dh/XMADb5tgwxpKLgMnAZbil4u9smM4XcUvOXwRMwe1PcpWI7Kuq9wKIyNuSeDcCZ+N2ZXw2bsn5GcCDTR/CMHww4WIYY8fOwEGqunXvdhFpks5DwGs1WdJcRG7A7XHyLuDDSZw3AI/h9hJ6MnPt2U1uaBihmFrMMMaOf8kKlhZ8SjN7ZajqzcA64LmZOH/C7cJ4rDSUYIbRBhMuhjF23BUpnXsKjv0BGMn8fwGwGrgKeFBEvi4iJ4vIf4uUB8OoxISLYYwdIaOWKpX15pLjW0coqno38HzgWJztZRRn6/mliOwdkA/DaIQJF8PoLX8EnlZwfK+2CavqJlX9nqq+X1UPxgmaPYD3tU3bMOow4WIYveUu4PDsnBcReSpwYptERWT3gsM/S36LhJlhRMW8xQyjt3waWApcLyJXALsB78TZS57RIt0fisgjOFfk3ybpngAocEWLdA3DCxMuhtFDVHWZiOwBnAZcjDPWnwdsAV7aIul/Ad6Ec09+Gs7gfwtwuqre0CrThuGBZDwaDcMwDCMKZnMxDMMwomPCxTAMw4iOCRfDMAwjOiZcDMMwjOiYcDEMwzCiY8LFMAzDiI4JF8MwDCM6JlwMwzCM6JhwMQzDMKJjwsUwDMOIzv8F0rtZ1fRR2qEAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"thermal_Ncount_val.plot.errorbar(ax=ax, yerr=thermal_Ncount_std, fmt='or')\n",
"plt.ylim([0, 500])\n",
"plt.ylabel('Ncount of thermal part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEQCAYAAAB80zltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABEBUlEQVR4nO2dfbwfRXnov08O4YQkBeEAqWhzIlqJSusL+EKrhkBsq7a17a2t14OFIlKDqGi5bW0UEUVbRaoVrSK9SD1pqVpf2l6UGglcrZcqKFUR0IqAYnkRFAh5keTM/WN2zWazOzszO/vb/Z3zfD+f+Zzz25fZ2Z2XZ2aeZ54RYwyKoiiKkpJFfSdAURRFmX+ocFEURVGSo8JFURRFSY4KF0VRFCU5KlwURVGU5KhwURRFUZKjwkVRFEVJjrdwEZGzRORIx/kniMhZaZKlKIqijDMhI5ezgV90nD8SeGOr1CiKoijzgpTTYkuAnQnjUxRFUcaUfVwnRWR/4GGFQ1MisrLi0oOAGeB76ZKmKIqijCvi8i0mIm8EfPUoAvyJMea8FAlTFEVRxhfnyAW4MvsrWCHzCeBrpWsMsAW42hjzxaSpUxRFUcYS58hljwtFLgbeb4z5j26TpCiKoow7Xgp9EVkOTGMtwhRFURTFSdO0GADGmC0i8lRgY8fp6YWDDz7YrFq1KureBx98kGXLlqVNkDISNO/GF827YXDttdf+0BhzSNU5L+GScR3wuCQpGhirVq3immuuibr3yiuv5Nhjj02bIGUkaN6NL5p3w0BEbq07F7LO5Y3Ay0RkbfskKYqiKPOZkJHLCcBtwCYR+U/gW8DW0jXGGPPSVIlTFEVRxpMQ4XJS4f8nZaGMAVS4KIqiLHC8hYsxRj0oK4qiKF6owFAURVGSo8JFURRFSU6IzgURORCrU3k6cCB7CydjjDk+UdoURVGUMcVbuIjINPDvwGHAfcD+wL3sFjI/BB7sII2KoihjT74s58or+0zF6AiZFnsL1v3+8cDPY51Z/j5WyLwNeAB4VuL0KYqijD0bN8LVV8NVV8GqVfb3fCdEuBwPfNAYsxlrcgzW8eVWY8wG4OvAX6ZOoKIoyjizcSOceirs2GF/33qr/T3fBUyIcJkCvpH9/1D2d7/C+c8Cz0mRKEVRlPnChg2wtbTcfOtWe3w+EyJc7sbuOAl2Cmw7sKpwfl/2FDaKoigLnttuCzs+XwgRLtcDTwRrEgZ8CThNRFaKyCrgVODG5ClUFEUZY1ZWbQzvOD5fCBEunwKOEZF8dHIOVrH/XeA72f9vTps8RVGU8ebcc2Hp0j2PLV1qj89nQty/vA94X+H3FSLyS8D/BHYBn9BtjhVFUfZkZsb+felLrVJ/etoKlvz4fCVoEWUZY8yXgS8nSouiKMq8ZGYGPvhB+/9CWecSJVxEZCl222OAW40xZdf7iqIoSoGFIlRygnyLicjjReQy4MdYs+RvAD8WkctE5MgO0qcoiqKMISHuX54MXAksx65p+WZ26gnArwC/LCJrjDHXJU6joiiKMmaETIu9A5gDnmqM+UrxhIg8Bbgiu0YXUiqKoixwQqbFngFcUBYsANmx9wLHpEqYojRx7LG7nQEqijIsQoTLduAOx/kfANvaJUdR/FiIjgAVZZwIES6XAb/pOP+bwKfbJUdRmlmojgAVZZwIES6vBaZE5KMi8lQR+ZksPE1EPob1O/aabpKpKLtZqI4AFWWcCFHo34V1tf8U4HdK5yS/RkSKx40xptVCTUUps1AdASrKOBHS8P8du/dxUZTeWLnSToVVHVcUZRiE+BY7qcN0KGNE39u1nnuu1bEUp8YWgiNARRknglboK8oQrLRmZuDCC2Fy0v6enra/57sjQEUZJ1QfonhTZ6UFo2/YZ2ZUmCjKkNGRi+KNWmkpSr9s3AhLloDI8Nd3qXAZQ/pama5WWorSH+O2vkuFS0JG0ej3qfNYqNu1KvOHcXYZNG4zBypcEjGKRr/vnkvK7VrHaXivzA9i6+hQBNK4zRw0ChcRWSYiyxuuWS4iy9Ila7wYVaPfd88lt9KanrZCIdZKq28hqSw85kOZG7eZA6dwEZEjgB8Bf94Qz+uAe0Xk0akSNk6MqtEfQs9lZgZuuQXm5uzfGIutvoWksvCILXNDML3PSTlzMAqaRi4vB+4G3tRw3Zuz616eIlHjxqga/XHrudQxBCGpLCxiytzQRjsp1neNcoqvSbisAz5mjNnhusgYsx34KHZHygXHqBr9IfZcYnQn80VIKuNDTJkb4gh7Zga2bwdjwmcORj0KaxIujwKu94zrBmBBTos1NfqpegtDW5ke27NLISSHomRVxoOYMjfuI+xiHellFGaMqQ3AVuAU1zWFa08BtvpcO7Rw1FFHmVg2b95sjDFmdtaYyUljwJjpafvbdXw+MD1t36scpqeb723zXVJ90zzvlP4JzdOYvAt9Rl35npgYfj0uv+vUVHxddQFcY+pkQt0Jex/fAc53XVO49nzgOz7XDi2kEC5VzM4as3Tpnpm5dOnwC6YvItUFVqS7Z6b8pn0IlzVrbFB2s3q1MYsWheXpKPKuqqyNQz12pTt1XXUJl6Zpsc8DL/YxRQZeDPzf+DHU/GOIc7Y++E459aE7Gedv+rjHDcfyqExf04wbN8KNN1rrwyJDyNOZGTjxxOpzdekbwnRtVR2po8u62iRcLgAOAT4hIgdVXSAiBwKfAA4G3pM2eePNOM7Zhij9+jAwGNdv+oUv2EY0xZz3EBqwFOR6gDr6ztONG+GSS+rPl9M3FLNl3+/WuTFQ3ZAmD8AbgTngPuBi4AzgZODVwIeAH2fn39AU11BDV9NibXQSfeAaTtfNUY9ap5Tym/Y9tRKT7i6+d196wbq89Pk2o8i7kPQNaQq8Lt1TU/acSLp8Jlbn8tOLrDD570yIzAG7Cv//APhDn3iGGlTnYmmqTENI+7jpXJq+acicd9W7ixizfn18+voso3U6u6HoXELSV5fPk5OdJ3MvRpmnrYWLjYPFwLHA6dgV+6dnvxf7xuHxjKXAzYABLvC858rs+qpwtE8cXQkXY8bLWsxVmYY06hona7GmbxryPesaMJH4b9B2JNjGQKGNNVafHYOq9LnyuYt63/TdZ2fTj1KqSCJcRhGA84AHIoTL3cAJFeEgnzi6FC7jQF5Qm3rZoT3todP3yCW0N9nUgMXQxuKvrZBv08Pua0ozT1+5cR/lqH9IHdZo4QL8EjDluqZw7eHAyT7X1tz/FGAn8NoI4XJL7HPNPBIuMYWueM/UlDH77uuuJEMYuaSiT53L1FR4o+BqwGKFfuzIJcXUy5o11gw5poc9qnpXNQKoqmc+5r8p6s7QptrbCJddwIsLvw8C7geeXXHtDLDLFZ/jORPAtcC/AqtihAvW8m1/QEKfPx+ES0yhq7pn8WJj9tlnd4M1lELcBaNsoPLGaHLSNqix8dSNNGIbrtjGylco1U3ftO19d513rnTXfa/iO3U16ncp6/ugjXCZKwmXqezYcRXXthEuZwIPZoIlRrg8hPUmYLJ4Pg6s9n3+fBAuMT3QpnuGsIq+S4aSdyGsX793frUV+jF55TOd5vJa0bb33WXeub6HTz3rcmW/a2q0jzrmEi5iz1cjInPACcaYv89+T2X6jXXGmCtK184Af2eMmaiNsPoZjwK+AZxjjPlLEVkFfBd4rzHmdI/7L8ZarH0NO9J6OtbY4CfAM40xX6+571TgVIAVK1Ycdemll4Yk+6ds2bKF5cuda0z34owzngTAu951XdQzqzjuuDUYI3sdFzFcccVVye7xYdOmQznvvCPYsWN3UZic3MWZZ97EunV3RcfblvJ3j8m7IbBp06FcdNHh3HXXJIceuoNTTrl5JN+1+P1e9KJncOedS/a6ZsWK7Vx66dXOMnDRRYc77/Whq7z7gz94Kt///tI96kWx7K5duwZw15mqd6+KK4a67w5h3y8Va9euvdYYc3TlyTqpY0Y0cgEuB75OZnVG4MilJs5nYQXNZ32uH+XIxdUr6sLyps3IJZYhru+p+u7jOHLpi/L3W7/ePfpwlYEUboNS5F3VO9WNCvIy4zpfjtv32tA0u6bdRu1eiKFOi2EtuuawI4z8WGvhksWzGWsgsF/TtaMSLr7ztaOyvOlKOdiHzzEXde+5YcP1/SRozKj7fuvX15dZVxlI0fmoqnchDWuI/63iO9cdr6ozXdWDOieUU1Ojn4ruQrisrbg2SLgAk8BdWCX+YwphTSZcPpz9fphvnKX4L87iOazp2lEJF5cyLkUjH2stltoefmgjl7r0rFixrZ8EjRmpR8Vd6VxChIuP2X0xTEzUH69Ld1f1oM4Qp2zpOQoDnLbC5Vrgn7Pw6Wy66YuFY3m4NlC4PCxr/JvCmb5xluL/AlbRv6Tp2lEJF59Fik0Fdxy86g7NXLK+BznXT4J6oM3I2KcHXi6XTWWgbaemXO+q3s9VV0LqomuEUzUKyZ/bZT0ov29XLvWbaCtcQkKIcFkM/G5FWJ8JlU9nvx+bXf9wYDWwtBDHAcBERdzPz+K4zCctfY9cmgp2W71MHwJpSNZiC3nkkq8ladPI+VgVFnv2+RqeLstAsd41mdRXPdu3LuYdPN9RSJUeZxQr5fuyIosWLn2EOp0L1kmmAY4tHPstrLuYd2Mdab4CuCQbXd2dC6am0LfOpa7XUVWJ2yyS7LuR74uFqnNpWnfh26tt0hUuXlzfKHdFsd75CIqyMPXVueR+23xGIX2O2FN6gghhPguXxwEfwW5qtgXYkf3/XuARvs8ctbVY1YrfpqH3kBT248h8tRYLWexXVa58qeukuBq1Lhf2FfPOd4qrapRRp0upuqepo9Z2YWk5bSGdwqb8rutItJ3VGCvh0kcYwiJKV0Gfng5XDq5ZU99rnZ4eD91NasrvPO7CJWaxX8zIxUVTw94VoSOXOmGa0mu1Txw+QiO2U+gyU4a9708xq9FKuAA/l005rQcOLRz7e+AO7Ir4q4BnNcU11NCly/22vY+8ULkqcZWfI9d0SNU9C5EhCZeUZcWY5oY21Qi2qXHuiiadi68wTeW12mddi6/QaGNl5js9lmpWo41CfzV2M7B8/5Y7gMdmU09zwI+wXozngO3AUa74hhpSCpdiIxHjmyt0+qH8jCqTxKZ7QvcE6WvUk/q5KTsGbYip6E2mvk0NZqr3cT1raqo6z0Itu6pw1bsqB6x13zOFrsIl3HwXlhaJXR9TZ7xR9axUZtJthMv/xvrsemVmuXUjdjX9fwNPK1z3nEzIfNQV31BDKuHi04NK6WAw1LTZdY/vniB9GQh08dw64TJqXVVMRW/ayKpNYxlK1cr2ffetXmQZY9lVRdM6F9/yUldnQ7xW+/oSa6p7eXpd0+N1lIWrq/43pSWENsLlO8C7C7+fm41Szqy49nzgDld8Qw2phIvP3G+b1bnlChMqWJruaRJ8fRkIdPXcOuHi09inHEXFVHRXg+bT0KWmygQ3xjLSN299pjR986htx8U3/0IWUYd8k5CO55BGLtuAlxZ+PzITLs+ruPZk4CFXfEMNqYTLKHZyLFaYEAHTVKh8BF9IgYxpfEOnBNt+y7oGqqmxaNsYle+PWQDn8oNVl/ZRTmfGdH5C8ratvizlSDhkDUyIwJ2YcK+PadrkzzUtPwSdy0hc7vcdRjVySd3Lr5ticM03u4wDmiq0r5v1qgV1Me/SZMzQ1kdTzMilbaWMybOQNNaNXOr8TnUlcGKmbEPyto1wST0SDomvailCTPn2MdoBtwCtSksoKlwawih0Ll3pJ6p6YE2FJnZPEJ+V2lUL6nz0Oa64Rz1ycTUWbdPimhoJ6UmH6FwWL67uxbocT7alzRSQz/dsI1y6KE9tGurQ9LSxjktNW+Eyi916+LXA6zPLsb8pHMvDxoUuXIxJ0xvokqoej286m3porpFb05x/k7KzC2/STRZHVUpmX6Vsrncopy3VKKxpdFV87vLl9c8M7WD4UpVnixbtnWchll1FfIVLbkHlo6scmtfuum/gM+U4qsXSbYVLJ77FhhSGsIhyFNQp/kLMkF2NedNUSEyFKY6KfCyPQipV06gzZA2Cr1I2lYNB3/S6TIV90xErwH07MjHx+9S78hRtnVCNzYOUhHwDVz0bdae2jXBZExpc8Q01LBTh4lL8pSiMPj2qkKF+m7UePvjoy3yUsiGhzfYKVSOjplFyqGLdpT+LEeA+G3DF4Kp3Pus9QkdtqXVTbUbcXU0TxxAtXBZKWCjCxdXjSVEwfXrJvkrKNnoH3+kNH0u/qriKupdQxXXV9FnslKTPqDM0fcWRYoyvqnKa24xmXbj0ZT6KbqjOg7oRckrd1OysnSKM/Q4+HbHUaa5DhUtDGAfhkqLn5LO4qi2rV/s1Xiloux4lZuSSEzrd5IqvKW9dfuKaRp0hIxdf/ZlvefF9dkyZqKp3IaPKuum/FJZ8TaSYGnXpdlNbw7lQ4dIQRu0VuQ+3+XWWXHUFu+06lVhFbejzXJWo6bvleVc3jVI3MoidGqvTiTSZizb1xF2NUohlUYj+zKch9B01xXRsquqdrzCry9eYdWOhuDolsR28chka5cZhKlwaQhfCJZUCOlUvxFVxUgyp63p9oW49QqlL6+rVzVMPT3zij/awJFq2rPnbGOOvW2oy9fURjr5CzGc9g0+j1rQwzyWQyox65BK6u2Q57TFTiCnr4fR0eKcupIx0YQ2nwqUhxAqXNWtsA1Wmbh1JXY/CtcYhlfLOd6e6WGE2JCWjMe7tBozJ5713eTfcRZrWmPg2OE3fLKQn7pOGEIu8qpFn6Pv6NHyxxgxVG72FGi+U95sJvT80v41xl52YdUchae7CBZAKl4YQI1x2F/a5PUYmTZsPhRbYUayLiLmuTFer6GNomnqImdYqVva6bxRaeZu+WZtV7r46heJ6oaaRZ8x0S1k30GThVjUNWCXoJid3eo8EXd+prLCP8TIe0oGq+4bLlsV16mLLSKqZhCjhknlEfnrh97OBQ+quH+cQKlx8FX9tQlPvNVT552tSGiskhjJy8bFyiumhNjXEPg1Becqj6Zv5OHmsC3X5VTeN6JN/XXcgQoW+75ocV35XmYbn71nsNPpOKza9X50Hi1g9iWvdVVNHN4UONFa4lF2/7Cr+nk8hVLjENk6+ri+KBbatzqWuwtb5/IoVEqO0UHHho1tq6/cq/35TU/6L1kJ1cHUNUe7KvqkcpZo2LTacXXcgYuqVDzGWfVXv1Pb9Y96vSXC5ytAoHOnGCpe7gNcUfs+pcLHE7qNS7AXljZJPj8WlYG9SvseY2KZa5DdqwWKMn24ptnNQDiHfJdR9jatH2pT+lAYf5XLYZQcitF5NTPjHHTMKTL0XTUy74dP4h5ahcrvUhljh8kngHuCvgLMy4fKx7P+68Ia6+IYcuh65lE0fmxSnKRqtnFiPq6558SET20jGBp/KH9PjdeWbq5GamAhz5+P6JjGm023oauTier86oVP3jYsj1qq6m/tPS/F+bQW3bzlvk4+xwmUVcBW7tzjO/y5432IhjVN5+qmu9xMyxZLj02gNRRcyKnwbSWvRN+fMN588rhPSRf1Kys3AfHRGsY1S3yPPUKEfakBR1WmqeqavV4FQw47Q90vx/V3GCinKTCtrMWBfYGUmPF4FTLtCU3xDDLHWYlZhtmcDVVYG5te22cK0Dt/9VYagCwmhbSO3enV1PhTx0c0UG6OQfCunP9bKKsSyK1XnocsNxXziLjba+Td3mUWHOl6te2boDq9N02x1dazKGq4upKbp2TFlJokpMnBx0XpsPoXYdS5NaymM8e+txMx9+o5KuuqRdtEQtdX5FIXAPvvU3+e77ic0Xb6WhD6OElevrp+ebGoo+nIfX5W+3AS57e6ddQI+lePVnFQ6udDOQ1l4dUVKqz9d59IQYoVLGwubkIJY1YjXVbYQ9ydtaGNk4CJ2Gq/Op9m++1Y/37Wg1fXOTbooH0X85KT7m9R9v6py0Oe0Z13nwqdDFTN6Tu14te47p9TJNeVzVR2uK7OpcJXRUJIJF2AZ8Cbga8CWLHwNOBtYFhLXkEKscGmzNsC3olVVgLrCX9TvdDkdFjplE6IYDtmMqxhn6HA/Rrj40HYFdt33q7vX1RB2qTdx5UWKDlUVTfGG6l98/dK1MV33qXOj1nXNztabuYc+O9W02EHA9Znu5U7g81m4Mzt2PXCQb3xDCrHCxRaKnc7C1FQhXIUp1MJlVIr8GGWzj0mra+8P1wrm2Vn3N64a7ne1IDBkSiXEb5nLxUtRT1G1wjy1f7fZWbfftq4cVs7OtldKx+gdivfEmDSH1rku9V45qZxbphIuF2QWY6cBE4XjE8B6YCfw177xDSm0cVy5YcP1zqmSNiOIGJPnnNSNp6/1U5upwpgeoo9VV9sFcSE9y9AplfLzQr5B+V6f8pJi9NrUMMWOXHy+s6sD0tQ4+uRNrCeKNnGGfoMUpGofUgmX24APOM5fCNzmG9+QQtcu933m6qsIbWyLDjDrlJ9lJ4w+hFg/pZoqTBXqhvo+o878utDOQdNIylWZQxqv8r2+37XN1J/r3YpeJVzbO1R9w5DvbNNQbUYeY95dV06raNL7NMUd2jGp+wZtRzepZjZSCZcdwMsd518O7PCNb0ghpXBJNaR1VeKq3nqIb7MQAefbE1+82K1zWb1693dJZY3j04i63rNp1OlKa1MlbNN7b2qY6+4N+a6xPWLXM/L0zM7uXRYnJtxruUK/84oV24LzJcWumK50tjVkGKX1Zyqd7KhGLh9Y6COXVENaVyGtWoPhGk20qUjG+DdYExO75/anpvac5y8ro6t8Y8W61Kl7b58Rms+oM3b6oE1D45OXVea3IVNysbq3Nu51Yhr+uu+8YcP1wY1jk2D0qQ8+hgA+I5gqXHnt+/wQUrRXqYTLezO9yh8BiwrHFwGnAg8BF/jGN6SQQrikzHRX4axbMNaV36LYKayiIrlKGb1+/Z6N6LJlcV6l21hL+QiXNtMH5crru9bD95vnFEfLxU5HF9ta+5ixugRF3cg+9Dtv3rw5eLo5VR31ea6rDld9e5exwqgMdWJIJVymgG9lSv07MtcwV2X/7wJuAqZ84xtSSCFcUmZ6jD1/V4rGrqawQjxEN30Ll9moq/Hw1ZdVjbKKQj7lVKjv6u2qd69q6FJveevTQLsEkGttVIhTyNDtxYvPKQuGLqyzQuuwy8il+N5db3sQSsp1LvsD52Zmx1uz8A3gLcD+IXENKaQQLikzPUYxGGql5NvAVG0XPIQQYsbr6v368PCH1z/fZ2rB1+2Jb/6FrClKOaIuxunquVeVGR8vBT5TSrkeLVa4GLP3SK8L6yxfYZHjEkY+8Y71yGU+hz5GLkWTyrIn2yZ7/roGolzp813/6uI4/nj3u4X0pEcdqqaYfKdj8v99Ry6uhs6nca9rvIppcuVT3d4xdfeUHSe2bUBDTbHLFosunWDZcs1XV1W1zXHou7TxSO7znKYRb5EQZX7TAmqftKUSqCpcGsKodS51tvrFgrd+fbOA8e2thPai6t6nGJYt21OBH6IvcS0E9Ql1jbqrASs2KHm6V6zY5myEfTblcuWLq0yUn1UXV9G811eYdt1IukyE66719eXmOw27YsW2JO/Spl75PK/N+ijXd64q676LSFOOZFW4NISU1mI+Csa6NSjlzY+apgl8p9y60OFU9aiKiuS6d9xnHzttEjON5yNEQk20XVNMsSHPF5fuwddars7E1UdAp2gkQ0bksfq5Ylz+q/vnkr1LbL1KyezsnnWmaSSS2kQ+tqyocGkIXS+iLOMq2FW0LRAxAqqpkjdVwKaGb2rKjgya9vkuP9NnROczHVP+jikNF/J8CbW0qzNGCBFSqRtJ320d2kyfxjh6jRm5+ObHqPUXMaOJWB1vaoMAl3BZhNIZGzfCkiUgAqtW2d8AExPV19cdP/dcWLp0z2NLl9rjPpx7rk1DFStXVh8/6CB3nHX35dx7r/v8PffA3/4tHHGE+7oixsBllzU/e9eu3d+nKR0At91mQwpE4HnPs/83pbOMMTA9beOYnoYLL4SZmfq03Xuvvaau3IQ+PySO/PjGjXDqqbBjR5pn5N/OhQiccsrNrZ5TR7Fe1dXf1GzYAFu37nls61Z7vI6mfEl9XxR1UmchhdQjl/IQt9wb8dG5VMUZo1TNr63q8dd5gW0Krq1cc7oyYc71RL5z5z7pCBm5+Kyeb7LmCjUPbhq5dmERltMUd9t8DnX0mod8nUuIYrrO3LnKWMLXEi+FYjxmNBGb56pzGXFo4xV58eKdexSupoYvbxCKU0Kx+54XyS2PmpTIVTqhWDPmUAVlilC1vqMu+AiiEJ2L7zQb7LaCqmqAQiu4b0MXsqAwBFfcbfzEVaXTN779998RZelV9S4h++QU8zfk+S5BFDvtHSvcUpaVsREuwFLgZsAQsNofeB7wReBB4F7go8CjfO+P3ea4qsIvX+4ulF0oC5s8xboKqsvUtimUfYZVxZ1yBFO2bvMV5GVjA5e1WJ3wyB1ghjSmTcI3pIL7Nor5taPaHyQ0f9u4aPEJofqSum8VKzSrnt/UOehy5Nk1yYQLsBK7iPIjwOeAK0rhcyHxVcR/HvBAiHABfge7n8xXsdsBvA67x8wPgMN84ogRLiksY4rENgg+giVvmKuemWp04UqzHeH5xyXit0bAlQc+lbPOGCPG63NVCPFAHTPF47t5mGt9RVtCylDs1FVICHVvX9eox9bvvAPk60W8mJauRp5dkkS4AM8FtmcN+f3Ad6uCb3wV8T8F67vstb7CBVgM3A7cCiwvHH8S1iXNhT7PjhEuMT2bmPUBTfhaW6U0HY1p0KtMLY8/vjqe9ev9GlvftRN11AkX1xx4aOMX26C69Fqu62PWNLWlaYoydIfDNo17yMjFNR0VK+RC3BqNyuS5y5FsKuFyHfB94GjfewLingCuBf4VWBUgXNZl176h4tzngPuAxU3xjGLk4rJbd5maNuHz7EWL7PRVmZD9P3x1Da7KXWdokN/rq3vKp4PammjXCRcfBXp+jY9wbzMVVJVvddc3pSXWxLZq+q0qL9uU4zJtGnffxrNJkV58R998DlkcHJofMT7Qup5ySyVctgNn+l4fEoAzM33JqkDh8rrs2nUV587Nzj2hKZ5UOhdXgXfF47q3qRC4Cn1Zx+CrSKyqBHWjjKpn1jVGbQp50WAhlfuOOuGSQuEe0pA0Cflyg+m6vulcKCEGCaHPdTWWPmVz8WLrKaKqkfcpAyGdk6p3rrI08+2w1XX46ogdfbi+Y4pRjEu4iD3fjIh8D3iHMeavvW7wREQehXV+eY4x5i9FZBV2iu29xpjTG+59D3A68HhjzA2lc6dhtwn4VWPMv1Xceyp2qwBWrFhx1KWXXhqc9k2bDuXtbz+Chx5aBFQvJJmc3MWZZ97EunV3Vd5/3nlHsGNHzUIFYMWK7Vx66dW159/1rsfwqU89ovR8wwtecDtHHnn/XvEX01P1/MnJXfzar/03n/nMw0vpMrXvWGT//X/Ctm0TPPTQIlas2MEpp9zMunV38aIXPYM771wS/H5Q/s7skY6JiTmWLdvJAw8s5tBDdz/PN75iGkOvKV9/0UWHc+edk1R9JxHDFVdcVXlv3bfZE1tPV6zYwbZti7j//n0brt07DT7fOmfTpkN529tWMzcne8Q1ObmLycldlc9ftGiOubm9l85VPbfp+x533BqMqSpv9jsccsg2Tj31luybx5crV/2ouv6iiw7nrrsma8taXV4W68X++z/Egw/uw65d4l22QtJZpP47hsVTx9q1a681xhxdebJO6pQD8FbgKt/rA+K9HPg62fQVYSOXv82uPbzi3MnZud9qiqftOpe6nmusC4fQ3mZZqZ97pK0b1ZQVib7TGz49ybqRRJebboVML3Q9TRAzVRc6BRSy62jMO7ZRqvt8W588aPqObb2RV015pejJd2EZ1qQbco1ofNd5xULMtBjWMqwYHgv8P+BTwHHAoyquWVkXX80zTsAaCDyzcCxEuLwnu/ZxFedOy879SlM8qRxXhrpe9xlC+2Z8WWHuCq6Kt2ZNXKMCcVZWVetWit8vRgC78qKtnqaJkMajPMUX+q1987vsJbmJ2M7FokW7PXG33Tq66Tu22UdpdnbvLQFCOxiuMpaq/DUZSuTpdr2HT0ehjWFBrHCZw1pcFcNczfGfhrr4KuKfBO7CKvEfUwhrMqHw4ez3wxxx9KZzyWnyLVZXQJYvb25Q8oLSpMiLsWAKSatvnKFWVk27VfrOYefvs2aNncd2VbguN1sK6Q3XfQ/f7x1iudb0bqGdnqmp5rS6RgG+eeAyzw3xRl5u7OvWooV05GJHvyHv3pS3PjMT5fdv895VxAqXs4E3hoa6+Crif1jW+DeFWiMCerQWy3EJlzbTC0XladOIKKSnWVcJ2mwKli+mrCvAdYsZfaZ2mnrnxRX2PhWo6Vs1TY3U5Udog5NqsaDPNKZr5BI6LZq/k89Iq+79U4wey97IQ3a4rAu+HYw26fe9tylPfaaKY6YjQ4kSLl0H7BqV360I6zOB8ens92Oz6x8OrAaWluL4AXuvc3liNpK6yCctXQmXmAYkb+BzKxSfCutrobJ8eX0vuk0jV9y4y3eb4TaNa/6Moom0zzcImTasMol2Vc7QBqeN25Sqb+rTGPk0NosW2Z03m3SIbTwMp2jkfL2Rh5QzX+EWYsLsI+zKOhmf2QOf5QF1eZ5ysWYS4QKcBRzpOP8E4Czf+BzxVOpcgA9lx48tHX8he67Q/zPsCv07gEf4PLMr4dKmAQmpBL4VqLxfjDFpRldVK8KrKlabbzMxsWeFaJPu3WGudrRWtejQJUBcz6nCtSbE17liaD6GlJu63S9Dy1zd+7dt5HyFSyp3PUVCF1/6+oHr0rAjhSCpIpVwmQNe7Dj/+yE6F0c8QcIlO/frwNXAVuBHwMeAR/s+c0gjF58QMz9bV9Fj0xjbY499bvmdu/q2rneIWV9StzLe1QjFNrxNU1rlb9jU8Dat7fHREVV1aMpUbUHdxIYN13ut+/AtJ00LPcvGF3VWkV1MmTWl2/e+LvyVjUq4nAjs8I1vSCGlV+Ty+S5GL7GWJVUVPSZ9xTn8UAV5MZ0hzw5p6IshVo9U9Q51lbhpuq1O5+GjT4vBt4Hz3UitDl/di4tyo1234Hfve3Z6NZw+Ha+mRrfO+KJqZNfGYCSmLubx+gqYVFaROdHCBdif3WbGc8ArqTA/xvry+jfgv1zxDTWk9IpcLqQ+OyeGBJ/eR8h+MaG9pdD1CE09vvIUWpNVmY/SOU+nj1PPOt1WVUX0dRIam2+pqCubRd2Yrylzl0ru2Vm38K/7Zk2GI1XPKY4EfcylY99t1COXYj1LYTkYShvh8kYcZsfsbaZca9k15JDSt1jdqCIvzHUVWqR5/jTEb5LvfjEhU2qhFii+cVeZTrqsyvKGsknX01RZ99lnl5mdbd5IrSnP2zgP7YqqBjVGR1XVSUhliRQzcnIZn3TlCDJkNNLGWMFVX1wLlIv3N7UzQxq5rMkEzNmZ8Pgn9jY/PgvryfiXXHENOaT0itxUwJvm5usKRYzzP1/aFso6HYFvT8z1zZqUp64eqGvEuHy5nbdvegff+Nr0GruaHisS0yvOhbirTPooquveObRsNHVWQheLtv12viOlkDQVO0XltVKh37dLTxQ5qXQuFwNP971+nELXIxef+/KKUTX10vWUiq+yMpQQr8uhcfj0Ul0WWcb4r5Voii+/vknn1ZVZrg+hU7O+o53YtMboCHzu6eLb+UwzdtUpaENqs+MqkgiX+Ry61Ln43JeHqqFvlxs91aWnSscRg28D4trvo0kYh75blQsR37xMfZ3r/VJPX8Q0zF0qiX2EXdnSrs3amrb4TDOmqjdd0NXoOEq4AM+OCXXxDTm0sRZbtGjXTwuXr07ENf01qsqS02XjFqrPCY3DV5jX9d5i/FP59gZ9r0vpjsbVgMR0Inwb85i0Ngmuqk5VimnWVPQ1ivKhbM7d5eg4Vrg4fYjVhbr4hhzaCJeySaTvSCNkmqLLytKlry1j9m7wYt7RJYzbCMG2nnVd+PYUUwl3nwYkdJok1cil/C3q9DhNi29jDUS6oO0oyqd8VH230Htchi0pvlOscDmxFE7C7hb5APB+4FVZ+AB22+NrgJPq4htyiBUudZlWt3DO595RVhaXUrWrqQVfs98yXQiA0JGLr8AI6Smm6lV20YD4NOYxa0SqQsio3wrIOacl4VAMJGItykK/fV0HzBVHig5kKoX+q4HbgMMqzj0S+B7wSt/4hhRihYur9+LTm6uapkilTG+i7XRTDF0IY9d3blrtHepZtys9Sor58BTCt24H0bKuoY/RT56W/DutWLGt0oKqShcyKiW/73v5lA/f75YLZVda6tYS9TZy2etC+DawwXH+9cC3fOMbUkg9cvGt1FWNyigsPFxp78qc0xi3MG4itIdfZb1Vp3PJr3d99xCB0fVUYxVtRy5dKXxT6W18839UBhJ5mvIy47KyjJkaDpk291kv1FWnNZVw2Q68xnH+NcA23/iGFNroXGBuZIU5JePUAOY96hBlus+ozNf5oTFh32uUDVxOqPAtjlK6VPimGrn4ftM+ynVOVfms+rY+U8Mh0+a+AqiLTmsq4XJDpnNZUnFuCdYr8Q2+8Q0ptHFc+YIXfM/ZgPnQVa/Rxah7eC6X/K458tBvs2ZN83qTyUl7XchGbyEGBaE6l1R5HyJ8i8907SDalhR6G2P8hcbQRnCuqWDXN3DpJ2NCV8I1lXB5WWZB9nXg5cDaLKwHvpFZi73MN74hhbZekdtMZbkaoi6FTpe91abnFK2CXHPkKabC3GGu9tu2bRRdZaJJ2HbZufDVFaRskNrqbYwJM7pI6X6lbX64BERT3T7++JCy7A5djZqTLaIEzgC2lMyU54AHgdeGxDWk0OU2x03UVZqqfT1SNzyj0O80NQqu8yG90JBG0yUomgRUeV+ZJsodBJ8Go8vpsyFYKcbQ1PAXv7Ovd+UyXYzm28SZamqsyw5L0hX6wAHYDbr+NAsvxLHP/TiEPoVLjFuOcaJpOsN1PoWeIyRUCXSfZ9cRK/D6WNc0ygapjO8IPe8M2TTuHnWmshCL0dc0pb3NaKgpr1xTmqGdoFjU/UtDGOLIpY+GpwtGNXJxVcQQbwhNIcSaLlbg9TFy6Urh20TM1Kevgjwkr6xxTlh++KY9doagLq+WLYtLw2Dcvyyk0KdwqSscXSpZR4nPdEYKnUvKtQNNIVXPs03csfh+U98dIdsSOm0Umodt/f25PG50bRSTSnh1qV+NXaF/BfA5YJ/C76bwubr4hhz6FC7G+Jsw9uWryJe63pFP4Xcpv2PNj8u+s1xefl0CPbYBiRmVulwHte19VumTqr53caQXsodQDKFTUTECO9bMuanejcLs2afutPHm3ZZY4XILcDOwuPD7u02hLr4hh76FSx1dWoulZgjCsKzUbXINkjsddQl0lyDwSU+ozqXtFExIWqrMXxcv3jtNLq/VbUk1cnEJnaa88hFYVenpYz1TEd8y0aUQ1GmxhjBU4TJO9F3RcvLpHJ/0VOVduafYdnqy3EHIzXBDG8K237fttGFX+VjXQNatfXJd7yMgQnr2TfnSd4fKt0wMbuRi7+Mg1/n5ElS4tKfPldGx6fHJu64akNAK3/b7+tzfpvffhqp1ME16usWLd3oJnnKo01k03ecaUfZhCGGMf5kYnM7F3seubOX9u4AXjLvJcV0YR+EyKoWrL0MZuYSkxzfvumhAQit83yOXLn3OxaS1Lu+KeRXqVSF/7qgXtsYSug6sCyHYRrh8JnOxny+a3Al8BXgn8BvAAa77xyWocEmjLO5b5xKanr5HnSEVvk+dy6jzM9WoM3a0F9oQt6k7bRr9IdS5VjoXYAJ4BvBnwOUlYfMQ8GXgHcDzgJ9pim+IYdyES1VhblvAUxTSUU8RNL1zU3r6Fi6htP2+PveXrcX6GInW9ciLoyefvBvFaLpN3UlR70YpCKtIvUJ/AjgGeF1B2OSuYHaExjeEME7Cpc7kto1L7aFNaTVR1wCGVsxR5t04Wf4Z07934Sav1n3qy4q0qTujrnddfI/OrMWApcDzgSvz0Uyb+PoK4yRcQtZO+BbSIdjrh8TjUr6GVMxR5d0Qpi9C6bvD4RpBTU/3qy8r0qbujFqAd5GnKR1X7gesA94C/DuwIxux3A18HHh1SHxDCeMkXEIWkfkW0q4bkpSNa5NwDamYvr3ftiOOvhvqGIYgEF2N71CmNMdp5NKFMGuj0F8CHAecA3weu2HYHHAH8BHgFcCRrjjGIYyTcGk7cikvNMxXsMdayIx6hbCPMz9ffPZz6csh4hDo08zWGHe5Ke8i2teUY986lxAGNXIBtmUjk9uBf8Du47Ladc84hnESLm10Lj72/CEVtI8Vwi7hmlrnkqoyhpqMDl03M6o0uspXnndDGGG1tfgalQAflM4lG6X8BPhX4H8BTwMWue4ZxzBOwsWYPVcjT0zY3z6F1GfUE9Jw9rFCuE5AxvjAasq7VELRt1IPoaF0kcqQIvSZVeU6zztX2epbUPf9/CpSC7M2wuXpmQlyvt5lF3Af8Ons+DFkji3HOYyTcGnTAPnoa0Iazr5WCKeqtKMauRjTTvgPQTeT0pAiBXneucp0n4J66B2FVCRR6JdMkIuLK7cAnwVeDzzLN74hhXERLrOz7Sp3XyOXPO19zt9XMSqdiy9D1s2kNKRIQZ53rs2y+hSCbToKQxzx1NGJKXJpceUX8hX8sfH1GcZBuMzOuldPp/DSG7OAa5x7Z77WYqMSiq4GvO9GJqUhRQo2b97cWCf6FIJtvAOMU51KLlwyk+TnAOcCX8xMknWdS4c09Rx9K3fZWmxqql3DOcQRiS+p8i5VTzO18E9JSkOKFGzevDnIcnJcRi5DnhqtorVwyUySjwfenI1StmcjlTlgK3ZTsdcDv+wT39DCOAiXpp5j15s6zSd2C4O51gIxtKfZJIiK54fUyKQ0pEjB5s2bgzcOGwedy5CnRqtoo9A/B/i/BZPkuUywXAWcDawB9nXFMQ5h6MLFpWvpuwc5bqSedgjVO/k+u+tGZs0aYw44IMz56ZB0ATEjlz6sxUJH9Qtm5FIwRf73bFX+8cAS1z3jGIYsXHzXpgy9EA6F1JU3RAiEPLvLRqYoJCYnx7NDkutcfOvGuNSL+aRzWYSb5wIHGmN+2RjzemPM54wx2xvuURKyYQNs3ep//W23dZeW+UDd94n9bitX+h8Pefa558LSpXseW7rUHm/Dxo1w6qmwY4f9vWMHvOQlcNpp7eLtg5kZuPBCmJ62v0Wqr0vx3UZF8Z1E7N8LL7THxw2ncDHGXG6MeXBUiVH2JrTRq2vsFEuIMPAhRAiEPLurRqaqs2IMvP/9VvCMGzMzcMst9h0+/GGYnLTHJybs33FsnPN3mpuzf8cp7UWaRi5Kz4Q2euPSQ+uL1COCECEQ+uwuGpm6zooxVvCMMzMzsH27fZedO+3fcW6cu2LjRliyxJbXVas67FTUzZeNIgBHABuBG7Ar/7cCNwLnAw/3jONKwNSEo33iGDedS908/9RUp0mZN+xWtLa3Fot/9rCcQQ7ZIqmKoXhF9mFIhhCpdTp0tZ9L24A1ELgCeCtwGnAq8B7sqv8fAId6xHEl1uX/CRXhIJ90DFm4GLN34Vy/fryUfkNlnBqoVMzO1ndOxkXpbUx43vXVwA9NQZ/aUGSwwqU2UfDCbOTxJx7XXgnc0uZ5QxcuVfTdA54PLEThYsyejk+H0ODFEJJ3fTbwQ3OsmdrE3SVchqpzuTX7e6DvDSKySET2F6mzGZlfzBelnzJ63vc+mJ3drfweR6V3E0W9wokn7m3EsHXraHRMdTquW2/d02ov/921UUVqgxYXrYWLiBwlIs8RkSUt4lgiIgeLyCNF5FeAD2SnLvOM4hHYqbT7gC0i8nERWR2bHkWZ7xSV3/Otc1I2t961q/q6UZjt1zXaExP9CLyuTNyrEDuy8bhQ5ExgjTHmNwrH/h74/eznzcAzjTF3BidC5HSsriXnFuD1xphGOS4iF2P1M1/DehF4OnA6dvHnM40xX6+571SsjocVK1Ycdemll4YmG4AtW7awfPnyqHuVftG8q2bTpkO56KLDueuuSQ49dAennHIz69bd1Xey9sCVdy960TO4887mvu6KFdu59NKrK89t2nQob3/7ETz00CJWrIj/Bps2Hcp55x3Bjh0TPz02ObmLHTsWAXtPsogYrrjiquDnhKYpVf6uXbv2WmPM0ZUn6+bLygG4Bnhv4fdx2BX8G7GekbcA7/SNrxT3I4F1wG8BbwK+Crw6Jq4svmdhBc1nfa4fR52L0h7Nu70ZmgK6Dlfe+fgca/L/lnr/oVz3km8F0PeWAKkgkc5lFdZkOOe3gP8GTjDG/AXwfuA39r6tGWPM940xm4wxnzTGvBE4EXi7iLwuMr7PY32irRWR/WLiUJSFSNUiy1HpJ1LhmoryWZCa+hvMzOyejsqn6Kqm6sbJk4APIcJlGdaBZc5xwKZMegF8E6v7aI0x5mvY0UsbpxS3YPec8TYKUJSFxLHH2gC7FeC33lp97Ti5FarTK1xyiZ8BTGoXQVDvxslX4I0jIcLlduAXAERkGng81jtyzoHYfV1SsR9wUIv7fx7YCdybJjmKMn/YuBGuvhquugoOPhhOPnm3AryKcXIr1NZ1ThcWVXWCaW6uW4vPka3GryBEuPwLsF5ELgA+hhUk/6dw/kjsaMEbEfnZmuNrs/iuLhx7uIisFpGlhWMHiMhExf3PB34Zq3NRR5uKUqBsTXXPPfCTn9RfP47TNW1M9buwqBqlCXBOOZ9HZe6cEyJczsFuFHYatuE/w2SWYZle47eBzYHP/xsRuVpE3ioifyQirxaRvwMuBx4A/rhw7duwOp+nFY6tBb4tIu/O7n2FiFwC/DPwQ+CMwPQoyrwnxNP2fJyuaaILp6GjNAHO6Vt/to/vhcaYHwHHi8j+wDZjzEOlS9YA3wt8/j8AfwC8BDgEuyr/Vuw6l3cYY5pmOW/CWrH9OrACWAx8H2tc8FZjzO2B6VGUeY+v7mB62vb6FyIzM2kFah7Xhg32+69caQVLl0K7C91RCN7CJccYc3/FsW3Af0bE9RHgI57XngScVDp2A/B7oc9VlIXMypX1ivsiW7bYKZSFNGrpktQCq4m6fB6V/qx2WkxEVorIyvLvpjCaZCuK4kOVQrdqimbxYli2bM9j99wz2jl6JS19TMUVcelcbgFuFpF9C7+/6xEURRkAdQpdsDqEom+xiy+2VmNlxm2Ni7Kbvne1dE2LnYPVgews/VYUZQxwKXSrLKhe8pLqeMZpjYuyJ6OeiitSK1yMMWe7fiuKMmxCFbp9z9Er84ukLvdFJNhAQFGUbghdW9H3HL0yv/AWLiLyoeICxorzjwG+mCRViqK0JlRY9D1Hr8wvQkYuLwGuFZEnlk+IyEuAa4HHpkqYoijtiBEWugmdkooQ4fI8rK+vq0XkVQAisixbUf8h4EbgKclTqChKNEMSFhs3WnPoRYtG7+dKGT0hK/QvF5FfBGaBvxKR5wKPAQ4H3gn8uTFmpysORVEWJrlZdG69VjSL1tHR/CRIoZ/5EvsVrG7lV7GC5VXGmD9RwaIo8RTd389H+vZzpYyeIOEiIgcBnwR+Cfg8cD/wtkznoiiKUknffq6U0RNiLfZs4Drg14A/M8aswepYvgl8SET+TkSWOaJQFKWC4t4q81UX0YfLeaVfQkYuVwAPAc8yxrwDwBjzXey+Ke8AZoCvJE+hosxj+t5zY1SbSekamoVHiHD5GPBkY8yXigeNMbuMMX+GHdH8TMrEKcp8p09dxCgFm66hWXh4CxdjzIuq3O0Xzn8W2GsNjKIo9fSpixi1YBuSWbTSPUndvxhj7k4Zn6LMd/rURaiSXemSYF9gInI08HTgQPYWTsYY8+YUCVOUhcC55+65/gNGp4tQR5VKl3gLFxHZD/g4dp2LYN3vS3baFI6pcFEUT/KpoZe+1Oo+pqe73/42p0/Bpsx/QqbFzsIKlnOBtVhhciLwXOyaly8Dj0+dQGX4jMriaL4yMwPbt4Mxo9VFqJJd6ZIQ4fK7wEeNMWcB38iO3W6MuRxYB+xLaY97ZX6zcaPdvfCEE/ozpVXaoUp2pStChMvPAVdl/+/K/u4LkLl++QfgRemSpgyZ3Iz1nnv2PqduPRRFCREuD7BbR/MAMAccVjh/H/CzidKlDJwqM9YianGkKAubEOHyHbL9Wowxu4DrsVNliIgAvwN8L3UClWHSJDzU4khRFjYhwmUT8D9EZCL7/QHg10TkO8C3sXqXv02cPmWguISHWhwpihIiXP6C3VZiGGPeB5yJnQ77EfDnwNtTJ1AZJlW+ogCmptTiSFGUsM3CtgA3lY6dD5yfOlHK8MmFx4YNdops5crRrc9QFGX4BK/QzxGRRcAjgTuMMT9JlyRlXJiZUWGiKEo1bXyLHQJ8F3hmorQoiqIo84S2jiul+RJFURRloZHUK7KiKIqigAoXRVEUpQPaCJdtwCXADxKlRVEURZknOIWLiNR6OTbG3G+M+UNjzI2F609PmThFURRlPGkauVwrIv8rc+9Si4g8SkQ2A+9OlzRFURRlXBFjTP1JkSuBZwP/DzjRGPNfFdecDrwNWAycbYz5i26S2h0icjdQsSefFwcDP0yYHGV0aN6NL5p3w2DaGHNI1QmncAEQkdcAb8l+/rkx5t3Z8UcB/xtYA1wDnGSM+WayJI8JInKNMebovtOhhKN5N75o3g2fRoW+MeavgKdgNwg7X0SuFJE/Bb4OHIP1KfaMhShYFEVRlGq83L8YY24SkWOA9wDrgWcBNwAvNMbc0GH6FEVRlDEkxBT5ZGAGeAh4EHg08JtNyv4FwIV9J0CJRvNufNG8Gzg+OpfDsPu0/Crwn8CJWDf7H8LqW/4Dq+z/VqcpVRRFUcaGpnUuJ2F1LccDbwaeaoz5mjHmVmPMWuAM4BeA60Tkj3UUoyiKokCzKfIcVricaIz5as01P48dxRwDfNEYo16SFUVRFjhNOpe3AUfVCRYAY8y3sW73/xQ4KmHaBouILBKR14jIjSKyXUS+JyLvFJFlfadtoSEijxWRc0TkahG5W0QeEJHrRGRDVX6IyBEi8kkR+ZGIPCginxeR42riPkBE3iMit2f5fL2IrNcRejeIyFIRuVlEjIhcUHFe826McFqLGWM2+ERi7PDnHSLyL0lSNXz+CngV8AngncDjst9PFpF1xpi5PhO3wDgZeAXwz8BGrMHJWuzarN8TkWcYY7YBiMijgS8CO7Fbct8HvAy4XESea4zZlEcqIvsCnwWejLWSvAF4LvA+YAVw9iheboFxDnafqL3QvBtDjDEaAgLwBGAO+KfS8VcCBnhx32lcSAE4Gjig4vhbsvw4vXDsI8Au4EmFY8ux3hluIpsmzo6flt3/ylK8/wT8BLsyuff3ny8Bu5ZuJ/Da7LtfUDqveTdmQV3uh/M/sZukvat0/IPAVuCEUSdoIWOMucYYc1/FqX/M/h4JkE2R/SZwpTHmusL9W4CLgMcCTy3c/2Jsfn6wFO+7sK6Ofj9B8hVARCaw3/kzwMcrzmvejSEqXMJ5Knbk8qXiQWPMduA69izkSn88Mvt7Z/b3F4FJrJ+8Mldnf58KVqeG7Ul/NcvXIl/C9oo1n9PxGmA1UOdVXfNuDFHhEs5hwA+NMTsqzt0OHJzN+So9kfWE34CdZvn77PBh2d/bK27Jjz0i+3sgsF/VtVm+/7BwrdKCzEfhm4BzjDG31FymeTeGqHAJZylQJVgAtheuUfrjXVjT+LOMMTdlx/I8qcq7cr65rs2v1zxOw/uBm4HzHddo3o0hXr7FlD3YChxac25J4RqlB0TkzdjplQuNMW8rnMrzZLLitnK+ua7Nr9c8bomInAA8B3i2MeYhx6Wad2OIjlzC+QF26quq8D4CO2X2kxGnSQFE5Gzg9cDFwMtLp/PtuKumRPJj+VTKj7DbeO91bZbvB1M9RaN4kn3H84HLgDtE5DEi8hhgOrvkgOzYw9C8G0tUuITzZex3e1rxoIgsAZ6E3dtGGTGZYHkjcAlwislsTwt8HTtVckzF7c/I/l4DYOw6pa9g1y2VOxFPw1oLaj63Yz/smpbnA98uhCuz8ydkv09B824sUeESzj9iLU7OKB1/GXYud+OoE7TQEZGzsILlw8DJpmIRa2a2+i/AsSLyxMK9y7EN2LfZ0wLwH7D5eWopqjOwhgL/iNKGB4EXVoTTsvOfyX7/s+bdeNLoFVnZGxF5D3Ze/xPYYX2+Qv/fgeOqGjelG0TkFcAFwG1YC7Hyt7/TGPPZ7NrHYBuhh7BeFu7Hdgp+AXi+MebyQrz7YleEPxH4a+wq7+cBvw28xRjzhg5fa8EiIquA7wLvNcacXjiueTdu9L2KcxwDMAH8MXZl8A7sHO75wPK+07bQAtZpqnGEK0vXPw74FPBjrGL3C8C6mrgfhhVcP8jy+ZvYToV0/V4LNQCrqFihr3k3fkFHLoqiKEpyVOeiKIqiJEeFi6IoipIcFS6KoihKclS4KIqiKMlR4aIoiqIkR4WLoiiKkhwVLoqiKEpyVLgoiqIoyVHhoiiKoiRHhYuiKIqSHBUuijIiRGRCRHQXRGVBoMJFUTpARE4SESMi60TkDSLyHewWu7+XHf+Q455jC8fOzo4dISJvFZHvi8gOEflPEXleRRx/ICJfEpEfi8iDInKziGwUkUM6fF1F2Qvd5lhRuuU8YDHwQayb+Jsi47kE627+PGBf7N4knxSRxxpjbgEQkZdk130eOAu7I+PPYd3NHwrcHfsSihKKChdF6Zb9gCcbY366b7uIxMTzQ+A3TObGXEQ2Y/c3+SPgddk1vw08gN1TaGfh3rNiHqgobdBpMUXplr8pCpYWvNsU9scwxnwZ2AL8fOGa+7A7MD5fIiWYoqRChYuidMu3EsVzc8Wxe4Cpwu+3ArcCnwTuFpF/EpFTRORnEqVBUbxR4aIo3RIyanFNU++qOf7TEYox5tvA44HnY3Uv01hdz40i8uiAdChKa1S4KMrouRc4qOL44W0jNsbsMMZcZoz5Y2PM0VhBcxjw2rZxK0oIKlwUZfR8CzimuOZFRA4E/rBNpCJycMXhr2R/q4SZonSGWospyui5AJgFrhCRDwMPA16G1Zf8bIt4/01Efow1Rf5eFu9JgAE+3CJeRQlGhYuijBhjzEYROQw4HTgfq6w/B5gDnt4i6r8Bfg9rnnwQVuH/VeCVxpjNrRKtKIFIwbpRURRFUZKgOhdFURQlOSpcFEVRlOSocFEURVGSo8JFURRFSY4KF0VRFCU5KlwURVGU5KhwURRFUZKjwkVRFEVJjgoXRVEUJTkqXBRFUZTk/H/Q5+Ao3ePf0QAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"BEC_width_x_val.plot.errorbar(ax=ax, yerr=BEC_width_x_std, fmt='ob')\n",
"\n",
"plt.ylabel('X-axis Width of BEC part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEOCAYAAACNY7BQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABBp0lEQVR4nO2de7xdVX3gv7+8LnlolCAxpJKgFsNMbRDQRqfDjaJjRduOzqgdA6gFUeqT2s7UBpHa4vSlpWrLTGidKomO9mFtZ6hVp7n4pAgarTRiNRAsKD4ISAiEkKz5Y+9F9tl3Pffe5+xz7v19P5/1uffss87ea++19u+31vr9fmuJMQZFURRFsSzouwCKoijKeKGKQVEURRlAFYOiKIoygCoGRVEUZQBVDIqiKMoAqhgURVGUAVQxKIqiKAMkKwYR2SMiPxf4/gUisqebYimKoih9kTNiWA+sCHy/HFjXqjSKoihK73Q5lbQaONDh+RRFUZQeWBT6UkTOBDZXDr1IRJ7oyHos8AvArs5KpiiKovSChNZKEpG3AW8rPxpAAuf6JvAyY8wN3RVPURRFGTUxxbASeBSFQtgDXAz8dS2bAfYbY+4aThEVRVGUURJUDA9nElkInANcY4z5fmcXF3kLcBpwOnASsNcYs96R7xjgXOAFwEYKe8Z3gH8E3m6M2d1VmRRFUeY7qYrhGGA/8BZjzO91dnERA9wFfIlCOfzIoxg2ALuBzwKfAO4AHg9cROEN9TPGmJ1dlUtRFGU+EzQ+W4wxD4jID4D7Or7+E4wxewBE5Gv43WG/DzzFGLOrelBEdgBfBn4POCN2seOOO86sX7++UUHvu+8+li9f3ui3ymjRupoctK7648Ybb/yBMeYxru+SFEPJNRRTOX/cSakAqxQS8v0Q+KHj+D+XCuUnUs6zfv16brihmW18ZmaGzZs3N/qtMlq0riYHrav+EJG9vu9y4hj+K7BGRN4vIk8up5d6RUQWAGuAO/sui6IoylwhZ8TwPQoPpI0UhmhEZnmvGmNMzjnb8hoKxfCbI7ymoijKnCZHiH+AQjGMBSLyDOBdwFeAdwTyXQhcCLB69WpmZmYaXW///v2Nf6uMFq2ryUHrajxJ8koaBdb47PJKcuQ9HfgUsA/498aY21OuccYZZxi1Mcx9tK4mB62r/hCRG40xTqediVt2W0ROAz4J3AM8M1UpKIqiKGk0sgeIyAqKiOhZisUYc1vLMoWuexrFSOFeCqXgtaoriqIozchSDCLyC8AlwCmBbAtblch/7adQjBT2UyiFW4ZxHUVRlPlOsmIQkf8IfBD4BvA/KTyCPlie4z8CXwX+b87FReRcju7h8BhgiYhcUn7ea4y5usy3jkIpPBp4N/CM0vhc5aPGmK4D8BRFmVCs6UJt2/nkjBh+hWJZitMpIpRfA7zPGPMPIvITwOeAyzOvfz4wXTtmXU+vBa4u/z8JWFX+f5nnXCfRfWS2oijKvCPH+PyTwPuNMQ8AR8pjCwGMMV8DtgFvybm4MWazMUY8aXMl30wgn0235lxbUZS5y44dcN11cO21sH598VlJJ0cxLOToshT3l39XVr6/mcSlKRRFUYbFjh1w4YVw8GDxee/e4rMqh3RyFMO/UtoDjDH3U0RCn175/knoVI6iKD2zdSscqG0yfOBAcVxJI8fG8Hng2cCl5ee/Ad4kIvdTKJjXAn/bbfEURVHyuM3jMO87rswmRzH8MfBCEVlajhi2Ak/jqDH4JgoDtaIoQ0Y9bvyceGIxfeQ6rqSRPJVkjPmiMebXS6WAMeb7xphTgVOBJwMbjTHfHkopFUVRErn8cli2bPDYsmXFcSWN1ktiGGO+aoy5yRhzJJ5bUeY3mzcf7e03RT1uwmzZAtu2gV38ed264vOWLf2Wa5LIXhJDRE4AfpZia02APcD/0TWLFKUdKdNDPo8bGB/Bp9Nck0/WiEFE3grcQmFv+NUyXQncIiJv6754ijJ36KKnrx43cazytAtHq7tqPsmKQUReB/wGsAvYQmFbOLX8fxdwaZlHUZQaMd/6VKUx7h434zDNpcqzPTlTSa8Hrgd+2hjzUOX4V0XkLyiWxHg98N4Oy6coc4KYsEqdHhpnj5txmeYad+U5CeRMJZ0IfKimFAAwxhwCdpR5FEWpERJWOT3ccfa4GZeeuk9JjoPynBRyFMNtwCMC3z+izKMoyXThpdMFwy5HSFjl9HCtx83UVPF5nDxuxqWnPs7Kc1LIUQzvBV4tImvqX4jIWorVVt/TVcEUZRxpqkBCwiq3h7tlC2zaBNPTcOutzZVC03vx/c5X3mOPzb9Gm3KMs/KcFHJsDPcAdwJfF5HtwNfL46dQGKC/AfxIRM6r/sgY84EuCqrMPayh8uDBwlB5+eVz9+W193X++cX9rls3eL8XXjg4DSMCZ5/tP984uoJefjm88pVw6NDg8XvvLep6lHW7ZQtcdVXxf5NnNe9dbo0xSYliqe3cdDj1/KNIp59+umnKzp07G/9Wmc327cYsW2ZM4VRYpGXLiuNtya2r7duNmZoqyrBuXfF5erpIsXy5uM5rjDEXXTT4LLp8HrllCX0XewarVs2+D5vXRdP3qou6CBF6NnMF4Abjk/e+L2ZlLDbUyU6p5x9FUsUwPqxblydAcsipK5+C2rDBmJUrjwqHYSoyY4b7PFzEBKtPMcaegYj7PkTc5WjyXg27LoxRxdC7sB5lUsUwPuQKkBxidVV96X0C2aapqULgDFtwd/E8UoVZTLD6lEbKM8h9Tk3eq2HXxbBHI+NCSDFkL4mhKF0wKn/8unGyPmcc85g5eBDOPfdoFG2drjxuRhmfEHMrPe88OFKufFaNRUjxOrr88tn2kq49gobp/TQusRh903oRPSWNcXHLHBd8XjpLlw73OdUjc1M8ZnxKAfIEd6gNtHWxzIk4jsVUWKVgsUojxXtqFB5Bw4xTGJdYjL7REYPSCz4vHetJ0gVVryfLpz89uIbO4sWwZAk8+GD8fCKDSqJpT9jl8RLzWgqR28sNjU5cx6FQGk96EixYMKg4XM+grUdQjGGNSjZvDt9/k/PBZHo26YhhBIzD+jHjSFf++C7qwtJS7/0fOgSPeMTRHu7Chf5zGtO8J1xtA9ddB3feOfj95s2FMLXPY/36dCWZ28v1jU7OPvvoUtV1TjwRVq+Gk09OewYzM8MTiMMcldhz1pl3UdM+48NcTH0Yn0fhQTHJVA2mXRn9du7cGTUq1w28thzbt/sNwevWNfNWcbUBKFw7t29Pd5f10cRw7bqm75mJDJbJVbamXjxtnDq69hyanjZm6VJjFiyIv6+xa0+CARv1SupPMYzaDXFS6VKB7ty50yssUwR+1zEFISW1eLExS5bMvtaGDelCr2kbqwu30DNr4t6awrgohur9LVxozKJFYaEeuvakdAZbKQaKpS5eEsnzUuDC2Ln6Tn0ohmG6ZU4qrpeqSwWaM2LwCeENG47W3bp1eYK6To6Sct1/TKB0JYh8z2zVqvj5Y8Fy1ZiQKl26gTdVFL4R3Zo1/vwhJTkpncGQYgjaGETkhcAfAfsiM1L7gCtF5PktZ7bmHLrSYxpduyC65tHrrFhRzE2vXj37u9274cwzj9o/XHlSaVPXe/cW7qOnnOLP09Wcu++Z7dsXtmGEbGj2u3vuKf42sa914dFnz+E6l8tGA/Cd78x+7rF9NSDellPup28vxpjxeQtwnTHmk6FMxphPUOzH8PKuCjZX0JUeB/EJka4VaF1YurjvPvjc5+KOAfUyn3JK3kuboqRCHDkCt9xy9LNLyHVhyLfPrG6Ar7uvWm67LSwo698dPDi8ndTaOHiEOh/V5w5phv450Rn0DSWKkQbfBraG8lTy/jpwW0revlJfkc+TYIgaBdu3+w17XdsYLNPT4ama+jRP/Zquci1YUEwt5d77woWzr++yMcSmlXxG4NSplFg+21ZTyhOaNglNTVlS3qsUQ29qJLdrii427VjNmzI1HCpPtSw2qt51P748XdpVaGpjAA4CrwjlqeR9BfBASt6+Up9LYnTpydEHXZQ1NvfapVdSynVDgiD22yY2ounp2baLurCIpcWLjxpGp6byFZQtR6guU8qxZEnYg0skbsw2Jv5epbSJULvy2Q/qwjpmB7J5U+0HrnKndH5iecZFMewD3hDKU8n7BmBfSt6+0ritldSkkvtSJl0oNt9LVxWysXOm9JLrdZXy4vvKE/pdE+VVLUv191WFkZus22sqMUNxipJasCAuKEMK2QrS0HuVOoqM1VHoPmw5XJ5orrw5Hmv155wyggrl6XrmoY1iuB74y1CeSt6/AK5PydtXGifF0LSS+1AMvrLmlCUWH5BKqmKoHz/rrPiL7ypPTLDkTHf5BN1FF/l7takptRz1uqx7W9lRTUp5fGW3ZQkJW6t8Q+9Vau/cl29qKq5sq52AFOVcv1eR4j5T3oWUEVQoj8utuY1yaKMYLgUOAU+P5NsEPAS8NZSv7zQuiqHpfHp97rHJNEJXZb3oojzFFgueMibt5WqqGELXr362PeHq/cdsAKmKzVcGl+2hSYqVI2Yvqbav5cvTr5k6beIqa90elBJXUZ/GC10r9mynpszA9Veu9I+YfOdKDXxMGUG1mfbMpY1ieBTwnXJK6VXAVO37KeAC4C7gduBRofP1ncZFMTTxc/a91MM2ZKcK1JhiC/WELLnRpD7ltHPnTrNyZfEi2/PFhINL2NlrLl4cf0FTaBPPkJJido+Q0Fm1Kt0I7rpmqiKut5WQYsh5T5pOxdU7V74RU2wElRL8t317/DmG8jSp8xCNFUPxW55GsaXnYeB+YBfwaeDL5efD5fdnxM7VdxoXxdAk6K2voJncCOI25c+NJvUJnK1bb3q43Narw9cLtNMpPm+p1B5cCm1HDCJh4R1rC8NQTCJFLzvnWlXBad8r16gjVC91Yr39UFq1avaUmmvKzXfu2Kiz2q6t40Co7ny74PnK3pRWiqH4PauBdwK3MLh15y3l8dUp5+k7jYtiaCLkU1+0rsldc6iOfWF9vTCXS6Fr7ju1HAsXGiNyxHFsdt4UT5NUYZpCaFouZkC1z8Pn9poyFZk7TRFLCxb4FUNqG9+5c6f3uWzYMCiQQ1OWVvi2VX4+G5pvJBGzm9Xb9Zo18bpzuXUvXuyud+sd1oTWimHgB7ACOAFYkfvbvtO4KIYmNobUoXlb6r12V1lzjMjV5RB8RuyUWIGue7tVT57QCC6195bqQOBTgKFz16fM6gLT5w/vunZbI3f1fqvCa+HCopyha7naaWj5kqkpd7xG6JnWBWqTFFo0r15/sXpLmYJyjS5c9sTc/bRjdKoYJjmNi2IwJt8rKdWY1xbXS+ia209VbClrDsWMcjlTOjmCLXb9VavS7AuxZ+B7xlWlmXN/9jqhNYh8bNjQ/JktXny0/nxeXnXlEGvjKQsehhwtulR2vvYRGs120S5Do5Rq6nrdtTbG523A0yqfFwMvAo5z5H0O8OnQ+fpOo1AMw3QnTTFetcVXftdIIvbSu9wVXQbzFBfBFHfTHCGeEqmaM9frEiih52nMoNJctSpvVNTUr316Os2msXDh7GdeXSY89LvU+zcmfcFDn9JtYlPIaR+xkU9XimnBgmKayaWAbOrazthGMRwBXlb5vKo0Nj/LkXcLcDh0vr7TpCsGY8JG1LbkCpqYsTh1yilFMNTPJVIIrqpgzfGqCUWq2h5q05fcPpPQ83QpzRzFBvl+7bkeL4sXuw2rMQWW2kaM8dsYUtt4W4Ecu1aKMM59rqlp2bJCWYTaeJtp5K4VwxFVDG66jkx00fVeAZamsRU+QsI+xw89lKq97JxYgJRpr6kp/3z1okV+BW3nxUPuxSGl2ZVAc9VvruJpkuojBh9WYbi8klLazfR0sanOMO6h2j5S10Ya9nO1qbokSlsZo4rBDF8xdC1YU69hIy/b0vUwNST4Fi6c/VxSBENXgtNVJznKadUqf4/fvrShYKiUaOqm91cVWCtXHvUY6tpG40srVsQ9h6r/u+IYUtpimxFdKFXbZmh5kKrXUai+liw5eo6uOgO289EWVQxm+IphFHEGbWMBQnRt2GqylESuS2Bq8hm9q88qV3C6hIHPRz23rG16oNW2UFUMXQiknGcTet7VTsDq1fc7OwmxTlYXzzrW3m17rI8cqx5zsXZTdSf1uRq3KWMbVDGY4SiGqmBJEaxt7Q9dRA/76FqxuXyxU89df4GWL28WlRtbHjul/lyp7csdaitWiKScpy4c68KzqhialDlnSfB6qvdqq8ogFDXvcwuN2We6Sq74g2qqB8OltJvqObtwp01dgiNGW8XwKuDYMv14eeznK8dsevV8VgzD7M1bYusNuV6m1Gt2ORVm3SiXLg2/OL6ejy/Apzq3GvYYOpJtPB/VVEv13uufq1OCKeUJzTdXhWdTRVZvU02FmCuoy/eeuKab6m2j7QgyFiwWmh7Ka4eD7byLNmbbSRe2zLaK4XAtuY49nELn6zt1qRhyfft9PaAcZRF6KXz78tZd3lyk9NJSyREkvp5PLODJXsc15bRmjTEbN+7LKqev/kaZ6naiVJuHa765ix51vUMzbPuP7dz4OjYx+0Nqqrrc1pVD3QU4JaWMquyz7MrG0FUHro1i+F+5KXS+vlNXisHncVLV5NWIxlBvPHcU0bQxhYKEYr20VHIMuPUVWqvlS5kyM8bvobV1603Z5bTlafp8XQJi2bLwtFH9s0s5xK7rGnV1MdVVj8Z12X5sm+9CoaZ2bJoKV1f7dxmwm3rHhZSJVTjDHJU2mfLVyGfTrWIITRu5olFDkbWpPfSue0yWLl1sU8vm66HHNn+BwfL58q1efb/z2aXUR/1Y6hzy9u2zp2/OOsstpFNsDJZY7zXXtz9VsLo6CHVBumhRN9NNKcGEVrA3bf9t2mssiRx9733eUl3tuxEqQy6qGEy3iiG2oF29B57zgsRc/XyjlZwo3eqWhl262KYIndicvl1zx/f7auS0X8AeGXhmdSGX2+v09cCtQDAmfbSUY5D39dTrdVW/P1957TLkKXaxFMVgn0F1o5pcYfvIRx7Mshv4HBFCkfG+NbxyyhmrsxTlaJXbMKblxmbEADwa+BngxcATmp5nlGnYIwaYbZzKbQiuCnbNh9fP2STyt2tPpJhQqJ43JAhiAtYaCX3Xe+QjDxpjjgrW+oioSU/RpYyXLm1mvA4pcZcXm0vohOxUPsWaYsfwKZvQtJYd6cQUmStNTT2UXSf1fa/tc/BNDfmCGXPbgOsdsxH4qfdsn2vutWNtc6Q2huK3vJFi74V/BF5ZHns58KOa4fnK2Ln6TsO0McRSao8oJSrYhsqHPHdSrtN17EKK8LC0HcZbweiK5l206LC56CL/8tSuIX3K3s6hZcFzRiGxa1lctp+6wK5PXdrv69NaviBI11RiE8N8dZSRO7Vkr5unUNy2sJSp0dw4kUWLjl7LpXRzR6Cp3kw5z64JbYzPLy29kA4C95QK4AKKbTy/CvwB8F7gW+V3F4bO13fq2iupTWWmLqEbmnIJvTCuwJymZUjFNyXgM6x2EeG7YoX/+9jLVDV8h66V4mPfpSuifT4xL7a6Z03Vx356uvjOtVdCnfo5mwYYxvYdiNVl9Z5jBvRQ5yXkQNG03Vm6sku0iRGx8Tl9xjHMALvLOAUpPY/uA/4fsLCS75hSUfxj6Hx9p67jGJrMFdo9ZlPn95tuVxgqm+01uxRHk40/QlMI1kDpellzhEc9tYkQrm5HGVv2ur5DVsijqau9AFKWNY9NhUxN+TfRcdVf23iONq6Y1dFGyJZW/03K/dRpa7zuco2r3BV1bb12tdd7G8XwHeDXKp83liOIcx15/xtwb+h8faeuFUPTKaXq72PD3twRg8vtD2bPyfpGC8uX57ushvzcXYFLlqZGuJiNIUUQVcvuE0SukY6vzKtWdbPcQahuq+VOeXape4JX66aJ4GsjLEWOmA0b3PtK+JaQaLM+WJOyVhcGDAWZNnluK1fm/barBfSMMaaNYjhcVQLA8aViOMuR95z5FOBmqQr3FANwSFD6zu/roebuIWCNpTHjV45iSJlPdkVqNl0ELWXntVAKBR26PFvqPfWmArCLVJ1ySf1NyrRgmxFDW2V47LH3B6e9pqfTtsNMJXR/F13kX4G2an/xvY+5z2L58nYL7LVdpLNt5LOulWTCi+jV52hz1oRJwTeycB1PaWApO2bVr+UrV5P52qZTLvUhdK4QqyqVnLJX17ppIwTbPp8mRlqI12Hd0JzbftpNrwzuz12Ps2k6Gs1ps9U1tarvkGsvCpdxvvpOD2txv1jbbEJbxfBfKp+tYnimI2+2YgDeAvw5sAcwwK2BvM8B/gfwReCBMv/mnOsNa60kl6eIz0hpTLdBZanBW01TqFcyrEjO5csHe18ixWinTqqQtPOyTXvG1qOqqUJbsGBw05uYIF240L8hS1NXW593Tv35xfZs8AnpLuferV3KEvOeS1UMrvdy1arZ0zMhZWRthL5rtn0OuaOONiuttlUMe0vD8leBm8rppW9Vjtm0t4FiMMAPgU8Cd0UUw58BDwJfKt1nzTgoBpeffD1P3R98WPs2NPEjT0m+XsmwNpuBQcNwzMvE55Za99xoOpceivlYuDDcS6wbGO1eDrEphGpUfOpyIbl1mKtkUgK4bNnbTjFVjf6heJucTlbd/df1rth3MSeItc0zracmrq9NaaMYbgVuyUmh8znO//jK/1+LKIa1wFT5/6/0rRhCAinUOLsOKqtiG2uT+ftQg/b1Soa59kt12ijWI6wraN8a/1UBkupHbusz9Gx8a/avWePugS9ZUvwmVE82qrquGEMLDMbKWX9mOfURG7FUPYu6ahfVunN1dlxR0KHRUaqL8bp1YSUYMn63dcMOdUJ8ddKUxophlCmmGGp5e1UMbVzpug4qq1IVIrnbOIaEiu9+fM+hC++cqluva8VNV1CXTS4l7ppXTnlJ7Zyyr96sQKwuMZ4S2xATAFW7RizYrDpHnroneGi6xNc+fM+yLqC6GknW6zC1XdXv1Vdm3+99yr6exyeUc8rqeo6+8lb3f+7VK2mUaZIUQ0yjh4R86oubS260aTX5XFxtWrMmfN36SxASDDlLd/g2P6+7N8YUQ1vf9ZCLYn1aqDrSie1FEZuucNk1XKvS1uMbXL+p5gk5SKS0zdj0Ta6LdegZNJ3+a1Oe2GqpNoW22Ez5fdUrqf4cXR2CLpWCMcaoYjDdKoZYAw0J+VzXuxTDWtvhqy962KaQP3yup479TRe9Sl+vbePGfQPPrMm1qnPcues62WmGpiMGe+3QVMeGDX5BERLcuW3F1zZzo4urCt2uQlqU8UjwGVWv07Rd5NZfjmeR7xnE2lzKsvuhGBuXDS2XkGJYxBxHRC4ELgRYvXo1MzMzjc6zf//+h397/PGbuPPOY5z5pqYOc845NzMz871Z311xxRP5znfWUgSRWwzPec7trF37TepF+9Snjufzn38Shw4t4LGPPcgFF+zh2c8+et43velUAL773WM4cMBdnkFM7dr23tzHLUeOwHnnHWH37q8PXB/gzW/eRBH4noLhkkt2l/+fAsAjH3mIAwcW8dBDCxLPUTmbgfPPP8zu3TcPlOvw4Sdz9913MzOzCwjXl4977jnCJZcU9+v7/YIFRzhwYHa5r7zScOyxuznnHPjt397A4cODeRYtOsI553wdgN///Sdx8ODCh7+bmjrMa15TtJ+9e6dx1cvevQYRMEbKz4PPYe1a2LDhVACuuKJ4BqeeWnxObysAhosv3s3atd+b1TYvu6z463qd1q6Fiy8+nt/93aLtrl59tO3aNnvFFbt405tO5fDhw3zta3Zhhdn3eccdRzh0aAErVx4CFjvzzSq1gTe/+QHWrr0O8Nf/6tUPsGnTD/jYxwbfyYceil7CXolrr4UlS47w2Mc+wAc+8MWHv/G3OfPw8/i93zuBb35zBU984v6H22oV+4x/4Rc2zaqzAwfg5psNU1P3OH/bGp/GGHVigkYMvl5X3Qe7Smye2pXft1+BJSVYrV6+1Lypvcfc3rhr2ipn8T9XWr58sEz1EYOvvlJHfrlz1PY+7W/r6xml9O5D7SUlMtrnQp3rjdWGlNHuzp07h+LEUHVlDXkfdXXt+rsZi5dIfT7GpNVTk6kldCqpW8VgzOALnbJ+SawBpuZ3GSVTUxcrOlqjcOp95Zy3zTr11cXnFi9+aNYLUxfA1iso5n3iqu/UhfNsm6gby+u4BESTpRd8tq1q2UN7S1Q/d+VCHWPnzp2dTS263pNYTFGX1124cLZyqD7vanxGjpttim2mSX2pYjDdKwZj8iIuQw2wLmxj+dvsBNXFi1CP9O5i8Tg7LxwaTYReEPtShjxmXEJiaso/WnF58tRHIqF7qtarLxjS145iq8PGyhuan3YJlTYbzOe8B/Xf2PeqbftxtSVXZyBVATdN9SVXcpaz8T3z1GvnjvAaKQaKQLbqchjvA37Kl79tmgTFEHqpYy9HrAHWX8ZYXEGXjTknWU+Mag/YNxJx9UJjS3373FOtkIs9w9gL41M+Pn/4WL2mvKyu6b8YsaCumGBJjSmols8ahnPpQjF0KaAvuig9kDQ2WqlGRqcm29589xRa8sRF6rPJdXlvqhgOMbiA3sC6SV0k4FzgkjLdCeyrfD63lvcnK9/9XakY/rRybGXsem0Uw8aN+4IukrGXKrXnFupt5KQuevGxZF0lY6OhqgDKEWoumtxX9YUJeQLF9j9wkfLSVv3T26xDFVoAsH6uFJtCfXrL14ZjHkg+RR66t3owYtv2Xq3HUL24hG/ofPb+c6Y5bXvL7cD5BHvK+lW+ewvRVDF8C9hW+TywblIXiWK/B+NJM7W8rwjkNcD62PXaKIbHPW7/gHugb446dbeslMrNdQWtvyC+3vmqVfkCNhSY53N3te6GdQGUIyDrhF6SFKNs6D5cU0Vd7QbmMrrH5oV914+NUlPa2apVs6cEffcauk6uG2VI4bVp7/XnmRNI2nSkGXuHc0dBqU4ovvsaiY0BuKxUBndRLHJ3pOzV7wmkb/nONw6pqWIoesV+f2tXssoh1zuk3nDbLFoWmiKpCoIujNKhqRiX4bXJ9IMlt2xVRR0aMdQFZaogrxsZ2wqDajlc/+fGEPjqywrwVNtMndzp0dBv7HNYuXL2d9bjp7qEiA368imznBFDk2kn3/tXH9WltgNf20pRLk33p2iqGAR4JbCDYse2w8A/AztDyXe+cUhNFUMTwWk39/AJxtSG29TVsirwfIFQqfPQqfc77JVkY88uZcTgM5bXd67LESz2Wa5cme9Z5erB+gRximJoUpeh5xaqv5Q2mLpchhVuru/OOqv4bV0xhKatchS7zZ/STkPTSi6vpNB7mXK9lCXym75TnXglDcPGMOrURDG0Gd7We5Kx/QBye6SpysHm8zWirozZrqmYYawk6xLusbVvUuozdcopVracDZRSl5twTQ+5BErXjgmh+ktVQtV7DCnc0KgrFIsQqgvf0iEuUkexKW0jNHJLdWwIPS879dmGrhTDNPCY1PzjmJoohqa9aRH/yppNetNNffxT/NO78ghpM5zPpbq0iLXrpFwv5u3VRdld9ZqiJHPcG33n6NK7JzYCy5n/jt1jrAPWdI2xWAxJE9q0s/qoolrO1JHPggXFoo1t76vTOIZyiuk04D+X6TRAcs/TR2qiGJr2wELrD4UiVJuUw7rTpe6slbLBfdOUYwBsamfIEaA5K3/GjI05ox3XvcU6ArlTZNVy58QtpNaj7ztf4F/KVF79N6tX3/+wraOJnSZlBNf1VGZK28gdcaZ6flXdZ1MCa0N0phiAnymNzIdr6VvAc3PO1UcaxYjB9l6bRKg2LYcrBiA2wnAZ1rraaCXmlWFjIZoqhpiPvyvyOfZbl1dHG6ESsxO4aNoJqXtUxXrfMY+0WGS3L/DPN8UX6iFX44NS3TJDZakyrKlMe+4mSt5n/I61s+lp/yZcoaV4QnQ1lfTvKHZQ2we8Czi/TO8qPZcOAs9IPV8fqamNIfYiLV482wc8ZLBuMpUSetnrm7rYIWaKMqlSFS5tPJWs4ou5MzZVDLHeWH2tpPpzrJepqVdHE5oYjnNGDBbffgJr1qS7mTYx4IbWhXKxdetNA0LxrLPS21lMyA9zKtOYfO8wn6dT6jMOvc+9LYkB/D1wG7DG8d2a8ruPp56vj9RUMRSNPeyuWjcU+jbKqe9nm0PIgFnttaW4ocZGLW2MmNWlIOq9oaqLoevZpRB74V3Ll1RJNUqmKq42rrf1cjWxMfjcNuv3WRX8rl5qk+mvWNnjxuGHZv3Gzp/Hpv1ibWaYm2IZkxfI5ytvyH069X6aKryuFMPdwCWB798K3J16vj5SrmLIna9NWbFx8eLmisE3VE/ZQzi3ETU1YtZXkDQmbf47p8cTE0IxxVAtU9s8OflSyPVKitlVQsbXLu+vSe88NK23cmV4KjKFYY8YjIk/m9j3sc2aqsTeyZEsiTErIxwA3hj4/o3AgdTz9ZFyFUMT4bhuXTvNntsLabKgXooQ9gnfpUvD57aGMVcPKSfqO0aoN1ZVDG0M3E02me+CnDiGFOHXxN6RS5Peeew3Po+cVIPrMG0MlrbPNme6N9ZR7WvEcCPwBWCR47tFwOeBG1PP10fKVQxNp1Nii26FXpbcnmyq8kpZV6eOb8ol1NMLvYSxMub2eHzlbqsYcgTKMLxeYlTvKUW4jqJ8XY4Y6t5hbco/7Pv3jchS213MdujK77I59WljuKAMcrsWeD5wUpleUB47DJyfer4+0ihGDCmpzYihTpM9e3Ou6Wr4PgNu6NoxT5kmPR4fVjE0FQqpQm4UPdI2ZR1l+bq0MaR2XFy48nY9orP4Ok657S41+NFiPZTaKrwu3VV/x+GqatNv55yrjzRsG0NKCi0y1kSQxZRXk4Xa6q6PKYbNUK8n5Tl2JbCmpwuvpDZCMXVaZBRz2DFC9znq8jVpv/XFKUOurSkMSwnU8XWOzjorv91Vl/rIaatt77XrALeTgV8F/rhMvwKcnHuePlJTr6TYpuWpKeb90USQhYRu7OWMuS2GyjQ9Xdgb7EsdCm6KKa8uh/hWMbQRiqm/HbbXSyo+gdxH+XKFVX05+zaMclovdzYhNkvQxQggl04VwySnpovoxYRNSrKeFL7G20aQ1c8ZWva4Sux+QsLe5yfvUiKh6a6ue3e2rtoIxVQlHQvgGyUugTwOI5oQhVu3Pxgx91yjnNbraq8Fl0vxqFDFYLpRDL7GF2sU1pMi1Hjb9u6qgiG11zbMneC6Uno5VEd3qcszxM/lF1qxEdco6XIUOgq6LtuolWAXI4a+60cVg2mnGIwJGzRDjaS6aFao8TZp2G3nGJuOgGIKxSWgUpdKaMoo7Rj16/oC+EY1JWBMvmdZ33QtyEc9bRbrzKW0u75HdKoYTHeKwZjZL2ExJHY3kGqDiAWz5K6DEvMmiikNX7nbJNfqkXUXu6Zru4QYpR2jTiiAbxx66KEgt77oWpD3IWRdazuFItHr9G2jUsVgulMMoZ5ZTPiFhJedakr1UY7NTaaOJrrYvS1U3lEJy1HaMarkBpv1QR+xFjG6flZ9KeUNG9wbYQ0rWrxLVDF0pBhSel6hBhHy5bfG6ZR1510vgd3+0H6fKghS7Ay5+0NXy9u28beNIB32S5YTbNYHoxaYOYFdXU8vDkMBDtP9te8RpiqGDhTD1q03tZ4OCSkGKPLEvjfGLwTtkt85jW1YQXxWGHZpVI8929T77uplrwui3EClUTBqhZnzbIve9pGxFuTDjovoczTXuWIAlgGPA06spybnG1VqqhiKKZ7Ds16u+j7BVVx2iJhxdGoqvlx3zP0zFIGc6rmSk2LeP6MaMdh7sV5JoZesi5fd9dwWLy7aRF89QBejHsXkKHJbV+NkFK8yKqE9qqC8Ol0tibEA+DXg9kD08+HU8/WRmiqGnIWuLPXKTu2ZL14cFvzLljWzC9T3bKiWrWpES92gJ8UF15h2w+UmL6Z1LY7lafsi+uozdZP3UTHKEUNqffU9hZLCJJSxLV0pht8t10r6J+DdwNtcKfV8faSmiiF3NzbXC5ITMxDLu2pVfi+/OmKoL3mRuu5R9VzVFyQmEJoI+CYvpr2v0LLbXfUCQz3xvnqALkYl4HKu04drdi59G4ZHQVeK4Q7gmtT845iaKoac3dh8L0iX3j/WDTZVsdRd6Kpl95XLJ/h8w/7Yi5v6Ytt8bYSHTzF0KSRD5RsnxWDMaKZEcuqryfTWqJ/pODoSdE1XiuF+4NWp+ccxNV0ryefr79on2PeCLF/uF+S5yb5srmUpXH7UTfZssErAp2iGPd/aRnj4FEOXvcBJm2oYtmDNqa/ceujDQKsjhkShClwPXJaafxxTE8UQiz2okzplZFdizF2Woi58fC9Nin99TPlMT6e5z3ZF9V5yl7So/nb16vudwqPLXmBfC5+NKzmCNEep9qWAJ03xN6ErxfB84LvA41J/M26piWLInW/PEcK5AtvnIhvrDbZRPqMaUrdZ0iL1Je6yF+gz5I8DfZQpV5CmepD12XMfx8DALmmkGIBLHekfgXuBDwC/4fj+rb7zjUPqesTgegFcgTu+JJKuHLZvb/7Cx64R8qQZ1YvZZkmL1DJ21QuMRZ33TV/KKleQpniQ9T3XP46KvyuaKoYjDdKcc1dN9fOvCqE1a9KEvX15UhSJMc3XRgrdQ3V/Bd9SH+O+pEWO8GjbC0x5Hn0Kk757uTlOCCmKoe+5/mHV5TgonKaKYV2T5DvfOKQ2AW523fhQ79/mTVEK9VFGigJpsm9z9R5cXkkpgsO3HkyX+ARAyt4GucKjzUuZcq0+e+yupVLGaURTfzYh12Jj5u5c/8QqhrmY2iyJsXHjvqgbZc7oot6wfUZekfgyF6m9xKbz4tPT/jWiulxeoumSFrnCo02ZY6OTPnvsIeU6LqQqhnqszVya6x+X++nK+LwH+LnA9y8A9qSer4/UhWIICaHYPHmo9+va99UqhVxlFBOozZaZaDZSyaE+d58j2FO8krqgq7oYBqHpuHGhiWJwfZ5U+m4jVbpSDEeAlwW+f+lctDFYqg3YJyxjS1nEonareyhXBWOolzrMOdhYIx5Gzyc0OqnmCY1eYtMTbWjSMRjVfHhs6Za+e9qu9jLfFEPfbaTKqBTDG4B7U8/XR+pKMRjjbqihVU9jL2WotxxqTMP02uirdxwzpPuU0SgUQ6gMfXvQbN8+exG/ceiZ2rK52svWrTc5888VRVCn7zZSpbFiAM6suKIeAf7C48Z6RRnj8JnQ+fpOXSoGF02FZUrPvI9eah8jlZDgT32+w1YMxuR1DEbVGyycJPyKoa+eqTH+Z7N69f2z8o7LHPww6LuNVGmjGN5WdUWNuKp+AzgjdL6+U1PFkOJWZ2nSqFMay/btbs+gYfbcRz1Sid1L6ks1CsXgou/545SYmL7W+vG3lyMD+fp+hsNmnO6vjWJYWbqhri+F/xscLqonAseGzjMuaRSKwebPGQanCtmVK4tUZ1g9rFGPVGLnTH1OfSkGY/rp7cbWlxpVzzTU7lNHDOPUox4W4zIi6srGMA0cn5p/HFPTALeU0P02tBkxWIY1J+trxMPo+cQE/7iPGCyjnh+314uNGIbdM80NsnTZGMZpDj6FpnU9DjYUjWNoqBhGNexrY2MYBaGo6C57PjHBP042hnHC1k8ojmYUPdOcIEufV9KkjRjGQcA3pWnk8/sapD/1nW8cUq5iGGUj9QnZ6eluVzhtGuQWO18XpAj+FGU0nxRD/XnUl1zfsGE0gis3yNJSr6u+O0E5jMuUUFO6XCvJbuHpOj7n1koah/1yp6fdZWhajq4VQ9ekvGyxss8XxeATolVlMIp6bhO17qqrSRC4k6TAfHRlY3gMcCPwV8Am4JFlejrwUeAG4LjU8/WRxnnEYIx7qQffaKHNiGHc9xFoK8zmi2Jos77UKMqR0j5TA9zGjUmb8nIRUgyLSOddwPeMMS+qHf8C8EIR+XiZ57yMc441l18OF14IBw4cPbZsWXF8GMzMHP1/x47i2gcPuvM2KceOHfDZz8Lhw0eP7d1bXAdgy5a88w2L6nNQ/Nx2m/v4gw+O9hn6yuE7PheY6/e8ICPv2cDfBr7/2zLPnGHLFti2DaamAAzr1hWfRyFAt24dVEhVmpTDKpqqUrAcOFBcT5ksTjwx7/hcL8comev3nKMYpoAfC3z/Y2WeOcWWLbBpE2zceA+33jq6XnWo59GkHCFFE7ueMp5cfnkxcqwyzBHtKMsxMzPeI8dxefbDIkcxfBZ4vYicWf9CRKaB1wOf66pg48TMDFxxxa6RXtPX85hqqHpjgn+u9HTmE4Mj2mYjyblUjlEy1+85x8bwyxTKYaeI3AB8vTy+ATgD+BHw5m6LN7fZvLn46+oZ+ewb27Y1u9aJJxb2BBdzqacz39iyBa66qvi/zx72uJRjlMzle05WDMaYfxaR04B3UOy98NTyq/3Ah4FLjDF7ui/i/MT2PM4/vzBAr1tXCO+mPRKXogFYtQr+8A/nTk9nPmKFUqijMcpyKJNPzogBY8ytwMtERIDjy8PfN8Yc6bpgc50dO+C66wqhv369W+hv2dKdwK4rmqkpOOkk2L27m/MrynxkrirDLMVgKX1g7+y4LPOGuivqqFxG5/LQV1GU7vAqBhE5EcAYc1v1cwybX/Hj8hA6cKDozV911XCFtioERVFihEYMtwJHRGSZMebB8rNJOOfCDso1p/F5CPmC2RQlRsrUpKKkElIMb6dQBA/VPist8XkINXVFVeY3O3bAeefBkdLSN47R7Mpk4VUMxpjLQp+V5rg8hBYvLqKSr71We3xKHlu3HlUKFhvNrm1IaUIwwE1ELhaRU4d1cRF5i4j8uYjsEREjIrdG8v+UiHxKRO4VkR+JyMeHWb5hUQ+OWbUKROChcmxme3w7dvRXRmVymOvr9iijJxb5/E7gRhH5oYh8VETeICI/2eH13wE8C/gWsC+UUUQ2AdcCJwGXUuxH/ePAZ0TkyR2WaSTYpTamp2HFimLhsyq6fpGSylxft0cZPTF31ZcBm8v082UyInIXhZCeAXYaY25qeP0n2KA4EfkasCKQ993Ag8CZxpjby998BNhNocD+Q8My9Ib1EFrgUc/a41NSOPtsuPLKwWMaza60IThiMMb8b2PMa4wxG4ATKBTFnwA/BF5EIay/KiJ3ishHROSinIunRkqLyBMpIq3/3CqF8ve3A38OPFtEHptz7XFCe3xKU3bsgPe/f/CYCLz85WpfUJqTvIieMea7paJ4dU1RXEUxDfSfgfcMp5gPL7/xBcd31wECnD6kaw+dub5SozI8XDExxsA11/RTHmVukLO6ap1HlMnu5DZMTij/3u74zh5bO+QyDI25vlKjMjzU8KwMg+QlMUTkCRS2hmeWf9dQxDXsAj5EYXP4TNcFLLH9aVcI2AO1PAOIyIXAhQCrV69mpmHo7/79+xv/NoW1a2HDhlOBo0t8a5RyM4ZdV+PE8cdv4s47j3Ecf4CZmet6KFEe86muJomgYhCRX+So8fnHKILdvgTsoFAEnzXG/Gi4RQTADpZdIWDH1PIMYIzZBmwDOOOMM8xmuwRlJjMzMzT9bSq7dtn/hnuduc4o6mpceOc73cuzv/Odx0zEM5hPdTVJxEYMfwIcAq4GPgJ83hizf+ilms0d5V/XdJE95ppmmgj6Xi5ZmVy6Xp5dUSCuGL4BnAy8Eng6MCMiM8CnjTGjXF31i+Xfp1MoqyqbKKa0bhxheZSeUCU6G101V+mamLuq9T7aQmE/OItiU547ROTrIvI/ReRlIjJUw68x5pvADcCLRcQaoin/fzHwD8aY7w6zDMPCLn5ml8LQaGdFUfomanwuBe7/LhNlvIA1QE8Dr6IIersFmDHGXJB6cRE5F1hXfnwMsERELik/7zXGXF3J/kZgJ0Wks3WLfT2FcpvILUX72pdBmXvoSEHpkuyNekpF8aEyISKbgcuAMymWq0hWDMD5FMqlym+Wf6+lsG3Y636+vNZvlckAnwdebIz5StZNjAm+fRl08TNFUfokWzGUUcibKUYN0xRuq1J+nbXnszFmc2b+L1BMZ80J1Ac9D91zQFFGQ1QxiMjjGYxfOIGjimAv8H6KKZ6dxph/HUop5yi+fRl0KYzZ6LSbooyOWBzDXor4BSiUwe0UMQxWEdw61NLNcVz7MuhSGG502k1RRkdsxLCEwgvJKoJvDr9I8wf1QU9Hp90UZXQEFYMxZs2oCjJfUR/0NHTaTVFGR5tF9JSOmJlRpRBDV6BVlNGhikGZCHQFWkUZHdnuqorSFzrtpiijQUcMiqIoygA6YlAmCh0pKMrw0RGDoiiKMkCyYhCRVSJySu3YSSLyHhHZISLP7b54iqIoyqjJmUr6Q4q9GZ4GICIrKJbitstgv1REnmWM+XS3RVQURVFGSc5U0tOBayqfX0qhFM4u/+4G/mt3RVOUo2zefHSTnklhEsusKJCnGFYD3658fh5wgzHm4+VS3H8GPKXDsimKoig9kKMYDgFLK5+nKfZMsNwNrOqgTIqiKEqP5CiGbwD/SQp+DjgW+H+V7x8H3NVl4RQFdPtTRRk1OYrhjyhGCfuAv6DYlKeqGP498E/dFU1R/PswjLtyUGWmTDLJisEY8wHg5RTKYDvwPGPMIShcWYFHAR8ZQhmVeUxoH4ZxZVKVmaJYsiKfjTFXU9mHuXL8h8DpXRVKKbAeLfM52ncS92HQTYWUSUcjn5WxxrffwjjvwzCJykxRqnhHDCJyKWCAy40xR8rPMYwx5jc7K50y75nE7U91UyFl0glNJV1GoRh+B3iw/BzDAKoYOsAaLw8eLIyX83XLz0nc/nQSlZmiVAkphpMAjDEPVj8rw8dnvITxFojDYtL2YZhEZaYoVbyKwRizN/RZGR5qvJx8Jk2ZKUqVZK8kETneGPO9SJ6nGmO+2L5Y8xs1Xs5GhauijI4cr6SviMhzfF+KyK8Bn21fJGUSPXEURZk75CiGHwF/JyK/IyIL7UERWS0inwDeAXyi6wLORy6/vDBWVlHj5eQxM6MjHWUyyVEMpwEfBH4V+JyIPF5Engd8FTgTuNgY87NDKOO8Y8sW2LYNpqaKz+vWFZ/VvqAoyihItjEYY+4DzhORT1Ksm/RVitVWvwE81xizayglnKeo8VJRlL5oEvn8WYoF9Oxkx1+pUuiezZth166+S6EoynwkSzGIyEuALwHrgVcB/wd4i4h8UkQe233x5jennqqjBUVRRk+yYhCRq4APAd8ETjPG/Kkx5ueBNwI/DXxZRJ47nGIqiqIooyJnxPCLwB8AzzDG7LEHjTHvATZR7OD2fzstnaIoijJychTDzxpjfsXuwVDFGPMVimW3399ZyeYxusmLoih9kuOVdE3k+wPA+a1LNM/RdZIURekb3Y9hzJjEHcsURZlbZO3gJiJPAC4Gfgp4NLMVizHGPKGjss1LdJ0kRVH6Jscr6ckUrqoXAEuAxwP3AcdQuK8eBlR8tUTXSVIUpW9yppLeTrFhz0bgrPLYG40xJwCvBh4FvLbT0s1DdJ0kRVH6Jkcx/DSwzRhzM8VObQACYIy5Cvg74Le7Ld78Q9dJUhSlb3JsDI8AvlX+b3d1W175/nPAf++iUPMdXSdJUZQ+yRkx3Ak8FsAYcy+FfeHkyvePBhY6fqcoiqJMEDkjhl3AGZXP1wJvFJHrKRTM64CvdFc0RVEUpQ9yFMMHgdeKyFJjzP3AWymUw87y+/uBX++4fPMWnUJSFKUvciKfPwx8uPL5yyLyb4EXUriq/l11DSVFURRlMskKcKtjjPk28O6OyqIoiqKMAY2XxBCR5SJyqYis77A8iqIoSs+0WStpBfA2ighoRVEUZY7QdhE96aQUiqIoytgQVAwi8hERefSoCqMoiqL0T2zE8CLgJhF5wSgKoyiKovRPTDFsBg4AHxOR94nIIyrf3QU8k2LFVUVRFGWOIMaYcAaRpcDvAr8EfBv4RWPMP4ygbJ0jIt8H9jb8+XHADzosjjI8tK4mB62r/lhnjHmM64uoYng4o8hm4H3AicA24DpXPmPMBxoVccwRkRuMMWfEcyp9o3U1OWhdjSfJigFARNZQrIe0yh4q/5ryf2OMmZML6WkDnhy0riYHravxJDnyWUSeSTFiOI5ixPCFYRVKURRF6Y+oYqjYGC4C7gCea4z55LALNoZs67sASjJaV5OD1tUYEpxKEpFnAH8GPBG4GniDMeae0RRNURRF6YOYYniIwmPg1caYj42sVIqiKEpvxOIYPgr8hCoFRVGU+UNQMRhjXmyMmZc+xiKyQEQuFpGvi8gDIvJtEXmniCyP/1ppi4icLCJvF5HrROT7InKviOwSka2uOhCRJ4nIX4vIPhG5T0Q+IyLP8px7pYi8R0RuL+v2JhG5SER07a8OEJFlIrJHRIyIvNfxvdbVmNNqP4Y5zh8Ab6AYNb0TOKX8/BQRebYx5kifhZsH/CLwWuBvgB3AIYpI+98CXiIim8qdBBGRJwCfBx6icJS4B3gV8Pci8jxjzKfsSUVkCfBJ4CnAe4DdwPOAPwZWA5eN4ubmOG8H3IFTWleTgTFGUy0B/xY4Avxl7fjrKWI2XtZ3Ged6othffKXj+G+VdfC6yrGPUOwieGrl2AqKKPebKW1p5fFfKn//+tp5/xJ4kCIatPf7n9QEnEYh9H+5fM7vrX2vdTUBqe2y23OV/0IRsHdF7fhVFGtHnTPqAs03jDE3GLcHnN1e9ieg2DAK+Dlgxhizq/L7/cCfACcDT638/mUUdXhV7bxXAIuBl3ZQ/HmJiCykeK4fB/7K8b3W1YSgisHNUylGDNdXDxpjHgB2Mdh4ldHyY+XfO8u/PwlM4Q64tMu2PBUKuxFFj/bLZV1WuZ6id6p125yLgQ3A6zzfa11NCKoY3JwA/MAYc9Dx3e3AceX8pzJCyh7pWymmKj5YHj6h/Hu74yf22Nry76OBpa68ZV3/oJJXyUBETgJ+A3i7MeZWTzatqwlBFYObZYBLKQA8UMmjjJYrgKcDlxpjbi6P2Xpw1Ve9rkJ5bX6t12b8D2AP8K5AHq2rCUG9ktwcAI73fHdMJY8yIkTkNymmKLYZY/575StbD1OOn9XrKpTX5td6zUREzgGeA5xpjDkUyKp1NSHoiMHNHRTTRa5GuZZimunBEZdp3iIilwGXAP8LeE3t6zvKv65pBXvMTkfsA+535S3r+jjc0xyKh/K5vQu4BviuiDxRRJ4IrCuzrCyPPQqtq4lBFYObL1I8m6dVD4rIMcCpwA09lGleUiqFtwHvBy4wpb9ihX+imG54uuPnm8q/NwCYIvbkSxSxKHWl/zQKTzSt2zyWUsQsPB/4l0qaKb8/p/x8AVpXE4MqBjcfpvB6eFPt+Kso5jV3jLpA8xERuZRCKVxNsXPgrKDC0tXxb4HNIrKx8tsVFMLoXxj0LvsQRR1eWDvVmyiM2h9GyeE+4MWO9Evl9x8vP/+N1tXkkLVRz3xCRN5DMaf9UYphso18/hzwLJeQUrpDRF4LvBe4jcITqf687zTl8u/l1MX1FNHRfwD8iEKJPxl4vjHm7yvnXUIRebsReDdFNO3ZwAuB3zLGvHWItzVvEJH1wC3AHxljXlc5rnU1CfQdYTeuCVgIvJkiGvMgxXzmu4AVfZdtPiSK5d5NIM3U8p8CfAy4m8Io+Vng2Z5zP4pC6dxR1u0/U3QCZNj3NV8SsB5H5LPW1WQkHTEoiqIoA6iNQVEURRlAFYOiKIoygCoGRVEUZQBVDIqiKMoAqhgURVGUAVQxKIqiKAOoYlAURVEGUMWgKIqiDKCKQVEURRlAFYOiKIoygCoGRWmBiCwUEd1JTJlTqGJQlERE5BUiYkTk2SLyVhH5FsUWky8pj/9Z4DebK8cuK489SUTeISL/KiIHReQrInK24xznicj1InK3iNwnIntEZIeIPGaIt6vMY3RrT0XJ5/eBxcBVFMtG3xzO7uX9FMtP/z6whGKfgb8WkZONMbcCiMi5Zb7PAJdS7Gr2OIrlp48Hvt/0JhTFhyoGRclnKfAUY8zDew6LSJPz/AD4WVMucSwiOyn2Kng18JYyzwuBeyn2AHmo8ttLm1xQUVLQqSRFyefKqlJowR+ayrr3xpgvAvuBH6/kuYdiF7PnS0Ptoyi5qGJQlHy+0dF59jiO/RBYVfn8DmAv8NfA90XkL0XkAhF5REdlUJRZqGJQlHxyRguh6drDnuMPjwyMMf8C/Bvg+RS2hnUUto2vi8gTMsqhKMmoYlCUbrgLONZx/PFtT2yMOWiMucYY82ZjzBkUSuIE4JfbnltRXKhiUJRu+Abw9GpMg4g8Gnhlm5OKyHGOw18q/7oUkaK0Rr2SFKUb3gtsB/5BRK6m2MT+VRT2gce2OO8nRORuCnfVb5fnfQVggKtbnFdRvKhiUJQOMMbsEJETgNcB76IwLL8dOAL8VItTXwm8hMKF9VgK4/SXgdcbY3a2KrSieJCKt5yiKIqiqI1BURRFGUQVg6IoijKAKgZFURRlAFUMiqIoygCqGBRFUZQBVDEoiqIoA6hiUBRFUQZQxaAoiqIMoIpBURRFGUAVg6IoijLA/wdR/bQaEnS6SgAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"BEC_width_y_val.plot.errorbar(ax=ax, yerr=BEC_width_y_std, fmt='ob')\n",
"\n",
"plt.ylabel('Y-axis Width of BEC part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEgCAYAAAB4qT7AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABjeklEQVR4nO29e5xdVXn//3nmMHOSISSYCRkQYRLFkNALoyDGYklUbC328tX2Z1snEDFAAbWA2FYbtF6I91r4toJfEBRI2m9r7Vdri7ZemChqCqhjpSThlky8wAAJuSczyczz+2PtxVlnnbXWXnuffW4zz/v12q+Zc84+e6+z99rrWeu5EjNDEARBEIqkq9UNEARBEKYfIlwEQRCEwhHhIgiCIBSOCBdBEAShcES4CIIgCIUjwkUQBEEoHBEugiAIQuFECxciOo+ITgh8voCIziumWYIgCEInk2Xlcg+A1wY+f02yjyAIgjDDySJcKOXzEoCpOtoiCIIgTBOy2lxCuWJ+DcAzdbRFEARBmCZQKLcYEV0F4Krk5SIATwM44Nj1eQDmAridmS8tuI2CIAhCh3FMyue7AYwm/y8CsBPAmLUPA3gQwCYAf1Ng2wRBEIQOJbhyqdqRaBuAq5j5XxvbJEEQBKHTibK5ENGxAD4PYLyhrREEQRCmBVHChZkPAHg3gFMa2xxBEARhOpDFW+xxACc2qiGCIAjC9CGLcLkJwKVE1NeoxgiCIAjTgzRvMZN9AHYB2EpEdwB4BMBBeydmvrOgtgmCIAgdShZvsZjoe2bmUn1NEgRBEDqdLCuXVzWsFYIgCMK0InrlIgiCIAixSD0XQRAEoXCyqMUAAER0NoCXQ+UTs4UTM/OHimiYIAiC0LlkMejPBvAvAH4DKv0+o5KGX/8vBn1BEAQhk1rsfVCCZR2UcZ8ArAbwWwC+A+B+AGcU3UBBEASh88giXP4AwBeY+X1QWZAB4OfM/B8AzgfQA+AtxTZPEARB6ESyCJdTAGxM/p9M/vYAADMfBfAPAP6ouKYJgiAInUoW4bIPFQeAfVAljZ9vfL4HkntMEARBQDbh8hiAJQDAzJMA/gdKVQYiIgBvBPDTohsoCIIgdB5ZhMs3APw+EWlvsP8D4HVE9BhUnrHzAdxWcPsEQRCEDiSLK/IcACcDeCyxsYCI3glgFZQN5p8BfJzbOOR/wYIFvGjRotzfP3DgAI499tjiGiQ0HbmHnY/cw/bhBz/4wTPMfILrsxmV/uXss8/mBx54IPf3h4eHsXLlyuIaJDQduYedj9zD9oGIfsDMZ7s+k/QvgiAIQuFkEi5ENIuI/pyIvk9EY8n2/eS92Y1qpCAIgtBZROcWI6ITAHwLwC8B2AtV9hgAlkHlGruIiF7FzE8X3kpBEASho8iycvkEVHqXdwJYyMwvZeaXAlgI4FooIfOJ4psoCIIgdBpZsiL/DoDbmPkG801mngDwN0T0SwDeUGDbBEEQhA4ly8qlB8APA58/kOwjCIIgzHCyCJf7Abw08PlZAO6rrzmCIAjCdCCLWuxaAN8kop8AuNkIpDwGwNug0r+8pvgmCoIQhY79GB5uZSsEAUA24fLXAHYCuAHAB4lIe4u9EMBcqNxjn1Jpxp6DmVkEjiAIwgwji3B5IVTFyR3J6/nJ393J1g1gcVENEwRBEDqXaOHCzIsa2A5BEARhGiHpXwRBEITCEeEiCIIgFI4IF0EQBKFwRLgIgiAIhSPCRRAEQSgcES6CIAhC4bRUuBDRe4joC0T0OBExEW1P2f+3iOibRPQkER0goq1E9Eki6m9SkwVBEIQIWr1y+TCAV0NF9z8b2pGILgVwN4B5AD4G4BoA3wZwNYDvE5EU1W4UK1dWUosI7cmGDcCmTcDGjcCiReq1ILQQbxAlEU1BReRngZk5S9T/i5j58eR8DwKYE9j3XQCeAPBKZj6cvHcLEY0BWAvgtQC+lLG9gtD5bNgAXHYZMD6uXo+OqtcAMDTUunYJM5qQILgT2YVLJrRgiWQugF2GYNH8Ivl7oJhWCUKHsXYtcPBg9XsHD6r3RbgILcIrXJj5LU1sRwz/AWA1Ef01gM8C2A/gZQDeC2AjVAlmQZh57NiR7X1BaAKttrlk4SoAX0j+PgSVQPOLAL4K4LXMPNnCtglC6zj11GzvC0ITyGIfaTVHoATK/wPwFQAHAfwmgLcCmARwqetLRHQZgMsAoL+/H8N11LrYv39/Xd/vVAZ37wYAjAR+++DVV6t9brih4e2ph+l4DxeuWoXTP/lJlLTNBcBkuYytq1bhqWn2W4HpeQ+nJcwcvQE4F8C/AXgawFGoQd3cjmY5nnXsBwFs93zWBeUZ9j0AZH32USjb0Plp5zjrrLO4Hu655566vt+xrFihtnr3KfqcOZi293D9euZymRlgHhhQr6cp0/YediAAHmDPeButFiOi8wDcA+DlAP4rGfDvgSp/TIlwuKseQRfglQB+HcAXkx9k8oXk74oGnVuwEdfkxpP1Gg8NAcuXAytWANu3iyFfaDlZbC5roVyBzwDwluS9DzPzcgCvgyoU9tlCW1fh5ORvyfHZMdZfQRAEocVkES7nAPgsMz8NYMr8PjP/J9Sq5UPFNu85Hkr+DhFRt/XZW5K/9zfo3DMbCc4TBCEHWWb7ZQA/T/7XlsPjjM9HAKzKcnIiuhDAQPLyBAA9RHRd8nqUme8CAGb+MRF9EcDvA3iAiNajYtD/HQCbAHw5y7mFCHzBeaeeCvRLxh1B6Ci0mrVJzhBZhMsTAF4AAMx8gIh2A/hlKO8tJJ8dzXj+Nai1lejVz0ZU23DeDJXqZQjAB6FWTaMAPgJgHYsrcvH4gvO2bRPhIghCkCzC5X4obzHNfwK4hohGoQb6t0MZ+qNh5pUZ9p0A8PFkE5qBLwjPcHmtiybPpARBaB5ZbC63AXiGiGYnr/8SwCEAnwdwO5Sq7M8LbZ3QWnxBeOVyc9shCNOVaex5GS1cmPnrzDzEzIeS148DWALgf0HZPZYx84MNaaXQGtatA3p7q9/r7QUWL25NewRB6BjqSv/CzAeY+V+Z+d+ZeU9RjRLahKEh4JZbKiuVgQH12ra3iEeZ4GMaz8yFMJ2UW0xoBWnBeT6PsnoEjAgrQeh4MgkXInozEX2XiJ4ioknHltVbTOh0Qune89AIYSUIQtOJ9hZL4k8+AGAMKsdXsHKk0ACK8K6q9xh6VTE+rlYVo6Pu/fKmew8Jq1tvVa/Fu8yNXBehjcjiinwlgGEAr2PmI41pjtDWuFYVREBNujfkT/ceqk2yaFG+Y3YatgBft64zc4WtXAmMjACDgy1uSCShiZe4zWcmi1psLoB/EsEyg3GtKpiVgDHp7VUDYh5mem2SItSCYkQX2oAswuVHAE5pVEOEDsC3qmCu9SjLO9P2uT/nFVadRtE2LEFoEVmEy3UALieilzSqMUKb41s9DAwUl+7d5/7ciWqhPEjJ4plDM70ifedq4Co32ubCzBuJaA2ATUS0CcB2qAJh1m68psD2CTYjI6oztEL3u26dUtGYM2u9qtDG9lhCdoWhoZlrvD/1VLeTxExRCzaTVtpRfOpPoPiJVOhcDSRLsbCXA7gDQDdU4a4LodLd29vMZDrruYeH1VbUqmKmuRtn6RvTSS04Ngbs3SvxSi6aqf5skao1i1rsRgATAH4PwHxm7nJsrmJewnSiiIqHM8GukHeykUWAt/OEZsMG4OGHK56E020CUe+1b6b6s0Wq1izC5VcBfJKZv8LMuxvUHmEmIHaFMNOhZPHatcDUVPV7020CUQ/N9IpskQdmFuHyFNTKRRDqY6a7G88Eig6unW40U/3pO9fs2cqG2yCyCJfbAawiIqlV3wq0AXzPHvU3j3qhXXJ2tZtdoZ3VS1lph3scOqdMIBRFekWm9d/YBLQFk0VQ3Avgt6G8xW4CsA213mJg5m8X1LbpRT2eKbYBfHw8u2dJM71T0tDnW7NGtWdgoHOj0OulSI+ldrnHPtUXUWc6JjSKZnpFus6V1cMzI1mEyzeM/z8LwM75Qcl7YtQvmpAB3Ddo2INWnmM0kqwP1nRJiRJLHnVFu9zjULDtdL5nRTINUtFkES4XN6wVQpgiDOCNNqIX3dHN47XLjLzdaaajRGiA88XqDAwU346imGmTFwC47z7g0KGKCrXg3xwlXIioDKUGe4KZHyns7ELcLMT3sM6fH3+eRgbnNXom1S4z8npp9HVqlwDMdeuAiy6q9hZr51idrJOXTkvI6WLDBiVYNA2YsMUa9CcBfBPAbxVy1ulGo42o69YB3d217+/bF3+udjOiu/AZJlvpupzH2G/3h7GxBjTMQbvc46EhYMmSSkLTcrn9UviY92j16nDcVavuZyNx2cUKdhWPWrkw81EiehLKriKYNFplowe2uXOBnTurP5uYiJ+9d7IRvV1m5DG4+gMAbNmiBtnFixt37na6x/39wBNPqP8HB9urn9n3aLLGL0mxY4f7fnZ1VTyvOsT+UUMTJmxZXJG/AOBNRCSlkU2aFW2+a5f7/SydoZ2C87RqIYZ2mZHH4OoPmvFxFbXeSPfgRt7j6eKyHbpHJqee6t53aqpiq9i0qTNXMk2INcsiKD4LoBfA14nod4hoKRGdam+FtaxT8A3uviCyvLRT4KHONdYsOilTcpqwn5oqZuLRDvEsaezfr7ZYmiW8YiZkevKStm+9E4ZmP0sa18Ss4AlbFuHyIFQKmFcB+BKA/4Ey8tvbzMI3uOuBsCjWrVPLcZN2nb03gnZadYWIEfa+AcscXAcH/QbjTk382S4rn7R7ZE5eYu5nUROGLOjs6HknGUNDKkJf04AJWxbh8sFk+4Dxv2ubWbhUNl1dxevWbSNpqDN0wqzWJGbQyaJGayWu/mCTZbXpujbtnvhT97/JSbW1m9rIp2ZdurR28hJzP4HWpLUZG8s/ydiwATh8WP1fLjfENpelnsv7Cz3zdME2omqjrSu1Qr21WLSRdHDQf4wsDgbNNkba59O/o5Wz2aLjG+z+QFTJDAyoiUe9q81WeM/Fut/a/U+3q50mOD7HB1fEur1vqeR2AGiFenrbturrDMS56Ot7pPtlnowfEYhxvgi0ymbePPXXFixF5AWLpdmz2k5bJZk0Sr1kqvDuuquiIi2X1eoz7QE2r6nLYNxM+5tr5RS657H9r9UqsixqVnPfO+6oVU8XMWHIgy1YNL5JhrbvNGmMyCRciOg4InofEd1LRI8Q0SuS9xck7y8ttHXTAV9esEYNws2c1RY5OI+NNV9INeMhMwcm18TDxlZ1uAzGrfSeS1PFFNH/mi14fOdzve+K4YmZMGQ5f+yEzWfXTZtkNGmMyFKJ8gQADwB4L4A+AC8EMBsAmPkZAKsBNL52ZrtiVt0zZ5uhAawRs/56Z7VZHuwsg3PIZjI2pgbQRhuoV67E4NVXV9qTlha+UasyfY1dwXnbtrldX81r2krvOVf7zHveTl6NjaK/X8WdxU4YspA2YVu2DPj2t5UW5OhRoKen+vvmJMP3LDfpHmVZuVwP4EQAL4cqc2wHVH4ZwGsKaldnYVfdM2ebIVflrLP+4eF0nXczZ7V5Z0D2oProo60pLBWa+S1bplKYFCXwzJXZpk2qf9j33xSwNqOj1QNFSK3TSPfWNFVMTP/rFOeMNBqx2k6bjJrjzOSk+v+YxHQeO8m44IJs7+cki3D5bQA3MfMPUZsRGQAeB3BKIa3qNFxV9/Rs0zcbKJXSZ/15Zs5ps9oiB548MyCXWuXoUfe+jfbAWbzY7em3bp2aoRcl8OyV2fi4csxwrVB8FO3anlf1lKaKsfufTv1y663TQ6CY9tMtW4pfbYcmbK5x5sgRNZZkcdG/++5s7+cki3BZAODRwOdTAGbV15wOJbQ6mZhwx6eEUk4A/uVxyK1TDxjNignJs0pyqVV8NFqV0t9fOxBq/XlWY2kIl6AK4XNt196GrUCrfbUHnIl9z4eGVHuJ1P5r17afO3IW9EprbKx6NWtTxGo7NGHz9T1fe3y0m80FwJMAXhT4/CUAZmYNU1vvaTI2pgYxeybnSz+uO5dvebytQXGqeWayeXT/sQ9CswzUPoN7XmOpxlwhZn34Z8+uqDq0wGtw1cAgeuWl1TGma7XrntvqG63ym+jwKukxk4R6B+jQhC0tYDv2GW5Dm8vdANYQ0Un2B0T0cgAXQdldZh6hgMmpKZUXzJ7JXXCBXyUD+DvpxERxVQuLyPSadZUUo97p63MLqVB8T158+v/Fi4vLiOD7zfYKQLNzp+o3s2cDs2a1TrDoa+MbVMtl9z33qYnNfFy2oPG5X7faZdkkZpJQ7wAdmrC5snQQZSu9ATTNLptFuHwAwFEAPwLwESi7y2oi+gcA3wbwCwAfK7R1nUJ/v4ru9aEN/OZM7o47VKpvXwxEI2cXLpXbli2qeFCjcdk5bObMqZ0JN9tNub9f3Y/Qqix24HMJqq4u4PLL/YJnaqoSQd1qfINqXtXh+LgSNFqAuNz1G53gM49TQdrEqKgB2jdhGxqqnWgwq+uYZXKoBVhMto86iBYuzPwkgOUA/gvAW6G8xS4E8CYA/wng15nZk7p3BmCqvly4jMN33+2PgfCllSmi8/qywhYxmKUNuLadw4U5OLUyj1Z/fzG2K1tQ6YnETTep4/tgrnZvb5ZaybyHoXPWqzrctk2dZ82adPfrRmCuhLWgCa2MXZMETVEDdNrz48qOPjWVXV0+NKTcqefNa5hdNlMQJTP/lJl/D8B8KJfk5QBOYObfYeafFd66TiPU+VyEZngur5s8wVquzhqqcd4ozDigtWvVtYoZnIoKdExWP/N+/OPmF3waHgY2b1aCRK9wt2yptCMkaE33dnO23wzGxqqrFdr41MEu9Y2L8fFK6h0Xo6PO3zt49dXZVWVFqNf0JEHP+Ikq+cgWLVIecY1W42VdRbaQ6NxiJsy8F8D9Bbel89ErD53zp1xWD9nUlPvmh2Z4uoOGZrZ56enxd8ZG1BF3GXi7utT12rOnWnjYq7MiPFuM1Q/p8wOVAl5ZJgT1oA3jehUbug4+inToCOW6020N4bMFDQ0B118PbN2q7rkvHxeQPiimtSEPWiWWp0yxXQQt5lxAOBeg+czNnu2/rqHVetGu6gWQ+akiol4iOoOIfp2IzrO3RjSyozBVKcuXq4G8SONwDGn65NAKqxHqJ5+Bd9eu9NVZmu0pZqaYVsCrWSsCl2HcdR18noRAMTPUmFx3aZ5RaYOZGcXuyscVSx6VTxY2bKhEvIfy/jXCmcSl8n34YXdf1Pu6aEQW9gLIkv6ll4g+A+BZAD8BMAzgHmPTrwUbezlt62dHRuoPMLO9bU46yf8w2O0pl92eS0VFyYf8882kny7PqCI8W2JWOdu2Ve5DWuJIkyyxJyGVhm3E9Q3e5vsxAbG28I3NdRcSYr292Qczn2dcDI1S+eiAXjs7cGhCNTKSrQBaCF+VS5cw9U2QSiXgzjuV2rXNyKIWuxHAGiiX5G8B2BnefYZgLmtD6fZj0uX70DmnfOqqPN42uj3796tBbeNG935FBFbNn6/ca21ilvJF1IU/9dT0yqDj40q4TUz4r2W9KsJy2T1QEtUKqMWLldrOpt4ZasiGZf4+X1uBOMO1LqWgB3CfWsw8H+A+p9VP5jz6aCUOKCvmqj4mZb397MU6VcRMOLIERfr29V3XoktJ5CDLHXoDgH9g5jYtAdgCXIO62Ql0p9y0KTwoTEwoTy3taqtn5SMj6rPx8Wo9vV4e6/oT27f7vW12707/HaGZeb2uzxs2KEO+DVH8QDk0VPmteVQT69apaxayaZRKqp0up4apKSXc6n04Fy+utrkASqWRRV++bVt9gi7WhuVqK6AM2L5zu+wLrgHche4LrnM2aoAMuVJv2ADce2/14K0nKFlWYSGNhG/SY/YHfU1DEyRbXRZb0ymPzSkDWRShs6BUX4LGNwt85JHaXFJbtlT2NVUV2iPHNHabaV4OH07PcZXH6K29tyYn3TNkoBi70Nq1Kv+RjTZkNwPD844B9+BQKoW95YpQzbhiZ5Ysqc3wEEp4Wm/Jhtj4KZfqNGRs9pF23czj2tfHvE8uG2C9nlk+oT5/fni1pV3E67XTZaliG6qIaY8HbVKpNItweQDAixvVkI4ktFR1GUOPHKntkC79qpnmxTfgmefOGnBpp/Nw0dWVzW/fZ3vwXaOpqeZVwASes2nsOfPM6gJemjR1R1HeOP39Sv2m4wtcg3XIAQEIlzVIG2xjbVhaHcRcUfeG0hz5CGUn0E4vExOVGb52iCmXa/un+bv376/fTukK6NWv0zz3mP3G91hc0fi+VD96Xx+joxU7YVopiSaRRbi8G8DFRHR2oxrTceRRGdnCJM1v3bcEN8/tiisIBVzG5Eiamqr47cfiSkHejvU9dGLFWA8m12wyxuMq68xaOxTEDAJpNiQfvqzF5iTClcU5b24wX3aCWbMq/WVysnYlUGTiUB86oNdcnd1yiztQ0cXUlNJSXHpp/jbYjhxasLicNYaGwpOctFWi/cw1sjQDAsKFiG43N6hCYD8DsImIvkNEd9j7ENFtWU5ORO8hoi8Q0eNExES0PeI7FxLRd4loLxHtJ6IHiei9Wc5bGL5lbUgnOz5e7R0Wcjvds0fNkGKy0Lqq4wHqod2zpzLYb9jQGO+biQl3wa+0HGr1UE9amNhMxa7ZZKOri8YIXqL489mrSlfWYvNYPpfptAwOLq9HW71WKqn7f+hQdcp6eyUQUFmVDh50CyQfZj+5997KM7Fpk/p8VpLMXV+LLLm6JifTs5XHEtOfXSqzGBtQsxLBmjCzc4NKoZ91m/Qdz3MOhvI6+zqAXQC2p+x/O4BJAP8E4AoAfwLgowA+G3O+s846i+vhnnvuqX1z/XrmcpkZYB4YYF66lHn2bPXatZXLzPPmqU1/v6vLvz/A3N3NfMwxlXOsX6++u2KF2vT/8+apcxOpffVf8zg9PeFz6a2vr/r4IVasqD2X3nR79TUiUtfI/r6+Jr7z2W1Zv565t7f6XL29lWvjOcazZ56p/k/7/V1dlXba5x4Y8P9W+564fo95//VvN6+B67f5zhe6RvbxzWtn9zl97davD58z1B/M3+Vqw+zZ6X29VFL7L11aew1c/berK3zPY69l3ufEfK719Tc33zWxr4/r2vT2qutgXnN9bfTz5uuLrmewAQB4gD3jrddbjJmbEbb8ImZ+HACI6EEAc3w7EtEaABcDuIiZ72pC2+KwPZlWrlSztTPOAG6+uXrf3l617H7b26rfN2ceOqLf5MgRNZM799zwMnZiojpdB3PtcWK58cbK74rBPpdmx47KNTL16ib6umXRoce61PoIudoODISN1yEHikWL/Od0qcj0bwcq3ju2+7WPvCoiV1DrwYPAVVeF072Uy/WpUQ4fDtv5ALUS0GUqrruucg3KZZXQ1HZp116RvnueZr9yceSIysy9f3/l3PPnh7MojI+73fmJKiujEK5ro22vdj80swRs3676nM/rbPny5to2DZqU98KNFixpEBEBeA+AH2rBQkTHJe+3Dlunbg6QN92kBiiNr+6F7ZXiU9XEqLKKyqIbcjc1MX9/jG3IR4z9wqZeo2XWPHAmzbAjDQ2pQalUyp4gMs3W47tGO3f6B88iosDTBItG2yXNANvly/22kNA9zyuAd+2qDu5dsiRsUPfBrAT2ggXhfu27NjHPvcvmmifQtWCyROhPEtGbA5//IRGlRErl5nSoQmXfI6L3EtFOAHsB7CaizxCRd8XTUnp6wiVIs8yqSiX/Z3pwjn14QxBlczfVRlnXuWP0vHntF3ky8g4PY+SGG9T/Oou1SyiG0nAA/roaeWqQx2QDiEkf5Fr5+YR2HiFYRMGyWI8734Dqs4WEbCR5Bb7re0ND1RPGLOzcGe7XoXmyywYzOFi90nVlAGllgTlkW7mkrRIauYo4Pfn7hwCuhaon8wcA/gXK7vKVlq9igOrMvzHRvFlmVVNT7oHHrklfLzFLeD0ztr2KTGJTkPvUW1ddVf2e7dmSNuDGeGr19Kj8V66uo9Nw2EbWZcuUis9VV+OOO+IMu3pgiM2skJY+yIXdL8bHVYneZcvcA2RXlz/qvVxW6UXqVa/E1PLR58vCs8/6B+1QfIgPIv+kqKdHXb88rumhWJNZs8Ir6bQy52Yut0aWNs9AzhwKTk4FsK/A45kcl/w9AcBrmfkbyesvJkJlNYDXAfiq/UUiugzK0w39/f0YruMB2b9//3PfH7z6asx59FHsP+00AED3rl3o/dnPQHoGPzoKPZffs3s3Rozvzdu3D5OzZ+PowoWY5egsDIekZsbkY4/hO8PDGLz6ahy3eTO6jhwBmDNJdQYw1d2NriNHwF1dIK2GI1Ln6OrC/t27gcHB537fiHXNBpOo/+Meewwlhxpvsrsb3/n859UL/bt378aco0cBAPuN67Fixw5n+3nnTmy+7jo8df751ee++mr1T7mM7pNPxqwnn0TXkSOY6u7G1muuwVMnnwwMDz/XRrvtv/KOd2B3sgrU7Sl5riGPj2NqzRqUDA84JsLBAwcw65lnULOWPHgQk489Bv7pT7HfiH4eMa5B965dz7WZv/MddDm8sg5fey02nXwyXnn0KErM2LN7N1AuY05vr7ofevVl/DZ9ffeb98a2sU1NYfKxx7DvjDNwXE/Pc/1nvL8fk0kMy6ynnqr8Xqj+cnDhQtzveG70vRi54QYs/MY3sCzJcDB+4ol4/JJLnrt3z7WtXMYvrrkGp3/84+rcCea1nzrmGBxauBBHkj7yXL954AGUDhxw9/WpKUyuWYOtmzfX9BecfDIWXnMNlq1bF/2cMDM2nnxyTZ/9xXXXPfcbp7q7laBhrr3OoWPv2IGNjudpTlcXxo3+zF1dtX0j6V/7DME2Yj1f5rPlewaahs/SrxwB8HtQHlq3Q3mDDRuvze1LAPYD+FroeCnnehAebzEAvw/Vz3/m+OxVyWcfSztHod5iphfOihUVbyifJ4n21li6tPJ+X5/b+yXk+WEfI+tmejTZnkqlUuW1eQ7bw0t/N62dJtojxvRyWb8+7O1ie0OZ53b9Btd+Fs+eeWath53P0y10P0Ofm/3CbMPSpen3V2/r1/u9ylzY/TF0bJd3nv6e6dlXLtd69rnO6fLsMr3PzOOtX185l6sfd3dXezaZbU277q7+okn7rus4K1aoZ6JU8t+7k07K5o3W1+e/luYW6pOuvuXqH7HennWAgLdYmlpsEMBbko0BnGe8NrdXA/gegLfnknDp6EJkTzo+S9wm8LwGnTuOkFpK2xGuvLK6PsXOnaq7aHUEUXX6Cxv9fmwK8izZhAcHlTfO4KAKCjPbyexW14RUA/a+vjQ3ITtFsyKKXSqJkIpCexC50O+7AkpjY2sAdW2yBC2aKtlNm8IqLqBaZ29iBvXZ1VFd7N+v6rb4VJsue5perbv68ZEjftVRmlot1F98xm0764AvBst37+xyCUXhsxUNDNSqJxsR0FsAQeHCzB9g5i5WbskEYJV+bW1zmfk3mPnRBrXzJwAOAzjZ8dkLkr9PNejc6QwPh4MhAfWw3XKL2824VFLb3LnqYfZFNesHJMa+QgSsXp2vTrav/sqaNdUdNOSNYg8QvjQ3d9+t3D5dNCuKv6enNgj1zjv991SnQ7Hp7laef3v2VAcIjo4CF1+czS528GC8959djG18HDh61J2uJUuAYCz6vDYu7zMztVHWKPz+fmD1anjOFu4v/f3KVmJXkbz99ur3XNVe58zxC3q7XMK8eWrzERv9H5ump9EBvXWQxaC/GEr91XSY+SCALwI4kYjeYH18RfL37ua2yiKmtGuoGp9eNQBuA65ZsyFmlsSsDMxmHiv7oRkeds9eY1OBh2a19jFCA8kJJ9S+36yI4okJNePXyTt1XMKtt4YTC9qDVV+f+j/R0deQJcZIwxyXudY1GQCUsLMZG2tuqWQXWVIbmX10ZAS4/Xa37SRkhNdoB4558yoTuaEh4Lzzqt9La5ONq2x2yJvRXkW4PAZdecf05FB/d3i4bZJUuog26DNzzmRGfojoQgB6engCgB4iui55PcrVwZJ/CeB8AH9PRH8LYDuACwC8HsCdzPy9otuXmXod1szaEeWyGuTOOad2Geyr9WFz8KBqk57BHn+8+usasEy1iq8sreuB8QUj2g9jaL/+fjW714FkrnxX9WA+jCZ2jXg9A9ezVDuYUa9YnnhCbT09ahscVMLbVbMmja4utbmEUqyqxTcZOHCg9j3tBddKN1X9u2bNqg3aTJtU+CYpzI31kFq3TnnbuYS4Lldt4ipZoH+bGZwc8hiMKTXhu/ejo6rcRoPT6odoaRAlVPGxDyXbQgDHG6/XmDsy8w4Ay6Hcjy8GcANU7Mu7ktfNw44pcAVD2qS5Q9qqlFD5XT1r1oRUcj6VhcnYmOqkel/X79AzdtOWsHGj+2F36a1vu829zJ89W11Lc1a5fHm6m60508uTUBHw265MdZQdyNffX1nt7NlTyW+V1z60ZAlw2mnZguDsmW9WVZd9z1wxMlmqo/omVaWS+57r39XTU/3dgQE12dAJU48/XrlOa3vC3r1+W1KaWrpedCyJD7uCZEz12eOPVxMXXy0mTajaqW9FVbQNKAetjtBfyczk2VY69t/OzEPMfAIz9zDzMmb+a2aOtJIWxNiY6ux79qgBbtWqcDDkwEC1/SML9gCoixjpGV/e4D2zw27bFm6/1kUD/rgWjU6aaQsHvcyvN9DLlbF3fDybqmdkRA1aoVlw6PymY4J2dggFufool911THR/2bat4hDg+32+Ymxp540htmrqrFnuydOLX+xW7Zj3vKtLXTtXCQI7GSozcPRorc2lCBWqnjCEkkb294fv8/h4bVJMPWHyxZ7Um/05pLrNU/W2QIqMc5kZbNgQp5LSrFihbvCiRXGrCBvd+XTQ4mOPVa8smGtzmGm6utznNPNZmefwoWvbb9oU9nYql8NG6KGhSl617dvV3yz5y3zX3p412iVe7TxhetDyEZoEuFY7U1PqO668cICyx+zbV73CstOpaCEDKG89u5Jgb2/tLHXlSuDb387er8z8XUXQ0wN8+tPAhReqtmi7lbZp2Kod857PCSTXiMlFlkeFaquKbPWo9mR0rQrmzFHtSpuYaPVWuRyugxOrVvbhykMXyqbgUxE3gFarxTqPLIYyc4aYV21iHmPbtuyG4Vmz1MO0cqVyG007h4tDh9JXLEBjUvkDqu3LltWWc7XPvWiRcve2B2Y7lYuruqeJL0vB2Jj/N05OVq8+ymXljbRiBfDMM8oryfwsNAD4jLQuwZZnwnL0qLoml16qBhk7s0SWNPY69T2gZuna6zGtsJg+p1Z3uVSbod+mvbLSVKgan/MK4PdkfOSRivefeV1iMw3ElClwHStrSQqtutVepy1O+6IJ1XOpyiWW1Gt5eXOa1YasXKkikmOFhDbUavWTbyYSWmbbs9usg/fUlN9uoxkedttDbHQW1hDlstufPtbH3lRNzJpVW2MkLQ/b6Cjwmc+4ddhJKpd5//3f4UFr9mz3wGh6lLkol9U10vV8xsfVOfW1d8WP+Owasd56QH4nkqkppXrTsVdm/FFaYTDbCM2cLS7HroTKrI5lq6JCvy2vnc1FaMKgGR1V939iolJkzFT3+UgT/vaxfGrlGObMCa8Em0xo5TIFVGW4eAuUAX1mE1Pq1VUb3acbvewy98De11c7u81rpHOlUTcHNtvtMS/1ZGE96ST1kJtqBdNfP1aw+h7m5HgUethLJTXTdAWjhb6nJwG65IGtGnHp782Zu52wMksAXVpOqhCTk0oYZy0M5ltZhdL1m/iKkdlaAc8KkvT+NjGTGJcdIku/17/RriAZKudsYgY8amcQ81iHD1dCDmKI+c22q/N99zUloDLUK3cA+HXrvRxr8GmGbwDVQVnz5qkltL00dQ3gU1MqiHD16sr7+ji//MvqGHayRlfsQho7dqhObC7x7Zmf7uB5BEy5HK5/EoNrwDH99Yvwfklb+ZRKbuGWpibSkwDXgOwaNO2ZuxZC+jyxAXRAJQDUtQImSu8vPqEZEqah1XvIY1ITa8QOTeRiPN5M7ASk5j3NOilyRcG7jtHbWy0gXSu+hx9WKl9f20PqPB/mxNHl6pymzSiIkHC5C8AlRLSLiHTdlRuSksS+7bGGt7gdIQJOPz19cNXlZU1GR1Ww4+LF6YFc/f3A5z6XvX1dXdUqndFR1cHM8scaXf42DW1P0LOtc86p/tw1o9KeTa7zpg04sXpuILuqqFxWLq62wNUpTELG/74+NdMcGfEPyPag6Zu5m3VMzIkIkVrN6AC6e++tHoz6+90uuszpZbd9hIR5vZkTfKpgl0u1rx2lUrw3lD3A2na4zZtVfzY9GUPYaWzMY5jtvuUW9Vxo4eBa8dnOKEXjK+uxdWvDVy8h4fIBqFiTrwLYBjxXkng0sDUpGVRr6N61y613Z67Wr2tc+Zt8xsPYDjY0VN2J0/B5jGm0Z4we6Pv7gcsvTz9uqN6Jy5agU8DbucXSaqbrgUzrps1UHSed5FYJXX559cAcQlfr80XW79wZNv7v25eeasMejEOpRDRmfE1owgGoa+0TzuPj6hplqUOSVmiqXrff0D2x+46vHb4SFC58g7qpxrNT1vtSEmlcz2x/f9jRIIstTWOvuEJ9zYy/0mESvqJ6eRxBMuIVLknSy88lcSWvgVJ1Xs/MrwptDW9xC5n1pCtvZoJWbaQZGkODgE8Hb9PfX/2AarXUvHnVKUkA9RClJUu000U89FC6OsWecdn1VmxcBnntkbN3r/r99qBjq4KGhqo9kpYsqQ5UA9Tvv+mmioovxlYC5DeMT0xUrp3rGC7Pn3oC3+67r6LeNANIfe3Xx+zpUZMSWxh3d1d/t68vPf5oaCi/nQcIC3L9DGzcWAksdqEndDHkqVp6443p9tWsDjahFZ9r3HCtuC6+GPjud2vVe3b8VRpNKH+VpYe8CsDXG9WQTqArzQ04xvUwNID4dPAaM/BRP9x6lqQfhJ6efEZe+0HT0fMhYh4urQsPeeSYXkOa2PgFPeOcN08JHXNASGufeY1iiqT5GB1Vg6L9YOuccHY+KFceOi3oQgJ6w4bq2bbWn+/Z4x5UXLE0pru0zodmfjfWKP8nf+J+v7u7NiDR7sc+tZPdljRi+1+eEtxDQ9VJLV1ktQOuW+eftLnsIK4V15EjFeFsqvfyqNYabHeJHoGYeSMzP02KlxLRHyTbS9uiCmQTmIoxpqc9HLHGQ3NlYKfU1p1C651NBgfjVis2rgdNl2n2keXhyrIvUUWtYKsFsrigpp1Tx3uMjcV5AYbaa9/37m5/VPbQUPXKQMcm9PeHvX+yJiM0AzPN97Rnkivbb2zSQ3t1WyoBr3lNRd1kqj937FAxNRpfdcisqprYlC+uyVZMVL9eKc+eHU5jE8Jc0evj+bAFREzYgx4nsrpm+8poFEim6S0RvQ7AYwDuB/CPyXY/gEeJ6DeLb14bMTJSqdoYolyuzX1lzhD6+5V6IsZHXvv+uxLbhdqSdbmellFWR5+b6FlxKO8RUHG5dam9fOhBxqUWOHSoErj38MPVbp32NYlxAjCFeKw7qf2Za1A8csT/4NoeaDpiPm0mmTUQ94knlAplclKtqO3jh5Iexuj5e3srqVte/GLgnnvc3mK2wLJTAeXxBLSFgx0IarZZe9S5MgzbuPpzT09tLIqtOnS5GJvoSUMo5b793MY6ToyP53OycHkyFomvipi9ATgXwASAZwF8CsrYvyb5fxeAcQC/Fnu8Vmy5K1GuX88M8FRalbneXlWZzlWxrq/PXWEvVMWyXA5XagRUlbxjjlH/64qRWaru6c1X/c+sxKePq6tI+qrf6e9mqbzo+21ZvzN7dqUddmXF0Kbb6/rMVxUwS2VEs3pg6H6b1QPtipFpfSFt6+pSv1GfI/Z4+nsmZvXSUim9midR7XOlv59WydXajsyeXd1f16+v7We6EqZdodNVmdHsI3bVVbsaqO/7rmqU5jMfc83tSpq+47r6zRVX+D8PHcN1XzKAOipRmrwPqhLkGcz8Tma+LdneCeCXAIwl+0wv9OwZjrr2Jno2s2uXe1Wxc6e/iE+oOFjabHVysqKDZVaz+fnzs9tc0mYwpjpFq3tsH3x79vboo+5rUS7HqTRiYiZsDh1SM2LtPqy9rkxXU5uBAfU7XNmmjzlGXVcXixeHf0dW76C0FWe9XlpTU8qBwjxebBqTNJ2+7xpp0mbWGWJNSrZdyFXP5uBBlW8LUGmPfHEkvtiTDRvCKZOAymrE5+5rP/MjI347JpH6TK+aVq5UOdjMFVNfn1t9Oz6ugmFd6FWar+83onhcQpYR6OUAbmHmmjwgyXu3QqXEn174Oo6JTvexdm14gPDps12GVh2bklVITE0pAWd7UaVRb0lh10Pq8woaH1cPUj0eR2k88UR1fMrWrf4B0MwqrR9encnW9xsAdc0uuCDOYGy62KaVSNbY2bevuipfEK2JVsEBtfE0IfWUq1/v31+ZAKT1tTTBaAv2AARUP0d5XHw1PjflLOqi0LNjP/NaLW5yzDH+ODkzet/OUWfi69t2/RibGFf6nGR5unsA7At8vjfZZ3oRM+jqG+tzeYw5nl4ZLF2qZt96UMszex8fV8fL4gFlzyx9NdZ9xAhhjU41bwrURviEPPVUJegwNLO+O1DENDTg6jLNr361+/P9+7OvVDUbNqgM2CY7d4YTl/pqndiYqxC7Xk2s4LMJ9bW+vuy5ssrlcJ8wnyPf7DvGluN7HrNMttJWZfaxzHiYFSuAc8+Nz26RNZOGjiXzTeRMV/qCyZJyfzOAPyKiTzNz1XSOiI4B8IfJPtOLU0+NExpZjhdCV6KsB52DKnZl4MvCOjysChqFVAOaLAk99SCqvZn0jD6UyjwPsYJ5dBR48snqc+ssAvPnq4fT50AxOgo8/bT7M60WsdGVN7V6R1e4NAeYtWuzZ8CeN0+tWpn91USB6t+pXcU1rgqKtuBz0dOj+oqd4LS3V8WMpGGnvU/rB/o5CtWz0cXtzLgg+3f4nu8sBvJ169R99k2uQseyq8+GrrPpaBD7nMQEaNertfCQZeVyM5Rq7JtE9HoiWpxsvw3gm8lnNzWikS0lVi8dg+nhou0VtmdZvYOreY7QbN301DGzsJquvwsWqAd3cjI9sDPmYXQl4zRxzeh1W0ul+Jm5xnSjTvP4cl330VE1WIY880ql8IpNp5CxA2S1+q1UqmRJNsnzwO/cWclcELpWoVmvq4KizvicxpIl1battFiliQnVtzZu9AdLOu7bZLlc6eMhIawzGWvGx9VrczXpSyibNeX9Lbe4P3O5POtn3y6GFkp0apPFwy5tTGmQ3SVLnMtnAXwCwCsB/CuAR5Pty8l7n2Dm2xrRyJYS6jhZcLk/uqoqZqVU8pdS9Q2ofX3AeedVp38Hau0mO3dWBJQvsFMT8zDqmakv1Xx/vwo6NFO8mG7QrnLAIcxVQ1cXcNJJtZlXswbumfT2xq2O7Ou4ZUtltj01VXGpNl3X8+bvmppSgsDXl0LxGXqiowfk2bOV3ckXAzRnTm0clBnUGqq1YgeE+mCuEVhb3/WuSinkkBD2BTSbaqBbb1XXut6U90NDlQwZPpdn27HAVVfItvfYK0tNlmSbRPWnMMpBJosqM/8FgGUA3g3g/yTbXwBYxszvLrx17cLQEDB7dv6U0DpTstlhdVVF103PYn945SurcyKZKxDfoHnCCe730+wmIa+hmIcxZomuA810Ti1TmLhm1UuXunOtXXGFSgMDVOpcLFmCg6ecUtlnYCC/YNGz8ry12/V5mauFgRY+zzyTr3RyCFd8BqAGvYkJNVCbDhmHDqUPOnlriMTq+bV9zhBYT51/fuVznxAOTRpcNhC71o5mzpxstseenlqvSh+x7XNhO0CUy25nj66usMcj0DC7S+Yyx8z8MNQKZmbR04OpyUmUskbCupavhnuzE+ZK+dOBAeDnP3d7LfmWxr7j29mbTX3vokVxtqXxcTWbGh6uLSd8zDFh7yr9fdv4OzGhZnFmFL5vttzfrwZjnRFX66GfeEKpnUolJXC1YBkZUYNnMgAemT8f+MUv1Ovt2+N/t4kuXa0J6dvzcuCAGiympvILQBu9knANeL6SwqtXq3vhux9atbt1q7p/5bIa0NIyHsSq/dJm6D57R+iapa0KR0aU/QhobB16nwCMWbWOjVVWZtpW88QTlWdJjyGLF6t7k0YD7C6ZhcuMJDEadqU95L291Z1cG0JtfXXaCmFgQA16gEqbsXp17T5dXUpXqgd3XWNiaCh8fFOwmIbb0dE4FRGRevhc0fMxDAyoGZcejGzs45hqp+9+V6nGiiTNGGtjryr1QK3rx2s15dGj6uGeM0epxfJw5Ig6xqxZ9Ts7pK2Gffd9crJafaWFuRkRb5LWRv39WEeZmDIWQHUN+TTqjRfKil0SWq8GZ81SbbadJy64QLkcayO/rQp21QPasqVSRVULdr3iClVQ1dRbRsFBAwMNpgl6EGUOB1GWSu5ypa6HIzRLMA2AOk29rdfv61PHNWu6m8WtfMc3BxBXTRHm8CBkFj8KCTDfMXp71YOzZUu6EDt0qFYnf/SoEkp69ejSR2sDsZkCZGrquYHwuIceqv7d2qYWq4KyV1062E1na37lK5VrqbY53HhjfbEp+v76nB1M+vr8ZQjS3NLThM+hQ5UklA8/nH4P9axaBxraxDjK2G1yrSL09dfu1DEqZZ+qStucdGyRL50MEJ8K31cS+tJLVa0X0x0fUH3z5purn+vx8ercbK5nF6i2MelrFZOcMibPWg5EuKQRG7+hb7ZPd2vimyVoAaU7v69u/Jw57kwAOmArpIfW+GZ5poDp66t4HWnjpJ4VhQSk1o+7PIdCMSUxaFuAja2u1OnJdcbgZCAsHTmi/j/ppMrANzSkhIKZ861cVvuY7dczw6ykqQpD6PZoe1MInbfKjh9Ka/ecOUpdmia8tPdVjOdY2uQhzVFGq3CzkleFaDvXmMfStYcuvbSiDrZX7Zdd5k4e6SsJrW0c/f3pE4epKeVxqIVZ6Nk9fFj1W82jjwZ/djDPWp2IcEkjVhfJHG8U87k/3nFH9U0OVWcMfeabFZqzV5+9ZmCgIhyeeUbNwl3GyRgBZnLiiepvUTFD9ozM5RkUihNxORZow65edSxZUnGWuO029ZBrd+Jly6pn5IODSkDZM+u1a+vzRtM2h5ERNaib3oE2zCpe57rrqguNAZUof98s+4kniiklralnBQGo37J5czZ7hzmo+iBy/37fakCj08msXOkXGFNTtcb/UHJQnTE57dyAUq3GqP1Mr84NG8ITmxingzoQ4ZJGFl2k2ZFCxbNcaTdc7o+h6oyhz1zHJ6qevd52W3yddheumiSAGhT27lUPm6kX1iuJojCFw9hY9gE8i/1CqyfteASfysG0R2QVpvZK0V79phn49SRHt2HPnuqVnl151GRiwp0BOw+x2SFCkxwXK1di8Oqr3Z/F1DTxTQJjB24gW7qZ0CRM34MiA4eBildnaLLbZsXCZiZZgihdHclO7miqYnwqNG1LcKWM1wFeacLBPr49YNgCKOvyeGio2i3Y7KzMatVgz8aKSF2i0Q+kDkTLSpZZuks96XPL3rChWqhmZXKyktfMdS9ijquLSPn21WoZO9Ho1JTqJ1nz0rnwqeFcZYxdqXDsSY5hb+netctd0iJ2kHYJhxiXct1nQhPOjRuBb39bVQwF1O9wXUtTyBW5YtSMj4e1LvUUx4skl3Ahol4iOoWITrW3ohvYcoxBmAHVEa64Iu6BAGoNf1mqv+m68a4Vjmt14hMOdgoMM3GhVp8sWlQJTMvSvrlz08sJx3DuufmKj+UpjEakhHMsaVmMzQHTlaE3C77rqKs7xlAqpbdBr2BMQzOz+p6+r3kpl+NjQ1w55uxVvKkFGBtD789+5l5FxvYfM3WMfjb37w/bpUwVZdqEk7lSi2loyH9P9ao2ZHNJy7Hmo1z2R9739SlnggYTLVyIqIuI3k1EP4dKYLkdwDbHNv1IBuHJY49Vg/FNN1XP7srlSjlbE5fhL6ROMdEzNXMFcviw0kNb7QpGQ4+NVc9gtNviggXZo3J1HieddyvrjNFHqaSOFVPcC6jOdZXx3AwAl1+eTc+cJZljvfECroHkpJPU74wR4LFZA3xpa+qdJJjlmmPtJaata+7cyire5Wm2bRvIbqNeRcamMdm/H7jySnc2CtcKuq+vWkVpT+xcxGRW1h6KtoDVziM6ODjrPdFhCq7JCFFcrrcCyLJy+SiAD0MVBvs0gA96tpmBzjpsptu3B2tfOu889a5DhAK9fB5nOqmiLehMXb0pQAyXbAAVQTkxkW3F4ZodTk5WVFtpqXZ0XXotZH3n9rgW//z3fq8SYOnDvJ6Dg24VpC+ZY0hlMm9e+Fp1ddWqK4aHlc0kZjWkVZtpKp4YATQ4GHdfS6U49/tY0oIWQ6vIGC82QPX9z3zGXZ/edV1c3onmxM5HTC0mjZkVXZ9zyxb37/XVdQEqz0dPj1sN3dXVMAO+TRZF9yoAX2PmC1L3nAnYWVy1muHUU1UnX7kyzvA3MtLYKOC0+jLbtlUGNDs4a3S0slz3CcrDh5XL6I4d1Z/39qoH78knq6OFX/Uq5cdvo4Xu0BCwapW/zdu3V7/WBdXs4FWPKmHBpk3u4+rrr2fKZvaB7dtVIKsObNOBoK5B1BWU2dVVURXZwasaIrWPa9AIDVLlshLwc+dWX5uLLnILpIEB1ca1a/3OBg8+qFIEua6tzeSk8pLT/TiEXvkyqz532221191Glx3W++nMFVlwBQf7VgOu97WNSgc2xxwfqEw0fG22JwFjY+kBj+Wy8uLcsKESuKsDLc85p3KdLrzQ/f08JTxykmXl8jyoJJUzk7ExlA4erNhOXP7jdu4s3yy2EQY8H2nnMju9yyVSD/q+gYi51jakZ9CmK+/ypI7cHXekt8Vn3He977NLeVwwy089pf7xBcEND6t4BludeccdarDV7pu2YDHVmPa1WLKkIjTs/Gjlspqtzp3rn42G+tHy5eq75sBuO1toYWg6CvgMzYCa2ZsryZDOP9S/7Azbb31rdVS5z2stxOLF4Kw2iCLS54yO+oMmZ80K22BdK1yXZ2aMRkP3SZ2DT+cXO3SokqUDaIuxJ4tw+QmACEfyaUjiAUTmjN7nPz4xUXnQffEsWTKa1kuaHcPsbL4Z4cREOIJdrwbSEvb5VHR2W047zT2gmalfzIFr7drKwK897zwP0fjChf4gOP1g+uIY9MNvnnvjxoqjhP6+aSdzCSI7c3CaGsnn9h3qR5s3VzJfuzIbhwzNQPVKMuRZZLbBLB+hhYlp07CDDH2VWUP09+PgC16Q7TtFYJZl0P1Fq4x7emptJqZTgp1kkqja+Ubbp2JWZOZzMTGhhIorS4dv7MniyFInWYTLBwBcTkSnpO453cjiAWTOGPQs1pxBmjpp201ZY7trZjGOmgwPq0HGl97ETr8eip0JLad1pzbtN9qdGqgMOqGHxy4idvrp1W7OphoqxlHC4+L6+CWXpEdNh9SZY2NK5WT/lrwzcY2u/Kn7g6kmcq1Eli6tz7ahjxNC/0Zf6noTuzaJS5i4MK91mno4Eeq9P/1p+nFj6O6uvqZ9ff59bUGsJxvai0+rs5YudU8Yenoqz+Dcue7JV8yqwhT0rjFJ92N7BW174eUdUzLgFS5E9D5zA3AWgFEADxHRnUT0AXsfInpvQ1vbKmI9gFxLXTOF/Lp1qkOGIqVtj6yYwUrrpX240pto1dV111UyEh89Wrti0L8pbSDypdO3Bx0XpVKtIdic3Z93XvXMO8ZRwl69JA/XU+efn17aNqRSCEVTx8zEQw+1mdvKXAkBlevhWw3lIS1gVt/z0Apnx45Kht48LtixQcrGhKKQ8L9SSfVt85reeGO2ANLxcbVyiK15lEaaRsN+NkNZOoBqpwPTC69JhK7k+x3bywAcC2Xcf69nn+lHKBeYr1CXzcSEWxVjdkSXR1babNi3+nFh1q3Qxl+zTZOT1e6Y5m+KCSZ1dfa0QUenvbFTfehU+SZaiKY5SuhBWjtcECkBpT3MfPdTvx9SZ6apLkzbVEjom6sU3Wa7cJy+92awoy10YvBNWIaGwsGrFyS+OyEbh55U5LFrdHfHZ4SIzfFn54KbPbtWYPT2Ai9+ce13h4ZqVw9Ll2ar2VOPN6hWn+nfYKf6sWvshDQNNmaJiiyxbHUQEi6Lc2wvbGRjW4ZrsNEd1C7U5TMUHz4c1uMD6eqaovE9sEePqofKtJ3YKj4XZmfXLs2hQSe26p8tQEMrC18CQlOI++6nmd3Al+E6RnVhDv7mamT7drdg0F5CrkSkV11Vm3rG5ULuQ6eu8U1YQiUMdJLRtGhunRo+K1kM82naA9MxQpeOPuecSuZhO4Gqbxav1Velkprxb97s7i+hTNfj45Xn/8orK/ffpVq2B/uensqY8oIXuJ8fPR64VL8NynCcC2aeMdtZZ53FuVm/no92d6s45oEB5vXr1fsrVqgt2Yd7e3Wss9p6e5lnz65+z7UNDIQ/D2G2IW0fc18i//m6uiq/0fz+vHnq93R11f7OpUvVPuvX135ub+VyuN0rVjCXSup8dhtcx+/qUuf3XceBAWZmvueeeyr3qlyuvZ+ha7ZihTpH2m8bGFD7+q7T+vXZjpd2/ULXUP9Gz/XgFSv85yBS++h7HmrL0qW1fb+7m/mYY9T/pVK4HTbm/SmXmfv6/G2cN6+6f+o+Y14f/b6+Vq739G8tlWr7nt1ffO2J3XSfs++fbteKFf7nU98X3X9C/dh1/LSxIgMAHmDPeJslQv9xIvrdwOe/TUSPFyLx2pGhIew744ywN5Rv5XH4cPosTRfrctEo98GQvjsUYay9Y3yzwTQHiHo95lwGbr2ySLOnmMeILUdrYrsSh87lUgnaK9HYAEkbvZJJM8ym6eUB/2/R/WNwUK0AXOWktVOIyx39c5+rZNX2/UaXi7vtsDE+rlbBtsebDjqdmKhoC/buTXckMJ1NYrH7iy5vkBeXWtwmTX0L1Kq6mxQgGUMWb7FFAELFso8FMFBXazqdUJEu5vzVABvlupxmRwmpImx32qGhykAX+p7tMZcX28CtbTYxD2Re9O8zc6r5zjU87L+f5vVJKxzn82AaGIjz9onRy7vUXi71iqtuu50WxTfQxWQH1rgmaUeOKFWUmeNP17cx3XGZq+0SQK1a1cxCsXdvPgN8Ef3J5wSjcbmg+3IYtiFFZkXuBxBhcZvGpHU432ATopGpsdMKNuV9gEI2kSyeTnPmxDsraHzGeN8DmeZpFyIto2+a8AkJQ0AN5G96U32lEVxxTvb3e3qqhYbtnGKujgYGKn1S1+iJISY7sMYncA8cABYvxp4zz1Srwuuuc6dmAfyrbjsLBbOyd115pXo9OKj6XRpZsqWHMFeWtuMGULtKbrI7cT0EhQsRnWe4IgPAGx3ux+8johsA/CWAkQa3t72J7XDlcrwHCnPxuchMhoaUuqNIw6D2MrJpRvCoK6lgjNNAHvr73QGS+lwxBtdQn9m5U3nSrV4dl/3axoxzSiutoA3ZoXT/rvRAZoXGEKGgTVuYhASuGch62WX+/XwCyudK/pnPZPPCc8WR+EpMx+BSBerfp50USqWmuxPXQ1pusVcB+KvkfwbwxmRz8SiAawpqV2eiH8g1a8Iuq+Pj7hxUof1N9Ew7y6wltK/usNu2VXJnrVvnHmB0fiwzKFJ7xuhB05Xipbu79sFIa3/enGu33lr9kGs1SR4BMzZWuS6LFinBqX/7vffWDlS6AuDQUNx1TeszBw8qr63lyyv5u7L+jqEhdU2A2uup3VNHRtJXiq6B2QzaS2NgwG1jsYXJunX+/HL6GqW5Js+fX7lPixZVVmahEsFm/rCYVbO+rvfeq/ZfskQJZ32/ddr7XbvSXdhDWSFmzaoUiTOftdgJRotIEy43APg8AALwOICrUZtfjAHsZ+Y6LVztz8gNN2ClrUKxb575IG/f7n6YyuXaQWVgQMV17NxZuz9RdfK+RmDOwu3zmEkcda0QexaqZ7GzZ/vdm2Mxz2cKLf3eggVKdXD0qCrMZAsOX1JRADj55Lg2rFxZKVdgxiaZSTddrqXaEcJM/eG7rhrdZzZudH++Y4c/aWIziXEOCOESGr7A46uucj8LeqUQOmd3N7BvX8WwrxOwlsvhxJejoyrRqhYMMbYYu1bS4sWVPHomoQwVvvsOqO/Yz5vZn9vIgG8TXMMx8x5mHmXm7VCrmP+bvDa3HTNBsOQiLbeYbQD1RQgz+4PnfHE1RWEv13WgpYuDB90DAlD9nZCu2JXa5eKLa/NUaWHFXBto6lIj5okXSsuF5iNvTZc043uWlVyWYLnhYWD37vSZepagPRdDQ2HbjonrWTDTFYUCm+fOrfUY00XlQrm1zPxhOto+9DzpqqOaUIR+bK0im74+d+r8Rsa/FUS0gpCZNzLzU41szLTDlyHXpzfVLrYa05Dnyl2VloAxD7aBOzYyOo1YxwSfp1DIvdR+0GJn2GnZDfIWQcvrCNHuQXF52mdPJM45R6mO0lxnXe7mpmeab+J2xx1+N+GJCXXckxz5d11p8213fPu3uFzufRH62lXbjL5Po6tLrYh8ZJ3ENHoiauFVixHR7TmOx8y8po72TD9sfXfabLK/H3jkEbfqya4rEYroL2q5nLUD9/UBzz5b+9AxVyLUQ23LO+s3v+dTfWQd9PPUDtHeYqZqT9eySUMPnFu3qutl2mh0H2olmzdX1xFx2ZCKUN3qZ6S/X9VGMlds+jroc+q2AKrPffe76j6HbDtLlqiV2uHDld/hKykxOqp+s8tmFVOvyWRoCHjb29T/aSWrdZmEUH2XLP3ZNxHV7WoAIZvLWxzv6dHOnoZy8h4DiBYuRPQeAC+FSoq5GMAoMy+K/O7HAPw5gAPMHOE72GGEPGu0cIkNGEwjVLDJ96C66O1V6ozrr68MkCYxHTrL+ezvaRYvrn0o86wAYopldXcrFZ05wF11VbXO31SxpD3IrgG1nQg5BzSD4WGMDA9jJaAEid3Hbr4ZeM1rgKefri1eZ7tf9/RUrvOiRf5+p4sA2hoHX1/VmgodqOlaHYe+u3x5ZSIaEi7698Tch2ZMRC28ajFm7jI3qDiWESiD/q8BOD7ZzgXwrwB+mOyThQ8DeDWAxwA8G/slIhoE8E4A+1N2LZTBq69uWtI3rxrJrBPeyIBBjS+vkp3w0NSf6yBD129I0xX7zucrpAXUDhz9/dW5n0ol5c6b9SFyRZ1fcUVtFLodhOhKNx9TUx3Iloi0aNo8bqIGX4zW8LDf/dqMJTEDKEMu4b5gR1eQo7YLmYGamzbV2mFcCTW1PTY29ipLfy5qIpqBLGWOPwXgKWa2XZG/D+ANRPS1ZJ+LMhzzRcz8OAAQ0YMIZwBAsl8JwK0AvgpgLoCzM5yvOYQeUJcrqM2cOUov/Nhjtca83bvVjO3o0UotbXMgK1pHb3u1lcvKKGqraVy/IzauIXQ+rXox3+vrU3p1fXzTSAyoB9m8bpOTShd/7rnV3mIurzT7gXXN1B96qPr1msjFeuh3d9KgXg8xquFYfDWGJifd981WDTHXrijTXKBNfH31+uur44FczgG2m7pWneqVqya2RHIaaarCBpAl4ucCAF8JfP6VZJ9otGDJyJ8COAPAO3J8t3PQs3+bycmKp9TOnaoDu1Lk58E3ax4aUh1fe9OsXRvnppnXu8iVRsR878Ybq1dFO3dWp6d3qRLsFVPIGcI2fKb91li7TAMf5BlJyCjuEmC+OkC6X7hS7mt877v6qq9cuL1yNfOC+SqSxmRYsHF5CqZlAm8AWVYuZQCh+qIvSPZpGEQ0AOBDAD7AzKPUyNQo7UBMcrwjR1THP/fcxs1+tculGZmtl/T2A2HHxDRiZeXy0tHp6X3pQIDqlYNPB62PYQqdtKjrGMN/M3NC+eKEgHwBuEUTe+60Vc5ll1XHHWlc3mBAnGpo8WLV183+1dubbWIQ8lZ0TRhD9PerNDfacSE2Q4NWrelr7VtlNTBOJsvK5V4A7yCi8+wPiGgF1Eriu0U1zMPNUMGcn2rweVqDqQ/evr3avhIir8us7/y2q2Ksy6UvJqaolZXGN0js3Bk2vpsDRJZjpBWAcrnomnYpu8RsHmLtIb4VWUyKlnYgbdW4cqWyfQLATTdVC5JSSdnETHd+k9gsw0uW1NprsqRd8ams8q5cdTVbXacmbz/Kmwk8J1lWLu+EEjD3ENEDALTuYSmU3WMvgGuLbV4FIvpjAK8D8Epmjg73JqLLAFwGAP39/Riu4wH7lclJ7N69GyNZj/H+96u/ge8t/MY3cPonP4mSMShMlUogIlBKwsvJ7m7sy9OulPNPrlmDrZs3Y9mOHc7SsjwxgT27dwMARoaHsfzaazHLEaMy2d2NfWeeiZEbblDvRbRz0Diu/d6shQsxy6Gq0i6LLibLZWxdtQr79+/H8PAwlmc8Bo+PY2PSFrttg+Uyuk8+GbOefBJdR45gvL8fj19yCZ7/b/+GOY8+CgDYXy7H35+I/uLDeQ8OHsTha6/FppNPxisfeAClQ4ewZ3Cwcj8s9ODt/dxxb4rA1QeZCAcPHMD9xrWfnJx87jkeXLgQ88bGMDl7Nu79t3+rar9Gt3PhqlXVxwfARNi8ahWeMu+tLjwGdQ0WfuMbOP1731P39sQT8fgll6hy2Qn29Vi4ahWWfvSj6DJsQlOlErasWoUlyTXdn3zHxZyjRzH++OOV/nTiieg+dAhdzNgT8ZwP7t6NOUePYr9j30bdOye+Qi+uDSrt/t9DCZKpZNubvPfCLMdyHPtBANs9n80HMAbgVuv9YajUM1HnqKtYGDM/e+aZhRbaqcJX5KpUqhQN6utj7ump/tws0mWStShQqMhW6LPY4mNZr5ur/aFiYb29/gJOpdJzRZSqioW5Crv5jlEu+9vmKsSm37eLUTWatAJTuhhWqE1pfafgglPP4etn1rV/9swzq79nFggz2+dqp12EzFdcy+xrrn7iKqRnnsN+TonU+2aBMt/mKjKnjxFz3UP9LnRtcoAiioUlgmg7M78ZwDwAJyXb8cz8Zs5nnI/lr6DqxdxKRKfpDcBsAJS8PqWB5wc2bMBxDz3UuOhWn5pmcrJSt+SZZ4Dbb69vyZ71/Dt2xBsDQ6n2i8QXvX3jjf6obZcXmMtd1XeMUBBkO7nwNsM9vVG/19cH04p/ZcFUDR0+nK4aylN6fO3a2jYzq/d371ZbCFeROX2MDiJXfuhEaI0lW44yepkZgBIu/wXgEWM7B0Bv8v9XG3b2RI9d0u6tRaRZsYkdmBulNw0NSr6B2D63Twg1ItW+XSxMe5SZ7dQFpUIpRlxeaWkpe2IHVx3r0KR0GwDCE4ENG1R7Jif9ueoaSVq+s2YIxqzEOAHY/SHtO6Zdaft2ZQ8zj1WkEMmSY65gQulfTgUAZt5hvk5D718wHwOw3vH+BwC8EMCFAAJJeOqkGdGtrhT8vb1qoGtG6g/f+fXqxBeZbf7v80jJ037X4G2f1/XQhFKlrFypdM5pJW6zpuxx4fKwa0Ym21Cc0GWXVcdetFtm3bQ+mJU8qys7W0We+JDQd3yJWZlViMGCBf7jxnjHmp6COktzi2rAhAz62wFMEVEvM08kr2NEakRGNgURXYhKaeQTAPQQ0XXJ61FmvgsAmPn7nu+/HcAAM/9z7Dlz0Yzo1pCrYDOES1Guii4h1A55seohzyDlc5duYLqN53Ddg0WL/K7X7SJciuiDMYGxWcgj8Fzf0a7ovsSsGl9W8Rh3aFfBMTNrc5MJCZcPQgmTo9brIlkDYIX13oeSvxsB3FXw+fLRrOjWmNWBi6L0343KG9Uu9ohm0oJ0G0F8ebN27sxfSC0LK1dWip2FyNMH9TEbkZwxj8Czk2rq6PuhIfVeVkqlOA2GL0j0kUeyn7MAvMKFmd8fel0EzLyyld+PpujlOtAewWxC42hBuo0gpZI/XYq5mjJn/rNmqUFx8+bmtTMPaauzeleLeQSemQHZFKh5ErNOTVXsgSFCTkHNmEBY5Cz4PMNIjLyTOhliUcGAeWmVd1I7eUUB7dceE19Sw1bVZvEJFqDa0OxSqzTb8O8jEXzzfvxjt4NEu60WXYQSZPqInZCE9jO923SZ8gY7mkQLFyL6HyL630T0BiI6viGtaWeGhrDvjDOaFt0qdDg+d+lW9ZtQokM9KKXl3molhuAjwO2x2W7eZoODtWpA2xtRJ5/1kSVtUGg/LWAvvbS2dHfRnq8JWVYu+wFcAeCLAJ4hoh8Q0SeI6LeI6NjCWybkp8kV56YlRayKNm8GzjuvPSYk69ZVlyHQ9PRUBqV2nvnHxJvExmM1c8XrWiWYLvB27FpfXyVtUJorvc3QkPq+i64ude48cTs5iU7/wswvJ6LjAKwE8KpkeydUypcjSUqYbzLz+wpvpRBPCyrOtR1ZBo7p6rhgt8WVUr6vTwWN6s/azU5kEiP4ikzOWMS9HBurToKpn8Xrr68UhNPtrtf1XXPjjcBFF9V6Kk5O1tqNTRowgcgaob+Pmb/CzO9k5pdAuQ9fCBXE+AoAbbB+bmOaEdBU78ykiFldO9tCZjJDQ6p+falUmTWbA6+vLn0RdqIsAaWu/hOr8mpycsYgrtT7vsJjRaHVsS4OHvSXKWjABCKzQZ+Iuojo5UmJ4n+CKtx1BoAnAfxDwe2bedQ7MLezakNoH1zVDkMZDuqZGF15paqxYweUZlHXtqAeSd340tYUlcXcRyhocnKyadcxi0H/KiL6MoBdUNUn3wWVtPLPAPwSMz+fmT1l3KYHIzfcUMyMvJE2kXYzagrtxeCgqnTqQ8/8k6zA2LIlrmCajw0bgM98pvb9rHp+Q/Ax0HwHiTyTvnpz7dUz0fRF8+vrlpbKqQCyrFz+BqrS5JehUuwvYOY3MvOnmbnNHeHbiLExfwXEIujEGV4zSHNjFSpoW4HZRx9+OJ+AWbs2X7lrF4ng23Pmma1XecXQzFx7NrNm+V3hm6Q6zCJcvg5gHMrG8u8A1hPRGiJqwpWaRmzb1lhvjdgkkzOJGDfWmcLwsMrKG4qU95XpDdkKfGqzkACZ7qtp37PYjFxfPT3qvC10hc/iLfabRNQNYDmA10B5i30aQDcR7QDwLShvsb9vSEunC6ESqEXRqDQunUozEo/6aPfr78oU4eujeWwFPg80opmxmvbl2hscbFzf0B5nIyNKyDTyXAGyeosdYebvMPP7mXkFgOcB+GMABwG8Be2SC6yd8elbp/ssrpWIk0M1ps1v06ZadZevj+apy+NSDREBl18+M1fTMfbWaeJtmcdbbBYRvZaIPgJVCXIDgGVQSS1/VGzzphFmzibb2CY2kcYiTg4VYlK83HZb9oJpPlweaHfdBdx0U772dzK+GLRpqp7N4i32V0S0EcBuAF8D8BdQBbxuBvBGKAP/2Y1oZMdjdyrTwCk2kcYjTg4VYlK8uFKUdHVVPMeyDobagDxvnvrbDFVkO878Q+rZots8PJyegbrBRNtcoEoNPw7gTij7yreY+amGtGq64epUgHp4t29venOmNS4bghG5zePjoHoitzudWBWhthWMjanPjiaVN2ZixoeiaCf1bBOEbxbhsqhBVSanP77O0+hgKqFCMlju2b0bx6dVopzOZE3xsm1bbT9tljPEdKOd0+s0gGi1mAiWOqg3mEoQiiJripdmeDdmYXhYBTN3Iq1Qz7bIUwyQei7NwfdANzKYql31zkJrCaV4cSHejcUxw2LQRLg0A1enWrKkOcFUgmDjS/HiMtQvXpw+25YSD2HMiV6zEmu2wT0R4dIs7E4lgkVoJa4ULy632P7+8Gw71r1WZwaQ1XTjaROXZxEurULUVkIr8aWDd6UhCs22m1h8SoikTe5JFm8xQRCmCzGG+pjJTzu51wqKNrknda9ciOisJGJ/VhENEgShCQwMuN/Paqhv1+wHzSjM1660yT3JEqH/LiL6ivXe3wO4Dypi/ydEJIYEoXW0gRGzYyjKLVayH2Sn0SrxNrknWVYufwTguXUVEb06ee//QpU3PgnAnxfauumG2FkaR5sYMTuGotxiZ5h7bUfQJvckU4Q+gM8br/8XgCcArGJmJqIFAH4XwLVFNU4QoolJqz88jJHhYaxseuPalKJKM0iJh/ajDe5JFuFyLIBDxutXA/gG83NZGB8CcEVRDROETLSJEXPaIkJDyEgWtdjPAfwKABDRAIAzAGw0Pn8eVKVKQWg+bWLEFARBkUW4fAXAFUT0dwD+GUqQ/Lvx+S8D2F5c0wQhA21ixBTaAHHsaAuyCJcPArgXwJVQguRqZh4DACKaDeANAO4pvIWCEEObGDGFFiOOHW1DtM2FmZ8F8BoimgvgEDMfsXZZAeCnRTZOEDLRBkZMocXEOHYITSFzhD4z73W8dwjAjwtpkSAIzWO6CWFx7GgbvMKFiE4FKnVc9Os0pO6LIAgtY4YV5ArS4olDaOWyHcAUEfUy80TymgP7a0oFtEsQBCE769YpG4upGhPHjpYQEi4fhBImR63XgiAI1bSLek3bVdasUUb9gQElWMTe0nS8woWZ3x96LQiC0JaIY0dbUGg9FyKSFP6CIAhCpqzInyei3sDnpwH4XiGtEoS8SHJQQWgLsqxcLgTwAyI60/6AiC4E8AMAS4pqmCAIgtC5ZBEuFwCYD2ATEf0pABDRsUR0J1S25C0AXlp4CwVBEISOI0uE/n8Q0a8CWA/gb4jotwCcBuCFAP4awF8y89HQMQRBEISZQSYDPDOPEdFvAPg2gN+Eck3+U2b+dCMaJwiCkAuxu7WcTN5iRDQfwJcA/BqA7wDYC+Ajic1FEARBEABk8xY7D8AIgNcBeDczr4CysTwE4PNEdCcRHduQVgqCIAgdRZaVy7cAHAHw68z8CQBg5m0AzgXwCQBDAH5YeAsFQRCEjiOLcPlnAC9h5vvMN5l5kpnfDbWiOa7IxgmCIAidSRZvsT9K+fzrrhgYQRAEYeZRaPoXZn66yOMJgiAInUnmXGBEdDaAlwN4HmqFEzPzh4pomCAIgtC5RAsXIpoN4F8A/AYAgopxoeRjNt4T4SIIgjDDIea4Ei1E9BEAfw5gHYBvArgHwGoATwF4D4DZAC5i5q2NaWr9ENHTABxl6qJZAOCZgpojtAa5h52P3MP2YYCZT3B9kEW4PALgB8z8R0TUB+BpAOcz87eSVPv3A/gaM7+nqFa3G0T0ADOf3ep2CPmRe9j5yD3sDLIY9E8BsDH5fzL52wMASU6xfwAQ9CgTBEEQZgZZhMs+VGw0+wBMAXi+8fkeACcW1C5BEAShg8kiXB5DUq+FmScB/A+APwAAIiIAbwTw06Ib2Gbc0uoGCHUj97DzkXvYAWSxuVwP4K0ATmHmSSK6EsDfAdgG5SW2GCrt/sca1VhBEAShM8giXOYAOBnAY7puCxG9E8AqKBvMPwP4OMceUBAEQZi2RAsXQRAEQYgld/oXIuoiolOJqKfIBrUTyW+8hoi2ENFhIvopEf21lBZoHUS0hIg+SESbiOhpItpHRCNEtNZ1X4jodCL6EhE9S0QHiOg7RPRqz7HnEdHfEtHPk/v9P0R0RWJTFBoIEfUS0eNExET0d47P5T52GPXkFjsByt7yyoLa0o78DYBPQdWseQeALwD4UwBfIaJC87IJ0bwVwDVQDiYfBPBnALYCuB7A95JMEgAAInoRgO8BeAWAjyf7zgHwH0R0vnnQZJL0dQCXA/hHqPu9FcBNAP6qsT9JgLqX7mA8uY+dCTPn2gD0Q7kjvzrvMdp5A/BLye/7ovX+O6AcGN7c6jbOxA3A2QDmOd6/Prkvbzfe+ycoe+Cg8d4cqCwNW5GohZP3r0y+/w7ruF8EMAEVidzy3z8dN6iig0cBvDO5B39nfS73sQM3mX37+WOofGk3WO/fCuAglCOD0GSY+QFm3uP46B+Tv78MAImK7HcBDDPziPH9/QA+C+VW/zLj+2+Guq+3Wse9AUA3gD8soPmCBRGVoK7516ByF9qfy33sUES4+HkZ1MrFLo52GKrc88sc3xFaxwuSv2PJ318FUAbwfce+m5K/LwOUbQ1q9vyj5P6a3Ac1E5b73RiuAbAUwNs9n8t97FDqES6HANwB4BcFtaXdeD6AZ5h53PHZzwEsmM7ODJ1EMvt9L5Rq5e+Tt3X2iJ87vqLfOzn5+zyoxKs1+yb3/xljX6EgiGgxgA8A+CAzb/fsJvexQwkKFyI6w/cZM+9l5ouZeYuxv2/20Yn0AnAJFgA4bOwjtJ4boIy97+NKVm59b1z30L5/oX31/nKvi+czAB6HcprxIfexQ0lbufyAiP4szYWPiBYT0T0AbiyuaS3nINRy3MUsYx+hhRDRh6BUKrcw80eMj/S9cd1D+/6F9tX7y70uECJaBeC1AK5g5iOBXeU+dihpwuW/AHwMwL1EdJprh2S18t9QM8e1xTavpfwCSvXl6qgnQ6nMJprcJsGAiN4P4DoAn4NyPTXR6lqXGkS/p9Unz0KpeWv2Te7/ArjVMkIOkmv6KQB3A3iSiE5LxpeBZJd5yXvHQ+5jxxIULsy8EsC1AAYB/JiIrtKfGauV/w1gM4CXMvNHG9fUpnM/1PU5x3yTiGZBXY8HWtAmISERLH8FZfe7hBN/U4OfQKlHXuH4+vLk7wMAwMxTAH4I4CWOycQ5UF6Dcr+LYzZUTMvrATxibMPJ56uS15dA7mPnEuOvDOB0qFXMJFQH+AsA+6F0mO8G0NVqn+qiNwC/gnCcy6pWt3GmbgDel9yDO0N9DyrodRLAmcZ7Oj7iYVTHR7wN/viIIwAWtfp3T5cNyiX4DxzbFck9+Gryeoncx87dsiSu7ALwt0YH2Azg/2PmzVEH6ECI6G+h9Pn/D2oJvwwqQv+7UMGjUy1s3oyEiN4GlY17B5SHmH0Pxpj568m+p0G5oB6ByrawF8ClUBOH1zPzfxjH7YGKAj8TldX4BQDeAOB6Zn5vA3+WAICIFkFl/fg0M7/deF/uYyeSYbZxCYDdUEvUvVC6zb+AMWuYbhuAEpRacGvyu38OpSue0+q2zdQNwOehJje+bdjafxmALyd99yCAe6HKc7uOfTyU4PpFcr8fgppcTNs+3k4bgEVwROjLfezMLXXlQkTPB3AbgN8E8GMAq6GqTn4ewAooddlqZn44eCBBEARhxpAW5/IWAA8CeA2ADwF4GTP/NzOPMvOrAFwNtTQdIaJrJeuoIAiCAKTUcyGiKSjhspqZf+TZ58VQq5hXAPgeM0/nLMmCIAhCBGlxLh8BcJZPsAAAMz8ClXb/LwCcVWDbBEEQhA6l0EqURLSUjXQwgiAIwsxEyhwLgiAIhSMp9wVBEITCEeEiCIIgFI4IF0EQBKFwRLgIgiAIhSPCRRAEQSgcES6C0GCIqEREUgFRmFGIcBGEAiGitxARE9H5RPReInoMqjTFm5L3Px/4zkrjvfcn751ORB8mop8R0TgR/ZiILnAc4yIiuo+IdhPRASJ6nIg2ENEJDfy5guDlmFY3QBCmKZ+EqltyK1QW8a05j3MHVKr5TwLogcrn9yUiWsLM2wGAiC5M9vsOVK2bQwBOgUo1vxDA03l/hCDkRYSLIDSG2QBewszP1WzPmdf1GQC/w0m0c1L99T4AfwLgPck+bwCwD6rG0FHju+/Lc0JBKAJRiwlCY7jZFCx1cCMbaTSY+X6oKrAvNvbZA6AXwOslM7nQLohwEYTGUFR9o8cd7+0E0Ge8/jBUyd8vAXiaiL5IRJcQ0XEFtUEQMiPCRRAaQ5ZVS0g9Pel5/7kVSpKZ/AwAr4eyvQxA2Xq2ENGLMrRDEApDhIsgNI9dAOY73n9hvQdm5nFmvpuZr2Xms6EEzfMBvLPeYwtCHkS4CELzeBjAK8yYFyJ6HoCL6zkoES1wvP3D5K9LmAlCwxFvMUFoHn8HYD2AbxHRXQCOB3AplL3kxDqO+59EtBvKFfmnyXHfAoAB3FXHcQUhNyJcBKFJMPMGIno+gLcD+BSUsf6DAKYAvLyOQ98M4E1Q7snzoQz+PwLwDma+p65GC0JOpFiYIAiCUDhicxEEQRAKR4SLIAiCUDgiXARBEITCEeEiCIIgFI4IF0EQBKFwRLgIgiAIhSPCRRAEQSgcES6CIAhC4YhwEQRBEApHhIsgCIJQOP8/cihFsz8MKgEAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"thermal_width_x_val.plot.errorbar(ax=ax, yerr=thermal_width_x_std, fmt='or')\n",
"\n",
"plt.ylabel('X-axis width of thermal part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEeCAYAAABG2VgdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABmw0lEQVR4nO29e3xcR3n//3kkW7JkByW28cZJa9kkJDa9RJAQAglY0NAfv7T9trS/0l9RbpDEEAIkXHqhNhAgTkubtqSUAHYD5CJaaOmVhktTIodA3RBAKRQ7DrEtEzCC2NhBUSxZ0vP9Y3a8s7Mzc2bOnpV2pef9eu1L2rPnMuc2z8xzJWaGIAiCIBRJ21w3QBAEQZh/iHARBEEQCkeEiyAIglA4IlwEQRCEwhHhIgiCIBSOCBdBEAShcES4CIIgCIUTLVyI6GNE9ILA7+cT0ceKaZYgCILQyqTMXK4EcEbg93UArqirNYIgCMK8oEi12FIAxwvcnyAIgtCiLAr9SERrAKw1Fq0nopc4Vl0O4FoA3y2uaYIgCEKrQqHcYkT0bgDvBpCVgIwAzAB4DTPfVVzzBEEQhFYkS7icA6APSnh8DMA2AP9lrcYAxgB8jZm/15hmCoIgCK1EUC3GzA8DeBgAiKgXwGeY+duz0TBBEAShdQkKFw0RLQNwOYCjAES4CIIgCEGivMWYeQzACij1lyAIgiAESXFF/m8A5zWqIYIgCML8IUW4/AGAVxHRa4iIGtUgQRAEofUJeotVrUj0JQC9UHEvhwE8BmDcWo2Z+ZeKbKAgCILQeqQIl/3IjncBM6+rs02CIAhCixMtXARBEAQhFkm5LwiCIBSOCBdBEAShcKKCKDVEdAaAtwB4AYBTUCucmJlDafkFQRCEBUBKsbBfAPANAFcD6ADwLABPAVgC5UE2DeBA8U0UBEEQWo0Utdh7AUwCOAeAdje+nplPA/A6ACcDuK7Q1gmCIAgtSYpwuQjANmZ+BBWXZAIAZt4O4HMA/qTY5gmCIAitSIpwOQkqcBJQMxhAVZ/UfAVKAAmCIAgLnBThMgrgVABg5p9C2VvOMn4/BUB7cU0TBEEQWpUUb7FhVCeu3AHgeiJ6EEpIvRHl2i/NysqVK3nt2rW5t3/qqaewdOnS7BWFpkXuYesj97B5+PrXv/4EMz/T9VuKcPkkgOuIqIuZnwbwTigBc1/596cB/FFdLW0wa9euxUMPPZR7+6GhIfT39xfXIGHWkXvY+sg9bB6IaMT3W7RwYeZPAfiU8f2bRPRzAF4J5Yb8OWbeW09DBUEQhPlBUhClDTN/D8BfFdQWQRAEYZ6QS7gQ0dlQQZQAsLfsniwIgiAIANLTv7wMwAcBrLeW7wbwZmb+zwLbJgiCILQo0cKlLFg+D2ACwHYA3yn/9HMAfhfA54joFcz8pcJbKQiCILQUKTOXm6FiXS5g5u+bPxDR+wDsBLAVwAuLa54gCILQiqQEUf4igI/aggUAmPlxAB+FyjsmCIIgLHBShMtRAD8N/P4kgCN1tUYQ5gv9/eojCAuUFOHy9wB+l4hqVGlEtBjK7vL3RTVMEARBaF1SbC4fAfAiAPcT0V8C2F1evgGqgFg7gI8Q0RpzI2aWGi+CIAgLjBTh8m2oVPsE4O+s38hYx0aSWQqCICwwUoTLe1Gp41IIRPQOAM8DcC6AdQBGmHmtZ91PALjCs6vfZuZ/KLJtgiAIQn5Scovd2IDj3wzgMFT55JMjt7nMsezBohokCIIg1E9ducUK4Ayd7JKIvg1gWdYGzHx3w1slCIIg1EWKt1jh5MmiTIpnENGctl0wELdbQRAsWrGDPlr+PE1E/0FEL5jrBgmCIAjVzLVaLIUfAvhLAF+HKrF8DoAbAHyZiC5h5ntdGxHRJgCbAKBUKmFoaCh3A8bGxurafr7Sd+QIAGC4Ba7NbN3DVromrYa8h60BMRfqAJYbbXPxeYt5tnk2VPnlHzDzs7PWP++881gqUTYAfU1a4IWflXs4OAhcdRUwMQH09gJbtwIDA4095gJC3sPmgYi+zsznuX5rRbXYCZj5UQCfBnAmEZ011+0RBAwOAps2KcECACMj6vvg4Ny2SxBmmZYWLmX2l/+unMtGCAIAYPNmYHy8etn4uFouCAsIr82FiC7Ps0NmvjN/c3Kh1WGjs3xcQajlgCfbkW+5IMxTQgb9T6CS7iUWBlC4cCGipQCmmfmYtfy5AH4bwC5mfqzo4wpCMmvWKFWYa7kgLCBCwuWljT44EV0GoLf89ZkAOohoS/n7CDPfVf7/2VCVLv8ZwKOoeIu9FsA0yt5ggjDnbN2qbCymaqy7Wy0XhAWEV7gw845ZOP5VADZay95X/rsDgBYuPwRwL5TAGwDQBeAggE8B+GNm3g1BaAa0V5h4iwkLnDmNc2Hm/sj1fgh3TjFBaD4GBoDt29X/LeCeLQiNIFm4EFEJwHkAToHD22wODPrCXDI4COzcqUbpa9fKKF0QBAAJwqWcy+tDAK5G2IVZhMtCwRXTcfnlwE03Abt2zW3bBEGYU1LiXN4O4HUA/haqrgoB+EMA10EZ2R8C8PKiGyg0Ma6YjpkZYN++uWmPIAhNQ4pwuQLA55n5cgCfKy/7OjN/BKrY18ryX2Gh4Ivd0DMZQRAWLCnC5VkAPl/+f6b8dzEAMPNTAD4OpTITFgq+2I3OztlthyAITUeKcHkawPHy/2NQAZOrjN9/COBnC2qX0Aps3apiOEza2oB16+amPYKQgtQhaigp3mIjAM4AAGY+TkTfBfAKVGJRLoakYFkY2FmQdUxHZ6cSLKXSXLVMEIQmIWXm8iUArzS+3wXgd4noPiIagkrD8ukC2ya0AgMDwAUXAD096q8IFsXQkMS4CAualJnLLQC+SESdzDwB4I+h1GKXQqVg2Qbg3cU3sUVooZomgiAIjSZauDDzQaiUK/r7NIA3lz+CRoSMIAjCvKjn0lrkMSLGbiMGSkEQmoQ86V+eDZWleAUc6fgl/UuA/n5geBjo64tbF2jsDEhmWUKjkWdswZKS/mU1gDsA/JJe5FitIfVcBAt5YQUX8lwITUTKzGUbVMr7DwD4MoCfNKJBQgsyOgo8+SSww6jSIEksBWFBkyJcXgbgVmZ+e6MaIyQwPKxGqnM9Sh0cBPbsAZirl4+MqKSWgAgYm0bPMOaTSnW+z8bm8fmlGPTHAHy3UQ0RZomijf6bN6tklS7Gx9XvglAv4qzScqQIl89CReELNtpQX8/2sS9Ovccqog0mvuSVsb8Lwlyg6xDt2KFUuIODc92ieUeKcHkbgHVE9JdE9Cwichn0hYWGL3ll7O+CMNu46hBt2rQwBUwDZ4TRwoWZj0B5i70Zqn7LFBFNW5+phrSyVRgdDY+GTMN37GjJHmGNRqRvm00Vgit5paa7W/0uCM2Eqw6RqHALJ8UV+fehUr6MAngQ4i1WYXQUOHpUfTS2Qds2fJu/h/Zrj7Da2lSCyI6O+tpslyfu6orLC+Yqa7xtWyV5paa3V7zFFjLNbB/xqWpFhVsoKd5ibwIwBOAVzHw8Y92FgxYaLvRoaGDAbfjWv69d695+377awlszM8CxY/UJF5/Q8qE7imuucasTtm1TSStN5qH3izBPWLNGPbuu5UJhpNhclgP4tAgWi5C3FFAZDbkeZvN3E3N24MJ2+zW32bFD/Q2pz/bty1eeWNQJwnzApcoVFW7hpAiXhwGIaLfJmkqvWaM6fp//Q0dHtfeXbWz0cfSoEiKDg7XbTEwAu3cDGza4t/XtO+uYok4olvnuXptlg5wrBgbUbFtXTO3tVd9bQYXbQs9MilpsM4BPE9E/MfNDjWpQy+GbYgOV0dDmze7ZBpEqrnXwYGWZa3bgY2ICuPxy4JRT3Nv4ZiKdnW5BklWeWNQJ84c8wXsp24yOKnWxntU3W1DtwACwfbv6X1S4DSFl5nIZgO8D2ElEXyaiO4joY9bn9ga1s3nZutVtr1ixojIa8o3smWuN6KFZQHt77bKZGeDQIff6vpnIunVuDy9tpPeNMJtRndBCIzkAaerLPMzGbCEmRmTfPr+NMc9xGnGt5pp5HmuTIlyuBPCL5W0uhBI2Vzo+Cw9T5UUErF8PPPFEZYTmG9n39tYu863b2Rm27fi2cVEqKcGn2222P+TzP5vqBJfQaDVBYuNSX+7ZU1ynomcLjYzfcDmDuI7hG9jEqlAbfa3mmgUQa5MS59IW8XEMrecx+gGZnq4sc6m/QiN+O/blkktq121rU7ONkPrJZdNZt662vXqktHkzsGSJ2s5uc2iEqcsab9wI7N/fHCqOWPr70XfDDXN3fJfKc2amGIeIwUFlZ6t3tpCFyxnEdQzfwCZWhdrIazUbZA2EFoBzTJRwIaJlZbXXbze6QS2Fzz5i2zrsEX9np/oO1Ma+3HEHcMUV1bODs85Ss41LLvG3hbmyDVElbkU/5K6R0tNPu4UhIEb6RtAohwh9b1OPm4fYGcm6dbXq4hQVqq/NIyNYde+9cftoZprBOabBarko4cLMYwD+fwDPKPTorY7vQXC9gHrE39Oj/oZiX+65p3p2UCqpGc4dd/jb0ttb2f8znlEbB5PiKACIkb4R+K5pvdc6697m3b9r9B07IymV1KAorwo10Oazb7ml9dVHjXoWYpkFtVyKzeU7ANYWduT5QMg+EkPW6EWn1Qfc6giNOSKcnFRqNu2qrI2goRFRyEjfqESZ85EsVYhLPdrWVr9DRNa9LdLhwuUM4jtGqZRPhdrfr2benrRC7RMTs6s+aoStb66dY2ZBLZciXP4UwLVEdFZhR291fHm1bFuHj5TRSygGRY8IR0erVV3aCDo66j8WUdhIH5sPbWhIXDqzcKlHzzqrfruV7962txfvcKGdQRrt1KGP46PV1bYpzjGNEG6zoJZLiXNZD+B7AL5FRJ+FSl5pD6WZmd8Xu0MiegeA5wE4F8A6ACPMvDZy2/cD+H0ATzHzsthjFop+EMy8WkTuHF2uGcDWrSpOxVSN6dGL9sEHVKe9dq07xqSzs9IOV1yLjry//XY17bVHK0uW+H3+ffnQ1qzx5yFrtIBpliJpeTGvdYiUmJKtW2vvbVubUqM2wuEiK0bEzDDR2Rk/2HIdx85Zp5kPatuiYm3yxCzNQsxayszlRgDnAFgM4JVQHfuNjk8KN0NVuHwMCYkwiagPwFuhCpjNLaYtpb09nKMLAPr61EPQ368erLPOqnh6hUYvvnga88UNRd67RkpdXdW2GVMNB/htQllpYmaLVo4TKDIepVEzojwU7ULscAyY7uyUVC314upPClbLpQiXdRGfZyUe/wxmXsHMLwfwg5gNiKgdwHYAnwPw9cTjNZ5ly9JGEKWSMsBn6aUHBqoFkekRpvHZenTwpelGvHWrEhxHj/pT+ac4LMw2rRwn0Ih4FPPeXnBBOMN1I4Vy0S7EDseAR97+9tZygS+KIu+b3Z80QL2ZEucyEvNJOTgz701vMt4M4DlQWZqbh8lJFe+iO+tGdHJaEPX0KHXWsWPVD5pP/TAzU90eVyDcnj3qHEzqdViIJY9OuZXjBIqIXs9Lo4VywIU4t93Acgz40cUFFcRtJTthbPBqCgcPqtlLg2LWUmYuJyCiM4noQiLqKbQ12cftBfA+AO9JFWQNRRvSNbE3XqtGzCSUMUxOVhvu9fHMejImzNUdly8r8rFj1ct8U+e8OvQiSTVIlkd9PQ8/nC78izao+mZ+9XTAsTRaKM/WgGShERu82kSkGPRBRL8K4FZUXJJfDuBLRLQKwFcB/CEz/0OhLazmwwD2AviL2A2IaBOATQBQKpUwVMdIZWxszLn9ix97DDWpCcbHcextb8PO008HAPQdOYJlU1MYO3IEw0NDeP7eveh+/HGQ4dnFl12G8Xe8A1+7886a9c19tB87hpp4/PFx8Ph47fIyPDKCXVu24LQjR9AzMeFcj5lx1Dzen/0ZTlq0CG3HjwPMmCiVsPfqq3HaZz8LGOvVS9+RIwBwYn+r7r0XZ3/1q2g7fhwTp56KvVdfjR9dfHHVNVmyahWWOFR5x1atwk6rXavuvRdn33IL2vV5j4xg+qqr8MiuXVGjYLt99a734sWL0X68tnLF9OLF+Gn5usbuy3V8jWvbjQcOuO/9gQPYYa1vtsG+J9MdHTi+fHnNMVZdeumJa31i30QYX7UKxyOfGfO4rnPyvYeNIvVe+J7fvPvuC72zBw7g6MknJ7VPc9HUFNqtd75QmDnqA6AfwHEAXwPwLgAzAF5m/P4FAP8Quz/H/r8NYH/g998tH/NFxrIhAGOxxzj33HO5Hu677z73D2puUPshqqyzcaP6aDo73dt0dvq32biRuafHf7ysT3c38/r1/mMTuY/X01O93NW2ejD3dffdqp12u+++u9KejRvD69n4zre3N719Ray3fj1zW5v73ujt81xfvU1o297e+Guh9+O61m1tqr0u7r67cs07OyvnFXs+5rqOc/K+h40ipe0pz2XsvjduDD/Ded/Fnh7m9va63mMAD7Gnv01Ri70LqqbLCwB8yPH7f0G5FRcOES0H8AEAtzPzVxtxjLrIk0cptaaK6cqcV8UwPg488og7NUdbm7Lj2IyNqc9s4VPbXH99tQoRiI8TqDeJYtEcPKjabbc9psx0veQJ3vMZ6W2vQa0+THEuaHZSg4gbpXZMCV5tElKEy/MBDDKzLzXv4wBOrb9JTt4NYCmA7WV7z5lEdCaALgBU/v6zDTp2NnnyKPkEhF5ue4aYKiDX8WLRaf5tT5E77wTOPz/fPmOJsV34OvxDh6rdW3UurZgI8HqTKMaQ6snT0TE3CUB9ee7s45vn46tXFOM12EpGcxexQcSaRgUnzlbwaoGk9FBtAEJP00oAk4Hf66EXSrj8N1Twpv6cD6C7/P/nGnTsbEql6tFZe7tKPhm68b7Zw7p1bo8e05vLJRwWL45rq94m1gV6tont8FNGg1nCv16DfV4PrOHhxqTWyerQXXnuTGKrobpKRtSLLaSvuWb2hJP9HPiCiEP3NTVnWIrwbbGM5CnCZReAFwd+/1UotVkjeD+A33Z8vgPgWPn/tzTo2Nlcc021p9b0tIqO9j2Eg4O17qg68K1U8qshTG+uXbuAl7yk8qB1d6u4F3OUbqfh96m+fIyOqnOZnk7zZqsHX0odF74RtY0RK8GAukZr1hT3cqaqQvr61KdZiUly2giVTLPFLvmCiEODmhi1Y8pgJqTBaHJSvMVuB/BXRHQvgH8tL2Mi6gbwJwBeCODylIMT0WVQsxIAeCaADiLaUv4+wsx3AQAz/5dn+zcC6OXGeqhlE+pcYkaFbW0qPYtOBRGqXBlyW+7oUJ2WHg2vXq2E2MSEGmX+6Ee1sSxmu3TKDl1XZs+eyu+mKqqRIyY7pU5vL/D97wNTU7XrEqmXLUanX55dHj1yBCeXvWsKoxnSpxdJVrt7e1VnWfRzEHqP1q4t5hgpqVLy3FfX85v3WrmEbV51+BwQLVyY+cNEdCFUdPyfA2AAfwtgBYB2AB9n5tQhxlUANlrLdG6yHQDuStzf7GA/oFkPodlxP/BAdXExQI2OrrhC/WVWajV7HRPd0YdyfAHV6rqhIeDkk5UA0ulnNK6H+CMf8RcRa/R03M65tGGDKoRlw6yEZyMMximd0CzkaZpVfOfT2anUMo1SU4Xeo6KESwp572tROcNiHCnsQWGqIEvNKJJAkhhk5ksB/BaA/wSwG8BhAPcA+G1mvir14Mzcz8zk+fRHbj83SStNfA9bR4fqGM2O2yc0pqcrnXlIsGiKzPHleohDRcTsqfqGDek2C60aiDGEh4RHM6SiifXASlGHNMoeE4PvfBodPBuyV8yFY0Ao/5a+l+Y9LTrYNiv9Uj1qxMHBSmmOBmUUSZ5jMfM/MfNvMfPPMfNzmPnXmfkzhbeslQi9jKE6LPWS1bH6OijdoWsVW6ztAgCWL3c7G+TRBaektMjyrqsH8zqldBCm622MB1YseV/8lA445AXlSwefOkO0E6FmMdc1TmxmIf9WkKxsB3ndnrVQSnFUyEHrKPCaBZffu34Z7YewVKp/ZN3Tk96xhgzGk5O1WWttw78P/eLHxDyY+DrsRx6Jfzl8Hl+3317MiHZszN3GWBfjLA8sTZbA37EDuPTSxr74WV5Q/f1KrVOvZ9LYmDrXlGvYbO62c+VV2d/vLpimPUr7+/2Dwiyb2Szl5UsSLkS0lIiuIaI/JaLbiehj1uf2QlvXSgwMVJJKmg9h1si6sxNY5DF96W19HWseNcWxY24VmEvAmMtWrFAv+uHD7v3mEaIh1ZuNy/06puMxO7adO7HY134Xo6Oq3k6jvZeyXH+LfvFjvKCKUsvZg5msa1iUu229KqqiVVx5cMW2aI9SIH/8lk8opWgwIogWLkR0PoB9AD4K4O0AXgPgSsdnYRA75XdF1ra1qVGJjmA+88za7Wzh4ero9UNmqlHM0sYmeh1fh85ceVjb29XxzHV1Ys4iExP6Zky+Y6SOIh21RboffzxehdeI7MW6DPWOHerv5GSc62+s51k9gaoHDhRf1to1mBkfV95URXXezSAIGoUtbE3VZN6ofV2CI3Z5TlJmLn8BoAPAqwCsZOY2x6fY1rUaLnWUb/RhFukqlZSw0ZhqtclJpcIwjfxmBubRUeC1r60ubfzIIyr2RrdF2zZ8gkUfUz/Eixa5PcWuv95fBz7PLGrJkvjMBnlG0o5Om7SHWQxFp4158MHqbNbM6nvMiLFIz7OQA0peweIKfly2zP/Mxcx057PQKIK8Ufshp6ICSREu5wL4c2b+B2ZO0C0sQMyXYni4Vn/tMox2dKiRgz0qP3bMP3oeGgJ+/OPa2BVmJQg0WU4Fdofue/EPHVJ/Q1P1FDo6agpB1bwcpvOBHun7sDujeoudxagdUozWdkmDWNraijVqF+0N5vNampz0z06LTsGf6jwQQ96SGCGKLtSWR43oy6xQcMaFFOHyJIBDhR5dCDM66h/56dHuIc8t0cv7+sIdsqtDD734Os4lS1jGYhWCqmqH7U2mR/qxaq16VXh5csaFCM0cfRDVX7LYFrpFeYNpfAbiY8fU7DSPIJtLV2ygtlqoji2rx3OviAwEPo/AFOE6S155KcLlHwH8P4UevRXRLpxFjmb0Ps00K9qjxwdR/LF9nSyRe7QTevFTVUI+Hf7wcHa2Zd+MK1at5XiJZnSAaszIMa8TgY9Yr7zOTqUmbW9XNqZGBIkWmacqlFGio6NYQTZbNMLe1kgvLe2ZF4PPu3UOK1H+AYBVRPRBIjqDKPZNmT+suvfeahfO2NFMaBR2zTXq5bT3ef31tQ+3CbN6KFescP9uLr/kEvc6Pi+1Usn/m2krMskaOWkVg+7UQ7MpQI3OfOvEqrXsEfqKFeqF0qlkRkaA17ymWrDbs6IiXFH1zCErr1tnZ8WV2Xed68Fnw6jXthGyBx09qp7TdevmPuFiSCVl/1aUvc28tnlch12Ds5DTRey99Hm3Fog3/QsRzUCleKlaDJWJ+A3ldezNmJmTqlu2Es/6m7/xj2bsmzM6WsnrReTvWHyjmZjAywMHgLvuUh2kWdlw8WLg1lsrKSjuuce9vStfl35ozzxTCVLzfPMa7rVTgt6X+ZLt3Kn26RrJhtKQZKFfsKGhynXYvx9tthrRvG4TE6qdR48ql+uJCXWsvPmc7Je8o0Opilzqse5udb4HD+Y7lj7e8HDjkmL64om2blUDIt8z2ww5sXwqKY39m496HCs6O91Cq1XTBGUQEgR3ola4LGg6fbp+e+Sh9bW6Mw3ZCupJbmhm9r3sMnUcnSgPqOQc8uHq5CYnVQd49Gi1a2Jvr1LV2ELAzG2kVXq2oPV1qEClQ3fh67TyGp5jrvXMTHUHr6/fgw+qzjsmYDM0i2trU15UdlLRrVuVEKxHuMwV9jPoyo0XCrQ1BwKNIkslFTOYs+0S5gBy5Ur1zkxN+XN8rVtXO2DLa+tIUYPNEV7hwsxXzmI7mp+YGg765ViyxK3SMl+uvj61/tq17pHSihVKIPkeevOhHBgArrtO/b9/f3w9DnvmOTpa7easO4iuLrVfu8O0De6uzMkhpwSNr+OxM8zqGWBefb1vJhSD7enlEqrXXFNpa2hGBtQmFQUqMyxtg2NWf+cqzbp+RmMwn8Enn3SvMxt54Pr7qzt93dHnzVytZxtmduPBQaU+MzFnxPasSKPvtz2oaPK6LHlJCaK8nIjWBn7vJaKklPstxebN8BqZbJtGSgnjrVtrC31ptZZpLzDJMsBddVXcSMxW1flGli4X2qEht/AzR4NZTgkmExPu0b6ZVuUZz1DVMvOOcLduxXReF1hTQDqCM/Ga16h4I3OZmXNtdFSNbKen1d+vfKVWaOh1du+ujoXZsyfOeSO1aqJve+32nSXUfPr9FC+9ooM2bS8v3dEvX+5ef82acHttpwd977PwGepD3pGx6DpLOvdcyuBjFmOHUhShHwfwosDvF5TXmZ+ERjh2YbBQLjDbcPiVr9TOIPR306Onp0ctizHAxVQQ7OpSNgDzYfMZ0FPStJjLXWlG6iE0kt6wAbj//nBRpYEBPPL2t1fuz9KlacfX+3SpWI4fr71+ekY2OlpbMmBqSgW7jo6q679hg18Qz8y4Oyrz3uWpmmiyZ0+tUNu9Ww10NmzI3r6/v+L953Mg8XXwNkND8XYjOwnrd7/rtosCfvfblMDgmGwKmkbU87EHbDpxbJHvWUGkCJcs77DFAJrvDIsiZHSzRym+GveujMIf+Uhtp6RTgti0t9e+dK6RiE+4EVWEk/ZGMj3ZYkec+phZJV1TX6686h9Xx+rJ1Pyjiy+uCOyVK9OOo2cQKec1MQE8+qj7NzNbgMv11SQmGWEe19nhYWVP8tl6pqbiZ04anwNJSl63GFwzSJeTCqDUVr5o9uuuU7NwPahrb1fv7+7dtR6EKfc+r6HeyoeH1asrgyrXfdZ1oLIoepaYQaoLh/MMiOhkAL8CoAWtkZFkqVTMh07HR5gGcSIVTZ9SNyUvvuA/Uw3mSlXjql+h92c/8KOjavYTCjJMfbny1qfxvXBZ+0u9xnoGkXJenZ3Zhd+Gh7Nnm1mj/nqqYWZlDvDNnFLbYtYhMZ8lPbhKVdmkzCI6O8OxPW1tSu3a1aXeSS2ktHpTC9fYe5/XUO8SmObx6+kXYmLLCiQoXIjo3UQ0TUTTUILlbv3d/EBF7r8KwN/NQpvnBq1S8aEfOv3i7N5d3amYD2wM5kPsCrJ0odPGGzXjAVRGaXq2Yr7cZkoVu34FUeV/1wMPVB/HrmPiE1Y+fB1sli0hT5qX4eF8sSQHDrjVKEBtbFCM67a+vlm2oMOHa887ZtYZ6gy1+ilm1JvVqZl2AN8912ph+1lyeVLG2I9iO9q2NvWJEVyudEumcPXd+6VLK/e/nqBEX/VJffxQQHSTkfXmD0O5JN8FpRZ7oPzd/NwB4EMALoMKtJy3/Ojii6sTTGr0KCXWS8vGfjDMXFLaQJkauOkzHNop0LWbtK4maQYNPuMZqi2uSHk9M9DH8dUxsc/Ndl4wcXWwPlvChg2qbHNIPefrsPUILo9Ls3b/1jYwE6JKB9PZWcm55gtIBSqzSVeGWxM7X5xGDyh8VRMvuaR2xulqdxYhIWXbAVwzNS1ofbMNc5b5hjdU238s+1HfDTeE77uJK1Gsj7GxbE3C9u3quOagYP16te2FF9YfKJo1A3Xd57Y21e6jR9V9jnWiaTBB4cLM/8LMrym7Je8A8N7yd/PzWmZ+MzN/kjlP8qQWo6OjekTf26setu3b06bpmu5u4NRTK991p6Qfztg0FH19Kn7CxM4M0Nen9hWbUkXvM8v7zTXK1ILW7mhCszdXZ3/VVe7zN9vrEvgxs4ZSSXUMJosWVe6v6yXWQt9lPzh+XKlCtaDVrqeukgqAErS607Mz3Lo4dChcB+Wssyrfe3uBK64APvpRv4pF48pObRNS8WQ5bnR2AnfeCezalT3LHB1VdkgbnabfblMoMWYRue80piDTAzD7PodwqZWzjmPS1qYGVNu3V9/npUtrr/3Bg0pAZxEqKlgA0ToLZn4pM/9nw1rSAqy6997qmihdXaoz1Q9X7DTdnj5r+4zrYY1NQxHrYZPiJq3xvcBEyhhszywuvxy48kq3EAuNP1wvaUx7S6XaejfaIBty1RweVi9ie3vl+i9dWlGj2Co/U+jHCFzdmdieYnq0+6IXVd8zbRPIShzqo1SqnMf+/cqw7lLxXHFFRcCMjrpVQSbt7eGReOi5b2+vntFmzTL37YtP0z8wALz+9e518wbaZg0q8uCKBztwwD1Q8KndpqcrTirmffbZy7Zty25XSlnsHMxxToYWYnAQZ99yS20tDrPjijX2uVLr+/B1NNqNOJWQm7SZYvz++5XgANwj27Y2tdyno06xL9ntMg27sSWe29rUdV2/Xt0XM3+Yx3MsE63y07MbLawGB8PtevJJta5PAIWCK/XvPnwduR4ZT0+r44e82qanVWf3hjdUDwxctLUBz362/3cg2w5gZizwdZ468DQ0yHFd89tuU/fHHFy4MknEkjWoSMG0v8YmrNT58Fy4nFRia7OYruKzhAiXWDZvRrvrwTdvtu/FsdEeQjEUWeJY78/VxuXLq4PPtPA8elQ91ObsQKeB7+jIl0beZvHi6kzFpiBwnX9I5RWyD+XBFZR3+eVu7y3drqxrktWWkJ3G1ZG7ShOEAgcBdY22bctWZ8XU6vHZe1z59OxkoiZZtkrfPTfVVO3t9Sf9NO2VLrXXgw+q9yKr8muW/dUn/LNi2EzniRBFl+NORIRLLCFdsRYUoRfHJMaAqkfvPs8v3wtvqmNcxbVKpWqDJJEa6R0+7O9o9AO9ZEl8Gvj29jhBq9vgm2nY55/V4WWoq/puuKEygtMlh6enKyN+e3TnsnnNzKjr1dVVbdiNLZoW4/DhK33tUs+4BKr+HrKlhFykU+wJtpehfkZ7e9W10p2wdhqJUf+ZEKlYj6y2TE5WOt37729M2hw7RZLPjhVjfw1pOkKxaraa1Yft+DMzE19uogBEuMQSehDMDslMV+ISIr4R3bJlbpvJ0JAyhMakjLBH2Xr2YT9EtkdYR0d2hzczU1GBmTXgXWhVSozeF/BHtmsOHlTXzDeSNImpfLhsmTpns+QwoP43BUko/mRiQu1DX0fdrpgOzWyLL/bAtiPZbt52W1wcPlxt/LXx1Ux3XUNfDMoDDyivPbs0AVDr5WirJ2NUYJ2dKvN36DwA9QyZnX5K2hyN2fnu3FlRC5t2Cdes0xUHlGV/zYqD8QVip2gKTNWbneMvT6GyRLzCJSuX2IJj61aw66XzdWauVCp2vEkMocAy7Q2mddq+KG/tZWMb8MxcUjEwVz76O6DUWq4RfD0J+VLcubWaYHpatcnl2m2rVHyGUObqEX3ImcHVjhg3ULMterRtqgR11Ly+vkRqG9/1DJVjLpX83nSbNrk7MD34MWfBtvrHtvHYQjUrsDUkhHVOL597uwtTsJjHu/766vQw11xTa8TW98DsfO34G/0e+p7LkZFqVXdoMKr7ge3b/e+2a8Yecmn3oYWcSygWVajMQ2jmUpVLrBww+eqGtaTZGRjA+M/8THUn6opQBypTZ3uUkZUBNfQyu9BqHf3ipHiC6RorRdhMpqb8rplZqg/fCxOrMnHl7WKu9shzqauyzlurV1zeQ4B79pmVwgVQ+9NtsVUsIyPqXI4ezR6FDw5WVHpTU7UDFtPDqaOjWoWnbWa33VatztLPdEdH5flwuTHb9gSdh8yszprlchyyO6XaE0PvyaFD4VLFb3iDWzBp7HbGzIwBf76y9evVzG779uqBoQs7hizVSQaoCLmiip8lEBKFTwEwr07zhYDOJv396Dx8WHWiWn01POyeofheHFdRMTN1uzmDMKPgXWogl+7Xh6ujDtVYcdHW5u84mdV1cM3I1q1z64gXLVIznt5e9YCb+umYGJWsWRezUtEMDdW+vFlVME1mZioun2bxMNe5xsy2mCvupClOBtqFWLNpU+X+TU+rNhFVltkCsaOjus36mSqVlNrRfKYB9/Nhqn989gTdgS9fXp2GXqOfxdC1SvX0SrmO4+NqNqMzHLtiakzsdi5ZUiuM9PNaKlVmRXa5CF89pBR8xcZ08K5Z+A6oDu720cBCZSHh8r8A3kREPwbwk/Ky9UT0ktAOmfn+ohrXssSOErI8SswoeJuUF8rVUYcES1eXehkeeUSt19mp9qG/uwiN/kx0TZbzz1cdWakEbNlSXexMv4Sm4CWqdMp79mQX1dKqLXMfa9diyU9/Gt9WzdGjSlBpfJ5+vpffZvdulb03dSSqXYi7utxZmU2mptS6WZH1Zk2adesqQsauV6KJGemOj1dm9b5KpqFrpdviafNJ3/mOOl9dqyU1I4YORt28OXuAZQ/M7GqiZqE3m4GBynLXICcVV7ExQMX6fPKTatA0M1NbK2btWvf+iOqL38kgJFz+CMBnAPxj+TsD2Fz+uKDyOh4rYevTbmZO1Q/L/ferB03rzH3pxoHaFz3GoyRP0KNJntHS008rFY05S4sp+uUqqGXbIFz7sIud9fe73Wt1CeLYao32PkZGEKlsC6OrdWr7jhZ669bVzsJ85FFxAPElsPW6+/apTt1s75Il7sA+c6ZszoJM9DOcVXTt8GHg7LNrByj6WfR1lGZb7I693OZ2LUi1UXrRovTruXlzXOE4l5DTs8JlyyrOCy7hUiS6AJp9vdavV+rNT35SCT79vpp2Jd95Mje0UFmoEuV9RPQsAM8HsBrAJwBsA/BfDWtNq+HywAhNs+1RQswoMBSsFyNg8vr8HztWvW3MTMnujHxpQbJmDsPD1ZkQNHYJ4hCLFlUq/hnUrdu11ZHa3jAyomZj5iws9h65CKkhU7CPrz0IXTOnmZnKuZ19tltdqZ9hV/lpkzVrlJdjf7+6n7YnpBYyvtmw9k4EqmdYNuPjKiODSwUX4sABdzlmjVbb+gZmPu9OPTtJiXzXdhffNtr+ZT8PoYGj2Q7fefq8BQsi6H7AzEcA/AcAENF7ANzDzP9a1MGJ6B0AngfgXADrAIww81rPun8C4CUAzgTQA+BHAB4GcAszDxXVpmgGB922hNDo3h4lZJXd9dkeBgfjR2qmkdU8vm9kqtGJ8B54oDoOJYQexTs69Rq+8hUVy2G/UNpQXa+jwZlnxscDZHHttcB3vlMRei58AjNlVK07tI4OFdfha3/WvYvB16YDByopjbZsqdgM9MzDfIa0ELWJTTev7T0hu5k9w3Jx+LC6XvbAQ88wXEI6690788za/c1V+WmfffTppysaE5/NE4iP4i+YlNxi64oULGVuBvAyAI+hYtfxcQGA/wHwfgDXAvgwgGcBuI+ILiu4XWFGR1VZ21TWrlXeKdoQ/fjjYVdXl5fT4KCKEE95MEwvGT0KjO2ctDdSDETVHkYhpqZq8yvpjM31dpzt7eq65S1pbLJ6tVI7aEJt0x2hGdsxNRWfDt3sBF1JNQHVcTcyP6ypujXrn2gvQO2SOzCg1KaAGkH7yi6EiKkv4goQdbX5rLOqXa61S/xZZ/lrDvX2+vd54IC69xo7O7kvjsZOFhtLyGss636PjChB43NUWbHCvTx0/gWQHERJRC8lor8ios+WP39FRC/NefwzmHkFM78cwA9CKzJzPzO/npn/nJk/xsw3AzgfagbzjpzHz8e+fbUG1BhGRoAPf7jay8d2m9V5krS6xXZJ9qma2tvDnan2kslTEiCWmZk0VY7tZ3/sWHpWaRda8PoC0VI4eLASf5LlZebKIQVUt2HFCv8I01QFAbWBlPq5KEJoushb4Kqjwx+XYmbMNp/lehOtamyXa52EVAtDHS+iMbOYh9I12Zm3fZka7EzNeRgbCwvZPIMTjdYEuPbZQGM+kCBciKiNiO4CcC+ANwJ4RfnzRgD3EtGdRGkVa5h5b8r6ju3HoAqVnVLPfqIYHa1E8GY98KtXpxXvMRNZArXBXHv2VIK/QskI9SjTx6FD/s67UR1WFub5FDki37lT/TXPa8UKdyBsFjr+JNXLTGPOMpctC3dI9jXQCTl7eirZFNat89fFMQNaUyDKX+BK09dXrea0a/FMTKjruHJl7Yjf1+aQXUDP7s0221H2dhZhMwX/wEDYm858z+t1rIlFzwx1wHOMI02oLZs3uwfCbW0NNeYDaTOXtwEYAPAPAPoAdJU/fQA+Xf7trcU2rxYiWklEq4joHCL6awAbANzT0IOWX5KoV3bFCvXAa5VBDOZD4UsvodOkxxTGyiMo9MhztmmUn73p/aSF96235hMuRTIyAtxxRzja2hzpu0ajpRLw8Y9XLyNSguX48TQh3dlZyRcXSitkB/cODlZsJUePKhtaTJQ+oAY5mzZVr+9rs47hMWCdD8/OcTc56R6YhWwjWZ6U2qbhu1/1GMXt3HZ2O0PBqC5caq7QYLTBpOQTuBLAF5n5d6zl/wPgd4noFACvBfDnBbWtBiJaBuDHxqKnoTzYvEKNiDYB2AQApVIJQznqF1zwtrdhSYS6hwF8/6KLsGz/fiybmkI74ryTphcvxk+PHMHw0BA2Tky4t5mexvRVV+HgK16B0w8cABkvEQMYX7UKx48cAQAsXrUK3d/7Xs1+2NMeJsLRI0dOtBkR7fbuy1o+3dmJ40uXqgBUx2+PXHopsGULNhhTd3Md33HM37W6qGa9mRnwsWMAEcb37sWSq65Cu3Ef9RXktjbQzExDooSd7R8fx0x5uX2uACr3dmJCLZuexrRh9xo7cgTDp5+Oi5YuRftTTwFtbZju6kL7+Lj3nmjs639s1Sp0f//7mJ6awgP63bjxRvV3aAjP37sX3Y8/Xt2m3bvBl11WPTKdmgLv3o1dW7aoiq0ANh444L+m4+OY2bMHZNwP17rHSiVMd3Sg+/HHAWZMlEo4vngxun7yE2BqCmNHjuAHW7bg7K9+FW3HjzufgenHHkMb84lz7Cu/J8Pl//WQyvvcjYxU7o21e56Zwa4tW3BaeZ/LyvdJX0vzWPq6rtqyBet37Ki9/488gvGnnsLx5csxPDSk+h2HpmHG8bzqd+m0z362at0lq1ZhiUO4Ti9ejC83sJYLAICZoz5QHfl1gd+vA/B07P4c238bwP6MddoBXAyljnsdgPsBDAJ4Zswxzj33XM5FdVat8Ke3l3njRuaurrj129qY169X29x9d9z+16+vXkZU2Yf+LFrk3p6odllXl7/N7e3ufbW1Zbd1xQp1Ths3qv10dTF3dlbO4+671ae7O+0a2+fT0xNep729clzX9vb1LOrT21vMfvQ56s/Gjeq51Ofd3p59DXp61Hnq+09UuTf2fk181y10rfV+6j3/7u7qNpb3+5Nzzqm0ef36uOdHXyPmyjui/29vr/8+633qdmnMYzGr81m82L+vzs7K+q53VX+6uiq/63fJPJ7++N6v9es9nV0aAB5idve3KWqxpwCE5pCnltdpGMw8zcz3MvPnmfmjAF4KYA2ALxFRoDh7HaRmDR0ZUaoDn35+6VJ/+viYJHKuaS6z0mVr1cTQkH/ay1ydvl/nkrLjNwCljrjjjkpt8I0bK7rrO+/MbuuyZRVVy7JlKg7Ezu7sCyTNUl/p37MM9no9n26cOS6Gx2fj8KlFurrUORbhkcMc/l1nqs5CZy4Gwmowk1Sbgvncueq8xKKTOzrauOy7360YwGO8yWLVxPrZTkW/864yF7b3mM8GojGvd6gI2+RkdRZq3710lQGpNw1NJCl3/ssA3khEP2f/QETPgZq5zGrqF2aehpq5/DxUDEzxpGYNJQq/kOPj/kJEMfrVNWv8neHUVMU90vdg9vZWd/Dacyk2lbhmYMCdbdck5nx865hC0Kazs9amlVXeIFQfI6sD7exUNg7bNXjRIiV8zetgCmzA7ZHU3Z2W4TZL0OrxaMz2uuM7ejRcAlpTj6OHrvOSija86w4z5LIcI/ymp9WzPDYWl4Il9ZzNZ4i5usyFXac+KyuAeWxf8sslS/xBnC60S7kWnuefH7ddnaQIl3cB6ATwTSL6eyJ6T/nzDwC+CWAxgHc3opEZ6Dc7UHavDlIMajHBbSEDdpZxW7uKhl4oLRB81QF97oehVOI+dAfq6/xijPWh0Zkv9YZvuRlvYZc38FXgXLLE35nol1G715ZK6rv+XHihWk+7D2v3TtPVWI8c7UJaZ54ZP6pnrh4RDw+rGiqpZWtdWZj37Am7WKe6c9tCc9cuNZAxszL39vpjL4CK4IvRGsQ4aExNqWto1+rxCRrfs+LD9c77BmVZgsu81vasw6wAq7HPwy6rYTM5WZllNbhgWEoQ5bcAbATwNQC/BeCd5c9vlpf1l9cpHCI6hYhqggOIaCmAqwDMAHiwEccOdpCmSqSzM1uwmJ27ywMnpEbQnVIMBw74qwO6ps+hzkVH3YdYssQ9worxo/fFGmh1lV0rprPTPaX3qd00pRKwbVvFW0x7HJ1/PnD77e72Z9WOt4MmmdV3+3rqgENzRK7jL2K91/SIOCWjs7nt5KR/duqrbQNU2hnjFUXkrqAJVBdW278fuPXW8L5ii1ktWZImpHURMFMwa6Gja9MAcRVlQ/gGpaFs3zo7g4lZfDCmAixQCZS2BYhO72OW7G5gwbAkhSgzP8TMF0LZXi4of0rMfBEzfz314ER0GRFtIaItAJ4JoEd/t6LuNwL4HhHdRkRvJaJriOhmALsB/ByA9zFzxnwzJ1u3uvXtRLVBWyH9uhm5bFeMnJioPIx33lndma5fXx0Ds2lTdpu1QLSrA7oES19fOPAxZJPQHd3TT6uOWo9aXfEHPrJqqh8/Xl2FsqOjoiZpb1dCRZ+HL5XM9LRKMHrTTZju7q643uoX2Z5duLIjbNig9nH0aGUW4SsvPDMTp7LQ9ydLvWgSEgRZ24XsTiFKpWw1XmenykdWpC5fB/7qe6jTGAEVO5NOJmsGIofQRcD0M2/HkTBXXNgvuCBfzBDgH5TqzAsuYT01lW/wYGJnWtcCxDdAbGDBsFzWNmb+MTM/WP78OHsLL1cBeF/5swrAycZ3M9LsWwD+DUA/lOrtNii352EAv8rMN9bRhjADA0rf3t5ecelcsUK9SPYowzXz0OoaM3LZFe0bc5NjsijnibLO0lu7fh8crFaxHDqkzskVf5CFHp35MCsCmugOxsyfZrbPnlXs2QPSxlRbF65nF+3twEteotQ5ZnT57t3V+zJHgDau5fbxTDo63KleXGQJgtB2sVU1dSAfUFGzhJ4RXe9m1y71PaRyAir3JoZDhyrnXE5jNKW1BHq5tqnoQlwxMw49i/nud2t/M22NMdfbdV3HxvwzgoMH1aDIHlTo52rPnnAF2tCz5OojdLYB37k0qGBYnbkx6oNVShfyfPqN9R5j5quZ+TnM3MPMi5n5VGb+NWb+94Y3dGAAuOgiJSh6eoAnnnB3ni5VlK0jBcL2DTs3lRkElvUQhFRfIbJeRrv+fF+fWxCaKhazg4lJ9ZGlerOD4To6qjsYnT9Nr+N6yWZm0GZ66oTyQNnR5alkdbA2tj0n5ICgWbZMCUOiyvKQ+sp3Llmzkv7+/CN4FzGDJB/j4ydipqowSyjH2ol07jcX+l2LOW/XdTUDRX3Pgm8WevBg/qSYoQqg9dhGczCnwqWlGB72q4+WLauoZGxVlEsIhQzIjg7xxEsTis7Pckn0MTQUfhm7uyt6YnMkH6oRkYX9srnqvtiY1wFwv5hmPqhQ+8z75cMXXT5b+IzKzNWqOT1w0d51mzalu/9mJSb1CWBd/TKVRpXW1YO2VHuWizVrKued153afB5dAib0rqQUAzQJOci47FN588lFIMKlXlJcAjWuzry72x+bMjGhHkyfa2JqzXEb/TLaQk/biUql2qywPvQLPTYWnx02tiM3Z3y+duh16q1VEdMBho6RpTvP8uopOyB4j6FVKGY69okJ5Rp90knhY7v25VItmmj1rm2XytPxxoyUAx5lXpFhPr+mPSvF8wuodkZpa3O/G7GYz2xKxuSJidrZi21XdLloh9yXzz9f2XTzZLDOgQiXucDuzLU6y2eM1C+0bfy2gzDrbZP2SunpUTOhY8fCdiIb/RCbhHTHmtiRbGdnRd/sG5XqaxOTOymku87qANva1CzB145Uw7uroxgYyFZZ2UJ2fNxfHyWLiQlVo8U3i9QeX9ohwlUOYufOsKAaHvZ3+F1d1Qkmb701TTC4BlkdHemeX7YzivlupA5a6hnkuFL6m/T1VRxaAPWebd9e20d0dlY7r/gyWBdMSm4xwSZ1xqLRow/TJqG5/PLauuPmi2HW5c5Lak6hoaHsEaoOHsyqFOmqJZ5VuAmonqH5ZlA6Y7Buj2ufIVVJX19lZLl1a+29MPdx1lmqzsuHP+zeV15bjU2jyiP4YFb3MDVS3fZS0jYwm7Extf9t26qLjRFVHET0rE93fGZlT199IV3Dx3W8666rqIQmJrIHSQcPhgdE2sYVM9sOPW9ZcXHasWDt2uzjmNh9RJ76MgUgM5cU2tryC5QY7Ihmn0NALKYhPWYGESKky7VTmdsjKt0Wn1C75JLwsc0Z2uioX4CddFKlDR7PvRlfGheNVj0MDNSqELq61LlqbzLAP9ssqoTBXJVCSNX5+7yUNm+u2OqOHq3EkmzfrmY/uvM1O9mnn1ZF9YDqGKGya7CzO46Jx+royLbFhH7TM8tnPKN6P6F7NDVVbSMzsWf5Lg4cqLZ1xmRVaBKSZi7lei0XA3g2gBVwJAll5vcV1Lb5gysGw0epBDz6qOqcdWxLllDIGpno3+sRjFu31tZN7+5WQkd36OZLoF88V/10m3sCFRN6eqq3D3V6phfRwABw002VUsHlMr38ve+F22ISMwLcuhW49NLqZfq6mGRFTWvbyZNPKjd3vf66dWnlmjs6VL0Y34xK09Ojovx9M8aYGdPQkNoH4FdtjowoIW/HkugO0jdy/8hHgPvuU//r0sIPPABMT7ttLmbqI33tdNtMdGnlJ5+snX1o+0rW7Nvcz9iYEno7d4avmbaRAZXBYkeHGpw88oj/OixfXj1T19dTtyGWlD6oIFKKhT0bKnPx5wH8NYD3ALjR8Zm3THd1zc4NyuMk0Ghse4+2E+kH3Hbd1W7CMUFhMTYXndEg9AKvWVM9Q9JFonQ8we7daB8frz9QzcTOsWZflyxWr1bnZMXjnNC1xwQwmpx0UnVZ5hBbt2bbrmLxzWzb293qo0cfDSfbZFbrmM9Ulh0tlAvPxjbUu+yXk5OVwmNlwXZi5mXPHmLdn21bnJlM1NVGfV4m2nPSN6Pp7684DzzwgDtNUIrDTU5S1GIfBHAGgD8AcB6AdY7Ps4puYNPjUveERgmp6ilfKoeU9hUlqMya6rbbs8/jK8awnWU8tzMauPCVbbVSXpAeQa5cWZx6QWdqyOMObkaLm202O8mUPGR69haj+hkYAF7/evc6ExPVz5tvwKOdInwJOn0CQZf4DqGDI1PwDVR0YS6duXhmpmKodyWRHR2tft7M89ADAHOQEuv+7Dpn32CnVKqejZvoqp7mjCarMNoskyJcXgzgA8x8CzN/g5lHXJ9GNXTO6evDmC9vUogsl9NQsF1qKoc8mMJr5041ks4jjELZjbPw5RfTL6qrA7Z5/esrnbopwH3HP3SovpexXhuWxnfdzOV2HfgQa9aoe+o779WrqwXVbbdVZwcwO0f9vJmdnx7N21mVXZ6MIQ/IRuEaqExOqmfInlW7qmdqsrwjXTnZ9CykvT088zt6VG37oQ+pvsE3ADt8OC3AcWZGqdhCWaRnkRThMgEgZ2TPPKPe2UQsoVQOReDy8Mnb4YYM/jamv7/pPmknldSdYEhtRqQ6x1hVkMnMjBr96XuYNRCIJeX58F03e3mMmq27WzlHuLy09HVyCSmtPnR5L42Pq85vclKpWOysytrg3N/vdnP1DRyyaGtLUwcCtQGB2rHE13lPTan773K9jrE5MVfy1j1o5M11lGZ27v+yy5TjQihma2wszaEnZjA3Olo9QGiCxJVfAHBhQ1rRSvhmE4ODxQudUCqHIvCkSHEKr6yReqgTMYWVTibpGvnqUd+SJapD0Prt5YFqCkuWVDrevLOJIrPDhp4PFz51kkvFl6Vy2bZNOUf4UqtkCShfx6RViS4VV9Zgx5U2Pgvt6u1RBzpbGUp9lNXhutKtpNic9PWx0xNlJSRlVo4LoWty6JAS7LGC1t7XzEzFbrR2LXDaadUOIg3MjJwyNHgrgPuJ6G0APsjMBVpFm5yy0OiZmACuuKL2JdPZW13prIH8gUq++I/e3uoRtssrJoYihZc+R/v66CqZK1cCr3qViiB3eb4AFZWLOTrWHlQdHW7dtC+ppSamxg5QcZt13avRUdWB6vxMo6P+jjrkkuvatx3L0durBItr3UWL/FUMu7rUNpdd5v7dvAY++0nstbIxn5cHH1T3RHdm+ly0193wsDvIU8dzuQpZWd5yJ7pPIrWd6Vmp0QO92Gd5377qe7punZrRpNh8fNVnQ8Reb519Pet8TPfmycnq/fs8A0PPZx14Zy5EtNf8APgKgB4AfwrgKSIasdchoscKbV0zYIxECfAbKA8d8ncqPrKM7bGj2lCkeYhQtco86qGBAf8o7NAhNUrzzZTsLMsmx4+HU5q4Rs4PPqjUFWaQXhYuYWs7E2hjrinQzLieGBtKHkZH3YJF5/fSqpOQjn7HDtUJr17t/t1VlycGPaq272FoVGwXD/PFc5VK/nvn65jt2WMMOt2KzjCghU1KfjL7Hqdkacg6zsREuIiZjsMyr2HK8RuQ7y2kFjsAYMT6/C9UKeMHAOx1/N6gjHRzSD0ZXIG0m2anzwDc7r9FjTBSVDKxhJIghnTLWS6kPq8Zvb2JrrhoHo8IWL0a06EgSrNj1io2nzeXKdDMQUKsDUVjlwawO2RtB/KpnhYvrp79Zdk4tJ3kmmtqf8uTKgWotN11D80B1uhoZdby9NNqJK7T5IdUdqHRvR2sq9uR+s62t9fWWBodrdQS0hkLQsb6NWuqy0jHzkr0DCwkYHSRPNtpQgf26lpHmmXL0mahDciM7FWLmSnvFzQxwqG7W93kQ4dqf4u9ab70Gdu2VWqdFGFs1jYJHYUOqKC7iYmwSsZHEW3q7My+zmvWAD/8oXs0ar/svoqLhw/jp895Dk7WxdnsgFCXUE1VHfqCTe196/uwf3+cGi1UO8bMX2XfUxc+NcjYmFJfXXCBX33lQs/mQ7O2rq7aYNCpKeXdlKXv7+z0n4uZGdo8no+2ttrBQlubUi3b7692Y7dZt672+QGUM0VW8KpNd3clHiwkDHRaI61i1KpanbzUpRpetCg747VuQwMyI6cEUb6EiJ4Z+H0lEb2kmGY1EVnCQbtcupLspdy0kK6+HgYHlZfP0aNKLWK7X4ZiV/KQlajPHp3pnGGh60ykXlxfoJqdsDCriJdrBOibEYbKHLjwBZv6rmusGs13PNdy02vLh7l/7T2kqz3q5yPWiKzbEJq1Pfqo+zfm6mfcVf47lPXbVfo55F01M6PUgmbqlrPOCs+MR0fVzFRXPt21qzZjNRHw6U/79+GivV3tp6ND7TdUisOOwbFVtbt3VxxlnnxS9R0uwVKewUeVP6+TFG+x+wC8PPD7L5XXmV/4VEfr11e7XKZ2KjaN0NUPDgKveU21nSh2tOgjy103VHe+u1vFo5gvtp7uu3KBaZiBj35UqXTMqGrtXqvzfGliOuLY7LC+6qKhDi9FYMeq0VzHiym3kFUgyq6lo93RJyeVt1aWG6xZ78c1kNIDrFB0vX7GJydrVVO7d7urRZo8/XT185x1TQ4frtRc0sGTocHN7t3umYGd0saluQgxM6OejSNH1Md3j+13yheDY8bx+Bw/dGYCna+tiAGlhxThkmXZagcwh9WVGoQhNBgIp/dInQWYrsu+jjVr5hRyf9682f2Q2aPFIimV3AZjIuVJdqHHm92u4mmjg9bM9Oe+csp5O+KYdvnKHOSNkYm1e7mMy7odoej5s8+uXa7VuP397swK5rX+2Meqz9016tXXwk6FE1svRD/jx465O80Y1c4VV8SnzDFntvq+ZWkYdu+ujg25/vr6i8llvduLFrmftXpCEaanqxOJNkmcC+BxMS/zIgBP1NGW5qUsNI6ec059kt4UBCtXAq99beVBcY3sstRqWTEVoVlPHkeD2Pgdl4qBWakN7DLOpitxKM+S3kcWWhdtor2R8ta90e3Skey7d6trUUQ8kx68xKgp2toqLqm+FPOutq9f788Jl5VZwc5KnDXq1alw7BlhqLPXz3g9ZQqmp6uf/ZBA8qkSPcXJahgZSZ+l2JgFyQB3NVaf8Ko3U7adCLNBcS5B4UJE1xuuyADwAYf78V4i+gmAawF8tvAWzhdsQaCDo3zEqNWy7DShkVFeR4OYh9E3snK5awO1wiCmfrwLXw6yrVvrL6hmq2w0RbycZgeeOnixkxe62mHm0LL3n5JZIQZXuQVAqdhc+1y9utKeesoSA9XPfqgD9s1gb701f0ljTWw6f7sgmW8G6XJOiU2S6cM+ThG2XQdZLTyCipsxABxCrfvxfgBfBvBOAG8uvIXNSsxLbZLiHml3Aj6VS5adZutW5apq40vy6CKPo0HqyEp32Nql1/Xy2FUu+/qUnlpfl8FBNaNwjfaKeHF8KhsgfD1iswbkiVWyS0+7BF2Wui5UFrdIdu0C7rqrOsWPnY7GVePdpLPTX89Fo599Xwe8eLF/oGHXU8rD4sVKNeh673QGCtesM8sr0c72bZderlcwz3KcC5j5DmZ+KTO/FEqQ/KH+bnxexsz/h5lvZuYcIaotiJ1ePmb0mlLKN5YsY/DAAPDxj1d7tSxapPTwjXQ0cI0Mu7v9agf7nO0Ms1lF0/TsykcRL06WyqYBL2cmLsNu6ijUlXCyVFLCVA+cYksUmHFarrT0eoYG1NrLhoZU2++80+1xqG1mbW2YCTkZ6GfffoZ0TEhWkGiplJ22JYROkumydYauY6pXol2W/NRT49rnU082IM4lem7FzOuY+V8Lb0Er4prCZr3UMTfP9LyJIcYYPDAAXHRRRQ9+4YVpKqLUoECg9gUNuWsDanS2ZEm1cNZ2Dj2LK5X8pQyyZoV2nZc8ZI0MG/ByZuJTP6YIuv7+SmxLT496/kZHqwdOLndfm9HRavWpXZcmFv28mnYiy4mCFy9Wv9szE/vZ18+QPq9jxyoByqHz0XnB6p0N2ISye/u8Jc28YL5rOTkZn2zWNUia6zgXwSDPaN4XOa1HEqlFpoD63Z81oY43NYpf78tl2LWN1yY6aDRPRuasztRXRtmn2rQdGHSktk9lo42zsSqwvCxbVrFnLFvmT2dfj6Dzubn6Uonoa7V7tzu1T16VpGknOnas1t3cVg3Znmlm5m1tL7MdSR580H+/OjqqyzDbrFiRnrUZUG1wXV+7rDagjq0dE0ZGgMsvdwuYkMrWxnYcWrFi9uNciGiGiKYTPxE+g/OAPKN5l/ph/Xo1k6gngDHF/XlyMj1rc1ECzNyf76XNW04gqzO9447ac/WpNt/whloHBu3FY+u5gcqo2r4eRaXvd6Fdj0OCP+/xfbMh14g3JodXSPDXe41M1VAoVsnX+cbk3nINKrq71Sw8r3ebazt7BulKIjozozIvmPT11edlt2xZw+JcQqL3TtS6Hp8L4OcBPAJADyWeA+AsqBLIXy+6gU3J1q1qFGE+sPqlNmuu29g12WcTO5VFStZms91FdJihVBeujsrMcLt2rVJZmDM8V8oVEyPdyfAHPoD+/n61H5dqc9u22tGdGfdRr9dZXvQsi7mSmTlv+h7zenZ2VlSxobLDRJV7r0f7MU4q9aoLdTG9ep67UCmBLHSde50V25whXXpp/jbt36/ug+9exb4f9RYObKCtMJRb7ErzOxG9HMD/B+A3bNsLEf0GgLug0vLPf0Iv9VwJjyxcD2uDUm1X4bKThKbw9szA1uXbafqBuHxaBw4A/f3oO3JEdVi+l8oXSV7P6NDGFpZZ+m57lmXaM1IFvyuH3e7d2en2Xd5jWR2THcsBVCd2NFPyF4V5bYlUu33nFmNT0c9vf796bvr6Ku3t7fWnsc8ia3Dny6dmvh/aW9BHV1d2GYAG2gpTbC7vA/BRl1Gfmf8ZwDYANxXUrubHp45qpDqkETRi5NLfr17Ciy5y/x5So+hRtHZL3rcvrqCZvh+hjLWh75pQbjQz71Ze8pSu9sVAmFHpsfhmGz7B0tur1LeuOitZ+eBsdeGGDfEp+V2Uc6C1P/WU+17Y11YX8Vq0qP74FRcuI/zixfGOAD4noL4+4Pbb3TbadeuqM2X7BmpmGQYfLuFfIClX/BcBhOq1fBfAL9TXnCZmaAjDH/jAXLeieObCy8knAFasUIZbUziHsuG6cMU3uBwQfPaKTZv87qr1lIHW5CldHZplpTpBpA4mXOnw9f1xufa2tanlrtQ8rnOMdZ0eHDzRdgLc98InOKemqu1lvb3VZbTtc4uNN7LjYnp7leu/9lDr6VHHCYUX+O6Hy0Zrq4NDgzR9bj5Bp1PLNFBrkSJcfgLglwO/vwLA0fqas0BwZX7VNGrm43rIGuSCmIkvSPLWW2vXjZ2JaLQXkYkrbsHnqHDbbeGaJr6oaReutDm+zmRy0n/fQwOAVCeIlMGEvga2rUVjZ5fOikeqx3U6piR3KJWNnaXg/PPdmQSA6txbO3eGZ1alUsUrcu3aWrV4R4c6blYCURemdsSu1wLEZbLQwt7lSNRg+2GKcPkkgF8notuJaAMRtZc/G4joYwB+FUBjMqDNJ+wUJXoE1qDkcSewH7IGptrOxHYjdalQNK7qe6lC8dAh9wjfp9rUy31MTFTcXH341F/Ll7vXD3UyoYzRuj2x+FzifaUQsrCvoU5cagZh6mc7dqDgGmDF1NUpIpWNbd/K4yKvsy2YWRdcNqt6B3e+LAT2sbSAM7NAzwIpjtpbAJwJ4DUArkQlA3Ib1Ez138rrRENE7wDwPCgvtHUARph5rWO9JQAugxJg5wAoATgI4L8BvJeZd9nbNC0uPamOB2hURz80pIohAZWHfS7tQuZIWHfSvge+VAK2bEnziPKpX/btqySfjMFnVI3prHzqL61KiilUFnvMmKwO9v3W19P0FnvkEdWparVRnk5ID570M24arl116WM72DVr3Mbz9vZKrNKKFaojNVWmbW1pWS98AdL79tWXEuf889W1Ma9xvc4M+v5oTzbtwGBfgzkiWrgw8wSAVxLRLwP4dQDPKv+0F8C/MPMXcxz/ZgCHAXwDwMmB9dZCOQw8AOB2AD8oH/9aAL9JRK9g5vtyHH/2KSKqOpXBQTWSnJhQ0/w8qefzCKN6BZi5fYpHVFaxsFhcFQdjOyvf/Tx8WOXYihWWegbk82Lr7k63m/m8Gg8erPaOykMoJc3atZV1UiufutzNFy9W9hQ9yzh0qGJQ18tOOUWpWwcG4s4pNENyCRdz4JbFrl3VlWBj0Zm+9furvQRtdaVrNn3RRfXdzzpIDjEtC5E8gsTFGcy8FwCI6NsAPEpQ/BjAc5l52FxIRIMAvgngzwCcV1CbGotvNNwow7rL9dR0Y52PxLhxxuCaNXV1qU44C99Ie82aNPfhUCyJ7pzzur+bnVZnZzEeVaHB09q11bFCWedudoqGuzlPTIB6e1VZZjv1vZ3TS6tEbezsDFrI+e5bvWnuUzBje+yZoFbTAbXvr9ZK6BnS0aPA/fe7Ve6zoLmY0/QvWrBErHfIFizl5d+BCt78+YKb1hj6+4uxIaTgM4Q2qlhYKpOTadmlY7j9drfHWN5iYbZNAVAv8jXX1KaJ0bjsJHnuc2hGW09tIZftb2KiflfrVAeMFOy6SqHSxCa2R1oo8azPizD07OTJaB1LanLS0VH1zJgxUXnTKtVJKP3Lu4jonUTUZnzP+rxz9poOlNu2GsDsX7m8uDxs6jWshzzMGlE+uShGR1UcQtGFi+zqkXnytmXhCu40XWN9bUi9zzHZcvN4GPpsf3nS75jEuoIXQYrAMp/3UOJZlwtw0c9OCNsVOlWN7ooLy5tWqU5CarEbodK/vB/AZPl7FgwVbDlbvB5KuHiPSUSbAGwCgFKphKE6poNjY2PV2994o/obuc++I0cAAMOnn46+smH5ROxMg6apF6xahSWOUcuxVauws0HHPHGeGft/8WOPoSZkcXwcx972Nuw8/fT0fRr3o6+zE8u6uzF25pknrnHfkSOYnp6uuoe+/ZrL7f+XTU2BHnsM7bYKZmYGvHs3Jk49FXuvvhqnOdqg73PsNVp16aU4+5Zb0G50MkyE8VWr8LU67t/GiQln3XKemMAO65xd7fVen85OLD79dCz54Q/Rdvw4Jkol7L36avzo9NNPrKfJPPd778XZX/2q2o++psY9dF4buOuxH1u1CsfKx+85cMB97gcOYMfQEFB+P5d997vq3p1+OnDjjei74QbgyBHvs2Jz4rm74YbK9XHcd/s8pzs6cHz5cqCvDz1EIEeAq/n+msfvCdzXo8Z6Wde+EJjZ+QHQC6DX/p718e0v6wOl3tqfsP6LABwDMAxgScw25557LtfDfffdV9f2vHGj+tj/N5K772bu7mZW8wP1aWtTyxt1vM5OdZze3vBxzDaZH6LadVOv18aNzD091dts3Mg/OeecuP2G7tXGjf626093N/P69bVtyHM+5jXt7FT7rffZ0fuzP52d7vaFvrv+d51f6Dcb13NbvqZV99B+3q69Vj3f9nZ33105bm+v+9x7e6vb6rt3NvZ5xV4r33m2tVXucVeX/3xcxw/d19hrnwCAh9jT33rVYsw8wswj9vesT7Gizw0RnQvg36G8xn6FmSPSmy5QXNP8RkXmppZEbqR+vtFkGXiLVEVou4/O/luEisaVXsQX2+IKBvXhU9GZ+4hJoxObycC2id12W7Y60lWCwaW689UPssmjltTlGbKCQzs61PmYaYlCxcx8Nt089sY6iTboE9HziYqunpMOET0PwH9AZQN4KTN/f46b1PzYkb6N0h+nlkT2Gd7nImuATVaH4XqJbVJdn2cTV4YCoyDXCfLkQrMJeSz6iAma9GEXmjMFy+ioKsFgQqTytBU14EoRNrHnaarGtAecff2GhpS7s8tmZKdVmgVSvMX+G8BhIvoXIrqeiGY9j1hZsNwL4KdQgmVWZkotia9wVSMTa6Y6D9gFkkJG79h26/O2DaPlkXPPww/X55VmFsfq6goXjJpN99U8+DzhTPLkQovZR5bHYmrZ31hcBm9m4J576ttviNCzm3WefX3uCpahQZs9052jkIOUOJfrALwUQD+AXwPARPQEgCEAXwLwJWZ+tOgGaojouVAzljEowTL77g9CmFBsh4+ia8W4MEbOBFRHjacc0x6BHzqkZl6rV6uYAjvqfs2auJiYZsG8Fvp/X+zLxERFTZYVzZ+3cqsdNJknYNRkaMh/PnPlPek6T1s9WaTH5yzOXqJnLsz8YWZ+FTOvAtAH4G1Qs5lfBnAbgN1ElDSTIKLLiGgLEW0B8EwAPfo7EV1mrNcLJVhOgYrQfxERXWp9lqYcW2gAqSWRZ4tUdV3KfmZmVLyFy718rgqLFUV/f3badtsF20URlVuLuqZ52lIk9iwmRj05123OSa4gSmb+H2b+AIA3AHg7VFVKAvAzibu6CsqN+H0AVkGlgNHfrzLWWwdgRfkYN0IVJrM/z8xzLrOGqy77fKPokshFUdTIL6QfD5Wb1hHXrUiMbcmucmrjGnTE1BJJKeFtEkqb36gBUIrTg02WejIrILdJa0glpX8houUAXgbgl8p/zwQwDZWC5f0A/jNlf8zcH7neENzu662ByyjaiOJFzcBsqLlSyaOuS9lPHjtAnmtTb96vPNgpcHyEBLVdKVQny5yLQYerLfUOgHxOD+bxUvZll6AeGABuuqnYpJezQIq32DcB/AjApwBcCOBzAF4JYCUzv4CZ38HM9zammS2OT52SVYJUKIaiRqu+EfhspwaZ7ZGqObLu7XWvkyWoi/JYHCqgaF/RBu+i1K521gfTqy7kAefbV9FplRJJmbmcA5Vm/24Afwvgfmb2ZNQTqmjmFCzzGUea+RNJD1NGfr509fWkpm9VfIb2rq6Kl95Co6j3WycRNdHlrJ/97Pj9+HKnAbM620nRzbwawMcBXATgHgA/IaIHiOg9RLSRiBY3pIXzgRY1yM0r7KSHeV+yGPfd+UyjDO314JrJzebsrqj326d2nJ5Wgmr16rj9hHKnzSIp3mJ/x8zXMPMZUAb2awHsA3A1lCvyESIqKhX//KIZvKia1Og3b0mNSG8l8hra5yup77fP+B+y3aXEFjWJpiSvt9gIM38MqtjXnwDYDaALytAv2DSrF5XQGPJEpGcxnwYHzXIuseldskh5v0MZD7I882IzPjSJpiTVW2wdlJfYy6ACKvVc+AiAf4aawQgumtGLar5hetqYBaBmm1BEerMNKBr1LLb6M57a/tj3O5Tx4IILlGfepZe6t431SvTZxWY53ixauBDRPgBroFyCx6BKDn+p/PlmOUOm0Aw0SycbSxEdUZHuoCm42t4kagmhCcnKJabdjs3qk0BadgLb3XqOXJdT1GL7AbwbyqC/nJkvYeZbmPkbIliaiNTMxPOFotxBi6BJ1BJ1sRCCfueCmJxppZKK0q/HaaIJ7GIpBv2XMvNNzPxVZp5qZKOEOmiGTnYudOrNNFvIG5HeLLgGKFkpXoQ4Yssol0pzLhzqZZ6GiS9gmqmTnU2aabYwmzV0GkEzBf02i/G/KJrRlbtBJBn0hRagqFQnrUYzGDHthITawNtqLIQBylwKLJfxv1UGHgnIzGW+0QwxNXOBuHsXR6NmgfNtFiIEEeEy31jInexsGTFTOsnR0fzZcueKhTpAEQpF1GKzyWyN2iSmpjkYHa12KZ2jHE/JpLqytprre6vSYu+yCBdh4TA0hOGhIfTP1vH27fPneGr2zjd2gDJX8UVC05MSRLkCwCpm3mUsWwfgrQCWA7iTmb9QfBMFoUXxpeuYD4ZxLXDWrvW7votwWdCkzFxuBXAWgPMBgIiWAfgygNPKv/8OEb2Mme8vtomC0KJ0droFzHzy3FsInmWzjRbcrVq9tEyKQf+FUKn2Nb8DJVguKf/dBeD3i2uaILQ469aFy9POB5opvmi+Ua933Rx756UIlxKA7xnf/18ADzHz55n5hwA+AeC5BbZNEFobXxqP+aQuEs+yfCwAt+wUtdhxqLT6mo1QAkVzBMCK+pskCPOIUqkSfT0fO5MmSZLYFMzH+1sHKcJlD4DfIqIPAfg1KCP+fxq//yyAwwW2TRCEVkBc3wUHKcLlQ1AzlZ8A6AawF9XC5cUAvlVYywQhD9K5CUJTEC1cmPlOImIAvwHgKICbmfk4cMJN+WQAtzWgjYLQmswTrx9ByENSECUz3wXgLsfyQwDOLapRgiA0ATILFOpAIvTnK9IxCIIwh3iFCxG9CwAD2MrMM+XvWTAzv6+w1gmCIAgtSWjmciOUcHk/gMny9ywYgAgXQRCEBU5IuKwDAGaeNL8LgiAIQhZe4cLMI6HvgiAIguAjOv0LEa2KWOf59TVHEARBmA+k5BZ7mIhe7vuRiP4QwAP1N0kQBEFodVKEy5MAPkdE7yeidr2QiEpE9EUANwP4YsrBiegdRPT3RLSXiJiI9gfWfTkRfYSIvkZEx8rr96ccTxCEBrEAEjEKaaTEuTwPwIcB/B6AjUT0agBnQ6WE6QHwFma+NfH4N0PlI/sGVIR/iAEArwbwbaj0/n2JxxKEuUE6XWEBEj1zYeanmPlyAFcAeA6A/wHwWSjhcEEOwQIAZzDzCmZ+OYAfZKy7GcBJzPw8AIM5jiUIgiDMEilqMc0DUEkrdRGHf2Tm4TwHZ+a9Cet+n5k9dWMFQRCEZiJJuBDRq6BUWGsBXAM1c3kHEf0HEZ1afPMEQRCEViTa5kJE2wG8Fkq4/E551nE7Eb0JwJ8C+CYRXcnMX2hMU/NBRJsAbAKAUqmEoTr032NjY3VtL8w9cg9bH7mHrUGKQf+1AP4SwDt0qn0AYOYPEtH9AP4OwL8n7rPhMPM2ANsA4LzzzuP+OtKfDw0NoZ7thblH7mHrI/ewNUgRBL/GzPe4fmDmh4noXAAfLKZZgiAIQiuTUizMKViM38cBXFV3iwRBEISWJ4+3mCAIgiAESbKPENEZAN4C4AUATkGtcGJmPqOgthXO17/+9SeIqJ4EnCsBPFFUe4Q5Qe5h6yP3sHno9f2Q4i32C1AxLp0AHgHwLAD/C2AFgFMBPAbg8ZRWEdFlRuOeCaCDiLaUv4+UyyrrdX8RwP8pf72w/PcyIrqo/P8Hmflo6HjM/MyU9jna+xAzn1fPPoS5Re5h6yP3sDVImbm8F6po2PkADgH4EYDrmflLRHQNVCqXX088/lUANlrLdLGxHQDuMpY/D7WFyF5r/H83gKBwEQRBEGaHFJvLRQC2MfMjUBUnAYAAgJm3A/gcgD9JOTgz9zMzeT791rqfCKxLzLw/5diCIAhC40gRLidBqb4ANYMBgKXG71+BEkDzmW1z3QChbuQetj5yD1uAFOEyCmVbATP/FMBTAM4yfj8FQLtju3lDOSBTaGHkHrY+cg9bgxSbyzAA04i2A8D1RPQglJB6I4CHi2uaIAiC0KqkzFw+CWAlEXWVv78Tqo7LfQD+E6oeyx8V2jpBEAShJSFmzl7LtzHRzwJ4JYBpAJ9LSaEvCIIgzF/qitBn5u8x818x84fmo2AhojYiegsR7S6XVv4eEf05ES3N3lpoBER0FhG9l4h2EtGPieinRDRMRJtd94WIziaifyainxDRU0T0ZSJ6mWffPUT0QSL6fvl+/y8RXUtE1PgzW9gQUbdR7vyvHb/LfWwxcgsXIlpKRO8iorUFtqfZ+EsAfwHgOwDeBODvAbwZwL8RkaTOmRteC5Ul4jGo2KvfgwrqvQnAVw21rc4o8VUAL4QqC/F7AJYB+AIRXWzulIg6APwHgNcD+BTU/X4EwG0A3t3YUxKg7qUzyFnuY4vCzLk+AEpQ6rCX5d1HM38A/ByAGQCfsZa/CSrO59Vz3caF+IFyKulxLL+pfF/eaCz7dPkZ7TOWLQMwAtXhkLH8DeXt32Tt9zNQrve9c33u8/UDFSA9BeCt5Xvw19bvch9b8FPv6Hs+TzN/F+r8PmAt3w5gHMCls90gAWDmh9id5udT5b8/D6iZNVS6oCE2ynAz8xiAv4Fyo3++sf2roe7rdmu/HwCwGMDvFNB8wYKI2qGu+ecB/KPjd7mPLUpQuBDRp4nolNlqTJPxfKiZy4PmQmY+BuWW/XzHNsLc8TPlv6Plv78IlQfvvxzr7iz/fT6gbGtQo+dvlu+vyYNQI2G5343hLQDWQ4UyuJD72KJkzVx+E8D/EtGvzkZjmozTADzBzBOO374P5ZbdMcttEhyUR7/vhFKtfLK8+LTy3+87NtHLTi//PQVAl2vd8v1/wlhXKAgiWgfgPQDey/70TXIfW5Qs4dIPNcX8FyL6GBGdZPx2GMBLAXyjQW2ba7oBuAQLABwz1hHmng9AGXvfxSr3HVC5N657aN+/0Lp6fbnXxfMRAHuhnGZ8yH1sUYLChZkfAPALUJ4WVwD4lnb/Y+bjzLyDmY80vJVzwzjUdNzFEmMdYQ4hovdBqVS2MfMfGz/pe+O6h/b9C62r15d7XSBEdCmAlwO4lpmPB1aV+9iiZKZ/YeanAbyJiD4D4GMAvkhE21DRd9rr31lsE+eMHwB4DhF1OlRjp0OpzCYd2wmzBBHdCGALgI9DuZ6a/KD816UG0cu0+uQnAJ52rUtEnVDFqXbU2VyhTPma/gWAewD8kIjOLP+kr39PedkTkPvYskTnFmPmISK6ECp/2OvKH+0txuX/GcB8ES5fA/DLUPVrvqwXEtESAH0A7p+bZgnACcHybgB3ALiay/6mBt+CUo+80LH5BeW/DwEAM88Q0TcAPNcxmDgf6tl+qMDmL3S6oGJafqX8sbm0/Pk9KNWZ3McWJKUS5UuhZi4roVJeu7w35hOfgsqVdgMM4QLgGii97eActEkAQETvghIsdwF4LTPP2Osw8xgR/RuA3ySic5j54fK2ywBcDeBRVHsC/i1UhdNNAD5oLL8BylHgUxCK4ikAv+1Y/kwoFfznAdwO4H/kPrYumbnFyhHPfwrgWqgp6lXM/B+z0LY5h4g+CKXP/yeoKfwGqAj9r0AFj9Z0akJjIaLrAPw1gANQHmL2PRjVz2dZtfIggONQ2RaehBoc/AKAX2HmLxj77YCKAj8HwF8B2AXgEqjceTcx8zsbeFoCgHK2j30APsTMbzSWy31sRUIRlgBeBGAP1At8BxyR0fP5A1Wf5m1QUcATULrdvwCwbK7btlA/AD4BpX71fYas9TcA+BcAR6CMuQ8AuNiz75OhBNcPyvf7O1CDC2r0ecmHAWAtHBH6ch9b8xOcuRDRFJRR7XXM/C/REksQBEFY0GTFufwTgJ8XwSIIgiCkUFc9F0EQBEFwIWnjBUEQhMIR4SIIgiAUjggXQRAEoXBEuAiCIAiFI8JFEARBKBwRLoIgCELhiHARBEEQCkeEiyAIglA4IlwEocEQUTsRSQVEYUEhwkUQCoSIriQiJqKLieidRPQYVHndV5WXfyKwTb+x7MbysrOJ6GYiepyIJojoYSK6xLGPy4noQSI6QkRPEdFeIhokomc28HQFwUt0PRdBEJK4BcBiANuhUsQ/knM/d0Clmr8FQAdUXZJ/JqKzmHk/ABDRZeX1vgzgXVDVGH8WKtX8KgA/znsSgpAXES6C0Bi6ADyXmU/UbCeiwOpengDwa1xOAkhE90HVNnkdgHeU13klgJ9C1RiaMrZ9V54DCkIRiFpMEBrDh03BUge3spFdlpm/BmAMwLONdY5CVUf9FcopwQShaES4CEJj2FPQfvY6lh0CsML4fjOAEQD/DODHRPQZIrqaiE4qqA2CkIwIF0FoDCmzlpB6etqz/MQMhZkfBfAcAL8CZXvphbL17CaiMxLaIQiFIcJFEGaPwwCWO5Y/q94dM/MEM9/DzG9j5vOgBM1pAN5a774FIQ8iXARh9tgD4IVmzAsRnQLgNfXslIhWOhZ/o/zXJcwEoeGIt5ggzB5/DeBuAF8iorsAnAzgGih7yal17PeLRHQEyhX5e+X9XgmAAdxVx34FITciXARhlmDmQSI6DcAbAfwFlLH+vQBmALygjl1/GMCroNyTl0MZ/L8J4E3MfF9djRaEnJDh5SgIgiAIhSA2F0EQBKFwRLgIgiAIhSPCRRAEQSgcES6CIAhC4YhwEQRBEApHhIsgCIJQOCJcBEEQhMIR4SIIgiAUjggXQRAEoXD+L5AD/OvIr8WNAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"thermal_width_y_val.plot.errorbar(ax=ax, yerr=thermal_width_y_std, fmt='or')\n",
"\n",
"plt.ylabel('Y-axis width of thermal part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAETCAYAAAAyK6EVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA+GklEQVR4nO2de9geVXXofytXSCIqAeKDJYlotWqtCnjvsQbRVjy1x6otNSrUYmwUqyJe2qhFNGIV8X7DG8gXxVpvrVVpI8GDF4rgHRUpaLD0FAyIkIBckn3+mHnJvPPNvs6ed+b9vvV7nv183zuXPXv2nllr77XW3iPGGBRFURRlxIK+C6AoiqIMC1UMiqIoyhiqGBRFUZQxVDEoiqIoY6hiUBRFUcZQxaAoiqKMoYpBURRFGSNYMYjIY0XkQMf+A0TksXmKpSiKovRFzIhhG/AEx/7Hl8coiqIoU0yMYhDP/oXAnhZlURRFUQZArI/BtX7Go4EdLcqiKIqiDABxrZUkIi8GXlz+XAv8EtjVcOjdgf2Ajxhjnpe5jIqiKMoEWeTZfwOwvfx/LXAdcE3tGAP8ELgQeFvGsimKoig94BwxjB0o8jPgxcaYf+62SIqiKEqfBPkYRGQ5cCZwa6elURRFUXonSDEYY3YBrwIO6bY4iqIoSt/ERCVdCdyjq4IoiqIowyBGMbwXeJ6IrOyqMIqiKEr/+KKSqtwEXA9cJiJnAZcDN9cPMsZ8LFPZsnPAAQeYtWvXJp27a9culi9fnrdASidoW00P2lb9cckll+wwxjQucxQTlRQyq9kYYxbGFG6SHHHEEebiiy9OOvf888/ncY97XN4CKZ2gbTU9aFv1h4hcYow5omlfzIhhXabyKIqiKAMmWDEYY77aZUEURVGUYaDfY1AURVHGiDElASAiRwCPoFgfqa5YjDHm9TkKpiiKovRDsGIQkX2BzwBPpFiC27B3KW5T2aaKQVGULGzZAps2wVVXwerVsHkzrF/fd6nmPjGmpNdSKIXNFI5oAY4FngRcAHwLeEDuAiqKMj/ZsgU2bIDt28GY4u+GDcV2pVtiFMPTgU8ZY15LsZoqwNXGmHOBo4AlwHF5i6coynxl0ya4uTZT6uabi+1Kt8QohkOAUWTS7vLvEgBjzB3AJ4Bj8hVNUZT5zFVXxW1X8hGjGG5ir0/iJorPeB5c2f9rdC0lRVEysXp13HYlHzGK4QrgvgDGmN3ApRTmJUREgD8FfpG7gIqizE82b4Zly8a3LVtWbFe6JUYxbAWeJiKjJS8+APyRiFxBsW7SUcCHM5dPUZR5yvr1cMYZsGYNiBR/zzhDo5ImQcw8hjcBZ1OGqBpj3isi+wDPovA5fBB4c/YSKooyb1m/XhVBH8QsibETuKy27XTg9NyFUhRFUfpDl8RQFEVRxohSDCKyj4i8QkS+KSLXlOmb5bZ9uyqkoiiKMjlilsQ4EDgPeCBwI8WnPgHuT7F20nNEZJ0x5pfZS6koiqJMjJgRw1solrw4ETjIGHOYMeYw4CDgZRQK4i35i6goiqJMkpiopD8GPmyMeXt1ozHmNuBtIvJA4KkZy6YoiqL0QMyIYQnwbcf+i8tjFEVRlCkmRjF8CzjMsf9w4KJ2xVEURVFcbNkCa9fCggXF3y5Wm40xJb0M+IqI/AB4X7lwHiKyCHghxZIYj89fREVRFAX2LkU+WnV2tBQ55J0IGKMY3gpcB7wdOEVERlFJhwL7UayldHqxbNKdGGOMKgtFUZQMuJYi70sxHErxhbbRorf7l39vKNNi4F65CqYoiqKMM6mlyGOWxFib99KKoihKDKtXF+ajpu050SUxFEVRpoRJLUWuikFRFGVKmNRS5DE+BkVRFKVnJrEUuY4YFEVRlDFUMSiKoihjqGJQFEVRxlDFoCiKoozhVAwicncRuVBE3uA5brOIfF1E9stbPEVRFGXS+EYMzwceBLzLc9y7gAcDG3IUSlGU+cUkFoZTwvEphj8GPmuMucZ1kDHmf4DPAH+Sq2CKoswPRgvDbd8OxuxdGG4alMNcVWg+xfAA4MLAvC6i+OynoihKMK6F4YbMNCs0Hz7FsAzYGZjXTmB5u+IoijLfmNTCcLmZVoUWgk8xXAesCcxrTXm8oihKMLYF4HIvDJebpsXsXNunCZ9iuBh4emBeTyuPVxRFCWZSC8PlZuHCuO3ThE8xnAk8UETe5DpIRE6l8C98NFO5FEWZQ7ictJNaGC43u3fHbZ8mnIrBGPMZ4F+Bl4vI10TkWBF5iIgcKiIPFpHjROQC4BXAF4wxn51EoRVFmR5CnLTr18PPfw579hR/h6IUXAptjcXIbts+TYTMfP4zYAvwaOAjwCXA5cC3gQ8DjwFmgGM6KqOiKFPMtDppmxTas59djGrWroWjj55OE1gIXsVgjLnFGPMciglsrwc+C3yl/Pt64CHGmGONMbd0WlJFUaaSuRR1ZEzxd/t2OOssOPbY7kxgfc6RCF4ryRjzA2PMycaYpxtjnlj+PdkY8/0uC6goShpDmXw1rVFHPsV1883wxS/GmcBC26TvORLZFtETkWUicmiu/BRFSadvwVJlWqOOQhRXzKgnpk36Nr/5FtG7TUSOqfy+i4j8s4g8qOHwp1L4HhRF6Zm+BUuVaY06alJodWJGPTFt0rf5zTdiWFQ7Zgnwv4EDOyuRoiit6Vuw1MkVdTRJ81hVoUGh1KrEjnpi2qRv85t+j0FpZCj2aSWNvgVLF/RhHhspNGPg7LPbjXpi2qRv85sqBmUWQ7JPK2n0LVi6oG/zWNtRT0yb9G1+U8WgzKLvF1BpT9+CpQuGZh6LJbZN+pz0t2hyl1KmhWl/AZWC9eunWxHUWb26eYG6aTKPTUubhIwYjhaRE0XkRGAjYIBnjLZV9h3daUmViTEX7dPKONPoQ5qL5rGhEqIYngmcVqZTAKH45OdptfQXHZVRmTD6As5t2vqQ+lIqsaaYaVR+Q8FnSlo3kVIog2L0om3aVJiPVq8ulMI0DIHnO1u2+NvN5UMKmbm7YcPe80dKBSbzfISaYvou59RjjJk36fDDDzepbNu2LflcZbLM17aamTFm2TJjinFAkZYtK7ZXERk/ZpRE/NdYs6b53DVr0srcVVvlLmffzMwUZRcp/tbbNAXgYmORlRqVpChzhNBosjY+pGkJTJiWcobQR/h4kGIov71w/8rvRSKyQUTOEZF/FZHXicgB3RVTURQfNqFXj+Rp40OalsCEaSlnCH2Ej/vWSrq7iFxC8e2FH4rI+SKyDPgX4P0U32p4EvAa4GIRWdVdURVluunaGWoTeiL5vpg2LYEJmzfD4sXj2xYvnnw5c7R5H6Mf34jhROChwOeA9wFHUHyUZx3wqnLfw4FTgUMoFISiKDUmYQ7YvHn2ej5QXK/eu0ydPDVNE+fqddFUN12Sq817Gf3YnA+Fb4JLgU9Vfj8X2AOc1nDsx4ErXfn1ndT5PD8YYltNyhnadI1RWrmySDkdmG0ZivO5C+durjYPDSqIhRbO598CtlV+n1/+/XrDsRcA90xVUIoyVKbJHOD63vB11xVpUg7MXKTUf0x9dzWay9XmfYzSfIrhLsANld+/rv2tciO6xIYyx8g1GcyY5v2h5oBQ4RjyDYER07D+VWr9x5hfunLu5jQBTXrdJA1XVbzM5xmksUKjWlcHHADPfW7z+j4Q7rSNEY71bwj4GHr4ZqrQdjnJ68+zrX1s20OZFkd9IzYbU2GCYg/wd8BhZVpXbnt+ZdsovRrY7cqv76Q+hni6sm92Sc62ipkM1lRXthRjx061VdvOG8qEr5kZY1atusVp128zGa/JbxDTRgsX5rnH3L6LXODwMYQoht211LTtzu2u/CzXMJa0s+HY+1FESP0K2EXh1zgy9FqqGOKZxhmkOdsq5v5DBHGoUKuSKhx9QrBPBR/a4bDV6cKFacI2tI1GaS7jUgw+n8DrEgcisVwAnFHbdnv1h4jcG/gGcAfwZgo/x/OAc0XkScaYrZMo6HxjLs0gTWHz5vE1d8BuDgitk1gbc+py0/U1r/bfv/h9/fX9r38Vul5TU/0D7N5d/I1dAynmuQ01x81JbBpjUolidHBmwHH/SDEyeUhl2wpgO3AZIL485tuIIccwdr6PGIwJr8eQ3mhKL30azXk+Yk10o/pfuLDd8xg6Ypj2+g2BVFPSJNJIMQBLgBWWY5YDvwG+0rDvNWUeD/ddaz4phlzCZBqFUl9t1VRXixfb5w7EKO4UJT9k+3Zqh6ONz8GYMB+DiDEbN6bfW2y9d/0c2JgGxbCTwkRkgGuBdwF3rRzzqHLfGxrOf0K574W+a80nxZCzpz9kAdNEn21lc3iGOEFzKtyQ/PtsV1/5bGWzPdcrV6YJ1wUL8r0nIffVdPzixbM7E03H535mhq4Y/gM4Cfg/wHOAc0pB//3RCAJ4WrltY8P5Dyj3vdF3rWlUDKkvb9ue1SToSjANSYnbXuaVK/MKpDq+jkHs6KYNtna2RSU1lW3Ui7eVe8mSeCU4M9NcR/X3ZGZmvL1WrrQLbpupa+HC5nNsz8HKlbOPzW3WdSkGKfYPCxH5O2Az8GpjzGYReTbwMeCvjDEfqR17KHAF8A5jzEsa8toAbABYtWrV4eecc05SmXbu3MmKFSuSzk1l69aDOO20+3HrrQvv3LZ06W5OOukyjjrqWue5xxzzSK65Zp9Z21et+g3nnHNh9rLG0ubefIzaauvWg/jQhw7l2muXctBBt3L88Ve2zhuIytfWDkVfZvbiPSKG8877atS1gVnb3vjG+2OMPX97ufaSoz187dz0XrnqbNOmHwPj93vLLQu48cYls47eb7/b+Pznv2Etw9KluxvPg73vydatB/GmN/0Ou3ePT/latGgPr3zlT+6sm6Zr1Gmqz3Xr/oCm5wAM27aNPwdHHvkHzjaNZd26dZcYY45o3GnTGH0mYDFwK/ANM49HDG16CEP3DXTp1N62bVtn9x+br23kZkuu+4/pLftGJKHlatsevnZueq9cZWsqj+v4jRvtvXhX8pmu6mUJdWrXy+86NrYuYyHFlERh1llr2991An4G/LT8f176GHI42obqG+jS1LVt27bOFE9svi6beKziionB9+Xf1ZyL0TMHboE8yrfpvfKVrf4su46PVcyjuhvhOr9aN6HXqdenTYEvWDD7WRiEj4EiNPSZtt9dJmAfinkMF5S/V+CPSnqEL99pUwzTGCoaSogN3GaX9im7bdu2daZ4YvN1vcy+e6nvjxFuIu78Q2cAV5+1kPLGzPw2pvm9mpnxC9q6ozpW+I8UQJMvY7TPJrSb6iZ1xDAzM3vE5xL6vUclUSyKd3zl957cigFYadn+llLYv6Ky7VOlcnpwZdtoHsNPmYPzGIZuDmqD7d42bmx+IUf7QupjSCOG0b2mhJrahFaKAPKVa+XK2QKq6oxu2l+v+5Q5Aps2XdpYNxs3+u+3eo8+IW4rQ3WEE1O/S5bMVrQxyqzeDm3nZ6SQqhi+CXwP+BPgsaViOKX835ps+Vmu8bbyOm8E/poiOum8UilcCOxbOfY+wPXANRQfCXoB8B2KMNc/DLnetCkGY4ZtDmpL/d6aBH81hb48ffgYNm7M2042IVsXPk0+htExseXwKQpX3Yf22qvROTMzxixdeoe1Ll1tPrpPV7vYBHVThFCsma4p4slXT6626COKMFUxrCsFcdO6SFnWSiqVzrnA1aWpaBfwXYqF+/ZpOP7+wOcplgK/GfgacFTo9aZRMcwnYs0ltpdn1FZdKdUQhdZWCfkcsE3zJJqEYao5IsYHEWNCqrZVqPKz1UWTWSa1XUJGC6kLJ4b0+vswGycphuI87lY6d59TCv73A8e6kiu/vpMqhmHjezljRgyTpIuXOiXPkHOaTDRNwjImailGoVfLEmO6CSlzlSYnuKtzEHIPTXXvO69qsnLNhejDbJysGMYOLKKEnhJ6/BCTKoZh43rJYn0Mk8QXuZIyWkkRFD5zhMsOXnf6hwjrUXliBHxVIMaOEENHfyl15+v5p4w0qiO6+uxmaPZTTNJsnEUxzIU0NMUwNP9B3+WxvZxVYRIaldRF2WzXDRFwqetUxbSHb8TgC+v0CcfFi41Zvnx2u8QK+PF89gQrhVBSR3B1H0vILPCQa7nqp88Iw6yKofQ9vBP4QpneCayLzaePNCTFMLSIozblyalQYkM4UxRDbHl9dRMSQTMJIeArp6936xNgthHbxo3+e2+TYt+LSTpyQ96b0LkQkyaXKWkBcHbF0XxHmUYf7vlYSMhon2lIiqEPZ1MX5Zmkggu9lqutUsrrqpsYx2v1nK5wKT1bSOdotOATqK56iA0XbVNfPsXe9TpUdaqzqxcunL0yq6tuYsvU+zyGWQfCy0sl8Eng9yiWrVhc/v+JUjm8LDS/PtKQFMPQFrlLLc8kFVzotVxtlVJeV92kRFJ1Ed7qw2bnhr2CzFc3vlFR037b6qUhdWSL+fetyhpiz89ZrynlGZWp+hw0ma/qTuvQegohl2K4FPiyY/+XgUtD8+sjDUkxzJURwyQVXOi1XG2VUl5X3aQsudAkRFOXxA49znYP1eUffEIuRAnW51DEjqhGedi+h5DqR2larTQHqeVZsMA/b2fx4rB1nlJlRi7FcAuO9YiAFwK3hObXRxqSYpgrPob5MGJw1Y1LEKVE3fiuF1quOqEK0aVoQoV8vS7rTt02ws53H5PoqFTvx6XcfOVJGW3mvLdcimEHcIpj/+uBHaH59ZGGpBiMyeNonWR5bOfMdR/D6Lz6kH/0UtZf1OqHVmJe/hBbfhWf76PaliF295D2DxGK4A8N3Vsee1RSUx6pPfRcHZVY5djFaDPXveVSDJ8tZ0I/sGHfA8p9nwnNr480NMXgYmgjCheTVGCTjEpqOi5EMFTt2U3H++YShPZ6XYIl5mM2Nju2b2kNl9ILfVZXrbrFmkf9S2a2ctZt+l2+NyGKPrQ8OUYMo8CBFHIphgeVS1bcRrGg3evK9E8U3064CXhQaH59pGlSDEPzQeSgawWyN/89SfnXRwUx3zlwtVP9vn0T9Xxt7xMqNlNN0+cvQ3vAoaas2Gd106ZLnXmMfAO2azUpry6fs5TJjLbypPhf6tdr823qbPMYgCOAr5fRSdX0NeDwmLz6SNOkGIYWtdSWrntyIdEhLtt57nBLXzvF2vKrvXvfDF2fwqpeK6bXunBhs3BLrQNj9i546LpuaDknMaLO2WGrP3fVyYO2NIryyqHwss98Bg4EHl6mA1Py6CNNk2LoY8TQZU+r6/vx2dtTBW1qantftrZwCciqbyFUgKbauWNGOO772+Mtb0w5Y+s99pnP1cGx5ZNzzoMPXRLDTJ9imLSPoevrdTUC8glCV/THmjX5IkMm1U4h9Rii7HzO0RghHPPsxI7ORqakmHNC6z5HIEJqB8oVzeZ6lnOiisFMn2IwZrJRS3326FMJFYAuYdo2MmQ0tA9ZwbMNPgVoCxH1CZk2I6a6MmryX/h8K640cuLPzNgniTWl0KXG+/TjuZ7JSc3cVsVgplMxuMjdw+/apzEzY//wS30J4lBCTSZdjhgmIURC/Aq2mdSpYarVZR5S7j0mGqv+LNSfi5Q2qt9f07sSovBcdeRrM9fxqabPnKhiMHNPMeTu7Uwi/tvV60tZssAuaMajkrr0Mfh6zSH14jsnJAKpXhf1lVBj6jqkTqr1F+sLcSmFGAEeohxciiX0+x6xgjrk+DbBErlQxWDmnmLI3cPvupcSIihilZAtz1Wrbpl1rC8KqKnHHCp8RnnE1l/oObkmQlUFcEq9VgXqxo3u8seW2eV4DZkp7co3Zn9T/cd2mkKPTxX+uZSGKgYz9xSDqxeU+qB02UsJERQxSs3mxFy2rIiNb0PoKKJtZE7oObkd5L56DmkrlyB3mehm573nTpNRzIS9mOQaGYQ887GdMNd9tHmnXM98Sr6tFQOwArgCeEnI8UNNc0kxuITXEGdI5xwx2O595cqiJ7tq1S2dRIxUBVs975QRnO+cqhkk56jBV89tFdFoNm5Tb7zuC6kqcZ/dvXpe7LyTWFNQyLViRwxt3k1fZyXF5Jtr5vMNwPGhxw8xzSXFYEzxsITaSfvG92DH+BhsL6rNRh0bzZXS48s5YhiZamzO2xTBGCOY2vpdquY1X2+8+l7Fhr2GlrHqxA5ZBiVmOZGU+kt5N33KOsWEnEsxfBl4f+jxQ0xzTTEY0200UW7Tkm0oHBOVNDOTLqhG5/uET4qQz+VjqCsBl9CNFd6x9Txqe9cSG239UvX3KuaZqx9rc7bHLLlta/um5URcuJ7TlHfTN2Lsc8TwkHKhvL8c+pfabGkuKoauoom6cEbbQhhj1ntJMXNUX8SQ+kq999SopBjnaj0Kynfs6N7atFvTp0t9UUmh5HyvcnSScuThC7HNPWJIXTMpl2I4r/Qz7AZ+CVxYbqumr4Tm10eai4qhq2iiLhSOT6iHCBZXz8llXqkulR3y4k8iXDDknnz1H1KnbbCNTFasyFM3Te9Vat27THMh0WiuuRuhow7fSC5kFNl0723zbSKXYvg58DNfCs2vjzRpxTAp4dLFdbowUYVGu7jKb3v5ly9vtxBeqgBtW/euEYOtl14/P3ayVgwhI7Q2q3w2mZJSOzoh5rXqSMc24bIphfrAfGsdtQlfzj0S0XBV014xbNp0abSNcZJrHeUm1c7uqqNQM1CsLb/JORiTckaKxES7uJaIcM1mbsq3qyCE0NHMKBIplrpiaDtSDfGNpDrvfWXwmfZ8SiG0DXN12lQxmHaKYWbGmKVL74gSJl3Z/idFqNBzhVQ2zfbMMZ+hbehivT1SlXVMG9v8K03nh85FqdaD7fsRXZkUXXXpUmb1/fU5JzlHqrknBvqel1CzXkwHoenec8mWrIoBWAscD2wC1pbblgCrgSWx+U0ypSqGlIaYxNpD9Ycr5oX02VpH9+xaHC5k6F63zTY5Mts+4KkCICasMua6TW0cI2BDnhHbyGnlyrwzaWOjn1xLjzQp8KVL72gdEWYjJVAh9B6b6tb3HNrmd8S+D7msETk/1PMPwO3lx3l2A0eW2/cDdg59AlyqYkgR8l2OGGJsqbbjY9YKsj10oS9e1f5sExD1lyekDnwmg5B7avOSxbRxGwdz22u7CLn/+sjEVu6YsFZbmXOaYGOVWkxqqueQEUOssrLde9VRPpr3Eksu5/PzS4XwduCo8v8jK/s/PlejklLt7W2caDlt9a7yt7H7x9qfQxylIQ946gvfFEnTRsDGtLHtOiEO5iZyjUh999/0LNrCV1OFbFNEWNMqqymEjFBHacGCuGe6juu5TFlDymZSHNSIAfge8Ony/5UNiuFVwH+F5tdHmqSPYXReqIkixlYf+/C6hEibFyGm9xOyhHPog+0LS1ywYHfwddoK2NA2tr3MNhNgaucglxlupMzrK+IuXrxXydfLl2q66cpU4qqnpvt9/OPTy1wtu8sMG1oe1/0OyscA3AL8dfl/k2L4K+A3ofn1kSYZlRRDSA+42uhDGTHkGqrH9nJ9wlxkT/BLN6kggZhecKh5p63w9EXCuJYeCS23L9V9DMbEt4lLicb20EOf19T3P6aObHJmUFFJwK+Al5X/NymGU4D/Cc2vjzSECW6pPa36jNdJ+hhcTs1Q+3PICxCqeH2CY9WqW4Ku6arLNuaLOrFC3DUicgUNhIxIQ0NlZ2bc9RdyHZ+gXbGieSXcGMHnq9uuHNCx9d9URyHXaXpOhjZiOBf4Wvn/mGIA9iknuH06NL8+Ut+KwfYQhwrPel62F69JgLh6q01CoyrsY8IgY2y6o7yahFTsImVV/8SmTZd667WuaHMuZ1yvz9jVOV31l1KmmEiY6rOTohhC72N0L5s2XdqqvkJ8JDH3Hvou5hixpY7Wh+ZjOKqMRDobWFcqhmcCf1guj3E78KjQ/PpIfSuG1N5LbHicb3QxOi+kl2Mrs2tRsdBeo2/EFOsAHSmHbdu2eXtl9ZctVBj5eokxpgLb0D8kuiWG2OfOVyehq5WGXXf3rI5H04TFUVvX7fah74BvtGTroNjexRy99tBnxTZSamvazhmuuqH0NeyuhKzuLrcdF5NXH6lvxRDTkw4R3iEPp+/l9PU0Qss8ckrWCend+BygTefbhJbIuHki1F7veylDRxUxQthlM/cJjBhin7uqCbIuoJcsCRvh2eorNI06HtV3oanuY0dj1fKFOP1twQG57Pwhnajc/q4RuSe43QN4EfAe4L3AS4F7xubTR+pbMfiEhm2xrzq5I5hcD16MoGtySoY4XX2jklihUv+0Z90PMiqP7XvJ9brxCepq/YUKYZ9CdpkKY52fsXVYvZ8Yn5jPbxOTRgI21P8WWrc5etqucrUR4jmjsULQJTHMMBSD74VJnfHqGl3EOrZjy1xPdSG8aNH4/qbFyGZmZodFjo5NEyp7stxL9X5C6y/E9DZSTiEhrjZF04XJIvQ59PWWbXUQM3IZ3WNMmW3vgKseUiK5QjtlKeRSXCHk8jHsBp7p2P/nwO7Q/PpIfSsGY9w9wZCXPXbo7IsuCbluTORRiABqGlnk/BB8fcQwImX0YUz4qMsW5RUTIVYXCqnCu6kNQ+vS91EaX2/ZVV+x7RmjTHzPcdtefqq/LkXYT0JB5FIMezyK4RhVDGGk9lxSBYVLmOeMpFiwIPwlruOLxAnN1xbpEqIgmwSk755DBbyv/mxfQ0u1oTcRImRDPmPpe35dAjhl1NZmEmbo/YcI4RTF0nS/vjWtJmVSmpRieAVwQ2h+faShKAZjxoekroXqqvjWenddK1esfqw5wJbq+ISJK6/6Sx0SrhqSRvUTI8x8H3SJrT+RfKumhkQ7rVgR9ny5lF/IqGlvWdyTEavXr74rTcm3Km2oiatNFGC9jkJGSKEBDLmd0MmKAfgT4CNl2gOcX/ldTZ8rF9H7siu/vlNbxZB7eBfTM/AJR1tUhW97LDkcxTYntasufN/zrd6fa0mM2GQbBYS0RUz9uVK9hxn6nYamOnb5LHKbrkLKWF1RINTE6lLUKfNfQoVwjMCOHRmFBDDEtoGPNorh70uFMApN3WNJNwL/BtzHlV/fqe2SGG2GdzHRHU2C0yVQqsIxdtgaiqu81fVzQl4Gm7mlvq26/Lfr3nNEwYS+tCHt4YousznaQ8vQ1szg+n6z6566CpmsjsRjO0oxisTm+Lfdb+ws6/qzmxKqO2LwI4axAz2mpGlIbRSDbZmFkG/B2h4on/Cs4jJB+Gy7qULEVf5qqkYahUTxhJgaQl+skB5822QTEiHnNtV3itAYhajmiHW39eZDnrE2NF236dOeoaOh1Ameo/fW9ay6gjmaOjQ5OiauAIVcHbwquRTDGmBZ6PFDTG0Ug2thNl+D2R4+l7O2/mCGjC5C7de+qJPQ8jeVOURJueyuTUtw+K6Zy+9hy8em/EMFfL0tU8vrOi+HmSFmBFslRJjbOgNNayW1LW+1vl3PYcpyLDHliE3Veq6Pcrr4Op/OYzDdjRiaXtD6NwVSBUHVKR3yAKc+oLlmP1fz6tq8M6rrkBGKrW7rtvqNG+3zKUKFna2cVboY4eQwM7juJ1bg14+13bMttDi1vCkTPEPnldjI1TGB5vy7Mi3lXBLjUcAW4CLgCuDKWroiJr9Jp7Y+hhThU/3blEJDPEe9G1fPLNV+7XvIYgVZ1R7epZnn8Y/fex3by7l8edxEpJR5IjHO01AzWUy8f85QRtciiDECP3SUZJuMGIov2KKrOgxp9+rIPLQcTXTljM5lSnpO6YD+DfB9YFtTCs2vjzRpxRDzUIYc5+shzMy0mS3szrfNzNmcPSpbfbjKkttuHVNPvsltLiEVUm++EM1YQkJaU+qrixGDjdTRamhIbkj+KaP5eoTdqH1T5YGPXIrhMuBHwMGh5wwtTcKUlPIwupyKMUIu5OGzxan7BExTZEfoA2srV8qsZpvwyTXcbptP00sdEoXW1Ka+9gyZdRuLTxmFCvyQENO2PgYbqaNUn9PaF73li0Zz1W1sZN9gfAzlSOFFoccPMXXlfE5N1cYNtYW6puSHXNP1YfamGa4+01WIfdkX5ueLwAgx7/iiT0JpGw7qyiNU2LryGbV3F+v0GBM/YogNMfVFJaVSzTv1fQxxWruu4RtVuq4dE1k4tKik/wROCj1+iGlII4a6k9r3QCxZ4rdNh7wUo1GHLyKqydndFDIXaqZxHZdTARV1tMd7rAuf3Tp16QRbnbu+b9C0vQtnZDXfGB9DTL00MYnFKUNSqNPaFR7tq/+Q82JHbG3IpRhOAr4DLAw9Z2gp9wS3tqkenubKfySQQwS/a//oxW2bT4rAjaEubEJn+8a+tDGKLbRnHNtrXb48XPG5OhCpQsM1MgldriWVPj+AVX8nQvIcHZu61lnbyMIc0WcjcimGdcA3gUuA55a/H1tPofn1kXIuieGLRKi+VK5U7zm7XvrQF8B2XMgM15SXKjc2QTUaYbmEecwwP+YFj1E4ueo3xFTWti1c/q2QYIcU5V2lrWLwdXJizJH1fEPWe0pZliR2dByjfGLIOfO5mnbX0p75tLpq6KzL2B6Ay0EZKxyaHsKQ0UJs8hH7EtnqYKQcXCauGCEXI+xjFU5q2LAtb99z1MWM9raRaiFlaqMYQkbZrmN95WtjImuDK4AhJ7kUw7EhKTS/PlKKYtj7cOwJihgZCZVQu2f95bMJldEkK5ct2GcDbjrHV7aQY3wvV+wL6bpuWCST3ccQ4qRsEoixJirXp0frZfNFePkiWlKEhmuk4Ls3V33E5GFMO8UQ4peL8WXNN3Tms0lTDLHRNFUBFGNOqD+kuT5Mb7uHkFSfUJe65HeKoy6HKaYpdDC0LprKFqvgfIK8HvbrOt6lPGKXNwmth1yz4X1+jzaKIaQMXZg6c9G3olLFYNIUQ8ioINbWHfIi5pzpmCJkbSGeMS9/G0epq4ccOvchptcfKhBjXmSXSXCUl83hazuvyYQWsoZOvdy+6LaQSXOhz5Uvry5HDKnvTAqxQj7VgZ2TnEtiHFJ+f+G/gNuAI8vtB5bbHxaT36RTrGJIEdA+gRgyk7FtOGKIucSVbNcJLVeqo7Ra7qbvL4gUy2Ck9vp95qNUB6qtDVwmwViF3TS5sc38DlsKFU4x+bry7NLHEPPOtCFFyLd9x3OQy8dwL+Aa4NfAuaXD+cjK/u8DHwjNr4+Ue8RQJ+RBdfXWRgon5kFrigzJEVYben8x6+e4zmnKuynuv8nEVe81L116R1JkUe5enEtwxyrtVId4jAKKXV6j6dmLjXDKEZUU63PLTYqQz2kVSCWXYvg48P/KUcMBZRRSVTG8Cbg0NL8+Uk4fQxOhL6HLTBITDhdrjogREK468ZUrxVEa65Nxlcm2zEKqXyjkmxtNpEySiln0L0QghT4PMSOFuo+k+izECrzc31Lvw2afIuTn0ojhWuA15f8rGxTDRuDXofn1kXJGJTWRQyjH9HJyOGltqQ05e1CxL5wxbmGT6hdKETKuemhSUk0+g/oM+fq9pE6Y6sJp7XKSdzViGAIpz3top7NLZZdzraTjy/+bFMOLgV2h+fWRUucxzMwUS2KkzrqNTaG9hlhFVO3hpUYZhdZXLptrSvlswsb3krnKkFInvnqol8e2wKFPwLjuKad5LKSNmpzkXfkYhkJqHU+y7ZrIpRguB95W/t+kGD4BfC80vz5S6oghZM0g27EpKdTOaHtRfaGPLuenb15CvW5sD3aOKI3QqJs6TcIm5CWbmWnfJk3XDamHnNdusv3n6HWGPrsxbT8XFIMx3fTsuzY35VIM/1A6nn+3ohjWlfueBtwBbArNr4+UohhCPqoyWjLXmPYRQTENbxN2I0Hgyr/thKlcvRmfzTrlhWsSNqEvWawppOk+UgRDrtFKV71Ml/+gjdCaK4qhC7p2UOdSDPsBlwK7gC+VUUnnlusn7S7XUNonNL8+UorzOVSYNzkoU0xLsXbGFJu5y/lZL4ct/xy9GZ9iSxWyTcIm9CVLEaw5hHEu/0ZXvcyQZzlFAalisDMVI4YiH/YD3gH8srJm0vXAu4D9YvLqI+UKV7WlOiGmJZtZypVHaOiqq/cbGlpru3aO3kyoKSxW4LQZMTTVo08Rh+Sd6t+IjYjqqpcZMgckZVSiisHOVPgYZp1YTGo7CJDUPCadck1wc/XsRi/4KJ67bh6J7Q3HLI8Ra6N3CTVXWrMmT28mpn5j8t206dJZdZzjJbPl4RKYrvPqCieHEJj0iKFtvqoY3Aw+KmkSCVgGXAkY4N21fSeX25vSSSH5dzliaFpTvyogbCGHLmIckm3CEmOVw8jBaJtDEfoAx1w3tMe7caMxtkX0uvIDuJZgd53XpNxDy2dzMFfboY2CabpeF71XVQz9kcvH8EJgq2P/vwHPD83PksdpwE0exfAS4Fm1dP+Q/HNMcLN9hWuffcKEaQwxDsk2JgTbS+8brbhmui5ePL6sRdP6Sy7l4rtf2320Od+Ha4TjWv4it3knxAwYq6RDr5u796qKoT9yKYZvAe9z7H838B+h+TWcf1gZ2XSiRzGsTb1G2wluTcsvxKRY4eQSRPURSNuhftNL7+olpoTm1pdBbrpu05IeoT1TlyLNEcnhqmOXEs1thgkdaeVyUnaJKob+yKUYbgBe4Ni/Ebg+NL/auQvLqKYvAGt9iqF0gi+KvU7bD/Wk2OPbCCfX9bqyUdeJjUrKIaxSe6a+ENy2uOrYNSrI3TahvplJrruTiiqG/silGHYBJzr2vxS4OTS/2rknlfmvDVAMN5Z/7wC+ATwp9DptFUPbJS9ihZOvV97GRh1ThrpDvY2C7FJYuaKcujan+EYFOdtGRwxKDnIphu8AX3Ls/xLwg9D8Kufdq1QKryx/2xTDS4APUHwp7inAy4GrKUJmjwu5Vp8jBtdSCD4nY189QpdiSlWSXQorm88ixfGf49pdre4ZYsab9Nr+qahi6A+XYpBivx8ReQVwKvBG4PXGmNvK7YuBV4+SMebUoAz35nsucDBwmDHmdhFZC/wMeI8x5gTPuSuBHwL7AIcYY3Y2HLMB2ACwatWqw88555yY4t3Jzp07ufDCQznttPtx660LG44wgFSuu4e73OUObrppMQcddCvHH38lRx11LVu3HjQrj6VLd3PSSZdx1FHXNl77mGMeyTXX7DNr+6pVv+Gccy5k69aD+NCHDuXaa5eOXasttuvuZfyei9+w3363c9NNizBmwdjRixbt4ZWv/EmWstnYuvUgzjhjLTt27JutLkLrt6t2CCnTIx+5gwsvPGAi187Jzp07WbFiRd/FmJesW7fuEmPMEY07bRqjnoDFwDaKHvoO4Gtl2lFu+yqwJDS/Ms9nlef+fmXbWhpGDI48/r48/om+Y9uOGIyxz1VYtGi8x1Z1tFZHCLHr1Y/Oj3EC5/IthI4AbBPBqg5Z21fhuiD3Us59f2lrLqMjhv4g48znxcArgO9SmH92UZiYTgIWR+a1lGIp7y8A96mkPygF/dnl77t58jm2PP6ZvmvmUAxNuOzLodE7PrNQl0tTNF0r5itpXU7CSSGnsGlTv7nqZWj1mxNfWw353odcthCyKYacCbhbKdB9yTl5DXhDedzjfddsoxiaZtOOaLMmUVtB7ovESXloQ8rc1Yglx8sWoxh810udg5CrXub6iMX37Yyh3vuQyxbKUBXDYuDpDWljKei/VP6+L7AIuGtDHocA15XmrH1912zzPYalS++wPgSuWcchTto2D5QrEqd+jdDlOHxl7mrEkutlC1UMIddLvb9c9dLVUhRDIXUk3iczM2km4aExSMVgLVCDj6EcXfwK+GhpynoexSzpGyjCVp8RkneqYggJRbTNfLVNfFq4MM8QNGaiWehSCTEvZM5ZvbkEQahiCLleqrLKVS9dL73cN662GuK9+963aWoXl2IYDxsZLrcAnwaOAP4WeC+wHtgKPNoY86kuL37VVe7t69fDfvvN3n/bbcXfZcvGty9eDHe7W3w5tmyBtWthwYLi75YtxbWPPRZEfGcXj26Vm2+GTZtmX2PnrNiu4h42b569ffXq5mvZtruw1fP27eP3nAtfu0JRv2ecAWvWFHW8Zk3xe/16d9656iVn/U4bQ7z3TZuK98bGnGkXm8aYiyn3iGG0QJ2vl161YzctqxH6GUBbzzXXhDNbb8gVUZTT1hrj23CRc8SQivoYwpgmH4MvUm/a2oVpMiV1mXL6GJqWtA4RMl3YrEP8GCGLy6WWLVdoamw0lI2cPoY2aFSSn2mJSvI9mwsWTF+7qGJoqRiMmR2VFPLJzyYhk2o3dQl8m0Cv+jFci9P5Rh2TisAZ5eVTdr7y5IxKyn2eMs60zGPwjWabFogcOp0qBuBw4AkM/LOepqViqD/AIb30to7dEa5F2mxzJUI/ERrSS59UBE6ufLsWNkMzcUwz06IYuvjedd9kUQwUk9j+pbbt4xTfe94NXA6sCs2vj5RTMfh6ELaHJEWohCwOl9qD9d3HJCNw6qQK4K6FzVDDKKeRaVEMIf6vaYpIMiafYriYYv2i0e8jKZaz2AK8CtgJvDU0vz5STsXg6mmHfDzetZREfZ+rt9IW3wS5EAXTtRM3VuF1LWyGGEY5rUyLYsgxsh4auRTDDuCEyu93UqxuOlqI7zTgp6H59ZFyK4aqn2H0Zbe2TsaUL6m1IYdQ78u0YlMaOmKYHqZFMRgz7ovr4vOpkyaXYrgF+KvK7x8CZ1V+PxfYFZpfHymXYuhKELrCYrsSvDnDKifpjHWVW30M08M0KYYqcyH4IJdi+E/g7eX/a0oz0nMr+19G4hfcJpVyKYaQmdApD43vK2BdPYi5857ES+Nqg0kIm5z3OBeETCrTqhjmArkUw9uAWym+7fytcgSxqrL/o8C3Q/PrI+VSDF19xnEumCgm1Zt2tcE0CZv5PvqYpraaa7gUQ8ySGKdQfH/hBcDvAi8xxlwDICL7Ak+l+F7DnMc1Vb9pynzT0hNNHH307KUtmpaiaFoaw7V9krS5/xiGuFxCCpOqL0WJwqYxbAnYj9q3F4B9gQcD+8fmN8k0CR9DzmWamz5Labu2awLbJJlUxE6fPoaczPcIp2lqq7kGORfRM8bcaIy5vbbtFmPM94wx17dXVcPHtbBaak+2qedoDHzxi/7jbr65uP4Qep6T6smnLm43NObKyGcuMoQReG/YNAawGlhd/+1LtvyGkLr6gluVrpdpDpmB2WfPM+X+cztfp6kXqj6GbX0XoZH50C6kOJ8poo7uoPyOc/l7ty/Z8htCmoRiMCZN0IU6nl3rIg3FcR1z/128gEMVNjY0Kml4zIVAEB8uxbDIMZg4BTClcqj+VjysXx9v0ti8GTZsGDcHjRzPW7YUJqGrroL994clS/Z+62F03LHHwllnNZ8/aWLu3+V8nTazUCopz4vSLSHf6pjLWBWDMeZk128lLyPBMFIAq1fvFepVhXHddcWHflauhOuv33vc+vXwmMfMPn/oAme+v4DKMFm9uvhAVNP2+YBrxBCNiCwyxtzhP1JpoqnnuHbt7B717bfDihWwY4f//KEz319AZZi4RvDzgeCoJBE5U0SWOfbfB/hGllLNM1zRD330qCcZjbF58+xPn86nF1AZJnMl6i2VmHDVZwOXiMiD6ztE5NnAJcB9cxVsvrBlS9Ez2b69cG9t3178HgnjSYczusrThcKY7y+gMlzWr4ef/xz27Cn+zqdnMkYxHA3sD1woIn8DICLLReRjwJnAT4DDspdwjuOb+TrpHrWtPC9+sVuBtWE+v4CKMkSCFYMx5lzg9yiWxXibiHwJ+C6wHngr8BhjzJVdFHIu4zMVTbpHbSvPddcNYwKdoijdE+V8NsZcIyJPBP4v8IcU4at/Y4x5TxeFmw+EOF8n6VS2lceGRg8pytwjakkMEdkf+BzwaOAC4Ebg1NLHoCQwNOerrTwrVzYfr9FDijL3iIlKeiyF6eiPgFcZY/6AwqfwI+BMEfmYiCzvpJRzmKE5X23lecc7hqXAFEXpjhhT0nnAduB/GWMuAjDG/ExEHgNsBl4OPAK4X/ZSznGGNv/AVZ5pm0CnKEo8MYrhn4ANxpgbqxuNMbuBV4nIV4CzchZOGRZDU2CKonRDsGIwxhzj2f/vTXMcFEVRlOki+nsMLowxv8yZn6IoijJ5otdKEpEjKHwJd2e2YjHGmNfnKJiiKIrSD8GKofyu82eAJwJCMYdh9IViU9mmikFRFGWKiTElvZZCKWwG1lEogmOBJ1HMafgW8IDcBZwvzOvPCCqKMihiFMPTgU8ZY14L/LDcdnW5VMZRwBLguLzFmx/4FtJTFEWZJDGK4RDgq+X/u8u/SwDKbzB8AnBGLinN+BbSUxRFmSQxiuEm9vokbqL4BvTBlf2/Bu6RqVzzCv2KmaIoQyJGMVxB+b2FclLbpRTmJUREgD8FfpG7gPOBSX9zQVEUxUWMYtgKPE1EFpa/PwD8kYhcAVxO4Wf4cObyzQuGtpCeoijzmxjF8Cb2RiNhjHkvcBKFCelXwN8Bb85dwPnA0BbSUxRlfhOzJMZO4LLattOB03MXaj6i6xApijIUkpfEEJEFIrJaRJbkLJCiKIrSL23WSjoQ+Bnw+5nKoiiKogyAtovoif8QRVEUZZrIurqqoiiKMv2oYlAURVHGiF52u8ItFF9s++9MZemcSy65ZIeIbE88/QBgR87yKJ2hbTU9aFv1xxrbDjHGWM8SkQcYY34UehUROcEY8+7Iwk0FInKxMeaIvsuh+NG2mh60rYaJz5R0iYi8vFzywoqI3EtEtgHvyFc0RVEUpQ98iuE/gH8AviYi92k6QEROAL4PPArQ9UAVRVGmHKdiMMY8DngZ8BDgeyLy4tG+yijhncCPgcOMMW/qrqi9c0bfBVCC0baaHrStBojTx3DnQSL3Az4GHEHxtbYvAa+hcF6fDLzZGLOnu2IqiqIokyJIMUCxBAbwLmAjxbedfww8wxjz4+6KpyiKokyamHkMzwXWA7cDu4B7A0/xOaYVRVGU6cKrGETkYBH5EoUt8GfAw4AHARcCpwLfEJH7dlrKHigXCXypiPxERH4jIr8QkbeKyPK+yzYfEJH7isgpInKhiPxSRG4Ske+KyKamNhCR+4nI50TkVyKyS0QuEJEjLXnfVUTeJSJXl217qYhs1E5OHkRkmYhcKSJGRGaFr2tbTQHGGGsCjgOuB24DXgcsqu3/G2AncDOFk1pc+U1Togi9NcBngOdRLC9+O3AesKDv8s31RPH9j5uALcCLgL8GPlm2yfeAfSvH3hu4DrgG+FvgBcB3yvY6qpbvEuCict/pZdt+psz35L7vey4k4LSy7Qzw7to+baspSL4G3kMRivpQxzG/DXy9PPZrfd9QlkqBB5b38+na9heVD+Uz+y7jXE8UgQ53bdj+hrINTqhs+0dgN/CQyrYVwHaKb4hIZfsLyvNfVMv302UHaE3f9z7NCTgMuAM40aIYtK2mIPlMSacChxtjvmM7wBhzOcXS268EDvfkNy38BcXKsW+vbf8gxejoWZMu0HzDGHOxMebXDbs+Wf79XYDSrPQU4HxjzHcr5+8EPkTxnfKHVc5/JkUbfrCW79uBxcCfZyj+vKT87O8HgS9T9Ozr+7WtpgTfPIZNxpjbfZmYgrcAD81Wsn55GMWI4aLqRmPMb4DvMv7wKpPlt8q/15R/fw9YCnyz4dgLy78Pgzsj6w4DvlO2ZZWLKHqn2rbpvBT4HeAEy35tqykh6+qqxpif5MyvRw4Gdhhjbm3YdzVwgH65bvKUPdLXUJgqPl5uPrj8e3XDKaNt9yz/3h3Yt+nYsq13VI5VIhCRe1H4IU8xxvzccpi21ZSgy243swxoUgoAv6kco0yWt1MsvfJaY8zo++Ojdmhqr3pbuY4dHa/tmsb7gStxfwNe22pKaLPs9lzmZuAgy759KscoE0JEXk9hojjDGHNqZdeoHZY2nFZvK9exo+O1XSMRkWcBTwAe6zE9a1tNCTpiaOa/KcxFTQ/lPSnMTLdNuEzzFhE5GXg18FGKsNUqo++BNJkVRttG5ohfUXxHZNaxZVsfQLOZQ7FQ1tvpwBeB/xGR+5QLbo7W+r9rue1uaFtNDaoYmvkWRd08vLpRRPahWFDw4h7KNC8plcLfU3wU6nhTxitW+AGFueFRDac/svx7MYAp1vP6NvDQBqX/cIpING3bOPYFDgSeDFxeSeeX+59V/j4ebaupQRVDM6OJVC+pbX8ehV1zy6QLNB8RkddSKIWzgeeahoUay1DHfwEeJyIPrpy7gkIYXc54dNknKNpwQy2rl1A4tT+JEsMu4BkN6QXl/i+Xv/9Z22p6CF5Eb74hIu+isGl/lmKYfH+Kmd5fB45sElJKPkTkhcC7gasoIpHq9X2NMebfy2Pvw94Zsm8DbqRQ4g8CnmyMObeS7xLgG8CD2btk/NHAU4E3GGNe0+FtzRtEZC3FEjrvMcacUNmubTUN9D3DbqgJWEixzMdlFMPfqylsqSv6Ltt8SMCZFKM2Wzq/dvz9gc8DN1A4Jb9GbYmFyrF3o1A6/1227Y8oOgFzZkmXvhOwloaZz9pW05F0xKAoiqKMoT4GRVEUZQxVDIqiKMoYqhgURVGUMVQxKIqiKGOoYlAURVHGUMWgKIqijKGKQVEURRlDFYOiKIoyhioGRVEUZQxVDIqiKMoYqhgUpQUislBE9EtiypxCFYOiBCIix4mIEZGjROQ1InIFxScm/6zcfqbjnMdVtp1cbrufiLxRRP5LRG4Vke+JyNENeTxHRC4SkRtEZJeIXCkiW0TkwA5vV5nH6Kc9FSWe04DFwAcplo2+zH24lbMolp8+DVhC8Z2Bz4nIfY0xPwcQkWeXx10AvJbiq2aHUCw/fRDwy9SbUBQbqhgUJZ59gYcaY+785rCIpOSzA/hjUy5xLCLbKL5V8Hzgb8tjngrcRPENkDsq57425YKKEoKakhQlnvdVlUIL3mEq694bY74F7AR+u3LMrym+YvZkSdQ+ihKLKgZFieenmfK5smHbdcDKyu83AtuBzwG/FJFPi8jxInKXTGVQlFmoYlCUeGJGCy5z7W7L9jtHBsaYy4EHAE+m8DWsofBt/ERE7h1RDkUJRhWDouThemD/hu2Hts3YGHOrMeaLxpiXGWOOoFASBwMnts1bUZpQxaAoefgp8KjqnAYRuTvwl20yFZEDGjZ/u/zbpIgUpTUalaQoeXg3MAOcJyJnU3zE/nkU/oF7tMj330TkBopw1V+U+R4HGODsFvkqihVVDIqSAWPMFhE5GDgBOJ3CsXwKsAd4RIus3wf8GUUI6/4UzunvAC8yxmxrVWhFsSCVaDlFURRFUR+DoiiKMo4qBkVRFGUMVQyKoijKGKoYFEVRlDFUMSiKoihjqGJQFEVRxlDFoCiKooyhikFRFEUZQxWDoiiKMoYqBkVRFGWM/w9zsLm23wX2NAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"BEC_center_x_val.plot.errorbar(ax=ax, yerr=BEC_center_x_std, fmt='ob')\n",
"\n",
"plt.ylabel('X-axis center of BEC part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAERCAYAAAAudzN9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABHrUlEQVR4nO2dfbwfRX3v39+EEEgiKAdzrFQSEQVp1Sqg+HAVMH2peL2+vG0VDKgIIlEUtbT31lSkaLBaxAd8akAK5URjLa22+HQbCYpaVBDUUgQBCYotEQUhBAJJ5v6xu2SzZ3eedvb32z3n+3695nXObx9mZ3d25zPfme/MiDEGRVEURekbc8adAEVRFEWpQwVKURRF6SUqUIqiKEovUYFSFEVReokKlKIoitJLVKAURVGUXqICpSiKovQSb4ESkQtE5FmW/c8UkQvSJEtRFEWZ7YRYUK8DnmDZ/3jgta1SoyiKoig5KZv4FgIPJYxPURRFmcXsYtspIvsCS0ubDhSR59ccuhewArgpXdIURVGU2YzY5uITkXcD7wZcE/YJsB043hhzcbrkKYqiKLMVl0A9DfgDMgG6AFgN/HvlMANsAr5vjPl5N8lUFEVRZhvWJj5jzA+BHwKIyBLgEmPMf4wiYYqiKMrsxipQBSKyCHgN8FtABUpRFEXpHC8vPmPMJmCCrClPURRFUTrHy4LK+S5wCHB+R2kZBHvvvbdZunRp9Pn33XcfCxcuTJcgZeRoHg4fzcN+cfXVV99pjHl0dXuIQP0f4DIR+S5woZmlS/EuXbqUq666Kvr8yy+/nMMPPzxdgpSRo3k4fDQP+4WIbKjbHiJQ5wB3kVlQHxCRm4HNlWOMMeaFcUlUFEVRlB2ECNR+ZC7lt+W/J9MnR1EURVEyvAXKGLO0w3QoiqIoyk7ochuKoihKL1GBUhRFUXpJkECJyBNE5GMi8n0RuUlEbqmEm7tKqAJr1sDSpTBnTvZ3zZpxp0hRFKU7vPugROQpwLeA+cANZE4T15EN4H0McDPwiw7SqJCJ0Uknwebcb3LDhuw3wPLl40uXoihKV4RYUGcCDwJPAwpX8lONMY8F3gg8Enhz0tQpD7Ny5Q5xKti8OduuKIoyEwkRqOcBq40xN7Bj+Q0BMMacB3wF+Ou0yVMKbrstbHtf0GZJRVFiCRGoR5A140FmSUG2im7Bt8lETOmAffcN294HimbJDRvAmB3NkipSiqL4ECJQd5D1NWGMuRe4D3hSaf+jgLnpkqaUWbUKFizYeduCBdn2vqLNkoqitCFEoK4lmyy24BvAqSLyfBE5HDiFfO0oJT3Ll8Pq1bBkCYhkf1ev7reDxFCbJRVF6QchAvUZYG8R2T3//S5gT2A98HUyJ4l3Jk2dshPLl8Ott8L27dnfPosTDLNZUlGU/uAtUMaYzxljnm+MuT//fQ3we8DbgbcCTzXGfKubZM58ZqIzwRCbJRVF6Q+tZpIwxvzcGPNRY8zHjTG3pErUbMPlTDBU8Rpis6SiKP0hZDbzhxGRA8gG6gLckrueK5G4nAmGPEB3+fJhpFNRlP4ROtXRkSJyHfCfwKV5+E8RuU5EdB2oSGzOBOoJpyjKbCVkqqMjga8CW4DzyEQKsn6oY4CviMiLjTGXJU/lDGfffTPLqG67esIpijJbCbGgziIbC3WgMebkvO/po8aYNwIHARsB7f6OwOZMoJ5wiqLMVkIE6qnA3xpjbq/uMMb8Avhbsnn6lEBszgTqCacoymwlRKB+C9xr2X8PcHer1MwS6rzymsY4qSfcaBiqp6SizGRCBOrzwDEiMq3fSkTmkfVDfT5VwmYq69YtDp6fLuUAXVdBPBsLap0zUFH6SYhAfYrMqeKbIvInIvKUPLwS+CbZPHyfEpF9y8EVqYiYhrCpctwZlmNP870JEdlTRM4VkdtF5IHcA3GFiEjAs4jm/PP3G5tXns94q9lYUKunpKL0k5BxUP9BtsyGAGsr+6R0TBWfCWSvAFZXtj3UcOzbgTsr2672uAYisivwb8DTgXOB64GXAJ8AJoEzfOJpw8aN82u3j8Irz1YQL1/u3j9TUU9JReknIQJ1JjvWgUrNLcaYKc9jv2CMuTXyOicChwJvNcacm287T0QuAd4pIn9njKlx+E7H4sVbuOOO3aZtT+GVt2ZNJia33ZbFt2rVzsLiKohna0Ftc/NXFGV8eAuUMeaMDtNRWDe7GmM2eRy7B7DZGLM18DKvBjaTjeMq82HgfwOvAj4QGGcQJ554Cx/60EE7WSopvPJ8loR3FcTjLqhdAtsVq1bt/OxAPSUVpQ+0mosvIX9MJhz3isjGvI9oz4Zjf0TmUfiAiHxHRF7icwERmQM8A7jGGPNAZff3yKzDQ+OS78+yZRs78crz6Uepc1kXgaOOat4/qoLa1v/VteOGekoqSj8RY7pqtfNMgMh3ybz/bgL2AI4is2R+DDynsKhE5G3Ak4HvAHcBBwBvA34HeL0x5kLHdSbI+q7+wRjzqpr9G4GbjDHPqdl3EnASwOTk5MFr11a74PzZtGkTixYtij6/iSOPfAHGTPfzEDFcdtk3Hv794Q/vzxe/uA87ug1h/vxtnHbaDSxbtpF16xZz/vn7sXHjfBYv3sKJJ97CsmUbk6e3ytFHH1bb9LnHHg+yZctctmzZ0ZVZTu846CoPldGhedgvjjjiiKuNMYdM22GM6V0gW1fKACsdx00A/0UmWIscxz4uj/PvG/bfBlzrStvBBx9s2rB+/fpW5zexZIkxme2xc1iyJO64USNSn66mMM70dpWHyujQPOwXwFWmprztSxNflb8BHgReajvIGPNrMvf3RwLTLJ8KRQNYvRsd7FY6ZnD4Ns/11REitJ9r3OlVFKV7eilQxpiHgF8Ce3scfmv+13XsXcD9wD7VHSIyPz9/2jROQ8G3H6Wvc/vVCayNcadXUZTu6aVAichuwO+STU7r4on5X+uxxpjtwA+Ap+eCVOaZZJ0yVwUmtVf4zDjRh7n9mqZ6Wr0a5nqMmlMPO0WZHTgFSkQOFJED2x7TcN5Ew673kLnA/2t+3C51Xn0i8jhgBfBrMueJYvu8PE3VevZngQXkDg8l3gZsBT4Xeg9DY9wea03eem96U+ZxuG1b87nqYacoswvrOCgROQT4LvAO4CeWQ18EfFBEnmGM+VHA9f9SRA4D1pM5KSwi8+I7Ir9uMZh2EfAzEfkC2ewPhRffifm+Y4wx95fi3Sc/7hvA4aXt5wHHA+eIyNL8mKOAVwDvNfEDgAdFqlVufcctlY+bM2e6CG3eDJ/6VCZYTSxZklmFiqLMHlwW1BuAn7FDKJo4F7gFODnw+peTzYL+WrLBsn8F7AWsBA4vic79wCXAIcBfkE1NtBxYR+aK7jVJrTHmQWAZ2dIgxwAfBw4E3gKcHpj2WY3vvH3V45osJJs4FU16s3EiW0WZ1dS59hUBuAF4v+2Y0rHvA673OXbIYRRu5lNTmRu1SPZ3aqp+2zhp69buG+bOzf5OTBiz664771uwYDzPQV2Uh4/mYb+gwc3cNdXR44AbPbXuJmBJpE4qOXVTFh1/fNb/8uCDO7ZVpzEaNb7u6j7u4CL1FpTIDovr17+evn82TGSrKLMZVxPfdvzn69slP16poWieOvLIF1jXYTr22OlTFj300A5xKvBdDqKrZjGXu3px3aamu7lzdzg9nHxy/RRMtma/gqGNh9JmSkUJoM6sKgKZE8EnbceUjv0k8BOfY4ccYpr4pqay5qim5qm6/T5BpN1122CL23U/dWmoNmH2eUaJ2OahLvOjep0+NQf3EW3i6xc0NPG5ROcTZMu4TzqOm8yP+7jtuJkQYgTK1V8T20/jKpxjpzXyLeCajrPdj2+B6fNMhtYHNYpppkYlgkNnpgjUTKmMxArUE4EtwLXAAQ3HPIlsAOwDwBNt8c2EECNQTfPMFRaQax66efPiHARc160jRQEXc12fdMyblzlLjPtjjC3cUjwXFykqB7OBmSBQM6kyEiVQ2XmcQDaIdSuZW/iHyRYv/FD++6F83/GuuGZCGLUF1caLL6bGnqKWn8pS6GvtsM8WlKuyM9QCLDUzQaD6OvFzDNEClZ3LMrJl1bfXhKuBZT7xzIQwqj6oFAVJTLxdWT++99NXUSrjW7hV72XFiu5rvD5No0MswFIzEwRqFBb5qGglUA8fDEuB/0m2Mu3/BJaGnD8TQuw4qB2F1fbagtdWMLcptEPOnZraMe5oHNbPUJosfMey1d3LihXdCrCPw80QC7DUzASBUgtKQzKBKgj9MEbp+dVUsI1KJIbywfnk4TjvpagcdGFBDcHC9WEmCNRQKnQ+xDpJvBpYUtm2FzC35tinAmfa4psJoa1ArVx5nZmY2PFCTUzYX6hRFXRN15k7d3QvvK3/ZFQFok8B7FO49aH5JXUBNpMKxJkgUMbMnApDrEBtA15d+j2Rbzuy5tjlwDZbfDMhtBGorAlt27RCa9ddm1+slAWd7WX2uU7XH8O4Xct9C+C+W1BlUuZZX+4pBTNFoGYKsQK1vUagtqtAxRHT7JLSI85W+LquM4ras++A5ZB7dxXQ5f2+/W9t+qCGWsM1ph9WYSpUoPqFClQPBMrVhFVHqoKurQCNqvZcFozQZ1UXV4oZPKrXKxduKZxbhtJMMyQLyvVMVaD6hQpUDwQqtuM6RQHWtgmvTe05Nv1tC8RUM3g0WVApKg+jtrTaeoQOwSr0SacKVL9QgeqBQMX0QaWi68K+idhCbWrK7ORMElMgtp3Bo+l6ReHWp0HNPjRZjC5HnWocfbf2fJ6pClS/aCNQx5R+FwJ1RM2xKlAehHrxpcJXKJoKoFihiSmAUxSkPte2eS76ePH5WpVdWaZVXOJhsxj7aAnF4vNMVaD6RRuB2gD8KA/X5V58N5e2FWGDCpSb6ocxyhqpj8OAq88mNK0xBXCXjiFFetrM7BBiQY2qb8+nAuGyGPvYlxSDWlDdk7rcihWoW8mWfPcOtvhmQkhhQRUZ26dVYo3pprkpJs4urIqyOJWf9YoVJtii9emD8h0s27UTTNkarGsybft8+8jUVDaxcPne5s3TPqhUdNEXqTNJJApt+6Dmz99qLSTGWZPtwo246WW2TfkzSqGcmAj/2FxefD7eganHl/n0p9XNit8kZkNu7puamn6f1X5eFah4uvg+VaASha68+PpQk+3ixas6O0xMuJvWYkTNhU8B7nPPU1PGTE7eb02DTz6nroT4vlsTE25Lqs7iGBLaxNctXVRkOxEoYHfg0W3iGFroahxUl4WXL6lN96b4mgrIat9NWYx8+otslohvAW772HyfzziWvAgd01V+Vk3pnZhIm8ZRoU4S3dIrCwo4hGztp/cDv59vexrwndxhYlvuIHG0K66ZELq2oESywjgGmweer+WRsvMzhSi44vLty2kjlgU2y6P8rFx9T6MY4xQyK70tT4ZI3y2oIbjq2+hNHxTwTLIVdYu1n+4BDgN+BdwPXAP8B/Bg0xx9My2k7oOaM2f6hxST2StWNDsBjGtwZWizmq3G7qoV+3rU+fQXNbnfu9JfdpAIfeapC62QNHQtUKMukPs8UHcog51d9MWL7/PAb4CX5ZbUd3Jr6afAvqXjDgI2Al+2xTcTQkovPptnVUiH9dRUcwHeVJMeRfNNk2jENCm5BKjrmS58+m3K6Qm1WkMKLd+4fY9btKi7d2RcBbLr3sclUF00j80E2riZv6/0+/DcknpzzbHvBe60xTcTQupxULGzGZQJbUorgo/wtWkabCqcmtJjE5NRjSdqwveZugSx7jmFpL2LfsKqSzYYs8suaUSkrwXyuARqJk24m5JYgdoCHF/6/Tu5QL2o5tjXAVtt8c2EkFqgQmvmddhErsmCcsUZMmjXNp6rbYFcTVOTYHZdU/cVqJhnGiJ2qQt8m/u97T58Ky59LZDVgprOOPvGdC6+RCGlQDXVXkM/aFtT2ooVaeMsXtzQZTF8Ba0NTVZcio/OpyJRnqUixP08xKEhdYEfGl9oRaCvBbL2QfUrXSpQiUJKgQppmgutmZe9AUM81QpsBVfoeK4mQVu0qNvaWsqPrm7w59y5O55tnYNKiPu5bzpHZUE1xRd6fIgTyihr7+rFtzPjrki0EaivAh/Nw+rcW++fStuK8FUVKDflD8PXy83HA6xuMGzxESxcWB+vTSBsL2zoeC6bhdflx5n6o9tRsGz3ciuvXsdllZYtzImJ0TRlhsYXY8G5CuRR1t6b8jDs3P4ISyrG3RTbRqBCggqUhampnWchaLJsJibaeYC5prRxiWBV8KrH+FhQ5allbIKWuoZWLkSartn2o/N1dKmb1dxnsLFtgtuUzZbla/rG10VNe1S19zZCOO4msK4ZqgW1JDTY4psJIVagfIUk9KWP9eCrC3Pn1o+bKkSzSJetX6t8vE8afcXCpxCN6RuLoSpQoV54tvtw5ee4C8UQ5xlf8YytvYdeq00hPO4CvGvGLcBRAqUhnUDZvKXa1IZDB8O6gs8YJR9RrE6Gahun5TOex2d9KJ90pfjo6pZMSdXP4pOfRaHYRZOTb0Wg7pjYQi6m8I+5VptmrHE3gY2CwXnxaUgnUKlfcN+mtpSh6BfxObZauNTNdOErHrb7LJ/jataL/eiqH+7Kldc5j/HpZ6nz+vMV/y5qvG3jjLUyYq4bcy2bF6Xr/RiqBTWUfrPeChRgGsKm0jECHAusBW4CNgO3Af8CPCvgWodbrnepTxypLSib91PTi+XTlLXLLjv/njdvh8DUuXmnDE2FS/meUrhWV8/pohCpe9bz528N/tB9m+588nbJkn72BdkqYT4CXly/eDdsfW6xzhquZ2t7d4fQB1V1tunTenM2+i5Q38wFqBxeVTpmt/y4a/IZK04A/hL4Re6ccazntQqB+tua6x3uE0fKPqjYj8F3uYQmT7DiGrZBvKHBNQaoSkgB4yrcbe7sbV2afQttV5wxTXe2ArSLJqe2cdqasX3zxbefNmboRHGNwosvpJK087n9tEa67IPt+t77LlAXOo7ZBXhBzfZJ4E7gDmCOx7UKgXpdbHpTevHFNCdMTblfwCK4mi6aCvSmudmaCq+YFzbUscD24ZXPiWlqa+tW7dNHFtNvZxvb1kcLqunZ+opJSJN1zEKTZdavXz/j+pV8n1/o/Y3Ceuy9QAG7Aosizr8kj+MxHsc+LFDAQmC30OulnuqojhSDZKvBp9mt3KTStTecr+ND+Xib67svoYWwz/E+fWS+TXe+1+1jH1QRR2xzXIjDj0+zoY3169e36jProyUV2z/sYhT9b8ECBVwGvLD0+zXA0qbjY0PR3wRszf/fCJwL7Ol5/nfJ5gx0ik1JoH5b6nu6ETgVEJ/rjUKgbC9EG6+96vxqrn6urtuyY0SnbeFgK/DqqHPuqPZB+faRlZvuXDNP+FpuPvkX8py6KHx9C7iQypfLw891D+vXr48S5D73Rfk8v5i0jsLSbBIoyfZNR0SKvp3P5L+3AccVv1MhIt8lW9bjJmAP4CjgVcCPgecYYzZZzj0K+BJwsTHmNR7Xei7w58CXgV8CjyXrzzqUrJnx+IbzTgJOApicnDx47dq13vdXZdOmTSxatMh6zLp1izn77APYsmXuw9vmz9/GaafdwPnn78cdd+wWeXXDypXXs2zZRus1li3bWJum88/fj40b57N48RZOPPGW2uNCOfrow2rvZ3LyAdauvbJ1/GXWrVvMqlVPJvO5sV9v3brFnHvu/txzz7zK8YajjrqVP/uzDQ9vabqHAhHDZZd9Y1pabM+zzXMJzVtfYt8B3/TY8qeM6z31uVbxHYbe0yjf11Dq7n3u3O0sXLiVe++dF/3djuKejzjiiKuNMYdM21GnWrlo3Q6sLP3eaV6+LgPwTjLrZqXlmCcCvyZzlIhedh6YQzZNkwGe6zo+lQUV69W0YoV7gtm6RRCrNc+uzXbfmvgo+wGa7rk65ZKrOW5y8v5p9+rTR9bUnFr3nNrU1EflzRhSG/d9H2zvtc94OV/Hh9i5+Preb9WFBdzLPijg78lWzf1n4IJcoC7P/28Kn26KLyQA88ia7b7TsP/xZG7mdwJPSXC9F+QCdZbr2BQCFeJtFuLEMHfujkLP9pEb092YIVu66+IbRft2ge2efdK04/lsr71nW3NliIdaWaRiCpsuCtFR5VObfiFbJaF677ECNcr3tU/0zouPbObyi3JLalseRjYXH/Az4Maa7UvJFlL8DfD0RNdakgvUatexKQTK5o5bfgl814qq+whdnlNdtVfb4vb10OuqTd83Xa4+paoFVb2fug85Vf9KyvsMYVSWQ+z74Hq+qSyoPvdBDZlggZp24Gib+HYDHgKuqGwvxOku4OCE11uWC9R7XMemEKjU0xPVfYSuD6lLT72QwqxqeTR58cVQFYu6eQbrChdXYffyl/88OC2hHmpt7zumELXVkkdpOcTU1m3Pt+7eV668Ltoi6JMDSteMKs0pBOrdwO/7Hu8Z50TD9r/JBePPS9uW5FbV3cChjnjnAQcC+7quB8wHvpVf75muNHdpQfmGkIGPrn4ul5UWU1j6uEj7erPF0lRIl5chafrgQvugfGhrQYUWFDHHh1ZoUjRHpqLp+RbN3mWmpjJPzC7euyZsz2/cz66JNt9QKK0FatqJsDewd+z5eRwfAv4dOAs4GTiNzL3dAFcCu+fHPQK4Jd/+UabPAnEsMFmKd2l+7OWV630f+CJwOnBi/vfGIl6fNHfVB+UbUr7UPumImczW9TGGjAfyvY9qGtvW+O39eNP7oHziC+2DKqhzdU9doPo8ry4cOlLR135P1zXbDjjuEptTUer0JhEoMrfsi3IrpuiXuotsoO0+IXHl8b0c+Frez/UAcB9wLZkX326l4wrBsYXDa46vCtT/yQXxV3kT4t3AeuAY3zR35cXXZMksXNhd7cpVq2+zHEibvpgQq62uYHI5gLjS6Ho+MRZU0/V8rNym+wkRW9c71KaPKXWB33UT2jg88UKb9fvgdBGS5rbpTdHEty/Z2KHtwA+Ai/Nwdb7tduBxvvENNXQ1UHdqqt59vLzwX2psL6BNNLvobI+NP7S5tNzM6Kq5Nh1TN5t5V9juz6dAbRLwYsok13V88sJW4NtEo0mwu7Yo+mRB2UL5+yuGjoyyCTAkzW3FPYVAXUTmdn5Uzb6X5Psu9I1vqKHLmSS6EAQbrg91lO7KsYLsspaaCjrfQqquEI31AIvBVYlwYWum8RFjn7yIab5qavJsGsOX8hsYRx+Uz3IzvmFUTYAhXRF1fX0hpBCo/wI+aNl/DvDfvvENNXQpUKGC0LYfylUodVHTdL30hRef7335uBfXxRNb6zfGLVApO719Babp2q5nkyLdTe+RrcIValGkaH4r398ee2yxzvafkjZ9zra8G4VzRYiwthHOFAL1AHCyZf8K4AHf+IYauhSoEEHwrfH69HHYmmC6aG6xOSAU17CJVzWumD6aNp3WtjxM/cyamuhe+EK/5jFX4ZKKuvcodYHcNn0h+TKKSkbbMArnitgm9FBSCNRNwFrL/s8CN/nGN9TQhUCVvc58PWR8va6aCqwQj7ziQ52YaF5jKtQBoCn9rjWq6poAY7zcYmr9BakqGb5Un2PTeK6Ygd1dWQ62ikNoU1eKgreLyp/vc+hCnELXsoolNK9iLd0UAvW+3GvvfZRmGieb4PWsfN8q3/iGGlILVKyI+DQHumo/oXOphfYnuKbxiW32KDs6+Iin7Z5Cav0FKZtpY0hZI48ZRuBiairdYpiuvo0uPPdCKxlNaeiiaa/4jlILRBOhFclxWlALyAa0bs9dtDfk4aF82xXk45ZmckgtULGd9T41/ZQec7Z0hhSYVQsvtNZffIRdNT82fXhz5+44ZtQWVJUYl+WQwq+NW3ebQjl0SENIM3dIgRo6E0pTGlJWJKpefL4tKE3C6Vspabo/31lZfEk1DmoX4A1kS1z8Zx4uzQe97hIS11BDSoGy1dir43ViBnn6fCC+rsq289tM4xPzEdtEsU3ncQoLqivhLBMjOLGViCaamlVdFQ6bUITmW2wztytfQioZtmNTeO3ZHKRiZv6IEZYUQuciiUBpSDtQ11bTLH8Mtg59lwNE21kbfNLZpvAL/YiLPqhY9/I291nOQ1vzYhdTwYSktRximptclRbX828KqWvebZq558zZZnWQ8E2jLQ2x/ay+32fKPt7UfVehqEAlCqkEylaoVz+GNv0aMQ4YZXzSGWvh2eIvCv3qtuL81N5FIfmxcuV11sJ+3rz6ykKb/rIqPlZRimbi0GfVFMp9SbaCtXxf1XXQqufY3p2C5m/HPl2Vr3XgsuSbrBgfgW9jeY/KuSEVKlCJQiqBsr0svoV4aK3Hp2Co7rO96G28+MrnxYhbaC3e9QH63qcx2VRHruuVC0mX9dKmIGp6N3w89GwFqC3fbM/K5abvegd9rbwina7ZV5qeT+x0Vb7P0HW/rne1reWtFtQsDakmiw0ZuxParxHaNhzT0VukM0U7dGzN3lecqoJRR0glQGS71zVdcVevE/MsbWLhQ/WaPk1wLlG09VnEDAy3PTPXu9J0TZ/pqnzzIybfUlU6bWkfhXNDKlSgEoUul9uw1XpDPpbQFzCmmaKpaS/Fy+7bpBlSoLmmUAq5Fx8LqiwQISPx6woUW763Kejq3ilbzdsmNCLT5/er4kprTLOUz7tSd58+s4F0WZB3HX9xja6dG1KhApUodL1gYVtiCizXR970QndVC/SNN6RJyCddvk2ge+yxZVoTZDWULTYfIW1qenH1G8YWdE3nuQS0TSHnes9iLKjYd9AlUF1bOMb0UyjGRSuBIlvU7/nAE32On8mhSwsqxcsf41ARm56Ya8X2SzUVuj7OAj7pstHUT9bUvLTrrjtbPhMT0/vUQoTBlS8hBZ3rebk8zNq8oz7NxSF9UG2seJdAjWLAdQgzXczaCtQu+YDct/ocP5NDVwsWpjLvY8QmVBBcY12arhUjPCna9WMK1/L1XR3LPv04haA1efGFWA8h3psxg2jrHA98ru3KM58pqcrPwuXF53vdOkZhQaUSlVE0B46bFDNJ/Bw41ff4mRq6WrBw3G3bPs1bITXbOsbRMRzzQfsW5E2FdYz7dlO/TszzanoHfGbtsDkeFKLh64HnGjhq67fybW6N/Xa67oNKKSqzobkxhUCdA3wbmON7zkwMXc5mnoqUL1toP8/ERHNtN3WzSZOVUFcDD3kGvmJcV0BMTTUf7zMA1mWJtR275lO5CHHq8O2PtDlfhHj7pSr4fb7DNt9RSlHpqim9fOy4LbQUAnUQcA3wdeBlwIH5Krs7Bd/4hhq6FqiY/oQuaz2xhV3dy57yo/X5qGJr4W0GUbr6d0LzKqUzgktsXWJjyztXIRryTG3vSdM+1zCCKl1XFFNWxkK/m1DBGYWF5iKFQG3PZywv/tYG3/iGGroUqNA+mrZNED4FX0xhZysAU9TUpqb8+oVia+Gu2v7k5P2tn1cXeVVgK8R9nn+I1ezywHNZUHXH2wr3kAHVNroWqFFXxorjbM+56dohYtpVpTiFQJ0BvNsVfOMbaujLgoVtPoAQoUhhQZXTVhT0ZdEKwVV4+hSYMd5k5ecTk4dd51W54KjzGiyLs08BU9dU2uaZhfTrxeRdaOHf175gW3y2dPo83ybrzbcs6bIpUMdBJQrjXvLdVUsqBvvaXuYQcQvtg7KlK8WL7RIAnyan2MGdBaFWsCu9tsLRJ6/qrln2GowteF33EtKkWt3vmtXcZv2GFsB1dO1NW75faFcp88GnYtS2SbDLpkAVqERhnBaUT+Hn04wT2j7uqp3HhpQdxtX7bGNBuQjpR5yY2LGWT93zrvsd4lji09wZi8tasQmQbX/dvVfzzxZX7CS3Zboej1gwKgcEV9Oy65o+Ytrl2LBU60E9Ajg9X7jwp8Cz8+1759sPDIlviGHUfVDl0FTQlV9Cn483tOCpS2e58Ci89myFbqoX29Y/VK3Nx/RB+TT5+PZf2PLTt0CxFaI+FZY2BWFo30SbJr7yTPUxzzW00LfN6JJyMO6oHBDaftPGxPfN9sKCAh4N3JAP2L0+d4o4srT/ZuAc3/iGGkbhxRezymzxgfs2X4U03YRQV8CPo8O4KS3lfeXnXLjH18VddZv3mWjUGLuY+uSpiDELFzbnj0+zTpu89LHofZrsbHHFvguhfUfV41euvC7o/mKb5roQwbp0pRDttn2zbUghUH8L/BZ4Rm4xba8I1DnAD33jG2oYxTioGMeE4iXybf7w9fhJ8ZF20WFcFZcUzha2wqT8e/78rV7Xs8UXUwmBnZf+Dn03Qgm1Qm0FsctiTGm1VKmbwWL+/K3WcWap3tnUVocrT9p8Fz5iumLFjsrI3LnuCYJ9SSFQtwPvy/+fqBGoU4Df+MY31NBGoKamMhflLly7C+cI1/o4vtcq4kslLCm9pbqsLaYs9G2FU6xAVfPI97jq8/PNi6ZjfZ+frwVVHBtqCbmaZW2tCtVFMX0WxKw6p7ieY+rKWWiTr8vj0ydPh2JBbQFOyP+vE6g3AZt94xtqiBWokMyNtaCazrMNYuzSmaALYpwC6j7ItuO7fGr8tjxPNb4sRCRcaQrBJ/1FJafpunXBlpamOHbZpTmOkG+pfJ7t/pr6W2OamkOxpcs1HMBm+dqauIfSB7UBOCv/v06gzgN+4hvfUEOsQIVkbpMlVLyETWNcYqdECS1EXYVzyg/SldZq8L2/JgvG18nD96Nsa4G0DdVCM1Uh45v+umfhU5i2uWY5jtCKgMvic8UXUkmKITZdrvcesjLHNilvr734gE8CdwC/UxUo4Fm5hfV+3/iGGmIFKsa1u/oyFU0QsSZ6E6nia3LwSNUM4CqgivT7OGg0ueNXP9C6WqVvH5SNOuF0eWmGhKaCMFUh41NZcL13oWkJEZvCevN1SKleO6SP0pX21E3lMenyDbGtLW1JIVCPyfuh/htYnXvxXQR8NhennwF7+cY31DAKCyqWLpwRQjzmbAWWj0i6OnhDP0TXjBO+tdpq2vbYY0sSwa1e31a7DRl/ZnvWKSsx5QpAzEDs0LSEWFB1FZDQZ1e955A4urBa26bLN9iu29s+qCwOHgd8EdiaW1DFvHz/CvxuSFxDDaPog7LF4dMp27YDPCY+H+vGlg4f546Yj7HJKgmZXDQ270KbddoMyvVNV8y9+JwT04TVZA3YluBI0ZTlenZNYhxijfn0Z6VyNQ9Jl49w+143ZfN90pkkgD2AQ4FnzgarqRxG4cXXdG5MwWLzbmrqLI156WLb5o2xC4+rgz82zJnjf58xNeCY/PK5jqvz3lcYQgqZLq3/Ohdwm0jVHV83rVNM31OTE8G8ec3Wqys/unh+vt9B1XmkSGvxrJoErLhGF0LURIomvtcASy37lwKv8Y1vqGFc60HF9AfFeOT4FKQh6fOJL2S2ibqOdlfzmE+6bB9kTA24K1FLMc2PC98mpBSd47ZOf1uTq6vw9HUm8HUiqQvF7CU+lu8oXM3rxKapCXbevOkCVrRYdNmU10QKgdoGvNqy/1VELLcBmIawqebYA4AvAHcB9wFXlD0JPa/XKo5xCVRoIekqINtYPHU0NdOBezCfrwXlun6MdVUMNowRc9v6Trbn67qPOgEuCo7QcW6hhDzHFKLoY4Gkuo+dnWC2T+tLC7W6im/PpzLiEtUQiyV0/JtNrOsmFB5Ff3mVFAK13SFQxwIP+cZXOs8A38zPL4dXVY57AvDr3JPwL/JxV9eQTb20zPNareMYigXlErQ2fUZNxNbuUxW8MV5bxb3a0u1TaFebpWIsg/J9hLjGhy7WZ8O3dj4Kz8yQd9DmxFFX6JeX24htNi6/H9UmwJB3N9Ri8c0jn8poXStCyjLBl1QCdUzDvkfm3ny3+cZXOtcAF3oc9w+5FfcHpW2LyMZn3QDIKOIYl0DZXuK6D9ElaK4PM8RycdU+fQe1tp2+yJi0LrfldJfvc86cbU7xsTX9uJ5tjDNIqv4Cn+dXnZi3DW2eUzmO0Cap4jv0edZ1fVDVgr2p9aCLPj4fUQ0ZrFykse2wgTZECRTZIoSNq+fWhA/Y4mu4hgEuBHYFFjUcsxB4APh6zb535XE803Gd1nEYMz6BMqa5ltjUlOHjedVm3JJv7bMsil13vDZ9jDFux83W6Xavc5qOcQl2TFNTTP6FPL+Q9BfYmivLx9gmxG2TZluBWnyHrmddng6p7h58rPbYPtim/teiaa6aLtszdg25cOV7k0WY6puOFaiXA3+XC8h24Bv573K4APgo8GofC6TmGgbYROa6boCNwLnAnqVjnp3ve2/N+X+Y73uz4zqt4zBmvAJVh+3j9H15Yl8yn8Is9eSbLlyWZlNhElLIT07e71V4x7blh4hsW+vD5/nFxG2Lx/ZOFPcZ8l7EOLH4WFC2WVt8n1U5rqbvy7cPy8e70DZO0TZFmEuo582r7zdL9U03CZRk+9yIyPq8cP+61wmeiMh3gc8DN5G5rx9F5nDxY+A5xphNIvJHwD8CbzLGfLJy/kHAdWQT2b7Tcp3oOETkJOAkgMnJyYPXrl0be7ts2rSJRYsWRZ9f5cgjX4AxMm27iOGyy76R7Doh1waDCCxevIUTT7yFZcs2cvTRh3HHHbtNO3Jy8gHWrr0yabrWrVvM+efvx8aN83dKQ7Hv7LMPYMuWuQ8fP3/+Nl784v/iyiv3rj2nyqWX7sEHP/h0YPq9l++n6VqnnXZDY9yuNK5fv5h77pkHwB57PJT/b89/2/Nouv755+/HHXfML2Ir7TW8/OW387a33dR4PtCY3wWTkw8AJHknYt6t4jtct24xq1Y9mbpn2EQRr+sem6i+Az7vSci1mu677jpz525n4cKtje+RLd6U3/QRRxxxtTHmkGk76lRr3AF4J5lFszL/fVz++/U1x+6X7/uwI87WcRgzLAuqLS7LKuTaXQxWjKVts8T69etrx+PU1R5jr1U9r67JVsSYRYvsedC2lut7n1VcNXKRdO9Emz4oY+zpbAo+92gL1W/E9Z6EXMs1KL7cTBiyOnY13pTfNKkG6gILgIOA/wE8vxpC42u4xjyy6ZO+k//+o1xAVtQce1C+7yxHnK3jMKZ/AtVV05lPvCHXbiuko+i/8r1m2QMsNk2h59qaomzNPG2fu625MTa9xfVTVq5Cn2f5Owx1Spk7N+68NoV4yLXa5q1vvCnH5LUWKDIng0/lwlHnILGdiHFQluv9DLgx/1/7oCx0UXj7Fh4h/VyxQppShFOkt20extyPqwbd1EHetpZru27VPdnlvFO917bvRFsruBxXkxdeUyjOq+sXqg6ATVGIt+2DqsPlfl59X8rvV9Mzix2Tl0KgzstF6FLgHcBr64JvfI5r7UY2NumK/Pci3B54z3LE2ToOY/opUF3Q9fxhKZwxQhxBiuunsPja5mGM5RDikNL2Wr7XbXJPrg5/sAlozDuRosJSzcNqU+aiRX4WQjX9PjOapKxctRFqn++qLE7l9Kcek5dCoO4E1vge7xnnRMP2v8kF489L2z6fW2pPK20rxjDdSMmDENgTOBDYuxKvdxxNYbYIVJd9W6GE1PRiBjiG9pm1zcMY8Z+a8uuHqLNw2xTmU1PN17K5JxfT7HTRJJuiubg8J2bTkAyfoRpFfD6ecCmeRcrWEp93I7QZMLYCm0KgNgFv8D3eM84PAf8OnAWcDJwGXJaL05XA7qVj9wd+QzYLxP9lxywQW4EXVeJ9XR7HGZXt3nE0hdkiUKNyC/eh6SMJXVnXNa2O70DncVhQxtQ7LPgUEK5CzbXfZkn4dt6nfHdirfupqfp7sbnq+zy7kLGAPjRds4tvMqVzRuh9lkkhUJcTMRDXEefLga+RrTP1ANnceNeSefHtVnP8k8mW+7gb2Ax8i5opipoEKiSOpjBbBMqY8TgmNKWj7sMMrcU1CUNdE4at9jyOPqjyua5mt9RpsR3TRee97b5FwismTffgCj7WQGzTa0g6Xc+6y1aNpmsuXJhWLFMI1GHAr4BDfM+ZiWE2CVSfqBPL0A+27uOPqT2nyMO24p+qNt3WGcbHqgsp8Ovus02/TqiIhhb8rim+ihkf2npr2qzVLodq2JwhbMvDh5JCoC4oNYddQbaa7gWV8Gnf+IYaVKD6Q0whXS1oYwrTvuRhCgu3TaEXapWksO7KYc6cnceJVZ9FqHjGiL3tHaobZ9Rm2qNx9QuPYomXFAK13SMkczPva1CB6hdtC+mYj34m5WGbQi/EMklp3ZVDk7t6iNt40aQb8x7FNB3GeGu6PCa7xNV3m+L6rQVKgwqUMf3pl0pFzEc/9DwsaGo+8y30fK2T2NnPfb0WY5vwCiunrct3eeJWn+Dy1rS9j22+v9BzfZtHU4ikClSiMHSBavuC98WzLyWhz2TceRhD9R7rnEBCC+yuCy+f+G1TJtnC5OT90ekKddoJsaCK+FMsPeOT5qZ4u26+rZJMoMhmlFgGLAcmQ88fehiyQLUVmD6NjRonQxOoUOcQV1xly6HaxzJvXphTgOtarqa6UAtKpL0nZuiwh9DvrSm/VqyIr2CGfLtTU+ELf7Z11EgiUMCK3D17ez7g9ch8++LcTTzpOKk+hiELVFuB6dOEr+OkKQ/72vwZWoA30dTXk0qQ6rA1ndmmTKqbBqgo5I1p9x2GDByHzJmj+M7aOl7ETm3k++3G9KmFlCFNpHCS+KNcmP4ZeH3+/5Gl/V8AvuQb31DDkAWqrcCoBZVRl4cpmj+7EriQJrAiL1O49Xed9upYrWp6bc8z5DusxmPzamvbr+e659jn75t3rspM3ZpkveiDymd2+Hr+/0SNQP0lsME3vqGGIQtU2wJmpvZBhVKXh10826JAaPt8QwYoN1kkIQOjUwptV6Lo+x36WmejmEHe9/kX6Xb1OVbnTHQJY93xvfHiy2d5OCX/v06gTgDu941vqGHIAtXnWv6QqMtD24ftg61QSjGdTdNcc3V5GdrHUl4t1nf+urZpb/ve+X6HTc/CNtdg25aKqak4q7d8vm9++zbpxXpi+pJCoO4B3pr/XydQ7wLu9I1vqGHIAmWMCkwK6vLQVnj74CqQ2loMIfke2sdSLYRTp7+Ld9b3O4wRG18LynZfIYOMC8GMseBG5UbuIoVAXVH0MVUFCpgD/Aj4im98Qw1DFyilPaO2oEJq3ylwDRYtCtUQT6++OdK0taBsgutj9fkeE9LcV6zFFCKqrqmamioEqSsNKQTqVbkovQd4Yv7/MuAA4JLcq+8lvvENNahAKStXXpfcgcDV1JLaEcHmVFBnCdXVots0Q42bNn1Qvq7itgLctp5SbDNc8ZxTWFBtBTiUVG7m782FaWvpb7Ga7ukhcQ01qEDNbqamjJk/f+u0jzNF30sKDzDf6/i6ZZctpyqhzhddE1KrDxkqkNpamJryE5vys/Nt8ivGefm+izFi04XjSsqBus8APgh8Cfgy8BFm0QznKlCzG9/mrzYFWdf9hCHNRk2Fjk1MU85yXXfdurhDC9qQoQKp7yfUSy+kKdU2TKCJ0Peti/GQOtVRoqACNbuZCYOVQ5rmmlyYu3KJt2ETodBafchQgdQWYczUTD6h6IPqmlFaUHPwRET2EpGnWvY/VUQe5RufogyRffcN295HQtI6Z04Wli6FNWuybStXwubN049dtAiWL7fHt2ZNFpcI7LJL9rcct426627enG2/7bb6c5q2hxxrTP01Y+niXZmYgAsucD//FKxaBQsW7LxtwYJse2q8BQr4AHChZf/fAe9rlRpF6TmrVsH8+dt22tbVx9kVdQXMvHmw667Tj922LSugN2yAk07KhCRWDNasyeLYsGFH3LBz3DZs142pOBRiWQjwXnvZr++TFhdr1sCmTXHnVlmwAKamsvy5887RiBNk11m9GpYsySoYS5Zkvzu5fp1ZVReAm4G/sux/N3CTb3xDDdrEN7OI6e+p8+IbGi5nANuy6rFNPD59L7bn6er/C+mDWrnyuiBHEd97tb1PId54rr6nuuc0lD7QOkjgZn4/cIJl/wnAZt/4hhpUoIZJU4Ec43k3G/LQ1tcW6iXmM42Ob1yp1kqanLy/9tqFm3dZIHz7oFzpC3GOGIU3Xh1dzdzhIoVA3Qmcadl/JnCXb3xDDSpQw6Ppo4tdynomWFAuXFaSjxiEWgxtLZSQY0S2BwmDy+Xe55mFiHQxfVSxGKLrXUvluNCFA4QPKQTqS8AG4BE1+x4B3Ap8zTe+oQYVqOER6tbrWnKibhxUX0UqtrkmRU069Ln75oHt3nzT3WRBtWnCdHl4+noJVoPPc0/lXWpLS5eVsRQCdQTZoNwfA38M7J+HP863bQWW+cY31KACNTxSLl8wrhpmDG1Fpm1fhOu5u/pYYu7N1yqu64Mqnk1sYe9jdbrGWflMyBsyaDqVBRXz/oTQWqCyOHgj2cKE2yrhAeDkkLiGGlSghkfTRxezts2QxkGNW0x9rh8rom2t4vXr1zcKcOxz87kXl+j7VKbq4kw1A4lPs2wX708SgcriYR/g7cDH83AqsE9oPEMNKlDDw1ZwhFoJ4y70Qxi3mPqKj212iKa8aWsV277DNpZnW6vTV3htVllR+Yr18rMNfO7q/UkmULM9qEANk5QuuEPpg+qDmHbVB9bWKnZ9hzHpTvGO+TqWuPq1qk2CMaI7yvdHBUoFSknEULz4xuUynILY/hxfqzj1d5jyWfuORzPGv0kwxmN1lO+PCpQKlJKIIeXhOAZdpsCnebLNvaXOw66sjZRjq2Ka60b1/jQJVMhUR4qiDIzly+HWW2H79uzvqKbDaYvP1EV9urcUcwHW4ZpWqG7aqhBc0zuVn/GqVdkchNW5GbtEBUpRlN4xyglJ21DM52dM/f4UE8PahLgqYHPnhsV9771+QlOeR9EY//kT26ICpSizjOokqaOoCYeSekLS6j2vW7e4dRqrk99WGZWglgXsoovCLKoHH/Sbmd02k3yn1LX7adA+KKWZIefhkB0nfPCdXWL+/K2t79nW/zPO/r7Q+Q993Ma7HrJAgvWgJkTkyZVtjxeRc0VkjYi8KLl6KooSjM1CGltNeAQ0NUOdeur0e96yZW7re27qXxJp7hMbhfVaWFQXX+x3vE8z5NjWQatTrboATAHfK/1eBPwC2J6HrcDzfeMbalALSkmZh6m9pFwW0rgH73ZJyjkX21zPNtHtKK1Xn+cxb57fZLRdp50Ec/HdDJxR+n1CLkwvBh5DNh/fpb7xDTWoQCmp8rCLj95VaPZh8G5XpJxz0YfQ/Bv1s7c9j2Km9Or6V7b0d+lynkKgNlFaDwr4x4pF9afA7b7xNVxjAXALYICPVfYZR1jpEf/hlvO9xFUFSkmVh10UWC4LaSb3QYXMLpGiD8qYsEJ71NbrkCorTQK1S0Br4EPA7qXfL2DnJeDvBiYC4qvjTODRDfuOa9h+BvAE4F8DrrMauKKy7RcB5ytKa7oYO7PvvvVeZUVfQdEvsnLljqXSV60azvgoG6tWZX1O5f6mBQvgIx/J/i/f87HH3sDy5Qe1vuby5f7PzpU3qWl6HoVnYVdjt5JSp1p1AfgusB4Q4H+RzWL+4tL+M4Bf+sZXE/8zyPqx3kGNBdVwzu/m6fi+5zUOz+N+XWw61YJS+mxBzWQLyQdfi6ZNHo5zja2UaR2CBRUiIK8h63O6G3gQ+Ckwr7T/60QuWAjMBa4GLgWWBgjUu/Jj3+h5nYcFClgI7BaaVhUopc99UEW8Q5zeqI6u7iUmD1Msa9GXvEm5REcKWgtUFgfHAZcAFwD7l7ZP5AJzQkh8pfNPA+7LxclLoHJL7hayvrE9PK9TCNRv2dH3dCPZkiHiE4cKlNJnL76ZRJcWR10e2vLCNcv4kJxMQpboGBVNAiXZvvEhIo8H/gM40xjzfhFZCvwM+Lgx5hTLeS8E1gEXGmOO97zWc4E/B74M/BJ4LJk34qG2eETkJOAkgMnJyYPXrl3reXfT2bRpE4sWLYo+Xxk/moej4eijD+OOO3abtn1y8gHWrr2yVdzVPFy3bjFnn30AW7bsmCto/vxtnHbaDSxbtrExLTswrFx5PcuWbWyVrlHQ5XON5YgjjrjaGHPItB11qjXKAHyNzEV9Xv57KX4W1Gfz457X8vpzgK/mcT3XdbxaUIrm4Wjo0uutmoeu/piYlW77Sh/HwhHqxScip+eF9ipjzPb8twtjjHmPp2giIscCf0g2wPehgPP2Al4B/MQY8y3f8+rI7+19wIuAlwLfbhOfoihpGKXXm8ujrSktZYoZOfruETlqb8I22NzMzyATqPeTOUWc4RGfAbwESkTmA+eQNbf9t4jsn+/aJ/+7Z77tTmPM3ZXTlwPzgU/7XMuDW/O/eyeKT1GUlrjcpFPiKrRXrYLjjstsDRu9ctFuYJTPtS22ufgeD+xnjHmw9NsV9gu49u5kY55eSuYRWITL8/3H5r9PrDn3BLJxWX8fcD0bT8z/3pEoPkVRWpJ6RnMbruU9li+Hk0/O0mGjj1ZIlVE+17Y0WlDGmA223wm4D/iTmu2PBj5B1i/0aeBH5Z0icgjwNOCfjDG1PZIiMo9s8O5mY8xtpe0TxphfV46dzw7rMGSwr6IoHRMyELbtdcA+gPkTn4DnPjc7ZsOGrHAvW1R9tULqGNVzbUvIbObOBVRE5FDf+IwxDxlj/rEagK/kh9ycb7uxcuoJ+d/zLdHvA1zPdAvrqyLyRRE5XUROzPvVfgw8FzjXGPM93/QrijKz8FmhtzjGmGy28CFYISH0ba2wkAULfygif9i0U0T+L9DKYcGFiOwOHAP8nMz7L5R/BBYDbwE+STZrxe3Aq40xb02VTkVRZj4pl5zvgzCMa9VcGyFz8d0DfEVEPgi80xizDUBEJoGLgWXAl9omyBhzK9kg3Lp99wOPjI3DGPN+MqcPRVGUXlAIQ+G0UAgDjNYis60VNi7LMMSCegbwGeDPgG+LyH4i8hKyPqLnA283xrysgzQqiqLMWPqyiGQfJ4/1FihjzH3GmNcArwUOIhOmS4HfAIcZYz7STRIVRVFmLk0C4Bp3lZqxrZprIcSCKvgW2Rx4hVPmPxljrk2WIkVRlFlEkwCIjKb/p+j/KjwTy4zbMzFIoETklcAPyKYjegOZBfUXIvJvIvKY9MlTFEVJz7p1i8fulFCwalX9+Cpjum/mKztGFNcs0tIHz8QQN/PzyOa/uwl4hjHm08aYl5PNBP484BoReVE3yVQURUnDmjVw9tkH9MZbbfny5hkquu7/qev/MiYTp7aeiSkIsaBeD3wIeI4x5pZiozHmXOAwsnWiWnvxKYqidMnKlew0azmMxymhzJIl9du77v/po2NEmRCBepkx5rS6SV2NMT8EDgYuSpYyRVGUDrAVyuMaj+Saaqkr+ugYUSbEi+/Ljv2bjTEn2I5RFEUZN02F7157jW+g6rjmxxuXMPoS48WnKIoyWFatyhYjLFMU0qnGI8VYYilnpvCl7xPHhswkgYg8AXg78CzgUUwXOGOMeUKitCmKoiRn+XK4/vobmJo6aKeJYY87rv740P6YvswM4UufJ44N8eJ7CpmL+YnArmRLa9wH7Ebmdr4N6EnXmqIoSjPLlm2cZq2k6o/py8wQM4GQJr4zyRYufBrwwnzbqcaYxwJvJJsj781JU6coijIiUvXH9N0zbkiECNTzgNXGmBvIVs6FfEJWY8x5ZMtk/HXa5CmKooyGVP0xffeMGxIhAvUI4Ob8/2KV3YWl/d8mEzFFUZRBksJRoe+ecUMiRKDuAB4DYIy5l6z/6Uml/Y8C5tacpyiKMmvou2fckAjx4rsWOKT0+xvAqSLyPTKhOwX4YbqkKYqiDJM+e8YNiRAL6jPA3vmqtgDvAvYE1gNfJ3OSeGfS1CmKoiizFm8LyhjzOeBzpd/XiMjvAa8gczH/SnmOPkVRFEVpQ9BA3SrGmJ8DH02UFkVRFEV5mOipjkRkoYicLiJLE6ZHURRFUYB2c/EtAt5NNqOEoiiKoiSl7WSxNetAKoqiKEp7rH1QIvIPwBuNMXeNKD295+qrr75TRDa0iGJv4M5U6VHGgubh8NE87Be1Sza6nCT+N/A8ETnJGHNp+jQND2PMo9ucLyJXGWMOcR+p9BXNw+GjeTgMXE18hwObgS+KyAUi8ojSvt8AR5DNcK4oiqIoSbEKlDHmW8BTgE8ArwV+LCJH5vseMsZ8wxhzd+epVBRFUWYdznFQxpj7gbeIyCXABcD/E5HVwJUNx/992iTOOFaPOwFKazQPh4/m4QAQY4z7qOJgkd8hm29votiU/zX5/8YYoxPGKoqiKK3xnklCRI4gs6D2Jqt9/HtXiVIURVEUp0Dlk8N+AFgB/BJ4kTHm37pOmKIoijK7cY2Deg5wIbA/cDHwVmPMb0eQLkVRFGWW43Iz/yawB/AKY8xrVZzCEZE5IvJ2EfmJiDwgIj8XkQ+KyEL32UoXiMiTRORMEblSRH4lIveKyLUisrIuX0TkABH5gojcJSL3icgVhTdrzbF7isi5InJ7nt/XicgKEdFZVzpGRBaIyC0iYkTkYzX7NR8HhquJ75+BFcYYHXEdz4eAt5I9yw8CT85/P11Elhljto8zcbOU1wNvBv4FWAM8RDam773AK0XksNx7FRF5AvAdYCtZU/dvgTcAXxORlxhj1hWRisiuwL8BTwfOBa4HXkI2TGMSOGMUNzeLOROoHUiv+ThQjDEaOgrA7wHbgUsq299C5vn46nGncTYGspWh96zZ/t48X04pbfsHsvXO/qC0bRGwAbiB3BM23/6m/Py3VOK9BHgQWDLue5+pAXgGmfi8I8+Dj1X2az4OMLSdLFaxcwyZ+/2HK9vPI5uh49hRJ0gBY8xVpr65uliQ8/chW1IG+F/A5caYa0vnbwLOB54EHFo6/9Vk+XpeJd4PA/OAVyVIvlJBROaSPfOvAv9Us1/zcaCoQHXLoWQW1PfKG40xDwDXsvNHoYyf383/3pH/fSown/ohFcVA9UMh62skq8Vfk+dvme+R1cg1v7vh7cCBwCkN+zUfB4oKVLc8FrjTGLOlZt/twN55e7cyZvJa+LvImok+k29+bP739ppTim375H8fBexed2ye/3eWjlUSISKPB/4KONMYc2vDYZqPA0UFqlsWAHXiBPBA6Rhl/HwYeDZwujHmhnxbkTd1eVjNP9uxxfGa1+n5FHALcI7lGM3HgeI9k4QSxWZgccO+3UrHKGNERN5D1jy02hjzvtKuIm/m15xWzT/bscXxmtcJEZFjgT8Enm+MechyqObjQFELqlt+SdaMV/ey70PW/PfgiNOklBCRM4C/BP4OOLmy+5f537omnWJb0RR0F3B/3bF5/u9NfROTEkH+TM8Bvgz8t4jsLyL7s2Phuz3zbY9E83GwqEB1y/fJnvEzyxtFZDfgD4CrxpAmJScXp3cDFwEnmtyXuMSPyZp6nl1z+mH536sATDae7Qdk49uqFZJnknlzan6nY3eyMU8vBX5aCpfn+4/Nf5+I5uNgUYHqls+Ref28rbL9DWTt2GtGnSAlQ0ROJxOni4HXm5oB07kb8r8Ch4vI00rnLiIr+H7Kzh6anyXL15MqUb2NzPnicyipuA/4k5rwpnz/V/Pf/6L5OFyClttQwhGRc8n6N/6ZrDmimEni28CRdQWj0i0i8mbgY8BtZJ571Ty4w+QTIufNRt8jm23iQ8A9ZBWMpwAvNcZ8rRTvrmSzFTwN+CjZDARHAa8A3muMeVeHt6UAIrIU+BnwcWPMKaXtmo9DZNwjhWd6AOYCf0o2Wn0LWfv1OcCicadttgayCZCNJVxeOf7JwBeBu8k6yL8FLGuI+5Fk4vfLPL//k6yCIl3flwYDsJSamSQ0H4cZ1IJSFEVReon2QSmKoii9RAVKURRF6SUqUIqiKEovUYFSFEVReokKlKIoitJLVKAURVGUXqICpSiKovQSFShFURSll6hAKYqiKL1EBUpRFEXpJSpQijIARGSuiOhKrsqsQgVKUXqGiLxORIyILBORd4nIzWRLjb8y336h5ZzDS9vOyLcdICJnicgvRGSLiPxQRI6qieM1IvI9EblbRO4TkVtEZI2IPLrD21WURnTJd0XpL2cD84DzyJaHuCEynovIlpk4G9iVbF2jL4jIk4wxtwKIyHH5cVcAp5OtKvs4smUmFgO/ir0JRYlFBUpR+svuwNONMZuLDSISE8+dwMtMvnSBiKwnWxvpjcBf5Me8AriXbI2yraVzT4+5oKKkQJv4FKW/fLIsTi34iCmtq2OM+T6wCXhi6Zjfkq0i+1KJVEFFSY0KlKL0lxsTxXNLzbZfAxOl32cBG4AvAL8SkUtE5EQReUSiNChKMCpQitJfQqwnW3P9tobtD1tKxpifAgcBLyXri1pC1vf1ExF5QkA6FCUZKlCKMix+A+xVs32/thEbY7YYY75sjPlTY8whZGL1WOAdbeNWlBhUoBRlWNwIPLs8JkpEHgUc3yZSEdm7ZvMP8r91gqgonaNefIoyLD4GTAGXicjFwCOBN5D1Hz2mRbz/T0TuJnMz/3ke7+sAA1zcIl5FiUYFSlEGhDFmjYg8FjgFOIfMAeJMYDvwrBZRfxJ4JZnr+V5kThTXAG8xxqxvlWhFiURK3qeKoiiK0hu0D0pRFEXpJSpQiqIoSi9RgVIURVF6iQqUoiiK0ktUoBRFUZReogKlKIqi9BIVKEVRFKWXqEApiqIovUQFSlEURekl/x8/H+2hUrShFAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"BEC_center_y_val.plot.errorbar(ax=ax, yerr=BEC_center_y_std, fmt='ob')\n",
"\n",
"plt.ylabel('Y-axis center of BEC part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEkCAYAAAB6wKVjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABSOElEQVR4nO29e7wfRXn4/35OcnKSEAlykBQpnKAowX6VWEGxtE1AbKv219a21kuoisTUUC9QqFqoSlG0X6QK4gXBIi2J2ir9arWKFiGI1RSloparcovXIEjQEBJymd8fs8uZs2dmdmZ3P+d8Puc879drXud8dmdnZnd255ln5plnxBiDoiiKovQbQ9NdAEVRFEXxoQJKURRF6UtUQCmKoih9iQooRVEUpS9RAaUoiqL0JSqgFEVRlL5EBZSiKIrSlyQLKBG5VESeFTn/TBG5tJtiKYqiKLOdHA3qlcATI+cPAV7RqjSKoiiKUtDlEN9ewM4O01MURVFmMXNjJ0XkYGCpc2iZiPy2J+q+wFrg+90VTVEURZnNSMwXn4i8DXgbUOewT4A9wInGmMu7K56iKIoyW6kTUEcAy7EC6FLgYuDrlWgG2Ap8wxjzg94UU1EURZltRIf4jDHfBr4NICJjwBXGmP+dioIpiqIos5uogCoRkUXAy4EHARVQiqIoSs9JsuIzxmwFRrFDeYqiKIrSc3LMzP8bOLJXBVEURVEUlxwB9Sbgz0TkRBGRXhVIURRFUaDGim9CRJGrgTHsuqifA3cA2yrRjDHmOV0WUFEURZmd5Aiou6lfD4Ux5pCWZVIURVGUdAGlKIqiKFOJbrehKIqi9CUqoBRFUZS+JGmhbomIPBE4FXgW8FgmCzhjjIltyaEoiqIoSeRsWPhU4H+A1cA84AnAQ8B8rGXfbmBT90VUFEVRZiM5Q3xnA48ARwClKfkbjDGPB/4C2Af4y05LpyiKosxacgTUbwIXG2NuY9zcXACMMZcAXwD+vtviKYqiKLOVHAH1GOziXLCaFNhddEv+CyvEFEVRFKU1OQJqM/ArAMaYX2Lnn57snH8sMKe7oimKoiizmRwrvhuZ6Cz2WuANInI9VtC9lmLvKEVRFEVpS44G9TFgPxFZUPx+C7AYuAb4MtZI4oxOS6coiqLMWlq5OhKRg4AXYk3Mv2CMubOrgimKoiizG/XFpyiKovQlWZ4kSkTkMOxCXYA7C9NzRVEURemMLA1KRI4DLgSWVU7dCrzeGPPlDsumKIqizGJy9oM6DrgS2AGsB24uTv0a8FKsy6PfM8Zc3YNy9g377befWbp0aePrH3roIfbaa6/6iErfonU4+Ggd9hc33HDDfcaYx1WP5wiojcCBwNHGmB9Vzv0qsBH4gTHm2R2Ut2858sgjzTe/+c3G12/YsIGVK1d2VyBlytE6HHy0DvsLEbnBGHNk9XiOmfnTgA9XhROAMeaHwIexfvoURVEUpTU5AupB4JeR878AtrQqjaIoiqIU5AioTwIvFZFJln8iMoydh/pkVwVTFEVRZjc5ZuYXAb8BfEVE3ou13AM4HLuJ4RzgIhE52L3IGKN7RCmKoijZ5Aio/8VusyHAJyrnxIlTRR3IKoqiKNnkCKizGd8HqjNEJJTmQ8aYRU68s4C3BeL+tTHmvMT8FgPvAP4YGMVuIfJ+4CKjbjUURVH6hmQBZYw5q4fluA64uHJsZyDuqcB9lWM3pGQiIvOA/wSejl1wfAvwPOCDwBLgrLTiKoqiKL2mkaujHnCnMWZdYtxPG2PubpjPauAorNeLC4tjl4jIFcAZIvJRY8w9DdNWFGUmUa6T2rBhOksxq8mx4uspIjJPRBbVxwQR2dtnTZjAy4BtwCWV4+cDw8CLG6SpKMpMY/162LgRrr0Wli61v5Upp18E1J9iBccvReReEbmwmCvy8R3smqztIvI1EXleSgYiMgT8OvAtY8z2yunrsfNrRzUrvqIoM4b162HNGtixw/6+5x77W4XUlNMPQ3zXY9dPfR/YG3g+dnfeFSLyG8aYrUW8Ldh5qq8BDwCHAacA/yEirzLGXFaTz2OBBYDPE8YOEbkP68ppEiKyBlgDsGTJEja0UPm3bt3a6npl+tE6HHxidXj0aacxf9u2iQe3bWP7aaex8UBvE6H0iL7cD0pEzgDOAf7WGHNOJN4o1rR9PnCQI8x8cQ8CNgGXG2Ne7jm/Cfi5MWZ5rGzqi0/ROhx8onU4NAS+dlEE9uzpablmK1344ptK3g08ArwgFskYcz92AfE+2EXEMcou0Ujg/HwnjqIos5WDD847rvSMvhRQxpidwI+B/RKi3138rYv7APAwnmE8ERkprp80/KcoyizjnHNg4cKJxxYutMeVKSU4ByUik4bBUjDG/HPz4jya93yg3MKjjicVfzfXlGuPiPwP8HQRGTHG7HBOPxPrDaP52J2iKDODVavs35NOsoYSY2NWOJXHlSkjZiRxGeOujVIxQLKAEpHRYpiuytuLsn22iDcX2MsY82Dl+oOAtcD9WOOJ8vgw8ERgW8UX4MeBY7AGDxc6x08BdgH/klp2RVFmMKtWqUDqA2IC6tgpyP9vReRo4BqsAcMirBXfscB/My5EFgF3icinsd4fSiu+1cW5lxpjHnbSPbCIdy2w0jl+CXAi8B4RWVrEeT7wQuAdLRYAK4qiKB0TFFDGmGunIP8NwFOAV2D94u0GvgecCbzHWa/0MHAF8Czgj7BC6T7gKuBcY8z1KZkZYx4RkeOxvvheyrgvvtcBH+jkjhRFUZROmNZ1UMaYzwCfSYi3A6stpaZ7N4GhSWPMFuw6q9empqcoiqJUmAJXUNkCSkSWAEdiF75OsgLswkhCURRFUZIFVOEq6ANYTSZmnq4CSlEUZSZT+ircscP6KuyRlWPOOqjTgb/AWsK9AjuE9mbgL7HzRt8Entt1ARVFUZQ+Ygp9FeYIqFcAVxZugr5QHLvBGHMR8AzsQtdndFw+RVEUpZ8480zw+CrkzDM7zypHQD0BuLL4v3RINQxgjHkI+CgZhgyKoijKALJpU97xFuQIqIcZ3+V2K3ZR7v7O+Z8CB3VULkVRFKUfmUJfhTkC6h6sd4bSV973gd9zzh9PjbshRVEUZcCZQl+FOQLqaqzHhZLLgZeKyDUisgF4EfCvHZZNURRF6TdWrYKLL4aRYmOIsTH7uwdWfDnroM4DvuQ4Wn0XdojvBKwHiIuBt3VeQkVRFKW/mCJfhckCyhjzE+Anzu/dwOuLoCiKoiid0pf7QSmKoihKE1dHT8LuwTSKx9+dujpSFKVvmAJ/cQPHAD2THFdHBwD/BDynPOSJlrUflKIoiqKEyNGgLsbu03Q+cB12TyZFURRF6Qk5Auo44AJjzOm9KoyiKEpnTJFD04FiwJ5JjpHEVuziXEVRlP5mCh2aDgwD+ExyBNTnsN4iFEVR+ptUh6YrV44bDcx0ptDJa1fkCKjTgENE5L0i8gQR8e5YqyiKMu1MoUPTgWEAn0mygCq2Sv8n7MLc7wG7RGR3JezqUTkVRVHSSXFoWs7HXHutnY/p46GuTphCJ69dkWNm/kase6PNwPWoFZ+iKP3KOefY+RV3SMtxaLr/VVfBe987eT4G+tpooBU1z6QfybHiex2wAfi9wpu5oihKf1IKmZNOskJobGyCxdoTPvKR8HzMoAmo1IW3Nc+kH8kRUPsC/6rCSWnFAK1iVwacVavgkkvs/5X3beTee/3X9PF8jJdcs/HIM+lHcowkvg3072Cl0v/MtjF/ZfrZsMHbEO/Yf/9Jx4C+no+ZxACajeeSI6DOBNaIyJG9Kowyg5kFH5MyONy5enXvN93rtQl7U7PxgNDuR3KG+P4c+BGwUUS+DtyJ3QfKxRhjTuqqcMoMIvYx9fEYuJKAO2w7IEO49x5/PE85/PD+n4+pPk/39wCajeeSI6Be6fx/TBGqGEAFlDKZWfAxKQNGL+djDj8cbrsNjGnuUsg3v+Ry8MF2JKLKIA1T1pCzYaHuHaU0ZxZ8TLMStxHdbz948EHYtWsg/LwBvdH01q+H22+3wgmambD7hsRPPNGmWT7f5z8fPvIR2OnYrQ0P97XZeC5JQkdEFonIpSLyol4XSJmhnHNO78f8laml2ojef79tPGF2zzG+4Q2wZ8/EY7kuhXxD4jt3Tny+H/nIuBAs6ZWDn2lyCZUkoIwxW4GXAHv3tjjKjGXVKrj4YhgZsb/Hxuzvfu9hK2F8jahLn/t56wnr11tB7SNnODslriuwSh55ZEY985xhu5uBpT0qhzIbWLUKtm+3vb6771bhNOikNKKzbY4xJhxyhrPbDH13/cyncXlIjoA6F1grIk/uVWEURRkgUhrRfp5j7MWwVUw45Axn+4bEU+nymU/z8pAcAbUM+AHwXRG5QkT+XkTeWglvyS2AiJhA2OrEERE5QUQ+ISLfF5FtIrJJRP5dRJ6VkdfKSH6fyy27osxq6hrR2TjHGBIOo6PjIwY+wVg9Vh0SHx2FefMmXjM8PPlY1898mrfoyDEzP8v5/4WBOAZ4e4NyXIfdUt7Fdak0AlwO3Ah8ArgLOAB4DfB1EXm5MWZdRn4XF3m6/DCnwIoy66n6dhsdHbfiGxkZ3DnGNmu5Qg5ZL7ggP62qGbxrul6u24LeruWa5uUhOQLqkJ6VAu6sETC7gJXGmGvdgyJyCXAT8A8i8jFjzB7v1ZP5eqZAUxTFR7URXb9+vMEse9l9KKT2v+qq/K3PUwRXVWi3FdRuXkuWwE9+AsuXTzzeS99607w8JGcdlKeU3SEi84B5hcVgNe9dwLWe45tF5Frgj4H9gZ9m5LcXsNsYs715qRVFebRhDM1XQH8JqfXrOey88/zlhHzBVSV3AXCOw9eqcOo1071FhzEmOwCHYj1JLG5yfSUtA2zFakkGuBe4MDVt4L+BHcD8hLgrizweLP4a4HbgDYCk5PeMZzzDtOGaa65pdb0y/WgdBhgbM8YOQE0MY2PTXbKJhMo5OmrMwoUTjy1caMy6dfa6FStsSCEUd906Y0ZGxp/L2rXxPEPXVc/3kinIG/im8bS3YqoLvSKIyO8DFzBubv5cY8zVIrI/8DXgzcaYT+UISBH5b+CTwPex66yeD7wY+C7wG8ajUTnXPh/4D+ByY8zLE/I6Bngj8Hngx8Djsa6ZjgIuM8acGLhuDbAGYMmSJc/4xCc+kXx/VbZu3cqiRYsaX69MP1qHflYcdxziaU+MCNdefXXr9JefcgoAN55/fqt0guUEfMtcty9Zwp2rV3PYuecytHMnO4rf9x5/fFa++191FYeddx5zSs2tJs+NRTvju273yAi3nX56tAxdPa+p4Nhjj73BGDPZEblPavkCVvvYCXwDeCuwBzjOOf9F4FOp6dXkdQa27s6MxHkScD/WuOFxLfIaAq4s8jumLr5qUIrWYYBealBd9uJD5YyFFC2ny3xF6q+re645Gt80Q0CDyjEzfyt2T6hnAR/wnP868OsZ6cV4N/AI8ALfSRE5BPgyVqg8zxjzs6YZGWtY8a7ipzc/RVES6MqdVdXkuuu1OOecw+7SfNst5+ioP/6cOd2YWudYvrlGCG0t6abJTVEX5Aioo4D1Jmwp90PgV9oXCYzdtffHwH7VcyKyFLgGWIQdYvxuB1neXfydlJ+iDCTT0Sj1yp1V12txVq3ittNPn1zOCy7wC9jd1V2FCnJNrUOWb1X/eVWhHrouZknnen/YuBE2b84ra5+QI6CGsMYIIfbDaj2tEZH5wK8CmyvHlwIbgMVY4fStLvLDDhdSzU9RlExWrYKjj4YVK7pzZ9WDtTj3Hn/85HKGBOzYmD+RXFPrkIb5mteM5zkyYtN1n9s558DQ0OTrQpppVePcscN6Vx9Ax70566BuAX4L+GDg/O9jhwCTEZFRY4zPs+Lbi7J91ok7htWc9sEKpxsi6Q4DTwS2GWM2Occn5SciI4wvQv4sijLo5Jgt94KQGXTKOiJf2adyLU4pqKpUTa2HhvKHLqtrpNyFtTffHL/W1bJGR622F6pTn8a5Zw+84hUTyzEI+CamfAFYizWSOAl4HNZI4lhgIfA+7O66q1LTK9J8L3bu6p1YrxCnA1dj55Y2AguKeI/B7uBrirxO8IQlTrpLi7gbKvl9A/gMdj5tdfH39jLdlDKrkYTS13W4bl03E/q9KFedkUOo7Kmm2Blk16Fb/pERY5Yta5x3sgn6unXp9emmKRI39pjud8EDASOJXIu3dYVg2lIIpJ8WQmsP8I85aRXp/SHW+u9HwHbgIaw7ozNw1jU5AicWVnriVwXUmwqB+LOi3FuwWtlLU8usAkrp6zrsx7VIqY1srOypVnyJlmuN6rBMu611nO/60DMaHU2rTzfNOmvBkZHmZe8RnQgomw4vBK7Auhi6udBI/iQ3nUENKqCUvq7DUO/ZNVvuilShkSo068qeIhh6KaCM6cbc3VfGXNP3an26afqEXTX0GZ0JqNkeVEB1yACt03Dp2zpcsWK88eyVBuU20FWBEho+ShWabbW/DOHRqA7rNME273NsWK7umYSGBnM1qGn8HkMCKseKT1G6I3UTtAFew5FNF/d6yCHN1yLV5V+1DjNm4vmQ6XedmXSZb5t1VFOxb1Evtp4o7z22TUfsmcT8Hy5bNjm9oSH7jgwIWQJKRPYSkVeLyLki8o8icmkl/GOvCqrMIKZ5E7QZSSnwb70VFiyAuYWBbmkqfckl7YVf3Rbv4Df9ThU8bdZRTcW+RTFz97a7zoae0QUXxJ9J7L5vucUKqdICcHTUCqhbb51cRrf88+f3z7foU6t8AXgm1pHrnkjYnZreoAYd4uuA1KGc6XSQGaEnddjmXlOMEOqGb0L5p1qH1U3ex+6vWrYmQ02Zc2+N6rCpk9kQPsexqc8o5b7d9OfMMWbePH8Z+8Dyk7ZzUMBXsVZvfwrsm3rdTAsDL6D6Yd4npTHpg48mROd12PZe6wR+nfCL5Z9jHVZn/hy692rZmryjmfNXtXXYC0u7lLSWLcu79xyhGSpjH1h+diGgHgbekhp/poaBFlD9opGkfBB98NGE6LwOY/ea0ljX9aLrhF+skavbGsIta8oWEXXWZk07IZlpBetwxQorJELfie+emlhO1r3fqUI6V2j6yhjTjKvPpked2y4E1Gbg5NT4MzUMrIDqJ40kpSxTaS6dSed1GLtXX6NQPRaz3EsR9KkWZOWi2ZROToqG0HUnpAsrvmXLjBkamlieoaH4cFuT+6h7vxcvtiGFHKGZ846ITKyvPhdQHwI+kxp/poaBFVD9ppHUNSb9Vl6HKdOgqhpMyJzZ16iWAj9F0OeswUl9/qE0R0bq57RyOiHus1ixwjbqTddBxUyz3fuu5rNuXb1Qq1I3LJgjoMoypQhNN8ybNz4HFaoLt766mCsMEBJQOVZ8bwL2F5ELReSJIlUXvEpf06XDzS7MoVetgu3b7Wfgcyra1dYNg4DvXgF++cvJlo4nnzzR2urkk+Guu6yvtRLX0ivFE3Yofx+p74vPdx7Y+ykt3fbdt75sqaxcCTfemH9dSWlZGuKee+Dww+3/GzbYrddLVq2CJz953FpOxFrdhawP16+HX/xi8vF582xdlOcffLCZReDKldaSs+pgtoox4+Uv/69Svn8hK78bb+ztMhCf1LICzVrlVYLvmBt2hdKbKWHWa1BTOY/VJq8eDkf03IovFuqGbqo999Sh3eqzbjLx7z7zlHsZHg5blqXiuh5K1J6M8dRhisbhPlufNrF4sdVmyzoKGX3ENOZ16yY/k1LTyX0mbllimmFsgXfovRseNmbuXPOoltWyHSB3iA+4DPhobgilN1PCwAqoLuagpmMeq6mgqbuuhQDrWR36huqahKbm+m0NGNzrU+8lNIyZQkiolw19pI6vueaafBN6sOba1Xk497fPu0bVMi82tBnqGIyO1j8PV1i7hh4x4VPOcy5blmb1Fwot24FsAaVhhgkoY9prP4Oy9XTKfXYloLq8txStIyX45nCa+LHLfV+q80FuI1nXQOY+wzp/cyLGLFiQLqCabAOfUx+udhf7jmLp1FE+8zlz0svmWopW103l3meKEA3QWkABLweWRs6PAS9PTW9Qw0ALKGN64y+sblJ7KgVUSs+/paBuLKDqLPLqevE5vfzc9TQpZY3hPtPR0YnDP8uWtTelr5Jr2FGp40kCKsXBaptQNaoIvaNtBFSuBu6zyizfm1zfgGVoqEV1IaB2Ay+LnH8x6kmilmkXUG0YBA0qZdFqS4efDxxxxOQeZ66G4TsWa3TLoaTUhmNoqPmeRbn3Vde4p+7plPOe5DaglbxuOvPMiUNgCxZM1PhGRyfPBbUJpcl23TNuOsRXJ9yqYdGieJ2krqPKbQsCdCGg9tQIqBOAnanpDWqY1QKqybzEVC8OrtPyOlgg+cARR/jH7Osa3DoB5Xu+VUHTpMHo9TxjijaTsqdTjoBqMiTndFJ2+YYeq0OCuY1+Sijnx6r36w6zDQ9PvGZ4uP4by9X+6ua7qmXISbcBXQko78Z+2G3YPw5sSk1vUMOsFlDG5Amc6TCqqBNAqb7LIvf2wBFHpG1rURU+vi0RUo6l3F8sdOk2yUeKNlPd06kaqs+rjqZDcikWa64Q6cpwxVcfvrmfqqac0sHo5fxZbphKDQp4W41ZeTWcG0tvJoS+FlBTNZSWms90LLatE4ptHX6uW2d2xXqXZUNcnZOpDhfFTKxDzzdkbdXEiWuIFK8WqWbTvvxDAiokmGPvWqppfhnKRacpcV3TbjefkRFjDjggbMWX25CHFlkvWJC+ULfpfFHXoUXns6mA+sPCfPyyQoO61mNafinwPuBlgMTSmwlBBVQG0+WuKKaF5Poucxv2lF57uSak6YR7yjojX4+7Lr/YM0+ZByuNGXx+6nyeFKrB1Up8giW0+WHsnV6xYtz4oPw/VoZcTcinDYeE9IoVVqik5lHWR0iwuR4c6miqQc2Z4/8WSgOX1PvwfWeZdDHEdw3wnNT4MzX0rYCa6rmeFKbTXVFqzzvH4WddQ1DOF7UZcgkJkmqZq1Z6a9fG001dYBsS4GvX+k2PS0HiLgodHfU/z5CxREyo1c1ZudZxKcN3beoiZQ4txbS+vL5Om4sJ5upcWZM5qGXLJmuHZV2mCtq5c5sb4zjoOqiOQl8KqOmY6xnkchmTPkyV6lS1CxPdkCAJPccUx6sQt+hLmQerEyplb98VFqFn0GR9TejdqeZZ3k9XAqpOe3bLU23oly2LayJr19o4Oe+Be99V4ZU73DlnzkTBXhX0ORaN5fxtC1RAdRT6UkD1sWPVTjW7Xg5hpgjTmAPU3EWOOW5+2jhehfCaqNg9p5q/u2Vxn0VXQsKXT1l29zm7Q4hNTaTd4M5BxTSz8p32WV8ecEC8/mN1tnZt+F2NzVHm3md1Ds3VfktBWz7vunRaoAKqo9CXAqqPt6YwxnQnWHo9x+Yb7qieDw1/1Q2xuL7LYhZ7vntM8acWm0MLPbfUjk2uRhgzImmjQZXBZ4rtCpWUObFYqJsvq35jsQ5ETEuKhVBnJdbha6u915UjFq9lW6MCqqPQlwKqnzWorpiqOTafs89KOR614ivP12kYMeGTslYqRYPxaWSlc9OQgErt2HRlxpw7BxVq9OsWNBf1NEEriKV5wAHj21vkzu2MjcWFQhOtJvT9pmj5vTCLLxcJxwS1alD9EfpSQPXzXE8XpNxfF9qVr+fteY6PepIoqWugYqQIqNRJcJ9RQUywp3Zs2lgllmHOnHStpE1whav7LHMEQd3zqb4bvVqHlNpRqFobNtXaYqF8l2KaawuaeDOP+t6braEvBZQx/WnF1xWpH2aTBZ+5+RiPgEqZIwpRtaBL2Wo81qClWOS5giK1Y1MtW5NGznffXVveNRE2oeGpWMejHAIOrU3rxb3Uabwp70jTIVZXMw3N/bWgiYCa4HuvzhffbAl9K6BmMilDUakCKnYucchrUh220WDdtU0pWuLixfEJ+9Q1TW7ZUzs2uYYT1WfoS7vLBj7Wk48tJQh1JGL36K6/qq5N62KeTWSyoUSsPlO03KEhm2aTIcDqt5ax91YKTQTUL4DVzu+oL77ZElRAdUyKtlPX0FaNGyLbLETzS9SEgtuF52qwKY1amXfVBDhFIKbOMTXROOvWXaUIUDfvtsN+ixbVP3NfmX37NZWEGv2qlVu1YxTTvMpNDX1Wf76yVbXoUL2nzoMaM3meNcUTRo/ns5sIqK8D3y68Sfx2IaDOLv4PhlB6MyWogOqYcnI6RuzDjPUcY8NkAQOI2vVGJlKHOcOMOfM6ZUNYnfivWgVWSZ1jyhVQbeakYkOaqYtcfSF1L6Kicd5TPtcDDogbxbhCLXUdXN1woq/+UncwDr3DOfOgPg0oNtTawTqnOpoIqGOBn2f44duj223UowKqQoqAMib8YaZ6d0gdhvMtUq3km1SHdY1+FxPrdVtqhPy8Nd0rqrynpmV3tcGYyX5TT9qp97BggdkTatDr5uhioa7TVM3Trb+cpSI5lp7ugtzynnxLKUrNvPq++IYae0BTX3z7AM8tDCb2ABcBr4iFWHozIQyUgEoxa55O3HmBlGExX88vZd1HzDTZN3QRa0SHhszWgw6qv6+64b6u1qvUeRzw+c7LfQfcuZau1tqEhjTLMrrn99orLc8Ug5SU+a7ymTYRxL5h57GxsFeJcuFxk/fTJWRh5+5DlWqm7g5hTpGxVRe++O4C/iA1/kwNKqA6wvdBxfa9qTaSJW01kVgPNZD2ruHh+H2laGpdmSanOIFNMWWPUU2niYFE7v2sWGGFVKldl52TkGCruu7x3V+qxWBZhiaC2Ge4U+eFwZj69yZl+LhumDB3LjfVYKYDQgJqiESMMYcYY/49NX4qImICYasn7mEi8mkReUBEHhKR60TkuMz8WqcxEKxfDxs3wrXXwtKl9rfv2HTxhjfAzp0Tj+3caY9Xccu9cSNs3jx+7pxzYOHC5uXYd9/wuU2bvIeHdu4MP78zz4Rt2yYe27bNHnfxlVsEhoft31QOPjg9Ltgyf+Ur+e/A5s3jdbB1K8ybN/H8kKcpGRqCuXNtM5hKeT+bN8Pu3fDgg7acr341LF8OT3qSfUYuw8P2eAo7dqSXIffZgn0uK1eO/968GdasCccXgcMPh0sugYsvhjlzxs898gi84x3pef/85/7j5XsceJ/ZtMm+B2vWjD+fHTvs7+lsIyBdgyoDdm7qfcDnivA+4NjcdJz0DPAV7I68bnhxJd4TgfuBzcDfACcD3wJ2Ascn5tU6jb7ToELqfrU3luP7rRdUyxnrUVYn0n0WT1Xjh6YaSNU0OcdcuKnlXHl/IUu4Aw5Im/uoq7/qM8/ppbvX+J6D67rJ50xUJO6LLnY/Keu3QlZorvGBqwXkWAm2mYOqWvWl5FnOzfkWivu8gYS0lzoNKXY+Z4ixB2su6WCIbwi4nHGDiF1F2FMc+2ca7AdVCKjLEuL9a5HPcufYIuAe4LaUvLtIo68EVFPDgboXMJUcNb+pgIpN/roNSU5DGHoGTazTqs8vZ1FxaEimvLeYgKxrGHzvRl3ZymG0cp6v7nmUDWuThi92PznPsK6MTbb4CD3HOis+3/xe6jBh7DlWPYQ0cf5bdz7VSKPNmr8IXQiovy6E0b8ATwOGi/A07Hbvu4HTUtNz0jXYDRHnAYsCcfYCtgNf9px7S5HGM2vyaZ2GMX0koJq8bCkvYA4+o4VQWauNZahxHh2d+JHH7qUrVzPlM2iSTnUr8zpT9dSefNkQ+bSQqgbpe96+MsTuwRVOZZ2mPI+Y0URpnhzKO9Sw5Vi0delmKFQet26r6+2qAj21U9BFCC2VqFtKkdOpbdIBa0AXAuom4MrI+SuBm1LTc64zwNZCGzPAvcCFwGInzrOLc+/wXP/c4txf1uTTOg1j+khAddFrjb1YddpRyoRqyGqq7NVWh4XmzZts1l3n6HNsLF0gh+KVz6DOtU3s2uqwpNvrLoVTriPP1J1+U9+NmOWca72V++7kTL7HGte68vvuua1FYco286HhNVeox97zXrhBcvOoPse6b9fXsYx1eFM6jD3yZj6XdJ4AfDBy/rPAeRnplVwPfBL4PrA38HzgtcAKEfkNY8xW4PFF3B95ri+PHViTT+M0RGQNsAZgyZIlbNiwoSarMFu3bm11fcmKTZvwTaWbTZu45YwzOOy885jjTAjvmTMHRBjatevRY7tHRrjthBO411Oe5Vu2AHCj59z+V101Mf0dO9h90kncdsst3Hv88RPSeMwddzCnagyxbRvb/+3fuPOv/5rD3/lOMIYdS5Zw39FHc8Cll46ne889ttxz504o94T7vece9gwPT86jPF/83bn33tx77LEccOWVE56L+wyO3n9/5rsGGAXblyzhztWrJz1T99rlW7aw6PvfZ+vy5dx4/vlw5ZUsP+UUe2xkBLZsYfFttyHGTEo/yLZtmG3bgvV8beA9Cr4bu3cDTDhnsL3DRbfe6r0mhHvv+59wQvzZvPvdLJo7l63LlgHYZ7LPPtx44IFQ3MNv/v7vA/DVz32Oo/bsYaHIhGcVeldDdTbhviv3XPLI3nuz7ZBDAGydAcuXL7flO/TQ8Xf/rLPs36KewX4Xy7dssQYcwGNuvjn8np96Koedey5DO3dihoaQPXsejZLzzL1s28b2005j44HjTVfs2y3PL9q1i61btozHOfBA9nfKuaN45+898MAJ6QW/kf33Z2MH7dokfFLLF4D7gLMj598O3JeaXk1eZ2DfqzOL339e/H6VJ+4TinPn16TZOg1jOtKgujDRzOm1lr3D1MnNOu0oNlZuzOT1N7EeV8p8U0yLSt1zx52AD92brxfpLlQsrt1TfX6+NOvmkNqGLjWo3DB3bt7QklvHoe1M3AXbvvVbue6IUoLPd1/qsLWvnCnvuc8Qom1oor3ETPFjS1P6eA7q/2E9S/ya59xTinP/lppeTV7DwA7ga8XvPykEyNpA3gZ4Z02ardMwpr2AuunMM7uxgGn6oqQM3dWlGxtWWbcubSgrZ7imHCarHnctyXIa9VgjFPLX5gz/PHDEEROfl+9euxIGo6P59RyyfGxbljlz4gur6xq92LtVCqiqsC8Xmcbe2xwLvdh7WO1UxDx1p3ZAUudw2oQm8z/VtW3V475nm9vRzaALAfVU4CHgEeyQ3N8V4VOFMPkl8NTU9BLyuwu4vfh/ZsxBrVtndlU/pDa9jyYvSp2AqtOOYnHKeHUfVO7W5iHvAtU5rLpQ9jRjmxImzH9MmEfs5SS4q/XleNwwZrKgPeCA5o14KSgS9sqaRIrZvrvNuM8dkM86rkp5Pvce3a0q6jwxuPfUdBlA3ZzZwoW2rlI7FE3aj1AnwBevbl6qowW7rQWUTYMjgf/CWvO54avAM3LSqslnPnZt0nXF70XUW+A9qybN1mkY01JA9cICposXJNVqrguz7rqhRV8j6JtobjI5XuYda2gTJoEnCKimz6EuuGb0xqT7LCyfY8gXXJPnlmKinlOO3ODbiDFEriFKiluj0h1RSUqnJGR0UZePa1BTFbbl2rI22ktIu87tMJb0k4B69CJ4HPDMIjyuSRpFOqOB4+8uBMYbnWOfxJqyH+EcK9cw3Y6zhglYDCwD9qukm5xGKLQSUD2ygGlN6gfkvpgpmlLdh+7Dp910oaXUmaSnWqQZR0DlmvSHGl9fg1Gdc8kRUKnPa2Skvvyl5tzk3e2VdumzLiupNu4pyxRi9+fWf2rcuXPDln8hAVHWt3s/vmFt37uRQ6xOqppU7j5sLehUQHUVgPdit/V4J/Aa4HTg6kI4bQQWOHEPxc5zbQbezLgXiF3A71bSfWWRxlmV48lphELfaVBtqQ4Txvb5cXdsze0dpw4H+RxVdiEEUjWkOkMJ4wioLnaC9Rlu+BqrnIYg9XnVzd+5ddbk3e3KIW4oX98zqttIsLjnh5csSRva9T2PurilX0CfgDJm8pCtW99uvFgnMObFPkasTqqaVBNDrIb0q4D6Q+CLWDPv7dg5rhuxVnzzPfEPBz4DbAG2FUOLx3vieQVUThqh0FdzUG0JjTEvWuR/MUvPAaGFiXWeEZqUJdYgpDSAVYuzlHVFNYYSjwqoLhraavlSJ69jdKW51Fk4QtyQoJfzc9Xt7Y2Z7Im7bPgXLJh03Lsrcso2H2VDXNc5iwkoYyZrxDkdxVC7kfKO1NWJa0i0bJl/rWLZqerQmq8vBdQghk6t+GITlFNBzBzZ5xPMHf8uy+5aw+WMb1c/pjoDidAiyKopcmwyP9QIlR9dWaaanuM111yTPg9XNqQxbcW3c6p7X7FN9XyNUtu5n1CdhSzXQg1TSBtNLUes01PVoEJziz6Dg6Eh+x2m3l+1/GXcWLl9GpxrBVf1JdjkOVWfQYqJfMq7UX4LCxZMPlfuONDxaJAKqI5Cp54kOhq/TcKXV51BhCuMhofDk8+hNUHl8bq1FcbEP5hQur50mnjYcNdvrVgRL8uKFbZxSxUAqVs3uMMmdWnXOXgte79NTN3rOk11HjWq+DSDuvtL3cPIvffMOdGHlywJ32PMGtC9z1BnyO04Vevd57S5zVCoK5BCAso3xFj3fsU8i8S8tzScT1cB1VHoTED1wkQ8RCivUINdGjOU+eUshPWV0/eBVMsTa0xz7j/24dSts0rcFO/hJUvq41UbtJThrtR4brox4V/WXWoD6O542+T5hqir/7VrJw7BLVhQ/764xxoY7Oypa0hThrCqBhmpArir4K5LC3lx9z1/Y9K+6bp3JfZeZqICqqPQiYBqOn7bREDF8or11suedM6WCW4D5w691H3AdR90zjNpqkHlNG6pces8SbuhdKya41ewTqssQ+omfe7W3qF3rcnQjs8CsZq+63TVl697PNeU3BOiGlRJXSfSN8/U5bxbnUFDan2GOjG+IbzU4NsSZrrmoApT7DuAU1Liz+TQiYBqOn5bN/HqI8cSpxpSJo2rodrzTe1NNtlaItSzzhHIMYesbUO1zHWaYkyI+p5X3fBSOS+XWt66ocNQndY1TCkm8iHjkOp5Y9pbTy5c6J+DipUrtdxNh+uq11Xr0rFATH5fSyEV6sQsXty8vKWW1i9WfIXV2+rU+DM1dCKgYi9FaGisOqRRvqx1L0bdkEzbnlSooW2yfqluX586qzKfvz3XjLf6HMtydnnv7jPwEZvjqtuewg0howufJ4Zcd1B1DU9ZtyJpDVNKI196BE9p8NrUS2FR2tmuAlUBVffOhzYOjQmSNlqaT/BVv5GmoVq+FnQhoK4ELkqNP1NDTzWocoisxLUEqmu8Q4v36jSo1CGg3JA7Dj82Vi8o3UY/5b5C2mZV8Hd977H9mlIm4Osaj732yivPnDn5a9aqv5v2jlN62eVcTkq+qfXlEwROvWQLqJhm5wpW3+7Cbv36OlB1Bi/V97gXi8PddyXnm22zaNihCwG1vFjkemKKx4WZGno2B+U6Pi3naup8mLmhKtxKUjWNNiFUvtSX3XUYGrvGndjO2QG06mk81forR/NwQ8wKrmzQ6vzahRptX8Ob2iilDBHF9ozKJXU4MEVoh9LzfT+uR/nAko5OBFRoyLb6LfsW4tYJoxi9Wl9WPrccAdjROs4uBNTVxTzUbuBnhaeHqythkp+7mRZ6YsUX63XlhtCQTMpcTUoo/YG5H1zdC5xS3rqFidXGKmUeL9RAur2+untt8pGnNDIxzaIc8iq1Z7eRjQmXuvKWa9lCc4t1Rhy5pNZRynYVsfTKheAZjb5XQMXm3XK/H/c98M2vtRka86356ur9NSbtWwzVZ0O6EFB3Yz2MR0NqeoMaerIOquseUUqvpmmec+dOntOJrZeIDcmU5uwpH0TKHFTVEi3WoKUIqMD1QSu+VD9pOQYB5e9SYMUanTYmzuXwV91asRyauJXy1UHd0JZvb7HQsyxIFlBtDGtiAqoNVc2t9EZS9WMZspgNlb2cAzVmclp1xjYt70vNzDsKnQko92Xthc+yul5NmzxTfLSB7a0bEz5fNix1Q4Fz5kwUPCV1ezeleGaPNTTu+py6MDoanuiukiugXNpYZdaF8vqYt43UcqaUNaWTNDo6LvQ79F7gdXWUs1awLvg06S4ElE9guluS+LZyj3my8D1vX3ljw7CpowYRVEB1FNoKqAeOOGJy49SLMeW6IZm2edZ5uS5f3FheZcOSkp9PK2zTALoNeixOzvNINS6INVQpFnR17qSaGr6UhIR2dSFvXYNbNweVKvxLzdQ3tBUzSIkwQUDFytmkIxcy7ujCJDvHOKjEdyxW/pDRRsrc+XSsg5pwASwFVgNnAkuLY/OAg4F5uekNWmjtLLbaO22z+rxNrzLUU84JKabksaGG8mVONaao3lPKEFIoLdfZaCxOW0Huq4fYXEeqJVudO6kmc4wpgiN3HiXWMOc+27GxiX4JW/iyTNp0sm5xd6rz3CZrx0J05WIopfPmo27uvOF9dSKggP+L3UhwT2EscVxxfG9g62xYyNtYQMUajHIdRHX8ONYLHhkZXzsSe/ljjUjbBaplg5OyS2hs+Ct1Urb6EaYI59A9jo6OP5uYBVnqhHRqmZs02ClCLjR/klufsXLkalCxspXlyxWiQ0PjrpBaDJlNEFCxRj/VCjYmLDscmuwsrbrOW4y6ufMG99WFkcRfFILpfOD44v/jnPMfUyu+CCmaRnXF/YoVfgFUDXvtFVazfePSJW3nvsoXOdUCL9ag5FrxGZNmrh36EN2V+b5QdVPk9Bp3V6+LTTynWBXWaS6+BqM6jxV6tk3qc926eqvSnMXiobJXn+3YWHqnyfU310BQJWtQvjJWv686YdmlY9UutbGUd9ZHqtFKBl0IqG8DVxT/j3oE1JuBH6amN6ihsYBKEQahLRWqarXv2nnzJluQ+dYAuaQOscS8mJfUOSVNeWlLAZ3yEfqMAULGFLmaom+YxmmAJmyZUmd2XFo9xp53neYSajBSevA5w2hug5w7/JvTSMa0vxytyufVPJHkOahQmavH2xi25NLVfJZvdCDHJ2ifaVAPA68p/vcJqJOA7anpDWromQYVcklSUr4UscbWtaZJMcNOaQzK4bmUF7luuKwO9yP3bf2eUm5fuXI1xZohtWuuuSY8pBaaT4sJ8JjZdajBqLPmir0Hw8Px963pvFtKHac0rjmWiHWaeUklTrIVX+D6LLrUerooj0vsO6ujw/vqQkA9AJxW/O8TUGcDP01Nb1BDT+agYuuIqmmkfrQpax2MiQ+tuS9syou8YoWdH2jSK/OlVd2+uyRluNQlt8Gt0faCAsqYeMOaOgyY0juOrfGKadKuxhfKp43D0xg5DVrq8DbkmfYXZC3U7YKutJ6SLsvaVvh2cF9dCKgvAl8t/p8goID5xULdK1LTG9TQEyu+1A++K3N01yQ1trahSuxFdgVJqtPPyHOaNHTl5lvXgPoME3Im41M0qBB1aVfnr3xm0ikNRuqOq7F5mlA+vdCgmmrXOdpUSOB5GtHOnMXm0EsBOJ10cF9dCKjjC8u9y4FjCwH1MuB3C7dHO4Fnp6Y3qKGTdVBVbSR1srKrBb3uyvvURr6OqmBqagIcEyZlg5urQZXppmxwV9Uw3ftLEVApjXtVSDUR4qlCpMk8TRPrujotuc27Vr5bqe9/gmFK8nYbXaICKkhXZuZrirmo3Y6p+e7i2Ctz0hrU0FZAebcLr5sTKOlKgyqFR6xnmjPRGZp7aTK0V3eP5ZxYzJ9cyjCPb2izOkfn3p/TA482binWiKG9nNqO/3dRl276sfVpuVZ8beYny3pLfb8T/PclbVjYNTNVQHVAlwt1fwV4HfAB4IPAqcCBuekMamgroILbhbvbN4+N+X26hRqlnHU6CxfaxY6xa3IseeoaytzGMaWXHHKu67O+85W5xO2Vh7bJ9tzfLp9FpDHNNA835LqMSZ2TbGrO7PPa4L6XqQ2uK+BTOmIhUjto7jsXeJ9qt3zvBSqggqiro45CWwG1J9YAu+uVQi9zXc821ECVDWCK5pTSYNSZmjZtHNtoiU00Bd9ur26DmrP9RBcabm4DlrL9eZcLQn1eumOkDNnW4XYW6u61KvD6SYNSgnQxB7UbeFnk/IuB3anpDWromQblfrR1TkdzJo19iw1joUrInDrHDDglTTftplpITBjWrWPJzd+XV4r2l+IJu4m5bxcaSuq95AiomKBLpWo2734bdd9KP81BKUFCAmqIdKTleQW4c/VqWLgwHOGee+BDH4IdO8Z/r1kD69fDypU2lOfqGBqCBQvstWvW1F83MlKfZmpaJVu32mtSWbUKLr54vCxSea2Gh8PXHnxwej4hzjwTtm2rj+fLqy7/sTF7bxdcUP8OlHWewiWXwPz5sGIFXH75+LMr81u1Ki0dl9C9jI3Bhg3p6Wza5D/+yCPj73MOq1bB0Ufbe737bvjgByf+rt5r9X0qnsm9xx+fl68yPfikli9QWO1Fzr8R2JKa3qCGznbUzdktt+wd1g2rufNYIyPjPstShp5SPW83GcYKuQ1KWbdStb4LueBJsSKLaYKpfgUp9oMKGVP4Fs+W9RDKu+0utu6asdC95jyX0L10afSSusA25X3pYqFuwjVK76DJEB/wh8ClRdgDbHB+u+HTWGexV8bSmwmh8/2gckzH3S27qw11uVuq2+jlpO1bi+Nbz9TU1L28vkmjlyKYY2mEFqo23YguVm5fXr55rpR3IHX+rhcCKnQvuWnG6ryunL3wwFCgAqq/aCqg3lYIptKkfE8g/AL4EnBoLL2ZEDrdUdeY5hPr7j4so6Pt1kj5euohR6xNPaDHtq5I1RRi9xgiVxD5tlFI9fRRUm3Y6hq6Ns+l7Ur+urI10E6883o5nixKuvZh56ACqr9oJKAmRKwZ4pstoXMB1cYooBzGa7MdRKhHGjKCCO2DkyIE22oKoQYrtLg2dh8xQVptPGNx60hpiJtqCm01jF4Mn4XSTNWqXLr0Al6hVkB17ZpIidKFgBoDFqbGn6mhcwFlTPp6lpCQanptrMFMbcBDcdzfpTuftj3i2BBjKI0mz8SYiQ1qU0u0HAHSpEFsq3l1NXwWWxPnG85LLfd0aVA9HFpU/LQWUBp6KKCMaSdomoTQVtmpC28XLw57c3jOcybfT2kSnOtBodqDjwlF372E4uds0R4yfqhz5ZTbwOYOKbXRMLpq/JsYe6SWe7rmoHooGBU/nQgo4NnAeuB64A7gzkq4Iye9QQydCii3QUpZcNl1yF1sWt2pN+a6JjSHdcABE4/NnZsnoFIbj5ig9e2IWqe1OHF37L13mpufHg5RRZ/F6Gj9tV2UremasRwB0KOhtqiA6nW9KZPoYojv5YWhxHbgO8A1vpCaXiCPhYWgM8D7K+dMTTgzIf2Vkes/l1LGngmoqtVcV45h60K1xx7Lt+oKKNYghYRXjs8+X+Pk83WX47ewavGXa/G2bJl1dZRS/l73xNet82ux8+bVN+RdlK2J66Gy3DmaUQ+MFVSD6i+6EFC3ATcDj0+9JjcA5wG/DAioEwLh+0X8pyWkXwqoD3vSWZlSxp4IKLchLt0RVY/lWM8tXpx2rc/3W8rHWTcHFTOICIVqr9/XiA0PTzavDzl4Te0F5zZ+ub3/Xs9lNN22O6dsoWeU6jmj7ZzbVAsonYOacroQUNuB16XGzw3ArwO7gL/yCajANb9aaHXfSMyjFFCvbFrOzgRUrnuaHGu/lB6ra6buNhCh+ZbYeV/Zm5iju/ecY36fM1SZ63qpei53+KfrIaq25WlSttDzqaujaRA8qagVX3/RhYD6PnB6avycAMwBbgA+ByzNEFBvKeL+RWI+jwooYC9gfm5ZO/MkUSdsQj3yskGq29PId23MI0PI20N1X6dYo+SucQkZUKTec44GFrrfthqC71yTLSO6bIibzsk1LVusoQ49Y58n/iZ59xBdB9VfdCGgTge+BcxJvSYz7YcK4ZQkoLC+/+7EerDYOzGfUkA96Mw93Q68AZCUNDoRUCnaQagH7H40ucM7dR4Z3OvKuKk9dhiP03TxccI+Pln3m7oGKRanev/Llk32SD+Vwz++RbBthqPqPEnUpd1G0+h3AaVMGSEBJfZcPSJyLPBOYB52L6i7iuG1CRhjvpKU4Hi6hwD/C5xtjPm/IrK0SPsDxpjXRq57DnAVcJkx5sTEvI7B+gz8PPBj4PHAScBRsXREZA12s0aWLFnyjE984hOJdzeZrVu38oI/+AOk5rlvX7KEjU4+y085heGf/5z5P/0pQzt3smPJEu47+mgO/Pd/n5DW7pERbjv99KgzzBXHHefN34hw7dVXP/p7/6uu4rBzz300vztXr+YJH/kI8zdvnnTt7uFhrvvSl6Lp1+He8/5XXcVh553HHMcp7Z45c0CEoV27ku93+SmnAHDj+edPOufLw03Pd/+P/9znmHP//SzcvHnC8V45H3XL7ytPqJxdlOfol7zEW9e+d7Ms46CwdetWFi1aNN3FUAqOPfbYG4wxR0464ZNavsBk90a7K2EPDbbbAL4IfBcYLn4vJU2D+ngR7zdz86ykMwRcWaR1TF38VhrUihV2y/c67cDXAw6ZbddtN+AjZZgq1Hteu7Z+TVDM40POPTd1kZNKTJOMzNvtgeZb2ueSsgjWjddVfsb0ztCkD1ANqr+ggyG+V6SE1PSKNE8oBNtvOsdqBRSwL9Zo45ac/CLprSjyfGdd3E4EVGwOqlxDVB3GiQ1v5TYQIWGXYqRQNt4N9uCZIEyrOwjnTNB31SDGGuA2HuC7JGdYtsv8jJnR5tYqoPqL1gKq6wCMAPdiDSMOdUIpLC4vfu/jufZ1RZxOjDawbpwMcHFd3MYCqmjUH+19u57Hqw10nd+yWG82heqaK98W5nW956aT66G5rVhZq5663d8p5Fqh5ZjJ97qxLss+FYtHq3Xm05ZniLm1Cqj+oh8F1D6FUKgLk4QQcCPwCLB/R2U5vsjr7XVxGwmokJCZO9c/TOQ2wimmvLllSdFi6nrPTbWYJtdVFzS3ud4lNmyWaqTRS+8CKW6EUrxGuOQ+iyZDyAOACqj+ohMBBRyE3f/ph4WAOK44/rji+FEZaQ0Df+oJawth8YXi95Mr1x1ZnL+iJu1lwMGV46OeuCPAV4s0n1lX7kYCKtV9kDGTTby7HGJKXcMUipuaX5dzEtVefaoJc6g8Pis4XwOcuu6sVxpUav4pXiNcmmiTAzjHVIcKqP6iizmoQ4DNWBPtL2INI45zzn8H+HBqepF8onNQwIeK889LSGND5fg3gM8AbwVWF39vL+K+L6V8jQRU3XCRiNWYchbj1m3S5yNFKwh5jMjpPXeh5ZTDkE2ctLq0EXA5a8e6pgszex+5XiFEVED1KzOoXroQUB8DflJoUfthjRtcAfX3wE2p6UXyCQooYAGwBdgEDCWkURVQbwK+DvwM2FmkdQ3w0tTyda5BlWHx4rxhpSYNY8q8Sp2FVpuFnTGqu86uWFHvTqku7TpjlFxt0J1H7PVwV6pw8tVZiFjdzGCDCB8qoPqLLgTUvcBbiv9HPQJqLfBganqDGhrPQTXxrBAKufMOJbkalDF5AqrpsOCKFVYjrAqourLWpd3EnL+O0hKz1+Rsv9LF/k+zzP/cwAuo6lTAgNdTFwJqO7C6+N8noN4APJSa3qCGxlZ8TbdKb9NjrpIzBxUiJqCa9sLdLTjmzPHvJ9WkcU7RGHM1hKkQUOvW+Y0ihofT/Db6yHUCPIMMInwMtICagZ2JLgTU94D3Fv/7BNTHgW+npjeoobGA6nL7jKYalDGT51VS9jXyXeuL32Qe4znPafcsYsK6jUupCD1t3EKdiNHRdguVZ/Ci2yYMtIBqsw9YnxISUEOk82/Aq0Tk/zjHDICI/AnwIuBfM9KbXRx88NTltXKlDT5WrYKjj4YVK+C+++CYY+z/d99tz4VYvx7WrIHSLdA999jf69ePxwndY+j4+vXw5S/X3EwNsed6zjmwcGHz66eDM8+EbdsmH1+0yNaPW391deaSWzdK/7Jpk//4/fdP/B5nAj6p5QvA3sBNWKeuX8Ba8X0Ra3SwG+uNPNs7+KCFVgt1Uy302vb6cw0bUkgdIgoNPfjKkOtUtsmwhqtxdOTktae9714tyJ2Bw0JtmJEaVPV7HCBoq0EZY36B3fL9I9i1SAI8FzgM+CBwrDFme1eCc8axahVcfDG7h4ft7zlzwnGHaqol1utdvx42boRrr4WlS7vrUYV6be7x4h4ZGbG/x8bsb/CXKZSmjzKtatp1GoSrcVx+ef71U02vNJ1Q3fTb/Sv1nHNO+FzONzUI+KRWSsAuzt2fxG0qZkpou93GA0ccEXb+CcY85SkTvQfkrL1puz9PjKYbAHbhraGtU9S2nigqTPkcVJeaziyZY6pjoDUoY5rvpNyn0G+ujgY1dLrle3X4yef7LLTzrY+cHU5zG6qmDWeux/CqkI75KZwmet649dKarg+eXz8w8AJqhg3ZthZQwF8CV0XOf4nEnW0HOXQqoIyZuAYo1JiPjKQ1KimWgm38qzVpOOvmVKpCuk6A9kEDOyWNW6/usw+eXz8wsALKs3C8Jx2ZKSYkoOZmjAa+Evhm5PztwKuAD2eOMs5uNmwY/z809+RsqBfl4IOtdV2MbdvgoousmIBxazxIm8+55BL7v1vuJmUq51TKNG+8EZYvry9Dar6DTq/uc7Y8v5lAaYkbqrMm3+OAkWNm/iTsxoIhbiriKE0JTYSPjaW9gClm1TAunEq2bbPmzb3AV6aFCydO9G7YYIWTy4YNM/ajU5TOmOHfSY4GNQzMj5yfX3NeqeOcc6w2466DqTbmMUrt46STrNY1Zw7s3p12bcz6x+3J5X4M1TKNjdn7qWpKM/gjU5RsSmvcHTus5WvZBlSPzXArzBwBdTvWrPw9gfO/A9zRukSzmdTGvC6NUu1/9asnCzyRyRoU9HbB5iwYilCUzvAtij/xRPvtPvLI+LHUofkBJmeI7+PA74jI20VkXnlQRIZF5O+wAupjXRdw1tHUU4BLqen41r685jX1Q24uXa2rmuFDEYrSGT5vIjt3jgunkl4OzfcJORrUe4HnAWcCa0Xk1uL4MmBf4DrgH7ot3iyly4bcp70cc0yalhZyb1SmqyhK9+Qstp1pC3Mr5HiS2InVkt6M3VH36UX4AfBG4HhjzCPhFJRpo6q9pGppvp7cLOi1Kcq0kjPcPsN9KeZoUKWQOrcIyiCToqWluDdSFKVbfMZSw8MT56Agz4BqQMmZg1JmMj4P6OoBW1GmHt/c8Uc/CpdeOut8KWZpUMoso63Zu6IozQhZvs4ya1jVoJSwpV7XHrBj+1QpijIRtXxVDWrGU+cupc5Sr6s1TL6FhzN8eEJROmeWCSzVoGY7KZZ6bXtyKbvxKoqiVFABNZNJWWQ7FZZ6aq6uKEoDWgsoEXmGiDxXRNQPXz+RqrVMhaWemqsritKAZAElIqeLyGcrxz4GXA9cCXxXRJZ0XD6lKalaS4q38baoubqiKA3I0aBeAjza5RWR44pjn8C6PzoA61FC6QdStZauLfV8TIUQVBRlxpFjxbcUuMz5/UfAT4ATjDFGRPYD/gA4ravCKS2o2yjQpdfexrvw0q4oyqwjR4PaC3jY+X0cdgv4cu+Gm4EDuyqY0pIFCybv0DudWsuqVbB9u93qo6mXdkVRZhU5GtSPgKcCiMgY8BQm7g31WCBxb3Kl5ywppgPvuitNa5ll6ysURel/cgTUZ4GTRWQu8CysMPoP5/z/Ae7urmhKY9xFsSMjsGwZ3HLLdJdKURQli5whvrOBrwInY4XRKcaYzQAisgB4IXBN5yVU8qial+/YYQ0jdFGsoigDRs5+UA8YY54D7APsbYz5cCXKCqDVBIeILBSRO0XEiMj7K+fOKo77wukZeSwWkQtF5Ecisl1EbhKRtSIibcreN+iiWEVRZgjZvviMMb/wHHsY+HYH5TkbeFxNnFOB+yrHbkhJvNiq/j+xGy1eCNyC3SX4g8AS4KyMsvYnuihWUZQZQlBAicjBAMaYTe7vOsr4uYjIrwOnYNdSxbaO/7Qx5u4meQCrgaOA1xtjLiyOXSIiVwBniMhHjTEe2+wBIse8XFEUpY+JDfHdDdxZaB3l77sSQjYiMge4BOuR4t8S4u9dGGvk8jJgW5GXy/nAMPDiBmn2F7ooVlGUGUKskT8bMMCuyu9ecCqwDPiThLjfAR4D7BaR64G3G2O+UHeRiAwBvw78jzFme+X09dh7Oyqr1P2ILopVFGWGEBRQxpizYr+7QkQOAf4OONsYc7eILA1E3QJcDHwNeAA4DDsk+B8i8ipjzGU1WT0WWIBdzzUBY8wOEbmPmbLQuNeeIRRFUaaATjcsFJG5xphd9TEncBFwJxMX/U7CGHO+J79Lgf8F3isinzLGbI0kUY57hRYTb3fiVPNZA6wBWLJkCRtaNPpbt25tdX0qy7dsAeBGFVCdM1V1qPQOrcPBIFlAichlwMnGmG2B84cCHwOemZHmCcBzgd82xuxMva7EGHO/iFyEtb77DeBLkehluUcC5+c7car5XIzV3jjyyCPNyhbblm/YsIE21ydz440ATEFOs44pq0OlZ2gdDgY5C3X/HLhBRI6onhCRP8eaej85NTERGcFqTZ8HfioihxZCbqyIsrg4tk9NUncXf/erifcA1pfgpGG8oiz74Rn+UxRFUaaHHAH1fGBfYKOIvB5ARPYSkX/Gejm/FWuEkMoC7JqnFwDfc8KG4vwJxe/VNek8qfi7ORbJGLMH+B/g6YVAcnkmIMA3E8uuKIqi9JjkIT5jzBdF5GnAOuycz/OAQ4EnYNctnZE5//QQ8CLP8cdhF85eCfwj8J3CpHwvY8yDbkQROQhYC9yPNZ4ojw8DTwS2VdZlfRw4BjufdKFz/BSsteK/ZJRfURRF6SFZRhLGmM0i8jvAV4DfxZpmv94Y84HcjIs5p09VjztWfHcYYz5VHNsHuEtEPo31/lBa8a0GFgEvLbxZlBxYxLuWidMwlwAnAu8p8rkFqxm+EHhHiwXAiqIoSsdkCSgR2Rf4KNYg4TrgacC7ROQXxpjLe1C+koeBK7Be1P8IK5TuA64CzjXGXJ+SiDHmERE5HngH8FJgFLgDeB2QLWQVRVGU3pFjxffb2OG9JcCbjTHvLtYwfRy4TESeC6w1xjzUpkCFFiOVYzuon4uKpuGc2wK8tgiKoihKn5JjJHE1sBP4LWPMuwGMMXdh53TeDazCGiEoiqIoSmtyBNSngKdXh9OMMbuNMW8Gfg/rgkhRFEVRWiPGdOdeT0QeZ4z5WWcJ9iEi8jOgjcfz/Zi8XYgyWGgdDj5ah/3FmDFm0lZLnQoopR4R+aYx5sjpLofSHK3DwUfrcDDI9sUnIkdirekey+QhQmOMeXsXBVMURVFmNzlWfAuwezX9DtZCzjBuKWecYyqgFEVRlNbkGEm8FSuczgGOxQqkV2C3TL8O+AbwlK4LOAO5eLoLoLRG63Dw0TocAJLnoETke8ANxpiXiMgo8DPgeGPM1YUrom8AVxpj/qZ3xVUURVFmCzka1EFY10EAu4u/8wAKH3wfB17SXdEURVGU2UyOgPol43NWvwT2AI93zj8I/EpH5VIURVFmOTkC6g6K/Z6MMbuBm4A/BRARAf4Y+EHXBRx0RGRIRE4VkVtFZLuI/EBE/kFE9pruss1WROTJInK2iGwUkZ+JyC9F5EYROdNXLyJymIh8WkQeEJGHROQ6ETkukPZiEblQRH5U1PdNIrK2+EaUHiIiC0XkThExIvJ+z3mtxwEjR0BdBfyJiMwpfn8Y+D0RuQO7b9Px2O0xlIm8F7sx481Yp7SfBF4PfFZEcp6/0h2vAk7FdrrOBv4auA3rRPhrhcUqACLyROxWLs8Gzi3iLgK+WDgexok7D/hP4DXYrVteV6T7QeBtvb0lBVuXkxZ7gtbjwGKMSQrYyjwMmOsc+yus/71vAG+iMLrQ8Ojz+TXsUOgVleOvw5rkv2y6yzgbA3AksNhz/B1FvbzWOfav2DnX5c6xRVhvIre57zxwcnH96yrpXgE8gl0tP+33PxMDdrPUXUWbZID3V85rPQ5gmPYCzOTgNHi/VTk+H7th4+enu4waJtTLU4v6uqj4vRewHfiyJ+5birjPdI59tajX+ZW4v1XEfeN03+NMDMAc4Abgc8DSqoDSehzc0HiIqZhbObhQhxU/R2E1qKqD3e3AjcV5pX/41eLv5uLv04AR4OueuBuLv0eB/R6wvfhvFfXrcj22YdP67g2nAssIb6Gj9TigtJkDeRxwF/CbHZVlJvJ44D5j97Oq8iNgPxXw/UExt/oW7DDRx4rDpZXqjzyXlMcOLP4+Fljgi1vU/31OXKUjij3p/g4424R3xNZ6HFDaTtKrRUuchYBPOIEdcijjKNPP+dgJ9LcaY24rjpV146vDav3F4pbxta675yLgTqwhUgitxwEl21msksU2YP/AuflOHGUaEZG3Y4eHLjbGvMs5VdbNiOeyav3F4pbxta47REROAJ4L/LYxZmckqtbjgKJmzr3lx9hhPN/LfiB2+O+RKS6T4iAiZwF/C3wUa1bs8uPir29IpzxWDgU9ADzsi1vU/374h5iUBhTP9D3A54GfisihInIoMFZEWVwc2wetx4GljYB6GPgnxitfmcw3sM/4me5BEZkPLAe+OQ1lUgoK4fQ27Hu82hSmWg7fxQ71PNtz+dHF328CGGP2YJdcPN3TIXkmdjhc67s7FmDnwV+AXYdZhg3F+ROK36vRehxYogJKRILeyY0xvzDGnGiMudWJH7Kima38C9bq55TK8Vdjx7HXT3WBFIuIvBUrnC4HXlU0TBMwxmwFPgusFJEjnGsXYRu+7zHRQvPj2HpdU0nqFKzxxb90eAuznYeAF3nCycX5K4vf/671OLhEvZmLyMPYbTbO8/Qu3XiHAJdix4LnhOLNRkTkQuz8xv/DDkccjvUk8V/Acb6GUektIvKXwPuBTVjLvWodbDbG/GcR91Bs47UT6xXkF9gOxlOBFxhjvuikOw/rreAI4H3ALcDzgRcC7zDGvKWHt6UAIrIUa138AWPMa53jWo+DSGyRFFZd3oNtTA8NxHkt1nnsduDN072wq98CdhHhadjV6juw49fvARZNd9lmawAuw2q2obChEv9w4DPAFuwE+VexW8340t4HK/x+XNT3zcU3ol5WpqZul+LxJKH1OJihdj8oETkV6xEB4AxjzAXF8VJrWoEdk32lMebmaGKKoiiKkkjShoUichjwz1gfZtcBX8AOjcwFzgLONTpUpSiKonRIzo66Q8CFwFqsCn0L8CJjzC29K56iKIoyW8kxM38VsAo7yfgQ8ETgD3R/FEVRFKUX1AooEXm8iHwBuBhrHXMU1vJlI/Au7P45T+5pKRVFUZRZR906qFcC/ws8B3g7cJQx5jvGmHuMMcdi1wU8FbhRRE5TbUpRFEXpirp1UHuwAuoVxphvBeI8CWu2+2zga8YY9W6uKIqitKZuiO9dwDNCwgnAGPM97JYbbwKe0WHZFEVRlFlMshVfUmIiy4zj+khRFEVRmtKpgFIURVGUrtDtNhRFUZS+RAWUogwAIjJHRHQnV2VWoQJKUfoMEXmliBgROV5E3iIid2CdMf9ZcfyyyDUrnWNnFccOE5F3isgPRWSHiHxbRJ7vSePlInK9iGwRkYdE5E4RWS8ij+vh7SpKEN3yXVH6l/OAYeAS7PYQtzVM55+wHmDOA+Zh1y9+WkSebIy5G0BE/ryIdx12i52HgYOw20zsD/ys6U0oSlNUQClK/7IAeLoxZlt5oOFa+PuA/88UFlEicg12b6S/AP6miPNC7LY5xxljdjnXvrVJhorSBTrEpyj9y4dc4dSCC4xjrmuM+QawFXiSE+dB7C6yL1CPMEq/oAJKUfqX2ztK507PsfuBUef3O4F7gE8DPxORK0RktYg8pqMyKEo2KqAUpX/J0Z5iw/W7A8cf1ZQKjzBPAV6AnYsaw8593SoiT8woh6J0hgooRRksfg7s6zn+hLYJG2N2GGM+b4w5zRhzJFZYPR74q7ZpK0oTVEApymBxO/Bsd02UiDwWOLFNoiKyn+fw/xR/fQJRUXqOWvEpymDxfmAdcLWIXA7sA7waO3/0Ky3S/ZKIbMGamf+gSPeV2N2zL2+RrqI0RgWUogwQxpj1IvJ44LXAe7AGEGcDe4BntUj6Q8CfYU3P98UaUXwLeJ0x5ppWhVaUhqizWEVRFKUv0TkoRVEUpS9RAaUoiqL0JSqgFEVRlL5EBZSiKIrSl6iAUhRFUfoSFVCKoihKX6ICSlEURelLVEApiqIofYkKKEVRFKUvUQGlKIqi9CX/P9JZywmICK5oAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"thermal_center_x_val.plot.errorbar(ax=ax, yerr=thermal_center_x_std, fmt='or')\n",
"\n",
"plt.ylabel('X-axis center of thermal part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEjCAYAAAD+PUxuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABaBElEQVR4nO29e5xfRX3w//7sslkSLkEWs1wqSdTKYi9ErYqXx8RKfz5ib7a/xz41EbUBKmiLltanNVTRGnys1kKxaIlVgaRqbeulLa0tlUUFEamNWuSihotXkEuAELLkMs8fc0727OzMnJnzPd/b5vN+vea1+z2XOXPOmTOfmc/nM58RYwyKoiiK0iYj/S6AoiiKsvBQ4aIoiqK0jgoXRVEUpXVUuCiKoiito8JFURRFaR0VLoqiKErrqHBRFEVRWkeFi6IoitI6ycJFRPaKyCsi+39DRPa2UyxFURRlmMkZuUiH+xVFUZQDhDbVYscDD7eYn6IoijKkHBTbKSK/AvxKZdOZInKK59AjgVOAL7ZYNkVRFGVIiQoXYBXw6uJ/A7ygSC47gOuA17dVMEVRFGV4kdSoyCKyD1hnjPmb7hZJURRFGXaSbC4iMg68BvhGd4ujKIqiLARSDfp7gQ8CL+xiWRRFUZQFQpJwMcbsAX6EuhsriqIoCeS4In8CeLmI6Kx+RVEUJUqOQf+pwBbgfuBC4FvATvc4Y8xdLZZPURRFGUJyvcUMVjUWPMkYM9pO0RRFUZRhpW6eS5W3ExEqiqIoilKSPHJRFEVRlFTUOK8oiqK0To5aDAARGQWmgMfhEU7GmM+3UC5FURRliMkSLiLyf4A/BA6PHKYGfUVRlAOcnMXC1gPvBLYC52G9xi4E3o11T74R+K3WS6goiqIMHTmuyDcCjxljnisiE8CPgVOMMZ8TkWOwQuePjDEf6lppFUVRlKEgx6B/InaWPsy6JI8CGGN+CFwKnNNe0RRFUZRhJUe47AUeKf4v/05U9t8B/GQLZVIURVGGnBzhchewEsAYMwN8F/gflf3PxNpeFEVRlAOcHG+xzwMvBf6o+P0J4A0ishgrpNYBam9RFEVRsgz6JwBrgMuNMY+KyCHAR7ECB+DfgLXGGB29KIqiHOB0HP5FRJYCe40xO9opkqIoijLsaGwxRVEUpXWahH95FvAy4InFpm3Ap4wxX26zYN3gqKOOMitWrGh8/iOPPMIhhxzSXoGUnqPvcPjRdzg4/Od//ue9xpjH+/YlC5ciptilwKuZv9zxm0TkcuB0Y8zepgXtNitWrODGG29sfP709DRr1qxpr0BKz9F3OPzoOxwcROTO0L4cV+TzgNcAnwaeCxxRpOcBnwFOK45RFEVRDnByhMtvAf9ujPk1Y8z1xpiHivQlY8zLgM+hscUURVEU8oTLMuwIJcSnimMURVGUA5wc4XIbcHRk/zHFMYqiKMoBTo5weSfwOhE5yd0hIk8DzgYuaKtgiqIoyvCS44r8FOB24EYR+TfglmL7icAvAF8DThCRt1TOMcaYP2mlpIqiKMrQkCNczq/8/5IiVXl6kaoYQIWLoijKAUaOcFnZtVIog0s5n2B6up+lUBRlyEgWLsaY4GQZJRFtqBVFOUDIMegriqIoShIqXBRFUZTWUeEySKxZM6s6GwS2bIHrr4drroEVK+xvRVGUBFS49Ipha6i3bIEzz4SZGfv7zjvt70Evt6IoA4EKl16Q0lAPmvDZsAF27py7bedOu30QGbRRn6Ic4Khw6QV1DfUgjhLuuitvu6IoSgUVLr2grqEexFHC8cfnbVcURakQnOciIp9rkJ8xxryog/IMHylzV44/3o5GfNuh3VFCW3NpNm60o6eq0FuyxG4fNEqV4syMVSlu3Ahr1/a7VIpyQBObRPlEbPgWpVPqGuo64dMPysZ5/XrbaC9fPpiNdkilCINXVkU5gAgKF2PMih6WY2FT11AP6ihh7VrYtMn+P6hRBWIqRRUuitI3cmKLKZ0Qa6iHZZTQlG6GvVHHA0UZSNSg3wltug+vXQsnnwyrV8MddzQTLIPmztwLeu14oC7PipJE1shFRB4HrAeeDTyO+cLpwDHoN9H11/XcO+nZH6i2h0FVKSrKAU7yyEVElgPfAP4UOAV4IfAzwAuANcBPY50ADgz66T7s6z13qzzT050LvW6OptauhUsvhfFx+3v5cvt7IQtURRkCckYu7wCOAF6EFTL3AL8BXA9sAP43sLrl8g0ug6brH7TyQO9GU8PgeKAoBxg5NpcXAZuMMVcz66IsxpidxpgNWIHzrrYLOLAM2iTDQSsPDObkUEVRekKOcJkA/rv4f3fxd3Fl/78Dv9BGoYaCjRutbr/KyEj3df0hNZOvPP22PQziaKoTDkSHCUVpSI5a7MfAkcX/DwO7gBWV/YuYK2wWNq778Pg4rFzZXV1/ipppkNyZezk5tNvqsAPVYUJRGpIzcrkJOAmsSxhwA3C2iBwvIiuAM4FbcgsgIiaQdtScd1bl2KNyr9sKVffhk0+GycnuXq9OzdSGO3ObDOJoqimq4lOULHJGLp8GzhWRxcaYR4G3A58Fbi/2G+DXGpbjC8ClzrbdvgMBRORY4P8CO4BDG16zPe6+G269FYzpbmyrOjXTmjWwdSusWpWWXzcnN8JgjqaastBUfIrSZZKFizHmEuCSyu/PichzgFcAe4FPGmOua1iObcaYzRnH/yXwHexoal3Da2az6g1vgCOOmN0wPW0Fy223WcEC3VWXpKiZVq0aLI+pheLJNYjx3xRlgOlohr4x5kZjzO8ZY/6gA8ECgIgsEpHaUYiIvAz4ZeC1WKHWG9as4dBvf3v+9kcfhX375m7zqUvamNk96GqmhTx7vV/PfiE/U2VBMyjhX/5/YCfwsIjcIyIXi8hS9yARORx4H/BXxpgbel1IL71Ul7Q5YVA9n/LQyZqKkkVu+JflWMP9T2Jdk8U5pEn4lxuATwDfBg4HTgVeD6wWkecaY6qG/XdhBeIfZZT5zKLMTE5OMt1QNfPMbdtYsnMn5ppr9m+bOfpoDhof56Bdu+Yd/9hhh3Fd5Vqrtm8HYGuD6696wxvsuRdeCMcdx6qpqdnfANPTLLvqKk647jpGdu9m5uij2Xb66dxzyine/JZddRUnvOc9jFY8n/auX8+tN98cPCepnKF7PP/8/eXsNzt27GhcB0LPvpt0Um8WKh29Q6V3GGOSElYVNQPsA7ZjDfnzUmp+Ndd6M9ZBYENl2/OKa/9mZdtHiuOOSsn3Gc94hmnE5s3GjIwYYy0raWliYm4eq1fb1AT3XPf35s3GLFky9/pLltjtvnOWL/eXefnyzsrbyT32iKuvvrqzDHp9j0PwTHtNx+9QaQ3gRhNob3PUYu8CvgucZIw5whiz0pc6knSzvBt4DHgpWHsM1pvsKmPMR1u6RjrnnDPfrlLH/fe3c21XfXXiiXZ7teeW6ybbDVVeippN7QeKcsCQI1xWAH9hjPlGl8qyH2PMbuAHQDl/5XXAFPBeEXlymYDDiv0rRaQ7QTO3bIH77ss/r+pF1NS+4Zu4d9tt1kOtSq6wyAkVkyIQQhMMt2xRgdIJahdThpgcm8vtwHi3ClJFRA4GfgIbFBNgOVYQ/kvglBuAR+jGnJeUSXIis67IMNeLqJOZ3b4Ryb59cPvtc7fVucm6a8yfeipcdlk4TH31+DLyQG45y5HTihXxc4eNXun6NSKAMuyE9GVuwhrFbwUOST0nIc+JwPZ3Y20pbyp+n4T1KHNTGUTzNcCv1l2vkc1FJG5bGRkx5qyzZo9bvnyurSPFvtHk2lViNpfQvrPOMmZ8fH6ZfcePjMy9p5xyLl06azMYAPtBV/T13bivTurNAkdtLoMDEZtLziTKSwtX4JtE5DLgDjzzTIwxl2fItvNE5ORCSNyFHXmcil0r5svAxUWeXwO+5p4sIr9Y/PuPxph7M66bTmhUALO9+ksugW9+025ze7ad2Ddi165GAojNhF+xwj+quPJKGyrGLXNotBRbkz5UzvGeDHQ7IydKQbcjGlTRiADKkJOzWNgkNrzL8cAfA3+N9daqpg9nXn8aeAh4FXAh8DZscMwNwBpjw8z0l1D042OOsf/fcottwF07SEknofB91y6p2jUgHFcst5EKbb/zzrDOPzTB8Mgj4aGHrM3gqKPg2mvVfpDKIC6h0EvUVjf05NhcPgA8E/hzbCywBzq9uDHm09iYZU3PfzXw6k7LEaUyKjAzM8jy5fDYY1aYlB5kd95pBQ7M7912sgyvOyJxKe0aMR18btiS2GjJ1fm791odOZ16KvzVX83aoqpOEWo/qKebyzf3cgSmHLDkLhZ2kTHmXGPMp4wx1/hStwraV4pRwYMnnWRHBYsWzXdN3rfPhoLxnXv88dboD/kzu8sRSYg6NUksbIlvCePYaCnm3uyOnP72b+Pu221GFO5nL7dbHl3dighQBjdVlC6TM3KZwc6iV2IqJZ931OQk/PCH4aCSdT3J6Wmbb90IxHd+bmTicvu6QDzQFJ1/qvt2v+0Hrhdd7Ln4joXuenR1I+jn3XfPqiq7GcFbOeDJGbn8MwfSSpMxQiqlI4/srBcb64F3Ejhx7Vo4+GBYujRtnZe1a8PG+BSdf+qIpJ/2g9jcnNRjzzlnuNZ42bLFH8F70OxfOr9nQZAjXH4PeIKI/IWIPEmk1PMcIExPz8aTWrx41sZSMjYGDz88twE67TQ7o74NNURITbJpU3dUQitXzr9H31yYagNQ9q5DNptQXv0gJ6pB6NjQ6KwXI7ImqkBfpIlBE4Y5Ql8ZaHKEy73AM7Cz5W8D9ojIXift6UopB43JSXjKU+Y29Icfbg39Vfbtg299y6ohHnzQjhrcj6TaSF9/fdjrDHq70uTNN8Pll/t1/nUNQJ0L8iBEFM7xlssVFr0ckblCJiR0YqrKfqsnq+iKnwuGHJvL5dgJiwpYAVNd1rgSLXkOeytTgVydvNtIz8xY1+ajjoKLLmq38U1dnbJKSOdfNyN/5UrbYLmeTscfb59Zm15KOXYTKgu+5XjRhY6dmLBOHN3w6Cpp61nFGudBcm/W+T0LhuSRizHm1caY19SlbhZ2IAiNNFInDFZ7Yb5GGmwPs01VQEyH3US9UtcATE7akUmpOR0ft7+rwtilSTk6UaHk2LBCx1500fCs8RJrnAdlsTk48Ob3LOT5PKGp+9WEnTm/Fzgv5fhBTY1D7hfctGHD/ND7IyPGTE3Z5IZNCSURm2FdaJmUUB91oUfqwvE3CV0SC02ydKlNxsz9f/XquaFgcu8jtxwBHjjppNnrbN7sD4Hjo3rs+Hh4OYNe4JZlaqq+LKFn5S4N0W98y1s4y0csqPAvbdWdPoVWotOQ+8Yu2LUd+HG3hNww8MQPftA/v+WWW2xavDgto7IXVtcbq1MFpHjVdEOHHerJn3rqrH1pxYr5Nqi26VSFkmPDWrvWqvtE7Ehpw4b+GJljqtSzzw7Xh9joa9Co+gpNTAzeaHAhjzZaJMfmcjWwGvirLpVl4Bm/5574ASlzO0Rm1RC+WdhVYsInNWpumzrsuhn5l102180VrE1ixQoreEPzfGLXiJEbfWDLFg775jdh9+65c1VSCLnxppa1LWKq1Pe/f/a3Wx9y5zv1g7JOV+2UvonJynAQGtK4CViJDS75NuDw1PMGKXWqFps5/PA0tVddqrJ5szGjo/OPcVeSdEldTbJUn/iOy1ELlfn5VsSMXSd0XfcZhNQ8MVJW4Kw7dmoqTZ0wKFGK61SpdeUbgMjUQRKfcd/VYm09w9zvrxdlyoSIWiy5YQa2AfdgbS97gR8V26rpO6n59SN1JFw2bzZ7fUIgN/kao6mpucdMTNTr9EONTGnPKc/z2YLKkPupDbOvHFUbyurVec+gep0mIf6d95L0gXYqHFKed1vEGorQfYRSN8rXLRKfcSvCpc1lx5uQ0zFKyastIZVJTLjkzHO5C7gJ+HyRbgbudNLC9RfcsIGRvfNWGPAzOurf7vNGKtUtVVJUAaleNaXnluvRdOWV7dpiQvfso85jrgzxn0Kq3aRT9eCgeDHFYr/5GCYvq0F5xr2gLVvoIE86DUmdhZg6GrmkqiNKVcvSpfZvXY+irkcd6pWk9HzckUa1t5XbE6+WY2LCmIMOmv9/kx517Lmm9sBSepKdjlza7GnWkeIBmDKK7lb5ukXiM+7ryKWtUUKs3ueUq2m9bkmNRhtqsYWQOhIuMVdOt7K5KqPYS4w18nVumbGK7u5zbQs5ldL30XeayuvE1DypjWPKh9KGcOiF+iH1GqXKs2qrOuaYvqlHWiPh/vsmXNrsYITq/fh4XrmaqmsHUbgALwDeAWwCpopthxbbj8jNr5epU5vLHp/RemJibsNd16i7xBr5VKO9m3/IjlE1lKfYOnKN9aHkfgB1NpecHlgOmzebPWNjnTW+OR9l6NjQ9pzGq9px8aVhpuYeOhYuTTsJbTp1dOpg0mmZeiBcclaiHBWRj2Ndkt8M/BZwbLF7D/Ap4Ow2VHUDydq13Pr7vz/ftnDffdZmcvfdfv3nXXfBGWeE843NFG9qJ1i/3m/HqNpy3ECY4+M2XprPZuFbqCyFkRGYmoIrrgivZ1OWI0SbYT/WruXhpz61WWy2Xsxt0LhaFt86Q23RiY2iTbf+UCDaWBQLH51ES+8yOQb9/wP8OjY68onA/plOxphdwCeBU1st3YBx7D/9k38BrH374PbbmzUOvkp2/PE2pteRR/rPCW0vCQkD9yMojeFTU/Z3uWSz+6GlhrZxz3nKU+zHsnatDewZCvkfC/G/aFFnjfowTXjLabzKBrhshHUBsDQ6EeAhx4JFi/LLsWaN/carziiQv9RAtxaVa4Ec4XIacLkx5iJshGSXm4EntVKqQcaqAefz2GPNezaux9Pk5OyiTj4efni24vl6eSlrsRxxhE13321HXrGenC/8foxyFvujj84ftYUa+1CI/5Ur068by78tutmrDjVSdd5S1QXA7rgjPlLuFtXnPsgCvZPRx8aN8+voyEh+HfXRyYgqN1p6j9bLyREuK4AvRfZvBx7XSWGGgljD3aYr5e2325nkPh57LNzTWrPGVvjYWizudXxrfJxzzmwFvOWWucdMTMBBB/n/F5kVwNUPZNWqeGRm3zIGTdQEbRJqJFMaz9AHHPuwfQJ2ZCSu4hiWBcAGhU6+0bVrbR2tqnjL0XlTys5Kr1SiPXRdzhEuDwMxfcyTWcixx8rQITMzc2MfwWzD3Yn+s6xk1RDyMUI9rbvvhl275gqD2FA5FP/rvvv8ZRgZsfGonvc821O6997Z/w89dP7ILvUDmZ62a8h0qiaoYeuFF3Y/XEvoAz777PnbTztt9r5cARuzg5UMwwJgg0SnNorJSavirWoZcvF1MHq11EAv7XohS7+bsDaVb2BtLRPAPuDni32Pw87evzw1v36kxt5iMY+mOhfgXFfXVJffkMuw67oM88tw1lmdeX+FQorEfPddj7PQsynzaur2WfWC8byLLE+jalna8AAMzU0pn2eu59fmzeHn3euZ+bE5VS3TN28xN0zRWWfl1YsyD1+9nphI/847oeVIE7QU/uXngF1Yb7FXFcLljcBvA7cDjwBPTc2vH6mxcIn5pLvUhZZvch03hRrZlAraqWApky/GWKj8oQrtu4+6vGIfmzvRc9GiueeOjJgdT3hC+vsIhc9x3bpdcuN/lXOacuesxOpLL2Oe5QrfDulYuDT5RlM6fnX1wpj4fLleTNJtOUZeK8LF5sNLgR8WgmUfNsbYPmycsf8vJ69+pMbCJdZYuHQiXFIapdFRKyDKa1V76bHzykpaN7N7+fKwkCpTaKKX7wNsumZNkwgCCaO+PWNjae+i2mDGyu77+EPnhZ69yHxB6CZfQ9NGdINOyRnVt0RfhEtqx8/X4axSN2m6F5N0WxRirQkXmxfjwC8CfwC8CXgZsCQ3n36kBTdyqQqXunPLc2LHVAVVqMGom+jlfiB19xISFrk9rMRntw/q30OOetL3YU5N+SMr+IKF5iT33nu5AFhI1ZVa71qkL8IlZzQao65e92ISbItCrFXhMsypVZtL3czpVKoVPdfmUr1WSuVfvjw+cqmW29dzX758vp657hnUNT4hYZHbw0r8+JNGLrmRh302qFBcuToBH0uuIO40onQOoXqdWu9apBXhktuA59SJWINdV697FWFhEMO/DHPqOPxLXeiQJj0CtxeV2vMXyWvEy3NCNpdS1eaWrZpSG3xXXRcbBcWeUc7zTLn/VJtLE5uJz6AdMsw3FS4hJ47yGYmkr4WTS9ORi08odsgc4ZLbSOZ+o7G6X1PXogImVIZuCRc330ETLsD/Bq5l7rou1bQnJ79ep04XC5uz/rpLE12mG922XMclRWi4ATPPOsuYUvjVNU5VAVO14bi4jWOqetCtuKFRUFtBKctr+D5+J3rzvrYElXsvPs+ycuEz9x6axGqL1aVU77Km1AVIrWt06+wQmTQWLk2+0ZD3oet0kdoZqCv3gShcChvL3kKwfAb4sC+l5teP1FXhkhvldPNmvzBYtKj+4x0bm28AXrLEmEMPDVd0N9+lS23KIcexwaVJA5irGw817KEF03JUF2Abk1A+sessXjz3WYfeaSkIfW6uKQ1g2w1TeU+xyNzlMaG6keJBlUlj4dLEUyrUKFdT6JuIjdh6pf7q8vViwiVnEuXrgC8Dy40xv2yMeY0vZeQHgIiYQNpROUZEZJ2IfExEvi0iO0XkLhH5jIg8O/eaTYlOwAtNdgpNhtywwT8D35197wswefjh8yc/7twJO3YQ5LDD0uINxWafh2YxN4k9lsqqVemTHqthME4+eXaC2+23xyeOuffse+aLF9sJjbE4TqHr7No1v5xuPh/+sJ2MunSpLfsll+SF9EihSViWUASHah0tJxYuXWrj1LU5g71NujVRMSXcUhM6iRAxAOQIl6OBzcaYhGUSs/kC8Eonra/sHweuAE4APgb8DnAp8HTgSyKyrgtlyiO34Y1VaF+AyZUrZ2N23Xdffvnuv3/u7+3bbcrBN7u5rdhKbXL33bMzoGPRDmLvwBVUZdwvXxynNWts4MjQdYyxgt8VYNV8Nm2CG26YjRF28MH2dwrT0zaeWE40g9QGKvbsyvsueeghuPVWe7/j47a+dFOw5MbI6tZKlytX+lcH3bHDX6byuXc7UkRJj2KJueQIl28DR3SpHNuMMZud9PHK/j3AGmPM04wx5xlj/toY8w7gGcD9wJ+JSM69tE8orESo4Y1VaHefGz+qCbkfkK/xWbsWXvWq2d9lDzUUTdlHauDHph+EG4jTF66nJOWZlILqwQftX185YkFGIXz96rO4+25b1vIdl4E/7767vozdjBeV+uwee2xWIQS2LK95DVx7bfgd+uqYuy0kBE880YbOybnn3NAvKXWwDFt06aX+5Tj6Heetn8sgh/RlbgJeA3wHODT1nMR8DfARYFGTvIG/L/I4uu7YTm0utS6QruEzpjdPtbkYk25gXrzY7w2WM9cgpr+vM96mGJ1T9nUy0Sv1WVWf89Kl1rHBve+YvaFqwPeF3KnaHKq/Q84TIcNwihtvqi3B59HmUr2v2KTPqam4rSWlfvjKEDM8F/9fffXVzZ9XqrdYrA6G8kgtU6r9ow2jf8sz8l1oYtDHhth305eA7wFvL4TNvGNC+UWuY4Ad2NGJwToMXAwsTTz/y8AMcHDdsV0XLsbkue2GvMVc6j7giYnZY5Yvt4bn6u+msZNcQ2xKw93kQ3KdCzr5IFIbu7GxeuESK0edBx0Yc8gh/u0vetHcMqdObs2956pBOTVES8gxoZpGR20dSxUqoXfYRLgsXWoda0L5p7g9p3hONQnTklKmHOHWhrtyy7HEXJoKl2p4l9S0N5Rf5DpfBn4f+NVCQH2sEDJfrxvJYBcnMyQGzOypcEn1HkvxiIrF7Jqa8o+AFi+u76VWSZmQl9Jwu5W2iXCp+yBiPfAmk93K61U9zOrKUecpVDbCoX3VSZWxhrxaX0IefnXCOCdEy+rVnS9rnVo/OhEunYz0UoRL7lynlGXJU0fkbU60DD2nltzDY8LloIjG7IV1KrU2MMa43l6Xi8jXgY3AOcXfeYjIT2KN/N8Hzg3lLyJnAmcCTE5OMt2BEW3Hjh21568qjORL77oLn7bazMzw4PbtbC3yWbV9O4fu2cOOyjaXZevWccJ73sNoxbhqRNg3NobcdhsjntUxzaOP7r9OWSZ3PZWtF164//+Tzz2Xgz1LI+877TRuuflm7jnlFE5etoyDa2wAu5Yt4/rKfZTXDt0bwPP37AHgi8UxoeuUeVfzdPP3Pivwv4s772Tf+vWMGmM3zMxgbr2VnY88wlemp4PleOywwxi97jpGCm8/X957x8YY2b3buw9g17nncv1xx/mfe6XcZs8eHt22ja9MT897TiW+e947Ps6t69Zxz/R09BrceSd716/n1ptvBuCE4r5C5S7LFdsfo3yHy666av+1Zo4+mm2nnz7n+jNHH829J5/MMZXfexctYnzPHkbvu499RRmr5Sjv+diinlfr9xzOP9/+rXyDMLeOht59sC7ddRc3v/nN3u/05th72Llzf13Yf+3IcdtuvpkTP/95MGb/c7vnlFP89wk8c9kylnzve0hZx4t72LlsGbvrnlOnhKROPxMwhlV1XRfYvxK4C7si5s+k5tuTkUtJ7rwXH9Ueik+tsXRpvDfl9u5j9pRYT62qa47ZF3xzdOpUANWRQ3lMas8tlL87a72cP5IzsihtZilzjHxpaiqef9mDT+khlyNI38il7lmkXmN0NP5u20jVetT0uVLEh3NTVaWcog3wPUO3XjYJje+bMFyOiFNVVHXfYui7CN1bNRTR+PisVqOFuS+0NInyc8CLIvtfCHwuNb+E690O3ObZvgK4A+sl9rScPHsqXEJqppxw5AnGzeiH6J7nEy4ptoOyUpYVNXRMNWBiqs3JVemVthCf0CnPqQqOUP6rV9uPqDzGd2xKY+g6ZdRFjC7T6tXx5Q3KxihVjTc6On8yZqhOuORGHGgz5Ri+O0muLccnXEJCJOZ04+6LfdclPkeQkZH0NVtC76tuPSAXnw21KuR8dtVM2hIu+4BXRPb/Bg1sLoG8DgZ2A19wtpeC5QHgGbn5dl24uJU3Fi4i5cWGhEs131Bvs2zoY2WoGnZTwnjUCbRqDyzFKB/62Mqyuz31lDKW+QeE4JzwL3XLD5THVt9DyiigFMSrV1vjvbu/KgRzY1YtXhyuIyHhknuNtpL77Eq6cS3XlpMiXEKCImSvDI0S3Q5jSHimrtni0xDE3p/POJ/6zjsMdNor4fLbwM7U/IpzJgLb3w0Y4E2VbcuL0cx24Jk51ylTz4VLuS2kIkkNbjc+ntcYleqplGOrva6Yx0spDFNjKaWoAGLlMibdi8yXf6Ccc6IipzZa1fdaV4bq6LQ8Z/Hiuc/Ifee5Lr1gOwlunYupOepGfCHVYWoKjSJ9ZermyCXmgZnq/FG+89jzjT332DNK9Rar1onyuBTvxbp786XR0cYCprFwAX6WWTfjfcD78bsovwG4LXahQP5/jnVvvgB4LdZr7HOFYLkeWFwcdxiwrdj+F8A6T5qsu15fhItviOz7KKrEVEopIezLipJawaqeI6G5HcccE7+PMuJyScrIJVYmY9K9yHz5B46ds55Lqmu1a/sKCezR0bnxwUqhXXV19tWZ8j5Xr05Xu4EdFeWsABmzz4TqaVWFEiqba1OodoZSv4mxsXwB634bdXPH3LLErpcqUHzPMqbWCgncKm5HoNr5c+1STe4t9gwz6US4vJX5q06G0oPA/4zl58n/V4DPYj2+dmGXSt4KvJnKvJVCHWZq0pq663VVuOROrKom96XGGuZYpXH18U0WOHINgKVhO7eCpthc6tRiub2x6igskPejk5Nz31ksknRoZOlTi4Qa54kJO3JJFS5NG9iUBiLUUPqM0GUdThGspS2oeh8hYtdye+tVe1coVXvdsfqR07t3Ry7lPbnPb/Hi/EXhUhbbC00JiNkoOxm5VJ9RJp0Il+XAamBNIUDeUfyuphdgY3zVTmLsd+qacIk1pCmNhdsoxFRKOV5oTeZ8lFR7Zjn6+rKC+oSUT7cc6omlGlOr161GQfYds2iRuWnDhvllCD3PmE3MbWhijWAsMrBrH+jU+J4a4Tf2fqtC1WencNU11YY3JlxSruWeX+br6+DkzMNy1Zuh8lTfv/sM3PNjc23qVMyhZxTrWMYmdvq+lVzvvwYTK9uyubwKWJF6/CCmrgmXJhUi1ijEKlHdB1olVzD43H1zGzt3omOKCiDVFdn1dnFVQeW1IgZV7zv0zdCvK7d7XF0nwtfou6OWJu+saQNR936rnQT3ObjqypiKqErKtULCxZj9735f2UC7tq1YXfU1wOXzrvM+DHWU6t5Bzjuqq0ci6aPacvRUtT0dcki9q3cvRy4LLbUqXKqVOlYhUhsLN0RETHfsczEMkeoVFapgTWYqV59PXSNtTLrh3tXtu95udSoUEb9wcVUfVRfmkNHVvb86IexrUEJ2iqrAHR+vn8/USQOREw2hxCdcUtbMqftOfA4s7mirnKHvq1+h72Z01L/+UfUaMQ+vkB0y5ARRvoOcKAIpwj6no+cTlDE1Y69tLgstdU24pIR9qGv43ApX5xOf03i7Pa9YWdxGMKaXrvtgU8pV7b2XxARaro7beXa1wsWnUksJyFmnhnDfr+/4qlNEdUQTUgu10UCkOF64+IRLSkMaG5GnLp9dCpfqtpDaLtTQ+r6l1EY75x3EbCQudWroiYn0eh6rg2Vdr1NZJxITLv0NU78QWLPGLiQVC+Vdrt0xNeXPwxf2211/paS6Bkl13ZK6sPSTk3PXJ0ld4Ci0hssVV8CHPjR3Qa1y4azccPmrVs0NTRMLhe9buOrSS+cv0uVjxw6WXXVVuAzT0zbMvYu7OFaIUHh63/vdsGH+vRgDH/iAfV7uM7nkkvi13YXLUmkShn7XLrsEwYoVcPbZ6WvmhOrS/ffHF3MrmZ6eF8LIizHx376ytbHg3cTE/Hfg1olQHSkpF5Lzhe+/7DK75EV1kbmJifTy3Xnn7P/V9qCtxehcQlJnIaaujFxS9c0hb6KDDvL3Gup6gineWKGyhs4P2W7cXnM5x6LMu85mUFcul07tDpG0p6py8RE6NzRRLaSvr74vnzdPSg/TfTaha3QahDB17kWT9+IbsblutjnP3FS+wxw34FjZQiPWJiODKqmjQt99xL7/uu84Vk9cNWOddqEGVC3WsnAJ2TxiL6tu8qFPGLnHVRvpHHVGrBEPuYVWj8nx8Onkgwrtr7MZ5diUQs+ovGadCiX2XGKNvtsg5Ho2GTN3MmY1tbFGfUpDk+vcEeqspIbrD7ynB046KWzjSS2br8OTM8co9N6qpC6FkHMfIa83d+pALPRUv4ULTiwx7GTJFaHjhyG1IlxiOtGY/3qdYdyd0RzyUKnLL+aJ4iO2IJYxeR4+Md11ygfl07HXeWLl2Fxizyh2r6XBOeVYN/neQcpEWB9Ll1oB4wuMmKIzj9WDlIYmx7kj5GjSZM6UQzTkfmpIn5B3ZSfBO5uMXHIFdmhUWydwfG1TH4XLnHAv2EmUwfAvw5BaES6xyhAzqObOBq8z2Lc1QqhTv9UJMXcUV+dBk1r2qtCKPbuq8bRpI1ASO8d9D6kxxqr3U56fEoHaR7XTkXOerwy+fU3XFfLdd+haKY1/aNG8Is/oYmHg9xgTmRszLETVg290dP67Ghnxd2aarMtiTJ7AjoXU8W0rHS9S1Z4NaCpcvg9sqPyOxhYbhtSKcGkyn8GYelVI+QH4PLt8PcCUiptyTKwsxsQFQWgUF4tWnHJNY+Y2djEVVPVjqQu1Q43NJdTwVefAlNQ1tNWZ2O7HHVK/pMZ4auLi6v7vOy5ldn1qrLrQtVIa0dA3VHwbe2JRFcr64M7xqIblSRHCvjh6biiWVDtVk7k/biw/3+ij7t2WI93cMP0ZNBUulwOPAp8EPlQIl+ni/1D661B+g5C6PnJxG0iXlI8qFK47NIzvZNJayjExARU6t9rjyx0tlR+JLyJynY++TzA7IfPnzdBPfT8+tUNIkFWN+D7bgC+OVk502py6l6NjT1GT+PT7vtnhoXqZMnIJfUN1nQefLbBu/o3vnmPXqYublvtcQzbNqoAOvb+6zoJv5OVrAzqgqXCZAC4rRjB7SVvyuJWQ+91KXbW5+F6a+/JjRv2xsbT1P1xiFaypQdENQhlqLGIjsZgKImbnCQmX8l5TBFNkFn80Plys4+ATlrFoAXXldfPOMcqnzoEq//fFxvLRtLGs/q4bLafYXEJ1PeVZVgX70qX1ozzfPdddJ6aeSnleLq5qObQ0R4pwqb7n2OTbBqFefLTiLaZqMcdbzNcDc4eb7suPuTv6ZhGnVIZYxU21y/g++Lp7ieVfJp+btW8E4vYGfeHGy311z8c3oqis0VEbfDTFoOvOdi7L7/v46/Iqy5cqXDZvjkdvKK9bFSgpk+Zy9PLufVYnfIYa5mo8rToBU+3YVMuX8izdxr+uvvjqdco1Qob1lOcVOqZuaY4c4RLyLAy1AQ1pS7i8Ffjp1OMHMbU+z6UuTIivMjT1p28yckn1yko1sLvXSdHBpyyMVdVjx4R23cgldi9F41a7bELq+/HZlXwjl1SDbWpPMjbLvXpdV6CEGqzQe0lxLCipCpfYPVbPiTV+KbbD1O8lxdsxt9Pke1+pgiZEncrPFxstJFzqXL37bXOpS8BRwFFNz+9HalW4hOJCVXHVBU0XSeqkMoRGAdXy5bg1u6T0KFMa/hR1Y8iGUX0+NWt0JK3J0+QdlffRyftOaZxyvPfaaoBDz6ksb+7IpTwnJmA6cdd1n0eovrjqqLpOUOzZ5AoXV3XZZKmFkKq2rty5NqMIMeFyUM5sfhE5Fngndh2Ww4ptDwGfLjzLvp+T39CyZYsNHWGM/T0zA2eeaf8vwyhs2QKf/7w95qij4OGH4bHH8q81OtosrEfJ5CT88Iez4U18HH/83NAQJYsW2fA2ofPAlmv9+nD4D5gNs1ENt1FlZsaG+oiFcLnzThtuZHISXvhCeP/77fbRURsSo3w+oXtJCe9Rhq1pSvl+TzzR3qvvmYyOwt6987fXhQUpCd3f8cfb8p95ZvxdVKl7L6HtLtWQLCtX2vOq73LJEn9In0WL/OF23GvHyjExYUOjuJTXK+tFWUeXL58NbVN9Vr5v+JWvtN+vyOy3Xt5PKDxOU6r5555z552zZb/99vg5Gzd2J9SLj5DUcRNwPPADrO3lq8AVRfrPYtv3gSek5teP1NrIpYmHVV0aG5tvc+lwfWtjzFz9u2/f6tX1Hit1pK622aQHWqbSHbhu5OK7l7Gx/a6oj05O+lUKTd6Z7z7rjPih2dMpczBCz7rOe6/pe0kduZTvpbzviYlZ19+QR1l5fmxeVHlMrjt8bEJuSco9V+eJpEbJTsV9fk21GtWUEmEgN7hsDbRkc7kM65p8qmffS4p9H0nNrx+pNeFSp5po8pH7humdhvUIDfvdfW4D4FsrI0bMGOk2/J3MgI6pD6qNQvXeQuHWXcGZ8858ZUgxIlffdbUhruYXmkDoPmvfe81RrVQ7D7k2l7Ic5bkhI/TUVLzjElnUbY4ACuVRrVchZwTXe6p85ynqxapAKVfb9JHjDOGWq/pOQ5E/Og1LE/pWBki4/BD4s8j+9wI/Ss2vH6lnI5fUj9y3Il0LL9wYU69rDi3GVV4/5F0UK1/ovOo5VRtQ7geR4/1Tdx332eeWKeTMUdcLrZZzaqre88v3jH2NpTH5nZpqByangaweW/eMY3a22Boqbl2rXHPP2NjcjlfK6Nw9JuYYERrFLl7sfxa5gtl91r7Jtu67aTOQa8xTLpO2hMsu4LWR/WcBu1Lz60dq1RU5VqFSehohtVNbwiUmAOtmBdd5bMWESzX57qn8yHM+hrqFjsr7KvNPmKk/57xcldL4uH+9+BRjehkSpk4I1XkH+hrUHHfdaj30dRxC7zm3oWuysmKo8St+z3PKSBEu7v8xl+7Y9+sK3lyVYuz5VQWNT23bpFMWu4cur+fi3eg9EL4NfCyy/6PAt1Pz60dq1Vss9nLqhEsbKq86mi6XWmc76US45HgyVUcFdYEpU1cVjJ3vu4bPDlaO8FzhkiLQqvNZ6tRndSH+x8f9dpqQDaMuuR2HUIOdK4RjURxik0F931dVuKSU1d3n1sum6qYU78Tc4KhuHfF9Z7FOWWpnKic2WgJtCZd3YmfpvxNYWtl+OHBBsW9jan79SB0Jl9Wr566AV2zzVujYy/VV8obliebRZOSSEpojt7eTqkLxfZyljjv2Qbo2irpGO5RCDZrPNlV9TuVE0TqB5pvBH7svt+db1+Mty5q7/ECocfE12DnPtqqCDTV8IeEdavyK5zdHuNT1wGPCpZORQNN5NCl5VwOeVt9/SmzCunynppo5cARoS7gsAb5YeIbtBu4s0u5i2xeAxan59SP1RLjEKkE1Wmy3hUsTm0tdpa8LSJlShpxU3l/sowkZ8gNpX+zeQs+12pCFVCl19xESXKk2l7oer6+hLu+rHOGkCMDqPfuES8qosCrw6wRedXJg6ZxQ0/jtFy4pnoNVx46qB1vsOr5ll0P1pU5F7tan1FF17ndUdnx8+445Zm6708m8NodWhIvNh4OAM4B/Br5ZpH8CTgcOysmrH6knwiVUYcs1QVrSdSYJqNi1fPvqDNF1DZJLJ67H1TVUYvnEPvJqKtQNj05Oxu8jJlyaTuaLNYJu4xvyFmvay652aELCzNe4+Hr8oQa9eq2qujelUfQtflXT+N20YUO9varu2uUIKeTWXfc9hDo1IW+1khT1qftN1dW7qjDzTe5232FKlIdEWhMuw54aC5ei8uzzVR6XWCPQxLPER0zH7Du2zkZSEqr4Md10rLfTqQGyOm+objRY1xAUKpWbNmzID3VSPuvc+yn15ymqk7r32ck8iGqjH7PJlI2LK/AOOmiuHcB10w0ZoVOEsc+OVzOvZU/dsxBJv7Zrx3IFQ93oqHpsyObjjv6qHpUp0bFj9a66TENZj1x7oCtcckbMNahwMR0Il1yB0MTW4aoj6oRGLKSLS6wn7t6nL6Bk2Sg10dN2MnIpP7wS35C/avyM5VNhf2TrlNFC+axSFi3zNdSpRt864bJ6tVVtdTJHqKyzsWMWLbLPOTS6KQVTdW5OTLjkrr5a4vvm6gS1WydTOgLl848FSi0b47r6UidEQnPJfB2nVI+0MlWFiE+4lM+0WpZDD83/nj2ocDEdCJc2XA3LjyhF15liS/FF/U3xPnN7MLEyu67STf35O7G5uM84FOI+NnJxjKP7hYuvoatzDa9TK4XKnjpyiXk8jY7OXeLYrUshm0s1pXhHNXEICHk41TksNJkLkiqwckYudcs/xI7x1RNj0r0HN2/2x1hzVV2hPKrztUIdyZgq002ZdhcVLqYD4dLE+BXSwcbml5TUCZeUPEKEhEssz1jvJ9dbLKfh8s2/cHv4dbYAj9CNLviWMqk11SOrbs2cXNXK6OhcG0idZ1uvk6+zFetc1EUicJ9HXSfCrZN13lV1Qiinc+B7dznBQ+vsmatX+zs1bgcwJFxy6oSOXAZ45FISUj3FGsCUxjtWMeoICZccAZqitgudE3NLdRt5dwZ2SLjEYlp5nl/tUtUpwjRFVeZzJW4an8onXELH5zYmbmrqyhzqbMXWbqnT8fsE6eio2ed7f77Z87HypqosU4+pUqd+dPOoe6ZlffNFhYh1NspzU8vSwP6rwsV0IFyaGuFDDUVouJ9ynTrDduz6vl5tnUumT4B2IlyMiYdlCalXfEIxNIKoUREmj1xi76MqXHLqR1X15et4+BqHmL6/DTWIW+4XvSj/vFBdMaZePRXrpAXuZR/M7USE4n61NSrJ+T5yVcF10QCMmfvNVFctrdaZ0DSBWGejbjnyBDoWLsA48ALgJ1OOH9TUE2+xklgj7Ot9dlLJYX6D6jbEoQofm7SW07vOoWycXYNnGcwwFJus2kuLfcARFeHVV18dXnmzqmLImRyXqi4MCZeQgAoZ193Ajj7chidl5v4hhzQbucQ6WykT/2LU1fnYsw/ZJ91jUjp1qd9HjtNHzE5WljPkyFIXtQLmziFy34OIzaPD77kN4XJQMVnyd1OOz0mACaQdnmNPAD4FPAA8Ukzc/PnUa7U+z6WDvOYJl06G59WGz9erravwpRqqk/k3OZW02vOvE4JNIxgH8Loig+2xV+8/tzFMuf+QWjJ0vVhDn6IbL59zKch94W2aLlJVo36svbfU+6grn2+Gf7U87rwP36g2pXOQ2oGIldddeiA2agl5kqXUjdQUcmLJICZckhYLM8bsEZEfAYkrGmXzBeBSZ9vu6g8ReRJwHbAH+FPgQeyEzs+KyEuMMVd1qWzdo1ycamYmvIhUdZGl0EJRJdVFg6rULfo0M2MX4ZqchK1b7aJc3VxQaHraLkLm4lswbOdOuOUWm1assIsd1d3P8uXztxXXe+Itt/gXJfvc5+wnB/Y5ugtElfgWvUqh+q5F4IQTZveF7sdXH0pi9cDH5CScd97cRbN27PAvtBVjZAQuvxw2bbK/YwvJgX1f69b59y1aVL/oVl2ddxfg27nT1qOy/t5882xdC5V17dr6+0k5Buw9+RZrW74cLrkEvvnN2TxGRsL5TE7a+/DVQYjXjVR27rSLi01Odp6Xh5yVKD8BvFxELjbG7Gu5HNuMMZtrjnkncATwDGPMVgARuRy4CfhLEZkqJOngMz09f9VAX2VxV7zbuNGeE1uxcedOOOcc23DMzNgG+cgj441IyiqNvaBOaJTCM3Y/NasEjt9zj3+HW3WMaW8FQvddG2OF5VFHwUUXhRvQUIej3FfHDTfMrvR4zTXw3/9tV4qcnKxv3EKknlNt0K+9dnbl0Crr19sGe9OmcIOdUuddUlfQrLJ1a/45PlauhNtug32VJnJkxF9vYoLzmmvi14nVjRwee6y+g9CU0JDGTcBTgf8C/gP4JWAKuzrlnJSaXyVfA3wEWAQcGjjmEGzI///w7PvjIo9n1V2r1ajInZKiqqobnqemsbHwMLoacykUabeOXBflXFdtN4ViP5VBJH0Uqqhg+JfYe0i9rxCx+4rZvGKeVhC+XmkI951TNQg3neSaok5J9ahLUSfmeF+V+bplSVVZtnGMu5ibO8k0xRYaS6W9JBbINDXic6brsQstBa7ch418XP71ptT8KvkaYAdW3WWAe4CLmRt5+TnFvnd4zv+FYt/r6q41UMIlpputCwVS5wTgSzkhuXOWA8j1posdn/qxlXHH6sLPV69ZHDtz+OH1kw1zG786Um1lPkEWC0sfos4duRpWp+kk1xRX/LqwOb64YiF8kxJDUZWbdAJSy1F3XMiuVn0eVXLngZWCxZiwsT/1W2r6rCq0JVzOB95al1Lzq+T7ZeD3gV8FTgM+VgiLr5cjGeDXi21nec5/arHvgrprdV245DREMSNu6nyITmfApzR4dfeXOw+o7viUj81dqTAWDsf3jFJm2ZcfXmkQzyXHoSIWkTlldrjv2inXK/Mvn12OkbhOMLQ5cnG8C+d4bTaZ2Bu6Rj+ES3Vf3TN3tRk535IbfqaTZ1UhJlySbS7GmPNTj83BGPNsZ9PlIvJ1YCNwTvF3SbHPYyljV/F3iWcfInImcCbA5OQk0x3oF3fs2BE9f9X27QBsTbjGsnXrOOE972G0YvzbNzoKIoxYoQl33sne9eu59eabueeUU2ZPPv/82Xze+EZOvOACMIaZyUlGHn2URQ89NO96+0ZGGNmXYSrzXNt3f6vvusvr5WHuuotrPM+h9vjjjmPV1BQAP/jFX2Tqggtmn0d5Lw8+yC3nncex27czdv/9LPne95DAMzv53HM52NXX796Nwe+dYoCZyUm2nX469xx3HM/fsweAL2bWm+qzWrZuHSdu3Bj0htm1bBnXT0/7689xx/HM445jyXe/a+99bIxdExN85bjjgrryVdu3c/joKCMBnXx5vTL/5y+xn86PTjmF4z796TnlDD2nXcuWsStS35+5bRtLHnoIrrmG3YcfzkEHHcRI8SwB9o6P88NVqzjmyisZ2b2bmaOPts+8Ws8r93Ponj3sGB+HqSn27t3LNy6+eHZ/UV+2Xnih3ZD5rpZddRUnXHddbTnKsoTuuZrPvrExdh19NF8pjtt/D9u3zzu33CdjY4zu3j0vXyMCIjw4NcXWynvP+ZbKZ7Pquuvm/O6avQXSRy69TMAYVpBcV/xeeCMXY+b3LJqoQIyZ27uOzZlwe8ApbqihXlCdnaTpyKX6HGO69rLXG1L/lPnlutpW58h00it260LsmrFJkSWxCZhVQpNLy+SbFV/O/nbrjYh10Y5NJvWVxaeuGRub674cm1vl9v4d1/3kRftSyFXrhq5Vl0/KyCUUgdk3STSmboyFpWlDzVuBFtdzOQx4C3bRsG8Bzym2H1Vsn8rJr+ZatwO3Ff8Pvs2laUNUfdlNF/FxVTex2d7uMDllvY1cO0lTm4tLynyTumcWyyMWALRpZIbQ8w+VI3UNjRThUqcm9YVzj82lqJbfF5Y+pMarWx7BmDRVWUDFlGX7rGtMcztHofxi+YSeny9fX93xqWZXr/ZHyq4LqDmIwgV4PHArdv7JzVgD/s9X9n8HeG9qfjXXOri4zheK34dS7y327Lp8uyZcOmmIUnTzsZFL9WMOTaIMXa88v874m6vbbeot5lLX6KWMXHzvphQibjlyZujH7i115JhjUA3p8qv7Um07sbKGznF73k09/lI6UtX79EzubVW45HToXCFRdXypC5Lp5l0a5X3ldDURsfh2dZOfWxYmLm0Jl7/CTlx8ejFS2ecIl/cCX0vNrzhnIrD93YXAeFNl2ycKgXZSZduh2KWWbwOk7npdEy5NGyJj5r78UEPYZBSQKlzKbbFFkdpYKiClHO6+0HMtR1N15a4+p+IDfHRysj6SrDHNR5GxuuBbJTD3ecWES4pXWkpZfedUyz4xEfbSipUhd+Tic6dessRGWah7TsakdWJSv926bzPXrdutw9Vylmqw2PedEnmgB7QlXL4PvLP4f8IjXF4P3J+aX3HOnwNfAi4AXov1GvtcIViuBxZXjn0ycD9wN/CHwNnYeTd7gBenXK9rwqWTNaljIwlfpUkd6eQ09rEhed11QvfRCdXyxHp9vnLXqB3mLJHrjlaqNO0w1PXIU1cQ9RHrxdaNXHJXOKw2ZD6PtdCzqesQVO8lNMKrmcf16OTk/GfjCt9UbULqcSmjd5/wqXtePhfruoXRDjkk7f32gLaEywywvvjfJ1zOBnam5lec8yvAZwvBtQsbL2wr8GbgYM/xJwKfBrYDOwvbzymp1xvIkYuPgDpg/75ObTR11/bp0es+wG4Il/LaPsHhU2nVreY4NTU/XHtoXk9TVWddXWj6nFJGqSE1V2jtlJgwajK5NWSf86mBynvKtQGCfYcurnDJ+SZTOicxQRxaMiMWAbx8LrFF7nKdUTqcENmEtoTLnRQeWQHhsgm4JTW/fqSBtLn48PVmfOqutoWaMeHGr635BE3K4NP3+xqh2PygmH0mFEW5yT2neA01ES4xh4C6pXRD1/WNSHzCNrWR89ng3BGLS0p9dlLSyCW341U3qkwdFZb2kjpbJtTPK8oNTtlJp7IhbQmX9xcqqWNc4QI8uxjZvCs1v36kgfQW85Gq7mpbqBmTZgvpJr7n6F43pRHyPYcmI70m99wNQZzawFdDs1TLHrqP0NLRVZo879WrbeM4Ohp/fikjcec682wuvoY81DDHvMB8kbqr14iNqsp8ly6195GiRmwSkTqWhnjkcnShvvoRNoLxXuAy4KOFYLkdODI1v36kgZvnEqLOKFpttHo5oug2IWHpNni5PemSJiO9pu+0bUGcYzAuDed1wiVFHVQe54tyEAu7XzbWOTamlHs866y532GKx1tIAPrKWz6nUKiWWP6l23CbAsMVRoceGt43rDYXmw9PKGwee4qRSxln7B+Bn8jJqx9paIRLzCjq+1h6MaLoBamNf44NoMpZZ9nQIakNTie0/U5yGlGfy7GvU5I7P6luRFmliXDxqYM9dWHOd5haF3zC06d+LVO5rLRLTNVVTnjslnABf9DWkE2rB7QmXPafBIcDzwSeNeijlWoaqMCVMUJG0VDDu1CES6raKrWhrQqlHEPzoOI28CkRHUJCpGlATF9j7KOJ27XryBKoC/u/w9Wr0xrkkC0u5jgi4hcudQKwiSE+J/mCtvZRWxETLskLOojIaSKyAsAY85Ax5ivGmBuMMfcX+1eIyGmp+SkR1q6FSy+dXWdl+XJbtXw0WbtiUAktxOVud5/PxIRdpKmKu/aKbyEyY+DKKzsrcy9ZuxZOPhlWr4Y77rBrwSxxQuql3PfOneH1cNqoT1u22DVNyjo7MwOvfCWcfXb9uZOT9h5Dawy5dSFlLaKyHOV6QFu2zC9vdb2dmRl7zkMPwYknzl3YbnISnvKU8LXKc5vi1mOX44+frQdLl9q/3VzYrwNyVgv6MPDcyP5nF8cobeA2JL7VFaH5yoiDyMaN9Y1lSfX53HsvfOhDc4XxpZfO/ehCjeYwC2dfJyT1vkO0UZ82bJi7WBbYBvcDH5jfsIdYuXL+wmS+urBy5fw6E6NcqdItr28xMmPsom633TZ3++RkdxbYGx2dW4/FCUvZdLG6fhEa0rgJa195RWT/OmB3an79SEOjFivptmfYIJLjoJCjpumG23Y/8N1jk/v26e7bmohXF7bHh2/ycGAphauvvnru8RMTs84Fqaql6nNLUWO5ruShxdg6TdVrxL6FAVGF0+JiYb8Z2HcE1mvsrtT8+pGGTri4LCTPsBi5DWgKC1k4x55N7L59Lrxt1KuUgKN1ZSwFnefebtqwwX98qoBxg0mmzCdxheLq1dZ436Z9xTfRdkCESIiYcImqxUTkrSKyV0T2AgbYXP6uJuA+4OXYhb6UbuGqygZU1zqQFCqkvWNj9rdPhdQWa9bM1dM3PaYNYqqztWvnq59CdokcNm6cr9Ip8andfGqpffvmq68KnvjBD/qPr6wXE2TJEjj11Lk2lpS16F314vQ0POtZcPjh9nsMqa1TGTaVVwJ1i4VtBS7Hrhd0GvAFYJtzjMEuU3w9dvSiKIPJ2rU8/O53c8QRR/gXSSob+24uoNQNyvKGyr92LWza5N93++3z7SOlXaKp4F27Fq69Ft7//rnbQw1ozB52xx3zNo/fc0+zci1fbq8fsrHEELECN/RMNm60TgtWkzOfiQm4/37//rJcZd7VdzRsdbFCVLgYYz6NndeCiCzHrqfyH70omBJgiCtbMgfCPQ4KM77FXenc0eGSS+Dqq+HWW22D6jagVY4/3o6YfNs9zCxbxsF33z1/x8QEPPDAXGG5ZInNZ3Jytl698pXhco+MzBe2YLedeab9f+1aK2iuv94+v+uvhzPOgNe+dr5AHRmx3mXnnQevetXsKGliAh7/+LnlWmAke4sZY16ogkXpC+WHfM01sGJFZyqbbjNMZYXueiFOTs6qjWJq3BwvQWDb6af7j7/oIrj88vkqwMnJuceG7m183C9YSsoRnc91+cwz4XnPg6mpWZXg8uWzbstnnjlX/fboo+HrdEqvVK51hIwxoYRdq/6pwP8AXuCm3Px6mYbeoH8g0rIhPvoOmxhPm3j0dcsxo2kctG46OqSWKeOZzPMWq/Okcn/7AnaWYYbqgk2K1Mf+q0YlWL06HjC1G8b6HjoB0JK32CHAB7BxxPZ60j5gb2p+/UgqXIaQll2Io5GtO12mOqWs3WrMOxFYnbh/15FzfCiml8OcGfq+Y1Ou6XNzLl2MYzPwly/PX7OnG0tjxEi5/5YEUEy41Bn0q1wIrAeuxC7oFZjiqygt0s3Jj6Xq4Iwz5qo5So8pyDNqp5Q1NGO+EwO6q6bJLX/M4N8pg2pPmJyEH/4QVq2aLWP5rLZsgXXr5p9Tquo2bMiyEeXalBYKOTP0XwZ81Bjzi8aY9xpjLvOlbhVUOUBJDQnTCbEGP4eUsnZDWLZV/mFjenq+8Mrx+NuxA7Zunb997VprJ5qa8rtwx2xE09Owffvc62falDpikGx+oSGNm7DuxmekHj+ISdViQ0g3bS51M7Tr1BYpKym6Ze1GpIBeqV3athW5qpnAjHyXjuxmbnDMUKj6aoRkX365z6IXE6D7YPOjJZvLNPCnqccPYlLhMqS0+DF4hUuTBj/0IVdXgvSVtRs2l16Etun2wnQZ+XckXGKrvPryqVtWIDX8UMr+TumDza8t4XIy8GPg51LPGbSkwmWIaenD3P8O3dhUixblfXCpq4X6aLsX24vQNt1eUjsj/46cMkKeWxMT/rArgyJcUs5NGcG2/B5jwiXHoH8m8D3gehH5Enamvhs3wRhj1jdX0ilKD3AN4PfdB2NjcNBBNoRIbMJfScx2smJF/PptG9DLcq5fb+8ppfy5tG0rqk5CXLHCb/DOyX/LFjjttNl5KiGnhtCk0fvug7vvnj8nJvZ+Bs1ZIcVxoIfRwXOEy6sr/z+vSC4G61GmKIOLzwC+e7c13j7veWmNRi88gHKM0930+IJ279fn3SZi+9BN8/eF+Xe98OqM27ffPitcuvEMuy2MNm60z7Vat13HgR56ruXM0B9JSKOtl1BRwO8Z1JRQLy3Uq/VR5zE0aL3aTmnT4ym0cFvi+iWr3vCG+TPQ63rkpUCLkfP+e0mqB1jK+j499FzLGbkoysIg1HvLWQCqU1XUsAmfNlVvIUFgjH0HTfI/8kj/6ppljzwlWGU3FgDrlNw5THUj2F6oUEtCxphQws7UPwVYC0zmnt/PpAZ9ZX/okLYM4N3yABrUtXvauN9OnCGMMQ+cdNL8cC5jY/PzW7Ro9rn5rldNY2Oz68E0ed7del9NDPADMkM/ZxIlInIW8H3g37Ch+H+q2L5MRHaJyBltCj5F6Qop6oN+sWaNXbfd11sdhCCYbaj82lbNbNhgbWYuhx02+05jo5KJCauSK9eDyX3eodFFG+8rxwA/KAErC5KFi4j8OvCXwNXA6dg1XgAwxtwD/Cvwqy2XT1G6wyAvvHb77Qt7xn0nwn3LFg775jfn2h9CDfD998/+7y6KVjI1BYceCo89Nnd7zvPuZoSEJhEqUjoAPbAL5thc/gC42hjzMhGZAD7o7L8R0JGLcmDRjQ+0W2usDBIh20DseRYjhNFylFKOEOrsLVu2zF8UbXzcCpvJSfj85/3XS33e3XTvTfEAG1By1GI/A3wysv+HwLLOiqMoSlCFs8ADHdYSGiFAWM3mqqzACpWVK2HRIvu70/h13Yx/N8gq3BpyRi57iQujY4FHOiuOovSQQfPYqk4sdOd9DElvtavE1F9XXOH3gFqxYr5A2rfPLta1fbv9XQqgpqODbo8uuj2HqUvkjFy+BrzYt0NERoD/BXyljUIpygGH28OuCpYh6q1mkav3j40QQja0FJVVp6ODQRhdDFI05IIc4fI+4CUi8ifAkeX5InIC8Ams59hfdFIYEVkiIttExIjI+zz7nyMinxGR74nIoyLyHRHZJCJP7OS6itJ3QvMwxscHz+GgXzTxMktVWXXq4NFPB5Fueqt1QM4M/Y8DFwAbgJuLzf8KfBO71svbjDH/0mF53g483rdDRP4n8EVgCivofgf4DPAK4EYROa7DaytK/2gjasBCpxgh7B0bs7/dEYJvJNTLtVS6SWyUN6Dr+WTN0DfGnCci/4CdQDmFdUf+FnCFMebGTgoiIk8H3gC8CfgzzyFvxNp9nmuMubdy3k3AJqxa7sJOyqAofaONqAELlWqMtbVrefjd7+aII45Ij7kGvZmR3i96GIwyh+zwL8aYrwJfbbMQIjKKFRD/CvwDfuFyOLALeMDZ/oPirzoTKMNLyCh86aX9K9NCYUgN4skM6DLKOZMojxSRn43s/1kReVzDcrwROxJ6feSYzwKHAZeJyEkicpyIvBgriG4GPtbw2orSfwbBKDwkbL3wwu5FLe4k334FLB1Q1V/OyOVPgacXyceHsd5ir80pgIisBN4GvN0Yc4eIrAgc+k7sPJrfwqrlSq4EftMY83DOdRVl4FjoPWylOwyo6i9HuLwQ2BzZ/xnglQ3K8AHswmPvrTluLzau2VXYyZz3Y9eU+R3gYyLyK8aYeQGGRORM7EJnTE5OMt3BR7tjx46Ozlf6z6C/w1XF3IutA1zGXrLsqqs44brrGNm9m5mjj2bb6aez4+ST89/h+efbvwv1uR53HKumpoBiZAf9v9dQREs3AY8C6yP71wM7U/MrzlkH7AOeX9m2Arvo2PucYzdjhdBiZ/tri+NPr7ueRkVWBv4ddnud9WEiEL36pg0bOst3oT7jPtwXLUVFfgRYHtm/HEj2mxSRcexo5UrgRyLyZBF5cuUaS4ttR4jI8VhV2D8bYx51svpE8Xd16rUVZWBZiAuNNSXgYvvED7phDZVBJEct9mXgVSLybuPYN0TkMOA04IaM/BZj57S8tEgu64r0B8C1xTbfSpcHOX8VRVkIBFxpx++5p8cFGRIGrFOS0yC/B2vvuE5E3gZsLbavAt4K/AQ2FH8qj2Dnprg8HrgE65b818DXgXuxNpdfFZE3G2O2V45/dfFXQ88oykIi4GI7s2wZB/ehOANLdR7QAJEsXIwxV4vI2cBFwMed3buB1xtjrsrIbzfwd+72irfYd4wxf1fZfiFwLvBfIrKJWYP+WuA7zF8CQFGUYSYw92fb6afz1KZ5VoODrlgxEF5VC5XcGfp/JSL/BLwceHKx+Tbg74wx32+7cA5/ANyKHR29GRjHeo+9HzjfGPNQl6+vKEovCbjY3nPccc2ES+569EpHNJmh/33gz7tQljL/O6isclnZbrCz+Dd169qKogwYvrk/TdU/sRhcB4Jw6bH6LMdbTFEUZXgZ0BhcCxUVLoqiHBh0c8XIfjGA67iUqHBRFGWwaWvuz4DG4GpMzjoufRBCKlwURTkwWGjBQVPXcenTYmIqXBRFOXDo54qRbZNqQ+rTYmIqXBRFUYaRVBtSnxwZctZzmRCRE51tK0XkYhHZUqytoiiKcmCxZs2sm28vSbUh9cmRIWfkchFwWflDRA4FvgC8DvhN4J9F5AXtFk9RFKVlFkpw0FQbUp8cGXKEy3OwEYxLfgM4Fji1+Hsz8Kb2iqYoiqJESbEh9cmRIUe4TALfrfx+CTaW/78aY34EfAR4WotlUxRFGWwGeJ7JHPrgyJAjXHZjw+SXrAauqfzeDky0UCZFUZTBp08uvsNCjnC5Dfh1sfwycCTwH5X9T8BGKlYURVn49MnFdx4DakPKCVz5l1jV1wPAEuySw1Xh8j+Ab7RWMkVRlEFm2GKV9VgA5azncrmIGOBXgQeBC4o1WRCRCeAI7CJfiqIoC5/AYmZDHausRXLXc7kCuMKz/T7gGW0VSlEUZeAJLGY2tLHKWkZn6CuKojRhocUqa5ngyEVE3gIYYKMxZl/xuw5jjPmT1kqnKIoyyPgWM1OAuFrsfKxweRfwWPG7DgOocFEURTnAiQmXlQDGmMeqvxVFURSljqBwMcbcGfutKIqioOqwADlRkZclHPPMzoqjKIqiLARyvMW+JiK/ENopIn8IfLHzIimKoijDTo5weQj4FxF5l4iMlhtFZFJE/g24APi3tguoKIqiDB85wuXpwN8AfwBcKyJPFJGXAF8HXgC80RjzS10oo6IoijJk5IR/eQQ4TUT+HRtn7OvYKMm3AS82xmztSgkVRVGUoaPJDP0vYoNWlkub/YMKFkVRFKVKlnARkZcDXwVWAGcA/wT8kYj8u4gc3X7xFEVRlGEkxxV5E/BR4NvA040xf22M+RXgHOD5wH+JyIu7U0xFURRlmBBjTNqBInuBPwf+qAy1X9l3EvAx4CeNMVmRlnuJiPwY6GQy6FHAvS0VR+kP+g6HH32Hg8NyY8zjfTtyhMupxpgrI/uXABcbY9Y3K+PgIyI3GmN+rt/lUJqj73D40Xc4HOR4iwUFS7F/J7BgBYuiKIqSjq7noiiKorROln1ERJ4EvBF4NvA45gsnY4x5UktlG0Qu7XcBlI7Rdzj86DscAnJsLj+DneMyDtwK/AxwEzABHA18B/ieMeaF3SmqoiiKMizkqMXejl007CTgRcW2c4wxxwK/DRwBvK7V0imKoihDSY5weT5wqTHmVuyKkwACYIzZBPwL8H/bLZ6iKIoyjOQIl8Owqi+wIxiAQyr7r8UKoAWDiIyIyBtF5BYR2SUi3xWRPxORQ+rPVrqBiDxFRN4uIteLyI9F5GER2SoiG3zvRUROEJFPicgDIvKIiHxBRH4+kPdSEblYRL5fvO+bROQsEZHu39mBjYgsEZFtImJE5H2e/foeh4wcg/7dWNsKxpiHReQR4CmV/Y8DRn0nDjF/Dvwu8Engz4ATi99PE5FTjDH7+lm4A5TfwqpfPwNsAXYDLwTeAbxcRE42xjwK+x1QrgP2AH8KPIgNW/RZEXmJMeaqMlMRWQT8O/A04GLgZuAlwCXAJHB+L27uAObtgH8ynr7H4cQYk5SAT2ODVJa//wn4Ljbc/hrge8DnU/Mb9AT8FLAP+Htn++9g1YKv6HcZD8QE/Byw1LP9HcV7eX1l298Ce4FVlW2HYqM03Erh0FJsP7s4/3ecfP8eO1Jf3u97X6gJu5zHHuD3infwPme/vschTDlqsb8BjhKRxcXvPwaWAlcD/4E16L85I79B5zexNqULne2bgJ3Aul4XSAFjzI3GmAc9uz5e/P1pgEJF9svAtKlE7TbG7AA+iB11V5flfgX2vW5y8r0QGAN+o4XiKw7FwoObgH8F/sGzX9/jkJIzQ//jzH7AGGP+S0R+CngZtlfxL8aYbe0XsW88EztyuaG60RizS0S2MrdCK/3nJ4q/dxd/fxbrNv8lz7HXF3+fCdwgIiPY3vNXjTG7nGNvwPaE9X13hzcCU8CvB/brexxSOgoyaYz5LvAXLZVl0DgWuNcYM+PZ933guSKyyBjzmGe/0kOK3u8fY1Urf1NsPrb4+33PKeW244q/j8MufDfvWGPMjIjcWzlWaQkRWQm8DXi7MeYOEVnhOUzf45DSOPyLiBwiIm8JVIiFwBLAJ1gAdlWOUfrPhcBzgLcY6yoPs+/G9w7d9xc7tjxe33X7fAC78OB7I8foexxSOoktdijwVuCJLZVl0NiJHY77OLhyjNJHRORPgNdj52C9s7KrfDe+d+i+v9ix5fH6rltERNYBvwCcZZwlPBz0PQ4pnQauXMh+4z/AOjD4KupxWJWZqsT6iIicD5wHfBh4rbP7B8Vfnxqk3FaqTx4AHvUdW7z/o/CrZZQGFM/0vcCVwI9E5Mki8mRgeXHI0mLbEeh7HFqiwkVE/lZEHterwgwYX8E+n2dVN4rIwcAq4MY+lEkpKATLW4HLgNNN4W9a4RtY9chzPKefXPy9EcDY+Upfxc5fcjsTz8J2ovR9t8di7JyWlwLfqqTpYv+64vfp6HscWupGLr8G3CQiv9iLwgwYH8d6l7zB2X4GVm+7pdcFUiwi8hasYLkC+C3jmcxauKr+I7CmWCm1PPdQbKP1LeZ6An4U+17PdLJ6A9ZR4OMobfEI8L886exi/78Wvz+j73F4iUZFFpHnAx8BVmJ7iOcYYx4u9o0BzwW+ZozZ3vWS9gERuRirz/8kdghfztC/Fvh5X6OmdBcReR3wPuAurIeY+w7uNsb8e3Hsk7ENz25stIWHsJ2DnwFeaoz5bCXfRdhZ4CdhPSBvBk7Futq/wxjzx128LQUonINuB/7SGPP6ynZ9j8NI3SxL7BD2YuxcljuwjWrfZ3/2ImHD2ZyLnQU8g9XXvhc4tN9lO1ATtrNjImnaOf5EbHSJ7Vhj7heBUwJ5H4EVXD8o3vc3sZ0L6fZ9aTIAK/DM0Nf3OJwpZz2XNcCHgOOxi/Vc7zvOGHN5UoaKoijKgiVZuACIyDHA17ALhMGst5gp/jfGmIUWvFJRFEXJJHmGvoi8EDtyOQo7cvGFY1AURVGUeuFSBKr8U+AsrA7zxaYwmCqKoiiKj6hwEZHnYg2oT8a6ff6u8UekVRRFUZT91Lki7wHuBX7bGPPpnpVKURRFGWrqJlF+EvhpFSyKoihKDlneYoqiKIqSQqeBKxVFURRlHipcFEVRlNZR4aIoiqK0jgoXRekyIjIqIroConJAocJFUVpERF4tIkZEThGRPxaR72CX1315sf0jkXPWVLadX2w7QUQuEJHviciMiHxNRE715HGaiNwgIttF5BER2SYiW0Tk8V28XUUJkhz+RVGULN4DjAGbsCHib22Yz2XYUPPvARZh1yX5lIg8xRhzB4CIvLI47gvAW7CrMT4BG2p+GfDjpjehKE1R4aIo3WEx8DRjzP4120UarQp+L/BLppgzICJXY9c2+W3gj4pjXgY8jF0OY0/l3Lc0uaCitIGqxRSlO7y/Klg64CJTmYxmjPkKsAP4ycoxD2JXX3ypNJRgitI2KlwUpTvc1lI+2zzb7mN22QuAC4A7gU8BPxaRvxeR00XksJbKoCjZqHBRlO6QM2qJqaf3BrbvH6EYY74FPBV4Kdb2shxr67lFRJ6UUQ5FaQ0VLorSO+4HjvRsf2KnGRtjZowxVxpjzjXG/BxW0BwL/F6neStKE1S4KErvuA14TnXOi4g8DnhNJ5mKyFGezV8t/vqEmaJ0HfUWU5Te8T5gM/A5EbkCOAI4A2svObqDfP9NRLZjXZG/W+T7auzy41d0kK+iNEaFi6L0CGPMFhE5Fng98F6ssf7twD7g2R1k/X7g5Vj35COxBv//An7HGHN1R4VWlIZoyH1FURSlddTmoiiKorSOChdFURSldVS4KIqiKK2jwkVRFEVpHRUuiqIoSuuocFEURVFaR4WLoiiK0joqXBRFUZTWUeGiKIqitI4KF0VRFKV1/h9RaVXS0+xe3AAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"thermal_center_y_val.plot.errorbar(ax=ax, yerr=thermal_center_y_std, fmt='or')\n",
"\n",
"plt.ylabel('Y-axis center of thermal part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEHCAYAAABiAAtOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA/N0lEQVR4nO2de7wfVXXov+uE5IQkCnIwR4iXE18laC0o6KV6NUGg/Si9WtAiklRRIDUVvCCtvTWKVkG9CEhBoYU+fCTWJ4qoRY1yKLVGRcUHAj4wgFh5+QwhIcnZ94+ZIZM5M/sxs+f3mzlnfT+f/TnnN489e2bP7LX3WmuvLcYYFEVRFCUmI8MugKIoijLzUOGiKIqiREeFi6IoihIdFS6KoihKdFS4KIqiKNFR4aIoiqJEZ49hF6AL7Lvvvmbp0qW1zn3ggQdYuHBh3AIpA0Hrrr9o3XWDb37zm/cZYx5dtk+FC7B06VJuuOGGWudOTk6yYsWKuAVSBoLWXX/RuusGInJ71T5ViymKoijRUeGiKIqiREeFi6IoihIdFS6KoihKdFS4KIqiKNFR4aIoiqJER4WLoiiKEh0VLoqiKBWsWJEkJRwVLoqiKCWsXw8bN8J118HSpclvxZ+gGfoishA4EXgSMAZI4RBjjDk5UtkURVGGwvr1sHo1bNuW/L799uQ3wMqVwytXn/AWLiLyTOAzwL6WwwygwkVRFCeZumlycpilKGftWtiyZfdtW7Yk21W4+BGiFrsQmAccD+xrjBkpSXPaKaaiKMrguOOOsO3KdEKEy6HABcaYjxtjftlWgRRFmfl03Z5xwAFh25XphAiX3wL3t1UQRVFmB1X2jC4JmHPPhQULdt+2YEGyXfEjRLhcCfxxWwVRFGV2YLNndIWVK+Hyy2F0NPk9MZH8VnuLPyHC5W+AxSJyiYg8QUSKnmKKoihO+mLPWLkStm4FY2DTJhUsoYQIl18DzwT+EvghsENEdhbSjjYKqSjKzEHtGbODkHkuHyBxNVYURanNuecmNpa8akztGTMPb+FijDmpxXIoijJLyNRLJ5+cGPUnJhLBMhPUTl2euzNogmboK4qixGDlypkhTJRqgoWLiBwBHAs8Pt10G/BJY8y1MQumKIrSJ7K5O9u2JXN3ZsporC4h4V9GgPeTxBYTYCrdNQK8RkTWA68wxqhdRlFaRtUv7RPyjDUW2XRCvMXOAlYCHwcOAfZM0yHAR9N9r4tbPEVRinR9dvtMIPQZD2ruTp+WAAgRLicBXzDGvNQY811jzPY0fdcY8zLgi8CrWimloihAP2a39506z3gQc3f61qkIES6PB6627L+aXXYYRVFaoA+z2/tOnWfc9tydPnYqQoTLA8C4Zf9j0mMURWmJvsxu7zN1nnHbscj62KkIES7XA6eJyFOKO0TkycBrgP+IVTBFUaajs9vbp84zbjsWWR87FSHC5WxgFPi2iHxMRP4uTR8Hvg3MBd7cRiEVRUnQaL3tU/cZtxmLrI+dCm/hYoz5HrAc+AbwYuBNaTou3bYiPUZRlJbIesgTEyDS/Wi9ffJuyuhiROQ+dipCRi4YY24wxjybxPZyeJrGjTH/yxjzzdCLi8iIiJwpIreIyFYRuVNELhCRhR7nvkVEjCVtDy2PovSBlSuTnvHUVLej9fbNuylP1yIid1HguagV/sUYcy9wb4Trvxt4LfBJ4ALgoPT300TkKGPMlOXcK4Efl2z/A+CvsXu2KYrSIjqpMD59C5kztNhiqWPA6cCVxpgX57b/FLgYOAH4UNX5xpjvAt8tyfcf03//OWqBFaUBPrO9Z9Kse5t3U58ayEHiW/99eU8q1WIiMiUiO0RkXu53cf2WJuu5vIwkjMxFhe1XAFuAVYH3QqpOOwH4GXBN6PmK0jZVNog+q5DK6KN30zDxrf8+vSe2kUu2fsvOwu9YPIMkPtnX8xuNMVtF5MZ0fyh/BjwSuNgYs9N1sDK7OeOMQ9h773o9wPXr/UPG5wMaZuQDG85EFdIBByT3Uba9r7Q1YvCt/969J8aYoSTge8DdFfs+SiLI5gXmeT2JwHpcyHmHHnqoqcu1115b+1xluBx88K/M8uXh561bZ8yCBcYk5t4kLViQbM9YvjxJZccWz5mYKN8/MRHlNoeCzzNqwqC/u3XrjBkd3VUvse7DGP/67+J7AtxgKtpVMZ5BjEXkucDNJjHml+3fF3iyMcZrIqWI/ASYa4yZ1pcRkQ8Afw48yhjza8/8DgRuAb5kjDnK4/jVwGqA8fHxQz/84Q/7XGYamzdvZtGiRbXOVYbHhg2LOe+8A9m+fYTx8W2ccsptHHXUPV7nnnDC4dx99/xp28fHt/LhD2/cLe+REcPUVLVT5vj4Vu65ZxRjZNo+EcOXv3yd/011jCbP2EWM7+6MMw4B4KKLbrQet2HDYs4//0C2bZvz8DYRwxvecHOU+3ne85Z71b/vcYPkiCOO+KYx5rDSnVVSp5hI1GMnWva/FNgZkF/UkQtwXnrOCb7nZElHLrOLpr1qkfIepIh9pFJ1Thd7pF2n7neXH4Hkn7Ot7qvqZ2Qkzghmpo5cQua5TBeZuzOHXWu8+PBzYF8RGS3ZtwS4zxjzkFfBRPYAXg7cT+LWrCiVNI3TZJstXZa3K68+TpDLKDoodHnSZNFmkVEWBDJ/H1VOCFNT8KpXNTeq+9a/6zifZz/Q+qmSOsVEIjheZtn/HuC/A/I7h2Sk8ZzC9vkkATD/PSCvY9O8LvI9J5905DK7sI08fLCNfKryttlcsjwnJnaNZGLq9NuizA6R2Zraps53V9XzL44Aivc1NuZ3XhN8bTpVx/mc34bdCMvIxdVo/x+SZYxvS4XL3bnf+fQrErXZFbb8Cnk/Nc3zE4Xtp6eCYlVu2xOAZZa8PpOe81Tf6+eTCpd+E9qgxVAvLFu2S5DkP1RXA+ariuk6ZQJ27lxj9thjMPdX57tzCf4qtebcue7zBklRSKxZU97ZWbZs13fRloNFE+HyCuDaNE0BP8j9ztKXgU8DbwD2tOVXkv8lqVC4EjiFZJb+dmASGMkdtykZZJXmsT+wA/hayLXzaSYJlza9WrpInftt+qHZrlmVd/ahD6pnH4uq8voI0ZjeYUXqfHc+IxCbfaXNkYsvZe+XS2jaRl9Ny15buOx2IPwUeKHv8Z55ziFZPvlWYBtwF3AhsKhwnE24vCEVUKfWLcdMES5tu3/GJEYj2+R+160zZu7cHcFC2OeagxTwbQor2334qv9GR9spW+h3l9S3WxDa7qvs/Hnz4tevrU59R8a+qemoK4pwmclppgiXLnqTlBGr8W16v8V5Lj4NdReecX4OTdPnWHXPLiEa0si1IWBDvztbeX3Umtkxc+bs2jY2Vn1fdYW+q05DbHq+ddOEWCOXI4F3WPa/AzjCN78upZkiXNrqncQk5uiqqWE+X3e+DXXTazYlX85iWUJdY2337BKioS7XsUfQod+db72FTJAtw0cA1RXoxsQduQzV5rLbgfAF4GOW/R8GrvHNr0tpJggX25C+SyOXmD3/pnlldRci8IY5cvFp0OfMiWN38mmM88Jp4UJ3YxbzGcUauZSVqSh0i4Zxm73NpTorO79s7k1VWdesKb/GnDm7nCnywi2fxsY65C2224GJp9hZlv1nhrgidynNBOFS9fFkHjBdwTUBMeTlbzoKyuoutOEZll3Lt9fqUx7XPfs+k+XLk8bXZxQTc3RXx+ZSp95cDb+vqjB7n8s80ebN86vX7HqLFtnrxnWvMW2CsYTLVuDVlv2vBrb65telNBOEi00X2yWqPsCxseYff+iHktVdqKprWB55Ifp21yjBdc8xRnOhZTLG31ZR57uL0Xmx3ZetfmyRGGIlEbc9LnbnKJZw+YltHgtJqPxNvvl1KQ1TuHTFuD0oql7utlwlbdQZuQwTlyutj2DM8LnnpnaoNjsKg+jUhQgDY+z1k02QbVO4lKm9isI69rseS7hcDDwEHFWy78h036W++XUpDUu4xOxFlOUVK/ZRbMoakTqG8qZuuHVsLsMkRLi4Gos6huu6c17aUHHGEC6xPLMyla6tfnztKvlks534qNeKEylt91RXZRlLuIyn81B2pjPiz0nTZ9JtdwH7+ebXpTQs4RK7F7Fu3fQ8+zKRMvRZVDUMIQKnjrfYMPFt7ELm+tiM08VZ4KETR0OeYWj9x9AYuDpjoe7WtvopepG5hEJm6K96rtm3nqnbfCaIlrUPTducaPNcgAngc6kwmUpTJmyWhuTVpTQs4dKGW2tfeuHG7C4IQspddaytASyjbt0Na5a9zV4VUzD62BqaTBwte36ubyF/zvLlyRylJlQ9y7y3XYi7tc2mUjbSyLYXvcVGR5PRRtlIJ4Zqcr/9pkcbGLrNZbeT4FEkK0U+g2TNlaELiCYptnDxbXza0PWH5DnMUCQul0zbh2TzjAv5aNauvalW6JhhjXAG1XGIaaAvu4ey5+eavJidMzaWudxONXr+tsY4P4LJX7tKTZUvZ1n9VHl3jY1VP5vQd7mus0AnvMVmcoopXEIanzYaC1sPsDhS6GsjGcNrKrn/HUFl6MKocBD1FmJrCC171UhgbKxcPVQWlDH0+Zd1olyNcdV8oVA33zVr7NcJGSXZhHnIKCvmu9vGyGUR8FjggGKqk9+wUyzhUqfxKepOm1a2j+qk6kMeVCNZd3SV/R/SS6tqAH111HXLHQuXMCk2nDGET1sjF1e+ZVGVfcrianR9XXJ9G9+QZ+zj7OD7zF3CvI7TQNN3N6bN5QTg+6mdpTSF5NeVFEu4VFXs6Gi5+qkNtVTZR+M7UWtQrrchoTimq0PKhWNIdIJ16/w/vnz4jkF7tLmMzmW95Bgjq7ZsLj4jomJ9+Zxjm4/kGmW0/U34hPmv+2wyyt4x3/e7E4ErgT9NDfi3AJem/69Lw75sBb4OvNk3vy6lGMLF90WtahiKLoNNKObt68JaVJ21he8cC1sDV+zlhjSsofrpLJ9YHm1Nn9OcOeX36ytgferY5S2W/+07Eq7TO28ycrHVV36yoe09C2l866jffEcuVZE2Qm1YxdQ0anUs4fKfwE0kK0XumwqX56X7fh/4DfAi3/y6lJoKlxB9p0uPHEuPnn/RfXXobcQeKsNHfVinUfFVMdaZzGYz2Ibq5n2FTqxJd1XxwHzruEz1FjJzPX+ez9ojrufo8/xdz8/XLuI7crGp31whj3yfadk1q96xZcvsa9DEanNiCZffAq9P/98nFS5H5/a/C9jom1+XUlPhEtoTtnmduD6YOviUr0x11ubKgq5Grok6xEUdz5p8WJQmHm0hYW7qegBVNZB1bYLF+/UtV1n91Hnv63qLhXgVVo0E16ypzj9fPttzLRNeZXnbBFHRs8x2f/lOYj4tXLhLixHqjVZFLOHyAHBy+v+eqXB5SW7/KcBm3/y6lJoKlzbCOsS0f1TZYcbG/CdhNXkB69DUkGujjmdNiL7bmPBRR5VtKLSctkajjlqvrNGse0/Ll+/qrBSTbzTnDJ85SmXlt6kO16yp1+j6qnnzc1mq8qz6DsuES512J3aopVjC5VbgrbnfvyC3vks6crnbN78upa6NXLKPICb5XlHdkUKTBr1OeZu6oLryHx9/0Eu4Vq02aBvFhL4TNqN0SMOxZk21ajDUIcFm8/EpS9HgX3VendUcfSfAFusotDH2eedjToYOySvWyLZJeWMJl38F/iv3+3LgQeBs4C3AFuAjvvl1KXXJ5tJWI+4SLk1UHbHJG1uzhjLvLebjkuvK25jpbuQhKgkfT6SQAJ1lhtUQ11KfOHKhIxdbh8P2/hbrx/V95J9vmcAuq9u60RXqNsi22fKu5xriJBNSR3VGtrHbnFjC5RnA24E909+PBm7MhYH5HvA/fPPrUhq2t1gs/WcVPrr2ukba2Li8lMq86nztIMXj1q69abf9IQLVdz5RXvWYGfN9nDnWrfM3yIJf7z/U5mJr6KpGInW8xLLnW2aErrL71RUuMRtk3xhgMdYoqvImzXeKfL1C6y5vUUarM/SBPwCeAow0zWtYaRiTKItGymIjFBPf3lCxTIOeaBny4dsa66oZ00UhPjq6w0uVVSZQmzT6Ph2LqpAhrmfi84xjRZDwfV4+HmK+6r/s+k2jkcdWKZWNrH07dWVxxfKqTVfQ0Kp3yVZWm/o0hMbCBViYqr/+2Of4vqW2w7+U9cZj9XR8qLuQWBtlsVFn/onNOOkjrFxza6q8ekIbnpD79VkyuCyFzOC2GZWL54TacIrvla1efdXExTq79tprK9VNvmqo2I44Zd+w7Z2rej/zE3erBNSaNX62L1dZmxJLLbYVOMX3+D6lNqMih3isxByu5rF93IMQGsZUC6o683F8k4+9ohh11+UxVFetUkbs+7WNXEJVYj74vleuRrTOKKIq6GhIhyj26KXqG65652zXzzo1VZ2nGO9ODBV3LOFyE/BG3+P7lNoULjFe4KYvgatBnDvX307h2xj5qNiKw/2QxbBipeyeXJFvszqoW59lxGzcXAb9KkHbRJXmeq+yMhXtM/meuTH1Gso99thZ+j6FCFCbE0fb71zd+46ZYjjnxBIurwFuB8Z8z+lLalO4xHiBYrwErh5iHY8o27V8evfFZzN3bvizmTOnvoF2dHSHt0omm01d5zpVarGq5+sy5BcFYvFaZTaeuu+Wj03L1QN32e5iCVlbx6BKQLqiFlelEGeLYsrUrG2MnELSxETzcE+xhMvLgW8D9wEXAK9Ot+2WfPPrUhrGyKVM9TKIdeRtL5tv2V0TCpt8NHU+2rwx1ff8sbFEteJbVh91R1lyTQ4sa/RcDV4+WkCZQM47EbjCgLjerVhGe9v5MT24qpKv04frmduee8j72tZ9Z/Xgqo8yzcHQvMVyLse2NKujIpdhM8gVDaV1vc1CXgzbC1ckZEKXzwdatyHwXWUvpBeaGYV9867jvZVvSELxiXflY/Nw3ZfrvXHF53J5jtkaweL707QnXzVycak68/gI0xgjjrxgi6UOLjoC5NuH/fZLfuc90GLY4GIJl+U+yTe/LqW2lzm2edyUHesSGk2MsyHhJXwar6I+vWnK8i26Yvr08ELL4RNdIbt+jHvyxcdV2Ri30HWN4nziZvnMUVmzJrw3X2fiZpaSuS/+NhdbXmXP3vVttWFML3MkCVkqI7RNCdVKVFFbuADH93ViZEhqW7i4CB2F+Ezgq/KPX7du+gtrC29ie7l9X35bw1T1EZe5b8fUUYskajGfxiTGdX2Fv827sPhuNC2Xz6jKR3WT2aN8e+BVz2L5cr/R77p1u1SaWQckm2RY9i3ZRjRV92zrDLqeu88o1zX6z3+vLptWaP3Z6jPUvttEuOwETsz9fiTwX8ChtvP6lgYtXHw8qWwNUd2eU+hcmqa6ZVdZqiZy2VSJtg8jdOQyPv7gw9erakzqGvHLkk+vMKRHGaN+MmyGXR/B4asStS0f7JNH9hyKk5er3ufly/3uPwTXO+Fjn6taQLCIy45Z12YWoiq00US4TBWEyxi5dVxmShqkcFm3zs/obKvkJj3WkJenTW+WOvMPXMJj4cJyQV11vMiUtVENVYe5Jj/69ApDgyA2VdkZ49fZiPkuFPE1bOc7XfmwS1XhUpYt85vMWAebsM1GclWqzblzd99W5uFXrJe6ETNC4sMN1OaiwsVNqHAJMd7ZRhR1vUyKjZStcW3TD7/snmI4BISsw/7IR26zRlMIva5LRdjGyKWJt1HWqPk0MjHfhWJjahNc+brMx9fKvru6Qq/pBFLbHJliXeVHxmNj5Z2komq6rF6Ky2T4lN/1fLKyDNxbTIWLG5twKVvBL9YHUFTl+AqtvG+7q8fa1sil7OOLHd01f29z5lQthLZz2jZfG1JRped6/k1sLlXnNqmfTD3lK8xivwu+jglZOYrv6otedGdtR5K6DWmROuu/uJxkXMf5dFDy7Y7Pt9VE0KpwcaSYwsXWcNf5QH2H7r4vUd7IX/Vh2HrvtoZgZGT3RrdMTZRdI/8BxHJhLl6nal/TXnjREO7qNDTxFrOd2+Q+stnzvvHBYncA8u+2y2Bdfu2pWteMuWTE8uXJaMoWfSCkzvJlsx0X4hlWjEFWpZKvqyJsKlyuAS5O0+Wpkf/K3LZ8+ntbfl1NMaMi2xru2B9D2YuUD0xY9Bbzcem1GSNdbqeuCMBlqqc2Qr7EdI0uS3vsYXc+qPvRxvIa9E22ibtZo54vW1vPdZBhf0Lqw+XkUGfJjKYjF1v+MdXlvjQVLiFp1k6i9KnYqo9zbCx8GOxzvdiuq/nyhEYTyI/oQsLqDzv+kus52J5pyAqLVW7ftp5wk3cun7/LdtDGqKWYmoRT8U02F+iQNYJ8v72y+vJdjTPk+45hrxzGyGUiNNny62qKIVx8G25bqH0fXXtoiJWQSXcxkst/37f3m5W7ripxUPdpe6Yhs/NtvXeX7c22aJerkfJR0wxqZJF1skTqj5KqRt6ZkLaN9vONte1b9H2/ivVUVQ9VM+t9nnvTuWZQb5npjCgz9GdyiiFcfBrustnnxd6KTS1St4fi08vOGpO6YU6K18qXuU6vN/+xlU36dJ0bQ5DaGrhMcDSZ4JYn9LkWcfW0bfdhWwLCxwmliU2x6nm562+6zSVT5VU9C1+7pGtU7vNuFSdo+mgmyso3iA5h3RBFxhijwsWRBjFyieH62FSf6pNHk55Q2T02dWIos+/MnVstBLMPpen8D1essnzwQV+X1CJ5dYxvHdreD1fHpKw3busdz5tn3+/TkQhpHH1tDmDM/PnbSx1GbLaqGCMwn7Llj83wmb9UlW/bAqaJk4MKF0dqy+ZSFbbDh2Jj0eTDKDbWLlvGnDnhI6Sqe6y3Vof7vssmlZXpratGH4mOf8o68dHHi6nqOdlC2RQn+E1MuCdgFt2rXT3ysqi3ZSqgJg1XlVE5PzIPXdIgn4/rvHnzjDnySPuzz+dX9z6LZaxjc/EZubhcskPLmy1n7LtWUR06K1yAEeBM4BaSlS7vJAnnvzAgj32A84Efp3ncC1wLPMc3j1jCJV95Cxfu3kiGhLduy+0z7wIcou4wxt/LpXgfMe+hmHzWAc/cRcuevUulmeVb9eH6dCZ869Jm0LYFZbSpo3y8mOqqskJUKUU7QrFTkHkhlh2bqe1CDf5N5unYVIXZ/KD8c/d5zj42VZsAquoo2cL/+Iwsm2pUuixc/h4wqWvzqcCFwHbgy8CIx/kTwE9TgfJO4FWpsPpX4ATfcjQVLnVVMFWeQLEM0mVhJzKB59tjzRuGbdcpUkdAhvaim34YLpVm9lGHqJNiTz502TNCPepCbWK2uUqhlDl2+IzA6nRSiu9kyDNyXa94/2Uj2CrVZLEz5JrwaIup57KJlX2X+bZqzhy/yNg2OilcgKek7sufKGw/PRU4J3rkcX062tmvSVmaCJe1a29qpFpoK9RGTI+pOu7HIde3jRB8y1YHV3yqKrWWTZ2Ut2/FdA+tM7rybXBsvWLbKCOEpj33pu+Fbx4+jhpl+VfdXz5kTdkzcc0ByzqDtjL4TmOYNSMX4JxUiDynsH0+8ADwOcf5z03PPz39PRdYUKcsTYTL+PiDjRqQspcghuExthHQ1lCWqTRCkjH+4dbL7jNP2QdbNRnON7JuGaGjnbp1WPd6dZwMfO18dTzXmtgcsphcIc+tzgTiYociJDS9jzBy2ZRCrp8vg6/Q8BVCIUQVLsBC4ChgJTAeen4un8+ns/1HS/Z9BbjXcf47U+HyIuBqYEf6+4fAqpCy1BUuSTjvemEoql7UMu+o0GSblFm3fD4fTt2JcLaQNK7kcuUsC2SZ0WQtHtsHHevZZ/dWNbIoNkZ5lYuvodtGaIRm23OxvVuuTklWb77P7clPdjs4FJ9nlRrL572zPauq5+9q6H3eodHR3cvq6hzVqU8X0YQLsAb4dTYbnzTGGLA4NaafGpDX94C7K/Z9NBUU8yznfzI95p5UGK0EXgl8P93+St+y1BEuuyqzuXDJvyRNG6a5c/09WnySz0cT2rOscw3Xx+r77PLnNF3orUyHbkycUaNrEqRt5v6yZdMFfR11Vp2ebtU5tugUtvc0X1++zy6mV1TTUUFVGVwNve87FOIsNOiRyx54IiIvBt4LXJWOFP4p22eMuUdErgH+FLjCM8sFwLaKfVtzxzxUccwj0r+/A44wxjyUlvNTwG3A20Xk/caYqYr7WQ2sBhgfH2dyctKz2LBhw2LOP/9Atm2bA0jJEaaw3fD0p/+SH/xgL7ZuLZ5j2LYNHvOYbZxyym3cccdBFXm6GRmZ4vWvv4UlS+4B4Oijn8hVVy2x5Gdy/08/ZmRkiqkpcZbnEY94iPvvn1txXHKN8fFt3H33aOkxxkzbVMr8+TvYa68d3HPPKIsXJ89ryZJ7yKrujjuWO8u6ZQucddZWlizZyObNm4PqvciSJfC+9+2+bXISFi8+nLvvnl8735GRKc48M6nHE044nC1bpue1xx7JPRSLv2HDYm65Zfo7ZAxceeVWjj9+o/P6Z5xxCACrVv08954niBimprYwOfmN0nOr6mDnTsPo6NRueY2O7mT79p1s2TKvJCfD+PjudTw+7vdcd+4sfn9Z2QyTk9c5z8+zZAmceeZizjvvQLZvH5lWpoxVqxZPe1ZlZGWoekcWL97K5ORGyzuUfSzJ/d1+O1x2mdnt98kn7+Tmm2/lqKPuefisDRsWc+edy9Ljdj2b0dGdrFp1K5OTu46NRpXUKSZgI/Cl9P9p0ZGBNwK3B+TXdORydXrMOSX73p/uO8inLKEjl7qjC9fkRNekNlcK0QPb3Bvz+bnu1VXmkIlxPs/PptbxzT97TjGWqC6jyaix2CsOUWWE2gmqyl62vHQ2Oq1SMWa4bEOhjhF1nmsb8zl8yI9kXWWo8jDN2y9DJ71W3Wud0a8vxFCLkRjZT0v/LxMuJwMPBuTX1OZyWSpATivZl9ljnuVTllDh0uaM2So1gc1rpPhCuXTY+Q/XlZ/NWOwzEa8YN6lpeAuXQdqn8cnyaEu4ZGUJjY9VtgRwiCoj1MOprMxFdZpP7Dsfd9pYqppdz7VcHZ3ZVlwTbNvG9Rx8nCXK1K6+34uvM0hTYgmX3wKvTf8vEy5vAu4LyM/lLfbvjvNfmZ7/zpJ969J9T/Qpy6BGLr6pbBEi1xwV30CFxZfK1gBWGYuLOl6X4LO59frO4C77aPKUraPjWhq2beEScl9VDXBIY21reHyM+bYGr+qdHxuzu9O6PO9ChZFPZ6fMKSazRQ6SKptc6NyUPKG2HWPaMeRnxBIu1wOfTf/fTbiQzLT/rksgFPJ7KvZ5Lqty254ALCsc96hU4P0MWJTbvh+wGbjVtyyhwiWWsbwszZnj19OoenF91Fj5j6xqeH7kkdPvO5vtXufeXSMOlzrBlo+tMbPta1O4+DQCvuGBqura95plI6Kya9jKGTrpNoQQYeTzbbTZU4+BS11tw6ftCZk/1JRYwuWlqTB4G/Ck9P+jgAOBT6Qqruf75pfmeUkqSK4ETiEJ/bIdmCQ3Qx/YBJiS81en538feB3wf4HbSZwA/si3HHW8xcpcPSFxg2waAtv2IbuwnTs6Wv7h5lerq5q1u2xZc3WgD6G979Ceb542hYsrlL3PXJpQmjwLV4MXMlpvsxG39cKz0asrRtegRzC+9wB+ZStzdy+LeJA/PvbkyYwowiXJh3NSobIj93dn+v/ZIXml+c0BzgJuJfEcu4skBMyiwnGlwiXddxyJs8EDJJ5jXwCeHVKOOsKlqoed9RLLVAxz5+6KW2Trodv21e3Z5fMOdUltGmE4+/ibNHJVve8mvbJhjFxCGt6QHn3+nOK1fc51NXgho/UY6paqe7c9V9+1jmI1rHWxqRh9qaNO9Bn9hhJNuCR58fR0hPFZ4HMk8cEOC82nS6mOcLG9vBm2Co3pUZTHN19fARNiRHQll0prdNSY/fYL+2ia6JMHbXMJadSanF/n3KoGb+HC3fPNe46F1LOrvC47nMuxIG8HLLO1ucpYR5DXJcZIoiuqv6jCZSam2CMXX8p6mU0a6mK+rrD6PsR0XigL1VImCIsRpZvq4KtwCZemDU6T3mKT+6pzbpkRHKq9rKqu4TtCzV83NHRNUtYdVmGUd4BxvYttqo1s9+0T7LKKNo30IcSyudwGvNCy/0+A23zz61KqI1xcfuoh1BkZ+L5EtjxilC00Im/+o7Kp/9rspWfYhMswGpw8TRqPuueGxBJrYhfME9J5yZc/X3c2YdplB4A2bGS9HLmkdpXKSMWpwX+nb35dSnVji61ZY8zIyM6HG0qbYLH1guuMDnxfoqYjLFcPNT/6chmxQ92Ofe+x7gjDJlyG/fEOeuRiTJhQivV86i4XkK87W7l9GvBhjQKaPMNhd34yBiVcXgv8zje/LqUYi4XZcL0ILrtGcV/IS9R0hFWltig73+bOmn00IQK07Y/bVnfDVjsM2uZiTFhjF6txs3VebHkffPCvHp646Sq3Sz05rI5E03esLSN9CLWFC0lY+7PTNAV8PPc7ny4CfgFcb8uvq6mpcHH1nH1eXpdHVhPdv4+rsY2Ql9h2rzFn48dgUCOXqpD/Lpo0HnXODelINC1fdn5VtGfbKqM+NpdBOU80Ydij4xg0ES5vToVKFgV5ypJ+2FevsaaLhcUadtddP6NL2D5U315q3Y87tBEfhM1lkF5IoZSVrSw6RBsNbZUzx6JF9mvZvMXygio0btYwRgFdUW01oYlw2YtkKeGlqQB5bfo7nw4A9rHl0/XUxmJhdQyGM+FlM6b6Q7XdX4xecGgj7uMtli+TbVXBqvO7UJ9lQreqbIPq4NT1NrPNEenCsw6lC6qtJsSyuSwHHu17fJ9SE+EiUh5Ar66ro+1l60ovuEk5YgqRLOJA3UY8ZJ5LHddRH1tA2/VZdY1h279cs+jrnNf3UX8f0XkuLQoXn5GLMXEa1dAZuW00XMPsjVfZBBYtqtew+AqXKhWO696bejE1xXaNYTfSNuFmE2TDForK7sQM/7IH8BLgXSSLhf1LIf1zSH5dSW3bXGLg+qhc6qeRkellsgmg0B7vIHqIMRqWvIrIV7j4PPuQ83znXzSlzvUHpV6yCTjXZM9hqvN86YqWoW1iqcX2Ab6TM+znDfwPb/PNr0upLW+xmC+YT0/TZTjPx+dy2T9Ce7yD6CE27W0X62Pt2puiXLfq3of9HOuOnAZlByjzkPQRZOvWJRqDfPnWrStfi8Z3CeCYdMXW5iJG+xRLuFyaBpd8JfC4VJgcTRIVeR3wNWBv3/y6lNqY5xL7BfPttbtcfl0CyNWr7svIpfisy+pjdHSHV33UHblk1x3WCLDp/I+6LtQh1G3git/dunXTvcWauijXpQ8uxrHap1jC5XbgivT/ssXCJoHLfPPrUmoqXMo+Qp/Rgy8h66hkDUUTAWTLe9g2l6pyj421N1Gurs3Fll/V/I5B2Vx8zu2yWicvXLqmKhv2BFwfYgnAWMJlG7A6/X+vVLi8ILf/DOAu3/y6lJraXMo+wqarAmbkP/KxMXfI/qwMNkFkE0A+XjzDbHjqqlJizYYue9YhVNVNjPXMbeVuOpmya2odn9hitve/TfowcoklAGMJl/8Gzkz/H0mFzV/k9r8G2OKbX5dSXeGSNLI7Sj/CJqqUfP5Va4G7GoCq3rFNAMUSiG1Tp8HsygfflXLYiOlC3VZHxCe2WJNvrwl9EM5dG7lcl6nF0t8bga8Co8CC1Obyfd/8upTqChdbBfmMHlxUDeuzRYVcjayPAMqfb/sg2/wwBjXfo67NJSZ9UJnEcqFus5GtO3IZpAq3y5Mju2ZzWQv8ChhNfx+fqsYeIFmzfidwsm9+XUp1hYuroXCNHlzYPhJfQl7yYfSqB9nLKz4LX2+xmPR95BJS/jbv1WVzqeqUda2RHyYxBGAs4SKZYMltOw64EvgY8FLfvLqW2hi5ZDRpPGMIlxCGMZwfZmPb5kqUVfg847a9tFz5x3KhbnOUVuYt5hrBdE01NRPQGfotCRebzaV4XJ0egkst1gaDHs4PU000DOFijP0Zt60i9M0/hgv1oEYuxXLbRjFdGiHOBFoVLsC+wJOa5jPM1NRbzLcxDm041q2bvvTs3Lkzq/c1jJFL1nMflnCpou2RY4z8u2hzKbtulXDpgm2r627eIcRSi70cuLyw7R2prWUn8BXgEb75dSm1vViYMeEfZd792Hc9+T4yaFVc/tmOjz/YqefZtqCNlX/I6LatkbDru+uqbasPnmQhxBIuXwH+Jff7sNSgPwn8A7AdeLNvfl1KgxAuvi/7THv5fBiUKq7rz7ZtFWEfPNV88VkuoYt13VWhV5dYwuVu4Izc7/8H3AfMS39fBtzkm1+X0iCEi++H3ceXry/D/JBnO4x76svIpQv4Li/eNXfgmSTgjbELlxH82Qv4Te73kcAGY8xD6e8bSBYOU0o4oOLJFLffcUf5cVXbh8369bB6NWzblvy+/fbk9/r1wy1XGb7Pdlj3dO65sGDB7tsWLEi2t5X/3Llw110gAkuXdrPe6rJyJWzaBFNTyd+VK4ddIv92YCYQIlx+ATwJQEQeDRwCXJ/bv4jE9qKU4Ntw9O3lW7sWtmzZfduWLcn2rlH1DPfZZ/ffg76n9eth/nxYtQr23BPGxpLGfmICLr88XqO4cmWS38REkn92nR07kv1d7hjMFNruQHSKqiFNMZGs1/Ib4K+Az5LYWJbm9l+KqsWs+AzTu6orrqJPw/wy7zvYFVInY5D3NMz67rOarGuefiF0UV1XFyLZXB4L3MKuNVzemtu3B4lN5lLf/LqUBiVcfKnS91dNfhumzaNvDZRPpNxB3tMwn1+fOgZF+ixcZhI24eKtFjPG/Ax4CnBwOmI5O7d7AbAaOK/uCErZxcqVsHVr8qlnuuL162HjRrjuut1148O2efRtmP/LX5Zvz9tdBnlPw7Sx9U0Fq/SLEJsLxpidxpjvGWPuKGz/rTHmKmPMpqilmwWsX58Ii5GRaoOqTYAMy+YxKDtBXVasSFIRnwY1s02Mjia/27ynYTbwNiFa9fwUxZuqIU1VIhmlPBl4DvDcYgrNrwtpWGoxX327TXXSlmrDpmrrul2oT2UfdnnKnlUfXMtVLdYNiGRzWUAyWXIbu2bl59MUsNM3vy6lYQkXX3172TGZAGlDZ+9q8LpsZ/FprHcZVKc60Xh2ycA7bGHniwqXbhBLuFyRCpDPAK8DXlGWfPPrUhqWcPEZddgi0VatG9O0MXAJjy4bgkMEnzZQ0+lyxyGP1l03sAmXPQI0aMcC/2aM6cBUpJnBAQck9pOy7Rlr1yafdxGRRDee2QFe8QrYmc4y2nPP6muuXw8nn5zYbyYmds8jw2Vk9in3sOjbJNSuoc9PiUWIQX8+SRwxJRI+XklVH7UxuwuFzPgMcP/95R5jvp5lLiNzlz3E1AOqGfr8lFiECJcbSGfoK3Eozpgu80qq+qgnJnb97+sx5nucS3j4lHtYdFnw9QF9fko0qvRlxQQcDtwLHOZ7Tl9S1yZR5vGxqfjaQEJsJV0yMofi6+2kevty+lD3WnfdgEg2l9XAz4CNIvJV4DamxxIzxpiTI8g8JSUbDaxdm6jIDjhgup3E1wYSYitZubIbI5E69LnsXUCfnxKDELXYSSSz80eAZwN/nm4rJiUyruiuvqoMVXkMnmyy6UyMOqwoNkLCv4x4pDltFlYpx9cG0mVbyUxk2KF5FGWYhKjFlA7jq8pQlcfgsDlQaB0oM52g2GIAIrJQRI4SkZUiMt7k4iIyIiJnisgtIrJVRO4UkQtEZKHn+aYibW5SLkWJgc4ZUWYzQcJFRNYAdwFfAD5AEiUZEVmcCodTA6//buBC4AfA6cDHgNcCV4uIb9muJ7H/5JM6FQwQtSuUo3NGlNmMt3ARkRcD7wWuBU4BJNtnjLkHuAb404D8nkIiUK40xhxnjLnCGPM6ktAyRwAneGZ1mzFmXSF9xLccSkJdAdFVu0IXBJ46UCizmZCRy18D1xpjjgWuKtl/A/D7Afm9jERAXVTYfgWwBVjlm5GIzBORRQHXVnI0ERBdXOa4KwKvDw4UXRDCyswkRLg8FfikZf9/A4sD8nsGSSDMr+c3GmO2Ajem+314CYkw+p2I3CMil4jIXgHlmPU0ERBdtCt0SeC53MiHSVeEsA0Vfv0lxFtsJ3ZhtD/wQEB++wP3GWO2ley7C3iWiMwzxjxkyePrJHaaHwOPBF4AnAYsF5FnGWMqDfsisppkYijj4+NMTk4GFH0Xmzdvrn1uV7jjjuXktJy57YbJyeus5y5efDh33z2/ZPtWJic3xipiEL73MxPqrglnnXU4W7bsXndbtsBZZ21lyZLh1F2eDRsWc/75B7JtWzLD4fbb4eSTd3Lzzbdy+OGzu+56QdXU/WIiMZx/Nv1/jGTU8bz09wjwXeDfA/L7CXBHxb4PAAbY2ze/3LlvSM9d63tOV8O/DGrRpiZh1ru4/ofv/cz2ECJdXjrBGHs9zva66wpYwr+EqMXeAzxfRN4G7JNuGxGRA0lGD08BLg7IbwswWrFvfu6YUN4FPAQcU+PczjBIlUUTw3MX7QpqSHezYgXMm1e+ryvebF1UuSoBVEmdsgScQzJi2ZH7m61CeXZgXp9Pzx0t2fcV4N6Q/Arn/xT4oe/xXRy5DHrRpj4EKwzB535ma+83PyIujl6GPerMoyOX7kOkwJUYY94oIlcCK4FlJIrtHwEfNMbcECjXvgH8EfBMEpUbACIyHzgE+I/A/PLnPxYYvtK4AYPutc20mfsz7X5iURwRG5OMOI2pXjxuWJx7blLWvHOGjkD7Q3D4F2PMt4BvRbj2R0jsI2eQEy7AqcAC4GEFkIg8AZhrjLklt23MGHN/Sb5vI7mvqyOUcWh0ebVHpb+UedJlgmXTpqEUqZJMyJWtnFply1+xIvmrtv7hM7TYYsaY74nIe4HT0tHQ54CDSGboXwd8KHf4l4AJdncBeqOIHE4yqfMOYBGJt9gRwNeAS1q/iRbRXpvSBn2zY4SMQNevh40bE0G0dGm3RmGzkUrhIiL/UiM/Y8LWczkD2ETiEnwMcB+JUDjbGDPlOHcSeDLwChLvtZ0kKrq1wIUmmS/TW3zWcVGUUGbqiLjKAQb0mxkWtpHLSSXbTPq3OInApNsMAXG9jDE7gQvSZDtuacm2qyiPFDBjULuBEpuZOiLWCNTdo9IV2RTWagHGSWbOXwU8C9g7Tc8GPk1ih2kUJVlRlHbpout4DPqm7psNhNhcLgTuMcYcV9j+VeBYEbkmPeblsQqnKEp8ZuKIeKaq+/pMyCTKF2D3wLo6PUZRFGWg6MTZ7hEiXEZJ5o9U8ViqZ9writIxVqzY5brbdzJ132jaAs0UdV+fCREu/wmcLiLPLe4QkeUka7N8JVbBFEVpj8xt97rrZk604ZUrYevWZN5O1yJQz0ZChMvrgO3AtSLyNRF5f5q+Bnw53XdWG4VUBoOGN58d9CHUvtJ/vIWLMeYHwNNJZtYfxK4lhQ9Ktx1qjLmpjUIq7aMNzuyhS+vdKDOXkJELxphNxpgTgb2A/dK0tzHmRGPMbW0UUBkM2uDMHtRtVxkEQcIlIw2IeXeaXDPplR6gDc7soco9V912lZgExxYTkScBTyIJuTJtuT9jzAcilEsZMDpPYPYwU2fpK93CW7iIyDjwfuDobFPJYYZkFUmlZ2iDM3vQuHXKIAgZubyHRLBcRuIdVhbuXukp2uDMLmbiLH2lW4QIl6OBfzDGnNZWYZThog2OoiixCDHojwDfaasgiqIoyswhRLhcDxzcVkEURVGUmUPoDP1jReTFbRVGUZTBoNEYlLYJsblcBmwGPioiPwduI1n9MY8xxhwZq3CKosRHV21UBkHIyOXxwFyS9ep3AAcAjyukx8cuoKIocdFoDMog8B65lC01rChK/9BoDMogqBX+RVG6iNoR/NDwL8ogCBYuIvJIETlORP4qTceJyCPaKJyi+KJRnf3RVRuVQRAkXETkFOBO4GPAeWn6GPAzETk5fvEUxQ+1I/ijqzYqgyAkttgLgctJvMTeBGRrtzyFZBXKy0XkHmPM1dFLqSgO+m5HyJYbnpwczPU0GoPSNiEjl9cDNwOHGGMuNsZ8KU0XkywidgvwN20UUlFc9NmOMBOXHFaUEOFyMPA+Y8zm4g5jzO9IIibrDH5lKPTVjqC2ImWmEiJcykLs5zFNCqIoTcjsCBMTibdYX+wIaitSZiohM/S/A5wkIpcaYx7I7xCRRcBJaGBLZYj00Y7Qd1uRolQRIlzeBVwJfEtELgZ+kG7PDPpPBI6LWzxFmdnoCqDKTMVbLWaM+RRwGrA/cAmwIU0Xp9tOM8Zc1UIZFWXG0ldbkaK4CBm5YIy5VEQ+RLJw2OPSzbcBXzTG/CZ24RRlpqMrgCozlSDhAmCM+TXJxElFUSLQR1uRoriwqsVEZI6IvFNEXu04bo2IvF1EXB5lSgQ0hpaiKF3HZXNZBfw18A3HcV8nmUD5shiFUqrReRGKovQBl3A5HthgjPmm7aB0/+dR4dI6Oi9CUZQ+4BIuh5J4hPlwLXBYs+IoLnRehKIofcAlXPYB7vHM6970eKVF9ql4wlXbFUVRhoFLuPwO2NczrzFgWtwxRVEUZfbhEi43AX/kmdfR7ArDr7TEL38Ztl1RFGUYuITLlcBRIvIi20HpWi9HA5+IVTClnD6HllcUZfbgEi7/CPwY+KiInCsiS/M7RWSpiJwDfBT4YXq8NyIyIiJnisgtIrJVRO4UkQtEZGFIPmleC0TkNhExIvKe0PP7goYLURSlD1iFizHmQeAY4KfA3wI/EZFficgdIvIr4CfAG9L9f2KM2Rp4/XcDF5IEwTydZOb/a4GrRSRoCWbgrcCjA8/pHbpEraIofcAZ/sUY82MROQQ4FXgJSRTkxwC/Ba4nUYX9UyqIvBGRLJrylcaYF+e2/5QkGOYJwIc883o6cAbJapkXhJSjj2i4EEVRuo7X6MAYs9UYc4kxZrkxZl9jzLz074p0e5BgSXkZyQJkFxW2XwFsIYkO4ERE5qTnXENiI1IURVGGTHDgyog8A5giCR3zMMaYrSJyY7rfhzOBZcCLXQcqiqIog2GYwmV/4D5jzLaSfXcBzxKRecaYh6oyEJHHAX8HvNUYs6nocGBDRFYDqwHGx8eZnJwMKfvDbN68ufa5ynDRuusvWnfdZ5jCZQFQJlgAtuaOqRQuwD+QrCdzYejFjTGXA5cDHHbYYWbFihWhWQAwOTlJ3XOV4aJ111+07rrPMIXLFmBxxb75uWNKEZFVJHNrnmuM2R65bIqiKEoDQt19Y/JzYF8RGS3Zt4REZVY6aknPuRD4HPALEXmiiDwRmEgP2SvdtncL5VYURVEcDFO4fCO9/jPzG0VkPnAIcIPl3D1J5rQcA/wolybT/avS36fELLCiKIrixzDVYh8hmYB5Bsl8mYxTSWwtDy9/JSJPAOYaY25JNz0A/FlJno8GLiVxS/5n4LvRS60oiqI4EWPM8C4ucglwGvBJEhXXQSQz9L8CPM8YM5UetwmYMMZYl1FOvcV+CrzXGHNaQDnuBW6vcQuQRI2+r+a5ynDRuusvWnfdYMIYUxoZZZgjF0hGLZtIXIKPIXlZLgHOzgTLIKh6OD6IyA3GGF0krYdo3fUXrbvuM1ThYozZSRKuxRqyxRiz1DO/TSSz/hVFUZQhMkyDvqIoijJDUeHSnMuHXQClNlp3/UXrruMM1aCvKIqizEx05KIoiqJER4WLoiiKEh0VLoHEXJpZaYaI/J6IvFVENorIvSLyOxG5UUTWltWHiBwoIp9KV1N9QESuF5HnVeS9l4hcIiJ3pfV8k4isERH1RmwJ11LlWn/9YtjzXPrIu0kmen6SxIU6m/j5NBE5apDzcxReBbwG+DRJRIftwBHAOcDxInJ4tpBdGuXhv4AdwHnAb0iiQXxeRJ5vjNmQZSoi84AvAk8jmXd1M/B8kugP48BbBnFzs5DKpcq1/nqIMUaTZyJZ4nkK+ERh++mAAU4cdhlnUwIOA/Yq2X5OWh+n5bZ9FNgJHJLbtogkMsOtpM4t6fa/TM8/vZDvJ0iWgJgY9r3PtAQ8nURwvC599u8p7Nf661lStVgYUZZmVuJgjLnBGPObkl0fSf/+PkCqInshMGmMuTF3/mbgn4DfY/eVT08kqc8rCvleBMwFXhqh+EqKa6lyrb9+osIljMqlmYEb8V+aWWmXx6Z/707//gEwCny15NiN6d9nQGJTI+lFfzut1zxfJ+kRaz3HJVuqvCoeoNZfD1HhEoZraeZ9U32vMiTSXvCbSFQsH0o375/+vavklGzbkvTvo0iWdJh2bFrv9+WOVRpSXKq84jCtvx6iwiUM36WZleFxEfCHJMFPb023ZXVSVnfFerMdmx2vdRwPn6XKtf56iHqLhdFoaWalXUTkbSSqlcuNMe/I7crqpGzV02K92Y7Njtc6jkDAUuVafz1ERy5h1F6aWWkXEXkL8EbgX4FXF3b/PP1bpg7JtmVqlF8BD5Ydm9b7vpSrZ5QAApcq1/rrISpcwmiyNLPSEqlgeTPwfuAUk/qd5vgeiZrkD0tOPzz9ewOASeYpfYtk3lKxE/FMEm9BrefmhCxVrvXXQ1S4hPEREm+TMwrbpy3NrAwGETmbRLB8EHiVKZnEmrqsXg2sEJGDc+cuImm8fsTuHoD/RlKfqwtZnUHiKPARlKZkS5UX01+m+69Jf39a66+faFTkQHyXZlbaR0ReA7wHuIPEQ6z47O82xnwxPfaJJA3QdpIoC78l6RQ8FTjGGPP5XL7zSGaDHwxcTDLD+wXAscA5xpg3tXhbs5qqpcq1/nrIsGdx9i0Bc4CzSGYFbyPR314ILBp22WZbAt5HMpKsSpOF4w8CrgJ+TWLU/U/gqIq89yYRXD9P6/kHJJ0Kafu+ZnMCllIyQ1/rr39JRy6KoihKdNTmoiiKokRHhYuiKIoSHRUuiqIoSnRUuCiKoijRUeGiKIqiREeFi6IoihIdFS6KoihKdFS4KIqiKNFR4aIoiqJER4WLoiiKEh0VLooyIERkjojoKojKrECFi6K0gIicJCJGRI4SkTeJyE9Iltg9Pt3+Pss5K3Lb3pJuO1BE3i4iPxORbSLyHRF5QUkeLxeRr4vIr0XkARG5TUTWi8ijW7xdRZmGLnOsKO1yPjAXuIIkTPytNfN5P0m4+fOBeSRrk3xKRH7PGLMJQET+PD3ueuBskhUZ/wdJuPnFwL11b0JRQlHhoijtsifwNGPMw+u2i0idfO4D/rdJw5iLyLUk65v8BfC36THHAr8jWVdoR+7cs+tcUFGaoGoxRWmXy/KCpQF/b3LrYxhjvgFsBp6UO+Y3JCswHiM1JZiixEKFi6K0yw8j5XNbybb7gbHc77cDtwOfAu4VkU+IyCki8ohIZVAUb1S4KEq7hIxabGrqnRXbHx6hGGN+BDwZOIbE9jJBYuu5RUSeEFAORWmMChdFGTy/BPYp2f74phkbY7YZYz5njDnLGHMYiaDZH3hd07wVJQQVLooyeH4I/GF+zouIPAp4ZZNMRWTfks3fSv+WCTNFaQ31FlOUwfMeYB3wZRH5ILA3cCqJveQxDfL9goj8msQV+c4035MAA3ywQb6KEowKF0UZMMaY9SKyP3AacCGJsf6twBTwPxtkfRlwPIl78j4kBv9vA6cbY65tVGhFCURy3o2KoiiKEgW1uSiKoijRUeGiKIqiREeFi6IoihIdFS6KoihKdFS4KIqiKNFR4aIoiqJER4WLoiiKEh0VLoqiKEp0VLgoiqIo0VHhoiiKokTn/wMiwo30omGE1AAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fitFullResult = fitAnalyser.get_fit_full_result(fitResult)\n",
"condensateFraction = fitFullResult['A_amplitude'] / (fitFullResult['A_amplitude'] + fitFullResult['B_amplitude'])\n",
"condensateFraction_value, condensateFraction_std = seperate_uncertainty(condensateFraction)\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"condensateFraction_value.plot.errorbar(ax=ax, yerr=condensateFraction_std, fmt='ob')\n",
"\n",
"plt.ylabel('Condensate Fraction')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The total Ncount is: 849.84 ± 73.69\n",
"The total Ncount from fit is: 853.43 ± 66.18\n",
"The Ncount of the BEC part is: 528.79 ± 65.37\n",
"The Ncount of the thermal part is: 324.64 ± 35.62\n",
"The x-axis width of the BEC part is: 4.06 ± 0.28\n",
"The y-axis width of the BEC part is: 11.03 ± 0.36\n",
"The x-axis width of the thermal part is: 15.30 ± 0.91\n",
"The y-axis width of the thermal part is: 12.99 ± 0.61\n",
"The x-axis center of the BEC part is: 47.44 ± 1.82\n",
"The y-axis center of the BEC part is: 51.13 ± 1.83\n",
"The x-axis center of the thermal part is: 49.62 ± 1.54\n",
"The y-axis center of the thermal part is: 51.17 ± 1.37\n",
"The condensate fraction is: 0.6180 ± 0.0464\n"
]
}
],
"source": [
"val = Ncount.mean().item()\n",
"std = Ncount.std().item()\n",
"print(f'The total Ncount is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = total_Ncount_val.mean().item()\n",
"std = total_Ncount_val.std().item()\n",
"print(f'The total Ncount from fit is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = BEC_Ncount_val.mean().item()\n",
"std = BEC_Ncount_val.std().item()\n",
"print(f'The Ncount of the BEC part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = thermal_Ncount_val.mean().item()\n",
"std = thermal_Ncount_val.std().item()\n",
"print(f'The Ncount of the thermal part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = BEC_width_x_val.mean().item()\n",
"std = BEC_width_x_val.std().item()\n",
"print(f'The x-axis width of the BEC part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = BEC_width_y_val.mean().item()\n",
"std = BEC_width_y_val.std().item()\n",
"print(f'The y-axis width of the BEC part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = thermal_width_x_val.mean().item()\n",
"std = thermal_width_x_val.std().item()\n",
"print(f'The x-axis width of the thermal part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = thermal_width_y_val.mean().item()\n",
"std = thermal_width_y_val.std().item()\n",
"print(f'The y-axis width of the thermal part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = BEC_center_x_val.mean().item()\n",
"std = BEC_center_x_val.std().item()\n",
"print(f'The x-axis center of the BEC part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = BEC_center_y_val.mean().item()\n",
"std = BEC_center_y_val.std().item()\n",
"print(f'The y-axis center of the BEC part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = thermal_center_x_val.mean().item()\n",
"std = thermal_center_x_val.std().item()\n",
"print(f'The x-axis center of the thermal part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = thermal_center_y_val.mean().item()\n",
"std = thermal_center_y_val.std().item()\n",
"print(f'The y-axis center of the thermal part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = condensateFraction_value.mean().item()\n",
"std = condensateFraction_value.std().item()\n",
"print(f'The condensate fraction is: {val: .4f} \\u00B1 {std: .4f}')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
"Dimensions: (runs: 550)\n",
"Coordinates:\n",
" * runs (runs) float64 0.0 1.0 2.0 3.0 4.0 ... 546.0 547.0 548.0 549.0\n",
"Data variables:\n",
" runTine (runs) datetime64[ns] 2023-05-09T14:30:03 ... 2023-05-09T15:56:53\n",
"Attributes: (12/101)\n",
" TOF_free: 0.02\n",
" abs_img_freq: 110.858\n",
" absorption_imaging_flag: True\n",
" backup_data: True\n",
" blink_off_time: nan\n",
" blink_on_time: nan\n",
" ... ...\n",
" y_offset_img: 0\n",
" z_offset: 0.189\n",
" z_offset_img: 0.189\n",
" runs: [ 0. 1. 2. 3. 4. 5. 6. ...\n",
" scanAxis: [&#x27;runs&#x27;]\n",
" scanAxisLength: [550.]</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-cd06b240-0b7e-418f-a977-82ca527b4c0a' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-cd06b240-0b7e-418f-a977-82ca527b4c0a' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>runs</span>: 550</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-724ea8c0-0592-496a-964d-b89b9b308e96' class='xr-section-summary-in' type='checkbox' checked><label for='section-724ea8c0-0592-496a-964d-b89b9b308e96' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>runs</span></div><div class='xr-var-dims'>(runs)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0 1.0 2.0 ... 547.0 548.0 549.0</div><input id='attrs-32419c0b-933c-4dea-b1c1-27cae21d968d' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-32419c0b-933c-4dea-b1c1-27cae21d968d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7089c4b7-9f1b-469c-a99a-23822b3b1795' class='xr-var-data-in' type='checkbox'><label for='data-7089c4b7-9f1b-469c-a99a-23822b3b1795' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([ 0., 1., 2., ..., 547., 548., 549.])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-ec0f52a0-d8a2-4577-a9d1-dd42c40d9b93' class='xr-section-summary-in' type='checkbox' checked><label for='section-ec0f52a0-d8a2-4577-a9d1-dd42c40d9b93' class='xr-section-summary' >Data variables: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>runTine</span></div><div class='xr-var-dims'>(runs)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2023-05-09T14:30:03 ... 2023-05-...</div><input id='attrs-3d78a83c-f2ae-4c0f-8466-fdc80820018d' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3d78a83c-f2ae-4c0f-8466-fdc80820018d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-175d5729-7c48-4351-9fd8-0e4a6e4858d8' class='xr-var-data-in' type='checkbox'><label for='data-175d5729-7c48-4351-9fd8-0e4a6e4858d8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([&#x27;2023-05-09T14:30:03.000000000&#x27;, &#x27;2023-05-09T14:30:11.000000000&#x27;,\n",
" &#x27;2023-05-09T14:30:19.000000000&#x27;, &#x27;2023-05-09T14:30:27.000000000&#x27;,\n",
" &#x27;2023-05-09T14:30:35.000000000&#x27;, &#x27;2023-05-09T14:30:43.000000000&#x27;,\n",
" &#x27;2023-05-09T14:30:52.000000000&#x27;, &#x27;2023-05-09T14:31:00.000000000&#x27;,\n",
" &#x27;2023-05-09T14:31:08.000000000&#x27;, &#x27;2023-05-09T14:31:16.000000000&#x27;,\n",
" &#x27;2023-05-09T14:31:24.000000000&#x27;, &#x27;2023-05-09T14:31:33.000000000&#x27;,\n",
" &#x27;2023-05-09T14:31:41.000000000&#x27;, &#x27;2023-05-09T14:31:49.000000000&#x27;,\n",
" &#x27;2023-05-09T14:31:57.000000000&#x27;, &#x27;2023-05-09T14:32:05.000000000&#x27;,\n",
" &#x27;2023-05-09T14:32:13.000000000&#x27;, &#x27;2023-05-09T14:32:22.000000000&#x27;,\n",
" &#x27;2023-05-09T14:32:30.000000000&#x27;, &#x27;2023-05-09T14:32:38.000000000&#x27;,\n",
" &#x27;2023-05-09T14:32:46.000000000&#x27;, &#x27;2023-05-09T14:32:54.000000000&#x27;,\n",
" &#x27;2023-05-09T14:33:03.000000000&#x27;, &#x27;2023-05-09T14:33:11.000000000&#x27;,\n",
" &#x27;2023-05-09T14:33:19.000000000&#x27;, &#x27;2023-05-09T14:33:27.000000000&#x27;,\n",
" &#x27;2023-05-09T14:33:35.000000000&#x27;, &#x27;2023-05-09T14:33:44.000000000&#x27;,\n",
" &#x27;2023-05-09T14:33:52.000000000&#x27;, &#x27;2023-05-09T14:34:00.000000000&#x27;,\n",
" &#x27;2023-05-09T14:34:08.000000000&#x27;, &#x27;2023-05-09T14:34:16.000000000&#x27;,\n",
" &#x27;2023-05-09T14:34:24.000000000&#x27;, &#x27;2023-05-09T14:34:32.000000000&#x27;,\n",
" &#x27;2023-05-09T14:34:41.000000000&#x27;, &#x27;2023-05-09T14:34:49.000000000&#x27;,\n",
" &#x27;2023-05-09T14:34:57.000000000&#x27;, &#x27;2023-05-09T14:35:05.000000000&#x27;,\n",
" &#x27;2023-05-09T14:35:13.000000000&#x27;, &#x27;2023-05-09T14:35:21.000000000&#x27;,\n",
"...\n",
" &#x27;2023-05-09T15:51:57.000000000&#x27;, &#x27;2023-05-09T15:52:05.000000000&#x27;,\n",
" &#x27;2023-05-09T15:52:13.000000000&#x27;, &#x27;2023-05-09T15:52:21.000000000&#x27;,\n",
" &#x27;2023-05-09T15:52:29.000000000&#x27;, &#x27;2023-05-09T15:52:37.000000000&#x27;,\n",
" &#x27;2023-05-09T15:52:45.000000000&#x27;, &#x27;2023-05-09T15:52:53.000000000&#x27;,\n",
" &#x27;2023-05-09T15:53:01.000000000&#x27;, &#x27;2023-05-09T15:53:09.000000000&#x27;,\n",
" &#x27;2023-05-09T15:53:17.000000000&#x27;, &#x27;2023-05-09T15:53:25.000000000&#x27;,\n",
" &#x27;2023-05-09T15:53:33.000000000&#x27;, &#x27;2023-05-09T15:53:41.000000000&#x27;,\n",
" &#x27;2023-05-09T15:53:49.000000000&#x27;, &#x27;2023-05-09T15:53:57.000000000&#x27;,\n",
" &#x27;2023-05-09T15:54:05.000000000&#x27;, &#x27;2023-05-09T15:54:13.000000000&#x27;,\n",
" &#x27;2023-05-09T15:54:21.000000000&#x27;, &#x27;2023-05-09T15:54:29.000000000&#x27;,\n",
" &#x27;2023-05-09T15:54:37.000000000&#x27;, &#x27;2023-05-09T15:54:45.000000000&#x27;,\n",
" &#x27;2023-05-09T15:54:53.000000000&#x27;, &#x27;2023-05-09T15:55:01.000000000&#x27;,\n",
" &#x27;2023-05-09T15:55:09.000000000&#x27;, &#x27;2023-05-09T15:55:17.000000000&#x27;,\n",
" &#x27;2023-05-09T15:55:25.000000000&#x27;, &#x27;2023-05-09T15:55:33.000000000&#x27;,\n",
" &#x27;2023-05-09T15:55:41.000000000&#x27;, &#x27;2023-05-09T15:55:49.000000000&#x27;,\n",
" &#x27;2023-05-09T15:55:57.000000000&#x27;, &#x27;2023-05-09T15:56:05.000000000&#x27;,\n",
" &#x27;2023-05-09T15:56:13.000000000&#x27;, &#x27;2023-05-09T15:56:21.000000000&#x27;,\n",
" &#x27;2023-05-09T15:56:29.000000000&#x27;, &#x27;2023-05-09T15:56:37.000000000&#x27;,\n",
" &#x27;2023-05-09T15:56:45.000000000&#x27;, &#x27;2023-05-09T15:56:53.000000000&#x27;],\n",
" dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-17f5e238-5610-487b-a37e-5dba450723f9' class='xr-section-summary-in' type='checkbox' ><label for='section-17f5e238-5610-487b-a37e-5dba450723f9' class='xr-section-summary' >Indexes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>runs</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-37314a82-908e-4d92-9dcc-3bf449a409a2' class='xr-index-data-in' type='checkbox'/><label for='index-37314a82-908e-4d92-9dcc-3bf449a409a2' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,\n",
" 9.0,\n",
" ...\n",
" 540.0, 541.0, 542.0, 543.0, 544.0, 545.0, 546.0, 547.0, 548.0,\n",
" 549.0],\n",
" dtype=&#x27;float64&#x27;, name=&#x27;runs&#x27;, length=550))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-925fbf77-16f9-48bc-b0e4-7231ed587a6e' class='xr-section-summary-in' type='checkbox' ><label for='section-925fbf77-16f9-48bc-b0e4-7231ed587a6e' class='xr-section-summary' >Attributes: <span>(101)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>TOF_free :</span></dt><dd>0.02</dd><dt><span>abs_img_freq :</span></dt><dd>110.858</dd><dt><span>absorption_imaging_flag :</span></dt><dd>True</dd><dt><span>backup_data :</span></dt><dd>True</dd><dt><span>blink_off_time :</span></dt><dd>nan</dd><dt><span>blink_on_time :</span></dt><dd>nan</dd><dt><span>c_duration :</span></dt><dd>0.2</dd><dt><span>cmot_final_current :</span></dt><dd>0.65</dd><dt><span>cmot_hold :</span></dt><dd>0.06</dd><dt><span>cmot_initial_current :</span></dt><dd>0.18</dd><dt><span>compX_current :</span></dt><dd>0.005</dd><dt><span>compX_current_sg :</span></dt><dd>0</dd><dt><span>compX_final_current :</span></dt><dd>0.005</dd><dt><span>compX_initial_current :</span></dt><dd>0.005</dd><dt><span>compY_current :</span></dt><dd>0</dd><dt><span>compY_current_sg :</span></dt><dd>0</dd><dt><span>compY_final_current :</span></dt><dd>0.0</dd><dt><span>compY_initial_current :</span></dt><dd>0</dd><dt><span>compZ_current :</span></dt><dd>0</dd><dt><span>compZ_current_sg :</span></dt><dd>0.189</dd><dt><span>compZ_final_current :</span></dt><dd>0.2729</dd><dt><span>compZ_initial_current :</span></dt><dd>0</dd><dt><span>default_camera :</span></dt><dd>0</dd><dt><span>evap_1_arm_1_final_pow :</span></dt><dd>0.35</dd><dt><span>evap_1_arm_1_mod_depth_final :</span></dt><dd>0</dd><dt><span>evap_1_arm_1_mod_depth_initial :</span></dt><dd>1.0</dd><dt><span>evap_1_arm_1_mod_ramp_duration :</span></dt><dd>1.15</dd><dt><span>evap_1_arm_1_pow_ramp_duration :</span></dt><dd>1.65</dd><dt><span>evap_1_arm_1_start_pow :</span></dt><dd>7</dd><dt><span>evap_1_arm_2_final_pow :</span></dt><dd>5</dd><dt><span>evap_1_arm_2_ramp_duration :</span></dt><dd>0.5</dd><dt><span>evap_1_arm_2_start_pow :</span></dt><dd>0</dd><dt><span>evap_1_mod_ramp_trunc_value :</span></dt><dd>1</dd><dt><span>evap_1_pow_ramp_trunc_value :</span></dt><dd>1.0</dd><dt><span>evap_1_rate_constant_1 :</span></dt><dd>0.525</dd><dt><span>evap_1_rate_constant_2 :</span></dt><dd>0.51</dd><dt><span>evap_2_arm_1_final_pow :</span></dt><dd>0.037</dd><dt><span>evap_2_arm_1_start_pow :</span></dt><dd>0.35</dd><dt><span>evap_2_arm_2_final_pow :</span></dt><dd>0.09</dd><dt><span>evap_2_arm_2_start_pow :</span></dt><dd>5</dd><dt><span>evap_2_ramp_duration :</span></dt><dd>1.0</dd><dt><span>evap_2_ramp_trunc_value :</span></dt><dd>1.0</dd><dt><span>evap_2_rate_constant_1 :</span></dt><dd>0.37</dd><dt><span>evap_2_rate_constant_2 :</span></dt><dd>0.71</dd><dt><span>evap_3_arm_1_final_pow :</span></dt><dd>0.1038</dd><dt><span>evap_3_arm_1_mod_depth_final :</span></dt><dd>0.43</dd><dt><span>evap_3_arm_1_mod_depth_initial :</span></dt><dd>0</dd><dt><span>evap_3_arm_1_start_pow :</span></dt><dd>0.037</dd><dt><span>evap_3_ramp_duration :</span></dt><dd>0.1</dd><dt><span>evap_3_ramp_trunc_value :</span></dt><dd>1.0</dd><dt><span>evap_3_rate_constant_1 :</span></dt><dd>-0.879</dd><dt><span>evap_3_rate_constant_2 :</span></dt><dd>-0.297</dd><dt><span>final_amp :</span></dt><dd>0.0001</dd><dt><span>final_freq :</span></dt><dd>104.0</dd><dt><span>gradCoil_current :</span></dt><dd>0.18</dd><dt><span>gradCoil_current_sg :</span></dt><dd>0</dd><dt><span>imaging_method :</span></dt><dd>in_situ_absorption</dd><dt><span>imaging_pulse_duration :</span></dt><dd>2.5e-05</dd><dt><span>imaging_wavelength :</span></dt><dd>4.21291e-07</dd><dt><span>initial_amp :</span></dt><dd>0.62</dd><dt><span>initial_freq :</span></dt><dd>102.13</dd><dt><span>mod_depth_initial :</span></dt><dd>1.0</dd><dt><span>mot_3d_amp :</span></dt><dd>0.62</dd><dt><span>mot_3d_camera_exposure_time :</span></dt><dd>0.002</dd><dt><span>mot_3d_camera_trigger_duration :</span></dt><dd>0.00025</dd><dt><span>mot_3d_freq :</span></dt><dd>102.13</dd><dt><span>mot_load_duration :</span></dt><dd>2</dd><dt><span>odt_axis_camera_trigger_duration :</span></dt><dd>0.002</dd><dt><span>odt_hold_time_1 :</span></dt><dd>0.01</dd><dt><span>odt_hold_time_2 :</span></dt><dd>0.1</dd><dt><span>odt_hold_time_3 :</span></dt><dd>0.1</dd><dt><span>odt_hold_time_4 :</span></dt><dd>1</dd><dt><span>pow_arm_1 :</span></dt><dd>7</dd><dt><span>pow_arm_2 :</span></dt><dd>0</dd><dt><span>pulse_delay :</span></dt><dd>8e-05</dd><dt><span>push_amp :</span></dt><dd>0.16</dd><dt><span>push_freq :</span></dt><dd>102.75</dd><dt><span>ramp_duration :</span></dt><dd>1</dd><dt><span>recomp_ramp_duration :</span></dt><dd>0.5</dd><dt><span>recomp_ramp_pow_fin_arm_1 :</span></dt><dd>0.1038</dd><dt><span>recomp_ramp_pow_fin_arm_2 :</span></dt><dd>0.09</dd><dt><span>recomp_ramp_pow_ini_arm_1 :</span></dt><dd>0.1038</dd><dt><span>recomp_ramp_pow_ini_arm_2 :</span></dt><dd>0.09</dd><dt><span>save_results :</span></dt><dd>False</dd><dt><span>sin_mod_amplitude :</span></dt><dd>0.0025900000000000003</dd><dt><span>sin_mod_dc_offset :</span></dt><dd>0.037</dd><dt><span>sin_mod_duration :</span></dt><dd>nan</dd><dt><span>sin_mod_freq :</span></dt><dd>nan</dd><dt><span>sin_mod_phase :</span></dt><dd>0.0</dd><dt><span>stern_gerlach_duration :</span></dt><dd>0.001</dd><dt><span>wait_after_2dmot_off :</span></dt><dd>0</dd><dt><span>wait_time_between_images :</span></dt><dd>0.22</dd><dt><span>x_offset :</span></dt><dd>0</dd><dt><span>x_offset_img :</span></dt><dd>0</dd><dt><span>y_offset :</span></dt><dd>0</dd><dt><span>y_offset_img :</span></dt><dd>0</dd><dt><span>z_offset :</span></dt><dd>0.189</dd><dt><span>z_offset_img :</span></dt><dd>0.189</dd><dt><span>runs :</span></dt><dd>[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.\n",
" 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.\n",
" 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41.\n",
" 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55.\n",
" 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69.\n",
" 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83.\n",
" 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97.\n",
" 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111.\n",
" 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125.\n",
" 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139.\n",
" 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153.\n",
" 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167.\n",
" 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179. 180. 181.\n",
" 182. 183. 184. 185. 186. 187. 188. 189. 190. 191. 192. 193. 194. 195.\n",
" 196. 197. 198. 199. 200. 201. 202. 203. 204. 205. 206. 207. 208. 209.\n",
" 210. 211. 212. 213. 214. 215. 216. 217. 218. 219. 220. 221. 222. 223.\n",
" 224. 225. 226. 227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237.\n",
" 238. 239. 240. 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 251.\n",
" 252. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 265.\n",
" 266. 267. 268. 269. 270. 271. 272. 273. 274. 275. 276. 277. 278. 279.\n",
" 280. 281. 282. 283. 284. 285. 286. 287. 288. 289. 290. 291. 292. 293.\n",
" 294. 295. 296. 297. 298. 299. 300. 301. 302. 303. 304. 305. 306. 307.\n",
" 308. 309. 310. 311. 312. 313. 314. 315. 316. 317. 318. 319. 320. 321.\n",
" 322. 323. 324. 325. 326. 327. 328. 329. 330. 331. 332. 333. 334. 335.\n",
" 336. 337. 338. 339. 340. 341. 342. 343. 344. 345. 346. 347. 348. 349.\n",
" 350. 351. 352. 353. 354. 355. 356. 357. 358. 359. 360. 361. 362. 363.\n",
" 364. 365. 366. 367. 368. 369. 370. 371. 372. 373. 374. 375. 376. 377.\n",
" 378. 379. 380. 381. 382. 383. 384. 385. 386. 387. 388. 389. 390. 391.\n",
" 392. 393. 394. 395. 396. 397. 398. 399. 400. 401. 402. 403. 404. 405.\n",
" 406. 407. 408. 409. 410. 411. 412. 413. 414. 415. 416. 417. 418. 419.\n",
" 420. 421. 422. 423. 424. 425. 426. 427. 428. 429. 430. 431. 432. 433.\n",
" 434. 435. 436. 437. 438. 439. 440. 441. 442. 443. 444. 445. 446. 447.\n",
" 448. 449. 450. 451. 452. 453. 454. 455. 456. 457. 458. 459. 460. 461.\n",
" 462. 463. 464. 465. 466. 467. 468. 469. 470. 471. 472. 473. 474. 475.\n",
" 476. 477. 478. 479. 480. 481. 482. 483. 484. 485. 486. 487. 488. 489.\n",
" 490. 491. 492. 493. 494. 495. 496. 497. 498. 499. 500. 501. 502. 503.\n",
" 504. 505. 506. 507. 508. 509. 510. 511. 512. 513. 514. 515. 516. 517.\n",
" 518. 519. 520. 521. 522. 523. 524. 525. 526. 527. 528. 529. 530. 531.\n",
" 532. 533. 534. 535. 536. 537. 538. 539. 540. 541. 542. 543. 544. 545.\n",
" 546. 547. 548. 549.]</dd><dt><span>scanAxis :</span></dt><dd>[&#x27;runs&#x27;]</dd><dt><span>scanAxisLength :</span></dt><dd>[550.]</dd></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (runs: 550)\n",
"Coordinates:\n",
" * runs (runs) float64 0.0 1.0 2.0 3.0 4.0 ... 546.0 547.0 548.0 549.0\n",
"Data variables:\n",
" runTine (runs) datetime64[ns] 2023-05-09T14:30:03 ... 2023-05-09T15:56:53\n",
"Attributes: (12/101)\n",
" TOF_free: 0.02\n",
" abs_img_freq: 110.858\n",
" absorption_imaging_flag: True\n",
" backup_data: True\n",
" blink_off_time: nan\n",
" blink_on_time: nan\n",
" ... ...\n",
" y_offset_img: 0\n",
" z_offset: 0.189\n",
" z_offset_img: 0.189\n",
" runs: [ 0. 1. 2. 3. 4. 5. 6. ...\n",
" scanAxis: ['runs']\n",
" scanAxisLength: [550.]"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"i=0\n",
"runTime = read_hdf5_run_time(filePath, datesetOfGlobal=dataSetOfGlobalDict[dskey[groupList[i]]])\n",
"runTime"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.DataArray &#x27;OD&#x27; (time: 550)&gt;\n",
"array([ 750.47641876, 738.34281204, 784.41476569, 796.02169322,\n",
" 952.51855344, 882.92079597, 863.59651678, 866.57709198,\n",
" 941.99125428, 783.16551019, 946.27689189, 918.33176133,\n",
" 941.81141492, 947.74774665, 892.61913887, 977.17520626,\n",
" 945.34126351, 956.52682689, 804.78165476, 939.49484698,\n",
" 953.56682753, 879.61475127, 846.05592616, 830.90774024,\n",
" 910.80224254, 839.43361196, 863.23083974, 873.50170576,\n",
" 850.29285459, 949.59349556, 707.93266373, 946.74069024,\n",
" 941.71185143, 946.57095286, 914.32343568, 947.09283187,\n",
" 954.03294364, 784.23261906, 786.97273688, 832.62952621,\n",
" 903.46885276, 794.84132388, 987.33131008, 920.97693631,\n",
" 982.49210229, 790.82171889, 796.04783468, 672.41580595,\n",
" 726.07270248, 709.64654892, 820.34697312, 839.24755133,\n",
" 830.20821813, 905.60581009, 832.01909227, 614.3819873 ,\n",
" 723.89815083, 930.88065587, 825.30243762, 842.16853182,\n",
" 960.03822443, 970.87588969, 867.93951095, 796.77918204,\n",
" 715.07236109, 867.86554561, 949.15778283, 938.56330193,\n",
" 857.52360377, 880.71776388, 856.94886599, 923.54732893,\n",
" 840.56332593, 934.82056594, 938.21743126, 841.27262899,\n",
" 935.776538 , 810.94173848, 926.17365109, 746.68729357,\n",
"...\n",
" 865.51482127, 833.61692314, 821.20906768, 933.87516973,\n",
" 810.80092789, 824.63722508, 859.85285532, 913.23783203,\n",
" 789.32182143, 814.52479359, 843.87902457, 857.31154799,\n",
" 896.47897516, 872.95758519, 761.01860691, 806.85333498,\n",
" 947.18607913, 882.95786654, 660.90304299, 779.06534297,\n",
" 824.68260644, 960.00725562, 931.83023265, 925.32091745,\n",
" 876.67147414, 808.28701944, 865.12927984, 907.22865863,\n",
" 849.53390823, 827.70871779, 726.90703872, 878.79705242,\n",
" 960.28888691, 750.46295033, 903.46216093, 862.60511899,\n",
" 956.07697944, 881.35524969, 837.32695128, 791.87607618,\n",
" 811.78036383, 902.4373154 , 942.28581666, 874.3906838 ,\n",
" 896.64409276, 787.28302139, 963.13514734, 877.87315412,\n",
" 833.86614596, 826.5946265 , 735.16788438, 922.53477054,\n",
" 880.6268579 , 867.12639832, 852.01398293, 828.11720597,\n",
" 891.6310036 , 807.47838578, 895.25022758, 822.18630467,\n",
" 943.8055441 , 845.66585589, 729.57792525, 884.88667118,\n",
" 796.64506694, 855.18595889, 803.11938466, 832.46778894,\n",
" 858.2150589 , 937.40605043, 853.13728532, 910.90015676,\n",
" 780.99561864, 883.83375992, 804.26394636, 978.32360651,\n",
" 901.75651529, 884.02352999])\n",
"Coordinates:\n",
" * time (time) datetime64[ns] 2023-05-09T14:30:03 ... 2023-05-09T15:56:53</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'OD'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 550</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-4c8959c9-9de2-4cde-b4aa-7cd7c662f9ad' class='xr-array-in' type='checkbox' checked><label for='section-4c8959c9-9de2-4cde-b4aa-7cd7c662f9ad' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>750.5 738.3 784.4 796.0 952.5 882.9 ... 883.8 804.3 978.3 901.8 884.0</span></div><div class='xr-array-data'><pre>array([ 750.47641876, 738.34281204, 784.41476569, 796.02169322,\n",
" 952.51855344, 882.92079597, 863.59651678, 866.57709198,\n",
" 941.99125428, 783.16551019, 946.27689189, 918.33176133,\n",
" 941.81141492, 947.74774665, 892.61913887, 977.17520626,\n",
" 945.34126351, 956.52682689, 804.78165476, 939.49484698,\n",
" 953.56682753, 879.61475127, 846.05592616, 830.90774024,\n",
" 910.80224254, 839.43361196, 863.23083974, 873.50170576,\n",
" 850.29285459, 949.59349556, 707.93266373, 946.74069024,\n",
" 941.71185143, 946.57095286, 914.32343568, 947.09283187,\n",
" 954.03294364, 784.23261906, 786.97273688, 832.62952621,\n",
" 903.46885276, 794.84132388, 987.33131008, 920.97693631,\n",
" 982.49210229, 790.82171889, 796.04783468, 672.41580595,\n",
" 726.07270248, 709.64654892, 820.34697312, 839.24755133,\n",
" 830.20821813, 905.60581009, 832.01909227, 614.3819873 ,\n",
" 723.89815083, 930.88065587, 825.30243762, 842.16853182,\n",
" 960.03822443, 970.87588969, 867.93951095, 796.77918204,\n",
" 715.07236109, 867.86554561, 949.15778283, 938.56330193,\n",
" 857.52360377, 880.71776388, 856.94886599, 923.54732893,\n",
" 840.56332593, 934.82056594, 938.21743126, 841.27262899,\n",
" 935.776538 , 810.94173848, 926.17365109, 746.68729357,\n",
"...\n",
" 865.51482127, 833.61692314, 821.20906768, 933.87516973,\n",
" 810.80092789, 824.63722508, 859.85285532, 913.23783203,\n",
" 789.32182143, 814.52479359, 843.87902457, 857.31154799,\n",
" 896.47897516, 872.95758519, 761.01860691, 806.85333498,\n",
" 947.18607913, 882.95786654, 660.90304299, 779.06534297,\n",
" 824.68260644, 960.00725562, 931.83023265, 925.32091745,\n",
" 876.67147414, 808.28701944, 865.12927984, 907.22865863,\n",
" 849.53390823, 827.70871779, 726.90703872, 878.79705242,\n",
" 960.28888691, 750.46295033, 903.46216093, 862.60511899,\n",
" 956.07697944, 881.35524969, 837.32695128, 791.87607618,\n",
" 811.78036383, 902.4373154 , 942.28581666, 874.3906838 ,\n",
" 896.64409276, 787.28302139, 963.13514734, 877.87315412,\n",
" 833.86614596, 826.5946265 , 735.16788438, 922.53477054,\n",
" 880.6268579 , 867.12639832, 852.01398293, 828.11720597,\n",
" 891.6310036 , 807.47838578, 895.25022758, 822.18630467,\n",
" 943.8055441 , 845.66585589, 729.57792525, 884.88667118,\n",
" 796.64506694, 855.18595889, 803.11938466, 832.46778894,\n",
" 858.2150589 , 937.40605043, 853.13728532, 910.90015676,\n",
" 780.99561864, 883.83375992, 804.26394636, 978.32360651,\n",
" 901.75651529, 884.02352999])</pre></div></div></li><li class='xr-section-item'><input id='section-f804cc38-6645-4485-b406-6754104ee681' class='xr-section-summary-in' type='checkbox' checked><label for='section-f804cc38-6645-4485-b406-6754104ee681' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2023-05-09T14:30:03 ... 2023-05-...</div><input id='attrs-9213bcb7-5ee6-48cf-b09a-0c5cd151b8af' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9213bcb7-5ee6-48cf-b09a-0c5cd151b8af' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-42a72a86-fa48-4c92-9382-71700e4cf714' class='xr-var-data-in' type='checkbox'><label for='data-42a72a86-fa48-4c92-9382-71700e4cf714' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([&#x27;2023-05-09T14:30:03.000000000&#x27;, &#x27;2023-05-09T14:30:11.000000000&#x27;,\n",
" &#x27;2023-05-09T14:30:19.000000000&#x27;, ..., &#x27;2023-05-09T15:56:37.000000000&#x27;,\n",
" &#x27;2023-05-09T15:56:45.000000000&#x27;, &#x27;2023-05-09T15:56:53.000000000&#x27;],\n",
" dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-94c26d6c-b870-4a89-9cbc-a73faa341448' class='xr-section-summary-in' type='checkbox' ><label for='section-94c26d6c-b870-4a89-9cbc-a73faa341448' class='xr-section-summary' >Indexes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-ff35afc6-833c-4fd3-a313-3442ff8b7a76' class='xr-index-data-in' type='checkbox'/><label for='index-ff35afc6-833c-4fd3-a313-3442ff8b7a76' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex([&#x27;2023-05-09 14:30:03&#x27;, &#x27;2023-05-09 14:30:11&#x27;,\n",
" &#x27;2023-05-09 14:30:19&#x27;, &#x27;2023-05-09 14:30:27&#x27;,\n",
" &#x27;2023-05-09 14:30:35&#x27;, &#x27;2023-05-09 14:30:43&#x27;,\n",
" &#x27;2023-05-09 14:30:52&#x27;, &#x27;2023-05-09 14:31:00&#x27;,\n",
" &#x27;2023-05-09 14:31:08&#x27;, &#x27;2023-05-09 14:31:16&#x27;,\n",
" ...\n",
" &#x27;2023-05-09 15:55:41&#x27;, &#x27;2023-05-09 15:55:49&#x27;,\n",
" &#x27;2023-05-09 15:55:57&#x27;, &#x27;2023-05-09 15:56:05&#x27;,\n",
" &#x27;2023-05-09 15:56:13&#x27;, &#x27;2023-05-09 15:56:21&#x27;,\n",
" &#x27;2023-05-09 15:56:29&#x27;, &#x27;2023-05-09 15:56:37&#x27;,\n",
" &#x27;2023-05-09 15:56:45&#x27;, &#x27;2023-05-09 15:56:53&#x27;],\n",
" dtype=&#x27;datetime64[ns]&#x27;, name=&#x27;time&#x27;, length=550, freq=None))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-07416fc0-8e7f-46a6-b75f-5eaaa11e8225' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-07416fc0-8e7f-46a6-b75f-5eaaa11e8225' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.DataArray 'OD' (time: 550)>\n",
"array([ 750.47641876, 738.34281204, 784.41476569, 796.02169322,\n",
" 952.51855344, 882.92079597, 863.59651678, 866.57709198,\n",
" 941.99125428, 783.16551019, 946.27689189, 918.33176133,\n",
" 941.81141492, 947.74774665, 892.61913887, 977.17520626,\n",
" 945.34126351, 956.52682689, 804.78165476, 939.49484698,\n",
" 953.56682753, 879.61475127, 846.05592616, 830.90774024,\n",
" 910.80224254, 839.43361196, 863.23083974, 873.50170576,\n",
" 850.29285459, 949.59349556, 707.93266373, 946.74069024,\n",
" 941.71185143, 946.57095286, 914.32343568, 947.09283187,\n",
" 954.03294364, 784.23261906, 786.97273688, 832.62952621,\n",
" 903.46885276, 794.84132388, 987.33131008, 920.97693631,\n",
" 982.49210229, 790.82171889, 796.04783468, 672.41580595,\n",
" 726.07270248, 709.64654892, 820.34697312, 839.24755133,\n",
" 830.20821813, 905.60581009, 832.01909227, 614.3819873 ,\n",
" 723.89815083, 930.88065587, 825.30243762, 842.16853182,\n",
" 960.03822443, 970.87588969, 867.93951095, 796.77918204,\n",
" 715.07236109, 867.86554561, 949.15778283, 938.56330193,\n",
" 857.52360377, 880.71776388, 856.94886599, 923.54732893,\n",
" 840.56332593, 934.82056594, 938.21743126, 841.27262899,\n",
" 935.776538 , 810.94173848, 926.17365109, 746.68729357,\n",
"...\n",
" 865.51482127, 833.61692314, 821.20906768, 933.87516973,\n",
" 810.80092789, 824.63722508, 859.85285532, 913.23783203,\n",
" 789.32182143, 814.52479359, 843.87902457, 857.31154799,\n",
" 896.47897516, 872.95758519, 761.01860691, 806.85333498,\n",
" 947.18607913, 882.95786654, 660.90304299, 779.06534297,\n",
" 824.68260644, 960.00725562, 931.83023265, 925.32091745,\n",
" 876.67147414, 808.28701944, 865.12927984, 907.22865863,\n",
" 849.53390823, 827.70871779, 726.90703872, 878.79705242,\n",
" 960.28888691, 750.46295033, 903.46216093, 862.60511899,\n",
" 956.07697944, 881.35524969, 837.32695128, 791.87607618,\n",
" 811.78036383, 902.4373154 , 942.28581666, 874.3906838 ,\n",
" 896.64409276, 787.28302139, 963.13514734, 877.87315412,\n",
" 833.86614596, 826.5946265 , 735.16788438, 922.53477054,\n",
" 880.6268579 , 867.12639832, 852.01398293, 828.11720597,\n",
" 891.6310036 , 807.47838578, 895.25022758, 822.18630467,\n",
" 943.8055441 , 845.66585589, 729.57792525, 884.88667118,\n",
" 796.64506694, 855.18595889, 803.11938466, 832.46778894,\n",
" 858.2150589 , 937.40605043, 853.13728532, 910.90015676,\n",
" 780.99561864, 883.83375992, 804.26394636, 978.32360651,\n",
" 901.75651529, 884.02352999])\n",
"Coordinates:\n",
" * time (time) datetime64[ns] 2023-05-09T14:30:03 ... 2023-05-09T15:56:53"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Ncount_time = xr.DataArray(\n",
" data=Ncount,\n",
" dims=[\"time\"],\n",
" coords={\n",
" \"time\": runTime.runTine.to_numpy(),\n",
" }\n",
")\n",
"Ncount_time"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x20143f96310>]"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAAE8CAYAAABkTn4YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABx7UlEQVR4nO2dd7xdRbX4v+ucW9ITUkgILYTeQ+9NkKICKuIDFERERBGVh/jD8pQniDxUilhBsCE85Fkp0nsTQu+QQCihJSG93XLm98fMnDN7n93OvfuUe+98P5+Tk7v3nL3XLjNr1po1a0Qphcfj8Xg8rUSh2QJ4PB6PxxPGKyePx+PxtBxeOXk8Ho+n5fDKyePxeDwth1dOHo/H42k5vHLyeDweT8vR1mwBBgMTJ05U06ZNa7YYHo/HM6B49NFH5yulJkXt88opB6ZNm8bMmTObLYbH4/EMKETktbh93q3n8Xg8npbDKyePx+PxtBxeOXk8Ho+n5fDKyePxeDwth1dOHo/H42k5vHLyeDweT8vhlZMnd95dsgq/FIvH4+kPXjl5cuX5t5ewy7m3c+VDsdMXPB6PJxWvnDy5MnveMgAefGVBkyXxeDwDGa+cPHVBkGaL4PF4BjBeOXlyxQ81eTyePPDKyVMfvOHk8Xj6gVdOnlzxhpPH48kDr5w8dcEbTh6Ppz945eTJFT+/yePx5IFXTp66IOJtJ4/H03e8cvJ4BiCvzl/Oqu7eZovh8dQNr5w8dcHbTfWju7fEfj++iy9f9VizRfF46oZXTp5c8UNO9ae3pG/yPS/Pb7IkHk/98MrJUxf8kJPH4+kPXjl5ckX5mU51x1qnXv97BjNeOXnqgm8460fJ+049QwCvnDy54tvN+mOVUyNv9eqeXqadeQO/u//VBp7VM5TxyslTF/w8p/rRDP2/eEU3AD+7c3YTzu4Zinjl5MkVbznVH1Vq/Dl7TIRgW8F3OjyNwSsnT13wTVj9aMaYkw1fL3rl5GkQTVVOIvJNEblWRF4RESUic1LK7yIit4nIUhFZIiI3iciMmLJTReQPIjJPRFaKyEwROTKmbKeIfF9EXhWR1SIyW0S+IyLt/b/KoYUKfXvypxnKyVpO7UWvnDyNoa3J5z8XeB94DBiXVFBEdgXuAuYC3zWbvwzcKyK7K6WedsqOB+4D1gQuAN4EjgH+LCInKKV+Gzr8NcDhwBXAg8BuwNnARsDxfb46j6cOlJrQA+jp1b5Ebzl5GkWzldOGSqlXAETkGWBUQtmfAl3A3kqpueY3fwaeB34CHOiUPRPYADhMKXWdKXs5WvH8WESuVUotM9s/hFZMFyilTje//42ILAL+U0QuVUo9kMvVDgEk9O3Jn2bMJesyyqm96EcCPI2hqW+aVUxpiMhGwE7AtVYxmd/PBa4FDhCRKc5PjgFmW8VkyvYClwDjgQ+FygJcFDqt/fvTWWT0aLw7r/40I+ikq8dbTp7GMlC6QTuZ7wcj9j2E7qjvACAiawFrm+1RZd3j2f/PVUq94RY0f78VKuvJim/D6kYzxpy6e320nqexDBTlNNV8z43YZ7et3YeytnxUWVt+7Zh9ngj8YoP1p9SEW9ztx5w8DWagKKcR5nt1xL5VoTK1lLX/jypry4+I2iEiJ5kIwJnz5s2L+fnQRbzpVDdKJZshonFayrr12vyYk6dBDJQ3bYX57ozYNyxUppay9v9RZW35FVE7lFKXKqV2VErtOGnSpJifDz283VRfFi7vYtnqnoaca+mq7vL/bUCEd+t5GsVAUU5vme8oF5vdNrcPZW35ONfd2sS7/DwJ+OxF9WG7s2/lkIvvrft57p81n63PuoV7X9ZeAW85eRrNQHnTHjHfu0Xs2xXdYX8UQCn1Nlqh7BpTFmBm6Nhri8i6bkHz99RQ2ZbnjfdXNHfcx5tODaOertOZcxYC8Mir7wOVMSdvOXkaxYBQTkqpWWglcaSI2IAHzP+PBO5QSr3j/ORqYEMROdQpWwROBRYBN4bKAnwtdFr795/6fwWN4Zm5i9nr/Dv53QNzmi1Krs3mg7MXsLqnN8cjetKwlq8NvvCh5J5G09RJuCJyLLC++XMS0CEi3zF/v6aU+qNT/KvAneiMEJeYbaeiFezpBDkPrbSuEpEL0JbU0eiw8BOVUkttQaXUDSJyPXrC7VgqGSI+B1yplLovn6utP6+/r4fHfnHXbI7ffVpTMoPnPUj/wjtLOPqyhzh21/U5+6Nb5XrsgU49AyLsm2PP4S0nT6NptuX0OXSaoLPRqYbGOX9/zi1osjTsC8wBzjFlZqEzRjwZKrsA2AP4O3AKOrvEWOAopdTlEXIcCfwAOAD4BfABdIqkE/p7gY2kYJTRvKWrufbRN5sqS156ceFyPSj/0rtLU0p68sQ+P+shXj3Expyef3sJ0868gTfeX8GKrh5eeGdJs0UacjTVclJK7Vtj+QeB/TOWnQscm7HsKuA75tMyvLZgOWuPG565QXBdLq8viAwyrDv1Gu7yQ1mNxVrd9r4PtUm41zyi5+Tf8ty73D9rPne88B4vnH0w85aupqQU608Y2WQJm89fHn2TYe1FPrzNWnU5/tDoBg1A5i9bzT4/uouzr38u82/cdqPQ5EYkr8H6QsW/5GkgYctpqE3CtUFFBYGHTVBIV2+Jvc6/k31+dFcTJWsdTr/2SU656rG6Hd8rpxZluZnLcueL2Sf4ug1Hs3q4eeuQSg/ea6cw9QzKtJ0Le99XdTcuIOWN91dw8EX3MG9p3Nz4fHjhnSVs8u1/MXfRyqp99tYWpNLN8slPGotXTi2KdeXZpQqy4CqnuB7uqu5eTvnTY8x6b1n/BEwh71iMZjYM7y1Z1bCJr62ChCzWFV1aOTUir9/vHpjDC+8s5e+P13eK4dX/fp2u3hK3PPtO1T57nSKUo0N8aq7G4pVTi2JT1HTVopwkXTnd9/J8bnj6bc698fn+CRhD3vW37F7K97A1sfO5t3PQhfc0UYLGE/amWku+Ee2zXZajlne/L5St8ohrsiH04lhOvc1IajiE8cqpRbE9Nzu/JAvuOFMxxnR5e4lOLzh5TFzGpnzIy3JqlRGOKNfPYEZC1sLyLq2cGmE5dZjVdrvrrJwsUVdkr7soUq5Xvd5yaiheObUodllsGyWVhYKjEeICIt42jeyUMcP7IV08eY8NhRtJT2Ow9oI1Fpav1m693pLixN/P5COX1C+FUkebbpbqrZyS3q1SqVJmsFtOby9eyVeufryh44pZ8MqpRektK6fsFdS1VuICIt5erC2nMcPrPYsgL5sn2Ei2Aq8tWM60M2/gsdcX9us4P739ZR7vxzHqeUvC0Xoruipuvduef5dn5tZv3o9169XSMesLSRGltpNVkIr7r6/Kqae3xO8fmBPwgiiluOT2l3l7cfMt8nOuf55/PvkWtz3/brNFCeCVU4tiK0JPSZXHn9JwO4BxltPCFV1A3xv7m555h//6+zOZZMiDVkwge89LOoLyr4/1b6LzBbe+xMd+8UAeItUN20hby6kRbj0bDFSLS7svhBWwS2/ZcqqosFIfxfnLY2/yvX8+y6/vnl3e9uK7S/nJrS9xyp/qF4qdlXCqqlbBK6cWxe2lXXpv8mr27y/voqe3FGg40kLJsyq8MCdf+Sh/fOi11HK5R+vle7h+0Uqy1ItwsMBgHHOyVSTKFV2Z5yTld7mnj9ppVbf+3bxlldD47h59/OdMJoon31jUp2PnQeVZt9ab7ZVTC7BkVTe/uGtWQGG4yum8f73AwRdFR4stWdXN9mffyo9ueTHQA4wLiCj7z+v0IuY+z6l84NapOFaUQiuadf1gvx/fxU9vfxmodspWLKf6y1Fx6zUmWi/qmirznNxyfbv4TjOG5o7p2GNZxfXPJ9+q/mGDKJQtp9apY+CVU0twzvXPcf5NL3LHC++Vt/WEaswL71Ryy63q7uWmZ/TcjBfN9odmLwj0fNIyRPSWFPOWrmbBsnwnOloZchtxCqXRaQVKOV9jX8n7/K/OX84Ft76kjx0KFrBjTn21uGuhcWNOmuhQ8so8J1suXCezMqy9CFQUkXt8SzP1gu1k9dVtWS+amlvPo7G90pXdvZRKipXdvXw/IW3Rf1/3LFc//AZnHbpFOTR8ozVHB3qAcW69ci+wpNjpB7cBMOe8D+dxGUAdxpzqdNz+YGVpRtb3gBx1PLY7z6lUUg2dhFswXea6h5InuPVKjnVsH3OtARFvL17JU28ujrGcgmWbmQFFWtRy8sqpBbBWTkkpzrnhea64/9XE8nPm66SuZ11XUWDrrDE88IKntZv1cusFZtbnSLMqb5SlkIckrebfj0MpWJHQqNbrnNAAt55N0ZRgOS1a0c27S7R3oVbl9IlfPsjcRSu54vgdgUpmd/f4llawnKJEWNHVQ0GkbP01Eu/WawGskbNkZXeqYoLohlok2HDE9YJsoxg3vtVf0irZklXdtR0v9PfTby7myF890LA5GVFK3B0s7yutrpvsK6FQrHBSNzWid10qK6c6u/USHp99xt/757PlbbXWEztx27rL3AUzG+EeTaOnt8Qv7ppVrktRHaYtvnszu5x7e6NFA7xyaglsI/df/3g2paQm6r0uqeDLFdeG2PruNrrvGtdgHlTGY6pr/mOvL2Sbs24pj5fVcjwr7nf+8QyPzFnIj29+kaMufRCAL/xxJodcXJ9JoUkNUn+sw7SmafnqnpryKuaNe9+Xd1Ua1UYo1b5kR+kLFZdxVAekunxfFbNNwxQcc+rToXLlH0+8xfk3vcj1T70NxMu0eGVtHcq88MqpBai1Bx7pElIqUKHiXjT7W7fde2vRSkolxXbfv4XL74u23HpLisUr+veS2nDZB2bPr9q3uqeXs/75bNU57DXZ717TDf3Nfa/y0Ct6KYObn32X59+uz6TQKOWURwPtPsNn5i6u2r/l927my1c93v8T9ZGycqKSVw8alCXBnKL+ufXM6TIqop4aLTnrEbFKNipaz9IMN284mXEW5fvoawv5w4Nz6iRREK+cWoBaV7eIs5zclyvuRbONi7t/dU+Jx15fyMIV3Zx9/XORk2zP+9fzbPv9W8p/x1WmpDEnCX27/OPxt/jdA3P40S0vhPYo59/qBsJ1jywyE4zzJCpCy80e4LJ8dU9md41b7COX3BdZ5qaIbNkBOerYoJXdeiqonBrj1qtYTqWSYtqZN3DpPbNTflU7lWVBomSo3hanLJeu6ubNhdWLe9pOp1VOXUljTlkEzplwRyPLq3vELx/guxk9PP3FK6cWIA/LqRSynKLe9u7eUvmFdF/MnpLipXcrS2hETbK1pn9FhoosS51xpCxtV1QR62a0kxNBZ2I44/+eKp8nLLeV3bL3+Xemn7xGopSNm7HasmRVN1t+7+ZyKHYa4XHD7t4Sl93zSmBcopGELbnVxgWlVCVSb3h7ser5LlrRxY1PB9+N/mLvb0mpskL48S3Z7mstJFlOUXVsdXe0cjrsZ/ez5/9Uv3s20Gl1b5TlVKu0+dMK1lsSXjm1ALWuWtsXy2lVdy8bf/tf/Nus6uk28qWSSo3eCytQe/w/PPgaW591C2+8vyIgW63DMeUUMY4cx13xMK/MWx4oF1ZOW33v5vL/l6zKf82lSMsp4hoXLdcK+h9PZluDKHy7r/r36/zgxuf5zb3pATH1IGzJXXibVgZ6zEnf11HD2qreqy/96TG+9KfHcs0RZ89RUqqubsRKuHx8B8RldcwY2Kvzl0duL4YspwXLK5Z9K0TrVVlOfbzX9Qru8MqpBajVrRc9gBusYuESSf7lnpKiN+SyCA9GF0Jvin0fbzaup9eNcsoS8h11uUnhrC5hZeG6WnbZYHzquWslyo1VvkaJ2BbBzDnvV43lhQ9ro8JWdffG9mDr2bONUwI6Wk/3+EdHKKc3F2qllGfwgjsuap93XWaUJa7nFGE51WjVhsecVveUykEu4Qa9GVMlwnWprxL0dXJyGl45tQA1u/VitqkEyyl8Brcx6u4t8fr7wZ7vt/72dKKMcT2/pAmqidkeElwsdvujry0sK8Eo+jseEhUhl2Q5ufekYk1VX/cnfvUgZ4cmVcc1RsWCJN6DehF370qu5dTZRp2ju8vnBP0+2/e0nvOdo93k1eXiLKc4rEfEVdxzFgQ9DEnnqzdhBdlXGepl3fpJuC1A3Kq1YUolRaEgkQ1JqZQcrZekXC649aWqZdvvezkYURfO1Zc2j6rWfRXLKbrMi+8u5YhfJmfw7mslOfSS+9hk8mj+8tib7LXxRO59eT7fP3xLjtttWvQk3Ij0RdYtmjZ3Jmn1VdCZPeIVRXVP984X32PBsi4+scM68SfOQNI57WTYYW1FVjVgTMx169nOQtLyFrVw1b9fZ8dpa7DJ5NEVCy1hLpvLXS++V7UtiXJARG/lntl5fq2wNlT4upVSHHv5v/n0rutz0JZTMh9HJ8TNf5KuV04tQNZeYa9SFJDIHFh6zMnZELacQudwK0dYMUWVD/8dV7f6WucKIcupL37svvbqn567mKdNOPe9Rin/6aHXOW63aZGWU+S23nT30+qeUnmmfZwyKBYKNd3bz/72EYAclFP09t6SKu9rKwql7rhOSb9OHylLSTluvZwsp2/97WlE4Jid1+NP/34dSLaOXW5+trb1jooRllN3TyXQJO189SZcx3pLintfns+9L89PTWlWr0n8Lt6t1wJkdetFhYFbSkqFAiKC+8M/SZtCEpYobN3FW04Jx0y4znB+r6TcgnHkOTCblE/NKiJ3l7Uukq5xpTuZNaZMezHecqrnuERcA9NTqrjWioXojlHeuFlMym69XI9PWTEB9Eb0avIImQ+POUFljLT6djd/zKmWlGbub/2Y0yAmq1sv6SWoCohImUeRVvnCjWxYgaqYRqqvldoe/56X5nHXi+9lWjMqzNNzF5eXfOgvVp6oRru7ZBuY4LgdVDeiv7hrVvn/bo66uNtUTHDr1bN3HTtvrVRZ7LK9WGjoPCfXpZhHkt24zoutVzc98w7vmWwpade5oquHW0Lz0FZ09QQCjypuPcdyMv8Prw3VlGi90EmjlHQc7v0Z8paTiEwWkV+JyBsi0iUir4vIxSIyLqLspiLydxFZKCLLReReEflAzHHHisglIjJXRFaJyLMi8kVpYMrprGdasGw1i1d0B16GfTedBEQFRAR/G65stb5Q4dsRN8YSPuqNT7/NGdc+yf4/uSvx+Fa8hSu6Of63j/T5hc86z8gS12DZDkOS5eROCI7LA+eGhq/sqjRcccpAjznFyNqEaL0eZ5pBW0SwRj1qiRWlV+VrOXXHmH29JcWq7l5OvvJRPn35vwMyxHHG/z3FSX98lNnzKi7x7c++NTC1wb5DbiBFl5nH1xJjTqF3thbLyUZpQv0spwEx5iQiawL/BqYCvwaeAbYCvgjsLSJ7KKVWmLIbAg8APcD5wGLg88DNInKIUuo257gdwK3AdsAlwPPAIcAvgMnAWY24vriFAcPs86O7ANhw0sjytt8evxM7nnNb1STctHkUtWYlL1aFkqvI46rydv39JWcZ6qTGtVmVdWVMAtlCglvPda+WSgoRKlF+YWXtXPOKDDnqFMmRc3H86OYXOPUDG/c5e3SsQgyNOdUrm71LZdzRUfo5aKcsrss3TNRqWti+TZflllsVmqQbzhABFSuqKoy7Ca9/OOt7LW7xAy64u/z/WiyuWhgQygn4FrA+cIxS6mq7UUQeAK4C/hM4x2z+ITAO2EEp9YQp9wfgWeDnIrKZqrxRJwI7AV9RSl1itl0mIn8BviUiv1VK1e5fqpHaM0RU/i8iiEjVJFyX95d3Vc3R6E4Jiw2LlBZKHpYtam+SAspbOa3u6WVVV4mxI9oTyy3vip64a8OA3cbYRku6rpnp37qR3TecwEl7Tweq21D3ssprIiVMeu7pVbGNRFKD+fM7ZzN+ZCef23OD2DJJxD3PbuPWK4h+Bxrt1svTcorr4feWSmUrOByYE4dN6dQe7rU52CrjKqf7X57P7+5/lY9tt3agbDPmOYXTMfXVAurr8vVpDBS33n7ASuB/Q9uvAVYBnwUQkZHAYcBdVjEBKKWWAb8BNkErI8sxwArgstBxLwLagf/I6wKSqDVDRPgVKohuuB6Z8355m9uIbH/2rXzxyscCv0lLqlkdrRcac1LBcg+/uoB5S1fHWlSQvARC3q6BYy9/OJALMA47wTTM468vYvHK7nKiWagoKtuQ2YbzgdkLKtF6VffJtZx0gzb9Wzfy8V9Eh8X3lEoBhZbkqg3Tn+zRSVMDepWiWBAKEj8HK0+Uo5xswxfnZf/O359my+/elOm4cYlbe0qVNEm2LqZdpl0gNKlTVY7Wc+raNTPf4LHXF1XN12uG5RROx9RXq3ioz3PqBFapUNdRKVUSkZXAdBGZCGxsyj4YcYyHzPdOwMMiUgC2Bx5TSoXXjHgY/X7uRAPI6tazVE2wFZj93nIedpRT+D17OpT5Om0ht/C8kmJVKHnwBD+9YxY/vaMy+B/VE+xN6GEl7esLD7/6fnoh4i0n0GHHn9ltWvnvnl5Fe7EyduFWyq/87+NAdQ/fvU2uWy9uMnFPKRh12VNStBft3KjkRmBlwrWkEdfA9Bp5CiIUpFGJX+25k0PJL7rtJa586PXqHTHE9fB7SxUlmBQI42Lfm6T7EU5f5FIVTZt4tvoQnlTcV/fcUI/WexZYQ0RmuBvN32uYP9dDj0kBRCU4s9usPb0GMDyqrFJqNTDfKdtShCtEQYQFy1eHypjvmBcnLd1MmlsvrfImWU5RCTTr9YKn4SqMMPOWrg40aD0hpeTKbI/j3qY7X3yPpU70VtK5LPe9PJ/n3qos/+F2ItKmB2Q5fhxxbawdV9PKKSnMPT8q1rcqWzuLVnRXLTB50W21RWYmWU424bB1YqQpYbs76b2NcutZwvWnGZZTWFn3tQ72571LYqAop4uAEvBnEfmQiKwnIoeg3XrWlzHCfABWVx+CVU45Usra8iNi9iEiJ4nITBGZOW/evGxXEUOtvdFwB7Ag1RFe9phxpnqqcgr9HXY9pokctdu6N66Z+UZ5bSdLswIi5i2Ne/w6z517r8tKyc5zipDZtTh/7liSkG3Z8QdmL+C4Kx6u/MbJ0p72nsQFd2QhNgijpC2YYsGMbcZcQp55/9xoPbcB/fbfqpdyqYXYgIjeUtkaLoiwsqs3s4s06pjzlq7m4tteLrsio1zoVVZLIyaQhQjLHv47a77EJXVajHBAKCel1L3AUcBo4AbgNeA64E7gelNsCXr8CLRrL8ww870i9B1V1paPTeSmlLpUKbWjUmrHSZMmZbmMWPpbsUWSXRZRpOUJq57nFNyftWfp4r7sT4SUU7Msp78+Fp9FfFV3b8hyshZTdMQVBC2njrZg9eqLAnYbtrTXJG78LAuxbj1l3Xo6YrMvkYS1YutDT68K3OOoRSotR1/6UOw+S9w7VlKw/0909JmIsNf5d/DagvgcjoHfRlSjM//yFBfeVkkJFuUpWB3qSDTj/Q8/83DnabcfZluevV4r5Q4I5QSglLoWWAcd9r03MFUpdbLZ1gPMAt4yxaPccXabbY0WooMsqsqKSCcwkWj3YO5EvZfTnXDx6vLVbr2wv7gU4XpyydKLd5VmdbRe6q+rtrjKqTPUcDdrSfKoReIsK7t7I5chsaKmKehwJFfSSqqbTRkdud1VjmmdmL5ETV3179f555NvJc6tKikdpZgcrZen5VTpBLjv9duLg0PD7iv54CsLUo8b9465jXRBYP6y7ItWRnkmwvkHo+pauEwzPAfh19ENWLr1uXcDS3wkMeSVE4BSqlcp9YRS6l6l1HsiMgWtrO4285yeRrvpdov4+a7me6Y5Vgl4DNjOKCOXndGerZn1uI4wURX+r1/cnX99da9M5bXlFPJhm++4Qc60aL1X5y9ng2/eWP47nMXiwdnJjUGa5RS2KpplOb2fUAFXdpUCCqUUUkpRysa1OPOwnKxbr7u3lNohyHL4s69/jmln3sAHL7ibJ99YxLf+9jRfufrxBLeeDucuOlMWXOzV5vn47LFWdZfKS4lE0R5exyWFuHfMXSyz1mkdUc+0LSSX9VK4hw7PiWqO5RSWofL35/+QvelbtMIrpwAm2u6n6HS4P4ByyPh1wL4isq1TdhR6TtPL6Eg8y9XocaWTQof/Gtoau6ZO4geIei/Hjehg87XGRJYPtyMFkYgll4MuqDBZ/ckz57zPtDNvqIous0tqxGWLjlROjkIMWxXN6DkqpRIr1qpYyyn47eLejbByistQkERXb4lZ7y1j42//i1ueC6bLqcrOkcE9bNeVevm9ZdzvuMnilJN262Esp4Q0R7mOOVWONXdR/CKGcWm/nn97CWf989kqWePeMbfnX+vaalHHbA+Fttr3flhbZYJ0OLijKZZT6JxJln0SQ9pyEpFRIvKciPxARE4UkdPRSuZI4DtKqTud4t9EZ4W4RUTOFJEvAfei3XenhsLRLwMeBS4QkZ+YY/8V+DhwnlJqTgMur+Yxp6rea4TlVAnH7VtAhOUTv9JR+XE++LjJg1Hb3XMmLbfeKFZ09SZakCu7ewNyuZNDIT7Y5I4X3mXamTcwd2GwYc0aqus2bkdd+lA5G8EPb3yhvH39CSMYMyw4wbjWWziyozKTJO49KZUITMKNXZQwz8eX8VhtMZrk6Mse4ncPzGFhqOMR58p2G9das5ZlspyMIhrWXtkeVk6tOObkMu3MG3hvaXjGjWZIKyegC3gSPWn2Z8C3gQXAwUqpc92CSqlZwB7oeU1nAj8GlpuyN4fKdgEHoFMiHQ38HNgMOBX4bh2vJ0Ctvc6wMiuIVEeOlS2nuDGn+laGqEtygzDOueH5cuV4e/HKyEHjPHnqzUVVy2knufRAV97bn6+s4aMU/PmRN8rLakRaTgL/fEIPfT739pLAvqwNkGtVzl+2ujy52lrBo4e1sd+ma0au71QLbmOTFEreq7Rbr71YiA2kqZflFMXDr77PK/OW0RaefGew71LYsopTrK71XKOnMFLW9rDFbOpap2M5rQy97+8tWVXOOtEoalFOAK/HdFDXnxAb1NwvBsQkXKNEjq6h/PPA4RnLLgK+bD5NodZOU3VARP0spyR+/8CcWFdA1FbXSpm/bDX3vDSPGeuOY7cf3tFvWfQE0fj9h/3sfgDmnPdh7n5pHve8NI+PztCxMKM626qWsbfc8NTbjB3ebrJFKL7xl6fK++Ly7tmtnW2FRGsxjvCk7D88qDNojexsY9GKbs46dEsee30hS1cFZa7VAn9ncSWMPk62F95ZygvvLGX8yA7WWWN47JyWPC2ntNv0yV9ra37S6OhA23KwQcKAv4urcPMYc2oPK0Wl8y+6bt5wOrEX3lnK/j+5m//6yBZ8aOspuWRhTyN8O9I6T1F7v3nIZnxhnw3zE8phoFhOg5qaLafQ34JUp+An2XJKC4jIwvf++Sz/jsnE8H+Pvsnjry8MbAuHzxYLUtXA9pWsy44AfOaKh7n8vlfLq5KOS8i/19Vb4oNbTAaqn1PcQoS2mNtThuxjTnHPxuZDLBSqjx0ln8v5N73AP54IBp+6gQBp7+D7y7uYNjHYQ3aVYb7KKaOFGfPM7c/7kom/1mwtUa7dKIutIBJw14Y9BX/54u6MH9nBKVc9xrGXPxy5AGjehAMi0jqsUfP6alXmteCVUwtQa8UOD+KLVPcKK5ZTc0K0AT4Wyh8XbnQ72woUY1wzteI2CNPOvCHTb6y1NHZ4cnLYcWZ/uG6Gxw2gku4HqsPls445xblXylFfCCfvM71qf9J79Iu7ZvPV/32iStao/8ex3vjg9Ab3ncszcWnSdbj3PO3dqe5MVEfNham1rY1qsKsW8StV3KKWcF3YYf01uO7UPfn+4Vvy5JuLOOTie/ifm14o52OsB+HXLG3uY9RjqaeB55VTC9Bff31U76WUMubUDHp6VWA+T2d7MbfMArX2eAGWGastHFhQdeyY3HZRVp+rWMJjIsmpbiplo4pNGNkRyDOXZDk9MHt+6nga6IzjluUZUtCMGR4cBXAnaeYbSh5/MHfwPRx4UH2c4N8n/l6HRye9KbVaAlHPNOyyA/3M3A5U2IsAev9xu03jzq/vy+Ez1uaXd83mgJ/czb+efjvXDByWsGKN6mwFykfIUE/3o1dOLUC/lVPUUzSH7Gt4aD3o7i0Feo9CfiG0WTO7uxXSurXSLCc7nyacHigqbYs75pTFrTRxVEeqzAAjOivKqCCCRDxzpfT1HXPZvznmsvSMCa5VnWUwPjyvaMHyLuaYQfJ80xfFHysQvJDyyMMyVZR7/A9rVU5RllOUe6wgQluC5eQycVQnPz5yW/7v5N0YO6KDL/7pMY674mFemZevq6+nVAp0FtMspyjTqdbQ+1rwyqkF6G/7nGQ5tcKKm5bu3lJAiejcaTlZTrHjD8Hju5kE3jIZB6xFENcuWYX63pJgHr5FEcppZXdvuRKHPapRc8522WBC9ElDuGHfBYmeXaZU5bm/8M7S1GO6brllGcb+4qLjoD6TcKNYtKJiEa5MsfbijpPUntZqCPwlIv1VVCNfkGDoe5aApB2njee6L+/BWYduwROvL+Lgi+7lRzfn5+orqVCQRqrlVL3NjzkNcvqdWy/0t7ucdku59cx8GYvNPpAHcW698K391G/+Xf7/pfe8AsAI0/APi3CVQaVRfjc0zyNK9iUmqi+KKCvWVaprjxse+TstY0U2kfgOSS13003nszSD5ZTkRsvTcko6ltshSHu3XQvMfSZJ7WnWxnbMMP3O3Pb8u1X7oqZFFAoSUE5ZX/u2YoHj99iAO76+Lx/Zdi1+fudsPnjBPdz0zDv9vuc9paAnI81yigro8ZbTIMc+823WGdun31claS2IExDRQsqpVwWUSEkFG+zpk0by8e37tkpJnKsmi8vUNkjDO2KUk6mBYcsp+nyVcRGlVED5RD0Lu1+A+8/8AEdsv07kcUd2upZTdAOrqM1F7MqTpSefZDnl+ZYlxfC47sc0PWLvxbtLVgVyKMZlNYHs85xGdMTPwokac9Juvb635JNGd3LBJ2fw5y/sxuhhbZx85aMc/9tHqubu1UKpBB3F+InBYSKHCLzlNLgpKcXUscP48ZHb9un34d5L0UnQ2ayEqlF0hd16IctpVGcbn9ghunFOI66OZGk0rUjD2+MsJ+PWS1hew2WhcT31KsXIjiIvnnMw0yaMMGHmQYnC7si4Vb9dt56YtZXClJSqKfLzyTcXl/+fSTkldJPj1g3rC0kK1p2Plrpsi9m/y7m3s8+P7sp0/CTF5ZKkaOLdetEP9y9fjEoFGs3OG4zn+lP35Lsf2YJHX1vIQRfew09ueTHVxRlFb0kFJgynWU5RbYm3nAY5JWUbnL79PtxQuQ1eS7n1ekshyym4Xs+IjmJqBFYccbcuS2Nt75ebXsbFzk95b0nFrTcyxsqCyqB9Seljd7YVaSsWqpZgh+oGvxhz/VUBEVGWUz8edVdveuOWFEiQ51uWdCw3QrJ6wb6g8o9TQlF14kjTKUoKrLnhK3tywOZrAkGLI0zUuloFkVjl3lGMf5eiaCsWOGHPDbjj9H348DZrcckdszjggru55dnaXH09JUVHMXtbcctz1S5MP+Y0yFFKGXdC/IMOJxF1Cb8g7nLaaW69v3xxd24/fZ/MsqaRZPl091a7uVz5RnS0xVoOAFtOjU6EC0mWU/L1f3m/jcoNUpyrxipMd7xjTEKE3/vGcnLdem0Foae3eowt3BjGNWDBgIjoHr5Sqs+Rn/3NGJJ3+qJw8lSLq5zCbtiSgiXO/lr6ZZNGd7LfppMSLcAtp45lr4312m1JltP8CAu7UIh36/W1fV9zzDAu/I8ZXHPSrozqbOOkPz7KCb97hNcWZHP16fucXQX87fHq4A9vOQ1ySkohJFtOwxKUU7idKqYERLgKor0obDhpVC3iJhJnfYCO1hOBGeuOA6zlVJFveEcx1nIA2HV6fGRbXA8urc3cYdoaZWsuPGnWYhuVR19bWN6WNDfKNvQlVZGrrSiBCbrlY1dZTtHX4VpOOiCiukxJ9d166nc6qxxNJ6V0Vv4olq2udBBGdQY7E70lxduLK8l2a1GYxYJQLBQCnYeoDqG970mNetScMZs4N4r+Wh+7TJ/A9V/Zk+98eHMembOQD154Dxfc+lKGMaRS5HWkTa1wyeoG7QteObUAuhFLfkk7Y8ZDIGLMqSCO5VTd6LguibzN8iS3XE9JWxJnHbYlYJKKOo3ByI5i4mTapLamr269okjZeolz6UT14kcPS09L6VpOxUIhkNqofP4E5fR/J1fGIkaFxpyiXGyKflhO/ZwPl/ck3BExbtMkt15JKd5e5CazzS5UQYRiIXjM43efVl3Q3PdaLA57/Nh9ObTC7cUCJ+41ndtP34dDtprCT29/mQ9eeDe3R0QTWsKh5JbwZOswe2xU6ST6DBGDHIV+eZNeYNcisbneLNW/q0TrRVlObmOb98uVNGhu07hYBdRbCsqn3XpJ4xoJA9kxF7L5d29KlLdYqMgTd+YohZtFOdmcavoYYsacQgER9txCuZzFvaYRncF5TpGWU6nvBkx/Lac80xeVVPzUAFc5VSc7VsxzXGollT1QQ48JFQK58qKUm73vSWNOcceP05V5dhAnjxnGxUdtx9Wf35VhbUU+9/uZnPj7RyIziveWot2nozqTLaewxVovvHJqAUoma3HSOzraeWHCUWVRY062mYoac+poCw6u50lbSqUtFKTcU9RjTpVGUbv1ouX5wce2ynfNIIPrIou7F1EVOEvPWSmqx5xSovVc683d5wZg6FDyKMsJVB91TH8TAedtOYnAlZ/bhW9/aHOuP3VPPrvHNCA4WTg8qbm3FLy/JaUigxOiKBb0vXfri/uotltvHBB009ZCoRCvwOsxbrPbhhO48at78e0Pbc6DsxfwwQvv5uLbXg64+rRyqn6Pk4J9IDitoZ7hVl45tQBK6R52UqSQmzk7rJzC7ZRIZa7I/GXVOdbcsZW8lVPcQLal6FiISqlAloIR7fHK6eAtpyQet6+uEdetJwK3nLZ3VZkoyylLpexVlUnHdswprDzC1+taTu6u4R3VHYqolXD7asF0RczNiSLudckzIMLWhz03nsjn957OVmuPZfMpOhjGnSwcTqRbKgXlKJWSV9J1KRSEosSvHH3VibsCFes6rXMyJmRZJ1lO9cpP114s8Pm9p3P76fty4JZTuPC2lzjwwnu44wXt6utVKtICjJvvZxntKqd69BgNXjm1AKVSvKvG4iqnGaYXZ6mahCtSbqTOvv65qmO5+dzsOc84aFN+8LGtapS8mrSlKwqFSpne0JjT0tU9sb9Pq8BbrtW3Ccx6ILzS2G8yeXRVmbhe8ugU90ZvSZUVnx1zqiUgwu04dIRyEob3g26YoywYm/A0iayLT8aOCeZpOZXip0e4y3xUZf8OzfMqKcWBF94TKBMnvh5zKtDd41hOzn7bYFu50jpho0MBM7pOxp+7nkwZO4xLjt6Oq07chY62Aif8biYn/n5m1Twny7CE8W2AUY7iredMFa+cWgDrxkh6SW0EzVf235hdNhgf2BduzwsiiS/NhFGVRdpso3/KfhvxqV3Wr1HyatJ6lO7YWm8pGK03d9HK2DErIbmX9tk9pjEtZkXOpHGHQmDMKc6tF31NSUEqYAJAQmNOYbeea7VBsPF3X4dAwtzQGNn0iSM5aMvJKBV9j6JS7ITJOuYU947mHUoePo3tILiTcMMuazfpLkQHw8RFZBZNQESqezNDtB5Uj8sUJD44p57h2C67bzSRG7+yF2cctGn5nYiynNKUk+vWy/O5h8msnESkICLHiMifROQREXnRfF8pIkeJROVJ9mTBhhwndaBs6PKw9kKkpVR9TBUbSjphZLXl1Fc+v9cGnP+Jbdh7Ez3/IyncG4KWio7WqzQGJ+01Pda1mdTztMfdau1o6ylqQbjy71LcqRAf5GHr9bYmNL7qvKXqeU6plpPTIw+E/AdcsfZb/+fgrabQVijEWk5ZyKqcYg2nXMec4i2n5Y51Hbac0ibhDmsvxN6fggklT7sPlTGn5OZuZGfUuLAy/48+ZiPoaCuUx+8g2gIcnjAdBIKKt56WU6awCxFZF7ge2IrqoKYd0Euof0NEPqKUeitfEQc/dhJu0ks61SQFLUa4/6r+LgCK8kqvYVzLqb8V40v7bsQaIzs4fMZU5i1dzTprRFsvFld+d4zg3m/sx7rjR/DuklXRP0zoeUJ8eDUkp2UpmrEGfYzoMlENkXIa0G3WHsuTbyyK/K07gN5TUtzybNCKCc/raotx67mNSNjash0bRd+j5lZnDIiIc7suWJ4ttVMWVJTlZM7b3atTQi3v6q22nCLcetuuM7acpmnMsHYmje7k2beWVJ2zILqz4SonpeCfX96D8U5nzoqVFJUK1ettuWNO40d2BMaCG6ibgKC1FDWvMC6Nl8WdrN7UMScRKQJ/A7YGrgL2AyYA7eZ7P+BqYAbwN29B1U7JBkQkvKWf2mU9/usjW3D8HtOq3E/hRlnQ85yWrIzONB20nPpXM+zvO9uKsYrJDbsuFBy3njPmZBu9OHl045vgnpN4KzBpiQERJ/lqDdF6oAKKJw53ntOs95bxnb8/U3V+F/f63etx3VF2c0U5adlVPybhLjMdmetP3ZMpY4bFlosbc/p/f3magy+6hwtvfYnn3lrSr0bLTq1wcf+2bqeoaL2g5RR0v40Z3s4fTtiZnaatUXXOYkGHkrtuPYVim3XGBd5r25lKqzZhJW47D1A9wbiRlhMEO1tRBuDIlLHUQHb1OppOWRTJx4Dtga8ppY5VSt2tlFqolOo133crpT4NnAbsCHy0btIOUrLk1msrFvjcnhvQ2Vasjs4LlS2YimAtp+1DARTuy9ffepElSu4j26wVkK3s1nPGnOwLH9cjTYp2svvjLmVVV7LlFB7DCRM3sdjeu6Txh3JARMzBw5vDltP9Z36Af355j5gxp4pS1WMatSV+dbH5ADedMjoxVVbUsgmWMcPa+ekdL/Ohn97LPj+6ix/c8Bwz57xfcwNWUqqqLrgdAKuoqybhloJuJhXKQDJ2eDsTRnWy+4YTq84Z1TmMupd2W9rKy+HdOmuL/nE4VLvRyint3LtOn8DkMZ0RpTXuT5rt1jsCeE4p9dOkQkqpi0Xk88AngL/mIdxQwVbGvoaUhl8wMQERdukGNx3JvptOCjaA/Rx0ylKx3F6kO+YUaTklBUSkyBEny6qEMGk3tD1uYm2UK8t16yW5eGybmjV1TTGUvWPtccNZe9xwnn97ibPdyEDl3tkgmL4OUC9c0cWw9gLtxUJiJ2lVxFpFlj+fvBvzlq7mtuff5eZn3+F3D8zhsntfZeKoTj64xWQO3moKu02fkKj8oNJZc3HdT51ly6l6Eq4K/B28Hza8O+pZFEQSU29Z7Phl2oT5qvlrzphp9b7U09aNqHe3rSCcdsAmnPnXpyN/48pfz4CILMppO+DvGY93Pd5yqhnb0GXVTeEGPNyxF8G49aqV09cO2ITZ71WWe+5vxUgLHYeg5eFeZ0lVGhjraoiN1ks5jQixpk/ScgKFgpSXuIhb7C/uEt1ghzhSlW64hx1w67ljTvFz0wqiL73WxQZdSqqSGaA/824mje7k6J3X4+id12Ppqm7ufHEeNz/zDv94Yi5XP/w6o4e18YHN1uSgLaewzyaTIl1IKspycjZYy0nXm0rvvTciIMJdg8ieK8rQLRay5ZSznakkj8Gw9uo0XK5CDlvi9ZrnlIXI+ptW12gd5TQFeCXj8Wab8p4asJZTVvM+XCoyek9VAgGGhzJauy6SrOf8nyO2Zs6CFfzyrtmhc6f/tspykopbz0br2cYnTtllcevFXUtSloCiCG+ZiZpTY5RTXONhNydFbtnfpulwW+GD6Ysq+5MmTttgEKX6NwZgF/LLq60cPaydw7adymHbTmVVdy/3z5rPTc+8w23Pv8s/nniLzrYCe208iYO2nMwBm09mDTMWasdgXYoRyknLKmVfW6lUHRDhuv5skEJUR6Egkphp3qIiLKeLj5rBV//3iYB84XN0FAsVl2ALWE5Fkw0jKiDCvbZpE0YwJ5T6qJXceqOBZamlNCuA/FJcDxH0vI7s6zklDaJDpRddCo3n6H0SqBxZG6L/2Gk9bn72HQA2nTyaF99dCqT73qFaGZbdes6YUzFFOWmS5ivFd/gSlVNBWGusDgDYau3oJTki3XpU7nuSzMWUMtXuK4n8f3DMychgbkc5Wq+fvVh7n+oxBjKsvcj+m09m/80n09Nb4pE5C7n52Xe45VmtrIoFYedp4zl4qyksXtnNiPZg0xSwnJxoMlfS3lCGDKWC0wg6jdsu6p0tiDA2JeEpVBrjYkE4/4ht2HytMVXu4GHtxaq63NFWKEsWDqBpxphTUYReVKQVGQjKiXFpR/0/b7IERNR65+p2p0VklIh8S0SeFpGlIjJfRB4QkeMlVMtFZBcRuc2UWyIiN4nIjJjjThWRP4jIPBFZKSIzReTIel1HmCxZyV2ilFF4v1sx20KJXuPClbOe1/1JNrde8Hz2hS8pVU5BU7ackqL1kkLJibecVicoJxH4wj4b8rcv7c4O64+PLBN1ia7rKSlbQFokYHirOwEyLpS8rJwc+WwQTB5ulno3lW3FArttOIGzDtuyHPBx8j7TmbdsNd/757M8M3dJldss3nKqlCmVSLScbAh11DtbLEiVWy8qM3rZrSfCJ3dal63XGVs19tXZVj3m1NFWKHceosajGo29v1HnDtTviP1uB6DZbj2A40Rk1wzlNumPMEmYEPV/AbsDvwcuAUag51j9Ftgc+H+m7K7AXcBc4LvmEF8G7hWR3ZVSTzvHHQ/cB6wJXAC8CRwD/FlETlBK/bZe12TR85wKma2YamUU2i9Byync6y4W4l1Em681JjD4HnUet6HN4i93z1d05nOt6OrlJWuBpYzNpLv14q3ANMupvVhgu/XWSDh2vEyQvExIIYPSdRkRSvBqaY9y6zm9eB0Q0fdovYDMEbImLSLZH0SEbdYZxzbrjOOMgzZj1nvLuO35d9lqanBCdVA5FQO/tzciPAm5pIIRfUnTFQoh5bTTtDX4yv4bV5UrRbj17H87ijoUXVtO1W49O/YZHqNsxuQb60ZOWrNK/z+5ftdznlNW5XSg+WShXtLuAuwJXKSUOs1uFJFfAC8AX8AoJ+CnQBewt1Jqrin3Z+B54CcEr+VMYAPgMKXUdabs5cCDwI9F5FqlVFa3Zp+wM+Iz96DS3HomMigcCad/KsQlFwX438/vyrbfvyXytLahrfWFbA9FB9qG+oJbXwrInIRuguLPmzQJNynCLItbMq5IpnlOYssmH8PiWk7u9SStwSXGrdefaL3g8YJ/n/PRrfj0rusDcNXnd+HHN7/IY68v6vd5othozVFstGb1yEBAObW796JSRqcvCvbqXeWUNK5ZlKByOu2ATSLT+FSUU2XbhpNGcflndmTJqm5Ou+ZJhrVFKKe2AtMnjeS+WfOZMDIYpt0My2m1iWCNilC17xOku/X6mcw+kSw6e4MaP9PrIinYAYFABgqlVBcwH1gOICIbATsB11rFZMrNBa4FDhARN2jjGGC2VUymbC/aMhsPfCj/SwmSJbeeS9okXDvnxdbLYOh4SFmFfjt2RPygcF8rUSAlj0imuVFh0pRXkuW0IiVaL42o61ZUXCNJllOqWy+02c0InTbmVJHPmYTrylijojpml/UiZXX/3H3DiRy547o1HTcP3HvsuvUmja409OEMESqknJKs84IEVzeOy5vojjm57L/5ZIabcbLOiFDyjmKBb394c3732Z2qEjc3IyDCXkc4QS3ojuDhM9bmkzuuwzcP2axqfzBcv4mTcJVSr9X6qZOsDwOL0GmSjhSR9URkMxH5ITqF0lmm3E7m+8GIYzyEvvc7AIjIWsDaZntUWfd4daNiOVXvu+To7fjCPkF9Hy4X7darvDi1WE5JlOfX1Pg+uudzo/VqQSvcpP3xASUrEzJEZJEldZ5TguWUFjQxbcJIAE7cawMg6NZri8mzF57nZCcgV+eWixUrknM/tjUQEQ0a2lLPQfA43Ot3LZpNJ4/mtAP0aMJp1zwRvP7QYpYVt1718UUk0DGIm/NUyRAR/8zDqYsA2tuEzrYi+266ZtU718xJuGMilJOe81Xk/E9sG1D+ABtMHBn4+6CUpWz6Q5+WNBSREcBYYLFSqnqJxTqglFooIocBvwH+7OxaChyhlPq7+Xuq+Z5LNXbb2n0oWzfs4HrUC3/otlM5dNupgW1JPVuw4zOVXmNwjkyy5ZSErUS1zqZxx5wkwn15zkfTl+qwrsok2eJyRLhrAEX9Lv3c8TJBtoCIOMU5bkQ7c877cPlvN6+ZuzR71Hkr0XqVSZ5hy+HxPrjfoubNudSztxxH1Dwn0Pdih/XXAOC1BStY7ljJ4cTC5YjQmAfqjr/EZeYulQMiqvdZV9mw9kJVkERH0RlLDI85NU83xbj1Kv8Pd6quPXk37p81H9CZX7aYGh3hmge1ZCWfJCLni8hstEJ4E1gqIrPN9jXrJmWFZcAzwI+BjwMnArOAq0Tkg6aMTYQVlYlyVahMLWUDiMhJJqpv5rx587JfQQRR8zqSCJeMit57+b1l5Wi9cOh4MLQ7+VybTh5dXoCvEGoU07DHDlhOEswC/qGtp5THM9JITvwafy3u6qlVMmaoAbFuPbM5aq5I5fjxriSotkoCiwrG/MaOPymnXEGiAwI+9osHYmWLlTklGrQJhlNsQERBgs/wmbmLy/+vCoiQ5GfhEqucYtx6UJlXOKy9GFCKEFR84fDtZlpOUcopmN8xKNvEiOV26kXWrOS7orNErAl0oxXEEvQ40GbA14FjReSjSql/10NQEdkaeAA4TSn1K2f71Uaey0RkQ/RcK4Co5FA2o+WK0HeWsgGUUpcClwLsuOOO/aqv3T0q1u0TRfidCDfaNgvzU2/o77aQpZQUrRdmy6ljygvwVdxJ2SgWhFJv8NpsxbSTAMODw0kkJn4txAdELEuwnLLc97h75K7VlPbbpIS2LmkZoYEqV0vBBIOUQgEBfc0XUeXWq9JOTbCcInLrgZk35wjoji9WjTkV4y2n8KZhMSmWktx6dsrCsPYCS1aGLKeESdTNVE4jI6zzOMvp5H02bIRIZbJkJV8TuA7dgJ8CjFNKbauU2ksptS0wDviS2X9dHS2o09AK41p3o3Er3gCsD0yjEjAR5Y6z26zLrpaydWP+stVMHJ29kQ5XDOtC2GvjieVxA6iEUAcn4cZnIUij1mi9KLdXOLR6RGd8Y/zSOYcEN4ROu7WzflNSQESi5ZRlzCkllDx5Em5Fvij6opzCvXp77Qo9zmKJe0zh8OFxI9o5cIvJsUJVjTmlSpg/8dF6wUnl7hpmpdAk3LQJ0S59c+sZy6mtWJWUtiNm/DDuWI0iyop0n7f77p9pgiMa1TfJ4tb7OtpC2l8p9Uul1Ep3p1JqpbFkDjDlTs9fTKCiLKLemjbn+xHz/90iyu2KrluPAiil3kYrn6g5XHZb+hrX/WB1Ty8LlncxeXT8MgVhwg2aXTpgn00mlSOuXMLJROOWAk+jMuaUjYplUajaZk/bmZD6Jy1B6J+/UHnESaH4SxOUU5aGKm4eSjncNuEeps5zCjX8tSTiVU4vXrDReukTJI/YPjhn6YnvHsilx+3oHhignJl6g0nBQXDbQK83Pnntrjxx798wN+BAgqvXBpVT9mi9MHEr5toUR2uElr1wz90ZNebUVl0HypfQBMvp/CO24aMzpkbuc92kSaLVW+osyunDwB+VUo8lFTL7rwQOzUOwCJ4z38e7G0VkHHA4sBCYpZSahVYoR4rIVKfcVOBI4A6l1DvOIa4GNhSRQ52yReBUdHTgjXlfiMu8pXq4a8rYGiyn0N/dpnLaCnDRf8wobw+PxYj0J0NE5qJApTGIcmnYhjNtqXOXcFPrjs8I8ZUlKSAiS7Re1D06Yvu1KxkzEn5bUcYx1lc/JmBWMkREL5kR18NNe472Z8fuuj53nL4PO00bH7k/KUoxbwKh5CHLybWM3YUlY+c5Rbn1wueL6TR9ZvdpnO3M+3L5xA7rsunk0Xxql/UjLCdH5maaSoZP7rQuFx21XeQ+932vZbghb7KMOU0DLsx4vH+jMzbUg4uA44DzzPjT/eh5SJ8H1gJOMfOTAL4K3InOCHGJ2XYqWhmHLbvz0ErrKhG5AG1JHY0OIT9RKbW0TtcDwLtLtHJaM2GBtzDhhu6ZuTqjw0aT9ORFO2jZ06sCS0JAlOWUXdZwZoJ0OfV3YIzAnND2LDsiGoHzj9iGdSN65a478Ssf2Ch0rvjl1petjl4R2JUxCfewbQVh1rl66tufZ76R+tu0nIFREYaHbjuVnTeoTqV04p4bBFYxriQSrUwfCKfvSZIpjUJBmD6pekKsPWx7fzRrjRQDY07BgAhXIbkTrntLwQAR60HIsjRGHO3FAsfGBPBMGTuMm03wUFg5tSdYTs3m58dsz+hhbRx3xcNAUFFH55W0Fnt95cqinHrRq95mPV78jMd+oJR6TUR2Rqcj2h84ClgJPAGcrpT6q1P2ARHZFzjHfBQ6mOJIpdSToeMuEJE90ErqFHTi2ueAo5RS19TjWlzsgoDjnNnpM9Ydl/ib8PvyrQ9tznVPvsVuG07Q+0096C6VIuf/tIVCu+M4aMvJfPNDmzvnDVo9adjyQZeG/raH6IxoKD65U/Qkz7VM1vDffnYn9ts0OLRZkATLKcGtl8Wl4ir3z+25QeT22N+mhJLHzW2L4jsf2SJyu80rqKP13ICIuHMmy+0mlI3CnqOxllPlXGFL/KAtp/DRGVP5+xNvBfIoustluMfYb9M1mTS6s+y1qAfhVXqDS6O3lnL6sLMYKATrRNK7Uu+ryKKcXgb2A36Zoey+6NDuuqCUmg18JmPZB9FKLEvZucCx/RCtz3T1BF1yD37zA6nryoR72wdvNYWDt6pMhrMvVE+vMtm6nZethopxwSdnBNbbqbWjHGU1RM2cz8ppB2zCVlPHsu8mk6r22Yi1KJICIrLgVtAoZZ1EWvhyHr1Pu5qvIpQhIia1TKpysosYppRLWiokb5ISv3a0Ffj+R7fSysmxouyqvf+x47o889ZiDjYTRgsF4ZR9N+Ss655zjqOPf8ZBm5bn8fSHpDGnVnDrJZE0zwko5z08sI4TcCGbcvo78D0ROVgpdVNcIRE5CD336L9zkm1IUFZOpqKvNTZ6TSGXtAbNvlDdvSWKElzEUKjBrRMT8po1ICIqjDpcMaMspzg62gpVvTz3XHGh0+GGolbSrJ6k55GUbNT8uu+COecQsSmr0gMiUseczM/iRLbHbW9gIxsIiIjI3G4Vlhsc0W3q1vRJI/mfT2wTOF74ztijn7LfRpyy30b0l/C6WlFBQa1KYMwpQtaNJ4/m5R8cEpjcXxc5MpS5CHgD+LuI/FBEArl0RGS6iJwL/AM9Mffi3KUcxISDGbKQ9m7bNqO7t1Q1/yc85pR4nJjJgrVOwnXlrc7WnD0gIgkp1C/ENS0ruVI6HPvsiEwXlYi+uGPnI59N7+Teg0dfWxhZPu35xy2KF97fSLeenWgMIcvJfEdZ4OG1wlzqHQ7dHXIpuuI1cKiuT7i3K07WeismyKCcTEDAQcBr6KzfL4vIIhF5TUQWot1+ZwKvA4fUO4BgsGEtp1oedlyaHkvZrVdSVWNO4Wi9JMK9Jiti1smdlWi2+J5YLUo57Vz9WQU2ibjOgFX6vUrxxHcPjBwoL0ZYj1HH6A9tBR1KXgrl1jvxD9GzIESEO7++b+zx3CjAKOxtbkQD5WKVTNSqwCJSpaB+dueswO9c6j1VJxwQkWaNtBKBYYAmyprp7VJKvQTMQEfB3Qf0oCPkeoF7ga8BM5RSL9RFykFMfSynypiTdfmUf0vf3XrhnG5pROWVq3Lr5aac6rdkdJwCKSvrhBuS5tbLo+oXy+mLsjW6xUJ1Ak+XylLkMfvNWbJ2cvKiopzcFE+V/eF3adEKHWwUJWf4meXdBocDIlolPDsLaWNOjSJz4lcz+fYS8/HkxOqePiinlP32herqtdF6lV+ISOISDy5hRVKzW8+uthmRvsiSq+XU4LQ6XztgE2a9t4zdNpxY3jZxVAfzl3VV5EoJJc+jZ+q6brNYj1nPGTdwv7aJmpw+aRR3vti/vJK1oN/bUmCcMrDmVVshMktmUu7DehF+DIWAW6+1lZMrXzMtpz5lJffkhx3ArSVqLe2Fsbt7ekt0tBUCFVik772hWt0RUZNUw2NMeVlOep5Pvsrpl5/aPtHttvlaY7j99H0D2+4+Yz+6ekpsf86tKOW69aKPkUu0nhP00pvhHmQdc4p7zw7bdioTR3Wy1thhXH7fqzXJ2h+s3MGAiMr+uI5OVNWq/5hT0HJy36PWd+tVGBCWk6c+dPeYyKdaxpxS3hf7QvX0Koa1B0eoCiJ9dsdkrVObTRnNnAXLI7MjDO+oTIRc1V3KzXKyYy55cvBWU2oeExrZ2cbITszKvc48pzpW8kLBmYOWYWXStOefFkouIuyx0UTeeL8hq+WUaSu79aKTqMZ1dKIsp2N2WY/n31nCjuuP51t/e5rN18p36YfwmJN7L1vdrRectN88ObxyajJdvb16Ab4a3oL0VWH1/sokXMdyou8NpT1MWuLXm762N0opDrjgbiNPZZ/t9Y7oaGNVd1fkwmx9oR5jTnkEK6QFROShtNoKhXIHJJvllNwhSAsltzTaPRUVEBGwymOU08ru6rwAIzvbuOCTMwAi81H2l29+aHP+3/89VT530jIUrYKejhB87s3I+2fxyqnJdPWUanLpZcG2GVEBEf2pGJUMEfDvb+1fjjSMQpyQ9YDlVFZORd5fnt+gej2j9fqClcQ+2li3Xg7nKhYqiiLLPUh73SqyJ0vX6ICINvMuB5esdy0n/W6FOyrvLA7kqm4Ih207lcO2ncq0M28oy2RpVcupIEKvUk1d/NDFK6cm092rcnNtWdxQchvJVaYfL5770k7OkAuwMgm3sm2EWT9mi7XG8ObClakV1br/sshWq1vv+lP3zFz2J0duy1bOEh1plMdt0qL1cmgICu6YUybllGY52Wi9bBZ6oygWhfZiIdYKmThKZwpvKxQCk3HzmkvXHwJjTi06z8lK2CqWnVdOTeS9pav43QNzcj9u2Gcsob/7S3/mOVnL6YL/mMH9s+ZHJnh1ufuM/Xh3yarEMqCvsTdFh51/xDYM6yjylasfZ+zw9pqUzRE7rJNeKIK0xQbzaAiKhcoS9VncelktnjS3XcNDyc1cprjExWuvoaMICwXKGT4vPmoGB9U5zU4W+rpMTSPRcqm658zLildOTeTdxfVJPBmuCAHDqR8Vwx6p1lByV5kNMwERozrbMjUak8cMy2SlabmSBfvgFpN5e3G6osuTtAXu8mgI3InW2dx6aQER9rgpx2lghgjQcrcXg54AV4FONSHubn69w2dErSPaeAaCW6+SzaQ15GtRA3NoYBdzy5vwJLq8om/KAREZy9uG2XU1jYhYFjov0uTqbC80PHWMbTxj63sO7UBbsbZQ8lSLx6YvSmmkGh0S3VYo0F6snhphmWryUjZhFflUojJ9jx/ZwZzzPtwskaqoZNtosiAGbzk1EXdtnjypspzc6JsMreEtp+3NK/OWVW23v8xuOVUCKCzDch5fc0kbb+kIjVc0gmJKbzQXt54TkZltzCn5nAuW60nEadnxG20BaMtJvz826MF9n+OWVm8F3FtlcxI2etJ4GvZVbGaEnotXTk2kXpU7nCqlENPTjGOTyaPZZPLo6h3l39Y25uS62+q5zEJSZS+IPre95WkuwLxIz0refwIZIrJYTinuuMUrddqfTadEvAPucRodrVeUcvCQzQgyENxlEFo2psZMK42i1Swn79YbhFS58VzLqR8v3iizttNh22bz49v6mKU3nwdJDbNt1BrdK0wLKsgj/L3ojCumBYVAerSeVTppln1zLCej7COUfgvrpshlYxrVQcpKZR5jc+WweMupyZz+wU1yn8wYHjDOawLgiI42njrrQEZmHDcqu5qUYnh7MXIyZJ4kZUewS4o3uv1KG5fJQ2+70wWyKLs0i+f20/cpJ01NIjjHqP793LaQW8/91v9vXe0UGAe2llOTZImj4rZvDcm8cmoyp+6/ce7HDLsQAktm9PPYY4Ylj0NEyaEU3H3Gvry/oivlF/0j0a3XAPda0nnjyGPcoei49fLIrbf+hJGsP6E2GW7+2t61/aAPuGNONiKv082zF7qucSOyv6v1JnLBzdbQAWVO3Gs6F9z6EsM7WmPsziunQYiEKoI7aNxIt5Y7SL/mmGGsmTEkvK8kGQ1tzVJO5V5yULgT99yA39z3ai4NqGs5ZXGh1mOsaFrCEhx5se2641htJmRbHezOk3Mv65Kjt2PGuuPqLlNW3A5BrVGvjeIr+2/MV+rQWe4rXjkNQsKTFIOuj8bJ8f3Dt+TcG19g5w3GN+R8SVZIJZWS/rtRDUNlzafg9pP2ns53PrJFLufQEZn5Reu1Kt88ZPOqbdMmVJST60I9dNupDZEpK1Hei1Zxn2VhjSZYoV45DULcirB0VU8oIKJxDdP0SaP4zWd2bNj5kpRTW0g5NYpYSy1HOdz8idksp4EfB7Xe+BG8/v4K1p9QsdhaJQQ6Clc265rcbcMafadN4uFv7c+wJrj6vHIahLgN4rNvLWnpgeI8SWqYbTaDqDWm6kl53C20Pc9n4k4XyDKGNVAtJ5cbv7oXL7y9JDAXq5Wvy33ew9qL3Hra3qyzRnLqrlah3u74OAZ+F8pTRbjhGyrKyW2XJ40OhkFba6HQ4Eip2DWR8jxHwQ0lb7xyyjtxcRZGdbax47Sgu7iFdVPVe7Dx5NEtE3jQqnjLaRASbnyGiG4qWw2XHL0da40dxid+9WB5X2UybGNliovWy9VycjNENNhy+ueX92DN0c3pWYdpbbdesyUYeHjlNAgJtz2t3KPME6ucJozqqOrN2zWzGt2AVbIBBJVGnmIUCpXj5THPqRa2WWdcbsfqLy3t1mth2VoV79YbhFQ3wNUV4/AZU9lr44mNEahBHLiFznK+3vgRVTkEKxkiGitTfDby/ARpKxScaL3sMqXlzhtotHL738qytSoDxnISkbOA7yUU6VFKlWubiGwK/A+wD9ABPAZ8Tyl1R8SxxwLnAB8HJgCzgZ8Bv1IDKd4zhqiKcfFR2zVekDrz2T2mceSO6zB6WDuLViwO7HNzsqVx1ed3YfZ71Ylv+0Jcj1ly7Ba60wUyZSU3wSEPf3v/lklVkwetPLba6Azug4EBo5yAvwKzIrZvA5wBXGc3iMiGwANAD3A+sBj4PHCziByilLrNKdsB3ApsB1wCPA8cAvwCmAycVYdraRg7bzC+pX3xeSIijI7JYNHZFkx7k8TuG05k9w3zsSrruTx7+VhO5vla3Hp2WfPBQisrp6FSB/NkwCgnpdRTwFPh7SLya/Pfy53NPwTGATsopZ4w5f4APAv8XEQ2cyyiE4GdgK8opS4x2y4Tkb8A3xKR3yqlXsv7evrL1w/chC2npq/kes1Ju/L03MWp5QY7VWNODbIY4jJQ592Q2uP97fG56TINgnlOUbT0mFPritayDOi3VERGAkcBbwI3OdsOA+6yiglAKbUM+A2wCVoZWY4BVgCXhQ5/EdAO/Ed9pO8fX/7Axuy32Zqp5USkpXuUjaIZ4c6Q4Nar0yOZu2hlaplGL3XRKFr5snwdrJ0BYznFcCQwBvipUsqmvN4G6AQejCj/kPneCXhYRArA9sBjSqnw+t0Po/vXO+FpWe79xn7l9YeSqFJODWorbG9+q7WDVm6eARFQyTpQi0yDjVZ2nflovdoZ0JYT8Dm0ArnC2WaTakX5N+w2uyDRGsDwqLJKqdXAfKdsABE5SURmisjMefPm9UH0xjGYe23rjh9R1fBH0RFuvBvk1rP3fqM1R/HC2QeXt+f9SIa1e+XUytfVwqK1LANWOZlovD2BO5RSrzq7bE6Q1RE/WxUqk1TWlo/MMaKUulQptaNSasdJkyZlF7wJDGLdlJlWCCV33Wm5K6caghsG6/vQygpgMHcQ68WAVU5oqwn0OJLLCvMdtYznsFCZpLK2/IqYfQOGoVgxwgEIVjnZRvzoXdZriBxuCHFgKZOcn4m7rlEag/V9aOXramXZWpUBOeYkIm3AccAC4G+h3W+Z7yh3nN1m3XgLgZVRZUWkE5gI3N1feZtNK/coG8Vkk7yyo63AS+ccUl7uu16MH9nB+8u7AlaKe8a8z17LSrSDtaFs5XGdQRogWVcG6i07FD0H6UozNuTyNNpNt1vE73Y13zMBlFIl9OTc7YwyctkZ3YbMzEvoZjFI26JE7OJ+W6w1hvOP2IYT99ygvK+jrVD3wfODt9LZKnqceUcBRZXD+Ud3VvqWwzJYTofP0MOxw2uwsgYSrTzRdbB2COrJgLScqLj0Lg/vUEotE5HrgI+LyLZKqScBRGQUek7Ty+hIPMvVwB7ASehJuJavoSfxXpO79A2mlaOY6k2xIHxyp3Ubft7/PmxL9tlkEtuuUwnWCLr1+n+OO8/Yl0UrdKRiWkDEdz68OcfvPo3vfHiLQZsNu4UNJ6+c+sCAU04iMhU4GHhYKfV0TLFvAvsDt4jIhcASdIaItYEPh1ISXQZ8FrhARKahM0R8CPgYcI5Sak49rqORDMVq0ey0PO3FAgdtOSV2fx4dhomjOpk4Shv8WSyntmKhaimRwUQrd8JaWXG2KgNOOQHHA0WqAyHKKKVmicgewHnAmVRy6x3spi4yZbtE5AB0br2jqeTWOxX4eT0uoNEM5V7bULn0tDGnZivrRtDKoeStrDhblQGnnJRS5wLnZij3PHB4xmMuAr5sPoMOXy8GP2mWk2rY8orNo4V1k6cPDNSACE8NDEXLafA3xUFqyRAxWGnlaD1P7fg3eggwBHVTmSF86QGGgltvKHbCBjMDzq3nycZPjty2PPg9FP3dg2AZLk+NtHIouad2vHIapByxwzrl/w9Fb8eaZtLtXhu3dmqpRjEUVLXXTYML79YbAuSdAXsgsPa44dx/5gc47YObNFuUhvGrT2/fbBGaSitH63lqx1tOQ4ChWmfXHje82SI0lA0mjordNxS8nH7MaXDhLachwFAccxqKJAXsTRjZ0ThBmkQrdsJ2mz6h2SIMWLzlNATwumloELf8+sVHzeDQbaZG7htMtGIn7Pcn7Myqnt70gp4qvHIaAnh3x9Agbvn1w2dErpfpaQAdbYXqVZg9mfB3bQjgVdPQwAcEeAYTXjkNAbzlNDTwyskzmPDKaSjg26whgVdOnsGEV05DAN9mDQ3CY05rjxvOK+d+qEnSeDz9wyunIYB36w0NwpaTiE+G6hm4eOU0BPC6aWgQpZw8noGKV05DAG85DQ2qlJMfbPQMYLxy8ngGCW2hSbi+T+IZyHjlNATwltPQIDy8dPzu05oih8eTBz5DxBDA66ahgZu+Z855H26iJB5P//GW0xDAW04ej2eg4ZXTEMBHE3s8noGGV05DgFbM1uypH9uuO67ZIng8/caPOXk8g4iHvrk/Y4e3N1uMpnHsruuzyZTRzRbDkwNeOXk8g4gpY4c1W4SmcvZHt2q2CJ6c8G69IcT0iSObLYLH4/FkYsApJxEZLyI/FpFZIrJKROaJyJ0isleo3C4icpuILBWRJSJyk4jMiDnmVBH5gznWShGZKSJHNuSCGsS1J+/GtSfv1mwxPB6PJxMDyq0nIusDdwGjgMuBl4CxwDbA2k65XU25ucB3zeYvA/eKyO5KqaedsuOB+4A1gQuAN4FjgD+LyAlKqd/W96oaw07TxjdbBI/H48nMgFJOwJVombdRSr2dUO6nQBewt1JqLoCI/Bl4HvgJcKBT9kxgA+AwpdR1puzlwIPAj0XkWqXUstyvxOPxeDyxDBi3nojsDewJnK+UeltE2kVkRES5jYCdgGutYgIw/78WOEBEpjg/OQaYbRWTKdsLXAKMB/yCOB6Px9NgBoxyoqIkXheR64CVwHIReUlEPu2U28l8PxhxjIfQ68LuACAia6HdgQ/FlHWP5/F4PJ4GMZCU06bm+zK0RfMZ4AS0++6PIvJZs3+q+Z5LNXbb2n0oG0BETjKBEzPnzZuX7Qo8Ho/Hk4mBpJzszLqlwH5KqT+ZYIW9gEXAuSJSAKyrb3XEMVaZ7xGh7yxlAyilLlVK7aiU2nHSpEnZr8Lj8Xg8qQwk5bTSfF+tlOqyG5VSC4F/AlPQ1tUKs6sz4hh2huKK0HeWsh6Px+NpEANJOb1pvt+J2Gcj99YA3jL/j3LH2W3WZVdLWY/H4/E0iIGknB423+tE7LPb3gMeMf+PmnG6K6CARwFMOPpcsz2qLMDMvgjr8Xg8nr4zkJTT39HjTZ8WkVF2o4m4+yjwklJqllJqFlqhHCkiU51yU4EjgTuUUq71dTWwoYgc6pQtAqeix7JurNcFeTwejyeaATMJVym1UES+DvwaeEhErgA6gC+a71Od4l8F7kRnhLjEbDsVrYxPDx36PLTSukpELkBbUkejQ8hPVEotrdMleTwejyeGAaOcQEfIich84BvA2UAJPZ/pGKXU/U65B0RkX+Ac81HAA8CRSqknQ8dcICJ7oJXUKejUSM8BRymlrqn7RXk8Ho+nigGlnACUUn8F/pqh3IPA/hmPORc4tp+ieTwejycnBtKYk8fj8XiGCF45eTwej6fl8MrJ4/F4PC2HV04ej8fjaTm8cvJ4PB5Py+GVk8fj8XhaDq+cPB6Px9NyeOXk8Xg8npZjwE3C9XgGMgdsviYjO32183jS8LXE42kgv/nMTs0WweMZEHi3nsfj8XhaDq+cPB6Px9NyeOXk8Xg8npbDKyePx+PxtBxeOXk8Ho+n5fDKyePxeDwth1dOHo/H42k5vHLyeDweT8shSqlmyzDgEZF5wGt9/PlEYH6O4vQHL0s8rSSPlyUaL0s0rSzL+kqpSVEFvXJqMiIyUym1Y7PlAC9LEq0kj5clGi9LNANVFu/W83g8Hk/L4ZWTx+PxeFoOr5yaz6XNFsDByxJPK8njZYnGyxLNgJTFjzl5PB6Pp+XwlpPH4/F4Wg6vnDwej8fTcnjl5PF4PJ6WwyunOiEiLXNvvSzRiIg0WwZLi90XL0sEXpbGMugvsJGIZrqIFJRSJS9L68li5FkDQDU5Gsjcl6lGFv+MvCwDRhaLiAyv17G9csoJETkReBa4BXhJRL4nImt7WVpLFhF5CLheRK4RkY83Qw4rC/A4cJOI3CciJ4tIRxNlaZln5GVpbVmMPJ8TkTuBv4nIhSKyV+4nUUr5Tx8/gADDgQuA5egY/nOBfwAl4F/AxqZswcvSNFnGAVcCS4E/m8/rRpZvABMb+L6MMvdjGfB74FfAI0aWXwLr+nfXy9JqsjgyTQT+CiwB/gncDqwAVgNHASNzO1cjLmgwf4DNgbeAnwITnO3fNS/QrV6WpstyALAI+E8rC7CpUVIl4L8aKMvO6MSX/w2MN9tGApcYWX4zRJ+Rl6XFZTHnPcIopi84dWlf4C5gHvDZ3M7VyAsbjB/gVPOSfMD8XXD2XWb2fcn8LV6WpshyJfA+MC20fTjwqqlUBzToffkR0AVsF9ouwJ3mvnyyQbK00jPysrS4LOYct5g6M87ZVkB39hYAzwA75HEuP+bUR0SkaP673HzbAUrlRNL8DHgKOFtERirzJHM6f4fzf3u+ZsmyhYh0toIsIbnsM1oK9KJ7oHZguU0ptRJtTY0Hvl7P6D3n2hcDCl2RrSxFcw/OQltVZzdIllZ6Rr4etWg9svKYZ9UFdCmlFpntgo4tehHtIt8CODGPc3rllAER2VBEDhWRvURkU7PZvizvohsbOyBYjqRRSj0J/BFYAzjDHKtf91xENhaRF4CLzN+iKpE7jZZlexF5Fj1usp45TzPvy/4isrVtcJRSvWb3UmAC8BFbXCnVY8r8Dbge7Zr4WH9kcGSZLCJjzP/FnMfel/eBduAQ83fByqmUuhu4GtgYODknWaaJyC6m4ZtoNttGrNHPyNejaFlaph6ZY2woIjuKyDS7TSlVMu/pKmAjEdnX2afM9+XAY8BHRWTv/spRVxNwoH+AscAV6B73e+iK9Bqwj1NmU2A28A4wSlXM3IL5/wbAS2hzd1w/5Rlm5CmhLYEZZnuxkbKgAwyuMnLcgW70h4XKNEqWUcDv0AEGC41MNwG7OGX2M9v/BHSYbeLct53M/p8Dnf2U5Qp0g/Lx0D6bx3IHdG/4QWC4I4u9L5ub/TfQj8FlYAzwG/O+LjXX9ziwexOeka9HLV6PnPf39+jx2UVAD/BrYAunzCeMvOcCbc52e+8ONfu/Dv0L0ujzDwf7Bx158hrwAnAa8CHgJGAl8Eyo7E/MA/lv+/KYb9sgXY5242ydg1x3AC8Dc4gYDK23LMDp6N7TC+Z+TLPHboIs7cD/muf0BeBg4P+hrZM30ErJnvMeU+E+FpLBft8H3ONuq1GWnYHb0I1dCW0BRUbeAdeaMl+IkeWfpsHpUxShuQ/Pmc8ZwHHA2eacL2AUdIOeka9HLV6PzDFGoz0IrwKnmOd2AdANPI8Zr0WP0z5ptu0RcZxJZt//ubL2Sab+PuTB+EFHdz2M7tXsitObMQ9wNbCls21ddGO4GNPLAIpAu/n/SeY3G/VDpiLQZs7/c3RYaQk4wuxvr7cswOFon/PzwGah+zImovx69bwvaIunGzgHx+IBPgy8ibZOdjPbPmju1w3AWu49M/+/1sg6rg9yTAH+j0qP8mIj12eJ7l1uYso+41T6dmf/eWhFOqUPsmxl3t3bgL1D98U2cp9qxLuLr0cDoh45z6qEHoN15fkS2vL+K7CB2fY5Kp4GG3FqZekA/o127w3vqzxKeeUU96C2QkfCbBbaPgXdw/5rxG9OMQ/sfvcFMy/RtWiXxlr019SFWeZc25oX9kUqrqpiPWUxv7kU3ePb3GzbER2SfZt5gU8h2CB+uV73BR3WWgK2Mn93OMf+DJW5Q2PN9svNtgtCxymge4O3mspVk+WE7i3+GBNlhx4zes5U0i1CZe0zOsfIcm14Pzpq7ym0O6zWZ7QvWjHu5mxrM9/7m3N+o0Hvi69HA6AehY4/JVSXxgL/Zfb9P1M/RqLnWq0C/jN0nHZ0x/BP/Xk+SnnlVMvDWxf4u3lIj6B7D4c4+9vQPeZe9MS0Q4HtgS+al/+H/Ty/oMcRHgO+brbZBu5MK0O9ZUH3sOaiQ0p/ac7/FDAT7VoomcqyfgNksY3HFyL2FUwFeh84zGwbDjxhfvNddK91I7R//F3g8/2QZbTz/xFGtl7g2zhjR1RcMu3O+3Q5sAc60ukrpqH5Rj9k2Spm+27mfMeFZGlDBwbU5d319ai165E5/g/MOQ+P2LcOWim+CGxvtk1Dj4N1m2e4Jnr86zvoqRkf7fe7ktdLNxg/TuU91jy4J4ELgW8BN5ttZ1HpbawJfA09Sa0EvI02368gp5nTpuE61fzfunAWo2duj8X0UtG9qNxkoeLfHo4ev+hG++yPA9Yx+yaYitaD7m2NNtsn1UkW6x67jIp1JE653cx5Lnb270xlzGcZ2rXSjXZRDKtVlgQZ10f3gucQ8s1T6ZlvhHa19ZjPK0beS+mnSyRGpqNxLM3QOz6xXu+ur0etWY9Cz2Zvc8xvYyw2R1Yx7043eqzM/uYg4CHzu3fRyrUb3dHp6Is8AdnyrgCD8QNsg+5dr+M8uHXQUWILgY+Eyu8AHImeQBfZi+2jHGuhI3c+72z7vHk57jWy3F1vWdDjB380FaojtG8jdM/uJUJjJrXKQop7DegEbkQPuEcNzo5CW08vYiKdnH1Ho90UP8REa/VHlqjywEfRqV1+hQluIMLtYir5F0zDsE3esji/+61p0NaIO0bezyhUtq71KKssjahHWWRpVD3KeE/WR1ttjxGarG72Tzf7HwltH4V2Cf4QneVk+zzkUWqIKSf0ZEvbO5HQvoKpPGtlednQbpmPmxf6q2ZbWz1kodKDGYZ2U53glD0C7QboRTfUO6H9wpl9z325Lxh3Q/j+oN0PPzT3ZS97jBpkWR/j5kmQZar5u4iOKuoyFSOgAIwsZxlZtrO/yVmWyPfFlJmI7tUuwUQJOnLVquz6LIvZ345u6P6R9F43QJa861FmWRpQj2q+L/WqR6b8ZOBAIoJ8TN3ZFGNxoTt6Z1IJA+9wz2me0xXoztYmfZGn1s+gn4RrJ0GKyHloF8sJItKpzN01+4pol8PjwBfsLG0XW95OclNKdaMbRdA+bJSZ2Jm3LM7+qeiX5x0zifBqtIvqHfRLM1Ip9YhSqkulpNTv731RSr3mHkcppcxExh50YwzaxCdNFnscEbkIHcp6vIh0JMhykogMU3pS4H3oMYzjMBNblVIlk3Whh8okxtVmXy8p1ChL5PtizjUfba0sQ9/faSKyObrHOyNNjrxkMfd/Kro3/nfnt1OBj4vI1g2Upd/1qK+y1KMe9fe+5F2PHHl+hLaCzgf2lkomDkSkHT22+TRwuOglOFajE8k+iHYd7mbPaepSN7qd6EFblpnl6SuDXjmZh10ATkCboAehBxLdMr3oxmsl2h1TVTnCM/3N7OnT0A/s6gbJshzd4zkD7SPfBT3w/lHgD8BeInJ8g2SJO+Zm6Ei5J9BzOFIRvRzAAuCT6N7bt5VSXW6ZOFmUUm+ixy8WA/8lIofZ8iKyJnpezQtoJVVXWULHsXXrQbRb74PoZK+/R48z7dooWQwHmu/7RGSMiHwQ+AW6Ud6nUbLkUY9ykCW3epTzM7Ll+1SPjDzbmGs6Cv3enQfc4XbKjKJpR1tnU53tT6I9EMOB74nIHlZ+05E5EB2FuiKrPP2inmZZq3zQUSSvogcZe9GN2Tizz0bmDMe4tlKONRYdWfUb9Ev5n9TgpumPLMCG6Mmkb6JDl7emkmVgT+AvhBKKNuG+/AGdH+5TGX6zFXquz2p00MIuVI8NubPhY2VBRy/ZXt0Z6DGEi9FzNE5rpCyh34xCR1R1UcnSsE+jZQH+ho4OO8Acc6U5x35Nui8116O8ZMmjHjXgvmSuR6Hf/xgd5HMI0XOmbDDOGGBDZ7t1J44w72sJHaBzHHp89iJ0B/BztcjTn09DTtLsD3pM5X10T+RKdKjjR2LKltPahF6ydcyD/yU6dHM+JiS3wbLsDeyOiT5r8n0RdM/rQnQv7c1aKhSVQejLcXzx6AZ9fZxJskmyOBXrE+gIuRKVLBEnNlKW0L6N0ZGEi8x9ObbRsphtw9G979eoTOb8YhNk6Vc9ylmWftWjOjyjPtcj5zjroTtB/+lsm4K2ovYkuORGIU4es/1UdPRdybwvb9NAxaTU0FFOW6Nzeu1oXsplwDWY9DKkR4UJusf5DtqP+31qGLTNWZbcBiH7K4sps7E5xpO13he0a+Fu9EC9XTTtfHSP7WXzOZ2YYI2EY65nGp5agh/qIctOppH5ZTPvC3puUcl8LmiWLP2tRznL0t9JvHk/oz7XI+cYB6OV0x7m7wvQ41X22T+JWW8p7vpdOdFW3NboyduZ61Jen4aerFkfdE9mGbCr+fti9OzmE+JeGnS47cZUehgF9CTJ8c2WpZXui9m2BU6vrEYZPmAqzi3o3tm76Hx5V6L92yV0uK1d2KwQJ0sODU5usphtw4A1WkSWEzDpZ5r9jPpTj/K+Ly32vvSpHlHxHNi5SnuhJ5m/jw58+Dh6TG252b+j+zvz/3E4Ietk6HzV+9PUk+fwcmwNfJOUnFLoAd9FVHo4W6LHWu5B+473wplfAqyNDid9mgzzThooS6bEjgPtvqAj2krowdgtqWRfnkAla/PXQ7/xsnhZ+ipLbvWoUfclizxob8EytLK8E/gewTx5J6AV1J2h322Ent91E33sZNbj03QB+iS0nn/wTSrm6ueI8fGa8tuiB8Z3MH8XqeSSet58f5ZKbP9k9Mz199NeZC9L/2VBZ3q4hmASUNsbnGAq1B3Ams5+L4uXZdDLUos86DHkB02ZHmAns90GNw0zspZwJq2jJ9i+gg5MmZYmT6M+TRegZoG1OfwDdKN6H7qn/wgJM6XR4cTLgUnOy3E5OkJtOdpXPDbipUtMZ+NlyVWWqEFZqxT/hfbhj/eyeFmGiiy1yEPFbfpVKgFBH3e226zhnzH7jwr9fgfqkDKrP5+BOM9pbfSiXA+hwxy/h56fc4SIjILKXAqHAtp9tY6InIyOQjkUnQW4DR0+aSel2smBLymlVnlZGiOL0nMpCqFtdr7IZPQM9mJov5fFyzKYZalFHmXK/wztohuHzlA/3pyv2+y3crztXotS6lGl1MoM8jSOZmvHWj9o03RP5+9paBP5DWDvmN98Gt1beJVKosQd0WGWNgnoQV6W5snilHUHiEcAJ6KtuO826n3xsnhZWkGWWuWhModpX7S1tphK5vUCWqk9DNxFjkmO6/VpugD9vgDdsz/MvASXYVxUoTJT0RPmbkEvRDfe2bcLJjuxl6V5skT8Zgv0ZMA56J7gFl4WL8tQlqUWedCJYZ+hMvH7H+i5brksZ9GIT9MFyOmBjUcvM7AM7We1A5JuT2YT9MBfXUMkvSw1y+KGsxbQEwavBR5FW3N/og+r03pZvCyDUZY0eUIyTUdHEd6JDpS4lBaKxkv7DMQxpyqUUu+jQzoXoZcemG62l5wyLymlXlHmqXlZWkYW5ZQpodfyGYXu9e2qlPqUUmqRl8XL4mVJl8fKZJLHvqKUOhWdE+9DSqmTlFIL8panbjRbO5p7OQHtD03NPZVwjBHohbl6MalZ0IN/mwAjvCwtL4tdUK2D0Po1XhYvy2CRpUHyZK7XrfxpvgA6a+476NDHXvQM6w/08ViboQf8nkKbu99Gx+8f7mVpfVnIlhLIy+JlGZCyNFKevhyv1T7NO7HO93UTeoDu++gBxLPQuaAWojPz2uiT1Nx3zv+/hs4UvBA9GHgHZhE6L4uXxcviZWm0LK0oz0D4NO/EepbzYvOQRjvbz0DPbr4XswJkxuONQc8HuN48pEdICf30snhZvCxelnrL0oryDIRPc06qI1vuR6fwH2O22RQbU4AXzQ3/BZUludOyHR9sfrMQ+IKXxcviZfGyNFuWVpRnoHwaHq1nlvwtoXsRPcBwEWlTSvWY5YLfQS+KBnplyp0hGBkTxux7DfgWMFkp9Wsvi5fFy+JlaaYsrSjPgKKemg+9GuPZ6HDH3ZztncCP0Jr/2NBvtkH3JC4ClgAXq5SehJfFy+Jl8bI0U5ZWlGegf+pzUL3a5c3oteZfQPcYlqBDHyebMgeafXPRftedgY+hF++6D71cw5PAK14WL4uXxcvSirK0ojyD5VOfg2rf6Wvotec3ALajkqvtCqfcEcBss73bPNQ/U1mc6x/olUQ39rJ4WbwsXpZWk6UV5Rksn/wPqBeumgf8JrS9DR1KWQI+5WxfBzgInep9C/TkMjtYeDkwi74vie5l8bJ4WbwsdZGlFeUZTJ/8Dwh74qz+iI4ssTd/d3S23Lcws5iJX8t+Y1PuWvN3zWvYe1m8LF4WL0u9ZGlFeQbTpx7RenPRC2NNNn8XlFI9AEqpB4DfoMMnv2H2i/tjERkmItsAZ6ITG15oftvrZfGyeFm8LC0kSyvKM3jIW9sB6wOPoZf87XR6E3ZFxunoFO5vYTL2UpkZ/Xn06qvPoEMvT/KyeFm8LF6WVpSlFeUZTJ/cLSel1GvAbejlhf/TbBZlMmErpV4BbkX3JvYx22wvYV9gf3R6942UUpd6WbwsXhYvSyvK0oryDCrqofHQg4TvohMcrm+2Fan4YndE+2mPNH93mO9JwFpeFi+Ll8XLMhBkaUV5BsunLhkilFKz0ItcrQlc4GzvMf9d03yPNNu7zPc8pdTbXhYvi5fFyzIQZGlFeQYN9dJ66BDJv6F7DN/FZMoF1kIPEs4G1myEBvayeFm8LF6WoSTPYPjU+4HNAK42D+xp4ArgRvRM6u+gTd+GpOnwsnhZvCxelqEkz0D/2LXn64aIdKDDJA9Am7XLgO8rpW6v64m9LF4WL4uXZYjLM5Cpu3IKnExkqlLqrYadMAEvSzRelmi8LNF4WeJpNXkGGg1RTiY1fKnuJ8qAlyUaL0s0XpZovCzxtJo8A5WGWk4ej8fj8WSh4YsNejwej8eThldOHo/H42k5vHLyeDweT8vhlZPH4/F4Wg6vnDwej8fTcnjl5PF4PJ6Wwysnj2cAISL7iogSkeObLYvHU0+8cvJ4WhARmSEiZ4nItGbL4vE0g7ZmC+DxeCKZAXwPuAuY42y/BxgOdDdcIo+ngXjl5PEMIExanFXNlsPjqTferefxtBgichbwW/PnnWaMSYnI76LGnNxtIvIlEXlRRFaJyNMi8hFTZmsRuUlElojIAhH5qYi0R5x7YxH5o4i8LSJdIjJHRH4kIiMbce0ej8VbTh5P6/FX9CJ1JwHnAs+b7bOBzoTfnQKsgV7cbhXwFeBvInIkcBl6raG/AwcCpwLvAefYH4vIDsAdwCLg18BcYFtznD1EZB+llHcnehqCT/zq8bQgxjL6LbCfUuouZ/u+wJ3AZ5VSvwttewvYQim12GzfBngSUMAnlFJ/dY7zKDBVKbWWs+1JtPLbSSm11Nn+MbTCLJ/T46k33q3n8QwefmcVE4BS6ilgCfCWq5gM9wFTRGQUaLcfsA1wFdApIhPtx5Rdjra4PJ6G4JWTxzN4eCVi20Lg1ZjtABPM9+bm+7+BeaHPe+hVXSfnJqnHk4Ifc/J4Bg+9NW4HkND3T4CbYsoujNnu8eSOV04eT2vS6MHgl813r1Lqtgaf2+Opwrv1PJ7WZJn5Ht+g8z0OPAOcLCLTwztFpE1EGiWLx+MtJ4+nRXkEKAHfFpE10AEJUWNHuaCUUiJyLDqU/CkRuQJ4FhgBbAR8HPgm8Lt6yeDxuHjLyeNpQZRSrwMnoFMV/RI9R+mLdT7nE8B2wJXAYcAlwHeAXdFK6fZ6nt/jcfHznDwej8fTcnjLyePxeDwth1dOHo/H42k5vHLyeDweT8vhlZPH4/F4Wg6vnDwej8fTcnjl5PF4PJ6Wwysnj8fj8bQcXjl5PB6Pp+Xwysnj8Xg8LYdXTh6Px+NpOf4/HX7tpSP+dlAAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"Ncount_time.plot()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(0.0, 70000.0)"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEXCAYAAACZNvIiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABg0klEQVR4nO2dd7jcxNX/v2frre4NG4yNARsTUww2PaEYQiANCAkQyC8kQAo9nSQQSAjkJbSEkLy0kEIglJcUerXpzaYbU9ywccHdvn3b/P6QRhqNRlrt3rt7Zft8nuc+e1ealWZU5swpc4aEEGAYhmGYWpPo7wowDMMwWwcscBiGYZi6wAKHYRiGqQsscBiGYZi6wAKHYRiGqQsscBiGYZi6kOrvCsSZYcOGiXHjxvV3NRjGw9zlm1ASAs2ZJHYY3tLf1WEYH3PmzFkjhBiub2eBE8K4ceMwe/bs/q4Gw3iYfNHD6MwVMW3cYNz97f37uzoM44OIPjRtZ5MawzAMUxdY4DAMwzB1gQUOwzAMUxdY4DAMwzB1gQUOwzAMUxdY4DAMwzB1gQUOwzAMUxdY4DAMwzB1gQUOwzAMUxdY4DAMwzB1gQUOwzAMUxdY4DAMwzB1gQUOwzAMUxdY4DAMwzB1gQUOwzAMUxdY4DAMwzB1gQUOwzAMUxdY4DAMwzB1gQUOwzAMUxdY4DAMwzB1gQUOwzAMUxdY4DAMwzB1gQUOwzAMUxcqEjhENISIriSi+UTUTUSriWgmER2klduHiB4nojYi2kREDxPRHgHHHE1Ef7OP1UVEs4no+ICyWSL6JREtIqIeIlpARD8nonRA+a8R0Wv2cT8mopuJaHglbWaY/uKlhWtxyi0voVgSkcqvauvGF65/Dqs2dde4ZgxTHZEFDhFtD2AOgP8H4B4A3wVwGYDFAMYo5fYF8BSA8QAuAvALADsBeIaIpmjHHALgWQDHAvgTgHMBtAO4i4hONVTjTgAXAngSwJkAZgH4FYCbDPU9H8BfAWy0j3sDgBMAzCKi5qjtZpj+4px/voZnPliDVW3RBMg/XlyCN5ZuwG0vLalxzRimOlIVlL3NLr+bEGJFSLnfA8gB+KQQYhkAENFdAOYBuArAEUrZn8ASTJ8XQtxnl70FwAsAriSiu4UQ7fb2owB8AcDVQojv27+/mYg2APgeEd0ohHjeLjsMwKUAXgFwmBCiaG9/BcB/YQmgyypoO8PUnQQRAEBEU3AgiyWoNvVhmN4SScMhok8COBDAFUKIFUSUJqImQ7kdAUwDcLcUNgBg/383gBlENEr5yUkAFkhhY5ctArgOwBAAR2llAeBa7bTy+8nKti8CaAJwnRQ29rHvA7BQK8swsUQKnKgmtZJdTv6OYeJGVJOa7PiXENF9ALoAdBDR+0Skdt7T7M8XDMd4EQAB2AsAiGgbWKa4FwPKqseT/y8TQixVC9rflxvKhtVjEhG1GPYxTGyQciOqhlMSUuDUqEIM00uiCpyJ9udNsDSP/wfgG7BMZ39X/C2j7c9l8CO3jamirCxvKivL62XDjk1KGYaJJVJTKUWUOFIRItZwmJgS1YfTan+2AThECJEDACL6NywT1WVE9FdYZiwA6DEcQ3o+m7TPKGXl/6aysrxetpJjOxDRGQDOAICxY8cGnI5hao/UVCIqOBBgkxoTb6JqOF325x1S2ACAEGI9LCf8KFhaUKe9K2s4RoP92al9Rikr/zeVleX1spUc20EIcaMQYm8hxN7Dh3MENdN/VKrhyGJsUmPiSlSB85H9udKwT0asDYblSwG85i1o26SZq5KysryprCyvlw07tlDKMEw8cXw4lQUNsILDxJWoAudl+3Nbwz65bRWsMGQA2M9Qbl9YHf0cALBDq5fZ201lAWC2su0VAGOIaDu1oP19tKFsWD3ek+HWDBNXqg+LZonDxJOoAuffsPw3J6vRXXak2RcBvC+EmC+EmA+r4z+eiEYr5UYDOB7Ak0IIVUu6A8AEIvqcUjYJ4GwAGwA8qJUFgPO0usnv/1C2/QeWGfAs+3jy2J8DsINWlmFiiTSNRYyKdkxvHDTAxJVIQQNCiPVE9ANYs/VfJKI/A8gA+I79ebZS/FwAM2FlFrjO3nY2LOH2fXj5DSxBdDsRXQ1L4zkRVljzaUKINqUODxDR/bAmeQ6EFfK8H4BvArhNCPGsUnY1EV0I4EoAjxPRHbBMad8H8C78c3kYJnawD4fZ0oicaUAIcSMRrQHwI1jpZEqwOv2ThBDPKeWeJ6KDYc30vxSWpv88gOOFEG9ox1xLRAfAEjxnAmgB8A6AE4QQdxqqcTyAn8OauHkKLAF1kf17vb5XEdFaAOfDyn6wCcBdAH7C5jRmcyJ6WLSt4dSyMgzTCypJbQMhxL0A7o1Q7gUAh0U85jJYwiNK2W5YAufnEcv/BcBfopRlmLhRsQ9Hajis4jAxhZcnYJiYkrDfzkozDbAPh4krLHAYJqYQqsw0UKsKMUwvYYHDMDFFWsaKUVUczjTAxBwWOAwTU6RprBQ5W7T1yS4cJq6wwGGYmOJoOFEFjmANh4k3LHAYJqY4Gk7koAH5w9rUh2F6CwschokpbqaBiBM/2YfDxBwWOAwTU6jCFT850wATd1jgMExMkXKj4kwDLHCYmMICh2FiSvW51FjiMPGEBQ7DxBSZaaBYilY+qmBimP6CBQ7DxJRElT4chokrLHAYJuZEXvGTJQ4Tc1jgMExMcTScCn04LHeYuMICh2FiSrWZBgRY4jDxhAUOw8QUqnA9nBJrOEzMYYHDMDGlUg1HZotmgcPEFRY4DBNTqEIfjqPh1KpCDNNLWOAwTExxcqlV6sNhFYeJKSxwGCamuCt+RivPGg4Td1jgMExMcTINRA6LZonDxBsWOAwTUypd8dOVNyxxmHjCAodhYkq12aLZhcPEFRY4DBNTqs2lxvKGiSsscBgmplS64idrOEzcYYHDMDHF1XCilWcfDhN3WOAwTFxhDYfZwmCBwzAxJVFhlBovT8DEHRY4DBNTkpzahtnCYIHDMDEnaqYBwQviMDGHBQ7DxBTp/I888VP7ZJi4wQKHYWKKVFSim9Q4aICJNyxwGCamSLkROWjADp/mbNFMXGGBwzAxRcqNisOia1UhhuklLHAYJqZIH07UiZ/O71jiMDGFBQ7DxBXWcJgtDBY4DBNTHB9OpfNwWMVhYgoLHIaJKVJwRM8WzYKGiTcscBgmplSq4fC8TybusMBhmJjizMOpMJcaZ4tm4goLHIaJKa6GE618iTUcJuawwGGYmCJ9MtFT23CUGhNvWOAwTEyRgiNyahsn00Bt6sMwvYUFDsPEFWceTsTi7MNhYg4LHIaJKVVni2Z5w8QUFjgME1OcMOeIGgsLGibusMBhmJjiJO+sOJcaSx4mnrDAYZiY4kadVRilxvKGiSlVCRwiaiKihUQkiOgPhv0TiejfRLSeiDqI6BkiOjTgWAOJ6DoiWkZE3UQ0l4i+Q2Qv6O4tmyCi84noXbvsUiK6ioiaA459FBE9b9dhHRHdTUTjq2kzw9QbUWHQgPO7vq8Kw/QJ1Wo4vwQw3LSDiCYAeB7AfgCuAPBDAC0AHiGiGVrZDIDHAHwbwJ0AzgbwHoA/AviF4fDXALgawDt22bsBnAPgPiLytIWIjgVwP4BGuw6/BfBJAM8R0eiKW8wwdabSIABObcPEnVSlPyCiqQDOA/AjAFcZilwOYBCAvYQQr9u/+RuAuQCuJ6JJwjUynwZgGoBzhBDX2dtuIqL/A/BTIrpVCPGhfYxdYQmZe4UQxyn1WQTg9wBOAHC7vS0N4DoASwEcJIRot7c/BGAOgIsBnFFp2xmmnrgCpDIJwmHRTFypSMMhoiSAmwA8DOBew/5mAJ8HMEsKGwCwO/ybAewMS8BITgLQaR9T5VoAaQBfUbadCIDsfSo32cc4Wdn2KQCjAdwshY1dj9cBzALwFVsoMUyMqSxzAIdFM3GnUpPa+QAmATgrYP9uALIAXjDse9H+nAZY/hgAUwG8JoTo1sq+DOv9UYXTNAAle5+D/dvXDWURUo8BsIQfw8SWSpeYdsOoGSaeRBY4trP9EgC/FEIsDigmfSPLDPvktjH252BY/hVfWSFED4A1Sll57DX2PtOxh9k+oUrrwTCxpHKNhZ04TLypRMP5XwALYTntg2iyP01CoVsrE1ZWlm9SvjeVKRv12HpZD0R0BhHNJqLZq1evDjgdw9QeJ3lnpSt+1qpCDNNLIgkcIjoZwOEAviOEyIcU7bQ/s4Z9DVqZsLKyfKfyvbNM2ajH1st6EELcKITYWwix9/DhxkA8hqkLlQoOJ5caSxwmppQVOESUhaXVPAhgJRHtSEQ7AtjeLjLQ3jYIwHJ7m8lcJbdJk9Z6AF2msvY5h8FrElsOy2xmEiJjYJnbckrZqPVgmFhSqQ/H1XBY4jDxJIqG0whrzs3RAD5Q/mbZ+0+2v58G4C1YZqz9DMfZ1/6cDQBCiBKAVwHsaRAi02FFpM1Wtr1i13e6WpCIGgDsYSiLkHpsAvC+YR/DxIbK5+GwhsPEmygCpwPA8Ya/79r7H7a//9cOQb4PwMFEtLs8ABG1wBJIH8AbZXYHLF+KPifmPAAFWJNBJXfCegfP08qebh/jH8q2pwCsAHCafW5Zj90BHAzg7jKmQYbpd4J8OEETPDlKjYk7ZSd+2h3zPfp2Ihpn/7tACKHuvwDAYQAeJaJrYGkTp8MyZR0tvLPYbgJwKoCr7ePNA3AUgGMAXKpGwwkh3iKi6wGcRUT3wjLx7QIr08BTsCd9yjoT0bmwhNQzRHQTrFDo8wGshjmLAcPEEp9gCZifw/NwmLhTcaaBcggh5hPRAQB+A+AnADKwTGdHCiEe18rm7HQ3l8Ka2DkUwAJYGQWuNxz+PACLYWlER8MKnb4OwEW2iU499t1E1AXg5wCuhGXqewLAj4UQ7L9hYk+QJlMK8O3I7+zDYeJK1QLH1j58CTbtffMAfCHicTbAmkgaNJlULVuElU7HlFLHVP5+WPnUGGazw1mAzWdSk9u95UtsU2NiDi9PwDAxJUh+ONFoQb6d2laLYaqGBQ7DxJSgsOhSQDRatck+GaZesMBhmJgStKBakCDiBdiYuMMCh2FijqqxqP/7fTj1qhHDVAcLHIaJKSafjCpU/D6cypYzYJh6wwKHYWKKFBwlj1Zj/t/6bv+OJQ4TU1jgMExcMQiQUoBJzWN2Yx2HiSkscBgmprjzcJRtAcJHBJRhmDjBAodhYoopzDlQyNSrUgzTC1jgMExMMeVGKwWa18yRbAwTJ1jgMExMcaPOygcNsLbDbA6wwGGYmOJGqSnblBS1JfX/AOHDMHGCBQ7DxJTyPhyzZOEoNSausMBhmJhi9uGYw6JZw2E2B1jgMExcMWQOiCJkWN4wcYUFDsPEFFOmgaBcaqzhMJsDLHAYJqaYVvyUQiaZIC27gOeXta4aw1QFCxyGiSmmFT/l/8kEecSKGr3GGg4TV1jgMExMMWs41pdUgrxmNLBJjYk/LHAYJqaYwqKFYlIrlcz+HA6LZuIKCxyGiSlC+wQ0k1pQtmiWN0xMYYHDMDFFChFTBJpuUvNqOAwTT1jgMEzMMflwkgkKNKOxhsPEFRY4DNPPFIoldOYKvu1ScHjn21ifqUQiZOKnX+K0dec5izTT77DAYZh+5px/vobJFz3i2y4MXhwR6MPx/NDD4jUdmHLxo7j95SV9VGOGqQ4WOAzTzzz41krj9nANR/fhBE0CBRasbgcAPP7Ox72uK8P0BhY4DBNT3OSd5omfQUImyHRGRH1dRYapCBY4DBNT3Cg1d1tQ0IA6J4c9NUxcYYHDMDFB10xMGo4TFp0k42/UMkHfGaa/YIHDMDGhWNIlhf1h1HAS9nfvduVnPtigxvQ3LHAYJiYUgzQcZZsaNGB9t9fMCcg6wDBxggUOw8SEUsn73ZRpwNFwyCtwwjQcFj9MXGCBwzAxIVDDEcDGrjzuffUjzzwcAOgplHDHy0s8AidIwnCQGtPfsMBhthqKJRErc9OUXzyCW55d5HzXfThC8c/84O438L273sC8FW0A3KCB3z/+AS649y38940V7u9CdJpz//kavnrzi33VhF5TKgm/74rZYmGBw2w1TPjpg/jpv97q72o4tPUU8Kv733G+l3SBYwsOAWDlxm4AQFeuCMDVcFa39wAANnXl3d/5otTcDf95fTmem7+2bxrQBxx85Szsfsmj/V0Npk6wwGG2Ku54eWl/VwGAX7gABpOaYT0cdQE267u/TLASFz+b2pJ1nWjv8eeRY7ZMWOAwWwWq2Wbeik2efaf99RVc98QH9a2PQSqUAgWOss3+lBqOaXJoHBdgO/Mfr+LKR97zbHthQXw0LaY+sMBhtgryRTcE7DO/e8az7/F5q3DVY+/XtT4mv4UepeZsF8IRIq6GY726qp9H4jOp9bKufcEDb63AH2bO92w78ab4+JKY+sACh9kqyBUDevN+wmT28pvUXB+O/jtHw4FJwzGfi6PUmP6GBQ6zVZAvxEvgGE1qvqAB+1P4/TlS4EitKMyH09+ReSZ/FbN1wgKH2SooxKzTM5nUgsKi1f+loubXcIIXxDEJt3rSYVhcjtk6YYHDbBW8+dHG/q6Ch7AotXE/eQDf/ccczz5ZumCrNHqUmn64vS99DMf+8TnruPbO/rKobVRCtiW61rVoTUe9qsP0IyxwmC2ep99fjdP/NrtsuXqansqZ1B58a6Un2kzWLV/0mtRM6W+EANa05/Dqkg2+ff3Bpi6/hqNrc4dcOQs9hWK9qsT0EyxwmC2e2YvXBe5ThUw954NUMg8HcIWGjLbTNRzViqYfub/jJTZ1+zUck4nzo/Vd9agO04+wwGG2eFbYs/RNqP3epu76CRyThuPz4Sj/y10FW3oknbBok4bjPY4Ubv0VpWYyqZm0rg/XslltS4cFDrPFs3JTsMBR5+dsMnSMtcIUw1AqBUebyQ46Z5vUZC41kw/Hp+H0u0nNuq7ZlNvdmDScxWs661Ynpn9ggcPUlI2deez8s4fw3Pw1/VaHlSEajqpVVGNSW7i6vao6BZnUvPOF/MJHCshE2PIE2qH7KjlmrlDC0nWVCwV5XRvSSbdOxXhpODc8tQCHXTWr386/tcACh6kpby/fiFyxhOu1Web1JGzSZ0Hp+AqGTjCMme+uwqFXPYX731xecZ2CwqJ7lPlCJg2noPlwTGX1I/dV0MAF976Fg66YiY4KBXPRYNIzaTht/ZhT7fKH3sWC1WzSqzUscJiaEofVAMJcF3kln0xJCLy+dAPmr4qmtcxbaeVkm7t8U5mSfoJyqeVUgaPsczUcPUrN2l4oqYJKm4fjhEX3zokz871VAICufLRostmL12Hxmg7n/KpWZxKC+QoFPrP5EUngENHORPRLInqRiFYTURsRvU5EPyOiZkP5iUT0byJaT0QdRPQMER0acOyBRHQdES0jom4imktE3yHyuziJKEFE5xPRu3bZpUR0lakOdvmjiOh5uw7riOhuIhofpc3MlkNYR6ZqGsWSwBevfw4zrn4q0nGDhOnGzjym/fpxzPnQHB33yuJ1RiHl13D8HbQ/Ss0bLm3CpE09N39NoGC97cUP8YXrnws8XlSN6Uv/+wIOvnKWI1zVn5k0nByHRW/xpCKW+waAMwH8F8A/AOQBHALgUgBfJqJ9hRBdAEBEEwA8D6AA4AoAGwGcDuARIvqMEOJxeVAiygB4DMCeAK4DMA/AZwD8EcBIABdr9bgGwDkA/gXgKgC72N/3JKIZQgjnbSWiYwHcA+ANAD8EMBDAeQCeI6K9hRCV20GYzZJ8iElN3Vetc10fGb2yeB1Wt/XgD0/OxxVf2h35YgmjBzU6+4//3xeMxymVomg4dpRaUhc4ZlOcWkblqze/BABY/JujnW3zV7Vjm4EN+Pm/37aPI6CO++R/lZoeTQlGTT6cOGg4epuZviWqwLkHwOVCCHW69v8S0QcAfgbgmwD+YG+/HMAgAHsJIV4HACL6G4C5AK4noknCHbqdBmAagHOEENfZ224iov8D8FMiulUI8aF9jF0BnA3gXiHEcbISRLQIwO8BnADgdntbGpYAWwrgICFEu739IQBzYAmyMyK2ndnMCfLhdOYKOPB/Zjrf+ypKrdM2OTVlUpj2a2t8pXbsQRSF8Ex+9GoEJfvTjlLTTGpeQaWb1KzPsH5UCIEZVz+F/XYY6mzryhfRlHG7CPn7MAFuQmpYHbkivnj9c/j3mQcYhXsuBvnuCiWBdJIFTq2IZFITQszWhI3kTvvzEwBgm7Y+D2CWFDb279sB3AxgZ1gCRnISgE4AN2nHvRZAGsBXlG0nwhpkXauVvck+xsnKtk8BGA3gZils7Hq8DmAWgK/YQomB9aL/943lfTLT/oE3V3iiwmTn15+DxqDEnbpJafmG4Gg2E/J66W3rtlflVKOyolDUNRwhnGN/vMla2VPuT2rLE7y0aJ3yO/eYhWIpkglMWrheWOiuUdMWMC+pUoGjms9eX7oBAFA0rMUQh4zeqvb29rKNeHFh79fs6egp4OG3V5QvuBXQ26CBbe3Pj+3P3QBkAZhsBnLxi2mA5Y8BMBXAa0II/U1/GZZFQRVO0wCU7H0O9m9fN5RFSD0GwBJ+DIA/zJyPc+54DY/M/bh84RB6CkWcefurOOlm/zonvXVY94agjkzvOJdvsGa6Z1LRXgsn7b/Wtk47WWVTpjKBUxKaDwdAUpNmuoajawrJBHkETq5YihQWrZaR7W/zZQiwzpkrVDYwWdfR4/kuhAjw4cRA4CiC8LPXPYsTbuz9mj0/+9db+PZtr/oW/tsaqVrgEFESwIWwfDW325tH25/LDD+R28bYn4MBNJrKCiF6AKxRyspjr7H3mY49zPYJVVoPD0R0BhHNJqLZq1evNhXZ4vjY1kjWd+Z6dZwue2Tv0XD62SwvhDD6BoQQvo5zxUZL4AxvyfbqnK5JrVINR+t0hTvfRuL4cGyBowvNBHlNarlCNIGjakGy3hsNOdBM5yzHCk1z7MwVjX6gSo9bCyr1T0XhQ3vuUidnze6VhnMtgP0AXCSEkGvHNtmfJqHQrZUJKyvLNynfm8qUjXpsvawHIcSNQoi9hRB7Dx8+POB0WxayT+utcOiwBU466T5W/T3LPUi7KQl/B7C+0xrRtzZEc23KlgWZ1BorFjiuD8cSHEBCe0Ol8Ew5Asd7fRPk1XB6CiXj5FAdj8CxTYG6hlOtD2edNpBp7ykY6xIPDafvn1e3qewbqkrgENGvAJwF4EYhxOXKLjkN2TREbNDKhJWV5dVpzZ1lykY9tl52q8cROL1cjLjTnrinCpxajBgrISjyqVAq+TILyA4vapRSUP8t56no2kk51Hk4qWQCQogqNBzy3EVVwwmTE6oW1JCRAsd7fWRNKvW16HVs6y4YO/ZYaDhB63z3gqCBydZIxQKHiC4G8HMAtwL4trZbhhqbzFVymzRprQfQZSpLRFkAw+A1iS2HZTYzCZExsMxtOaVs1HowfYTUcDJKlI/JOVxrFqxux++f+MA2mwVoOCV/h1pth6f3I/I6VDpaVufhpBJk9uFoAqeg1TkpVSObnkLR0TLDOlO1qo1ps8CRVBq+nNdMl+09BaOZT96r7nwRv7r/nYozGvQFpgGSfo2Z6qlI4NjC5hcA/grgNOEPa3oLlhlrP8PP97U/ZwOAPWfmVVhzaHQhMh3We6wuYvKKXd/pWp0aAOxhKIuQemwC8L5h32bBWx9txNl3vNZnObJkl9lb65c0UaUUDac/5lZ89aaXcPVj72NDZz5QiBRKJV+HVqlJJ0gjlB11pR2VGjSQsp3/+qhYzzSgX18ir3msp1ByZviHtU/NAtCUKWNSq/A66RpRe3eAwLHbctuLH+KWZxfhj7Pqnw7JNEjojJhZIRAZzdi7ozisbe/BN/7yCtZ39M7n2h9EFjhEdBEsYfN3AN9QJ1lK7BDk+wAcTES7K79tgTXn5gN4o8zugOVL0efEnAcrGOFOZdudsMZu52llT7eP8Q9l21MAVgA4zT63rMfuAA4GcLcQon6pgfuYlxatxX1vLO+1k1+ScExqvaOzR/pw3FdLjqr72pww58P1eCtgFU8p+IiCO9liSfhNalXOL9H9VHI+T680nGQCAsIRLBI300DC812STJDnvD2FkmNKC9Pg1DZIk6i+jo2MxqvU7KTfg/aefICG49UMgwYrT72/GotrtEKoaZAgn+tqcU1qffMSvL18E558dxXeXdnWJ8erJ5G8o0R0JoBLACwB8DiAk7SL97EQ4jH7/wsAHAbgUSK6BpY2cTosU9bRmlZ0E4BTAVxNRONgZRo4CsAxAC4VQiyWBYUQbxHR9QDOIqJ7ATwIN9PAU3Aj5SCEyBPRubCE1DNEdBOsUOjzAayGJTg3W+TL2tNHTlY3aKB3IkeuXR/Fh9PWnUdXvogRrQ3G/eU47k/PAzBPqJRnFCJYiBRLItCkFvU6yGPrbZQ+nEr9V+o8HKnh6D4c2RmH+XDUzjynBA2EaZuqhiPP0Zkzd7S5CO3yHs/vw2nM+LseWT/Z4qD78P/+bI1Zo0ymNbF0XSdGDmgwhr+bBgkdvYwuk9e/rywSPfbz1d8ruVZD1EwDcl7LWFjmNJ2nYKWogRBiPhEdAOA3AH4CIAPLdHakmtbGLpsjohmwUuScCGAogAWwMgpcbzjPeQAWw9KIjoYVOn0drEg5z1MthLibiLpg+ZuuhGXqewLAj4UQm7X/Ro5Gu3ur6ttQlSa1219agh1HtGD6+CEA3A4qU2bdEwA49KqnsLqtp+pOIwrFEB+OScORHV7UF1n6JnShJoVApZpASck0IH04iQANx/Xh+KPU/BpOBJOaNlnUdOxKTGqqxuTXcAoYGjLxs5bO9bbuPA66Yia+vPe2uOJLu/v2mwYJqobzn9eXYUBjGodMHBH5nPJS9JXA6bavZ9+Z1OtH1EwDXxdCUMjfwVr5eUKILwghBgkhmoQQB+rCRim7QQhxlhBitBAiK4SYLIT4g8E/BCFEUQhxlRBiol12jBDie2o2Aa38/UKIfe06DBZCfEkIsSBKm+OMHD325PvXmfnTf72FL9/gzq2VPpFMsrzAWd3mjVhfsrbTMYW9umQ9xv3kgdB1bEJRXnDZQZ91yI6eIoWSQLuu4Wgv8sauvGHyo1I+oGOW3ys3qSmZBJJkz8Mxn1OGRevCLkHeQI1coeR0/u+ETDxUBYRsf5DADDPNrW3vQXe+6OkMdc2qrbvgiZibMLwZJ04fi2JJoFgSVQ+AJE+/vxrjfvIANtph7us6cljVZj1LUvt88l3zHDtTm1UN59x/vo5Tb33FVyYMU0bv3iA1nP6eclANvDzBZojsyLqryK4rhMB/Xl/mGXX2lUlNTvxMqT6ciH6RT/52Jk77qxX3cdsLHwIAnq1y0TbZCtVENW38EHxqZ3deVbEkfGn2e+y6Lljdgdte/BC7X/Ioplz8aOB5gjQZVxBV6BMSroAslaygBH+Umtekpgs13YeTL5aMi73plAwCwheQoBwziL0ufRwn3/wSfvvIe842XcOxBJK77XuHT8R2QxqdY7th+n6iPKPXPfkBAOBde/mIqb96DNN//YTdBm/SUx3TIKErwLQYFfV5lKxq63aWe6gUR8OJQbLTSmGBsxnSGw3n8XmrcO4/X8e1j7tBeo7NvJf1kuHA6rvsLr4VbCeRncjzC6y8VVJgVRuOKhSbudQAMsmEp3163jLA25HKjMmSd1duwtvLvEEK8thqxoIbn17gOHMr9eGUSsJj1rOi1MqkttE6SN2Hk4+Y2kbtgKUAfeDNFbjvDTepuqyL7sN55oPV+HhTt3PdZ3+4Hrc8u8jZr2thuULJ07ELCEcrVsuaZEKUwA5ncmzS372JMv4U0z2TGk5v5wmpbT7hhhdx6q2vVDXIYw2HqYiuXLFXD6/jw6lCw5F5rVSTluxI5PP783+/hSOvfbriY3caXswoYdF6GdlR5AM6hXIvqdxbUIRKJuXvuPXOK+iwD7+9Akde+ww+e92zxnqrGs5lD77rOUcldVdNgMWSFXStR6lJgrYnEt5OM18UkTomtQOW9e7KF3H2Ha/5yurP7im3vIzPXfcsbnpmYdnzAOb8btLvF5b12jp3+bbI+2HK+izbFqT1mcxe0ocTNQw5Vyhh3E8ewF2zlwJQhJxS94V2lF01CUtlsFAUzTWI7nzRk5m8XrDA6Qd2uehhfO2Wl8sXDEA+o1E0nI6eAl5bst75Lp9RNfpJ/itHube9uKSikEv54MugAbVTiDLxU+/A0gGTGiXdZdqtOmllXTJJb5qZkmK+Kse3b3vVuF36fMLm+uiE9RFqnSwNR/h8OJJUQAp9k4YTyaSmajhlOnVT0MCqth6PsA39vUngJN0wb30ApBJlrpSsf0rPC4TgUHbnt/Z+dWAgB1JrIwocOV3hSsWsqB4bUNMEued7fsGaSBpPX2g4ky582LM0R71ggdNPvNCLtOeyc5AjlO58ET+8+w2jk/3sO17DMX983nF+yxdOjX6Sdu1qJ2nK+Ro5QwccTcPxdiKppHmOiaTcEsdyZKyazdIp8rzMhWJwBFtUZP3UTsO739/2MPNWsSScyDep4ehRapKkoTMFrMwEug8nym1VL3WQoJft8y72VoVJSDepCTeUPlcohU6QjHLPwrQGZ7nrIIFT9Jvc5PHWtkcTOLrZ05TLTvrmpPC+/80VOOmml3DHy0t9x5vz4Tpc8bArzPsqSk0P3KkHUcOimRjhzMOxR/oPv70Sd8/5CEUhcPWX9wDgdgSzF6+zPj9cj01deeehN5i3q05Ds7Yjh0FNGacjUl94N49X8LH9JrVwAVgu664aFSTrlNEabPLhVIo7D8fcAejf739zOd4P0RzVoIFiSRjn4Uj0YAIJGaLUwjScC+59E1/dZ3uPiS4ouk6aOHMeDbbyTi9fFIEmNU/QgEEoRNFKC8VgoeKa1My/ldcur5klAWCtbY4ulwXcST+U9Gpq6nVNJAiwzbo3Pr3AWYtp4ep2lErWOkhS0zvuT1Yk6LkzdkI2lXQ1nM0wLJoFzmaIfNCkD6fNDkfOKvNfxl/wIGbsMtJ5yGUo58WfmwzA22Hp6n0U1E5sbXsOE4YHaDjKC7xkbSfGDvUn6fab1Kx2BJl2ys0/kr8qKWHGaU3gFEqlXi/4pWs4uolD1wTOut3vD1EpKX4leXlNgoXIn0Va4o9S83fuKne8vBRjBjXiYGVeSZDAKRT997ea7Mq5QtFXJ3l/ehQNx3TkKJOdgwYA6jZ5r4ol4ayDBLj3Un025DmlhjOoMXztRnl95HMsa6EOBKR8X7ymw+f32+2SRzF2SBMePPcgp2xJAKs29WC7IU2OSXlzFDhsUqshnbkCnpjnXdSsLxIB6hqOnP/SrM3efnzex77OXPbhavRT0LyLUAe3sk8GIsiXVE3WKIXGy4vW4ZO/nYmXlZUpJX6TWngKlaAZ8G7F4fxehjpnUwlMHTvYKaJmZq4WN3y4vIYTpW8olvzHMikyCaJAzUf34RSKpbK2/jZtuYCgZ7SgtVetZyXoQnDbwY3OYClXiO7DCTp3XhMqKvKZkr+95rH3cdAVM337vWZh6/91tg+nORs+TpcCQZpD5XukDqDkQEIX2LmilcVcnTMlzyfnEklTel9nGsgXS3hk7speBSOUgwVODTnllpfxzb/OxsebXN9KX6SjKWo+HJm7y5SqQ9da5MOkmlAcgaOVDaur+rKvsUd+Jg1H7xQWrPbO0VVDgWUfmnZ8ON7fzl/VhuUbujzzIkydjurD2Wg7cAc0pnHOYTvhF7aGVyha5qvP7z4at5++T1Wz2/PaiF/vPNTrGaVzKCqLxRUN90mSoGBTm55pIErQQEdPwZtpIKB8zqDhRHVcTxkzEDeeshd2326QJyz6rm/thz3HDsYAW2vY0JV3OmhzlJp77u58Ee+tbPO8X0C4hqOPYZ5b4J3rZRKq8rmWJrVy91JNwKqi1kcKI33QYxL2ciC5yl5m3NVwQqtRMQ+8uQLf+vsc3Bgx2rAaWODUCCEE5ny4HgA8KVTCRtUbOnPGme3tPQWM+8kDzpwI2YHc8PRCfOvvsx3nX9mRP6D4cPw2e72DDzM5qZ2SHPk581IMo0OJ3n8WlFBgucudY+L97Yyrn8Ynr5jpyd7rCaMVAkvXucscFUsCa9pzaG1IoSGdRDJB2GWbAc6+XKGEEa1Z7D9hWKBPJAx5bnkt9Il4+VKw4DVRUq6FHGmbBAsRBUavJRK6w7t8WHRHT1HTigJMatKHo2iwUScfJhKEI3YdhcZ0wuNXmjzauh8jWq2E8WvaehwtvFgCPlrvXbZKfbY6c0V8+tqnsc9lTxjrabrmutYclKtO1dJzmkmt3L101zSyNRzt2ID7/unvrMms3ZS1fEZL1nXi09c8jVnvWxNG5X391f3v4IDfPGmsy9r2nopXGv3b84srKl8JLHBqhPrgqCPysE58j18+ZgxVXGkvfXyNPVlTPvBt3QU8MvdjfGwLnPaegrNMchDyIU14TGolz6ckLOxa7WjWtlvn10f8al0l+kRGde6JrJPJp9SlrDHTnTMLnPveXIGDrpjp0RJWt/V4lox2hJmw/CVpWyusdLE0wB3JuvNxwkxq5TvmP8yc75hH3fB1f7kEBU+kTWomtQ/XdmDWe+FLpbd1F4wTP1VKJdcMps7/iurDSSjaa67oajjyfgyz79Hq9h7nObzj5SU48H9mYpWiwaj3O8iX5wQNGO6Hf6Ks9lsnMMI/aJJh0eXaLC0PTiShI0AVDYekwPEKg/eUoBIhBFZu7HYCXl5ZvA7vfdzmajh2vW55dhGWbTC/93td+ji+eP1zofXV670pYB2kvoAFTo1QH9iugBG5iY1dfg0nm7JGOHICmv7SrLEFzj1zPsJ+lz+JeSE5s1yTmvV95nur0GU/wPpES3Vi2JPvfoyn3nc7LrVTki+iM+I3RPhI/CPKks+kJi+deg7VFKeOCnuK7v/vau0uCoHV7T1OZwa4powrH30f+aI7wz3ICT9xZKtxuxDC6QjVuTMq3vlI0TrmV5ds8J7H/swkExjcZJmdEpqGM2XMQOd/XRA99PbKsufs0BZEM1VV1dZWb+pRynoL7zyyBSakBplNJfD60g3OpEj5PDRmkmjOJLGmLeczFQVZCNRs395ABrtDNgRx6MLCl8nBkK5InlNq8vq9vGv2Uk8WCt2kJq/Rx5u6HauHK3C8QlP13dzy7CLse/kTzpw4fR5Q1Bif9z/2m7FNyLoEac99AQucGtGjCBlVwwma3RvmoJcviUyxob9I+ro4C1cHrxXijpwJi9Z04NRbX3FMdbr9WPXh/OHJ+bj+SXdBLPWlm7diE+56ZalnpC8fal1rSpC3raWSqhlZk99KBierKnDUEbbaqQ/UoocKJYE17T0Y1ppxtslO4I2lGwC4fq8gk5o0Z+i09RTclT0DfThu26v1w8prceikERg5wFrKQQ8amDjKFYpBGQjC6MgVympg6r1YsckdTettbjIsOwC4gl765xbZM+1VP8ew1izWKBqORL3H6kBudbsr+D5c2+ErXyxZeQPd7X5/ln655HOtmtQ6c0Xc/MxCZ56b3uZf3vcO7nzFnT+jCxxZ+o+zFjjLasgBX9icMj2XoD4Yrda5H2RlkXWp5hmKCgucGqHbmiVqJ64KnzD/i3wBpeDSR1j6yCes83D8JUROsIHEFzSgmNRk9IxTJ6EKgw786P/e9Kj1Tji07wUnTweizpUBgJNueslp38I1HbjzlSUAgBX2y55MkLde9vWct2ITGtJe4VAsCqzRTGr6y+RqOOaXTI/8k6yw5000pBPOPdX9GfqM/2qQfW8yQY5PgODVFNVOu5q+or27EDgvRSKvczaVwMqN3U5np3d6zQECWgp0NbDFCu92Kzy8xRI4eoe+pr3HESiqhqNOXFy+oRuFYgk3POUmgy8JgXP/+brzvVAUvmPrGrcpLPrhuStx6QPznA5ZbXOpZC1zod5fOdhMafNw3HOUAjUcFX0QtM6n4YQLnCCBpL736uBPmqr7aqE4EyxwakSQrVndPvHnDzv/6w+Tiu4j0AWKbqYLEzhOXYRhPRhDiObGrjyWrO1EvuAtb3Isq/VwRpmGNVV0H49+LNlRv7xoHX78f29hQ2fO8W3oWZ5zhRIWrm7HZ373DC5/aJ7nOD2FEjZ1FzCkOVjgyHxbQaO6oA5U+somjhrgLimtj8yV7/pib1GR9zKRICdVSzJJHhOgWvcogSM67T2Fsp2XzCYxaVQr8kUR6M8I0nCSmoYD+DvUIc0ZrG3P+TrKr978Ej7121kQWii7KnA6cwXcM+cjXP6QMiM/r2tK/pQ6et9aNIRF66htllaHXLGEd1duQq7gzu8K8gt29BRcgdMT/Fzog6ANnd4BYjkzrSnXYrEkMF0JslAHf/LZ6e10gTBY4NQIVZPpyhexriOHnkIx8GaqAqc7X8TMd93U5eqDta4jh6XrwgMDwh4Y+VAVhfBFxPlMavkiPv+HZ/HJ385EvlRyOn21TvoMfkneieDyHpOIPPUzJdHUBeaiNR3oUBbBWqOYUvLFEpbYkWl6ByMdsg1pt456qGrG9o8FdQ6BGo6tce0yqtUZ4ar1TpDXLKOvvaMzaVSQr8ittzQZDmxMe8yH6v/6stBR6Ogpb1KTnd2kUVZUmRS4qvkrk0oEPg/y8qoaji7kG9JJT0CBzvrOvEcQyHkpVhuKPse5bmrOl6JrOEECJ5NMeN5H+VwuXtOBI699Br9+4B1HA3dNat5ztnUX3Ci1EJNaOW31/Y/bPINZNfXQE/M+9rwPsj26CU9aLuQKvECw2b8vYIFTI9ROtTNXxNRfPYbT/jo7cG6LKnAufeAdnPqXV/DWR5YjUn3497v8CbylpckHgDGDGp3/O0JGTWq0lx6Nor+Mlz04Dx+u7XTq0KZqOHZZ3cfR2mB10Cs3me3dQkuaqUapqdtULIHjnlsd2fYUSli63iyA5cuojqr1hI6ZMlFqQZP8VmzsRoKAneyggo1deU9bG+3OUxK2kFsY6mhZBg0MasqgRanXkGbXR7WxswqBkyuWTdi5wTbD7LKN1V4pcNVbl00lApOKyg5WFfi68E8nrZDpoJH7h2s7vD4c5TnoyBV8VgI9u3PecGz9vsv9H9uBEfJ5ljRlk55BVHtP3lP+8Xmr8Mv737HaZz93upbf1l1whEnYWjtq3dT3W/Kf15d7slfI5++6Jz7AN/86G4+94waMyGuhR8XlCiV84hePYMrFjzoCJ18UNZv8yQKnRvQYTGrPfLAmkobz/krLQd7W4024qR9XZdwwN2WMbipTcTScovCZeXQN542PXMHW2WNpZ7L+sk5Nmt/kqE9sg4Z0An97YbF9TN2RLjxtMJnU9FHYojUdaFdelPvfXOH8nyuUsGStOUhCjvDSyqhaDyxwTWrGQwQGDazc2IXhrVkMa7E6+w2deU87GjNJT+BIuVDTILu5DDlPJoDBtmAZ0pT2lB/U5Aoc03mCtA4V2XGaEEJgg60tTLLnMbkOdPdeZlPJ4OUUZLJK5RkboN2LTIqMZi/JknWdnvdHfQ7aewqeFDUAsK7D2ybTsX0rqtrt+dsLizFheDN233aQZ39zJuU5hnyH5DuuallOm0u6wMk75rKwOTKqwFHfb5XHlUwmsl5yACYHiwCwzr5/uoBTtRmP6b+vZ5XasMCpEV4NRwnr1G6kVINVU4iztjvM6S9MjBva7PzfFiZwlNTmupkn7DzygZWahuxomjQNYNTABuw6eqBj9tPnSugajcmkptuql63vCrR1qyY1HSm4skqHq3dy2TJRai2aSe3H97wJIQRWbOzGNgMbnc5+Y1fO0xE1pJMewVqJqUvttKUASSYIg+1ztTR42zCkOR2QAsf6VNeFGdBg1tjCNKOScO/JDsObkUkmsHxjFzZ25vGtv89xymVTCSd/mK8udmXUa5LVMmOkkwlj6LLkw7WdgR1hZ0/R0bokG3STWlEYTbwq0hy2ZF0nDthxmC8QpTGT9PpweuTcFf/1c6Mtveds6y44z1uQz60xnfT4cMYPazaWU9HnNqkDSnl/9fPplhhnOwuczQt15KB27Lp9NGewrcpOvStvd+4RAu5HKyq3PN9J+4z1letUnO+6mSfMUSpN/M/MX4PVbT1O59qsZc7NpBJ25JadWNQg1PRs0vp5ddNIe08BHT1FTB83xNEoJLlCKTDgQl7TtLL4mj9oIDxKTReod85eiiXrOm2B0+AkctzQ6Tepqd/1iEDJn7++NwBgYKN7ngZDiqIEkaPh6AxqyvjMUwCczjKdSjhC557v7G88RpgGViiVHIEzuCmDkQOzWLmxG7c8uxAfKebMTCrhZEjWcTUc95rI+WXO75OJ0GSj6zpyPgvBUVNGobUhZfshvG1Y5xM45TUcKTh68iU0pJM+odiUSUIIKwJs/qp2vLlsg69dElN4P2A9z2FRaiftMxYC3rWQthnoN6npSMEmTXnq+y2XNNDPt6nLvWae6RtVrCYcBRY4NSLnGd0Gp7aRN1m92fLFkaOnoCSWKsNb3UgsaVIzZbXtVHw4+gv64sJ1mLvc7x9SOeeO1zDt14879W3UBE42lUA2lXTMWfrIr1AqeZzp5/7zNZ+ar49MO3IFtPcUMKAxhROmeYVoT6EUGAFm8uHoyAFucNCA36T26pL1WLGhy9ZwrGu8aE2Hp976yDhI4By88wj88NMTcekXpwT+FrAEZUuAeW9wU8ZYf3mcTDKBh849CFcct1tgO/XBhyqYV27sxvINXWjNppBOJrDNwEas2NDt8yUS+f0yEqn45JQBVzataTgp24cTEMDQ3lPwmZQ/v/toNGdS6OgpOBFjEt2Hs2JjN7531xvO92JJ+K7Hpq4ChBDoLhTRoAhqiVyaYOn6Tsy4+ilc8bB3kTWVQkng4bdX+CwOXpOaX+AMaEg7uf4kamh/2PkA9x6o0yVM/QwALNvgWgfqYVLj5QlqhHrD1M5G7xw7c0UMavI+CFJgSFNcFA3HI3Dsc7QYzCdy1H/7S0uMx7nl2UUgCl5uWSJnP+tRXOlkAtmUpeE8Onelz8xRKArk1OwAK9s8viLAPzJt7ymiM1dAczblCLiMnSJlU3ce7T0FtGZTvhc7isCRecGCfA+mhKhPv78GHbmireFYWselD3hDsnVBvCFA4CQShDMP2TFUWIXVDwCGNGWM+6WmlE4msOOIVuw4otWZcKmjTypsSied6/mp384CYGV1BoDRAxvwyuL1Ps2UYF5lE3AFujrg0n1LTtobQ2fXmk2hvbuAbCqBlmzKeUcaMyk0Z5PozBV9wTLrNTPhbx/xrkiqzoeRPDt/NV5cuA5CANl00nf/Zdi3mnUjiGJJ4Dv/eNW3/cL/zHX+7zL4cDKphJXCSdEy1Pc7CL2fUJOayndB9xmpGqrHpFaj0GjWcGqEvGEN6YRnlP+RFlElb7JqUpMvU3uPq42UQx0ByY5iQINJwwl3Xo8b2hxoh1eRI2K9Y82kLIHTmSviDNu+r74sxZLwqeurtGy/GzryjjkhmSB09BTQ3lNEUybljDBl9NDGLkvgjBnsNzlIIR7mNHfzuJn3mzryFxZYq7VOGNGM1oaU0X+ia0amlEUqqlBUzTif3Hm4s3/sEMuOv/u2AwEAB+00DIB1LeRvvnvwBPc4UsNRQ5EDNBzVtAKYgyWkNrfD8BYs29CFVdqKkdlUsmyUmmp60jvzTNLv55GMGdyI9p4CNnblPWbVpkwSLdkU1nfmfGYtPSx61SZvfXvyJc+9G9aSRXe+hBNvetFuT8I3WJHPX5DGqlIsCeyx3aDQMiYNRy6xrgb/6NFyJqQlRGp66grApn4G8PZHXfmiM4WABc5mhnxpBjVmPC+znkq9K+BBALz+FiA8Ll/t1OVIb/uhTThh2nbeYyoP+KgBDTj1gHGe/blCCZlUAtsPbcLxe20beD6pqZk1nKQnWmebgQ3O/4WS8GkiL2lr5HTlixjWksXi3xyNY/Ycg46eAjpzBbRkk84Ln05a5o6NXXm0dxeMYaNdETQcObEzSINIJxNo1DQOGfK904hWJJT5MSq676ecwFE7X2luOXbqGNxw8l44aZ+xOOvQHbHX9oPx4DkH4ZsHjgcA3HDKXpj5g4ORSBDu/NZ+OPOQCfjhpyc6x5FCSBW4QWOJNi1KzTT/SGpzO40w50ubPn5IoElNCrpRyrOgCxx5n0xJOUcMaECbLXAGKlF5jekkmjIp5726+HOT8fLPDjMex2fa6sl7BI76nALW9fNrONazEDaR99zDdkI6aS0ToT8bZx+6o2cwopu4/vTVqY4PRtXYwp5hecllPyF/p5ryuxwNx3s+dS5Td77o1LdWc3FY4NQIOUIY0JjyjFTUSYuAq3GYXjInV5c9cgmahAjAiWAC3JFRKpHAidO9Pg/1Af/6AeNwyr7bO9+bM0l05YsolEo4ctdR2G6IORQTcB9mfSScSSWQTSc8JrlRAxSBUwz2uThlSsIRAC3ZFNq6C+jMFdGcTTnmpqKwXuaPN3WjUBKeoAmnrTIsWht1HzbJWt3y2q/sgUPslS4Dl3JOkLOGjkpDOuEIOZPA0TUcPfJOx9RRZ1MJNGaSuOyYKY62Onn0ACeyqimTcqKXdh7Zih9+ehKIyLl2btBAcNCExGdSM2g4A20NZ6eABJ0nTh8bKHBknS/5/K4457CdAAAH29qbRHaqXQaHdWtDCu3deWzqynuud2MmieZsytG2mrMpY4CCiTYtpc/IAbrASfq0Y2lSCwuy2GO7QZg+foiVFSNXxPTxQ5x93z9iIg7dZaTzXZ/4efjkkc7zqvYbQZoj4PYLsr0mrak7SODYWl8mmUBPvuRc21ppOOzDqRHyhrU2pJ1JYQDwyuL1nnKdAQ8CoIQg2w9SYyYZGPKsjsSkDyedJF8Ho5rnMsmEx1/QaAucUslOpRLykEuTmr6+eyZJPh+ET8OJECIsBUBzNum8eE2ZpPPCCyEwoDGNZbZJwGRSky+ZPkr948lT0dZd8GaRVpZGUIVlKkE4YfpYdOWLuOS+d5zt44e1OJqIqRPXU7yUM8Go4bkyVD7K/BkTmWQCXSXXPOJJJxMgEHwmNaOGY3VG2w/1h+je/e39MHFUKx5+WzeTWX4ZWYXmbArfO3xnnDBtO59GIedLmQZfrbbfplgSGKucvymTRHM26QxiWrKpyMkn27oLnvdBf5azab+GIzXisGe4tSGFZCKBYqmIQrHkmScFeO+rHjWXTJAjtNXo1rBnQfYL8limeXhu0IB332w7e3UqSegplNDaUFuBwxpOjZBBA60NKZ8z87ip2+LAHS37u3wQOnNF3wMvbbGOhlNmaduXf3YYxg1tcoRSKpkIffkyKa+5qCGdRHfO0nBSyoNvQr7gesckfTgqI5WOpWiIjjMh6622OZtyTWrFksCAhjSW2ylWRhicqkFBA9lU0iNs1PPpmo40b+ja5XaKgNOv0qgBDTh88kjPNlPQQNC9kcLHFLAQBfk7WWevf8gc6aZHE176xU/4ykgfjsm8I++LPkhxsnFrbR09qNE3B0b6cEwCp9kOGtjYlfeEkDelU57OuDmbCgxx12nrznsiQPWfZQ2peuTzHvYMtzSkkCQ3759ukg27r0TkCN62ngJm7DICb1x0hPMcmpDviPRHdvZ4r19DOuEMaOXndw+egL23H+yUkTngpK+oh+fhbF7IWebN2ZTP6T9jlxG47BgrDLYzV8QZf5uNlxet84Ux3/vqMqxq63Z+rz+4OiNaGzCwMe2uOJjwazgq1pwZ95hNGSvapySsDiJsUbIgDWdEa4NP4DQondyGrhyejhDho5rU1PrKIAVpH5caTqshQMIJGojQcSccgePdngrQYlTzi36dbjttOoZq84U2duUN2qC5XlIz6a3AGegICLd+DWn/MVuzKY8GlkoQdhrRgmu/soennGrK0usuo9P8ueqiL3DnmNQM2n5LNoWOXBEbDCY19TqpJrVyPPT2Sk+knW6Cy6aS2EYz1bo+nDANJ41kwoo068r7B5L6+6Ejg3ZyhRKGtzZgYFPaZxZWkf1CsSQwd/lGvPexu4ibvB9/fm4Rbnl2ETpzRbRmU/jRkZOwzw6uqU/2MfI94nk4mxk9xRKyqYSns5VsM6jR6Ti7cgU8+o6VnkKfBQ8AD765wk0jY5gTopNVBEg6mQh90bOaNtKYTjpaVZLChZWr4bjne/L7n8Inxgz0jKJbsinsu8NQ5/ttLy5x1HjJeTN28h1fnlrVLDKKA79kCxwpy5uzSTzx/U/hjtP3dcrLbLlhDleJfJ/1UXeQwFE1L/0SJ4h8GlGxJDx+Nqte5usrn5ko9TYhhYH0+6jznkxCboByHQGrbWS4/8mE2rEntX3Wpz4SL5eN21PvlPThuALnmR8dghcvOMwZeQvhFXzpJHkETphJ7fqTpnq+3zPnIzw3f63z/ZsHjffsz6YTOG7qGNx/9oHOtuYoGk42hVSCUCoJdOVKaDBEcoaRMgwQwp6FJmUQdvWj7/vOJcOr73h5CbpyRafvMU0mlZkoONPAZoaM9tIntwGWT0M+JKrvRu3sZDhlW3fBGXnpkU8mVC0oZfDhqGRTCY/5oSGddFOpJAmf0py6KvKFa7RfwDGDGrHDcMuZLNs8rCWLty/5NLYdEj5L+rwZO+Mznxjl2WYyqWVSCdekJrwRQK3ZNCYMb/EsRtaVMwcNmJCC2afhBHSY6iRMgi6kEsYw1h2Ge30fQR2PM9eolxqOvA9qB27K2baddn+kVqm3Wf2mm3elMNKPXo2Go5rUthvShFEDGzyarnrfiUjTcJLGc91wyl44asoo33aVqWMH44Nff8b5nk0lQUT4hLKiakOEKDUp9AqlErpyBZ9lopyGowptJ/AjTODY16ZQLDnPq4wkVK/NwMY0OhWNS/ehAWAfzuZKrlDyaRCSYS1Z5yFUBY76on157+0woCHlWQFRT5RpQp3smU4kQs0L6sMoI6LabVNBKkHYYXgLFv/maGPHJ00Kppn4ss1ydBYWXSfR0+OrQQNOe5KuSa1U8kZSyf+HNGfw8k8PQzpJbtBABE0hEeDDkR2p3vnOUHw0owd5X9xkkoz+th8fOcnzPagT+c7BEzBuaBOO3TM4LD2My46Zgl1HD8BkO9Fm2KqSAHDWIV4NMyhUXNXAZaSZRD5n+sjYSR0UQeBkFJParqMH4LULD1fqpPhtdL+h6sPJmDWcVIIiLSwWNB/KPZd1DJNJ7bip22Lxb45G0jZlB/pwyjyPaaX+cuASFsDTpJjU1rbnsP+EoU5knNqeAQ0pSwDa12+UUeDYGg4LnM2LrlzRzsVknjWeSBAa0glPZ6DartNJwrDWLFa397gaTgSTWqvyYqaSFJjbCgAySet4d56xL578wcGWSc12OKodhP6CJBPkhGybopnkqEx+RjGn6HNb5Qum+piySpBDUQiPuVJ9qUcMaLDT61RiUiPPp1MPzaQ2coA1P0iuCwMAV395D1z42cme35jO6c9Uba7XrqMHYtYPDzF2CFHYb8JQPHDOQc5k4LAU+IC/45Gdu+qPufhzk3HMnmOc71/eezss/s3Rznf5nOm2f/nsRLEOOhpOoYSWbMqTO65BC24xnUPuMz1u1WTbN/m75ACkI1cM1XpTCbIiPoWlsd5/9oF45LxPWvWtQMOR73OYkJKDrXxJYHV7D4a1ZJ1rqf6utSHtCU4abTCpycCQchPEq4UFTo1Y35nD4KZMqPrclEmhM1dwTD7qTc6kEhjWksWaNjcLcTaChqOaclJJiqTh7LPDUIwZ1IjGdFKZw0O+cpKhSkcg96lL1eoaThSEpuHIeqtCxTKpWe3bfduBoZ1QglxHaBTTlNN5BJjUUgEaEGAtG3Dq/uOUc5uvuT5KDTL1tUYwnUZBaiTlNBw9W4TskNQO9esHjA8dOMjro08YdExqEQYd8noUlXlYEvVZ0p8rXVM3+Z/KLTBn1tT929T3Qg/yUbWwRIKcsOaGdBKfGDPQMfdW4sORJq6wiFE3crOENW2WwHHMqtq5VIEjhYvKsJYsElR+onK1sMCpEes68xjcnPH4cG4/fR+PmaAxbUWFSfv00buNdvZlkgl3jfeiG3UmmTSq1ZgJoCWrOFQTicCZ5YD/YWzIuAInqYyM9I5RXfDLPGHR1nCUF/bNi4/AyAFuKLLuwPVl8bWPq16/TMoK8/7Xd/fHradO93Q8utki5al/dJOa3lE5vp0QgaPuB4I7B//ib+YBRNSw3nJIjaqchqNfuyAfThimXGmAe+2jRI6p6xbp59bD95/98SF4/HufAmDO0qCfT19Q7E9fdZ+/g3Yahtk/Pxw6psGiWi99kKMKnJRiBfD7cMIHjmpqKTmAVM+rRw+qododuSKGtWYczSadTGDcUGsCd2euaAUN2PUhIrx4wWH45Rd2dY7VmE5iYGPalxaor2CBUyPWd+QwuCntebiGt2Q9ZoKmTBJddhjy53YfjV8pNz6dTGB4axYL13TghqcX2jZo7zlO2W976KgaTjoV3YcDaAEHygOud9hqjrbthjThiMkjcZ0iQORLr76QAxrSrnay3SBM3X6Q55i6ycOo4dj12HPsYAxsTPvMbZ7fe+ofJWhAfnrLqiHmVtvKHirQjKnXIxOhXr1B3ifT2vYqusYgR9XJACFswtVwzCa1Snw46vHcOioCJ5XEtoObsKPBMS7R75P+fH1myjbOOQY0pn1aHuAVDFcdvztOP2i8p17+6+a+e+o1a8wEa2QmVA1HCn/V//S53Ud7ykuN5dx/vg4AHpNaMkF46NxPYuLIVnTlC+jMFzym+VEDGzz1zqYSGNyU8SU+7StY4NQIk0lNDxmV8166ckWMGdToHZWn3LQ0PQUr+kR9BUvCb3YAvEEDUebh6PWRqIJKlrvws5Nx3oydPC9nJpXAjV/bG3spk8ik70R/IWVdGtN+QagbPFyh5dVwVNR9ulYgj59ORnMWyxL65ZKaV9DEUBOyU9J9bv6Q4dq+frIjaSljotND91scH47fDxBEMiCaL12RSS1Yw/GaT7UO3FA///PlN6nJAVY6oG6qdn3cXtviZ0dP9tRrxi4jceL0sTjn0B0BeINjPAIn7Z8cHUZa87vo6NXVn7MZu4x00hkRWSbTEQOyroaj+V1VzTubTmJgU9q3REhfwaltakDezhc2pDnjeVH0EW5jJom27jxyxZJxUuDEUa2YscsIPD5vFVKJhKfjLAlzKnh1RUe5gmIQ+ouq1lV9YWS5fXcYgl1HD8R3bnNXeTSZj2QnrXd0bkfsjyTSTR6yw9DnFamETYSVx4/aqcuz7zC8BWva1+H8GTujJAR2szMzy/pEETjy3K0NKU8Uoh5lqNft9tP2KauNVEIiQfjNsVOw97ghgWVaDDPzB2hmnCgaorw+3ztiZzRlknhnxSbMem+1G3QRKULMLRPuwyk/r0Vvk2lRN5kSJhmgtpoEmap9DGhM44KjdsE9cz4C4DWpeTUcbeBRRvimPT4cfxetD6DUwJ1zD9sJQ5pdk5os2pRJYnVbjzGjifocNqQtDUdPMtxXsMCpAe7qiGmPhuNPdZ7Cyo3t9v/6S2Q9KTKBZlIzqQVqOIoPJ1lGw9HNUHrAgV5vNaebeg6dw3YZgZP3HYvzZuzs2e5qOElHWMptu44ZgGfnr7HX0ik527OaQ9hT/xCBI+sfVeDI/uiQiSNw0WcnY1clSaZ6vChuDdm56nn09E4wrbVnfzvdUV9ygpa8VeeAHYf6tumO6kqCLgY0pPGjIyehK1fE8o1duOLhd+395esaXcMpH2as/940yVE+x7oA+O9ZB+DJd1cZtTJVODkakv1stGg+HIk+8Co3aFEFV5RlCdS+Y6zdX5jW8enIFYyZD1QBl00lMagpjfdWtqEWsEmtBkiH2+DmTKjAacwksXitteKe/hLJstvbD9DGrrxngqEQ5pGS/oCGZxrQnJ7KSClhMKnJORZBpjf1uJd+cYovX5msb0M66TPB/OCIifjvWQdgij3JLmEQOD6TWojztdLZ+s/NXwMAmDC8GZ8YM9A3ikxUoeGYTFm/O2EP5/9qk3P2JecfvrNvm+6ojhRWrjv5M0lMGN6C8cMsP4u+DpQJ9V7r70NjmEnN5Ny379PX9tse//ru/p6MzfoxdZ/bbtsO8g2WJOo7py6VAXjN2apgCtL0gxivJCctlz/RqodbZns7QEC/Zw3pJJau64IQfo1Ln3tk+XA4aGCzYZ29tOuQpoxnFK6HxaomFr+GY90adYkA9TktloRxMpi0O4+251ZU4sPR/T+Sa768B76017ZO9gP5gDemkxVFVEkfhtrWlNKp7bbtICWqydqvdvx+E2Dw4yvbUm5Wt+RQe8mCw3YZadyva2RhkKPh+DuLL+wxBn84aU8ArhbbX8y95NOe+UQSPWggkoYTIIhlYMuE4eYlDVQ8vgutow3VcEJMatlUAnuOHezbD7gdb5APx4T67Mrf7739YByz5xhMHOlmuVAfVX3lXf0Z0tdyUt+pKMJerdO2g20NJ8T8rJt2Ux4NJ4HBTdZ8nVqsicMmtRogHW6DmjKeLLz6SppqRI+ubcgHTU0SqZvUTD6c8cOaccjE4fje4dZCXGpH8MNPT8RvH3HXYNdf1NYAG/TYoU248vjdne/y4Y0y+lJxTGqZJJozSZx6wDgcN9Ub2i3NTKaO3R80EKzhyFGlKbWQietPmmqn0Td3PmQQgOVQo/lUAS79arUOGihHUFuloJTaXLkRORAcFDBmUCPeuOiISKYhdeQd1knr1033VwBq0Ii37J++OtVZHNDRcKKEHtqoTnw58BoxoAHXaKHKYRqOqgG39xTwoyMnOhFmkt+dsAdeWexdmDAI9brJhRjleyStIis3uRqmPlnbo+Gkk5gxeaRxuY++gAVODVjXYQmZIc0ZzyhBd76u2Og+BHqqDPkSqbPAPUEDhslxgCW4bj11uvNd7QjOPGRHnH7QDtj55w8BMOQHCwjr1GkKsH2Xwwl1Tls5qn7xuV19ZcLCaCsROLKD0xNmBpExrO6oIucNVtLk4/YagwfeWuEcXyKTafa3wAkyD06yJyjK1P29redAwwRDE+r9NEVnBWHK1ybvk35PPzNlG+d/KXDC0sboqIIzLPOH+m7ok0rluzVlzED89RvTjWlyvrDHGHxhjzG+7SZMvi895F5f7yjo99lUApNGDTBqvn0Bm9RqwHpHw/HOw9E78bXtVrmjp2zje7jkizJE6TDVX5cCfDjlCOtUg6JsdEwz0aMgI4XCosukmSkoH5ZKmElNdgym1TirQc5Uj+LDkRw6aSSe/fEhALzXfVhr+FLNtUaGsJuu8aLLj8IIW6uWc5CqTSLaG8qFcqu4AsfdJoNAwoRlQxXPsSe7eojAUecw6eHwcl+xJJBJJULXuomCqR/Q79mvj3HXN1qtrTqs/r6aPqUSWMOpAes7cmjKJNGQTmLcMNcHo5tjrvnKHrjj5SW47Jgp/ggmOdJXtqvZXUtChOZJC2PX0QMwd/km33ZPHrYQM4OM46/AEgEAmLt8I4BwIWBqt0S/fmGCS46Q9fQj1eIKnOAy44Y2OUEgEimgVJv6IRNH4LZv7oP9J/gjxOrBradOw4JV7caOVr3GcqXKaSFh1X1NKkEolEQkE5zEMakpQ7JihFVT5bOxVuuAw1CvT5iGo0Zk6sj3eNp4S/BHCTsPw/Q+pTUz4/ZDm/H6RYfjgnvfwlembecpqwqnSkzG1cACpwassyd9AubklpLdtxuE3W1HvI7pITxlv3FIJggX/mcuBjSmfT6hqNz1rf18KzwClZvUoi50JfnMlG1wz5yP8Pk9RgeWqSQVShQfTqV+piDkiDnshfzPWQc6ASMS6a/RX+oDd+r7EOioDGhIBzrSVcYPa8YD5xzocYbXmkSCgJKoSsNRb43UpsM689MO2gH/eGmJExlZKU3p4DqqEZk62w9txswfHOyEMPfGZHnr16dhW4O/xXTMQU0Z/OnkvQKP1VfWgDBY4NSA9R05DG52b97Zh+6Ix+xF1qKidlA//PREdOYKSCYIp+w3DsWSwIzJIys2aUmasyljR9zosaEHPxqNVZrU/ue43XDpFz8RKijUlBzlCItAq8Y+H4ZcUvrYqcF29YGN6cCXVg3+2JzYdXR4Z/zpXUfikbmVPdthpBKEHKrz4ajPjCNwQp6R8cOaMe+XR1aUZFYlzKQmA0a6ArIujx/mhj5XY8a697v7Y+XGbhxiR1d+eteROEZZzqISIbbNwAZkkgn89ku7VVyPSmGBUwPWd+Y9zurvHzER3z9iYkXHULWXMw/Z0bPv6weMB+Cfnd9b1NH7pFHBo9qmdHUCx5qIGp64MONMsIwefmwym8hUJpVqYUGMGNCAD379mYo7h+2HNuOSz++KoxRndRx54JwD8aFmDozCn766V9lMzJUg71dFGo5jUnMplaIFZoQJjXKEmdSm2n6yjjKJU4HqzFhTNQ31hlP29nyXj2mUI7c2pPG+svBcLWGBUwME4KxFUi1R5rfIMvpiWH1BmCNTvqSVONCj4o5Wo5X/41enYpdt/BE1BS0HWl9Qrenj/ylLF8SVXUcPLKvNmEgkCIlI3Vr04wFmDfueb+9nTFEj/Y3q85i3I+xqObk2zIc4QVvdtS/Yd4chWLqu/ATaOLNFCxwiSgA4F8C3AIwDsBrAXQAuEkJ01Oq8/znzgFod2oe6CFZf8JdTp5Vd+EsOaPvKXKUiJ66tbnMducdN3RZvLdtgLB+kOchMA5U4n5n+Z0RrFhu78kaza1BOOLkA2Y8+466o2m0vBKcvn92XhA0KiQi3fXMf45oz1fLPM/brs2P1F1v623gNgHMA/AvAVQB2sb/vSUQzhBC1WUd1M+bgiSPKlpHmwunj+j7KavJoS1tRczld9eXdg4oH8tV9x2JTdx6nHbRDn9WNqT23njoNj8792JnAGIV0MhE48JpYg/kkpmhEE/0ZGOJQ46izStliBQ4R7QrgbAD3CiGOU7YvAvB7ACcAuL2fqhfIbd/cB68uWd/f1Qhl7NAmPHTuQc56JH2J9B0t39i7bLXZVDIwHxYTX7Yd3IRvHDi+z45XiS8oKv8568Cape/vK6aMGYgTp2+Hb31yQn9XxcMWK3AAnAjLZ3attv0mAL8BcDJiKHAO3GlYPEZGZTD5TfqC1oY0Tj9oPA6oQeZkZuvhV1/Y1bACTt8QFo0YF1LJBC4/tvZRZ5WyJQucaQBKAF5WNwohuonodXs/E0N+dvTk/q4Cs5lzyn7j+rsKjIEtWeCMBrBGCGGaRrwMwP5ElBFCxFs37gMmjWrF7tsO6u9qMAwTwKRRrU429i0ZEn0YQx8niGgBgLQQwrcCFRH9DcApAAYLITZo+84AcIb9dSKA97B5MQzAmv6uRJ3hNm8dcJs3H7YXQgzXN27JGk4ngKCQqwaljAchxI0AbqxVpWoNEc0WQuxdvuSWA7d564DbvPmzJWeLXg5gGBGZ4ivHwDK3bfHmNIZhmLiwJQucV2C1b7q6kYgaAOwBYHY/1IlhGGarZUsWOHfCyjJznrb9dABNAP5R7wrVic3WHNgLuM1bB9zmzZwtNmgAAIjoOgBnwco08CDcTAPPATiUMw0wDMPUjy1d4CRhaThnwMqltgaW5nOREKK9/2rGMAyz9bFFCxyGYRgmPmzJPpwtDiL6GhG9RkRdRPQxEd1MRL5Y91ocg4j+h4gEEdVVM6xXm4mogYhOJ6L/ENFiu+xCIrqDiHbp4zYliOh8InqXiLqJaCkRXUVEkXLaV/p7IjqKiJ4nog4iWkdEdxNR3yUsq0Gdq/09EQ0monOJ6FG7TBcRvUdENxLRdkHHrwX1vs/ab++039e3e9+SPkQIwX+bwR+A82EFQcyCZSL8JYB2AHMBNNfyGLCi+vIA2gC0b4ltBjDJLvcMgAsBfBPArwGsA9AD4JA+bNfv7HPdCyuI5Wr7+j4JINGXvwdwLKwUT68B+C6ACwB8DGvawOg63su6tBnAkQAKAB4B8GP7Pl4Da87dBgCTt7Q2G373WQBFu81v16u9ka5Jf1eA/yLcJGu2cQesvHBJZfvn7Afyp7U6BoAkrBDz/9qddl0ETr3bDGAogD0Mx5gMS+DM7qN27WoLgP/Ttp9t1+mkvvo9gDSsNE4fAmhRtu9hd0g31ule1rPN4wBMMBxjhl32ni2tzdr+FgBLYGXEX8wCh/8qv0nAafZDdoph3wIA79TqGLA0hA4A29dZ4PRbmw1l5wDo7qN2XWrX6SBte4N9nR/sq98rneyFhuM8AWAjrPRPtb6XdWtzmeOsBfBurdvbn22GpRUtAzAgjgKHfTibBzKz9QuGfS8CmERE5RanqfgYRLQ9gF8BuEQI8WEF9e0L+qXNOvaqsdvAMkP1BYFZzAG8jvJZzCv5fbn2DwBQj0WD6tlmI0Q0EEAr+u4+lqPubSai6bCmgZwvhNhUZb1rCguczYPR9ucyw75lsNb9GW3Y19tj/AnAQli243rTX23W+TYsgfPXMuWiUi6L+TAiyvTR78u1H7DSPNWaerY5iJ/BMjH21X0sR13bTEQpADcDeFQIcVcv6l1TtuTknbGDiAbBn/kgjN8LIdbByowAWL4EHbk0ZpNhn0pFxyCiE2E5YA8UQhSiVdfP5tRmHSLaH5awfQPAZWXOFZWmgProdQrK81fJ7/viGvYF9WyzDyL6EoAfAHgYwK3lKttH1LvNPwSwI4AvVlTLOsMCp74MAvCLCsrfBitKSma1zgLo0soEZr7WiHwMIhoCa6XUW4QQz1dQXxODsBm0WYeI9gLwAKxorqNtU0ZfUFUW8yp/r7a/mnP1FfVsswciOgpWGqs5AL4ibEdHHahbm4loRwAXAbhUCLGwwnrWFTap1REhxGIhBFXwN9/+6XL702T+GAPLubjcsE+lkmP8AkAzgJuIaEf5B6ARANnfI81p2Iza7EBEUwE8BsupfogQwmSSqpbeZjGv5Pfl2g+YzW19TT3b7EBER8IKKZ4L4Ig6+zXq2earYA3S/qW9rykAGfv7NtU3pe9ggbN58Ir9uZ9h374A3hPlU/VUcoztYQmclwB8oPxNh6XGfwDgoci1r456txmAI2wehzXn6JAaBEv0Not5Jb8v1/5NAN6PVu1eUc82y31HAvg3gHcBzBBCrK+q5tVTzzZvD8vnMxfe93UMgJ3s/2+qqhV9TX+HyfFf+T8Aw2Gpzy/BPJ/k51r5sbAmMqarOQasDupLhr+5sExTXwJw+JbUZnv7nrBCZ5cA2KFG7ZqC8PkVJyvbJgCY1Ivfp2GNlPV5OLvDmodzc52e37q12d5+hP2cvgFgaD3a2M/3eUbA+7rKfpa/BOCA/rgOvuvS3xXgv4g3Cvi+/aDNhDVj/hJYM+bnqZ2JXXaWXXZctccIqMMs1DfTQN3aDGuUuMZ+yX8B4GTDX6TsBhHadR3cGeSnwTKJ5O02qLPmFwMQ1f7eLns8vJkGfgIrNHglgDF1vJd1aTOAvWEJm25YwSq++7iltTnk/IsRs3k4/V4B/qvgZgFfhzVq64Y1evkzgBGGcrNg6HwrOUbA+WehjgKnnm0GcLD9+7A/37GrbFMSliB8D1Yk0jJY0XC6EA3qiCL9Xin/WVjzbjoBrAdwDwyz8Wt8H+vSZvteh97HLa3NIedfjJgJHM4WzTAMw9QFDhpgGIZh6gILHIZhGKYusMBhGIZh6gILHIZhGKYusMBhGIZh6gILHIZhGKYusMBhGIZh6gILHIYxQETjiejfRLSaiAQR/aW/61QNRHSwXf+v93ddGIaXJ2AYM38BsBuAX8NKA7OgX2sTAhHtAWsdlL8IIRb3a2UYJgTONMAwGnZK+C4AfxBCnNPf9SmHrb3cCiu79SxtXwJABkBeCFGsf+0YxoVNagzjZySs5afXlStIRK21r071CCFKQohuFjZMHGCBwzAKtq9GroHzC9v/IYjo6/bnxUT0FSKaQ0RdsDL6yt/OIKJHiWgDEXUT0ZtE9O2A85xORO8SUQ8RzSei84joVPscB1dQ34vhLps8U6nvX+z9Ph+Ouo2IvktE79n1fYuIPmuXmUJEDxPRJiJaS0S/J6K04fw7EdHfiWgFEeWIaDER/ZaImqO2gdl6YB8Ow3i5AcDrAK4B8C9YqeEBaxErwPKVnAPgTwD+F9YiZiCiM+zvL8Ly+3QAOBzAn4hoghDih/IERHSeffw3APwU1qJ2P4CVybpS7gWwDaylFy6DtewCEM3ndCaAwQBuhpVJ+xxYq0YeD2vBrjtgLWJ2BKx1WFYBuFRpx14AngSwAdZ1WwZrrZ1zABxARJ8SQuSraBOzpdLf6ar5j//i9gdgHKxU9hcbtuUB7KKV3wZWh3274Vi/g7XY2Q7290GwhNE7AJqUctvCWqdHADi4wvp+Peh3cJdd+Lph2zIAA5Xtu9nbSwCO1Y4zB8AKbdsbsFbUbNW2H6Ofk//4TwjBJjWGqZAHhBDztG1fApAFcAsRDVP/ANwHy3Q9wy57BCyN5nohRKc8gBDiIwD/qH31PfxFCLFRqcObsDS25UKIe7WyzwIYRUQtgGVygyWgbgeQ1dr8LCyhekQ9GsFsPrBJjWEq433Dtl3sz8dDfjfS/tzB/nzXUOadaitVJQsN29YDWBqwHQCGwtLEZJsvsf9MjAzYzmylsMBhmMroNGwj+/NrAFYE/M7Uufc3QZFrYRFtpH1eBeDhgLLrA7YzWykscBim98iAgjVCiDAtB3AFzyQAT2j7Jld5/v6YTCfbXIzQZoYBwGHRDNMX3AVrzflLiKhR30lEA+3JpADwGKxJpWcSUZNSZlsAJ1V5/nb7c0iVv6+G1wC8DeDbRLSDvpOIUkRUz/owmwGs4TBMLxFCfERE34EVXjyPiP4Oay7PcABTYIVSTwawWAixnoguBHAlgOeJ6G+wggi+DUtr2LOKKrwCK7LsZ0Q0GJbDfpEQ4qXetSwYIYQgolNghUW/SUR/BjAXVlt2BHAsgAtgpQhiGAAscBimTxBC3EpE78OaT/MtWOHPawC8B+BCWPnYZNmriKgdwPcAXA7LSX8lgI0A/lzFuZcQ0TcA/BjW/KA0gL8CqJnAsc/7OhHtCUuwfB6W0GwDsBiWoNFNhsxWDudSY5iYEJYTjWG2BNiHwzAMw9QFNqkxTAwhogyiBQGsFpyYk9lMYIHDMPFkfwAzI5QbD8tnwjCxh304DBND7GizvSIUfVYI0V3r+jBMX8ACh2EYhqkLHDTAMAzD1AUWOAzDMExdYIHDMAzD1AUWOAzDMExdYIHDMAzD1IX/DxNNgl1q4lU6AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"Ncount_time_interp = Ncount_time.interp(time=pd.date_range(\"2023-05-09T14:30:03.000000000\", \"2023-05-09T15:56:53.000000000\", periods=500))\n",
"da_fft = xrft.fft(Ncount_time_interp)\n",
"da_fft_amp = np.abs(da_fft)\n",
"# da_fft_amp.isel(freq_time=range(251,370)).plot()\n",
"da_fft_amp.plot()\n",
"# plt.xlim([-0.05, 0.05])\n",
"plt.ylim([0, 7e4])"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(0.0, 70000.0)"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEXCAYAAACZNvIiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABWu0lEQVR4nO2dd5hkRdX/P6fT9MSdzTmTlrBLToKCAiqIAcX04mtCzIrpNSsqhlcBX0VMoKL+FBXEAKgICEgSWNgl7JI2sXl3dnZnJ3es3x916/btntsz3bOzvTPL+TxPPz1zu7q6bve99a1z6tQpMcagKIqiKHubyL5ugKIoivLCQAVHURRFqQkqOIqiKEpNUMFRFEVRaoIKjqIoilITVHAURVGUmhDb1w0YzUyaNMnMmzdvXzdDUXzS2TzPbOticnMdbV0pZo9voLUhvq+bpShFPPLIIzuMMZNLj6vgDMK8efNYunTpvm6Govisb+/lxd+5kw+evpCr7lzN5W8+ktccOXNfN0tRihCR58OOq0tNURRFqQkqOIqiKEpNUMFRFEVRaoIKjqIoilITVHAURVGUmqCCoyiKotQEFRxFURSlJqjgKIqiKDVBBUdRFEWpCSo4iqIoSk1QwVEURVFqggqOoiiKUhNUcBRFUZSaoIKjKIqi1AQVHEVRFKUmqOAoiqIoNUEFR1EURakJKjiKoihKTVDBURRFUWqCCo6ijCEMZl83QVGGjQqOooxBBNnXTVCUqlHBURRFUWqCCo6iKIpSE6oSHBGZICKXicgqEekXkTYRuVNETi0pd4KI3C4iXSLSKSL/EJEjy9Q5Q0R+5dXVJyJLReT8MmXrROSrIrJWRFIislpEviAi8TLl/1tElnn1bhORa0RkcjXnrCijEVGPmjIGiVVaUETmAncBTcDPgGeBccBiYGag3IleuU3Al7zDHwLuEZGTjTFPBMpOAO4FpgBXABuBtwJ/EJF3GWN+UdKM3wOvAX4OPACcBHwNOAB4R0l7P+bVeTfwUWAW8HHgJBE53hjTU+m5K4qiKHtOxYID/D+v/GJjzJZByn0fSAMvNsZsAhCRPwBPAZcDZwXKfgaYD7zaGHOTV/ZnWDG5TESuN8Z0e8fPxorNFcaYT3jvv0ZEOoCPi8hPjTH3e2UnAZcCDwMvM8bkvOMPA3/FCtA3qjh3RVEUZQ+pyKUmIi8GTgG+bYzZIiJxEWkIKXcAcBxwvRMbAO/v64EzRGRa4C1vBVY7sfHK5oArgQnA2SVlAf6v5GPd/xcEjr0WaACudGLj1X0TsKakrKIoilIDKp3DcR3/ehG5CegDekTkWREJdt7Hec8PhNTxH0CAYwBEZDrWFfefMmWD9bm/NxljNgQLev9vDik7WDsOEZGmkNcURVGUvUSlgnOw93w11vJ4O/AurOvs1yLyTu/1Gd7zJgbijs0cRllXPqysK19adrC6JVBGURRFqQGVzuE0e89dwOnGmDSAiPwZ66L6hoj8EuvGAkiF1NHvPTeUPFdS1v0dVtaVLy1bTd0+InIRcBHAnDlzynycoiiKUi2VWjh93vN1TmwAjDG7sJPw07BWUK/3Ul1IHUnvubfkuZKy7u+wsq58adlq6vYxxvzUGHOsMebYyZM1glpRFGWkqFRwNnrPW0NecxFr47FzKVDs3qLkmHNzVVPWlQ8r68qXlh2sbhMooyiKotSASgXnIe95Vshr7th2bBgy2PUxpZyI7egfAfBCqzd5x8PKAiwNHHsYmCkis4MFvf9nhJQdrB3PuHBrRVEUpTZUKjh/xs7fXBCM7vIizV4LPGuMWWWMWYXt+M8XkRmBcjOA84F/GWOCVtJ1wEIROTdQNgp8GOgA/lZSFuDikra5/38TOPYXrBvwQ159ru5zgQUlZRVFUZQaUFHQgDFml4h8EvgJ8B8R+TmQAN7vPX84UPyjwJ3YzAJXesc+jBW3T1DMt7BC9FsRuQJr8bwFG9Z8oTGmK9CGW0TkZuwiz3EUMg28G/h/xph7A2XbROSLwGXA7SJyHdaV9gngaQau5VEURVH2MhVnGjDG/FREdgD/g00nk8d2+m81xtwXKHe/iJyGXel/KdaNdj9wvjHmsZI620XkRVjh+SA2bc5K4M3GmN+HNON84AvYhZtvo5A+51sh7b1cRNqBj2GzH3QCfwA+o+40RVGU2lNNahuMMTcCN1ZQ7gHgZRXWuQkrHpWU7ccKzhcqLH8tcG0lZRVFUZS9i25PoCiKotQEFRxFURSlJqjgKIqiKDVBBUdRFEWpCSo4ijKGMGZft0BRho8KjqKMQXSHaWUsooKjKIqi1AQVHEVRFKUmqOAoiqIoNUEFR1EURakJKjiKMobRqDVlLKGCoyhjEdE4NWXsoYKjKIqi1AQVHEVRFKUmqOAoiqIoNUEFR1EURakJKjiKoihKTVDBURRFUWqCCo6iKIpSE1RwFEVRlJqggqMoiqLUBBUcRVEUpSao4CiKoig1QQVHURRFqQkqOIqiKEpNUMFRFEVRaoIKjqKMIXT7G2Uso4KjKGMQ3Q1HGYuo4CiKoig1QQVHURRFqQkqOIqiKEpNUMFRFEVRaoIKjqIoilITVHAURVGUmqCCoyiKotQEFRxFGcMYXQqqjCFUcBRlDCK68lMZg6jgKIqiKDVBBUdRFEWpCSo4iqIoSk1QwVEURVFqggqOoiiKUhNUcBRFUZSaoIKjKIqi1AQVHEVRFKUmqOAoiqIoNUEFR1EURakJKjiKoihKTRiW4IhIg4isEREjIj8Ief1gEfmziOwSkR4RuUdEXlqmrnEicqWIbBKRfhFZISLvFxmYLUpEIiLyMRF52iu7QUQuF5HGMnWfLSL3e23YKSLXi8j84ZyzoowGjNFkncrYZbgWzleByWEviMhC4H7gJODbwKeAJuBWETmjpGwCuA14H/B74MPAM8APgS+HVP9d4ApgpVf2euAjwE0iUnQuInIecDNQ77XhO8CLgftEZEbVZ6woowhBs3cqY49YtW8QkaOBi4H/AS4PKfJNoBU4xhiz3HvPr4AVwFUicogpDNMuBI4DPmKMudI7drWI/BH4nIj8whjzvFfHYViRudEY8/pAe9YC3wfeDPzWOxYHrgQ2AKcaY7q9438HHgEuAS6q9twVRVGU4VOVhSMiUeBq4B/AjSGvNwKvBu5yYgPgdfjXAAdhBcbxVqDXqzPI/wFx4E2BY28BxHstyNVeHRcEjr0EmAFc48TGa8dy4C7gTZ4oKYqiKDWiWpfax4BDgA+VeX0xUAc8EPLaf7zn48DOxwBHA8uMMf0lZR8CDMXidByQ917z8d67PKQsg7SjBSt+iqIoSo2oWHC8yfavAF81xqwrU8zNjWwKec0dm+k9j8fOrwwoa4xJATsCZV3dO7zXwuqe5M0JVdsORVEUpQZUY+H8GFiDnbQvR4P3HCYK/SVlBivryjcE/m8YomyldZeWLUJELhKRpSKytK2trczHKYqiKNVSkeCIyAXAmcD7jTGZQYr2es91Ia8lS8oMVtaV7w383ztE2UrrLi1bhDHmp8aYY40xx06eHBqIpyiKogyDIQVHROqwVs3fgK0icoCIHADM9YqM8461Apu9Y2HuKnfMubR2AX1hZb3PnESxS2wz1m0WJiIzse62dKBspe1QFEVRakAlFk49ds3NOcBzgcdd3usXeP9fCDyBdWOdFFLPid7zUgBjTB54FDgqRESOx0akLQ0ce9hr7/HBgiKSBI4MKcsg7egEng15TVEURdlLVCI4PcD5IY8PeK//w/v/r14I8k3AaSKyxFUgIk1YQXqO4iiz67BzKaVrYi4GstjFoI7fYyPXLi4p+x6vjt8Ejt0NbAEu9D7btWMJcBpw/RCuQUVRFGWEGXLhp9cx31B6XETmeX+uNsYEX/8s8DLgnyLyXaw18R6sK+scU5yb42rgncAVXn1PAWcDrwMuDUbDGWOeEJGrgA+JyI1YF98ibKaBu/EWfbo2i8hHsSJ1j4hcjQ2F/hjQRngWA0VRFGUvUnWmgaEwxqwSkRcB3wI+AySwrrNXGGNuLymb9tLdXIpd2DkRWI3NKHBVSPUXA+uwFtE52NDpK4EveS66YN3Xi0gf8AXgMqyr7w7g08YYnb9R9gs0tZoylhi24HjWR2hCJ2PMU8BrKqynA7uQtNxi0mDZHDadTlhKnbDyN2PzqSnKfsXA1LaKMvrR7QkURVGUmqCCoyiKotQEFRxFURSlJqjgKIqiKDVBBUdRFEWpCSo4iqIoSk1QwVEURVFqggqOoiiKUhNUcBRlDKGJBZSxjAqOooxBNNGAMhZRwVEURVFqggqOoiiKUhNUcBRFUZSaoIKjKIqi1AQVHEVRFKUmqOAoiqIoNUEFR1EURakJKjiKoihKTVDBURRFUWqCCo6iKIpSE1RwFEVRlJqggqMoiqLUBBUcRVEUpSao4CjKGMbofgXKGEIFR1HGIKL7EyhjEBUcRVEUpSao4CiKoig1QQVHURRFqQkqOIqiKEpNUMFRFEVRaoIKjqKMITQMWhnLqOAoyhhENC5aGYOo4CiKoig1QQVHURRFqQkqOIqiKEpNUMFRFEVRaoIKjqIoilITVHAURVGUmqCCoyiKotQEFRxFURSlJqjgKIqiKDVBBUdRFEWpCSo4iqIoSk1QwVEURVFqggqOoiiKUhNUcBRlDNDVnxn09e5Ulnxe9y5QRjcqOIoyynm+vYclX/knT27aHfp6XzrHSd+4g1ue2FLjlilKdajgKMooZ9OuPvIGNnf0hb7e1Z+hK5Vl/c7eGrdMUapDBUdRRjm96RwAmdxAl5kB0rk8YC0dRRnNVCQ4InKQiHxVRP4jIm0i0iUiy0Xk8yLSGFL+YBH5s4jsEpEeEblHRF5apu5xInKliGwSkX4RWSEi75eQLQ1FJCIiHxORp72yG0Tk8rA2eOXPFpH7vTbsFJHrRWR+JeesKKOFnnQWgHQuXFDS2XxROUUZrVRq4bwL+BiwGvgq8CngGeBS4H4RqXcFRWQhcD9wEvBtr2wTcKuInBGsVEQSwG3A+4DfAx/26v0h8OWQdnwXuAJY6ZW9HvgIcJOIFJ2LiJwH3AzUe234DvBi4D4RmVHheSvKPsdZLplseFCAs3zUwlFGO7EKy90AfNMYE5y1/LGIPAd8Hng38APv+DeBVuAYY8xyABH5FbACuEpEDjHGuDvnQuA44CPGmCu9Y1eLyB+Bz4nIL4wxz3t1HIYVmRuNMa93jRCRtcD3gTcDv/WOxYErgQ3AqcaYbu/434FHgEuAiyo8d0XZp/R4QpLK5bFOtGIKFo4KjjK6qcjCMcYsLREbx++958MBPNfWq4G7nNh47+8GrgEOwgqM461AL3B1Sb3/B8SBNwWOvQUQ77UgV3t1XBA49hJgBnCNExuvHcuBu4A3eaKkKFWzYWcva9q6hy44QvR5rrKMJywAQYdzYQ6ndi61Hd2pslFzilKOPQ0amOU9b/OeFwN1wAMhZf/jPR8Hdj4GOBpYZozpLyn7EHYoFxSn44C895qP997lIWUZpB0tWPFTlKq55K8r+Mwfn6jZ5znLxQlLKb6Fk6qdhfPTf6/h7T9/aOiCihJg2IIjIlHgi0AWz5WFtSoANoW8xR2b6T2Px86vDChrjEkBOwJlXd07vNfC6p7kzQlV244iROQiEVkqIkvb2trCiigvcNp70nQOsRBzJCnM4YQLTsYTot5M7QSnqz/Dzt60LjZVqmJPLJz/wwYGfMkY84x3rMF7DhOF/pIyg5V15RsC/zcMUbbSukvLFmGM+akx5lhjzLGTJ08u83HKC5nuVLastbE36El5LrUyn+kLTqp2LrVUNo8xtRU5ZewzLMERka8BHwJ+aoz5ZuAlt/KsLuRtyZIyg5V15YMr2XqHKFtp3aVlFaUquvozpDK1ExzXqaeGcKn11jBoIOV9Zne/hmIrlVO14IjIJcAXgF9gw5mDbPaew9xV7phzae0C+sLKikgdMIlil9hmrNssTERmYt1t6WG0Q1Gqoru/thaOs1zKhUW7tvTWMGjAiVx3qnauRWXsU5XgeGLzZeCXwIWB8GbHE1g31kkhbz/Re14KYIzJA48CR4WIyPHYiLSlgWMPe+09vqRNSeDIkLIM0o5O4NmQ1xRlUHJ5Q08653e41XD7ym286sp7yFU579HrBw0MvvBzOBbOp65/jO/d/lzV73Of2akWjlIFFQuOiHwJKza/Bt7lCUYRXgjyTcBpIrIk8N4m7Jqb5yiOMrsOO5dSuibmYmwwwu8Dx36PjVy7uKTse7w6fhM4djewBbjQ+2zXjiXAacD1xhgdmilV46/6H4bgrNzSyZObOumrct6jt8KFn6lsvmoxW7ahg8c3dlT1HghYOCo4ShVUtPBTRD4IfAVYD9wOvLUk88w2Y8xt3t+fBV4G/FNEvou1Jt6DdWWdU2IVXQ28E7hCROYBTwFnA68DLjXGrHMFjTFPiMhVwIdE5Ebgb8AibKaBuylEymGMyYjIR7EidY+IXI0Nhf4Y0EZ4FgNFGRLXwQ7HpeY66Uw2X342MoTe9OCfmc7miso2JytfYpbJ5Yd3LjnnUlPBUSqn0kwDbl3LHKw7rZS7sSlqMMasEpEXAd8CPgMksK6zVxhjbg++yRiT9tLdXIpd2DkRmz7nw8BVIZ9zMbAOaxGdgw2dvhIbKVd01xhjrheRPux802VYV98dwKeNMTp/owwL18Hm8oZc3hCNDEj5VxbXSWfy5Tv459t7+PB1y/jlO49nfKON8u8dYh1OMKlnbzrnC86Fv3yY84+dzcsPm1b287I5M6wACLVwlOFQkeAYY94BvKPSSo0xTwGvqbBsBzbi7UMVlM0Bl3uPSuq+GZtPTVFGhK5AB5vO5qlPRCt+bypTPuuzY+XmTh7fuJu17T2096R4/Y8eYHdfxv+8MIJCdMI37uB7bz6SVy2ewe1PbWfh5KZBBSedy5eNfhv0XDyrqkstHKUKdHsCRQnhz8s2cf/qHQOOB11IqWx1czFOGLKDdPCuTCqT59/P7vDFBsqvwykVojue2u4fSw0x15TN5Yc1HzWYhbO+vZcf/Os5BsYUKS90KnWpKcoLiot/vxyAdd86p+h4cKvnajtq1/mXE45gmf5sjsdKJvMrsXAAHtvYQX9mcDecI5MzRXNAlTJYWPTbf/EQa3f08MbjZjOlOTngdeWFi1o4ilIFwRH9UNZDKX7QwCAuNd8yyeR4bENH0WtlMw2UtOP59l62dfUX1Vf28/ZC0MC2TvvZ2UHOU3lhooKjKFUQ7GCr7ajTVVg42zpTrGsvToaRLtOBh9X30NqdRfWVY7guNVdvV4hLzQU5VBv+rez/qOAoShWUBg1Ugx+lFiIcu3szfP+O53xX2HLPummqK3i9K3WpATz6/C7vPTn+8PAGntrSOaBMLm/Im+GtKSq41MoHDeiGcEopKjiKUkLQYugvGaUXWTjDdqkNfN9dz27nitueZaUnDG1dNu/sodNbQttVXK8hEbO3sgjEIsKO7rT/mZfctILfP7xhwPtcfdWehzGmolxqauEopajgKEoJwY6yvSdd9Fqwgx2uSy1sbsO5oTq9qLRdvfZz/+vEOQAsnNw4qIUzucmuJP3COYdSn4j670/n8vRlcqHWhi84VZ5H0EJTC0epBhUcpWLuX7Wjpjtd7iv6Ax1le3fxDhdFYdFVLpgsuNQGvs91zi43WUevFZ7j509g3bfO4Zi54wcNGmisi7LuW+fw7lPm05CI+u/vTuUwJtzacMKXyZmq9rUJClTpHE6wnheChdPZn+Evy3UdeaWo4Oxn5PKGWx7fslfWQHzqhsf50V2rR7ze0UYwCWaphdPek8IlFyiXTLMczkIJsyhc51xq4dTH7cLSRCwyqIXjXGruPTu9drv6wjr/oIBVY+W4dkQjQkdvuih/W3BjulJ35P7ITY9t5qO/W872rtJNi/ece55rGzDgGeuo4OxnPLC6nQ/+9lEe2zjy+833ZXKhUUmjif5Mjot+tZR1O3qGXUeRS627IDhbdvfx8LpdvOiAScDw53DCXGr9JYLjRM9lMohHI4OktskTjwYEJxEbIGBhnX96DwXn5IUT6UnnuPPp7f5rOwLf15641PozOd7766Wj3qJ290N/emS3q8jk8rzjFw9z3UPrR7TefY0Kzn6Gc/n07IWUI6lMzs+WPFpZu6OHf67c5ocFD4diwSmMMK97cD15Y3jXKfOB6tfhDLbw03XOQUGPCCQ8IXEWjjNcBWtm5b0J/ERQcOKFv119YZ1/UPiqEU9X9lWLpzOtJckvH1jnvxb8vvZkQ7j1O3u5dcU2HtyD37EWuL2Kqs06MRQu83fPfjYPpoKzn+GnRhnhG8DVXctdJYeDE9w92YwsOIfjXFPGGP746CZefOBkDphsd7wYflh0eZda0NJoSMRwWdkT0QiZXN7vgCY22cSefekcmRKXWkMiEErt1TeUS60a8XTXVn0ixpuPn809z+1gy+4+oPB9lfvMSnHX2WhPDup+j2oHH0Ph8u4NJ2R9NKOCs5/hLtD+Ed4COZ83ZHJmr1hOI4lv4e2BMAY7SuciWrG5k00dfZyzeLrfuQ9/4edAl1pY5xxMDJqIRsgb6PDmdma21gM21U661MIJSSgaLjjDs3Bc55qIRnj1khkA/O2JrQDsCAjOnszhOMthtG9/0ONbOCMsOG6+TwVHGc0UkjaOrCXiOteRcKnd8vgWPu7lKitHLm/YVTJhXwndg7iQKsWNrpuTMTZ12NX+t67YSkTgjEVTqXOC433X/+8/z/OVm1YA8Ny2Lv65Ymtovf4cTsj2BGGdswsYAIh7n+nmlCY2JaiLRejqzw6cw4kPFJz+QcKig20LsnxDB/etsglMf//wer70lydtWe99dfEICyY3cej0Fm5+3O7qvrmjj3hUqItFRuQ3GI7gdPVnhhS7H9+9mitu2/NNf93AZqSFoV8tHGUs4BIxDmePk8FwI67e1J4L2X2rd3DzE1vKvr69s58TvnEHR33tNnb3Vrcxa49v4QxfGJ01cPiMcaxus8EH/3hyKyfMn8iExkTBwvG+ky/8+Ul+cd86AK65Zy0X/365HyXYl86x3ktR4zrqsE4krHNuCFgqTlDae+wcSXMyTnMyTqdn4cSLXGqVWjjFgtPWlWJHYA7mf//+NF+7eSUAn/7jE/zqgeeL2l/ntemcxdNZtr6DbZ39rNrezbyJjTQnY3vkUnO/33As6vN//ACHfPEfPLp+V9ky/3p6O3c8tW3Y7XM4S2w4+egGw7dwRrjefY0Kzn6Gu0BHOiTVWUwjYeH0prKkA9sh375yG2/+6QN+J33Doxv9jq+tu7pwUzci3tMIKYDDZ7bQ1pVi2fpdPLe9m1ccbveVce6rMDdKR1+a3nTOD6f++X1rOfcH9/obtgFkQ9a8hHXOyYClkiixcJqTMVqSMTr7s2RypsillgyxcIZ0qeVyfOL6x/jMH5/wj63f2euv53Hk8sYXHNemMw+dCthtEVa3dXPAlCaS8egeCY4fRDEMwXl6axcAPw6E8H/lphVcecdzRfWPxHykux9SI36/qUtNGQNUug/KcOvtz1ih2NGdKlpzUQ3ODeEm9h9Zv4v/rNnpzzsFQ5o7q5w0HpE5nLQTnHEA/NDruM46zHassWiEiIR3Bp199vM37LRWzZbdfezuyxQFMaxt6+F7txfvF9MXYpE2FM3h2OCB9p40ItCUiNFcH6erP+utw5HQ9zn6M/miRZk3PLKRe1e1+f+nsnnau1Ns7bST/5lcni27+wb8xh296QGCc+CUJmZPqOfvT27h+fZeFk5uoj4e3SPRd79ftRZOcE3QuvbCdXTfqh3cv7rd/783nR32fGQ6m2fjrl6vnsq2gagWN+gZ6ft4X6OCM8rZ2ZPm3ucGbgRWDtcZPLOti4O/8HdWbR+ZdQzBC783neW9v36ESz13S7W4zteNgHtKIsvW7ej1t26udt2Pm8Pp3YPJZt+l5gnObSu3ceTsVqaPq/fLJGLh62JcB73eExzX/uB53Pz4Zr57+7Ns7SxYb2FzLEWC41s4KZrqYkQiYi2cvoFBA2GCA8W/4WW3PuO7AcFeN/2BdVabO/rIG9uhBl1v7T3pQtCAn79NOGPRVO55bge5vGHhlEYaEntm4fhBA8MccEQjwvPtvb7I9qaLQ/r7M8OPuPzjoxs584p/05/JFYIGRsiFnc7mOe7rt/PHRzba/6sQshWbd4/Y/b63UMEZ5fz6ged5+y8eGjSlfRC3XfAzW7tIZfOs3YMFkEHSRYKTY3tXv59gslp6vHmgvpKJYddBrW3v4Qivs+/qz7CrJ82VdzxXNHotRyEses8snLpYhLkTGvxj73zRvKIyiahdFxO0XLK5vL9Dp7Nw3MLL4M6dbvQ+VAhx0DVWmMNJ05KMA9at1tWfGRA0EOZSC36GMYadPemi78gKTt5v74adff5rnYG27+hO+RkWgiL3thPn+n8fMLnZutT2JGggU13QwB8e3sDKzZ1+W4+YOY5UNs8WT9T7M7miunrTWXrS2WFl5NjemaIvY11yI23hdPSlaetK+Ulcq3HVff5PT/L1W4Y3CKwVKjijnPaeFLm8qbgDdcJQyKU1PLdXuXrBWiSpTH7YI9ieElHoCcy7dKeytHWlWDzLCU6W6x/ZwOW3PcvjJTtghjES63D6MjnqE1FigQ713MUzisrUxaOeGyoQBpwd2GE7iyHYaTt29RSOhf2+DSVh0WDncJqTdp1NS9JzqWXLr8MJ4r6T7lR2QAeZzuVJZfN09dtO2FloUCyW7d0Fl1pdQNgWTG7i8Jkt3t+N1CeiNQuLzubyfO5PT3DVnav879sNWJx7tjedK3Kh9abL55gbij7f3VWoc6TmWrpLculVI2SdfZkBqZhGGyo4o5zdfqqTyjpQd+G7XFwjtXAuVWLh9GdyFa31+d1D6/n8n54oOtbrz+E4wSn87zqIoIXz0FobbbRhVx9DUYmFs2Fn76AdRF8654cW//tTp/Pg515GJCJFZZyFE7zBe9NZf5K71KUWNhflIs6girDonlSRhbO7L0M2b0pS24Tf1u4zgkLnSGfzpDI5snlDfybPhl0Fwensz/ri196dKszhRIs/5/r3nszNHz6FxrqYncMZpDM3xrB2R09ZC6OasOgtu/vJ5g0PrdvpbwF+hDdgcZ/Rl8n511kuX9heoScQdfnrB9b54e2D4b7HoFtupJYhuPP1s31XIWQ96WzR4GA0ooIzynEjnZ4Kw5HdBeqnux8hwQle+N2pLCnP5z8Un7nxCX7z4PqijsX50vtL3CZ9mRzPeyHEh85oISJWcJc+b9ObbNhZvANmGKXWUyk3PrqRU799J9fev7ZsHX2ZguDMmdjA1JbkgDJ13hzOzoBo7OhK+6lnnOC4OZ2ukACLXYEsBuELPwuWigtB7s/kfQunORkfMJ8CUB8Pt3D6vHxfQaFzpLN5+rPumskUfdedfRn/+9gZModTaG/Un/eqj0cHFf2H1+3i9MvuKgohDxK0fodye7nvuq0rxZObrSvqoKnNJGIRnm/vIeWlBHIutOB1GxzIffEvK4rmtcrhxKXTE3sYeQvHd9VVUW9vKjcgqnC0oYIzyulw2X4rdamVmOAjtVI7OILr8QSnmgia7YH5nt5UqYVTcKnd9cx2kvEICyY10VQXY9n6Dv8mWt8+tOB09Zd3qaWzeT5zo7W2NgaspSc37S5af9KXzoWu1g+SiEVIZXJFySpdxuCZrfVs3t1XNAkf5lJzcziZnAmdnypahxPo3AuCUxCWSoIGnKi50XPpay5Muqs/w9odPcwYZ4V2txeYADaTgL/wM1a++yh1qWVyee5fXQh+cd/3X5Zv5vGQRLPu98vkzJDXWdD959bWjKuPs2h6C3c/2+ZfZ8YLgggK4XDuD2fZB+fgRiqarDQMvFKXmjGG3kyOzv5MVVtN1BoVnFGO66gqXf9SOiIaKZdasN5dvYUMxH9ZvonbVxYW0D21pZPHN3Zw2a3P8LFANoFr71/HNfesIZ3N+zdRb8nivnXtPfx5+SbeeOxs6hNRmpNxPwnnpKZEUcdSjrCw6Ewuz5t+8gD/XLnVP4+gg+ztP3+oaM1G0MIph4tSay8SHNuJHjmnFWNgTVuP354wS3On1/GXWjcuQq8+JGgAoKXeutSca82+XjgjJ5bREjeg+5xgmx3BKLrdfRnWtPVw1NzxXtszfofa3p3yI7JKXWpBSsOib12xlbde/aA/aAiK0VNbOjnn+/cUWVU9VYjC+p29xKM2as9dL83JGG8/aS7Pbuvm708WFhn3pLJF7epN57h95TZ+cnfh9//5vWt5+88fYlNHn59pAWwgzlV3rvLbHnSnjpSFUxqVWWm9LtmnMdVHdtYSFZxRjsudVekcTulIa+QsnEK9zo3Un8nx47vX8LN7C+6pr928ki/++UmWPr+TR9fvosUbhf/ortVcestTRTd7qUvtj49uJJMzvOtFNhtzS32cbN4gAicsmFiR4AQncd/766U8u62Lrbv7eXDtTu56prDuxHW++byhvSftd/7utaEsnDove3MwO7KL2jtqdisAjwWCHAazcEpdk+47C7ZhTiBiLszCmTup0f/bCVVLsti15r77MAsn2L5nt3XTl8n559HRm/EHCe3d1sKJR2XAvFaQei8s2rnDnPvQufOCIvvwul2s2NzJsg0d9KSyvOdXS3nGW7wJQ6/FWd/ey6zxDcyd2Oi7uJqTMc5dMoNJTXX89sFCiv/uVLbos3tSWS781VK++fenA+3ZyYNr27n632t4z6+W+ufwl+Wb+M6tz/hu0l17wcLpLnG9Vio4Qauto2/0Bg6o4Ixi8nnjTwJWO4fjGKnRTrpIcJyFY8OCgxOVW3f3s6M7TUdvhp5U1h+NO7oDwmkjhQop2Dfu6iMaEeZOtJ2r61CnNidZOLmJzbv7hrwBu1NZf+R964ptfOWmFb6ry2U0hsJCS9eeYMqevnSubGixw20XEBTB7V4I7pFeR718fYf/Wtjv4ASn1F3a7FkuQQtnQmOCef73Ei96Bjh+3gT/bydUwdeB0JG5I7jAc5mXEubQGS0kohH/vAA2dfTRl84Nat2ADc3Om2AOPi9zQEiuO/e7bO/s575VO7ht5TZ292X8zxjqGl6/s5fZExr8hKaJWIS6WJR4NMLciQ1s6ij87j2pXNHgLWyeaXtXiv6MXdzZm84VdmH1rnNnIbbvDcEpdalVWG9QlEfzPI4Kzijjlse3+K6o7nQW544ttXDyecPW3f1s6+zn0ptXlk32N1Jh0alciIWTtZE/QcHZ3pViV2+aXb1pulPZAaP3YG603nTOdwWAvVFakoWU/G6EPnN8PXMmNGAM/grv0DZm7TzElJY6/9i4+jjbOm17N3cUOs7S/WeCLstKXGr18ShPb+3inyu3cfz8Cf65A0xtSTKztZ7lGzr88q5DDxoFvuB431FznRfuXG+fS+dijpjVChTca64cQGNd4W/3Pve6q9efwykRnIgUMiQAfrsPmNJES33MP6/j509gy+5+bnhk45AWoGtDX8k8nb9hWSYoOPZ32d6VKgq1ntxcV/TeMFwI9+zx9cwcbwUnaNm1JGNFHXB3iUutJ5Vl4eSCdQiwzRPYNV4evTZvwOKuc/e7BQNGRsylVnKuwfvux3ev5pHnd7GzJz3gvgoKp2vnj+4amQSlI4kKzijjvtU7+NOyTXSnsgM65yC3rtjKqd/+F1fduYpr7l3LNfesIZ83RRcojJyFE1yAVtgjBnb3pQNWWJbuVJbetJ1M78/kB8xdBLfidetuggQtIjdCn9laz3zPZbR2R0/ZSVE3XzWluSA4rQ0Jf4S+2RvpJmKRgjvPCU7JGo3GusE71A+cfgCTm+s4bEYLnz97EVDoqMY1xFkwuZFnthXcQk5wgsLgLEUnBK2N9nzHed9Baad+0oKJQKGzbvLqOnpOa1G5Bi9KzdXj6nUdbXCyW8SKZ1eq2KXWXBdjclMdLfVx/7zOO2ombzhmFrGo8DnvnMvhBKc09N0NgPoyOSJi55nc77K9s79oznGqN3Ao5xbO5+0C1t19GRZMbvItnODcVqmF3eNdn8H/SwM2nMA663W7N2Bx96NzSe4MhJePWFh0yBxOLm9Y3dbNt/7+NB/93TLe+JMH+G6JkAQHpM4S++OjG4vmV0cD4fGTyj7DdQqrt3cTkcJwuFRw1rb3kMkZ32d92T+f5ft3rCoa9UL5m7UvneOcK+/h0tcezskLJ4WW+etjmzl8RgsLJjf5rpFkPFLUYWVyhkwuy4Nr2otcF7lAuOhbjp9NQyLGz+5d69+8gLc2okRwkkHBKVg4bhR647JNfOA3j3LLR07hgCnNRe91ndrkgODk84ZtXgfi3B6Tm+r8Tt6FKwddlr2pbNnFk46j54znX594CXlTCNfe3pXy85wtnNzEPYGURM6CaKqL+YOAXb1pbnl8C1/4s42cG9+QYMPOPprrBrrUAN547CzS2RznHzsbsPM6X3vt4bzqiOlF5ZLeOhxXj6v3qzevpD+boy0QNBCPRkjEIkUWDsDCKU2ICC3JuN8BJ+NRvvOGxeTNwICEUlxId2lgSMGllqchESMaEX/Asr0rVRQ+PqXZRsmFXcOpbI6XfPsujp1nAxsWTm70f9/mIgunRHDS2aL7qscb9Lz0kCmcMH8C3/z704FtJOw1vGxDB7v7Mn47XTSfs3CS8Yj/nu5UluuXbuC/T5oX+h1t7+rnvB/ezzVvP5ZDprUMeD3sXF/87Tv9qL55Ext5dP2uARlEiiyc3jSZXJ7n23uYNb6B0YRaOKOE3nSW7Z39/g26ant3cTqUkgvR+ZGD6WXSuXxRmC7YEVNvOssHf/soW3cXrIu2rhRr2np49PnwFO67+zJ85Lpl/PfPHwIKuaLGNyRC5wA+dcPjfOqGx0PrmjexkWO8iKeghdMbauEUOgtfcFrraW1IMKkpwd+e2EIqm+cfTw7cc8ZNSM9sLdxkXf3ZIpEDK0jlXGouvLRcaHEQESEaEeq8LZ23d9lFmZGIcML8CUVlXUfq6o2IFeUP/vZRP+rPWSRHz23l+PkTOGhqsaDGohHe8aL5vpUkIrztxLmMb0wUlUtEI5xzxHROPcgOJIId8Lf/8QyPbejwXXvxiFjBKZmsdu0fVx8UnIh/zkPRWGrhpIuj9foydp6sKWDxbevsL7LIZ3gWS1hU3UNrd7K1s59bvG0uFgYsnOYiC2fgAKw4Ss1a5QdMafLn3kq54rZn+dB1y4oGWlCwFCc0JHyx+8ndq/nKTSv562ObQut6ZmsXG3f1FQVFZHN5Pv6H5aza3hUaVbqpo8+vP+mtbyq9B4P9w+6+DOt39pLJGXrTWTr7M0XBLfsSFZy9QEdvuuof+DU/uI/jv3GHf4OubusuijYptXBc/a4zeMMxs0Lr7UpleXZbN7c8voWH1u30j7uOfltneDuXemVd9JKLTGpOxtgZ0gGs39lbNtdZQ13M71iCn9eXzg4Ihii2cOzfszzf/ILJTf7Cyn89vX3A57g5mgOmNPnHOvszRSIH1uXm3FKd/QV3INhACGPKp4cJIxmznWs6m/dF46SFE4vKuI7WfQ+vPWomH3nZgXz9dYf7ZVobrHDMndjIH9570gAhqRQR4ar/OpozF00tah/AlW85ig+/9AA+ePoBgF3fYy2cYsF50QFWrMbVx0NT2QyF+/7c7+u+3+7AHE59IlIkhqUWTjIeoS4WKQr2cNz5tI04NMZGDM5srWf2+OJgEwixcFLZIvdTZ1+W/kyeprpYkbsziNtaImjBQ0EIJzQl/O8o712gKzZ1htblrv/edPEc1o2PbuLe53aU3Y5hyexWJjXV0ebd96X9S1GUWm/GT+LZm85x5hV3c8ylt4fWW2tUcPYC5/3wfr7018FTZKzb0cMTgQVvz3kXiBt9BS2cWEQGBA24EU5bZz/NyRjvP21h6Oeks/miNDe7+zK86Fv/4p7n7A27rTN8v5kHvfUMbpSZyuSpi9kRabV7lDQmojR5nYDr/Fsb4gPyW0FxB9Fa7wTHdiQLJ1shiUWEZRs6Bow43VyAi+aCgRZOPCqMq4/7LrXSdTtuJD7UHE6QYESbEwknHmDdT65Dd53anAkNfPzMg/ivE+byj4tP5eWHTeUgTyhLV/APF1dPMh7lnS+axw//62jOXTKDT5x1sG9xxqM2oqt0rs8FQkwIiF5QuIaiMIdT/P06QXHpg4Li0NWfLVog3N6dtotoOwZeo3c9s52YZ2ktmNxks2fXx2hOxnzRh4FzON2pnJ8YtLUh7l+PTXWxIQMhSulKZYlG7PXk5nCcoIYtZoXC9b+5o4+TvnkHyzd0BKzsXNk51/8+cS6LpjfT5t2vpVafE5yY56JcFehPnMhlPbf4xl29g25OtzdRwdkLtDbEh9yp8uzv38O5P7iXbC5fkvbFE5y2bj+6ZmpLcsD+Ls511ualq29Olh+Rt3kXXHcqw+aOPjZ19LHUc6VtL5Px+cE17UAwiWCORCwyINS2EhoSBQtnq9eWSd48iuvwEyGRV2cvns6337DYn79xz687aibGMMAduKmjj6a6GPMCa1K6+jNsC1g4TXUxGhKFtCvuBk9n82RyeV/wh4pSCxJccT+hofD9vPk4O9fSEI/68wFu5B+s/5BpLfzkbccyzntv3RAhx5XiBKcuFuHL5x7G2YG5Hvf58YjdDtq1ryUZY9b4el9ExweEMxmvvF1OsEuzSXQFXGr1JS41sJa947j5E5jRWj/AsmjrSrFmRw+vPWomULguRITvv+Uo3vPiBX7Z4AAmEY3Qk8rSn84hYsXUXY9NdTEaq7BqHc3JGHWxqD/H6Tr35Rs6QlM/ucHP01u72LK7n6e3dBYlnC0XVdqctPeQs3C6UtmiQAUn7FNbkuzqzfjfY3CzP5eL8JT/vZPzfnh/1ec6Eqjg7AVaGxKhi+uCuBvxoXU7i+ZdnKm8vr2XDTt7aUnGmNCYGLC/iyuXyRkaEtEBrgPbDnvM7bvS1Z8NuNK8UNQQCyeXN6zwclK1daf8XR4T0YhvqZRjWkjesYZEoWNxnzexMUFfwMKZ1GQ7tqIIo2ScNx472w+TPn7+BFqSMS48dQEi8M+VW3nZ5Xfx9Fbb1s0dfcxoTTKjtZ5lXzyTNx83218T5DrLpmSM+kRsQNAA2LU4BQun8s4n4s2DAEVusG+edwSrv3G274pqTET9kX/YaNpZEHVVdOyD4UQ8zBXmPj8eixRZBH/76Knc/anT/f8nNBZeq6vKwikOGihNxukW1zZ5v7f7fVZt7+aQac0s++KZvP7omcxoTfqWa08qy7lX3stVd64C4LVHzmTBpEZOXFBwX55+8BTfEobCACYWEcY1xP0oNSd27npsSsZoCLFqXXqfcjTVxfxErlC419K5PM8GohQd7r5zz92pbFHgSnd/1r9vgzQn4zQkYkW7tAYtfOe6nD+pka2dfawO2RendF54X6TAUcHZC7Q2xIdcfOVCd//x5NaiTZN2dKeo90bE/3p6OwunNNGQiBZZOG4/E0dTXYy6WMRPb+LmdN1nbBtMcLpSAy68Xb1psnnDgVOayOWNTWeSzVMXjwxYvR6kJRlj7sSGog4M7GjXdeDbu1Ik49Z3HwwamOS1tdQFEmTxrFYev+TlHDytmbkTGrjhkY2sbuvx09Js3t3nuwDHNyb8bMoAB3oRbU11cerjUT/cNDhJ250uhMxWEjQQJOkJzoSAReAm2F1nOr4x4a+hCVtY6oQmEa3us8sRi0aKPj+Is3BiESkSyWQ8WhQU0DpMC8d9f4VwaGfhFNIiBS0cFyCxqzdDczLG+MYEIsKM1nravAzV1y/dwBObdvOrB9YBdgvwf33yNC4I7MVTSktgEW1jImrD9r2gkIZE1LfwG+tiNIT8JkfMGkdDIuq770ppTsapi0f8Sf1tnf3+HGLYflHu88LuSbeswN23wY+0Fk5x+4Jutd50lrpYhAOnNrGmrYfVbT0DrPRV27v9XHPAsHfs3RNUcPYCrfUJPyVNOdwI+57ndrAq4EbIGzhshg2X3N6VYsGkJhrrYgMmOoOmckPCLpZ07i7Xabssx9t8l1rW72DdzZDNm6K0LsHX3BYB2zpTBQtnkJH/te86nsvOX8KExkTRzRJ0qeXyhpZknGQ86u2YaL+HSU1OcCqzLBZNb/EXxd78+BZe/t1/8+SmTl9woDha6dDp9jttrov56fuDyTXBhkO7jAPVBA0AvhUWNtHvXG4TGxP+oCDMZbdoegsLJjf6QRIjwckLJ7LEWzAaxAlePBphYongBJkwyGuD4b4/d507C93N/7kEqc4VvCgQIhz83Wa01mMMnPytf3G5t/Ykb6zlERTDcrh7IZmwgx7nUkvGo4yrj/uBLk11MWJeiDgUOvvPnb2IG953ctHariDNAQsnnzds70r5902Yu9oJjbvHelLZQJh8hkzO+PdtcPDVkozTUHLvBRPO9qSzNNbFWDC5yR/IuX7EsWp7d9HuwaVzoLVABWcvML4hTk/aptDIhmR7TXsbXYF1A5Wavy7FO8DCKXYzq950jnQ2z4rNu9lRkl7eWQ+lObbcOga3T313YDQVNGrcTWCM4ao7V/kJC107tnb2+xZOuTmcaERYMquV2RMaaG2IF7nWGr31Fq6TnTW+3p9H6ehLF81BhbkGw1jkCcjLDpnCouktvs96ZkBwgtbYod7N15yM+e3oy+SKFqZ2p7K+S61aC8fN/YwP6QRdRz0hYOGECc5BU5v51ydOG3Z0Whi/fvcJ/lxHEN+lFo2UBAYUdwnFcziVfycJz+LuSWXJ583A1DZeWLTLgjC5ua4w6Aj8bu733NGdYtb4Bs7zzsX9/kPh6mpIRK3noS9Db9paOMHweTcgcuHc08fVExGYPb6BQ2e0MLWMa60pGfMtnB3eZomuo1/T1s3Xb1npu42NMf4cjrv/ulOFe9Ldp+6+Dc7LujmcIO3dada39/q7t9bHo0VZE9yeQI5Vbd1sDMyHhQlOPm8q2nZkuKjg7AWcD/aNP3mAz//pyQGvO+tngbdYbVkgBQrY+QznO14wqYnGRJTeVI4LrnmQc75/L2vbihd9uQlaX3C8BX/TvTrc+pughRNke1eKvz62mUfXd/CdW5/xfeSH+xZO/6AWTiIaYUpzne+KOXBKEwdPa/ZdMK5zc/M/syc00JCwVtvOnjQTGhOFhJODuNSCuN0l33jcbG768Cm84+R5Rd+B/btQ14FTm/w2uI6zL52jqz/jj2Z70zlfOKqZw4FCzrDgnIfDn4BvTBDzLJxqBW2kafAFR4oEJ1YSsFBs4VTXXbg9cZyVE5EQl5obaNTHfMuu1MIBax3+/aOn8j+vOASAw2YWd6blCOalm9hYZzvnTI76RKzIkmzyhck+L5k9joVe9BsU5iZLIwibkzESUeuidWIya7wddF3/yEauvmctf39yK9c9tN66BkszgQTuSXefuvvW3ceufaXXzM6eNC/+zp0c/bXb6EllaayLFs1fHVHyHa1v72Hr7n4WeKIUtp7udw9v4JT//VfFW9pXi2Ya2As4U//JTZ3EIhFWbe9CRFg4uYmH1+30kzoeNmMca9p6WLFpNzMD0TjJeJSFU5rYvLufA6Y08p81MbZ29vsTko9vsiGXInYdgm/h1BV2ggSY5l24Liihqz8TGtL89JYu/vcfhWy5biHiounNRKQgOHWxaGg03LRxyaJR+ddfd4TnBrmD/kzaF8SghRMVoStlQ5YnNiV8UarUwjntoCn85G3H+GtNPvnygxnfmOA1RxZG88G2upF6MPzV7XM/pTnJ1s7+PbJwSj8niOuoJzYm/FXuyX0sOC5AIVZi4ZQSnMCuJiwa8F1YboTvvmcXDRicw2lOxpk9oYHlGzqKfrd5Exv43NmH8Ool9nedNi7Jby88gcNmVCY4iViE+niU+kSUCY0J2rvTtDYkaEnGmB3IwN2UKM5f9+lXHFK08Z77e/q4pL9JIHjzp16mAScY08YlmdxU5y91+OT1jwGELl3o7i8EDbj71N237nuoj9tEpMFBkEixS+3WFds4cnYrU5rraKqLIYKfBBfw+5fO/ixnHzGdNW09PLhmJ+lsnnOXzGBnT5rVbd08u62LHd1ptu7uL/p+Rgq1cPYCwZt0R3eKz/zxCT7+h8cwxvA/NzzO1//2FACHe6Z3Nm9YNL2wqrwhEeOQac0kohHmTGgcsOPhk57gTPduAucG8N1SJXM4jq7AzQ+2AxQhNCa/0duP5qCpzTywup1U1oVF288ITiy/59T5XHDCHP9/ly7FXfiuo3I31uzxDUxpSWIMPLuti4lFFk5lY6BIRHj5YdP8EWgyHuWDpx9QFLDQHJImp6nEpdbVn/XdJb3p4BzO8AQhrPPO591rdYO61GpJxAuHTgwhOEE32mDbEYTRkIjSm8n57jT3PXf3Z/0otaAb2M0lFXeswkUvXuh3wgAnHzDJDyGvhJb6mGfhJOhOZdmws5epLckiC8cNitw8ybj6eNG5n7tkOu8+Zb4/mHTXf1PSm8PJ5bl/dTvxqDB/UmNRAlnHc9usAAVTL3WnsgMGgc7Ccfex+46CYdvTWpK+oDm27O5DRDhwahMHT20u2vnV9S9Bl9/P71vLxb9fTnt3iu/f8Rz/dc2D/jqhDYMkyd0TVHD2AsFR7o7uFBt39bFy824e37i7KAdScJQW9Ek3JKK8/7QDuO6iE0nEIv66km+edwQAjzy/i7pYhLkT7fHGwCgR8G/c8Q3xotFid3+xS21cQ5ypzcnQ9Dbupjh3yQyWPm9zN1kRKU4w2ZCI8raT5vn5vYK4yB/XUTnLafaEwrbN7Z5LranKOZxKcOLV2hD329uSjBcEx3OpOeHuTuUCUWrDM/7D5l/cQsOJAZfavhYcsK7OWFSY2Bg+Ib6nNCRi9AYGOe573tGdIm+smLnfe1x93B+oVbr3U6W01idorIsx0Zsj2tmTZmpLXZHgOFeiG7yVulSPmTuBL77qUP/14PXk3Gx/WraRlxw0mXH1cSY3DfxO3bYPB00tuL1K70mw80fRiPj3sS84ThQTUeZMaOAR7779zCutm/HoOXYx72XnL+Hbb1hcNGgK9i/zJjb655HLG25buY1H1+8inc3ztJdyZ+POgdkdRgIVnL1AcJTdn8mzraufTM5w2T+fKSp30LQmf6QUTOTnzH+3GvxtJ87lwc+9jNcfbdPX7O7LMGdCg39TuJGPuzBPPmASP77gGI6ZO76oAw9OULr3zWhN+r7cA6Y0cfYR04DCxOWrFtvFgp39NuyyOTAJG4vIoB1zU11sQGQNWJdaMKhgYlMdbzx2Nj952zFVz50MhosOa62P05yM8+03LOb1R8/y3VnLN3SwqzfjT66u3NzJlt19JOORivKFhdEaMgflIrSCYdHVrmrfGzhXzfiQeaeRoCERZXdfxk+TtHi2/Z7vfGa7//nHzZ/AF85ZxAnzJ/rf3UjvWPmN8w7nE2cdVGTJTWtJhgbANCTcEoPwrtFd766tbkkC2AHVuUtmAIUB24sPmswS7/pq70kTiwjzJhYm9kvvSffeX7/reN52kg33du1090ZDIsacCQ1+yP+xc8ez/Etnctn5SwCbkWPB5KYiwQn2L9PHJYvW0/1p2Sae2mLXsrkB8WDbgOwJKjh7gdJRrvOI3fPcDg4M5Pma2FjHVO/CPHhaEy6Jbak7JxaNMLUlSSIW8RdIzpnQ4MfluwvRReQkYxFecfg0RKRI/HrTxXvXNNZF/UnZaES49eIX805vt013w8yd2MhLD5kC2JXK7kJNxqMk49FBXU9uVX8p08fV+6nn7feQYFJTHS8/bFrZuobD3ImNvHrJDH50wTEAvPHY2Uwbl/Sti1/ev45ENOJnBLjuofX87uENw7ZuYOCkOxQWPU5oTNCYiBKR6oMS9gbj6uM0JqKh804jQUMiyqPrO7jkppUAnLxwEgdOaeLa+9YBVnTj0QgXnrqARCzC64+ZxcsPm1o2TdNwOWbuBA6Z1sLEpsJ5TglZoOzaPFjov7uenUuvORnzlygkYhHOPNTOKbr759QDJvGXD53CUd4WEtPGFQtddyAs2tFSH+PkAyb5dZS61JrqokU7wE5tsSHipddUcFAzc3y9HxE4fVzSj1A7cEoTD67d6S8odX3Vxl1q4YwZGgdZKPYdbxQCtpN3vulZ4xv8C2qwTty5omYHLZy64iiwYCRN6ZzI1kBmgcZEzA87nepFmbnRV9DP/C3PlXfs3PH+xZ+MR0jGI4O29ZzF0zk/kFT0wlPm26ieWISJTXV+dNhgcwh7Qjwa4ftvOWpACK0TnM27+znzsKm+q8UxnPmbC06cU3ZVugtEmNiY4PXHzOI3F544aKdWK777piP5xFkHlx3NO1531MyigVKllFq3jYkobzpuNpu9yfVSt2JzMs5P3nYs08eN3DqkIMH1Ru4+OmPRVD/iEeAVh0/jzccPdA873L02LmDhuHvmp287xh+sOA+Bc4e7eZkZrfW+OwuKMw2AS1jqZZyIFs/NNgYGmHMmFgtOGMGBU1NdlFkTGohFhIlNdb7A/O8bFoe+d28Jzr6/6vdDRITWhgTtPSl/xPDKw6eFpkCfPaGBrbv7ScajNNbZldDByb5SprUkWbG5kzkTGvz1MwWXmpeLKxBNVLrqP7hFQUNdzLdwpnvPk5oSnLN4Oi85eLJfbkpLkicuOYv6eNS/UOtiUepi0UFH6ucdXZzB+guvOpQvvOpQwIrt5OY6tnWm9prglCM48nvl4daqesMxs7jhkY3A8ATn0tceAa8Nf80FItjsB/EBmaT3FZWuZfnum44cVv3BjvX4+ROYNb6BVxw+jUtvsUEz1azrGQmCc1XOwr7m7ccWlTn7iOlFOedKGeBSS8Y4acFEHvvSWUWBDMfOG8+JCyb4bvFpLfb+mtlaXyTEubwpSm0VvF9d5gkXfVoYYBYi7CY2Jsome416KZfS2TyNdTHmT2qgx0s4GosI2bxhyaxWrnzLUdy2chu3PLGFXN4gsveCBlRw9hKTmhJMbq7zfaNfPvcw35q58QMn+2b0J8862M+7ZoUjNbiF49UxZ0KDX0dDyTqcIgvHE6EJjQl29thtn6MRIZc3NCaivoXj2iYiXPXWowd8rhOzaMQQ89KlDGXhDMXUliTbOlP+gr9aEezoXuRtPnfZ+Us4bEYLX7lppb9uZKT49CsP4Ws3rxw0LdC+5ug5rUVW7UjgOufXHDmD7735KABmJQoj81rPY7XUx4hFhJwxw77mwoIGRGRA1Nys8Q387qKT/P+dhTMzYOG4+7A7lfXvz9JkozDQpdaYKLjUylk3joaEXSPUkIjx2Vcu8vuaWz5yKmvauolGhHOXzODcJTP8PYYOntrMM9u67Nq7Ecpc7hi9d8AY59tvWEwiFuEV/3cPESkkp4RCNAlYC8eNVgqTguVvRDfZPmdiA+va7QRfYavh8Zx64KSi/WDcjTGluc73205prmPL7n4aEgELZ4gL1yEidnV1LMqpB07eo07Kuh12197CCdlOAArbHwStwJHg3afM592nzB/ROkeaGz/wohGv081JLphU7I5bMLmRNW09RGV4gRnDb49d5Jo3DOlGLMdRc63l4q6bSl2j0wIuNWfhuPvQ/b2zJ11k4UQiwnlHz/S9Dcl4xJ//m9iYoCERLQoXD6MhHqWDDI0Jm8rH9TUHT2vm4GnFG/xNbalja2e/v7dWuf2t9gQVnL3EYi9/1bj6OHWxSOhkcin+AslBBOclB03m8Y0ddqvZOhsW6UaSM1rr+fW7TygqH1yT40Iep49LsmV3P011UWZPqCcZjxSJ1FA0J2Mk4xEuefVhFb8nDOfWqLXguHxmLgLPsdD7DoIZeZXh41bez5lYPCfzgdMO4JPXPxa6VmVvM6ExMewIRLDZqE8/eApX/3sNwJDZ0x3u/jpoapOfNNPdh1C4P0szbVzxxiP9v0WERi8voYjw1uPnDBCNUuoTUZLxyvofay3t5mWLpjI/sMXHSLJfC46IRICPAu8F5gFtwB+ALxljegZ564gxqWlg9Eg5mgJhj+VYMruVa95+HACnHTyFd58yv2jDsVLciGnh5CbuftZuumYnZTtoqIvRnIxz5ydPC103UI7PvXLRiHQWZx02jXQ2X3NfvojwxCVnDfieK7XylMpwHeuMkiCANxwzizMXTa1q8eZIcd7RM/1sD3vCOYunE4lIxa65RdNbuPfTpzNrfAP/8faacvchFO7P0jnXUi4+8yAWe2HWbj50MIKJc4fCWUtBb8xIs18LDvBd4CPAn4DLgUXe/0eJyBnGmL2TMCjAyw+bVvE8R2OdjeCqdAQ2bVySLw5x0bkotYVTGjlsRgsrNnf66y6CiQqr4ZWDTKpWw0sOmsxLDpo8dMG9QNgajEhE+NzZh/ip8pU946uvOZxr71vrT5wH2RdiA3DRi0cm5HpGa33VblK3c62biwm6w1595Ax+ft/aIef5qv3M+sTggT1BXnzgZDbu6turEZT7reCIyGHAh4EbjTGvDxxfC3wfeDPw273dDpdssBLGNyRGdKU9FGcEeP9pC/nQb5dx0NRmXrV4+qiJlhpNjFSHpNjNwL7ymsP3dTNGHQdMaeIVh03jFYdP42f3ruWcxdP9+3QoC6daxtXHSVUYBHPGoVM5w1tHtLfYbwUHeAsgwP+VHL8a+BZwATUQnGp430sW8uojZ4xonePqvfxUiRhnHTaNGa31HDFzHP990rwR/RxFUSqjPhHlx2+zi5H/+P6TWTJrnJ/2qdJs6ZXy2Vce4m8ONxqQ0sSQ+wsicitwBtBgjEmVvHYfcJAxZlB/zrHHHmuWLl26F1u598nlDdfev47/OmFOzedKFEWpnOseWs+Zh06t+TKBvYGIPGKMObb0+P5s4cwAdpSKjccm4GQRSRhjar/tXQ2JRmTUh+QqigJvOX7O0IXGOPuz4DQAYWID0B8oUyQ4InIRcJH3b7eIFGfcHP1MAnYMWWr/44V43nrOLwzG4jnPDTu4PwtOLzClzGvJQJkijDE/BX66txq1txGRpWGm7P7OC/G89ZxfGOxP57w/J+/cDEwSkTCH6Eysu22/dqcpiqKMJvZnwXkYe37HBw+KSBI4Ehjb0QCKoihjjP1ZcH4PGODikuPvwc7d/KbWDaoRY9YduIe8EM9bz/mFwX5zzvttWDSAiFwJfAibaeBvFDIN3Ae8tBaZBhRFURTL/i44UayFcxE2l9oOrOXzJWNM975rmaIoyguP/VpwFEVRlNHD/jyHM2YRkf8WkWUi0ici20TkGhGpKstlpXWIyLUiYso83hBSvk5Evioia0UkJSKrReQLIrJHOTlqdc4ikhSR94jIX0RknVd2jYhcJyKLQuqcN8j38+QQ7YmIyMdE5GkR6ReRDSJyuYhUlPu92veLyNkicr+I9IjIThG5XkRCV/2KyMEi8mcR2eWVv0dEXlpJu0ayzcN9v4iMF5GPisg/vTJ9IvKMiPxURAbsES0ipw3yO948Fs7ZK3vXIOcxIHRaRMaJyJUissmre4WIvF+kxpsROYwx+hhFD+Bj2GCHu7CuwK8C3cAKoHGk6wCu9cpeEPKYE1L3n73yPwMu9J4NcO1YOGfgEK/cPcAXgXcDXwd2YhcKn15S7zyv/I0h38+rhmjT9wLvfQ9wBZAB/gVEKjinit8PnAfkgWXAB4DPAtuwywNmlJRdCLR7r3/WK7/Mq/uMPbx+a3LOwCuALHAr8Gnvd/wudm1dB3BoSb2nefX+JOR3PG0snLNX9i7sNith9+uEkrIJ4CGvriu8um/0PuuSPTnnYX9X++JD9VHmx7Arinu8iyQaOH6ud5F8bqTrwBOcCtt3tlfH5SXHL/eOnzzazxmYCBwZUsehWMFZWnJ83nBuUOAwrAD8seT4h7363jpS7wfi2HRNzwNNgeNHAjngpyV1/ME7fmTgWJP3/mfwXO3D+C1rec7zgIUhdZzhlb2h5Php3vF3DOfcRsM5e8fvAtZV2LYPeHV8uOT4H7EZVuaO5HdRUZtq/YH6GPQCudC7QN4W8tpqYOVI10HBwhGghUFGZMD/88rOLjk+2zv+w7FwzoPU8wjQX3Jsnlf3JdgMFQ0V1nWp975TS44nseL4t5F6f6CT/WJIPXcAu4G4938jNrXTHSFlv+jVc/wwr9+anfMQ9bQDT5ccO82r+x3ed5Aczjnu63PGExzsdEgLgwwOgHu9OpIlx0/1PvN/RuI7qOahcziji+O85wdCXvsPcIiIDLUX9HDr2O09+kTkNhE5IaTMccAmY8yG4EHv/82Bz66GfXnOPmJ3h52OdTOF8Qmsu6bH87F/VcKzWATblMdaXT7GmH5gOUN/V9W8f6jzbwEO8v5fDNQNUjZYX7XU8pxDEZFxQDPlf8fvYV2tfSLyrDcPtCfzGfvinGdiz2E3Nt/jjSJStPGWdz0fDSzz6gryEFZwhvs7DxsVnNGF2wxnU8hrm7BWyFAb5lRbx1as7/v9wOuAbwDHAveIyBkhdYfV6+qeOUTbRqK9e6uO92EF55clx/NYX/rngNdiramVWGvgZrGh9+XaNFi28kkiMthevtW8f6jzh8JvU03ZaqnlOZfj81gXY+nvmAH+CvwP8Grs792B3S/r50PUORi1Pue1wLeBdwLnAz8EXgk8KCJHBMqNB+oJ+Z29z9rB8H/nYbM/J+/cZ4hIKwMzHAzG940xO7EZECA8y3Uww/VgVFWHMeYzJWX+LCK/xY6ufgQcWFJ3uQzcGWCCiFwyRPsc++ycSxGRk7GTqo9hBdfHGLMeeFnJW34mIj/FTsK+mfCsFcPKVj7M91dz/iPxfZejluc8ALFRlZ8E/gH8IviaMeY+4DUl5a/GLgh/h4hc45WplpqeszHmnSVlbhCRv2JdbVcAZwbewxB1D/d3HjYqOHuHVuDLVZT/f9goKZe9ug7oKylTNsN1CXtchzHmORH5A/ZGPMgY82zgfeXcSI3ea5We96g4ZxE5BrgF6xI8J8T9UI6vYwXnHMIFZ1jZyof5/uD5j2TZaqnlORchImdjf4dHgDcZb7JiMIwxeRH5JvBy7O84HMHZZ+fsMMbcIyL/Bk4XkXpjTB+D/86u7uH+zsNGXWp7AWPMOmOMVPFY5b11s/ccZurOxPpdN4e8FmQk6gA7MQk2AixYdzkzfDI2wmvMnLOIHA3chvWFn26MKecuDGMDNtJrUpnX9zRbeTXvH+r8oeBaqaZstdTynH1E5BXYcN8VwFnGmM4q2rzOey73Ow7FPjnnENYBUawrDWAXdvA14Hf2PmsSw/+dh40KzujiYe/5pJDXTgSeMUOn5BmJOqDgSgtOvj4MzCxdWOf9P4PhZeDeJ+fsic3tQBdWbJ6vvMkALMDe4OUmp/c0W3k17x/q/DsBZ6U+gXWzlCtLBW0rRy3P2b32CuzasKexa4h2VdnmsOu8Gmp+zmU4ELsuaSdY6w14FDgqRMyOx85r1j5jfq3D4vRR/oG1EnqBBwlfT/KFkvJzsAsZ48OpgzLhocBR2E6pNIT6HAZfh3PKaD/nwPm1A+uBBUO0b2LIsQjwO6/uN5Z53xEMvr7igsCxhcAhe/D+OHakXLoOZwnWCrumpI7rveNLAsfcOpxnGf46nJqds3f8LOwo/rGw36mC37EOGzq8J6HgtfydxwWv78Bxd1+WhlB/kPLrcDLAvOGc8548avph+qjgB7Hhtwa4E7ti/ivYEMingp2JV/Yur+y84dSBHUFtwQYHfBx4LzbqpR/bgQ8QEOAmr+5rsKu7r/H+//UYOee52AidPHa+KWzFdjAzwY1YS+ir2Dmbz2JHhgY7sh5s3dKVFFaQX4gV5ox3DsFV8+sIWXxb6fu9sudTnGngM9hR+1ZgZknZA7Aj4W1eOZdpIAu8fA+v35qcMzaSss+7Vi8O+x1L6n0Y+AvwJa/eL2HF1WADWMbCOb8WWIMN7f4oVlB+iR08tAEHldSb8K7VjFfnhRQyDXxtJPutir+rffGh+hjiR7GL0x7zbqbt2LDNKSHl7iKk8620DmAa8GusO6LTuzDXexfxIWXalsQuVluHtYLWYEOE42PknE/z3j/YY16g/Lu9z9yKjRTqwq5X+QBDpC3Butw+gV29n8L6zK9goIiW64gqen+g/Ku8tvViffg3ELIa3yu7CNsBd3jl72UP09rU8py933rQ37Gk/Kexa4/avOu8Azs4ecsYOudF2CwRq7GDqZT391WUDCoC72kFfoC1gFPYkP4PMUwrdk8fmi1aURRFqQkaNKAoiqLUBBUcRVEUpSao4CiKoig1QQVHURRFqQkqOIqiKEpNUMFRFEVRaoIKjqIoilITVHAUJQQRmS8ifxaRNhExInLtvm7TcBCR07z2v2Nft0VRdHsCRQnnWuzumF/HZhlYvU9bMwgiciQ27cm1xph1+7QxijIImmlAUUrwsuv2AT8wxnxkX7dnKDzr5RfYrNd3lbwWwebUyhhjcrVvnaIUUJeaogxkKjZ9+86hCopI895vzvAxxuSNMf0qNspoQAVHUQJ4czVub5wve/MfRkTe4T1fIiJvEpFHRKQPm+nXvfcMEfmniHSISL+IPC4i7yvzOe8RkadFJCUiq0TkYhF5p/cZp1XR3ksobKd8Z6C913qvD5jDCR4TkQ+IyDNee58QkVd5ZY4QkX+ISKeItIvI90UkHvL5B4rIr0Vki4ikRWSdiHxHRBorPQflhYPO4ShKMT8BlgPfBf6ETecO8Jz3/FrgI9gtHX6MzbKNiFzk/f8f7LxPD3Z/+R+JyEJjzKfcB4jIxV79jwGfw+4t/0lshutquRGYjt2S4RvY7RigsjmnD2J3iLwGm2H7I8CfROR84GrgOuwWDGdh92fZjs0U7s7jGOBf2MzLP8FmOV7i1fMiEXmJMSYzjHNS9lf2RYpqfehjND+AedgU95eEHMsAi0rKT8d22L8Nqet72P1KFnj/t2LFaCXQECg3C5ty3gCnVdned5R7H4XtGN4RcmwTMC5wfLF3PA+cV1LPI8CWkmOPYbe2aC45/rrSz9SHPowx6lJTlCq5xRjzVMmxN2B3j/yZiEwKPrAb1kWAM7yyZ2EtmquMMb2uAmPMRuA3e7/5RVxrjNkdaMPjWIttszHmxpKy9wLTRKQJrMsNK1C/BepKzvlerKieVYuTUMYO6lJTlOp4NuTYIu/59kHeN9V7XuA9Px1SZuVwGzVM1oQc2wVsKHMcYCLWEnPn/BXvEcbUMseVFygqOIpSHb0hx8R7/m/slt1hhHXu+5pykWuDRbRJyfPlwD/KlN1V5rjyAkUFR1H2HBdQsMMYM5iVAwXhOQS4o+S1Q4f5+ftiMZ0751wF56wogIZFK8pI8AfsfvFfEZH60hdFZJy3mBTgNuyi0g+KSEOgzCzgrcP8/G7vecIw3z8clgFPAu8TkQWlL4pITERq2R5lDKAWjqLsIcaYjSLyfmx48VMi8mvsWp7JwBHYUOpDgXXGmF0i8kXgMuB+EfkVNojgfVir4ahhNOFhbGTZ50VkPHbCfq0x5sE9O7PyGGOMiLwNGxb9uIj8HFiBPZcDgPOAz2JTBCkKoIKjKCOCMeYXIvIsdj3Ne7HhzzuAZ4AvYvOxubKXi0g38HHgm9hJ+suA3cDPh/HZ60XkXcCnseuD4sAvgb0mON7nLheRo7DC8mqsaHYB67BCU+oyVF7gaC41RRklDJYTTVH2B3QOR1EURakJ6lJTlFGIiCSoLAigzWhiTmWMoIKjKKOTk4E7Kyg3HztnoiijHp3DUZRRiBdtdkwFRe81xvTv7fYoykiggqMoiqLUBA0aUBRFUWqCCo6iKIpSE1RwFEVRlJqggqMoiqLUBBUcRVEUpSb8f/k3ovsViiNlAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# da_test2.isel(time=range(300)).plot()\n",
"da_fft = xrft.fft(\n",
" Ncount_time.isel(time=range(300)).interp(\n",
" time=pd.date_range(\n",
" Ncount_time.time[0].item(), Ncount_time.time[299].item(), periods=300\n",
" # \"2023-05-09T14:30:03.000000000\", \"2023-05-09T15:10:06.000000000\", periods=300\n",
" )\n",
" )\n",
")\n",
"# np.abs(da_fft).isel(freq_time=range(151,300)).plot()\n",
"np.abs(da_fft).plot()\n",
"# plt.xlim([0, 0.003])\n",
"plt.ylim([0, 7e4])\n",
"# plt.yscale(\"log\")"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: 'â–º';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: 'â–¼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'>&lt;xarray.DataArray &#x27;runTine&#x27; ()&gt;\n",
"array(&#x27;2023-05-09T14:30:03.000000000&#x27;, dtype=&#x27;datetime64[ns]&#x27;)\n",
"Coordinates:\n",
" runs float64 0.0</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'runTine'</div></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-e40fa033-8c32-47ea-98d9-24143f39f680' class='xr-array-in' type='checkbox' checked><label for='section-e40fa033-8c32-47ea-98d9-24143f39f680' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>2023-05-09T14:30:03</span></div><div class='xr-array-data'><pre>array(&#x27;2023-05-09T14:30:03.000000000&#x27;, dtype=&#x27;datetime64[ns]&#x27;)</pre></div></div></li><li class='xr-section-item'><input id='section-d17bf513-b085-4af2-bd47-8045c34e24c7' class='xr-section-summary-in' type='checkbox' checked><label for='section-d17bf513-b085-4af2-bd47-8045c34e24c7' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>runs</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0</div><input id='attrs-019e4ba7-2972-457b-98cc-6ce8928efedc' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-019e4ba7-2972-457b-98cc-6ce8928efedc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b9bd41e9-b097-40f7-8510-4328447f3ed4' class='xr-var-data-in' type='checkbox'><label for='data-b9bd41e9-b097-40f7-8510-4328447f3ed4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(0.)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-1f893e4b-97d8-4ccd-9b9a-a87f71e07633' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-1f893e4b-97d8-4ccd-9b9a-a87f71e07633' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-2e049df9-56e1-46f5-967e-fe771c1acf85' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-2e049df9-56e1-46f5-967e-fe771c1acf85' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.DataArray 'runTine' ()>\n",
"array('2023-05-09T14:30:03.000000000', dtype='datetime64[ns]')\n",
"Coordinates:\n",
" runs float64 0.0"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"runTime.runTine[0]"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(0.0, 100000.0)"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAEeCAYAAAAQD7VrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABBUElEQVR4nO3deXxV5Z348c/33twkZE9I2BIgsokomwQELUirnba2WquirWNbx6qtW906U9taday/2umIdUS7qFW76SDVWnWsbd0VUAmKBJB9TdgSIBsh+/P745wTDpeb/S7n3nzfr1deJ/fc733Ok0Pgy3OeTYwxKKWUUsrii3UFlFJKKS/RxKiUUkq5aGJUSimlXDQxKqWUUi6aGJVSSikXTYxKKaWUiyZGpZRSyqVHiVFEfiAiS0Rkq4gYEdneTfxpIvKqiNSJSK2IvCIi0zqJHSEivxeRShE5IiKlIrKgk9gUEblbRLaJSJOIbBGR20Uk0En8N0TkI7vcfSLymIgU9LfOSimlEpf0ZIK/iBjgIPAhMAOoNcYUdxI7G3gTqAAesk9fDwwBTjfGlLli84BS+737gXLgUuBM4ApjzBNBZT8PfBl4HFgOzAGuAH5njLk8KPZmu8y3gKeAIuAWYAcwyxhzuC91VkopleCMMd1+AWNc368BtncR+wFQCxS6zhXa5/4RFPtzwADnus757TIOABmu8+fYsQuDylhonz/ddS4fOGyX43edP9eO/WFf66xf+qVf+qVfif3Vo0epxpitPYkTkXHATGCJMabC9fkKYAlwtogMc33kUmCLMeZFV2wbsAjIs5OhOxbggaDLOq8vc507H0gDFtnlOWW/CGx1x/ahzkoppRJYuAffzLSPy0O89x4gWI9iEZHhWK2y9zqJdZfnfF9hjNnlDrRf7w4R21U9JopIRm/rrJRSKvGFOzGOsI8VId5zzhX2IdaJDxXrxAfHdlW2uGJ6Ww+llFIJLCnM5aXZx6YQ7zUGxfQm1vk+VKwTHxwbqXp0EJGrgasB0tPTZ0ycOLGT6vVMXWMr2w8cZmxBOmnJ4f6jUUop71m5cmWVMSbkbIFYCfe/vg32MSXEe6lBMb2Jdb4PFevEB8c6ZR8Jcz06GGMeAR4BKCkpMaWlpZ1Ur2eWbani0kff5/GrZzN7zOB+laWUUvFARHbEug7Bwv0odbd9DPXo0TlX0YdYJ76zR5qFIWK7Ktu4Ynpbj4hJ9lt/HC1t7dG4nFJKqRDCnRhX2Mc5Id6bjZWQVgIYY/ZgJZzZncSCNcfRXXahiIx0B9qvR4SI7aoeG4wx9b2tc6QFNDEqpVTMhTUxGmM2YyWoBSLiDGrB/n4B8LoxZq/rI08DY0XkXFesH7gBqAZeDooFuCnoss7rP7nO/RXrEer1dnlO2ecCY9yxfahzxDiJsbm1+0UXlFJKRUaP+hhF5OvAaPtlAZAsIrfbr3cYY/7gCr8ReAN4R0QW2eduwErCtwYV/TOs5POUiNyP1YL8GtYUiiuNMXVOoDHm/0TkJeAWEcnm6Mo33wL+aIx51xVbKSI/Bu4DXhWRp7Eei94KrOf4uZC9qXPEJCcJoC1GpZSKpZ4OvvkW1jJtbj+xj28BHYnRGLNMROYD99hfBlgGLDDGfOwuwBhzQETOwEqQ1wEZwDrgq8aYxSHqsQC4HWuC/texEukd9uePYYxZKCIHgJuBB7FWsXkGuM31GLXXdY4kfZSqlFKx16PEaIyZ35tCjTHLgbN6GFuBleR6EtuIlRhv7y7Wjn8SeLKHsT2uc6RoYlRKqdjTbac8pKOPsU37GJVSKlY0MXpIx3SNVm0xKqVUrGhi9JCADr5RSqmY08ToIdrHqJRSsaeJ0UOSfFaLUfsYlVIqdjQxeoiIkOz3aYtRKaViSBOjxwT8ooNvlFIqhjQxekwgSVuMSikVS5oYPSbg92kfo1JKxZAmRo/RPkallIotTYweE/CLJkallIohTYweE9AWo1JKxZQmRo8J+H26H6NSSsWQJkaP0VGpSikVW5oYPSZZ+xiVUiqmNDF6jPYxKqVUbGli9Bidx6iUUrGlidFjAn6fLgmnlFIxpInRY5KTtI9RKaViSROjx2gfo1JKxZYmRo+xEqP2MSqlVKxoYvQYa/CNthiVUipWNDF6jM5jVEqp2NLE6DE6KlUppWJLE6PHBJJ8tLRrH6NSSsWKJkaPCfisR6nGaHJUSqlY0MToMQG/D2OgTVuNSikVE5oYPSaQZP2R6JQNpZSKDU2MHhPwW38kOmVDKaViQxOjxyT7BUCnbCilVIxEJDGKSIaI/FBEykSkTkSqRGSZiFwuIhIUe5qIvGrH1YrIKyIyrZNyR4jI70WkUkSOiEipiCzoJDZFRO4WkW0i0iQiW0TkdhEJdBL/DRH5yC53n4g8JiIF/b4ZveS0GDUxKqVUbIQ9MYqID/gb8BNgBXArcA/gB54AfuaKnQ28BZwA3AHcCYwH3hGRyUHl5gHvAhcAvwJuBOqBZ0Tk30JUZTHwY+B14DrgTbtOj4ao883A74Aau9zfAF8F3hSR9N7fhb7rSIyt2seolFKxkBSBMk8DPgU8YIy52TkpIr8E1gPfBr5vn34QaAbmGWMq7LhngE+AhcC/uMq9DSuBnmeMedGO/S2wHLhPRJYYY+rt8+cAXwbuN8bcan/+MRGpBm4RkUeMMcvs2HysxL0COMsY02afXwG8gJUofxqme9MtZ/CN9jEqpVRsROJRapZ93O0+aYxpBqqAwwAiMg6YCSxxkqIdVwEsAc4WkWGuIi4FtjhJ0Y5tAxYBecA5QbEADwTVzXl9mevc+UAasMhJinbZLwJbg2IjTvsYlVIqtiKRGD8AqoH/EJEFIjJKRCaKyL3ADOAuO26mfVweooz3ALHjEZHhQKF9PlSsuzzn+wpjzC53oP16d4jYruoxUUQyQrwXEdrHqJRSsRX2R6nGmEMich7wGPCM66064EJjzPP26xH2sYLjOecK+xDrxK/rpIoVQFFQbFdlix2zsZPywkoTo1JKxVakpmvUA2uA+7AGy1wJbAaeEpHP2jFp9rEpxOcbg2J6E+t8HyrWiQ+O7U3ZHUTkantkbGllZWUnl+udjnmMOvhGKaViIhKjUicDy4B/GmP+3RjzF2PMb7EG5OwFHhURP9BgfyQlRDGp9rEh6NiTWOf7ULFOfHBsb8ruYIx5xBhTYowpKSgIz8yO5CTtY1RKqViKRIvxZqyEssR90hjTAPwfMBoo5ujgHPcjUILOOY83exPrxIeKdeKDY7sq2xA0kCiS9FGqUkrFViQSo5Ng/CHeS3IdV9jfzwkRNxsrIa0EMMbswUpmszuJBSh1nVsBFIrISHeg/XpEiNiu6rHBmQYSDZoYlVIqtiKRGJ1BL5e7T4pIDtbcwkPAZmPMZqwEtUBERrjiRgALgNeNMXtdRTwNjBWRc12xfuAGrFGwLwfFAtwUVDfn9Z9c5/4KHAGut8tzyj4XGBMUG3FH10rVPkallIqFSEzwfwD4BvAzu79xKdY8w6uA4cB1rvmCNwJvYK10s8g+dwNWwr6VY/0MK2E+JSL3Y7Ugv4Y13eJKY0ydE2iM+T8ReQlrMn821lSMOcC3gD8aY951xVaKyI+xBgq9KiJPY7V6b8VakOCBft+RXkjuWPlGW4xKKRULkZiusUNEZmEt8XYW1tJqR4BVwK3GmOdcsctEZD7WyjP3YD0+XQYsMMZ8HFTuARE5AytBXgdkYLVOv2qMWRyiKguA27Em6H8dK5HegWtJOlfZC0XkAFb/6INALdZUk9ui+RgVIKCDb5RSKqYi0WLEGLMF+GYPY5djJdCexFZgJbmexDZiJcbbexj/JPBkT2IjSfsYlVIqtnTbKY/RPkallIotTYwek6wtRqWUiilNjB4TcBYR18E3SikVE5oYPcbvE0S0xaiUUrGiidFjRISA36d9jEopFSOaGD0o2e/TFqNSSsWIJkYPCvhFE6NSSsWIJkYPCmiLUSmlYkYTowcF/D7dj1EppWJEE6MHJSdpi1EppWJFE6MHaR+jUkrFjiZGD7L6GPVRqlJKxYImRg/SwTdKKRU7mhg9SOcxKqVU7Ghi9KBAkvYxKqVUrGhi9KAkny4Jp5RSsRKRjYpV/wT8vgGzu0ZTaxv1ja3UNbZS32QdjTHMHjMYn09iXT2l1ACkidGDkuPoUerBw83sr2u0EltjK7WNLR0Jzkp4LdS5Xze1dCTCuqZWmjv5D8Djl5fwmYlDo/zTKKWUJkZPipdRqRXVRzjz52/Q2h76sa9PIDM1QEZKEpmp1ldBRgpj8jPIsF9npiQdE5OWnMQVT67g/a0HNTEqpWJCE6MHxcs8xpU7DtHabrjr3EmMHZJhJ7dARxIcFPAj0vvHoVOKslmx/WAEaqyUUt3TxOhB1n6M3m8xlpVXk5zk419njybgD984rpLiPH777lYaW9pIDfjDVq5SSvWEjkr1oOQ4WRJudXkNk4ZnhTUpAswszqWlzfDxruqwlquUUj2hidGD4mFUanu7Ye3uWqYUZYe97BmjcwH0capSKiY0MXpQIMn7fYzbDhymvqmVUwrDnxhz0pKZMDSDFdsPhb1spZTqjiZGD3L6GI3xbnIsK68BiEiLEax+xg93HKKtkxGvSikVKZoYPSjZb43k7GwahBesLq8hNeBjXEFGRMqfWZxLXVMrG/bWRaR8pZTqjCZGD3IGs3h5AM6aCmvgTVKYB944SkbnAVC6Q/sZlVLRpYnRgzoSY6s3W4xt7YY1u2uYUpQTsWsU5Q5iWFaq9jMqpaJOE6MHBZKsPxavzmXcWllPQ3MbkyMw8MYhIpQU57Ji20FP97UqpRJPxBKjiOSJyH0isllEGkWkUkTeEJG5QXGnicirIlInIrUi8oqITOukzBEi8nu7rCMiUioiCzqJTRGRu0Vkm4g0icgWEbldRAKdxH9DRD6yy90nIo+JSEG/b0QfOH2MXn2UutoeeDM5QgNvHLNOyGNvbSMV1Ucieh2llHKLyMo3IjIaeBPIAH4LbASygSlAoStuth1XAdxhn74eeEdETjfGlLli84B3gSHA/UA5cCnwjIhcYYx5Iqgai4EvA48Dy4E5wE+AccDlQfW92S7zLeBGoAi4BZgjIrOMMYf7fDP6wOt9jGUVNQwK+BkboYE3jo5+xu2HKMpNi+i1lFLKEakl4f5olz3FGLOni7gHgWZgnjGmAkBEngE+ARYC/+KKvQ04ATjPGPOiHftbrKR3n4gsMcbU2+fPwUqK9xtjbrU//5iIVAO3iMgjxphldmw+cA+wAjjLGNNmn18BvICVKH/an5vRW/GQGE8pzMIf4W2hThyWSWZKEiu2H+T86YXdf0AppcIg7I9SRWQe8Cng58aYPSISEJHj/rsvIuOAmcASJykC2N8vAc4WkWGuj1wKbHGSoh3bBiwC8oBzgmIBHgi6rPP6Mte584E0YJGTFO2yXwS2BsVGhZMYmz04+Ka1rZ21u2uYXJgT8Wv5fcKpo3Mp1QE4SqkoikQfo5OgdorIi8AR4LCIbBQRd5KZaR+XhyjjPUCAGQAiMhzrEex7ncS6y3O+rzDG7HIH2q93h4jtqh4TRSSyzwyDJCd5t49xS+VhGlvamVyUFZXrzSzOZcO+OmoaWqJyPaWUikRiPNE+PorVkvsmcAXWI9M/iMi/2e+PsI8VHM85V9iHWCc+VKwTHxzbVdniiokKLz9KXV1eDRCVFiNYK+CAzmdUSkVPJBJjpn2sAz5tjPmTPTBmLlAN/FREfFiPLwGaQpTRaB/Tgo49iXW+DxXrxAfH9qbsDiJytT0ytrSysrKTy/Vex6NUDybGsooa0pP9jMlPj8r1phblEPCLzmdUSkVNJBKjM7b+aWNMs3PSGHMIazDLMKxWZYP9VkqIMlLtY0PQsSexzvehYp344NjelN3BGPOIMabEGFNSUBC+mR1HW4ze62Msq6jh5MJsfBEeeOMYlOznlMJsSnWnDaVUlEQiMZbbx70h3nNGqOZi9fXBsY81CTrnPN7sTawT39kwxsIQsV2VbVwxUZHcsfKNt1qMLW3trNtdy5QITuwPZWZxHqvLa2hsaes+WCml+ikSifED+1gU4j3n3H6s6RFgzS8MNhsrIa0EsKd8VNjnQ8UClLrOrQAKRWSkO9B+PSJEbFf12OBMA4mWgEcH32zaV09Ta3vEJ/YHKxmdS3NbO2UVNVG9rlJqYIpEYnweq3/xMvdoTntk6fnARmPMZmPMZqwEtUBERrjiRgALgNeNMe5W59PAWBE51xXrB27A6rt8OSgW4Kagujmv/+Q691esx7/X2+U5ZZ8LjAmKjQqv9jGWVVQDRHSN1FB042KlVDSFfYK/MeaQiHwP+A3wnog8DiQD19jHG1zhNwJvYK10s8g+dwNWwr6VY/0MK2E+JSL3Y7Ugv4Y13eJKY0zH/kTGmP8TkZewJvNnc3Tlm28BfzTGvOuKrRSRHwP3Aa+KyNNYj1BvBdZz/FzIiEv2aB9jWUUNmSlJjM6L7io0gzNSGFuQrvMZlVJREZGVb4wxj4hIFfAfWMuwtWMlp0uNMUtdcctEZD7WyjP3YD0+XQYsMMZ8HFTmARE5AytBXoe13Nw64KvGmMUhqrEAuB1rgv7XObrs3M9C1HehiBwAbsZajacWeAa4LdqPUcG70zXKyms4JYoDb9xmFufxctke2ttNTK6vlBo4IrUkHMaY54DnehC3HDirh2VWYCW5nsQ2YiXG23sY/yTwZE9iIy3gwUXEm1vb+WRPHf92RnFMrj+zOI//XbGLTfvrOXFYZvcfUEqpPtJtpzzI2XbKS49SN+6ro7mtnVOiPCLVMdOe6K/9jEqpSNPE6EHJHnyU6owInRLlEamOkXmDGJKZovMZlVIRp4nRg5w+xqYW7yTG1eU1ZKUmMSrKA28cIsLM4jxdAUcpFXGaGD3I7xMKcwaxfm9trKvSoayimilFOYjEbuBLSXEuFdVH2K0bFyulIkgTo0fNHZ/P0s1VtHrgcWpTaxsb9tbFrH/Rof2MSqlo0MToUXPHF1Db2MrH5bFf7WXD3jpa2kzM+hcdE4dlkp7s1/mMSqmI0sToUWeMG4wIvLMpfLt29NVqOzlPjnGLMcnv49TRudpiVEpFlCZGj8pJS2ZKUQ7vbKqKdVVYU1FDTlqAotxBsa4KJaPzrI2Lj+jGxUqpyNDE6GFnjs9n1a7qmCeB1eU1TC7MjunAG8fM4lyMgQ936uNUpVRkaGL0sLkTCmhrNyzfErtWY2NLGxv31cW8f9ExbVQOfp/ofEalVMRoYvSwaSNzyEhJ4u0YPk79ZE8tre0m5v2LjrTkJE4ZkaXzGZVSEaOJ0cMCfh9zxg7m7Y2VGBOb5eHW2CveTI7yVlNdKSnO4+Nd1TS16sbFSqnw08TocfMmFFB+6Ag7DjTE5Pqry2sYnJ7MiOzUmFw/lJnFeTS1trOmwjsLICilEocmRo+bNz4fgLdjNG2jrKKGyUXeGHjjKCm2Ni7WfkalVCRoYvS40YPTGZWXxtsbo9/PeKS5jU376z3Tv+jIz0hhTH669jMqpSJCE2McmDs+n+VbqqK+28a6PbW0eWjgjVtJcS6lOw7S3u6drbmUUolBE2McmDehgMPNbXy0szqq1y0rt643xUMDbxwlxXlUN7SwpbI+1lVRSiUYTYxxYM7Ywfh9wtsbo9vPuLqihvyMFIZmpUT1uj1xdEFxfZyqlAovTYxxICs1wPSROVFfN3VNRQ1TPDbwxlE8OI38jGQdgKOUCjtNjHFi7vgCVlfUcOhwc1Sud7iplc0eHHjjEBFKRuexYocmRqVUeGlijBPzJuRjDCyN0vJw6/bU0m7wzFJwoZQU57Lr4BH21jTGuipKqQSiiTFOTCnKISs1KWr9jGUe2WqqK04/Y6m2GpVSYaSJMU74fcKnxufzzqaqqCwPV1ZRw9CsFIZkeWfFm2CTRmQxKKAbFyulwksTYxyZO76APTWNUZmisLq8msmFORG/Tn8E/D6mj8pJmI2Ll22p4urfl3K4qTXWVVFqQNPEGEfmOsvDRXgVnPqmVrZWHfb0Y1THzOI8PtlTS11jfG9c3N5uuOuFtfxj3T4efmNzrKuj1ICmiTGOFOWmMaYgPeLrpq6tqMF4fOCNY2ZxHu2GqC9+EG6vrN3Lxn31FA9O47F3trG96nCsq6TUgKWJMc7MG1/Ae1sPRHTLpTJ7q6lT4qDFmAgbF7e3Gx58bRNjCtL536vnkJzk4ycvrYt1tZQasDQxxpm54/NpbGlnZQQHnKwur2F4dioFmd5b8SZYRkoSk4Zn8UEcJ8Z/frKP9XvruOEz4xiWncp3zxrHa+v388b6/bGumlIDkibGODN7zGACfuHtTZHrZ1xTURMX/YuOkuJcVu2qprk1uoush4MxVmuxeHAa504ZAcDlp5/AmIJ07n5pnW7GrFQMaGKMM+kpScwYnRux+Yy1jS1srTocF/2LjpnFeTS2tLN2d02sq9Jrr6/fz9rdtVz36XEk+a2/jslJPu4892S2VR3m8Xe3x7aCSg1AEU+MIpImIltFxIjIQyHeP1FEnheRQyJyWETeEZHPdFJWtogsEpEKEWkUkbUico2EWMxTRHwicrOIrLdjd4nIQhFJ76Tsc0RkmV2HgyKyRERO6P8dCL+54wtYt6eWyrqmsJe9xu5fnOzBHTU6UzLa2bg4vuYzGmP4n9c2MTJvEOdPLzzmvTMnFPDZSUNZ9PomXdlHqSiLRovxbqAg1BsiMhZYBswBfg78O5AB/F1Ezg6KTQb+CXwHWAzcAGwAfgncGaL4XwD3A+vs2CXAd4EXReSYn1tELgBeAgbZdfhvYB6wVERG9PonjrB5463buXRz+B+nxsOKN8GGZKUyenBa3M1nfHNjJavLa7j+0+MI+I//q/jjL06itd1w798+iUHtlBq4IpoYReRU4CZCJy6Ae4Ec4HPGmHuNMb8E5gK7gYeDWoJXAjOBW4wxtxhjHjXGXAA8B/xQREa7rnsyVjJ8zhhzgR17C3AL8Gngq67YALAI2AXMNcb80hhzL/A5YChwVz9vQ9idPCKLvPTkiEzbKKuooTBnEHnpyWEvO5JKRudRuuNQVFYFCgdjDP/z6iYKcwbxlelFIWNGDU7j2/PG8NdVu+Mu6SsVzyKWGEXEDzwKvIKVvILfTwfOA940xqxyzhtj6oHHgAlYidBxKdBgl+n2ABAALnGd+xog9ntuj9plXOY6dyYwAnjMvrZTj1XAm8AldvL0DJ9P+NS4yCwPV2ZvNRVvZhbncvBwM1vjZP7fu5urWLWrmms/PZbkpM7/Gl47fxwjslO5869raWuPj6SvVLyLZIvxZmAicH0n708BUoDlId57zz7OBKu/EDgV+MgYE9zh8gFgODaJzgTa7fc62J9dFSKWLuqRhZWkPWXu+Hwq65pYv7cubGXWNLSw40BDXMxfDFbiLCgeBy0rp7U4PDuVi2aEbi06BiX7+dEXJ7FuTy1PfbAzSjVUamCLSGK0B638J3C3MWZ7J2FO311FiPecc86IhFys/r/jYo0xTUCVK9Ypu8p+L1TZ+XafZW/r4Rlz7X7GcG5evMYe1RmPLcaxBenkpgVYEQcDcJZvPUDpjkNcM38sKUn+buPPmTyMOWMGs/AfG6K2H6dSA1mkWoy/BrZiDX7pTJp9DJW8GoNiuop14tNcr9O6ie1p2cGxxxCRq0WkVERKKyujsx2UY1h2KicOzeSdMM5nXB2HA28cIkJJcV5ctBj/59VNDM1K4eKSkT2KFxHuOu9k6hpbWfjPDRGunVIq7IlRRC4DPgtcY4zpamXnBvsYanmV1KCYrmKd+AbX64ZuYntadnDsMYwxjxhjSowxJQUFIQfeRtTc8fm8v+0gR5rDMwm8rKKaUXlp5KTF18Abx6ziPLYfaGB/nXenN7y39QDvbzvId84cS2qg+9ai48RhmXx99mieen9nXM7XVCqehDUxikgKVivxZWCviIwTkXGAM2I02z6XgzXyFEI/pnTOOY8yDwFHQsXa18zn2Eehu7Eel4ZKdoVYj1mbXbE9rYenzJ1QQHNre9iWQ1tdHl8r3gQrKbbmM0Zyubz+WvT6JvIzUvjarFG9/uzNZ08gJy2Zu15YGzejb5WKR+FuMQ7CmrP4RWCT6+tN+/3L7NdXAmVYjy/nhChntn0sBTDGtAMfAtNDJLtZWCNQS13nVmD9bLPcgSKSCkwLEUsX9agFNoZ4L+ZmFeeRnOTjnTCsgnPocDPlh44wOQ77Fx0nj8gmNeDz7LqppdsPsnTzAb5z5phetRYd2WkB/uNzJ7Ji+yFe+Hh39x9QSvVJuBPjYWBBiK9r7fdfsV+/YE+NeBGYLyJTnQJEJAMrcW7i2FGlT2P19V0ddM2bgFasSf+OxVgjVW8Kir3KLuNPrnNvAXuAK+1rO/WYCswHlnTzSDhmBiX7Oe2EvLD0Mzo7akyJ4xZjcpKPaSNzPLsCzoOvb2ZwejKXntb71qLj4pKRTCnK5qcvf6IbGisVIWFNjMaYFmPMn4O/gL/ZIVvsc04L7AdADfAPEblNRK4F3sF6hHmDOfZ50aPASuB+e2m3K0XkOeAC4Gfu0a/GmDLgYeACEXnOjl2I9Zj3LeApd52BG4GRwDsicq2I3Ab8A6ik88UJPGHu+Hw27Kvr97JhTmI8OY4TI1jrpq7dXUO9x5LGRzsP8fbGSq6aN4a05KQ+l+PzWQNx9tU2seh13dBYqUiI6SLixpjNwBlY8wVvA+7DanV+3hjz96DYZuBs4DdYE/gfxponeQNwR4jibwK+B5xsx34Va4WbL9mPZt1lL8FabKDJrsP3sRL0GcYYT/YvOsI1baOsvIbiwWlkD/LUWga9VmJvXLzKYxsXP/jaJnLTAnx99ujug7tx6qhcLjy1iN++u5VtcbKggVLxJCqJ0Riz3RgjxpjjJvsbYz4xxnzZGJNjjEkzxnzKGPNqJ+VUG2OuN8aMMMakGGMmGWMeCmpZOrFtxpiFxpgT7dhCeym5+k7KfskYM9uuQ64x5iJjzJb+//SRNXFYJgWZKf1+nFpWURNXC4d35tRROfgETy2htrq8mjc2VHLl3DGkp/S9tej2/S+cSEqSn7tfXBuW8pRSR+m2U3FORJg7Pp93N1fR3sclw6rqm6ioPsLkwqww1y76MlMDTByWRekO7yTGB1/bTPagAN+Y0//WomNIZio3njWeNzZU8ton+8JWrlJKE2NCmDe+gIOHm1m7u7ZPn3f6FycX5oSxVrEzsziXj3ZW09IW+42L11TU8Oon+/jWp04gMzW8j6m/eXoxY3VDY6XCThNjAjhjXD5An3fbWGOveHNKArQYwepnbGhu45M9ffuPQjgten0TmalJfPP04rCXnZzk467zTmbHgQYee2db2MtXaqDSxJgACjJTmDQ8q88DcFZX1DCmID3sLZpYcSb6x3rd1E/21PL3tfu44owTIjaoae74Aj538lAeen0ze2qOROQaSg00mhgTxLwJBazccahPc9vK4nzFm2DDswdRlDso5uumPvT6ZjJSkrjijBMiep3bvziJdmO49+X1Eb2OUgOFJsYEMW98Pi1thve2HujV5/bXNbK3tjGhEiNY8xlXbI/dxsUb99Xx8po9XH56MdlpkW2Jj8xL49tnjuWFj3fzfi///JVSx9PEmCBmFOeSGvD1etrGGmfFmwSYquE2sziPqvomdhwIuf57xD30+mYGBfx861ORbS06rjlzLIU5g7jzhbW0emDQkVLxTBNjgkhJ8jN7zOBeD8BZXV6DCJw8IjEG3jhm2v2MsVg3dfP+el5cvZtvzCkmNz06O5VYGxqfxPq9dbqhsVL9pIkxgcwbX8DWysOUH+p5K6msvIaxBRlhm3juFWMLMshJC8Skn/HhNzaTmuTnqrnRaS06vnDKME4fO5iF/9jIQd3QWKk+08SYQOZNsKZt9OZxallFTVwvHN4Zn08oGZ0b9QXFt1Ud5q+rKvj6nNEMzuhsS9DIcDY0rm9q5b5/6IbGSvWVJsYEMrYgg+HZqT2etrGvtpH9dU1xvdVUV0qK89hadZiq+qaoXfPhNzYT8Pu4au6YqF3TbcLQTL4xZzRPf7Czo/9YKdU7mhgTSMfycJuqaOvB8nCry50VbxIzMTr9jNFqNe480MBfPqrgX08bTUFmdFuLbjedPYG8tGTu1A2NleoTTYwJZt6EAmobW1ldXt1tbFlFDT6BSQk28MZxSmE2yUm+qPUz/vLNzfh9wrfPjE1r0ZE9KMD3Pz+RlTsO8fwqT28Oo5QnaWJMMGeMzUcE3t7YfT9jWXk144dk9mt/QC9LSfIzrSiHFTsi32LcdbCBP68s59JZoxialRrx63XnohlFTC3K5t6X13tub0qlvE4TY4LJTU9mSmF2t/2MxhjKKmo4JUEfozpKinNZW1FDQ3Nkk8Ov3tqCT2LfWnQ4Gxrvr2ti0eubYl0dpeKKJsYENHd8AR/tqqa2saXTmD01jVTVNzMlQQfeOGYW59Habli1qzpi19hdfYQlpbu4eGYRw7MHRew6vTV9VC4LZhTx23e26UAcpXpBE2MCmjehgLZ2w/ItnS8P1rHVVIInxlNH5SIS2QE4v37L2s/6mvnjInaNvvrRF08iLz2ZmxevorFFt6ZSqic0MSag6aNySE/28/bGzh+nlpXX4PcJk4Yn5sAbR3ZagBOHZrIiQgNw9tY08r8f7OKiGUUU5nintejISUvm5xdNYdP+ehbq3EalekQTYwIK+H3MGZvf5UT/1RU1jB+SQWrAH8WaxUZJcS4f7jgUkRbTr9/aQrsxXOvB1qJj/olDuGz2KB57d1uvF5lXaiBKzOGIinkT8nn1k33sOHCY0YPTj3nPGMOaihrOPmlIjGoXXaedMJg/vreTSXe80rEl1ci8NEblpTEyb5B1zE2jIDMFEelxuftrG3n6g51ccGohI/PSIvgT9N8PzzmJdzZVceszH/PKTXMTZu9NpSJBE2OCmje+AIC3N1Xx9aDEWFF9hIOHm5mcYDtqdObzpwzjgUumsbXqMLsONrDrYANvb6xkf92xK+KkBnwU5doJ006eRxNoGhlB68k+8vZWWtsN133au61FR1pyEvdfPI0Fv17GT15ax88vmhrrKinlWZoYE9TowVZr6O2NlXx99uhj3itL8BVvggX8Ps6fXnjc+caWNsoPNbDr4BF22glz58EGdh06wgfbDh43/y8vPfmYhPnH93fw5WkjjmuRe9WM0blcM38sD7+xhc9OGsZnJw2NdZWU8iRNjAnKWh6ugBdW7aalrZ2A/2h38uqKGpJ8wsRhmTGsYeylBvyMG5LJuCHH3wdjDNUNLXaitBPmwSPsOthAWUUNr6zZi98nXB8HrUW3G8+awOvrK/nBc6s5ddS8qC90rlQ80MSYwOaNz+ep93eyalc1M4vzOs6vqajhxGGZA2LgTV+JCLnpyeSmJzN1ZM5x77e2tdPU2h5323UlJ/l44JJpnLvoXX74lzJ+fdmMXvWrKjUQ6KjUBDZnbD5+n/COa9qGMYbV5TUD5jFqpCT5fXGXFB0nDsvke5+bwN/X7uO5D3UtVaWCaWJMYNmDAkwbmcNbrmkbuw4eoeZIS8JP7Fdd+9anxjCrOI+7XlhLRfWRWFdHKU/RxJjg5o7PZ3V5NdUN1o7uzoo3UwpzYlgrFWt+n7Dw4qm0G8P3nvmY9h5sU6bUQKGJMcHNHV+AMbB0szWxe3VFNcl+HxOGZcS4ZirWRualcce5k1i+9QBPLtse6+oo5RmaGBPc1KJsslKTOnbbKCu3Bt6kJOnAGwUXl4zkrIlD+K9X1rN5f12sq6OUJ4Q9MYrIBBG5W0TeE5FKEakTkVUi8iMROW7Cl4icKCLPi8ghETksIu+IyGc6KTtbRBaJSIWINIrIWhG5RkIMqxMRn4jcLCLr7dhdIrIwVB3s+HNEZJldh4MiskRETuj/HYmtJL+PM8bl8/bGStrbra2mtH9ROUSEey+cTFqyn5sXf0xLW3usq6RUzEWixXgFcDOwBbgb+HdgA3APsExEOlZaFpGxwDJgDvBzOzYD+LuInO0uVESSgX8C3wEWAzfY5f4SuDNEPX4B3A+ss2OXAN8FXhSRY35uEbkAeAkYZNfhv4F5wFIRGdHH++AZc8cXsLumkTc27KeusZUpOiJVuQzJTOWnX5lMWUUND72+OdbVUSrmIjHe/M/AvcYY9wZwvxaRTcCPgG8BD9nn7wVygBnGmFUAIvJ7YC3wsIhMNMY4owKuBGYC3zXGLLLPPSoizwI/FJEnjDE77DJOxkqGzxljLnQqISLbgAeBrwJP2ecCwCJgFzDXGFNvn/8bsBK4C7g6DPclZuaOzwfg4Tesf/QSfXNi1XtfmDycC6YX8tAbm/n0xCFMCzF3U6mBIuwtRmNMaVBSdCy2j6cA2I80zwPedJKi/fl64DFgAlYidFwKNACPBpX7ABAALnGd+xog9ntuj9plXOY6dyYwAnjMSYp2PVYBbwKX2Mkzbo3MS2NMfjof7qwmOcnHhKEDe8UbFdqd553MkMwUbnlmFUeao7d344a9dVz8m+Wc99C77K1pjNp1lepMNAffFNnHffZxCpACLA8R+559nAlWfyFwKvCRMSb4b84HgOHYJDoTaLff62B/dlWIWLqoRxZWko5rTqvxpOFZJCfpmCt1vOxBAe5bMJWtlYf5r1fWR/x6R5rb+K9X1vPFB99h0746tuyv58JfLdNBQCrmovIvpIj4gR8DrdiPMLFaaQChlt5wzjkrP+di9f8dF2uMaQKqXLFO2VX2e6HKzrf7LHtbj7g1195tQ/sXVVfOGJfP5acX8+Sy7Szd3Pl+nv315ob9/MsDb/GrN7dw/vRCXrt1Pou/PYem1nYu/NVyVu6IzMbSSvVEtJoOD2ANsLnDGONsI+5sYBcqeTUGxXQV68S7N8RL6ya2p2UHxx5DRK4WkVIRKa2srAwV4hlzxg5m4rBMztYdFVQ3vv/5iYwpSOd7Sz6m5khLWMveX9fIDU9/xOVPrCDg9/H0VbO5b8FU8tKTOaUwm+euOZ289GQuffR9/rF2b1ivrVRPRTwxishPgOuBR4wx97rearCPoZb3Tw2K6SrWiW9wvW7oJranZQfHHsMY84gxpsQYU1JQUNDJ5bwhPSWJV26ax5kTvF1PFXuDkv384uJp7K9r4j9fWBuWMtvbDX96fwdnLXyLv6/Zy81nT+BvN85lztjBx8SNGpzGn78zh4nDs/jOH1fyp/d3hOX6SvVGRBOjiNwF3A48gTXNwm23fQz1mNI55zzKPAQcCRUrIilAPsc+Ct2N9bg0VLIrxHrM2tyHeig1IEwdmcP1nx7Hcx9V8LeyPf0qa/3eWi769TJ+9Jc1nDIim7/dNJcbzx7f6SITgzNSePqq0zhzQgE/+ssa7v/HBo4OTlcq8iKWGO2keCfwO+BKc/xvdhnW48s5IT4+2z6WAhhj2oEPgekhkt0srBGopa5zK7B+tllBdUoFpoWIpYt61AIbQ7ynVEK7/jPjmFyYzQ//Usb+ut6PFnUG13zpwXfZVnWYhQum8tRVpzG2oPvlCNOSk3j0GyVcXFLEg69v5rZny2jVxQdUlEQkMYrIHVhJ8Q/AFXZiO4Y9NeJFYL6ITHV9NgNrzuImjh1V+jRWX1/wnMKbsAb1LHadW4w1UvWmoNir7DL+5Dr3FrAHuNK+tlOPqcB8YIkxJrwdLUrFgYDfxy8umUpDcxs/eLasV6029+Car9iDay6cUdSrvR+T/D7+68Ip3PCZcSwu3cXVf1hJQ3NrX34UpXpFwv2IQkSuw5rAvxNrJGpwUtxnjPmnHTsOK/m1YK1UU4uVvCYDXzTG/N1VbjLWKjlTsSbpfwKcA3wFuMcY8+OgeizC6tv8C/AycBLWyjdLgc+4k7WILMBKph9jzXXMwlq9x2AtPtDto9SSkhJTWlraXZhScefxd7dx90vr+K8LJ3PJzFFdxu6va+QnL33Cix/vZkxBOv/v/MnH9SP2xR/f28Edf13D5KIcHv9mCYMzOhtCoOKNiKw0xpTEuh5ukUiMTwLf7CLkLWPMfFf8ScDPsCbaJ2M9Mr3LGPNqiLJzsJaWuwAYjLXs3C+Bh4Mf1dpTRG7CamEWY03pWIw1MraeICLyJaz+0ClYj3hfA75vjNnS7Q+NJkaVuNrbDf/62PusLq/mbzfOY9Tg4wdpt7cbnl6xk5/9bT1NLe1c9+lxfGf+mLAuVv/3tXv57tMfMSJnEL+/YhYj80IOFldxZkAkxoFKE6NKZBXVR/j8L97mpOFZPH31bPy+o49E1++t5YfPlfHhzmrmjBnMPV85pUf9iH1Ruv0g3/pdKQG/jyf/baYub5gAvJgYdQkUpVS3CnMGcdd5J/PB9oP89t2tQP8G1/RVSXEez14zh5QkH5f8ZnnHdmpKhVMkFhFXSiWgC04t5B/r9nLf3zcyKDmJR97ewq6DR1gwo4gfnHMSeenJ3RcSBuOGZPLsNadz+RMf8G9PrOC+BVM5f3rcL06lPERbjEqpHhERfvqVyWQNSuLHz6/pWLnmv+2Va6JpWHYqi789h5LiXG5avIpH3t6icx1V2GiLUSnVY4MzUnj0GyWs2lXNpaeNCuvgmt7KHhTgd1fM4pZnPuanL69nb00Tt3/xJHy+nk8JUSoUTYxKqV6ZPiqX6aNyY10NAFKS/Cz66nSGZKbw+NJt7K9rZOHFU2OasFX808SolIprPp9wx5cmMSwrlXv/tp4D9c385hszyEr15jaq7e2Gyvomyg8doaL6CHuqjzC2IIMzTywg4NfeLS/QxKiUinsiwrfPHMuQrBT+fclqLv71cn53xSyGZqV2/+Ewa2ptY091I7urj1BefYQKOwE6xz01R2hpO74/ND8jha9MH8GCkpG6mXiM6TzGMNF5jEp5w9sbK7nmjyvJSUvmznMnkZGahF+EJL/g9/nwi+D3Wa99IiT5rNd+n/W9z3fsOeu8D59YCbiusaUj0YVKfpX1Tbj/WRWBIZkpFOYMojA3zT4OojAnlcKcNIZlpbJi+0GWrNzFa5/sp7XdMLUom4tKRnLelBFkp3mz5RsuXpzHqIkxTDQxKuUdaypquPyJD6iqb+4+uBf8PqGt/dh/M5P9PobnpFoJryPpHT0Ozx5EclLPHpEeqG/i+VW7WVK6i/V760hO8vG5k4exYEYRZ4zLP2ZhhUShiTGBaWJUyluqG5rZtL+etnZzzFfrMd+3024MrW3GOnYZa2hrbyczNdCR+IpyBpGfkRL2kbDGGNburmVJ6S7++vFuqhtaGJ6dyoWnFnHRjCKK89PDer1Y0sSYwDQxKqUioam1jVfX7WfJyl28vbGSdgOzivO4aEYR50wZTkZKfA8V0cSYwDQxKqUibW9NI899VM6fS8vZWnWYtGQ/XzhlOAtKijjthLxebesVa8YYtlUdZuyQTM8lxvj+r4ZSSg0gw7JTuXb+OK45cywf7jzEn1eW8+LHe3j2w3JG5aVx0YwiLpxRRGHOoFhXNaS9NY0s3VzF0i1VLN9ygD01vd8AOxq0xRgm2mJUSsXCkeY2Xlm7h2dWlLN86wFE4Iyx+cybkM+k4dmcNDwzZvtXVjc0897WAyzdfIClW6rYWnkYgNy0AKePzef0cYO5bHax51qMmhjDRBOjUirWdh1s4NkPy/nLRxXsONDQcX5oVgonDc9i0vAs6zgii+LB6WEf5drQ3MqK7YdYtrmKZVsOsGZ3DcZAWrKfWSfkcYadDE8altUxYEn7GBOYJkallJccPNzMJ3tqWbe71jruqWXz/npa7ekmgwJ+ThyWyaQRWR1Jc+KwTNJ7MZinpa2dj3dVd7QIP9p5iJY2Q8AvTB+Vyxlj8zlj3GCmFOV0OmVFE2MC08SolPK6ptY2Nu2r70iUTuKsbWwFrMUIigenc9LwTCbZLcuThmcxLCsVEaG93bB+bx3LtlSxdHMVH2w7yOHmNkTg5BFZdoswn5nFuaQl9yzBejEx6uAbpZQaIFKS/JxSmM0phdkd54wx7K5pPNqy3F3L2t21vFy2tyMmNy3AuCEZbKk8zMHD1qIJYwrS+cqphZwxNp85YweTkxbdrcciSROjUkoNYCLSsWrPZycN7Thf19jChr11HS3LjfvqmX9iQUc/4fBsb458DQdNjEoppY6TmRqgpDiPkuK8WFcl6nSPE6WUUspFE6NSSinloolRKaWUctHEqJRSSrloYlRKKaVcNDEqpZRSLpoYlVJKKRdNjEoppZSLJkallFLKRROjUkop5aKJ0SYiPhG5WUTWi0ijiOwSkYUikh7ruimllIoeTYxH/QK4H1gH3AAsAb4LvCgiep+UUmqA0EXEARE5GSsZPmeMudB1fhvwIPBV4KkYVU8ppVQUaUvI8jVAgAeCzj8KNACXRbtCSimlYkMTo2Um0A584D5pjGkEVtnvK6WUGgA0MVpGAFXGmKYQ71UA+SKSONtTK6WU6pT2MVrSgFBJEaDRFdPsfkNErgautl82iciayFRvQMoHqmJdiQSh9zK89H6G14mxrkAwTYyWBmBIJ++lumKOYYx5BHgEQERKjTElkanewKP3M3z0XoaX3s/wEpHSWNchmD5KtezGelyaEuK9QqzHrM0h3lNKKZVgNDFaVmDdi1nukyKSCkwDPPc/GqWUUpGhidGyGDDATUHnr8LqW/xTD8p4JMx1Guj0foaP3svw0vsZXp67n2KMiXUdPEFEFgHXA38BXgZOwlr5ZinwGWNMewyrp5RSKko0MdpExI/VYrwaKMYadbYYuMMYUx+7mimllIomTYxKKaWUS0L2MfZ3p4zefl5EzhGRZSJyWEQOisgSETmhk9gTReR5ETlkx78jIp/pJDZbRBaJSIVdj7Uico2ISM/vRv8lwv0UkfkiYjr5eql3d6TvvHovRWSWiDwoIktFpN6+L5d3UY8UEblbRLaJSJOIbBGR20Uk0OObEQaJcD9FpLiL382ozo324v0Uy2Ui8r8isllEGkRkp4i8ICKnReLnwBiTcF/A/2ANpnkOawDN/UAL8DrgC+fngQuwlpP7CLgW+AGwD2sKyIig2LHAAfv9H9jxH9llnx0Um4y1RF2Lff2r7PoY4C69n72+n/PtOvwGa+1b99d8vZfcBbQBa7H61Q1weRf1eN6O+S1wpX00wJP6u9m7+4nVdePUIfh380sD/X5izSU3dtw9wLeA24Fy+/OXhf3niOZNj9If7Mn2zXo26PwN9o26NFyfBwJYS8btADJc56fZfykeCSrjGfv8NNe5DPvzG7Afbdvnr7Wvd0NQGc9ircAzWu9nr+7nfLr5x36A38uhQLr9/UVd3SvgHPv9hUHnF9rnT9f72av7WUwM/sMbL/cTayGaM0NcbyjWWJB9uJJdf38OYxIzMd5j//Bzg86nAoeBl8P1eeBsO/bHIcp5DagBAvbrdKzl5V4LEftju5xZrnPv2tdLDYqda8f+h97PXt3P+c4/TvZnU7uq90C6lyHe7+4f8j/a748MOj/SPv9LvZ+9up/F9vt32ddOi/bvZjzdz6DYZ+1yhoXr5zDGJGQfY393yujN553vl4co5z0gC5hgv54CpHQR21GeWBsjnwp8ZF/X7QOsP/Ro7fgR9/czyP8A9cAREdkoIjeKRK3P1qv3srdmAhXGmF1B9diF9RhsoP9u9tWtWEtPHrb7xO6W0KtxRUo83s8irCdo1X2sR0iJmBj7u1NGbz4/wnU+VCxYS8r1NjYXGBQq1q5XlSs20hLhfoLVv/AC8B/AecB3sP4yPQA83kX9w8mr97K3RnRSrlP2QP/d7K12rL6vHwLnY/XZrsN68vGSWFPJoiGu7qeInIO1WtnioAZEv3dLSsRFxPu0U0YfP59mvw4V744ljLFOfFon74VbItxPjDFLgS+7g0TkUazFHC4XkcfsmEjy6r3sre7qMdB/N3vFGLMTOCvo9G9F5BGsgSNfpWerb/VX3NxPERkP/AEr0d3aj3qElIgtxgasR2yhdLpTRh8/7xxDxUcq1onv6mcIp0S4nyEZazWje+2XX+wqNky8ei97q7t6DPTfzXD5f/YxGr+bECf3057O8RpWl9IXjDGV/ahHSImYGPu7U0ZvPr/bdT5ULBx9LNCb2EPAkVCxdr3y6fxRVrglwv3synb7mN+D2P7y6r3srd2dlOuUPdB/N8NlF9YIzWj8bkIc3E8RKQbewBp9/lljTFk/6xFSIibG/u6U0ZvPr7CPc0KUMxuoBTbar8uwmvedxeKUbbdkPgSmh/jDnQVID36OcIn7+9mN8fZxXw9i+8ur97K3VgCFIjIyqB4jsfp3BvrvZriMAfxE53cTPH4/7aT4JpCNlRQ/itDPkZDTNSbT9RyWy1znxgIT+/H5ANb/ToLn4kzF+p/eY0FlLLHPT3Wdc+bdbeTYeXfX0fk8xhagWO9nr+7n4BA/WwrWtJhjpnYMxHsZVF530wu+SNfzGD810H83e3k/Q/1u+oD/tT938UC/n8BoYBvWgLmZ4fo5Oi0jGjc82l/AIo6uenCl/Re2Bet/G+6JoNsB09fP27ELOHb1htuw/oe3FygMih0HHLTfv42jK7W0Ap8Lik3G+p9Ni339Kzm68s1P9H72+n6uAP4K3GHX4Q6s5GmAB/VeMhprNZHbgaftazzrOjc6KP5FO+YxrJVIHrNf/0F/N3t3P+1rvwrcjTXY5gdYf/cN1gpD3a7Uksj3E8gEttrlPsjxqwNdBgztaz1C3odo/hJH8Q/XjzVSaQPW47YKrCWBMoLiOvvD7dHnXfFfwpp704DVP/hnYGwnsSdh/QNdbce/S9DyZa7YHOAhrP9ZNWEN4b4eV0tI72fP7ifwfaw5U5X2X5BqrL6Kr+m9NHB0AYTOvuYHxadiTaTebtdjK9b0gm4nZev9PPZ+Yv3H4k2shNAM1NnXuJYoJkWv3k+OLoDQm9/PXtUj+Et311BKKaVcEnHwjVJKKdVnmhiVUkopF02MSimllIsmRqWUUspFE6NSSinloolRKaWUctHEqJRSSrloYlQqAkRkvogYEbk81nXpCRGZJiKvicghu953xbpOSsVKIu7HqFTUiMg0rM1lnzTGbI9pZfpIRJKwlisLYK1eUw2sjmWdlIolTYxK9c804E6sJb22u86/DQzCWn7O68bYX7caYx6KdWWUijV9lKpUBBhj2o0xjcaYtljXpQeG2ceD3QWKJSPC9VEqpjQxKtVHdj/cE/bLN+y+OSMiT4bqY3SfE5FrRWSDiDSKSJmIfMmOmSwir4hIrYgcEJEHRSQQ4trjReQPIrJHRJpFZLuI/LeIpPfyZ3gTeMt++YTrZygOqu91IrIOaAS+5/r8JSLyrojUiUiDiLwvIheFuI5PRH4gItvsn3mNiPyriNzlXK839VYqkvRRqlJ99xwwHLga+CnwiX1+C9Zej525DsjF2qqpEfgu8BcRWQA8irVN0fPAv2DtIbcfaycLAERkBvA6Vl/gb7B2Dphql3OGiJxpjOnpI9z/BywFfgg8Arxjn6/E2tUA4CZgsF23vVg7yyMi9wA/Al7B6ptsB74CLBGR640xD7uucz9wI9Yj5l8AQ4CHsXblUMpbormliX7pV6J9AZcTetub+QRtTus6VwFku85Psc+3AxcElbMS2BN07mNgPZAZdP4rwdfs4c9wXF2Dzh8EhgS9d6r93k9DlPc81g7smfbrE+2f7TXAH1RGu11Ocaz/LPVLv5wvfZSqVPQ9aYypcV4YY1ZjJZLdxpjngmLfBYY5/XoiMhkrkT4FpIhIvvNlxx7GammG0++NMfuDzv0rVkL7nbsOdj1ewNpcdo4d+2VAgPuNq8/VGPMh8M8w11WpftNHqUpFX6jHh4ewH1GGOA/Wo8x6rI2ZAf7T/gplaL9qd7yNIc6dhJXs1nfxOaceY+xjqNh1hD+RK9UvmhiVir7ORqp2NYJVgo4Lsfr2QjnUyfm+auikPgb4Ap3Xe22Y66FUVGhiVKp/TJSvt8k+thljXo3ytYPr8XlgpzHmk25inRbyRKyBSW6Twl0xpfpL+xiV6p96+5gXpet9BKwBviMiY4LfFJEkEYlGXf5gH38qIv4Q9XA/zn0B6z8Qt7hjReRU4OyI1lKpPtAWo1L9swJrZOWPRCQXa/DLtkhdzBhjROTrWNM1VovI41iPLNOAccAFwA+AJyNVB7seK+x5nHcBq0RkCbAba/rKDOAcINmOXS8iDwPXA6+LyLNY0zWuxxphOz2SdVWqtzQxKtUPxpidInIF8H3gV1jrjf6OCCYmY8wqEZmOlQDPA74D1GEtSfck1rSIiDPG/KeIlGLNn7wJSMeac7nGPud2I9YcyKuB/8Z6FHsdMB5NjMpjxJhod5EopZTFbnXeCZxg4nQRdpV4tI9RKaWUctFHqUolIBEZBGR3F2eM2RuF6igVVzQxKpWYLuHoAuddke5DlBpYtI9RqQQkIsOBk7uLi/FcSKU8SROjUkop5aKDb5RSSikXTYxKKaWUiyZGpZRSykUTo1JKKeWiiVEppZRy+f8Ea71rmKxM6QAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import finufft\n",
"\n",
"Ncount_time_array = Ncount_time.to_numpy()\n",
"time = runTime.runTine.to_numpy()\n",
"time0 = int(time[0])\n",
"time = np.array(\n",
" [\n",
" float(value) - time0\n",
" for value in time\n",
" ]\n",
")\n",
"time = time / time.max() * 2 * np.pi\n",
"\n",
"# desired number of Fourier modes (uniform outputs)\n",
"N = 1001\n",
"\n",
"# calculate the transform\n",
"Ncount_time_array = Ncount_time.to_numpy()\n",
"Ncount_time_array = np.array(Ncount_time_array, dtype=complex)\n",
"f = xr.DataArray(\n",
" data=finufft.nufft1d1(time, Ncount_time_array, N),\n",
" dims=['time_freq'],\n",
" coords={\n",
" \"time_freq\":np.linspace(-0.125/2,0.125/2,N)\n",
" }\n",
")\n",
"\n",
"np.abs(f).plot()\n",
"plt.xlim([0, 0.002])\n",
"plt.ylim([0, 1e5])"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x20154dc4ac0>]"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAAEaCAYAAAC1u5gzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAsbElEQVR4nO3deZxUxbn/8c8zwMywLwKyKCIo4oKgIi6JEZebKEaTmOtVo7nXxOUaV4w3192oMTG/RNFIzILmijFqFLeIMTFuEIyioIAboKIssu/bzDBb/f6o6qGn5/RMd892mvm+X69+9XSd51RXdff006dOnXPMOYeIiEicFLR2A0RERFIpOYmISOwoOYmISOwoOYmISOwoOYmISOwoOYmISOwoOYmISOxklJzMbD8ze8TM5pvZZjMrMbMFZjbBzPqniX/WzDaa2XYzm2Fmx6epu7uZTTSz5WZWZmYfmtkPzMwiYgvM7Krw3GVmtszM7jKzzmnqHmdmb4Q2bDCzKWa2dz19zKjNIiLSvCyTg3DN7ATgBmAm8AVQCYwAvgdsAUY559aE2KHA2yHmHmAzcCFwEHCyc+7lpHoLgdeBQ4CJwHzgZOBbwK3OuVtS2vEr4ArgGeBvwP7A5cAM4ETnXHVS7OnAk8A84H6gOzAeqAJGO+dWJMVm3GYREWl+GSWntCubnQE8AVzjnPtFKHsC+DZwmHNubijrAnwIlAHDXXhSM7sEuA+4wjk3Manep4BTgX2dc0tC2YHA+8AzzrlvJ8VeDtwLnOOcezSUdQAW45PNgc65baF8FPAO8Afn3EVJdWTc5nR69+7tBg8enPmLJyIivPPOO+ucc31Sy9s3st4l4b4nQBheOw2YlviSB3DObTOzB4DbgMPxWykA3wFK8Fs2ye4BTgfOBH4Rys4GLCxLdj/wc+Bc4NFQdiwwALg5kZhCO+aa2TTgTDO71DlXkUObIw0ePJjZs2fXFyIiIinMbElUeVYTIsys2Mx6m9keZvZV4Pdh0Qvh/mCgCHgzYvWZ4f7wUFcBcCgwxzlXlhL7NuASsUnrVZOSJMK6cyNiqacd3YBh2bZZRERaRraz9S4A1gLLgBeBHsC5zrkZYfmAcL88Yt1E2cBw3xPoGBXrnNsBrEuKTdS9LiyLqrt32IeVbTuyiRURkRaQ7bDes8ACoAt+EsNpQO+k5Z3CfVQCKUuJqS82Ed8p6XGnBmITMeVN2I7U2FrM7CLgIoBBgwalaZqIiGQrq+TknPsCP1sP4NkwcWGWmXVyzt2B338EfpgsVXG4L0m5j4pNxJckPS4B+tYTm2ndjYmtxTk3CZgEMHr0aF17RESkiTTqIFzn3HvAHOCSUJSYnh01DJYoSwyVbQRKo2LNrAi/RZY81LYCP3QXlUQG4of8ynNoRzaxIiLSApriDBEdgV7h7/fxw2NHRcQdGe5nA4Rjkt4FDolIOGPwM/OSp7/NCu0dkxxoZsXAqIhY6mnHFuDjbNssIiItI9MzRPRLU34c/kDVmeCnXwNTgbFmNjIprgt+MsUn1J5t9xh+f85F1DYef4zS40llj+Nn8I1Pib0w1PFIUtl0YCVwQXjuRDtGAmOBKc65ihzbLCIizSzTfU6/DacpehV/bFMxcBhwFrAVuDop9jrgBOAfZnY3fivlQvwQ2SkpB7Pejz/LxAQzG4w/Q8Q4/BkibnfOLU4EOufeN7P7gMvM7Gn89PX98WeMmM7OY5wIxy9diU9oM8zsfvz08avwsw1/nNK/bNoskjc+XbON30z7lF98+2Dat9OpNCV/ZJqcHgP+E/gu0Ae/BbMEf5zTL51zSxOBzrlPzexL+ANjrwUK8cN3J6WeBsg5V25mJwK34w+y3Q1YhD8l0X0R7RiPP/PDRcAp+OnmE/EH21YnBzrnpphZKXAjcCd+6O4V/NkslqfEZtxmkXwy/vE5fLB8C987em9G7NG9tZsjkrGMkpNz7gn8aYoy4pybD3wjw9hNwGXh1lBsFXBXuGVS9/PA8xnGZtxmERFpXtrOFxGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2FFyEhGR2MkoOZnZMDO7zcxmmtlaM9tqZnPN7AYz6xwRv5+ZPWtmG81su5nNMLPj09Td3cwmmtlyMyszsw/N7AdmZhGxBWZ2lZktCLHLzOyuqDaE+HFm9kZowwYzm2Jme6eJzbjNIiLSvDLdcvo+cBWwCLgN+BGwELgdeMPMOiYCzWwo8AZwFPCLENsFeNHMTkyu1MwKgZeAi4HHgctDvb8BfhzRjruBCcBHIXYKcAUw1cxq9cXMTgeeBzqGNvwS+ArwLzMbkBKbcZtFRKT5tc8w7kngDufc5qSy35nZJ8ANwPnAr0P5HUAP4DDn3FwAM/sj8CFwn5kNd865EHsBcDhwhXNuYii738yeAq43swedc0tCHQfiE9LTzrlvJxphZp8D9wJnAY+Gsg7ARGAZcIxzblso/xvwDnALcFFSX7Jps0jecejjK/kloy0n59zslMSU8Hi4PwggDK+dBkxLfMmH9bcBDwDD8Mko4TtACXB/Sr33AB2AM5PKzgYsLEt2f6jj3KSyY4EBwAOJxBTaMReYBpwZElgubRYRkWbW2AkRe4T71eH+YKAIeDMidma4Pxz8/iPgUGCOc64sJfZtwFE7KRwOVIdlNcK6cyNiqacd3fBJJ6s2i4hIy8g5OZlZO+AmoJIwnIbfWgFYHrFKomxguO+J3x9UJ9Y5twNYlxSbqHtdWBZVd++wDyvbdmQTK5KXNCgt+aYxW0734CcQ3OycWxjKOoX7qARSlhJTX2wivlPS404NxGZad2NiazGzi8xstpnNXrt2bZqmiYhItnJKTmb2E+AyYJJz7o6kRSXhvihiteKUmPpiE/ElSY9LGojNtO7GxNbinJvknBvtnBvdp0+fNE0TaX3acJJ8k3VyMrNbgBuBB/FTwJOtCPdRw2CJssRQ2UagNCrWzIqA3tQealuBH7qLSiID8UN+5Tm0I5tYERFpAVklp5CYfgw8BFwQMb36ffzw2FERqx8Z7mcDOOeqgXeBQyISzhj8zLzZSWWzQnvHpLSpGBgVEUs97dgCfJxtm0XylY6EkHyTcXIys5vxielh4PshudQSpl9PBcaa2cikdbvgj2n6hNqz7R7D789JPuYIYDx+osXjSWWP40cnxqfEXhjqeCSpbDqwErggPHeiHSOBscAU51xFjm0WEZFmltFBuGZ2KXArsBR4GfhOytmFVjvnXgp/XwecAPzDzO7Gb6VciB8iOyVla+t+4HvABDMbDMwHxgHfAm53zi1OBDrn3jez+4DLzOxp4AVgf/wZIqazc8YgzrkKM7sSn9BmmNn9+OnjVwFrqXv2iWzaLJJ39AGWfJPpGSISx/kMwg/ppZqOPw0RzrlPzexLwM+Ba4FC/PDdSc65l5NXcs6Vh9MD3Y4/yHY3/CmSLgfui3ie8cBi/JbWKfjp5hPxMwZrbck556aYWSl+/9id+KG7V4BrnHPLU2IzbrOIiDS/jJKTc+484LxMK3XOzQe+kWHsJvzMv8syiK0C7gq3TOp+Hn9+vUxiM26ziIg0L10yQ6QN0MC05BslJxERiR0lJ5E2QZtOkl+UnEREJHaUnETaAO1zknyj5CQiIrGj5CTSBmjDSfKNkpOIiMSOkpOIiMSOkpNIG6AJEZJvlJxERCR2lJxE2gCdWF/yjZKTiIjEjpKTSBug7SbJN0pOIiISO0pOIm2AdjlJvlFyEhGR2FFyEhGR2FFyEmkDnKZESJ5RchIRkdhRchJpC7ThJHlGyUlERGJHyUmkDdCGk+QbJScREYkdJScREYkdJSeRNkBniJB8o+QkIiKxo+Qk0gboIFzJN0pOIiISO0pOIm2A9jlJvlFyEhGR2FFyEmkDtOEk+UbJSUREYkfJSUREYkfJSaQNcJoRIXlGyUlERGJHyUmkDdB2k+QbJScREYkdJSeRtkCbTpJnlJxERCR2lJxE2gCd+FXyjZKTiIjEjpKTiIjEjpKTSBugY3Al3yg5iYhI7Cg5ibQB2nKSfKPkJCIisaPkJNIGaMNJ8o2Sk4iIxI6Sk0gboEtmSL5RchIRkdhRchIRkdhRchJpAzSoJ/lGyUlERGIno+RkZteZ2RQz+8zMnJktbiD+CDN72cy2mtkWM/u7mY1KEzvAzP5oZmvNrNTMZpvZGWlii8zsNjP73Mx2mNkiM7vRzDqkif9PM5sT6l1tZg+YWZ/Gtlkk32g+hOSbTLecfgYcDywCNtYXaGZHAtOBvYGbgR8D+wIzzGxESmwv4HXgdOC3wJXANuAJM/teRPWPAzcBrwKXAtOAnwD3R7TjKuAhYHOo9/fAWcA0M+uca5tFRKT5tc8wbqhz7jMAM/sA6FJP7L1AOfAV59zysM4TwHzgLuCrSbHX4hPCac65qSH2D8CbwJ1mNsU5ty2UjwO+AUxwzl0d1n/AzDYBPzSzSc65N0Jsb+B2YBZwgnOuKpTPAp7DJ6uf5dhmkTykTSfJLxltOSUSU0PMbB/gcGBK4ks+rL8cmAKcaGb9klb5DrAokZhCbBUwEegFjEuJBbgn5WkTj89NKvsm0AmYmEhMoe6pwGfJsTm0WUREmllTT4g4PNy/GbFsJmDAYQBm1h8YGMqjYpPrS/y93Dm3LDkwPF4REVtfO4abWZcMY2vaLJJvEvuatM9J8k1TJ6cB4X55xLJE2cAcYhPxUbGJ+NTY+uq2pJhs2yEiIs2sqZNTp3C/I2JZWUpMNrGJv6NiE/Gpsc3VjhpmdlGYXTh77dq1aZom0nrMWrsFIrlp6uRUEu6LIpYVp8RkE5v4Oyo2EZ8a21ztqOGcm+ScG+2cG92nT+QMdZFY0Kie5JumTk4rwn3UMFiibHkOsYn4dMNrAyNi66vbJcVk2w4REWlmTZ2cZoX7oyKWHYlPCu8AOOdW4r/0j0wTCzA7pe6BZrZncmB4PCAitr52LExMUc+mzSL5ShMiJN80aXJyzn2KTxJnmFliogHh7zOAV51zq5JWeQwYamanJsW2Ay4HNgEvpMQCjE952sTjR5LK/gKUApeF+hJ1nwoMSY7Noc0iItLMMjoI18y+C+wVHvYBCs3sxvB4iXPu4aTwK4HX8GdXmBjKLscnwqup7ef4BPComU3Ab0mdjZ/efYFzbmsi0Dn3VzN7Hn/AbXf81O+jgPOBPznnXk+KXWtmNwF3Ai+b2WP4IbqrgQXUPVYqmzaL5B2nvU6SZzI9Q8T5wLEpZT8J99OBmuTknHvDzMbiz9BwO35Y7A3gDOfcvOQKnHPrzexL+CR1Kf7MEx8BZznnHo9oxxnAjfiDaL+LT2Y3h/Vrcc7dZWbrgavwZ4DYAjwBXJs0pJd1m0VEpPlllJycc2OzqdQ59yZwQoaxy/GJJpPYMnxyurGh2BA/GZicYWzGbRYRkealS2aItAGaECH5RslJRERiR8lJpA3QhpPkGyUnERGJHSUnkTbAaaeT5BklJxERiR0lJxERiR0lJxERiR0lJxERiR0lJ5E2QPMhJN8oOYmISOwoOYm0ATorueQbJScREYkdJSeRNkD7nCTfKDmJiEjsKDmJtAHacpJ8o+QkIiKxo+QkIiKxo+Qk0gZoVE/yjZKTiIjEjpKTSBug6zlJvlFyEhGR2FFyEmkDtN0k+UbJSUREYkfJSaQt0KaT5BklJxERiR0lJxERiR0lJ5E2QNdzknyj5CSyi3LOUVXt/07ci+QLJSeRXdTlj81h/sotAFz/zPtM/3htK7dIJHNKTiK7qOffW1nr8VufrW+llohkT8lJpI3Ys1en1m6CSMaUnER2UYXtav97d2inf3fJH/q0iuyiUmfoVVVrVoTkDyUnkV1U6onIK6o0nVzyh5KTyC4qNRVVVSs5Sf5QchLZRaVew6lCBztJHlFyEtlFpW4nVWrLSfKIkpNIG6FhPcknSk4iu6Dlm0rrTIh4ZOYSJSjJG0pOIrug0ya+XqdsxeYypsxe1gqtEcmekpPILmj99vLI8g0l0eUicaPkJNKGpA71icSVkpNIG1KtfU6SJ5ScRNoQ5SbJF0pOIm1Itcb1JE8oOYm0IalnjRCJKyUnkTakXCd/lTyh5CSyi9lcUpF22RM6zknyhJKTyC7mh0/MTbtsw/Zy5i3b1GJtEcmVkpPILmbh6q0AjNm7V+TyHZU6O7nEn5KTyC4mcWmMjh3aRS4vrahqyeaI5KR9azdARHJ354sL+deidTxzyZf4y9zldCpsz+otOwC45qThnH7oQKqqHUP6dOHxWct47O2l3PHCfFZvKeOA/t3o07WIL/38VaZcfBSHDOrZyr0R2UnJSSSP/fq1TwE/RfzKP8+tteyAAd04YEC3mse7dyvisbeXsmDVVv73yfcAuPvMkVRWO/7w+uf8+jtKThIfGtYLzKzAzK4yswVmVmZmy8zsLjPr3NptE0l27yuf8O7SjbXKJr76aYPr9exUWKds6ryVAFSGKeaPvrWUV+avboJWijSOktNOdwMTgI+Ay4EpwBXAVDPT6yQtqrKqmvMnz2LmZ+trlS/bUMKElz7mTzOX1Cqf8NLHtR4/ftGRdeos7tCOq/9tWK2yVxesAXbup7r+mfc5/6HZddad+Mon3PdawwlQpKnoSxcwswPxCelp59zpzrn7nXM/BH4IHAec1dxt+HTNNhat3VbzuLKqutZJOssqqvjVy58wa/EG3lnifzXvqKxizE9f5i9zl9eqq7yyOuOLys1ZupE1W8sa1fbS8ioqq6r5aMUWdlTW3tmeyxkJ7nvt0zpfvuC/QD9csTnndu6orGL9th1Zr7du246a5529eAOfrtnKys2lLNtQUie2tLyKR95akvYEq845tpZVMP3jtdz54sKa8s/Xbee8B99mwj8WsmZrGcs2lvLKgjWcNWkmV/55Dtc/8z47KqtqksnT7y6v9XlJOOXg/ky5+CiOGLJb5PNffsK+3PT1AxjQvbhWeUW144X3V9Y83lJWwadrtvL9ybP4/fRF3PXSx/wytPfNRev56V8/4orH5lAZktrmkgrG/3kOa7fuYEtZ+uOsVm0uY+q8FZHL5i7bxI7KKqYtXMPKzaU453j9k3U5nax21ebcP9PlldGfM+ccP3xiLm8sWpd1nan/B6s2l7Fqc1nN/05jvPfFJlZsKs0oNuq74bJH3+VHU+bVPP7L3OW8uWh9nWPiKqqqa/Vj5mfr632vG8t0OhMws9uBG4CvOOdmJJUXA+uB6c65cfXVMXr0aDd7dt1fnA2Z+dl67nxxIbNDwunfvZhrThrO+MfnAnDyQf24+dQDmDpvBT97YUHNenedMZKBPTty1qSZAHx+xzi2lFXy3LwV3PTsBwzbvQu7dyvmnCP24vn3VvDJ6m08dcnRfLGxhP1274pzsGbrDo6845WaOr8xagCnH7oHRe0L2FRSwd8+WMnQPl1Yu3UHI/fswZ0vLmRo3858Z8xe3Dr1Qy48Zggj9ujOWZNmsnfvzny+bjsA5x09GICuxe159K2l/PexQ/j53xZw5uF7Mmz3rvTsVMiQPp254ZkPeH/5Zm4Ytz+T31jMj762H19sLOHOf/itgEcuOILfTV/EVw/YnY0lFfztg1XMX7mFrwzrQ79uRdww7gA+X7+d8spqDturJ//4cBX79evKkD5dcM4x9b2VnLh/X4rbt8MMzpo0k7c+30D/7sUcP7wvp4zoz+7di3lgxucM7FHME7O/YOmGEv74/TGs2lLGjooqDt2rJ9/6zRuUV1Zz4yn7c/tf59d6/+49+xB6dynksbeXUWD+R8SLH65mYI+O/PH8MWwureD037xRE/+jr+1X8yWfzqBenTj5oH78/p+f1SpvX2BU1vNF/aOv7celx+1Tb90JW8oquP7p93n+vZUNBye59+xDuOKxOQ3G/e7cw7j4T+/QqbAdfboWMeXio5i9eCOXPPIuAA99fww//etHnHrwAI4cuhvTF67l1699yjH79mbGJ/7L/7yjBzP5jcWMP3Ffhu3elYqqasoqqigw40dPvsc5RwyiqtqxT98uHDKoJ2Zw69SP+HjVVkorqrj9mwdxzhGDcA4+W7edTSXljB7sp9e/s2QjZjByjx7848NVDOvXlcJ2BVzz1Hu8schvrZ5zxCCO2bc3L89fQ3W1Y9yI/lzwR/8/fveZI1mwaitvLlrPgQO68djby7j42KEcs29vyquqmbdsE68tXItzjhEDu/PK/DVcctxQFqzayqrNZby6YA1m/hImxw/vy4XHDOGelz9mty6FHLNvHx5+cwkFBXD58fsydd4KDhrYnYWrtnLOEYMo7tCOOcs28eTsZcz7wifRIX06M/WyL9O5qD3bdlSycXs5q7eUcd6Ds7j25OFsKiln4eptNT8M/vBfozluv75UO8c+N/wNgKmXfZmn3v2CyW8srnkf5992EnOWbuS30xcx45N1dC1qzzUnD+fGZz+oifnKsD7cc+YoenWuO2ycCTN7xzk3uk65khOY2YvAiUAn59yOlGX/AoY55/rUV0euyemW5z6s9WHIVY9OHdhUz5kBUrUrMF2yO099c9QAnp1be+vjtJEDuPfsQ7Kua/C1f61TlpwgJL/06lzIhjQXmkxV2L6A8iY65u2h74/h2GH1fkWmlS45aVjPGwCsS01MwXKgt5nl9rOgAT8+9QCe+O+japUVGHQtqj2RcvRePTl15IC09WSSmIb361rz99lj9uSIvXtx3H7ZfaBG7tGdcSP61Sk/bK+e/Pz0ETWPjx66G0N6d66J7dW5sE6fAB783uGMzaANBZZZ+wrbpf9IF7Uv4OlLjo7sc2K9vl2L2L9/Ny48Zm8G79aJdgXGfrt3rRMP/gdBru48YyT/e9J+ANz+zYP45Kcn8/QlR9e8RkcN2a3m/f7rFV/myCH+F/+tpx3IPWcdwoKfnMShg3oAMOE/RvKLfz84p3a8ff0JfGOUf57/9+0RLP75KTx8/hE1df/u3ENrtoQvPW4o/cNw4PHD+/L29Sew8PaTatr5p/OP4IIv751TOwC6Fdf9fHQtbs/AHh0BOHXkAL5+cH/26duF9gVGcYfa73WHdv5DcuUJ+zLpu4fV+1xRn8Uohe3r/4rsVNiOs8cM4g//Vee7lYMGdqv53B6xdy/GDO5Fp8Kdx55N+I+Rdfrctbg9Rw7xsZk6dlgfRgzszpFDejG0z875W50Lo49zS0i8rlF6dyni9EMHskfP2jGJ75B2Sf+Qs244MefEVB9tOQFmtgjo4JwbFLHsj8B3gZ7OuU0pyy4CLgIYNGjQYUuW1N1Pkqn123bQI8ym2l5eSbdi/8W3tayCzoXtKUj5di4pr2T9tnLKq6oZ2qdLxs+zcXs5X2wsZcQe3WuVV1ZVs7Gkgj5diwB/mpui9gW40LY9enaq9YGsj3MOM6v1GMDMqK52rNpSxnPzVvC1A/uxd++d/0yVVdW0KzDMjFWby+hS3J7Ohe1YuHorw/p2ZfH67Qzo0ZGlG0ro1bmQyipHv+7FfLZ2G7t1LqKyupqKKufH1Z1j5eZS9unThR6dCvlo5RZG7tG9VrvAj/1379iB4g4FdZal9umLjaUM6NGRymr/a7OofTvKKqrYUlZB367+S7uq2rG5tIKyiirWbyunW8f29OlaxCert7F//25UVFXTqbBd2udKfq3AXxww8d6/s2QDBw7oTnHSwbVbyyroWpx7kky0uayiis5JX9grNpVSVlHFkPDZSm5H6vubakelH3rbVFLB9h2V7N6tmCUbtlNZ5ehW3IG+3Ypq+pB4XRNfghVVjmrnMPOfwf7d03+Bgv/MlFRUUV3tav5/Esoqqvhk9TZG7NGdj1ZsYUtZBfv368aSDdsZtntXVm0uo0/XIjaXVtC3axHLNpZSVe3o3rEDzjnaFRgd2hewuaSCPXp2ZMP2cgrM6Nm5kKpqh0Gt/8tX5q9m/bZyTh05oObzVN//QiY2l1RQXlVN56J2bCurpHunDhS196/dqs1l9EvZd1hV7Xh36UYOG9SzzndGOmUVVSxev53i9u3Ya7dOddpWWl5FuwKrSdSbSsrp0amQ7TsqAWp9bnKhYb16mNn7QF/n3O4Ry54AzgCKnHNpt5dzHdYTEWnLNKxXvxX4obuiiGUD8UN+mQ3kiohIoyk5ebPwr8WY5MIwW28UoE0iEZEWpOTkPQ44YHxK+YVAJ+CRlm6QiEhbpnPrAc65983sPuAyM3saeAHYH3+GiOnAo63ZPhGRtkbJaafxwGL87LtTgHXAROBm55wugCMi0oKUnALnXBVwV7iJiEgr0j4nERGJHSUnERGJHR2E20TMbC2Q+ykiWk9v/P61tqKt9RfU57YiX/u8V9S5S5Wc2jgzmx11dPauqq31F9TntmJX67OG9UREJHaUnEREJHaUnGRSazeghbW1/oL63FbsUn3WPicREYkdbTmJiEjsKDmJiEjsKDnlOTP7TzObY2alZrbazB4ws6yumZxpHWY22cxcmtu/R8QXmdltZva5me0ws0VmdqOZNerSrS3VZzMrNrMLzewvZrY4xH5mZo+Z2f4RdQ6u5/X5oIH2FJjZVWa2wMzKzGyZmd1lZp3rWy/X9c1snJm9YWbbzWyDmU0xs8hrrJvZfmb2rJltDPEzzOz4TNrVlG3OdX0z62lmV5rZP0JMqZktNLNJZrZnRL1j63kfn8+HPofYafX0o+6VZ826m9lEM1se6v7QzH5gluFle5uac063PL0BV+Ev9TENf8La24BtwIdA56auA5gcYs+NuA2KqPvZEP8H4IJw74DJ+dBnYHiImwHcBJwP/BTYAOwAjkupd3CIfzri9fl6A236VdK6FwITgArgVaAggz5lvD5wOlANzAEuAa4DVuMvujkgJXYosD4svy7Ezwl1n9jIz2+L9Bk4CagEXgSuCe/j3UAJsAk4IKXesaHe30e8j2Pzoc8hdhqwNqIP5wK9UmILgbdDXRNC3U+H57qlMX3O+bVqjSfVrQneOH80+PbwgWqXVH5q+EBd39R1EJJThu0bF+q4K6X8rlB+dNz7DOwGjIqo4wB8cpqdUj44l39m4EB8sngqpfzyUN93mmp9oAOwHH82ky5J5aOAKmBSSh1PhPJRSWVdwvoLCZOqcngvW7LPg4GhEXWcGGKfTCkfG8rPy6VvcehzKJ8GLM6wbZeEOi5PKX8KKMefxaHJXouM2tTST6hbE71xfkvEAd+NWLYI+Kip62DnlpMB3ajnlx7wpxC7Z0r5nqH8N/nQ53rqeQcoSykbHOq+BSgGOmVY1+1hvWNSyovxifSFplo/6Qv5poh6XgE2Ax3C485AGfBKROxNoZ4xOX5+W6zPDdSzHliQUjY21H1eeA2Kc+lja/eZkJzwu2+6Uc8PCeD1UEdxSvkx4Tn/tyleg2xu2ueUvw4P929GLJsJDDezLs1Ux+ZwKzWzl8zsiDR1L3fOLUsuDI9XJD13NlqzzzXMrADojx/qinI1fshoe9gncJuZFTXQpmr81lwN51wZMJeGX6ts1m+o/92AYeHxwUBRPbHJ9WWrJfscycy6A11J/z7+Cj/cW2pmH4f9Vo3Z/9IafR6I78NmYJuZPW1mw5MDwuf5UGBOqCvZ2/jklOv7nDMlp/w1INwvj1i2HL91MyBiWWPqWIUfq/8B8C3gZ8BoYIaZnRhRd1S9iboHNtC2pmhvc9VxMT45PZRSXo0f+78e+CZ+K+0j/FbG82bWrp42rXPO7UjTpt5mVlhPe7JZv6H+w873JpvYbLVkn9O5AT/Mmfo+VgDPAf8LnIZ/vzcB9wD/10Cd9WnpPn8O/AL4HnAG8BvgZOAtMxuRFNcT6EjE+xyeax25v88508UGW5mZ9cBfhTdT9zrnNgCdwuOoD2ri10+niGXJsqrDOXdtSsyzZvYo/lfbb4F9U+qOqhf8P38vM7ulgfYltFqfU5nZ0fgdxvPwybmGc24pcELKKn8ws0n4HcxnAY+kaVO61yq5TeVpYrJZP5v+N8XrnU5L9rkO87NL/wf4O/Bg8jLn3L+Ab6TE3w+8AJxnZg+EmGy1aJ+dc99LiXnSzJ7DD/dNAP4taR0aqDvX9zlnSk6trwfw4yzi/4SfLVYSHhcBpSkxxeG+hPo1ug7n3Cdm9gT+n3aYc+7jpPXSDWV1Dssy7Xcs+mxmhwF/xQ9LnhIxBJLOT/HJ6RSik1MJ0DfNupn0K5v1k/vflLHZask+12Jm4/DvwzvAmS7sXKmPc67azO4AvoZ/H3NJTq3W5wTn3Awz+ydwnJl1dM6VUv/7nKg71/c5ZxrWa2XOucXOOcvi9mlYdUW4j9rcHogfJ14RsSxZU9QBfqcr+JlwyXWnGwrog5/pljd9NrNDgZfwY/fHOefSDVlGWYaf8dY7zfIV+CGZqC+HgfihnHS/prNdv6H+w87hnWxis9WSfa5hZifhp0h/CHzVObclizYvDvfp3seGtEqfIywG2uGH8wA24n+o1Xmfw3P1Jvf3OWdKTvlrVrg/KmLZkcBC59y2FqgDdg7nJe9YngUMTD3IMTweAMzOoN5UrdLnkJheBrbiE1O2F5Ucgv8ySLfjfRb+f3FMyvMW46d4N/RaZbN+Q/3fAiS2ft/HD/WkiyWDtqXTkn1OLDsJf+zdAvwxWhuzbHPU5zwbLd7nNPbFH/e1AfxWIfAucEhE4huD3w+b6/ucu5aeHqhb09zwWx8lwFtEH69zY0r8IPxBpR1yqYM0U2qBQ/BfYKnTzk+h/uOcvhz3Pif1bz2wFBjSQPt2iygrAP4c6v6PNOuNoP7jV85NKhsKDG/E+h3wv8BTj3Maid+6eyCljimhfGRSWeI4p4/J/TinFutzKP8qfutgXtT7lMH7WISfbt2Y6fMt+T53T/58J5Un/i9Tp51fSvrjnCqAwbn0uTG3Fn0y3Zr4zfNTlh3wGv5MB7fip43OT/7iCbHTQuzgXOrA/zJbiZ/48EPgv/Gzf8rwX/Z1kg0wNdT9AP6o/AfC44fzpM974WcqVeP3j0UdaZ98Romn8VtYt+H3MV2H/8Xp8L/Y6zsubCI7j/y/AJ/EK0Ifks92sJiIA6EzXT/EnkHtM0Rci98aWAUMTIndB/8Le3WIS5whohL4WiM/vy3SZ/yM0tLwWR0f9T6m1DsL+Atwc6j3ZnwidvjJOfnQ528Cn+Gnw1+JTz4P4X9orAWGpdRbGD6rFaHOC9h5hoifNOX3VsavVWs8qW5N+Ab6AwXnhX+8Nfiprn0j4qYR8UWdaR1AP+Bh/JDIlvAhXho+8MPTtK0Yf+DgYvzW1Wf4adUd8qTPY8P69d0GJ8WfH55zFX7G1Fb88UCX0MCpafDDflfjz7qwAz/GP4G6CTfdl1ZG6yfFfz20rQS/z+FJIs6iEGL3x39Zbwrxr9PIUxe1ZJ/De13v+5gSfw3+2K614XO+Cf9D5uw86vP++LN7LML/8NoR/r6PlB8gSev0AH6N37LegT8M4jJy3Dpu7E3XcxIRkdjRhAgREYkdJScREYkdJScREYkdJScREYkdJScREYkdJScREYkdJScREYkdJSeRZmBmY83Mmdl5rd2WTJjZKDN7xcw2hnbf0tptkrZNl8wQaQQzG4U/Vcxk59ziVm1MjsysPf4cah3wZ/DYBLzXmm0SUXISaZxR+PPuTWPnJRUA/om/umhFi7coe0PC7Wrn3K9buzEioGE9kWbhnKt2zpU556pauy0Z6BfuNzQUaF6XZm6PiJKTSK7CfpkHw8PXwr4aZ2aTo/Y5JZeZ2SVmttDMyszsfTP7eogZYWZ/N7MtZrbezO41sw4Rz72vmT1sZivNrNzMFpvZL82sc5Z9mAZMDw8fTOrD4JT2XmpmH+FPlPs/SeufaWavm9lWMysxs7fCJdBTn6fAzK4zs89Dnz8ws3PM7JbE82XTbtn1aVhPJHdPA/3xl934Gf6SG+DP/pzuktfgL1/QE38JkTLgCuAZMzsDuB94DH+Jja/ir9WzBn92d6DmcvGv4vcN/R5/ZuqRoZ4vmdmxzrlMhxN/ir/k+PXAJGBGKF8LDA5/jwd2C21bhb+yL2Z2O3AD8Hf8vqpq4FvAFDO7zDl3X9LzTMBfuuGfwN34y43fhz9TvUhdrXEqdN1021Vu7Lwcw9iU8rGh/LyIsuVA96Tyg0N5NXB6Sj3vACtTyubhL13SNaX8W6nPmWEf6rQ1pXwDdS8ncmhY9rOI+p7FX1ala3i8X+jbK9S+wOOhoTzysia6te2bhvVEWt5k59zmxAPn3Hv4L/MVzrmnU2JfB/ol9vOY2Qh8MnsUKDKz3olbiN2O3+JqSn90zq1JKTsHn1QeSm5DaMdzQFd2Xt79G/hLfU9wSfvgnHPvAi81cVtlF6FhPZGWFzWUtZEwXBZRDn5YbRv+InLgr957a5r6d29U6+r6OKJsf3zCWVDPeol2DAn3UbEf0fTJVHYBSk4iLS/dDL76ZvZZyv1d+H09UTamKc9VSZr2OOBk0rf7wyZuh7QhSk4ijdPSl5L+JNxXOedebuHnTm3HScBS59z8BmITW4rD8ZNFkh3Q1A2TXYP2OYk0zrZw36uFnm8O8AFwsZkNSV1oZu3NrCXa8nC4/5mZtYtoR/LQ4nP4JP7D5FgzOxQ4sVlbKXlLW04ijTMLP+PsBjPriZ+Q8HlzPZlzzpnZd/FTyd8zs//DD591AvYBTgeuAyY3VxtCO2aF47xuAeaa2RRgBX5q/WHAOKAwxC4ws/uAy4BXzewp/FTyy/AzDw9pzrZKflJyEmkE59xSM/s+cA3wW/z56R6iGZODc26umR2CT0KnARcDW/GnT5qMn7Ld7Jxzt5rZbPzxVeOBzvhjsj4IZcmuxB8jdRHwS/yw4KXAvig5SQRzrqWHzEVEvLD19WNgb5enJ86V5qF9TiIiEjsa1hPZBZlZR6B7Q3HOuVUt0ByRrCk5ieyazmTnSWnrYw2HiLQ87XMS2QWZWX/gwIbiWvlYKZG0lJxERCR2NCFCRERiR8lJRERiR8lJRERiR8lJRERiR8lJRERi5/8D/0yWd2P+FhsAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"BEC_Ncount_time = xr.DataArray(\n",
" data=BEC_Ncount_val,\n",
" dims=[\"time\"],\n",
" coords={\n",
" \"time\": runTime.runTine.to_numpy(),\n",
" }\n",
")\n",
"\n",
"BEC_Ncount_time_array = BEC_Ncount_time.to_numpy()\n",
"\n",
"# desired number of Fourier modes (uniform outputs)\n",
"N = 1001\n",
"\n",
"# calculate the transform\n",
"BEC_Ncount_time_array = BEC_Ncount_time.to_numpy()\n",
"BEC_Ncount_time_array = np.array(BEC_Ncount_time_array, dtype=complex)\n",
"f = xr.DataArray(\n",
" data=finufft.nufft1d1(time, BEC_Ncount_time_array, N),\n",
" dims=['time_freq'],\n",
" coords={\n",
" \"time_freq\":np.linspace(-0.125/2,0.125/2,N)\n",
" }\n",
")\n",
"\n",
"np.abs(f).plot()\n",
"# plt.xlim([0, 0.002])\n",
"# plt.ylim([0, 1e5])"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(0.0, 1600.0)"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEXCAYAAAATGWtjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA5b0lEQVR4nO3deXxcVf3/8ddnsi9N2jSl+0YpSylQaFlqpQXhC7IJIggK/ERRUEAWQb/wFRABFUVQWUQQBAFll032HbpAaVm6031Jurdpmn09vz/unWSSzGQmaZaZzvv5eOQxzJ1z75y5pPPOuefcc8w5h4iISDwL9HYFREREolFYiYhI3FNYiYhI3FNYiYhI3FNYiYhI3FNYiYhI3Evt7Qr0tMLCQjdq1CjWbKuktr6RsQNze7tKIiJxbe7cuVudcwN6sw5JF1ajRo1izpw5XPjIHNZur+S1K6b2dpVEROKama3p7Tok7WXAgBm6H1pEJDEkbViZQaPSSkQkISRtWAXMUFSJiCSGpA0r1LISEUkYSRtWATPUtBIRSQxJG1aGWlYiIokiprAys2vN7GkzW2lmzsxWt1P2Yb9MuJ8zwpTPMLObzGyVmdWY2Qozu87M0iIc//+Z2WdmVmVmm8zsATPr8Pj/gBpWIiIJI9b7rH4LbAc+BfrGuM95YbbNDrPtSeBU4B/ALGAycDOwF3B+aEEzuxK4A3gfuBwYBvwMmGxmhznnKmKsG2amlpWISIKINazGOOdWApjZAiDqtA/OuceilTGzE/GC6g7n3FX+5gfMbAfwMzO73zk30y9bCNwCfAIc45xr8Ld/AryIF16/jfHzYIbusxIRSRAxXQYMBlVHmCfPzNp7j+/6j39utT34/NyQbacB2cBdwaDy6/YSsLJV2ej1QzcFi4gkiu4cYFHq/1SZ2ZtmdniYMocCxc65daEb/efr/ddDy4J3qbC1j4B9zSzmif4CBk5pJSKSELpjbsCNwJ+AuUAFcBBwBfChmZ3onHsrpOwQYFGE4xTj9UmFlg1uD1fW/DJLY6mkN4NFLCVFRKS3dXlYOeeuabXpeTP7N/A5cC8wNuS1bKAmwqGq/ddDyxKhfHWrMi2Y2YXAhQAjRowAgjNYKK1ERBJBj9xn5ZxbBjwF7GVme4e8VAlkRNgt0389tCwRyme2KtP6/e93zk1yzk0aMMAb5a6WlYhI4ujJm4JX+4+FIdvWA0MjlB9Ky0t+60O2hyvrQspEZZp1XUQkYfRkWAUv/20K2fYJMNTMhocW9J8PAea0KgvefVitHQF86Zwrj7UyhgZYiIgkii4NKzPLMbPMMNsPBs4EFjvnVoS89Lj/eEWrXYLP/xWy7QWgCrjUzFJCjn0KsGerslFp1nURkcQR0wALMzsPGOk/HQCkm9l1/vM1zrlH/f8eC7xqZs8Dy2geDfgDoAF/kEOQc+5lM/sv3g3A+TTPYHEB8JhzbnpI2S1mdj3wR+AtM3sc7/LfVcAS2t6rFeUzaW5AEZFEEetowAuAaa223ew/vg8Ew2oj8BZwNHAOkAVswJtS6XfOuSVhjn0mcB3eTb3n4fVT3QDc2rqgc+52M9sGXAncCezEG7hxTUcuAYJWChYRSSQxhZVz7qgYy20k/JyA7e1TjRdW10Ur65d/GHi4I+8RiVpWIiKJIXmXCDE07bqISIJI2rDSAAsRkcSRtGGlxRdFRBJH0oZVIKABFiIiiSJpw0otKxGRxJG8YaU+KxGRhJHEYaXplkREEkXShlVAy9qLiCSMpA0rw9RnJSKSIJI2rAKme4JFRBJF0oYVmhtQRCRhJG1YBcx71CALEZH4l7RhZXhppaXtRUTiX9KGlVpWIiKJI2nDyvywUstKRCT+JXFYeWnlNCZQRCTuJXFYeY+6CigiEv+SNqwCwZaVwkpEJO4lbVj5DSvNYiEikgCSNqyaWla9XA8REYkuacOqeTSg4kpEJN4lcVipz0pEJFEkb1j5j7opWEQk/iVvWGnouohIwkjasNIACxGRxJG0YaUBFiIiiSOJw0oDLEREEkXyhpX/qAEWIiLxL2nDSn1WIiKJI2nDSn1WIiKJI2nDKqCh6yIiCSNpw6p5WXullYhIvEvesFLLSkQkYSRxWGnouohIokjasGrqs9J4QBGRuJe0YdU8GrB36yEiItElbVg1L2uvtBIRiXdJG1ZBalmJiMS/pA2rYMtKc1iIiMS/pA0r9VmJiCSOpA2rgIaui4gkjKQNq+BFQM1gISIS/5I3rNSyEhFJGEkcVt6jWlYiIvEvecOqtysgIiIxS9qwCg6wUMtKRCT+JW1YadZ1EZHEkbRhpWXtRUQSR9KGFRpgISKSMJI2rHRTsIhI4kjasGqaGVBpJSIS95I2rNRnJSKSOJI2rJpuCtZMtiIicS/pw0pRJSIS/2IKKzO71syeNrOVZubMbHWU8oeb2VtmVmZmO83sNTObEKHsEDN7xMy2mFmVmc0xszMjlM0ws5vMbJWZ1ZjZCjO7zszSYvkcLY6FbgoWEUkUqTGW+y2wHfgU6NteQTM7AngPKAZu8DdfCnxoZl9xzs0PKVsATAf2AO4AioDvAk+Z2Q+ccw+1OvyTwKnAP4BZwGTgZmAv4PwYPwsAAa29KCKSMGINqzHOuZUAZrYAyG2n7J1ALTDVOVfs7/MUsBi4HTgupOw1wGjgG865l/yyD+IF0R/N7GnnXLm//US8oLrDOXeVv/8DZrYD+JmZ3e+cmxnj52madV1dViIi8S+my4DBoIrGzPYCDgWeDgaVv38x8DRwrJkNCtnlu8CKYFD5ZRuAu4AC4MRWZQH+3Optg8/PjaWOQYGmPiullYhIvOvqARaH+o+zwrz2Ed7tTRMBzGwwMNTfHq5s6PGC/13snFsXWtB/vr5V2ai0rL2ISOLo6rAa4j8Wh3ktuG1oJ8oGy4crGyw/NMJrYTUvvqi0EhGJd10dVtn+Y02Y16pblelI2eB/hysbLJ8d4TXM7EJ/lOGcLVu2eNv815RVIiLxr6vDqtJ/zAjzWmarMh0pG/zvcGWD5SsjvIZz7n7n3CTn3KQBAwYAoTNYKK1EROJdV4fVev8x3CW54LbiTpQNlo90qW8okS8RhtU8g0VH9hIRkd7Q1WH1if84OcxrR+Dd1TQXwDm3AS9gjohQFmBOq2MPNbPhoQX950NalY1KcwOKiCSOLg0r59xyvNA408yCAyjw//tM4B3n3MaQXR4HxpjZKSFlU4CfAjuAV1qVBbii1dsGn/+rM3XWDBYiIvEvppuCzew8YKT/dACQbmbX+c/XOOceDSl+OfAu3owVd/nbfooXjFfR0q14IfZvM7sDr6X1Hbxh6D90zpUFCzrnXjaz/+LdAJxP8wwWFwCPOeemx/JZgrSelYhI4oh1BosLgGmttt3sP74PNIWVc26mmR0F3OL/OGAmcKZz7ovQAzjntpnZFLzQugRvZoxFwNnOuSfD1ONM4Dq8G4DPo3lKp1tj/BxNmiayVVqJiMS9mMLKOXdURw7qnJsFHBNj2WK84ImlbDVeWF0XrWw0mnVdRCRxJO0SIQHTrOsiIokiacNKNwWLiCSO5A0rDV0XEUkYSRxW3qMGWIiIxL+kDavODF3fXFbNC593aKIMERHpArEOXd/tBPusYh1gUV3XwA8e/oQFxTuZtvcA+mand1/lRESkBbWsYmxZ/eqFhSwo3gnAzqr67qqWiIiEkbRh1bz4YvS0enz2Wp6cs44Dh+UDUFZT151VExGRVpI+rKJF1RfrdvCrFxZy5NhCfn78PgCUV6tlJSLSk5I4rKKvFLy9opafPDaXAX0yuPPsg8nPSgOgvEZhJSLSk5I2rAJNQ9cjl7n7neVsLa/lb+dOpF9OOrkZ3niUMrWsRER6VNKGlRGcbilymY07qxjRP5sD/L6q3Ew/rNSyEhHpUUkbVk0tq3Z6rcprGsjJaB7d3yfDvwyolpWISI9K2rCiaTRg5CKVNfXkZqQ0Pc9MC5AaMMo1GlBEpEclbVgFLHqnVXlNPdnpzS0rMyM3M1UtKxGRHpa0YdU8g0XkMhW19U2DKoJyM1I1wEJEpIclbVgFYhi6XlHTQE7IZUDww0oDLEREelTShpXF0GdVUVPfYoAFQB9dBhQR6XFJHFbtr2dV39BITX0jOemtwypNNwWLiPSwJA4r7zHSZcCKmgaANi2r3IxUhZWISA9L3rDyHyN1WZXXeoGU27rPKjOVsmoNXRcR6UlJG1bBARaRZl2v8FtPbfqsNBpQRKTHJW1YRZt1vSms0tteBqypb6S2vrEbayciIqGSNqyit6zC91n18ecHrFC/lYhIj0nasAqK2GfVdBmwdZ+VlgkREelpSRtWTdMtRRBsOYWbwQJgpwZZiIj0mKQNq6abgiPcFVxZG2GAhX8ZUDcGi4j0nKQNq0CUm4LLg31WYQZYeK8rrEREekrShlXzRLaRh64HzFsWJFRwAUaFlYhIz0nesIqyQki5Py+gterbCl4G1L1WIiI9J4nDqv1Z1ytq2i4PAs2rBSusRER6TtKGFUB6aoCaCDf3VtY2kJ2e0mZ7ZlqAFK0WLCLSo5I6rPKz0iIOQS+P0LIyM28yW7WsRER6TNKHVWlV+LAKt5ZVkBZgFBHpWUkdVnmZqRHDqrydsNICjCIiPSupw6rdllVtPTlh+qzACysNsBAR6TkKqwhhVVnT0O5lQN1nJSLScxRWlR0bYAHeZLYKKxGRnpP0YVVWU99mfsD6hkZq6hvbH2Chy4AiIj0mqcMqLysN59re4BtcyyrcfVbgDczQfVYiIj0nqcMqP8ubjaJ1v1VFbfjlQYJyM1KprmukrkGrBYuI9ASFFWHCqib88iBBuVomRESkRymsaLuQYnmEhReDtEyIiEjPSu6wyo7UsvLXsmrnpmCIbTLbHZW1VNc17Eo1RUSSXlKHVV5m+LAKtpgiDbDo4+8XS8vq2/fN4tZXl+xKNUVEkl74pkOSiNRnVRnDAAuAsgiT4AbV1jeyfHM5/bLTd7WqIiJJLalbVtnpKaQGrPMDLKK0rDaWVtPoYN32yi6orYhI8krqsDKzsFMulft9VpFaVn0yYuuzKirxQmrDzmpq6tVvJSLSWUkdVhB+fsCKmnoC5i20GE6sLauiHVUAOAfFJVVdUFsRkeSU9GGVl5XGzjA3Beekp2JmYffJSkvxVguO2rJqDqi1uhQoItJpSR9WkVpWkfqroHm14GgDLIpKKptaZ+q3EhHpPIVVuJZVTQM5GeGHrQfFslpwUUkV44fkk5EaUMtKRGQXKKzCDrBov2UFsa0WXFxSxfCCbIYXZCusRER2QVLfZwWQl5XKzup6nHNNfVQVNV6fVXuiLcBY39DIxp3VDOuXRWlVHeu2a4CFiEhndUvLysxchJ/yMGX3MbPnzazEzCrM7EMz+1qE4+ab2V1mVmxm1Wa20Mx+YpFGQsQgPyuNhkbXIngqaiOvEhzUJ7P9sNpQWk1Do2No3yxGFGSzbnslzrmI5UVEJLLubFl9CNzfaluL621mNgaYCdQDfwBKgR8Br5vZCc65t0LKpgNvAgcDdwGLgROAvwIDgRs7U8nQWSyC0yhV1NSTG63PKjON1dsiX9or9oetD+uXTUVtA2U19eyorKNfjmazEBHpqO4Mq5XOuceilPkd0BeY6Jz7HMDMHgEWAveY2b6uuTnyQ+BQ4DLn3F3+tr+b2bPA/5nZQ865NR2tZGhYDevnbYs2GhCirxYcHLY+rF8WVf5Etmu3VyqsREQ6oVsHWJhZupnlRngtB/gG8F4wqACcc+XAA8DeeOEU9F2gEvh7q0P9GUgDzupMHfPCzA8Y8wCLdlYLLiqpxAwG981kREE2oHutREQ6qzvD6gy8cCkzs81+X1N+yOsHAhnArDD7fuQ/HgpgZgHgEOAz51x1q7KzAUfLYItZ05pWfljVNzRSU98Y0wCL9lYLLiqpYo8+GWSkpjC8IAtQWImIdFZ3XQacDTwNLAfygBOBS4FpZvYVv/U0xC9bHGb/4Lah/mM/ICtcWedcjZltDSnbIa1nXq+oDa5l1X6fVXBNq4qaevqGmVW9uKSKYf28FlV2eiqFuem6MVhEpJO6Jaycc4e32vSImc0DfgNc7j9m+6/VhDlEsPWU3eoxXNlg+ewIr2FmFwIXAowYMaLFa23CKsoqwUG5IZPZhguroh2VHDKiX9Pz4QXZrCtRWImIdEZP3hR8G1ALnOQ/D35zZ4Qpm9mqTHtlg+UjJoFz7n7n3CTn3KQBAwa0eC03I5WUgLGzygupYFhlx9BnBeFnXq9vaGTDDu8eq6ARujFYRKTTeiysnHN1wHqg0N+03n8Md/kuuC142a8EqApX1swy/GOGu5wYlZmRl5na1LIqb2pZRZtuKfJqwZvKaqhvdAzt29zYG1GQzfod1RH7uEREJLIeCyszywSGAZv8TfPxLutNDlP8CP9xDoBzrhH4FDjYD6dQhwEWLNsZeSFTLlUG+6yiDbBoWiak7YjA4pBh60HDC7JpaHRs2NF6fIiIiETT5WFlZv0jvHQzXh/ZS9A0RP0l4CgzOyhk/1y8e6qW4Q3UCHocr1/qwlbHvQLvpuInO1vn0PkBy6OsEhzU3mXA4KKLrS8DgkYEioh0RncMsLjOzI4A3gXWArl4owGPBj7Gm30i6FrgGOANM/sTsBNvBouhwEmu5fxEfwe+D9xhZqPwZrA4EfgmcItzbnVnKxwaVtGWtA9qb7Xg4A3BQ/oqrEREukJ3hNV7wDjge0B/oAGvlfRL4I7Q+6Scc8vNbApwK3ANkI53ue/roVMt+WVrzexY4BbgO/6xVwA/Be7ZlQrnZaU1XbprDqto0y1FXi24qKSSAX0yyExrPsbAvEzSU7RUiIhIZ3R5WDnnXgBe6ED5xcCpMZbdgXe/1qWdqlwELS8Den1W0YauZ6WlEDDCLhNSvKOqxSVAgJSAMbRflu61EhHphKRfzwqaw8o5R2VtPQHzwqg9wdWCw7esmm8IDqV7rUREOkdhhRdW9Y2OytoGb17A9NSmta3a0yczrU2fVUOjY32YlhXAiIIsXQYUEekEhRUtZ7GoqKknO0p/VVCfzFTKqlsOXd9cVk1dg4sQVtnsqKxrszKxiIi0T2FFyGS21XVU1ERfeDEo3GXA4ECNoX3DhxWgfisRkQ5SWBHSsqqso6K2PurgiqDcMKsFN69jFb7PChRWIiIdpbAC8jJbXgaMNntFUG5GapvRgOFuCA4arnutREQ6RWFFyz6r8pqGqPdYBfXJTKOs9WXAHVUU5ra8xyooLzONftlpCisRkQ5SWNF2gEWsfVbhBlgUlVQxNEyrKkizr4uIdJzCCi90zLzVgjsSVuFWC/busYocVsMKstVnJSLSQQorIBAw+mR4y4R0aIBFRvNqwQDVdQ3+CsGRw2pkQTZFJVXUa6kQEZGYKax8+dlpbK+so7qukez02PqsckNmXn91/gaOuf19ahsamTSyIOI+I/tnU9/o2FCqpUJERGLVLcvaJ6L8rDQ27PCGncfassrzw+qH/5zDl5vK2HdQHx7/0RFMHhNplRQYUZADwJptlU2jA0VEpH0KK19+VhqrtlQA0ZcHad4nHYBNZdXcfOr+fOewEaSmtN9YHdnfC6g12yv4atOiySIi0h6FlS8/K42NO71Lc7GG1eGjC/jL2ROYtvcA+manx7TPoLxM0lMDrN2mQRYiIrFSWPnys9Jo9Jd6zI3xPqtAwDh1wtAOvU8gYAzvl8UahZWISMw0wMIXnMUCIDvGGSw6a2T/HNZo+LqISMwUVr68rOawinWARWeNKMhm7bYKnHPd+j4iIrsLhZUvPySsYu2z6qwRBdlU1DawraK2W99HRGR3obDytQyr2PqsOis4IlDTLomIxEZh5WsRVt3eZ+WHlQZZiIjERGHlC4aVGTHPYNFZw/plY4ZGBIqIxEhh5QuGVU56KmbWre+VmZbCoLxM1myv6Nb3ERHZXSisfE1h1c39VUHeiEC1rEREYqGw8uWFtKx6wsj+2brXSkQkRgorX4q/TEh3D1sPGtk/hy1lNVTW1kcvLCKS5BRWIfKy0nr0MiBo+LqISCwUViGG9cticH7khRO7UtPs6+q3EhGJSmEV4r7zJnLTqfv3yHs1taxahdXHK7cx6Za3WKcWl4hIE4VViL7Z6fQJmdC2u98rLzO1zfD1f85azdbyGp6as65H6iEikggUVr1oZP+cFpcBSypqeWvRZgCenVtEY6MmuhURAYVVrxrRP7vFAIsXv1hPbUMjPzlqDOtLq5m1clsv1k5EJH4orHrRyIJsikuqqG9oBOCZuUWMG5zH5ceMpU9mKs/MLerlGoqIxAeFVS8a2T+b+kbHhtJqlmzcyfziUs6YOIzMtBS+cdAQXl2wgbLqut6upohIr1NY9aIRBTmAN3z9mTlFpKUYpx08FIAzJg6juq6RV+ZviLi/c465a0q44YUFaoWJyG6tZ6ZrkLCC91qt2FLO858X87V996AgJx2ACcP7MmZADs/MLeKsQ0e02K94RxXPzi3iP58WsdofoFGQs4HTJgwhNUV/f4jI7kffbL1oUF4m6akBHv1oDVvLazlz4vCm18yMMyYO55PVJaze2jy8/dm5RXztj+9xx5tLGZSfyW1nHMifzjqI7RW1zFzRNQMyqmob+PZ9s/jNy4u65HgiIrtKYdWLAgFjeL8slm8upzA3nWn7DGjx+jcPHkrA4NlPi6itb+RXLyzgqqe/YMLwvnz4i6N54sLJnDlpOCceMJg+mam89MX6Xa6Tc47rnl/A7FXbeXD6KpZuKtvlY4qI7CqFVS8LzmTxzYOHktbqEt6g/EyOHDuAZ+YWcc4DH/HPWWu44KujeeyHhzPc3w8gIzWF4/cfxGsLN1JT37BL9Xnik3U8+2kR358yipz0VG57/ctdOp6ISFdQWPWykf29QRZnhFwCDHXGxGFsKK1mfnEpfzl7AtefPK5NqAGcctAQyqrr+WDp1k7XZUFxKb96cSFHji3kupPGcdG0PXlz0Sbmrinp9DG70pptFXzzrzP4Yt2O3q6KiPQwhVUvO/eIkdx82nj2GdQn7OvH7z+IK44dy3MXT+HUCUMjHucrY/pTkJPe6UuBOypr+fFjcynMSecvZx9MSsD4/pTRFOZm8PvXluBc18ym0dDoWLmlnFfnb+DPby3lnSWbYt73lpcX89naHfzu1cVdUhcRSRwaDdjL9tojl732yI34enpqgCuO3TvqcdJSApwwfhD/+bSYytp6smNcRLK6roG5a0q4593lbNpZzVMXTW4akZiTkcplx+zFDS8s5L2lWzh6nz1i+1BhNDY6Ln/yc95ctJHqusam7QP6ZPDxtXsQCFi7+09ftpU3F21iv8F5fLRyO7NWbGPymP6drk9PKq2q49ZXF3Ph1DGMLszp7eqIJCS1rHYjpxw0hKq6Bt5ZsrndcqWVdTw8YxXnPzSbCTe9wTkPfMwnq7dz86njOXhEvxZlzz50BCMKsvnDa1/u0lyFz3xaxEtfrOfkA4dw2xkH8uKlU/jDtw5kS1kNc9e2f5mxvqGRm/67kOEFWTxx4REMzMvgT28t7bLWXne7440veXz2Ov7w2pLeropIwlJY7UYOHVXAwLyMiJcCi0oquemlRUy+9W1ufGkRa7dVcvahI3jwe5P4/IbjOPuwEW32SU8NcNVxe7N4w05emtf+JcbSyvCzbZTX1HPb619y8Ii+3HbGgZw5aTgHDuvLCQcMIj01wKvzN7Z73Mdnr2XppnL+74T9yM9K4+Kj9mL2Kq91Fe8WFJfy6EdrKMzN4LWFG1m+WaMrRTpDYbUbSQkYJx0whHe/3MLOkGmaFq3fyRVPfMa0297jkVmrOX7/Qbxy2ZG8c/VR3PiN/Tlmv4HkZES+bHjKgUPYb3Aef35rWcTW1RsLNzLh5jd4dNbqNq/d8+5ytpTV8KtT9ses+XJfn8w0po4t5PWFGyO2kkor67jjzaUcsWcBXx8/CICzDh3OoLzMuG9dNTY6rn9hAQU56Tzz48lkpqbw1/dW9Ha1RBKSwmo3c8pBg6mtb+SNhZuYtWIb3/vHbE6880PeXLSJ878yivd/cTR/OmsC44bkxXzMQMD4yVFjWLW1gveXbglb5u8frsQ5uOHFhS2miFq7rZIHP1zF6YcMZcLwvm32+/r4wRTvqGJeUWnY4/757aWUVtVxw8nNQZeZlsIlR4/hk9UlzFgev62rZ+YW8dnaHVx7wn6MKszhO4eN4IXP12thTZFOUFjtZiYM78uwfln88rn5fOfvH7FwfSk/P34fZl5zDNefPI6hfbM6ddwTxg9iYF4GD81c3ea1BcWlfLK6hKuP25uJI/pxxROfM3OFN4T+N68sIjXF+N+v7xv2uP+z30BSA8YrC9rOgbh8czmPzlrDWYeOaBOu3z50OIPz47d1taOylltfW8Kho/px+iHeKM4fTR1NwOD+D1b2cu1EEo/CajdjZlzw1dGM6p/DzaeNZ/r/fo1Ljt6L/OxdWwE5LSXAuYeP5IOlW1i+ubzFa/+cuZqstBTOmzyKB743iZH9s7nokbn8Y/oqXl+4iYuPGsPAvMywx83PTmPymP68tqDlpUDnHDe+uJCs9BSuOq7taMiM1BQuPnov5q4p4cNlnb+3rLvc9vqXlFbVcdOp45tahIPzszhj4jCenLOOzWXVvVxDkcSisNoNfX/KaF6/cirnHTGSzLSULjvudw4fQXpKgEdC+qW2V9TywhfrOf2QoeRnpdE3O51HLjiMPpmp3PTfRQztm8UPj9yz3eOeeMBg1myrZPGG5sEHr8zfyPTlW/n58ftQmJsRdr9vTxrGwLwM/v5hfLVU5heV8u/Za/ne5FHsN7hli/CiqWOob2jkwemreql2IolJYSUxK8zN4JSDhvDM3KKmARyPz15LbX0j539lVFO5wflZPHLBYYwbnMctp42PGpjHjRtIwOA1/1JgRU09N/93EfsPyeOcw0dG3C8jNYVzDx/Jh8u2smJLecRyXW1beQ1bymrCvuac49cvLaR/TjpX/M/YNq+PKszh5AOH8NisNeyorO3uqu6WKmvr2ViqlmmyUVhJh5z/lVFU1jbw9Jwi6hsaeeyjNXx1r0LGDmw5A8dee/ThlcuP5Oh9o99I3D83g8NGF/DKAm8I+51vL2PjzmpuOnU8KVFuFj77sBGkpRiPzlrT+Q8Vo4qaeu54cylf/f27nHTnh2wrbxtYL8/fwJw1JVx93D7kZYa/9Hrx0WOoqG3g6qfnUVKxewXWM3OLuOTfn7I1zLnprIZGb922O99exln3zeKgX7/BkX94h89382m3Ghodd769jJfnRV7TLpkorKRDDhiWz6SR/fjnzNW8umAjG0qr+V5Iq6qzThg/mOWbvWmYHpy+irMmDWfiyH5R9xvQJ4OTDhjMs3OLKK+p3+V6hNPQ6Hjqk3Uc/cf3uPPtZXx1bCE7qur4+TPzWvSzVdc18LtXlrDf4DzOnBR+rkeAfQflcd1J+/H+0s0c9+cP2kw5tW57JX9+aym/f20JpVW9u1L0ovU7w4ZyOO99uZlfPPMFL8/bwKl3z2Dh+vAjPDvqmmfn8a17Z/Knt5ZSXlPP96eMZo8+mVzxxGfd9v+8t9U3NHL1019wx5tLueyJz5i5PP76ZXuaxeNIqu40adIkN2fOnN6uRkL777z1XPrvzyjISScnI4X3rj46agsomk07qzn8t2+TnhIgKz2Fd66aRv8IfVWtfbq2hNP/OpObTxvPeUdEvmzYGZW19fy/B2czZ00JB4/oy3UnjWOiH9a/enEhN54yjvOnjAa8+8lue/1L/v2jw/nKmMKox160fic/e+pzlmws49uThjFpVAHPzi3i41XbMQMD9uiTye9OP6BNC7Wipp55RaWMH5pHnwgtuF3R0Oi4+b+LeHjmagLm3XB+/P6DOH78oLAjSr/cWMa37p3JiIJsbjhlHFc88TmlVXXc/u2DOPGAwWHfo7ymnodnrOKhGau5aNqeXDh1TJsyC9eXctKd0znn8BFcfdw+9POnApu9ajtn3z+L0w8Zxh/PPKhrP3wXamh0fFG0g3cWb+adJZtZX1rFj6eN4QdTRpOeGr6tUFvfyOVPfMarCzZy2df24tUFG9lcVsPzl0zptem6zGyuc25Sr7x5sA4KK+mouoZGjvz9u2zcWc0vT9yPH01tfwBFrL5170zmrinhltPGc24HQsc5xzfunkF1XQNvXDm1xY3Hi9bv5P2lW8hIDZCRFiAzNYXB+ZlMHtO/RblwGhodFz06h3eWbObWbx3ImROHNe3jnONHj8zhg6Vbef6SKRTmpnPUH9/jyLGF3Hde7P+ma+ob+Mtby/jb+ytodDC6MIczJg7jmwcPZWt5DVc//QVLN5VzxsRhXH3cPnyyejsvz9vAu19upqa+kYzUAMeOG8hpE4Yybe8BEb8AO6Kipp7LHv+Mt5ds5nuTR5Kfnc4bCzeyZKM3AObIsYVccezeTS3fLWU1nHbPDOoaGnnh0ikMzs9ic1k1P350Lp+u3cFFU/dk6t4DGNI3i8H5mTQ0Ov45azX3f7CSHZV1DMzLoKSyjjeumMqoVl/G5z80m8/W7uCDXxxNflbLUL79jS+5653l3P3dgzn5wCG7/Lm72lOfrOPW15awvaKWlIAxcWQ/MtNS+GDpFvYszOGGU8ZxVKv5NqvrGrj4X5/yzpLNXH/yOC746mjWbqvk1Hum0y8nnecuntLmPPQEhVUvUFh1jQenr+Ked5fz7lVH7fKw+KA3F23ijYUbufVbB3a4pfb0nHX8/Jl5LVo17yzZxMX/+rTFxLlBR44t5JbTxjct0RLOjS8u5OGZq7np1P35f5NHtXl9e0UtX//zB/TJTGXckHxeW7CBt342rd1jRrJsUxnlNfVMGN63RYjW1Ddw59vL+Nv7K2nwZw8JXvo8Ys/+zFyxlf/O28D2ilr6Zqdx6+kHNs300RkbS6v5wcOfsGTjTn59asuW6qqtFbw8bz0PzVjNtopapu49gIuPGsPvX1vC4g07eeqiyRw4rG+Lul/33AKenlvU4j3SUwLUNjRy9D4DuOLYvRmUn8kxt7/PwSP68sgPDmv6/B+t3MbZ93/EtSfsy0XT2ra66hoaOfNvs1ixpZxXLz+SYf2y25TpLR+t3MY5D3zMISP6cu4RI5m29wD6Znutwne/3MxNLy1i1dYKpu49gBEFWdTUNVLb0MiyTeUs3riT35x2AN89vHn6s49XbuPcBz/miD3789D5h5KaEqCh0bGhtIrqukb2LMyJOhn0rlBYdZCZBYDLgYuAUcAW4CngBudcRTu7NlFYdQ3nHPWNLuzaWr2huq6Byb97m8NH9+dv503kqTnruPY/8xk3OI/7zptITnoq1fUNVNc18N6XW7jt9S+pa2jksmPG8qMj92zTInloxip+/dIiLvjqaK4/eVzE952xfCvnPvgxzsFFU/fk2hP365bPN7+olDcXb2LKmP5MGlXQIszrGhqZvnwrf3pzKUs3lfHsT77C/kPy2xxj5oqtvL3Ym+TYADNoaISqOu+8VNbW8+naHVTW1HP3OYdEnGW/sraeR2at4f4PVrLdHyDyt3MP4evjw1/uW7e9kqKSKtbvqGJDaRUllXWcdOBgDgmZNDl4voOtJOccp987k/U7qnj/50dHHFG6ZlsFJ/7lQ8YNyeOW0w5gzIAcUkN+J0sqapmxYiuzVmxj74F9+O7hI9r8zjrneGvxZj5bW8LEkf04fM/+5LYz/Vg0G0qrOOWu6eRlpfHCJVPCXqatrW/kHzNW8Y/pq2hodKSnBkhPDZCVlsJPjhoTdjmgJz9Zy/8+O599B/Whqq6B9TuqqGvwvr/zs9I4dFQ/DhtdwGGj+7P/kLwu/bepsOogM/sLcBnwHPAqsB/wU+BD4FjnXNs/oVtRWO2+fv/aEu57fwU/mDKaB6av4sixhdx77sSwXzybdlbz65cW8sr8jew5IIcj9ypkzB65jBmQy5ayGq586nOOGzeQv54zMWor7+53lvH85+v5z8VfiTgCsCdsKavhG3dPJ2DGi5dOadHn959Pi/j5M/NIDRipASP4rz5gRmZaClnpAbLTUumfm871J49rc39YOBU19Tw+ey0FOemcfsiwXap7fUMjp/11Bpt31vD2VdOYtWIbFz46l9+dfgDfCTPBcqjnPiviyie/ACAjNcB+g/MYu0cuSzeVMa+4FOcgMy3Q1AL55Un78bV998DM+HRtCb97ZTGfrG6e+T8lYBw0LJ9pe+/BD48c3e68ma3V1Ddw1n0fsWxTGc9fMqXNKNldde97K3hj0UaG9s1ieEE2w/tlkxow5q4pYfbq7aza6v3NnpkWYMLwvkwaWcDEUf3Ye2AfBudlRm197ais5Y1Fm1hYXEpFbQNVtQ1U1TXw0PcPU1jFysz2B+YDzznnvhWy/afAncA5zrl/RzuOwmr3VVRSydQ/vEujg1MnDOG2Mw6K2ofz9uJN3P3ucpZtKm8xsuygYfk8ceFkstJju6naORe1D6wnzCvawZl/m8WE4X157IeHk5YS4OEZq7jxpUVM2as/9583qUNfvj3pi3U7OO2vMzjviJHMWrGNhkbHG1dObdFSimTllnK+KNrBguKdLCguZdnmcsYMyOHIsQM4cmwhBwzN5/2lW/jNK4tZuaWCr+5VSF5WKq/M30hhbgZX/s9YTp0wlHnrdjBjxVZmLN/GF0U7GN0/hzu/czDjhza3VJ1z/HfeBu54cyn5WWl88+ChnHzgYPrnZvB/z83n3x+v5d5zDuGECANLutPmsmrmrC7xftZsZ+H6nU2Xj9NTA4woyGZU/xyG9s1kYH4mg/K8n1XbKnhtwUZm+ue9T0YqfTJTyUxPITs9hZcvm6qwipWZ3QL8EpjqnPswZHsmsA143zl3YrTjKKx2b3e+vQzn4Kdf26tD1/Cdc2wuq2HFlnI2llZzzL4Du6wvrqcFWxrfmzySghxv7a/jxg3kzu8c3KUzmnSH659fwKMfeffM3fPdQzjpwK79wq9raORfH63hz28vo7a+kQun7smPjtwzbIDPWrGNK5/8nO0VtVxzwr58f8ooVm6t4IYXFjBj+Tb2G5yHc44lG8tIDRgThvdlzpoSfjxtDNecEH4uzJ4WHDW6amsFa7ZVsHpbBau3VrK+tIqy6pbD/kf1z+aEAwZz4vjBjB+a1+KPL10G7AAzex04Fsh2ztW0em0GsLdzbkC04yisJBnc8t9FPOBP6XTGxGHcevoBMbVQeltpVR3H3vE+g/Mzef7iKd02aKCqtoFG56K2MrdX1PKLZ77grcWbOWhYPos27CQzLYVfHL8P3z18JCkBY/GGnTz/eTEvfb6efQfncf95ExPiXAdnAtm4s5qCnHT2Gdgn4tUBhVUHmNl8YA/n3MAwrz0FnAlkOOfanRJAYSXJoL6hkWv/M59B+Zlceeze3TpSrKttLa8hIzXQLfePdYZzjkdmreHWV5dwwgGDuPaE/RjQJ7Z7AHcX8RBW8XnxOrxsINKt9NUhZdqElZldCFzoP60xswVdX72EVAjo1vjd/Dxc3bHiu/W56KA252IJ8KfeqUtv26e3K5BIYVUJRJpoLjOkTBvOufuB+wHMbE5v/4UQL3QuPDoPzXQumulcNDOzXr8cFf8XVputBwrNLFz7eyiwNdolQBERSUyJFFaf4NX3sNCN/mjACUCvJ7+IiHSPRAqrJwEHXNFq+4/w+qr+FeNx7u/COiU6nQuPzkMznYtmOhfNev1cJMxoQAAzuwu4FG8Gi1fwZrC4DJgBfC2WGSxERCTxJFpYpeC1rC7EmxtwK16L6wbnXM8tFSsiIj0qocJKRESSU9z1WZlZwMyuNLMlZlZtZuvM7HYzi2ndhY7ub2YnmtlMM6sws+1m9rSZjY5Qdh8ze97MSvzyH5rZ13bl83blZ9nV/WM5F+Y518yeMLPlZlZpZmvN7EUzO7wrPndXfJZd3b8jvxet9vuJmTn/J/oKjJ0Q7+fCzE4ys7f8fyeVZrbUzO7u7Oftys+yq/t38Ptisv/vosjMqsxshZn93cy6ZgG4Xfwsu7K/mX3bzB4ysy/MrM7/fR/VzrGHmNkjZrbFPxdzzOzMDn1A51xc/QB/wRtI8R+8wRN3AHXAO0CgK/cHTgcagc+Ai4FrgU14w+SHtCo7Bm8Owk1+uYv9/erwZnxPinOBd0+b88vdAlwAXAcU+fufmyznIsx7DAFKgTL/vQqT7VwAv/KP/Rpef/IPgZuA55PpXABfBxqApcA1/nn4E1ABbAeGJvi5eA+oAj7Cu1faAaMiHLcAWAmU+78LF/r7O+D7MX++7vgF2oWTvb//y/Bsq+0/9T/Yd7tqfyANKAbWALkh2yf4v2T3tzrGU/72CSHbcv39v8S/pLq7nwu8G8mnhXm/gXh9iJti+YexO5yLMO/zHPAp8CjdFFbxfC7w5u50wPVd/bkT8Fy8jjebTmGr7T/0j31Fop4Lf/sIINX/77tpP6z+4L9+Ssi2FGA2XgMgN9rncy7+wuoW/0Md2Wp7Jt5fJK901f7t/cMC3sb7CznNf56DN6XT22HKXu8f57BkOBdR3vNZ/ziDku1cAN/0v7QOAx6m+8Iqbs8F3l/gm2j+Esuli/9wSaBzMQvYCaS0Knuif5wfJeq5CLNvtLAqApaH2X6ev9+3Y/mM8dZndSheus8O3eicqwY+91/vqv2D/z0rzHE+AvKAvf3nBwIZ7ZQNPV5Xiddz0Z5heH9N7oihbEfE9bkwszy8f7D3Oedmh9mvK8XlufD7NaYCHwMXmFkx3uXQcr9/s80E1F0gLs+F73WgD/BPMzvIzIaa2fHA7cBi4IkodeuonjwXMTOzwXgzDH0U5uUOfXfGW1gNwZs2KdyEtcV40y2ld9H+Q0K2hysL3knuaNmuEq/nIiwzOxGvVfGk/wveleL9XPwe79/Ste3UoavE67nYC+/SzhF4fR9/x+vj+Rveigjvmll2O/XqjHg9FwC/A+4FzsD7si/C68dbCRzhnCtrp16d0ZPnoqP1Ch4j3HEhxu/OeJvIttMzq3di/+A/nHDlQ8vSwbJdJV7PRRtmNhavn6YYuCpSuV0Qt+fCzKYAF+GtVF0a4T26Uryei+D67QPwLnE94D9/zsx24g28+B7eF3hXiddzAd4l4WLgLby+zO3AFLw+oCfM7FTnXF2E9+6MnjwXHa0XEY7doe/OeGtZVeJdbgun3ZnVO7F/8DFc+V0p21Xi9Vy04A/bfRvv2vMJzrkt7dSps+LyXPh/ad4PvOWce7yd9+9KcXku8EaGgXcp6dFWZf/pPx7VTr06I17PBXj9lhcAZzrnHnTOPeecuxq4HDgBL7i7Uk+ei47WiwjH7tBx4y2sdnVm9Y7svz5ke7iy0NxM7UjZrhKv56KJf1/Fu3gd6f/jnJvfTn12Rbyei0uAfYE7zGyv4A/NrYzR3XBPTbyeiyL/sSTMpaQN/mO/durVGXF5LsxsBHAO8LJzrqpV2af9x2nt1KszevJcdLRewWOEOy7E+N0Zb2G1qzOrd2T/T/zHyWGOcwTeSJ6l/vP5eM3YSGWJoW4dFa/nInicUXj3SuTjBdVnUeqzK+L1XIz0j/sqsCzk53T/9dnAvCh166i4PBfOuU3AWqAgTN/UMP9xc5S6dVRcnguav4RTwpRNbfXYVXryXMTMObcBL4yOCPNyx747u3L4ZBcMvzyA9sf6nxuybQyw7y7sn4aX+q3vmzgI73rzA62O8bS//aCQbcH7rJbS9fdZxfO5GAmswhv1d2iy/l74284I8/Ouf9zvA6clw7nwtweHP1/ZavvtxHCvz+5yLvBugq33y/dtdez/9Y/9s0Q9F2HeO9rQ9duIfJ9VCdAnps/YlSesi076XTTfRf1D/xe9Du+v+EBIudWA6+z+ftkzaXlH+jV494lspNUd5nijnbb7r19D8wwW9cDxyXIu8C5xrfSPeydwbpifgclwLtqp68N07wwWcXku8IZvL8b78r4X+DHwmP9eb9PqnqPd/Fz80T/uKuD//HPxqL//ciAvwc/FVLyZa67DG4Lu/M98HXBdq7L9/fcsA36NN4NF8A+6C2L+fN3xj2kXT3gK3oiyL/EuvRXjTfuR26pcpBMe0/4h5U/2T3YlXso/A4yJUHY/4AW8FkUlMJ1ummopXs8F3mz3LsrPUclwLtqp68N0b1jF7bkACvGCaj3eyLGVwG+AzGQ6F4DhTVn0Md40Q3V+He4BBiT6uQBupJ3vgDDlh+KF9Va8UYCfAmd15PNp1nUREYl78TbAQkREpA2FlYiIxD2FlYiIxD2FlYiIxD2FlYiIxD2FlYiIxD2FlYiIxD2FlSQ1MzvKzJyZnd/bdYmFmU0ws7fNrMSv9429XSeRnhBv61mJdAszmwCcBjzsnFvdq5XpJDNLBZ7Fm6fueryZVLp6olyRuKSwkmQxAW8BwPfwppsJ+gDIwpsOJ97t6f9c5Zy7u7crI9KTdBlQkppzrtE5V+2ca+jtusRgkP+4PVpB8+R2c31EeozCSnZ7fr/OQ/7Td/2+HmdmD4frswrdZmYXm9mXZlZtZvPN7GS/zAFm9pqZ7TSzbWZ2p5mlhXnvsWb2qJltMLNaM1ttZreZWU4HP8N7wPv+04dCPsOoVvW9xMwW4U0WenXI/meZ2XQzKzOzSjP72MzOCPM+ATO71sxW+Z95gZmdY2Y3Bt+vI/UW6Sq6DCjJ4D/AYLylCX6Lt4wFwAoiL+UN3krA/YAH8L78LwOeM7Mzgb8DjwPPA8fhrfuzGW9NJwDMbCLwDl7f0n14s1gf5B9niplNc87FevnxN8AMvOUm7gc+9LdvwZsJH+AKvOUY/o63bMU6vx63AL8EXsPr62oEvgk8bWaXOufuCXmfO/CWXv8A+BOwB95M4StjrKdI9+iOqer1o594+wHOJ8zyJcBR/vbzw2wrBvJDth/ob28ETm91nLnAhlbbvgCW0GpxObygaPGeMX6GNnVttX07sEer1w7xX/ttmOM9j7fCbR//+T7+Z2ux9pR/jEbaWWBPP/rp7h9dBhSJ7GHnXGnwiXNuHt6X+3rn3H9alZ0ODAr2E5nZAXjh9m8gw8wKgz9+2Qq8FllXesQ513rp+HPwQuafoXXw6/Ei3mKawaXaT8Vbh+kOF9KH55z7FHizi+sq0iG6DCgSWbhLXyX4l9fCbAfvMlw53kKd4K2M+usIxx+4S7Vra2mYbfvhBdCSdvYL1mNP/zFc2UV0fbiKxExhJRJZpBGC7Y0ctFaPt+P1FYVTEmF7Z1VGqI8DTiByvRd2cT1EupzCSpJFTy+Jvcx/bHDOvdXD7926Hl8H1jrnFkcpG2xJ7os3+CTUuK6umEhHqM9KkkW5/1jQQ+/3GbAA+LGZ7dn6RTNLNbOeqMuj/uNvzSwlTD1CL0W+iBfqPwsta2aHAMd2ay1FolDLSpLFJ3gj2n5pZv3wBjis6q43c845MzsPb+j6PDP7B97ltmxgL+B04Frg4e6qg1+PT/z7zG4EPjezp4H1eEP5JwInAul+2SVmdg9wKfCOmT2LN3T9UryRjQd3Z11F2qOwkqTgnFtrZj8A/he4F29+vX/SjWHhnPvczA7GC6VvAD8GyvCme3oYb4h4t3PO/drM5uDd33UFkIN3T9gCf1uoy/Hu0boQuA3vMuIlwFgUVtKLzLmevpQvIonGb539ChjtEnQiYEls6rMSEZG4p8uAIr3IzLKA/GjlnHMbe6A6InFLYSXSu86ieZLd9lj0IiK7L/VZifQiMxsM7B+tXC/fqyXS6xRWIiIS9zTAQkRE4p7CSkRE4p7CSkRE4p7CSkRE4p7CSkRE4t7/B2suNfFxIKmaAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"BEC_width_y_time = xr.DataArray(\n",
" data=BEC_width_y_val,\n",
" dims=[\"time\"],\n",
" coords={\n",
" \"time\": runTime.runTine.to_numpy(),\n",
" }\n",
")\n",
"\n",
"BEC_width_y_time_array = BEC_width_y_time.to_numpy()\n",
"\n",
"# desired number of Fourier modes (uniform outputs)\n",
"N = 1001\n",
"\n",
"# calculate the transform\n",
"BEC_width_y_time_array = BEC_width_y_time.to_numpy()\n",
"BEC_width_y_time_array = np.array(BEC_width_y_time_array, dtype=complex)\n",
"f = xr.DataArray(\n",
" data=finufft.nufft1d1(time, BEC_width_y_time_array, N),\n",
" dims=['time_freq'],\n",
" coords={\n",
" \"time_freq\":np.linspace(-0.125/2,0.125/2,N)\n",
" }\n",
")\n",
"\n",
"np.abs(f).plot()\n",
"plt.xlim([0, 0.01])\n",
"plt.ylim([0, 1600])"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(0.0, 2000.0)"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEeCAYAAAA0FjqrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABONElEQVR4nO3deXxcdb34/9d7lmSyr12TdG9py9KWttAWFBQXwIuIiCjiggjXBUXl/lSuuF29ylVBr1yuV0BFURT4oizuIPtSoKUrbSltumRrm2bfl5nP749zzmQymZmcSSbJpHk/H48+pjnzOScnhzLvfD6f9+f9EWMMSimlVDrzTPQNKKWUUsPRYKWUUirtabBSSimV9jRYKaWUSnsarJRSSqU9DVZKKaXSngYrpZRSac9VsBKRJSLyHyKyUUTqRaRNRLaKyFdFJCdG+5NE5CERaRKRDhF5VkTeGufaBSJym4jUiEi3iLwmIp8SEYnR1iMiXxCRPXbbKhG5JdY9KKWUOnGIm0XBInIz8BngEWAj0Ae8BXg/sB1YZ4zpstsuBF4G+oEfAy3ANcApwAXGmMcjrpsBPAesAm4DdgMXAJcA3zLGfDPqPv4b+BzwR+CvwDLgs8CzwNuMMaHkH4FSSql05zZYrQHeMMa0RB3/DvBV4LPGmP+xj90PXAqsNsZstY/lAq8B3cBSY39TEfk0cDvwOWPMbRHXfRC4CFhsjDlkHzsZ2AH80RhzaUTbzwI/AT5kjLl3JA9BKaVUenM1DGiM2RQdqGz32a+nANjDce8GnnIClX1+O3AXsARYG3H+FUAncGfUdX8M+IHLI459EBD7vUh32te40s3PopRSavIZbYJFuf161H49DcgEXozRdqP9uhas+SfgdGCLMaY7qu3LgGFwYFsLhOz3wuxzt0a1VUopdQIZcbASES/wNay5KWf4bbb9WhPjFOdYmf1aBGTFamuM6QGOR7R1rn3cfi/WtUvtOTCllFInGN8ozv0xsB74d2PM6/axbPs1VkDpjmqTqK3TPjvi6+xh2jpteqPfFJFrgWsBcnJyVi9dunTQ+z19IfYea2NOcTatXX109gY5aWZenG9lf8O+EG/Y5xRk+Qe9t7uulfyAn7KirEHH3zjWTobXw9ySbJRSarLYvHnzcWPMtIm8hxEFKxH5NnAdcIcx5nsRb3Xar5kxTgtEtUnU1mnfGfF1JzA9QdvIaw5ijLkDuANgzZo1ZtOmTYPer6xv5623PM0PLl/J47uPsquulSduODfOt7Lsr2/nvFue5ocfWMnFK8sGvXfqN/7O+9aU842LTh50/L3/+zw5mT7uufrMhNdWSql0IiKHJvoekh4GFJFvAjcBvwQ+GfV2rf1axlDOMWfYrwnoitVWRDKBUgYPEdZiDfXFCm5lWEOEQ3pVbvg81mPoDxmCIYN36BKvGOdYbYKhodmUXX1BsvzeIcezMrx09QZHcotKKTWlJRWs7ED1DeBXwCfM0Lz3HVhDdetjnL7Oft0EYK+JehVYFSMAnYGV+RfZBXrFvt8zou4pAKyMapsUr9cJPCErWHmGD1YeO6D1RwWrvmCI/pCJHaz8Xjo1WCmlVNJcBysR+TpWoLoH+HisBbh2ivqjwLkisiLi3FzgE8AbDM7m+x3WPNO1UZf6PFbixn0Rx+7DyhD8fFTba+xr/NbtzxLN6SWFe1YugpXPDnChqGDV1WcFo6yMocEq4PfS3afBSimlkuVqzkpEPgN8CzgMPA5cEVUN6agx5jH77zcC5wH/EJEfAa1YAaUMeFdUb+xO4CrgVhGZh1XB4kKsChbfMcYcdBoaY3aIyO3AdSLyB+AvWBUsPgc8zUBGYtK8EUN6QWPCwcvNOdE9q2675xSI0bPKzvCGg5lSSin33CZYOGuY5mANAUZ7GngMwBizT0TOAm4GvgJkYA33nR9Zaslu2ysibwO+g7XotwTYj1VC6fYY3+fzwEGsnti7sNLbbwO+PppSS+GeVdDqWXnc9Kzsea7oOatwzyrOMKAGK6WUSp6rYGWM+RjwMbcXNcbsBi522bYZK7PwOhdtg8At9p+UGdSzCrnsWcWZs0o4DJihc1ZKKTUSukUIg7MB+0MmnDyRiDfenFVv4p5Vb38oZgahUkqp+DRYEdmzChEKmXDyRCK+OHNWTs8q3pwVoEkWSimVJA1WDA48rntWEQEuUneCYUCnt6XzVkoplRwNVoDHI3jEmrMKuc0GjDdn1WsFr1jDgE5vSxcGK6VUcjRY2Xwej9WzCrpcFOwRRBKss4pTwSKyjVJKKXc0WNm8Hgn3rNwEK7CGD5PJBnTmrLRnpZRSydFgZfN5hP6gNWflNlg5AS6Ssyg4XgULQNPXlVIqSRqsbF6v0G9nA3o97h6LV4YGq3A2oG/oNZyhQc0GVEqp5GiwsjlDev0hg4vMdcDqWcUaBszwevB5YwQrnbNSSqkR0WBl83qEYNApZOvusfi8nqE9q94gAX/s87P9vnAbpZRS7mmwsjnZgFawcneOR2L0rHqDMeerAAIZ1oU7tWellFJJ0WBls5IlQgRNEj0rj8RMXY+Vtg4Rc1bas1JKqaRosLI5c1bJ9KzizVnFKrUEWsFCKaVGSoOVzUlDt6quu52zkpjlluINA/q8HjK8Hg1WSimVJA1WNp93YM7KTW1AsFLXY85ZxelZAQT8Hk2wUEqpJGmwsvkie1Yuc9e9HiFk3M9ZgZW+rsFKKaWSo8HK5o2Ys3Lds7KrXkTq6gsSiDMMCLpbsFJKjYQGK5vPzgbsD4VcVV0HZ85qaLml7IQ9K58GK6WUSpIGK5vXI/QFDSFjVVR3dU6sOasECRYAWTpnpZRSSdNgZfN5hd5+K7PPbc9qxHNW2rNSSqmkaLCyeT2ecLByv0WIZ9CcVShk6O4LxV1nBfaclfaslFIqKRqsbD6P0NNvBZGRbhHSYwe7RMOAmX4v3f0arJRSKhkarGxej9AbtHtWSWQDBiOGAZs6ewHID/jjnhPwebXcklJKJUmDlc3nEXr6khsGjC63VN3UBUB5UVbccwJ+D939objvK6WUGkqDlc3rkfAwXjLb2keWW6pq7ASGC1Ze3XxRKaWSpMHK5vd6RjRnFZlg4fSsyobrWfUFMVFZhEoppeLTYGXzeiTpbMDo1PWqpk5m5GeS6UtQG9DnJWSgL6jBSiml3NJgZfN5BGf6aeRzVp1UFGUnPMdJa9eMQKWUck+DlS0yQLnNBvRFpa5XNXYlnK8Cwlve67yVUkq5p8HKFlm1wm3VdU/EnFV/MMSR1m4qihP3rDLtnpWTeaiUUmp4GqxskVvZu6267ouYs6pr6SYYMsP2rMJb22vPSimlXNNgZYvsTbmvDegJz1lVNVlp667nrLRnpZRSrmmwskXOWbmtuh45Z1Xd6CwIHi5Y2XNWmmChlFKuabCyDZqzSmqdldVDqm7qxCMwqzCQ8JyADgMqpVTSNFjZRtKz8kaku1c1dTGrIAu/N/EjDfh0GFAppZKlwco2kp6VzyP0hwZ6VsMlV4Cmriul1EhosLL5InpESVVddxIsGruGna8CHQZUSqmR0GBli+xNJbufVU9/kKNt3VQUD9+zygwnWOgwoFJKuaXByuYdYbAKGauArTHDZwLCQM+qR3tWSinlmgYr20h6Vs45hxo6AKhwM2fl02FApZRKlgYrW2QFC/c9K+ucg8ftBcHDlFoC8HsFj0CXBiullHLNVbASkRtF5AERqRQRIyIHE7S9224T68/7YrTPFJH/EJEDItIjIvtF5CYRibk3vIh8RES2iEiXiBwVkbtEZJrrnziOkc1ZWa+HGjrwe4UZ+YnXWAGIiL0Bo85ZKaWUWz6X7b4LNAKvAoUuz/lwjGMvxzh2H3Ax8AvgRWA98G1gEfCxyIYi8gXgVuBp4HqgHPgisF5EzjDGdLi8tyFGNmdl96waOpldmOX6PN0tWCmlkuM2WC00xlQCiMhOIHe4E4wxvxmujYhciBWobjXG3GAfvktEmoEvisgdxpgX7LalwHeAV4DzjDFB+/grwCNYweu7Ln+eIUZSG9Bpd7Chw9UaK0fA59GelVJKJcHVMKATqJIhlnwRSfQ9rrBffxx13Pn6yohj7wGygducQGXf26NAZVTbpA2qYOFynZVT6aK6qWvYAraRAn6v1gZUSqkkjGWCRYv9p0tEHhORM2O0WQvUGGOqIg/aX9fa70e2BWuoMNpGYKmIDNvji2dwBQt3j8U5x83WIJECfq+mriulVBLGIlgdAX4EfAq4BGtobg3wrIi8LartbKAmznVqgLKots7xWG0los0gInKtiGwSkU319fUxv9mg/axcPpXI3pibTEBHwK/DgEoplQy3c1auGWO+EnXoIRG5F9gK/BRYHPFeNtAT51Ld9vuRbYnTvjuqTfQ93QHcAbBmzRoTq83gOavkelZA0j0rTbBQSin3xmWdlTHmDeB+YJGILIl4qxPIjHNawH4/si1x2gei2iTNN6jqurtzBvWsdM5KKaXGzHguCj5ov5ZGHKtl8FBfpDIGD/nVRhyP1dZEtEmadwRzVs45GT4PpbnxYu5QOgyolFLJGc9g5Qz/HY049gpQJiIVkQ3tr2cDm6LagrUOK9o64HVjTPtIby4yQLmtuu70xsqLslzvgQVWySUdBlRKKfdSGqxEJEdEhpRxEJFVwGXAbmPM/oi3fme/fj7qFOfr30YcexjoAq4TEW/EtS8CFkS1TdqgRcHe5BYFuylgGylTK1gopVRSXCVYiMiHgbn2l9OADBG5yf76kDHmHvvvi4G/ishDwBtAB7AC+DgQBK6NvK4x5s8i8iesBcAFDFSwuBr4jTHmuYi29SLyNeCHwOMi8jus4b8bgD0MXauVlEHlllzvZ2W9uilgGyng92jqulJKJcFtNuDVwDlRx75tvz4NOMHqCPA48BbgQ0AWUIdVUul7xpg9Ma59GXAT1qLeD2PNU30duDm6oTHmFhFpAL4A/ARoxUrc+MpohgBhdOWWku1ZaYKFUkolx1WwMsac67LdEWLXBEx0TjdWsLppuLZ2+7uBu5P5Hm5Epq4nu0WIm00XIwV8XvqChmDIuP5eSik1lekWIbZBqesu48ei6bmsKC9g9dyipL5XwNktWIcClVLKlZQvCp6snCE9r0cQl3NWM/IDPHzd2Ul/L2e34O6+IDmZ+p9AKaWGoz0rm9OzGo9hOadnpRswKqWUOxqsbM6cldtMwNEY6Flp+rpSSrmhwcrm9Kjc7mU1Gpm+gWFApZRSw9NgZXMqWCRTiWKksjKsYNWj6etKKeWKBivbePasAj4nG1CHAZVSyg0NVjYnSI1HzyoyG1AppdTwNFjZxrVnpQkWSimVFA1WtnDPalyyAXVRsFJKJUODlS3cs3JZcX00wj0rTbBQSilXNFjZRASvR8ZnUbBPhwGVUioZGqwieD0yLouCM3UYUCmlkqLBKoJvnHpWmT4PIuieVkop5ZIGqwjjFaxEhEyfh+5+HQZUSik3NFhF8Hk945K6DvYGjNqzUkopVzRYRfB6ZFwWBYOVZKHBSiml3NFgFcHnkXHsWXk0G1AppVzSYBXB65FxWRQMOgyolFLJ0GAVweeRcVkUDJDp92qChVJKuaTBKsK49qx8Hrp7tWellFJuaLCK4POMXzZgVoZXyy0ppZRLGqwiFGb7KczOGJfvpdmASinlnm+ibyCd3HbFKjK84xO/NRtQKaXc02AVYXpeYNy+l2YDKqWUezoMOEE0WCmllHsarCZIpl9rAyqllFsarCZIwOeltz9EKGQm+laUUirtabCaIM5uwT3au1JKqWFpsJogAd2AUSmlXNNgNUGcnpUuDFZKqeFpsJogAz0rHQZUSqnhaLCaIAGf3bPSYUCllBqWBqsJEh4G1GCllFLD0mA1QTJ1GFAppVzTYDVBNMFCKaXc02A1QbKcdVY6DKiUUsPSYDVBnJ5VlwYrpZQalgarCaKp60op5Z4GqwmiqetKKeWeq2AlIjeKyAMiUikiRkQODtP+TBF5XETaRKRVRP4mIivjtJ0tIr8WkXoR6RKRTSJyWZy2mSLyHyJyQER6RGS/iNwkIn43P0c6GUhd156VUkoNx+3mi98FGoFXgcJEDUVkHfAUUAN83T58HfCsiGwwxuyIaFsMPAdMB24FqoErgPtF5OPGmF9GXf4+4GLgF8CLwHrg28Ai4GMuf5a0kOnT2oBKKeWW22C10BhTCSAiO4HcBG1/AvQCbzbG1Njn3A/sBm4B3hHR9ivAfODdxphH7bY/xwpEPxSRB4wx7fbxC7EC1a3GmBvs8+8SkWbgiyJyhzHmBZc/z4TzeIQMn0dT15VSygVXw4BOoBqOiCwC1gIPOIHKPr8GeAB4m4jMjDjlCmC/E6jstkHgNqAYuDCqLcCPo76t8/WVbu4xnQR8Hnp0GFAppYaV6gSLtfbrizHe2wgIsBpARGYBZfbxWG0jr+f8vcYYUxXZ0P66NqrtpKBb2yullDupDlaz7deaGO85x8pG0NZpH6ut074szntpS4OVUkq5k+pglW2/9sR4rzuqTTJtnb/Hauu0z47zHiJyrZ1luKm+vj5es3EX8Hs0G1AppVxIdbDqtF8zY7wXiGqTTFvn77HaOu0747yHMeYOY8waY8yaadOmxWs27gJ+ryZYKKWUC6kOVrX2a6whOedYzQjaOu3jDfWVEX+IMG0FfDoMqJRSbqQ6WL1iv66P8d46wACbAYwxdVgBZl2ctgCboq5dJiIVkQ3tr2dHtZ0UMnUYUCmlXElpsDLG7MMKGpeJiJNAgf33y4AnjDFHIk75HbBQRC6KaOsFPgs0A3+Jagvw+ahv63z929H/BONLEyyUUsodV4uCReTDwFz7y2lAhojcZH99yBhzT0Tz64EnsSpW3GYf+yxWYLyBwW7GCmL3isitWD2tD2KloX/CGNPmNDTG/FlE/oS1ALiAgQoWVwO/McY85+ZnSScBv5ee/sE9q5rmLv7rr3v43ntPJSfT7ZptpZQ6sbn9NLwaOCfq2Lft16eBcLAyxrwgIucC37H/GOAF4DJjzLbICxhjGkTkLKyg9Rmsyhi7gA8YY+6LcR+XATdhLQD+MAMlnW52+XOklSy/Z0jP6qnXj/HItlres2o2b106Y4LuTCml0ourYGWMOTeZixpjXgTOc9m2BivwuGnbjRWsbhqu7WQQaxjwcKOV1LijulWDlVJK2XSLkAkU8HuHbL5Y5QSrmpaJuCWllEpLGqwmUMBnZQMaY8LHnJ7VTg1WSikVpsFqAmXae1pFJlkcbugkw+fhSGs39W3xCnYopdTUosFqAjkbMDqV11s6+2jt7ufNi60qG9q7UkopiwarCRTw2xsw2iWXqpqsIcALTpmJiM5bKaWUQ4PVBAr4nK3trWDlzFctm5XP/NIcDVZKKWXTYDWBnGFAp+SSE6wqirM4taxAhwGVUsqmwWoChYcBI3pWRdl+8gJ+Ti0roK5FkyyUUgo0WE2ogZ6VPWfV2MmcYmtbrlPKCgBNslBKKdBgNaEGEiwGhgEr7GB18ux8QJMslFIKNFhNqMyIBItgyFDT1BXuWeUF/CxwmWRx/6YqHt91dEzvVSmlJpIGqwkUOQxY19JFf8iEgxVYQ4GJhgGNMXz/b3v40v/bzv89vX/M71cppSaKBqsJ5AwD9vSFIjIBB4KVk2RxvH1okkUwZLjpoZ3871P7yfJ7Y7YZjSf2HGVHtQ5BKqXSgwarCZTl9Kz6g+ECttE9Kxg6b9XbH+Lz923lty8d5lPnLuTytRU0tPem7L6MMXzhvm389z/3puyaSik1GhqsJlDkMODhxk68HmFWQSD8/sllVpLFzogeTndfkH+9ZxOPbqvly+cv5cvnL2VaXiZtPf0p23X4wPEOWrr6qGrsSsn1lFJqtDRYTaDIRcGHG7soK8zC5x34T5If8A+qZNHW3cdHf/EyT+2t57uXnMqnzl0IQElOBkDKhgK3HG4GoLqpc1BFeKWUmigarCaQ1yP4vUJ3X3DQGqtITpJFU0cvH7rrJTYfauLHl6/kijPnhNuU5mYCcDxFQ4FbqpoA6OgN0tzZl5JrKqXUaGiwmmABn5fuvhBVEWusIp1alk9tSzeX/vQF9hxp42cfXs3FK8sGtSnNs4NViqpdbDncjN8rwEBxXaWUmkgarCZYpt9LQ0cPDR29VBRnDXnfSbI40trN3Vet5bxlQ7e6L821hgEbOkYfrDp7+9lzpI1zlljblFQ36byVUmriabCaYAG/h71H2wFiDgOunlvExzbM495r1rFhYWnMa6RyGHBHdQvBkOFfTpsNWPNWSik10XwTfQNTXcDvZX99/GCV6fPyzXefPOw1cjN9KSl6u6WqGYA3L5lGfsCnPSulVFrQntUEC/g99Nq1AWMFK7dKczNSkg245XATc0uyKc7JoLwoO7z+SymlJpIGqwnmbMCYF/BRkOUf8XVKczNHvTDYGMOrh5tZVVEIWPtqac9KKZUONFhNMGet1ZzibERkxNcpzc0cdc+q1t4/a9WcIgDKi7KpburStVZKqQmnwWqCOfUBK4pGPgQIUJKCYcCt9mLgVXMKASgvyqKrL0hjR+pKOSml1EhosJpgmU7PqmR0wao0N5Omzj76gqERX2PL4SYyfR6WzrTKPJXbAbRKhwKVUhNMg9UEc+asYi0IToazMHg0vaAtVc2cWlZAhs/u7dnrvsYqfd0Yo0OMSilXNFhNMGcYcDSZgADTckdXH7C3P8SOmpbwECBAWaETrFLfszLGcM2vN3HDA9tcnxMKGe5/pSplBXuVUpOHBqsJFplgMRolo1wYvLuuld7+UDi5Aqzdiguz/WPSs3p0ex2P7z7GazWtrs959XATX3pwO3/ZUZfy+1FKpTcNVhOsMMtPhtfD7MLA8I0TCFexGOHC4C2HreK1kT0rsJIsUr1VSHtPP9/50y4AmjrdB9fXj7YBUFnfkdL7UUqlP61gMcE+sn4e55w0jUx77mqkSkc5DLilqpmZ+QFmFQyuT1hRlM1eO0ikyn8/vpdjbT2sX1DC5kNNGGNcpe3vPWLdx4HjGqyUmmo0WE2wgmw/p2UXjvo6uZk+Mn0eGlwkWPT0B/nl8wfp7Q+R4fOQ4fWwsbKB0yOGAB3lRVk8seeY64AynNePtPGL5w/ygbUVzCvN4cXKBjp7g+RkDv9P0amhWKnBSqkpR4PVCUJErIXBLoYBH9hUzc1/3TPk+NmLhxbKLS/Kpqc/xPH2XqbZGYcjZYzhaw/vJC/g40vnL+WxXUcAayjQTbB645jVszp4vINQyODxjD54KqUmBw1WJ5DS3AzqhxkGDIUMv3j+AKeVF/CHT22gL2jo6Q8SDJlwkkak8iJrWLCqqXPUwerhrbW8fKCR715yKsU5GRRmW0OXzZ19lA/t1A3S0N7D8fZe5pfmcOB4B0fbuocMWSqlTlyaYHECsUouJR4GfHpvPZX1HVx99nx8Xg9ZGV4KszNiBioYWP+VivT1H/7jdVaUF/CBtRUAFEUEq+E4Q4DvPHkmAAc0yUKpKUWD1QnETX3Au56rZGZ+gAtPneXqmgNrrUaXvt7W3Ud1UxfnnzIrPHxXlG0V7nWTEegMAb7zZGvzSZ23Umpq0WB1AinNy6Cxo5dQKHZViN11rTy/r4GPbJiL3+vuP31Opo/inIxR96wONVjBbl5EWamBYcDhg9Xeo23kBXysKC8ky+/VjEClphgNVieQkpxMgiFDc1fsYbVfPHeALL+XK86Yk9R1rbVWo+tZOcFlXmlO+FhhuGflbhhwyYw8PB5hnj1vNZkcbe3W0lJKjYIGqxOIUx8w1lBgfVsPD2+t5X2ry8M9GrcqirKpGXXPygoucyN6Vn6vh7xM37DDgMYY3jjaxpIZeQAsmGTB6lBDBxtufoJ/7Do60bei1KSlweoEEl4YHCN9/TcbD9EbDHHVWfOSvm55URbVzV1xhxfdONjQyYz8TLIzBiegFmT7h02wqG/voamzjyUzcgGYX5rD4cbO8A7L6e6lykaCIcMWewsWpVTyxiRYiYiJ86c9RtuTROQhEWkSkQ4ReVZE3hrnugUicpuI1IhIt4i8JiKfklSsVj0BTHNKLkUtDO7uC/KbjYc4b+l0FkzLTfq65UVZ9PaHRrVf1sHjHcwtyRlyvCg7Y9ie1Rt2JqDTs5pfmkMwZKgao2rwqbb5kFXKKtWVQJSaSsZyndWzwB1Rxwb9Ci0iC4EXgH7g+0ALcA3wdxG5wBjzeETbDOAxYBVwG7AbuAD4X2AG8M0x+SkmkZI49QH/urOOho5erj57/oiuO7CvVSfT80dWw/BgQyfnLZ0+5Hhhtn/YOSvnQ36x07OaZgW9A/UdLBxB8B1vmw41Alb1DqXUyIxlsKo0xvxmmDbfAwqB1caYrQAi8mvgNeB2EVlqBmalPwGsBT5njLnNPnaniDwI/LuI/NIYcyjVP8RkUpjlx+uRIT2gZ/cepzgng3ULSkZ03YF9rbpYPTf589u6+zje3sPc0qGV5YuyMzg8TPLG3qPtFGX7wz3HBXaSxmSYt2rq6GV/fQdF2X5qmrto6+4jL+Cf6NtSatIZ0zkrEckQkZi/+opIDvBu4CknUAEYY9qBu4AlWMHJcQXQCdwZdakfA37g8pTd+CTl8QglOYO3tzfG8GJlA+sWFI+4PFFZ4egWBjtp6/NjDgP6aRqmnuHeo20snpEXrk1YmJ1BcU7GpFhrtaXKGgK89PRyAN44NmQkXCnlwlgGq/dhBZc2ETlmzzUVRLx/GpAJvBjj3I3261oAEfEApwNbjDHdUW1fBgyDA9uUVZqbSUNEFYtDDZ3UtXSzfoS9KoCsDC+luRkjTl8/GM4EHBqsCrMzaO3uJxgnecMYw96jbeHkCodVdin9P/g3H2rC5xHeb1ft2KtDgUqNyFgFq5ex5pDeB3wUeAK4Dng2oqc1236tiXG+c6zMfi0CsmK1Ncb0AMcj2k5ppXmDq1i8WNkAwPqFIw9WAGVF2Ql7VnuPtnHWzU/ErHQRXhAccxjQGhJribM27GhrD23d/eHkCsf8SZK+vvlQEyfPzmfRtFyyM7zs0WCl1IiMSbAyxpxpjPmhMeYhY8yvjTEfAL4KnApcbzdzPrlipZh1R7VJ1NZpH3erXRG5VkQ2icim+vp61z/HZFSakzGoPuDGygam5WWOOhGhoigrYfbdq4eaqGnu4pm9x4e8d+B4B9PzhqatAxTlWOn28TICneSKWMHqaGsPHT39rn+G8dYXDLG1qpnT5xbh8QiLZ+RpRqBSIzSe66x+APQC77K/dj75YlVQDUS1SdTWaR/3k9QYc4cxZo0xZs20adPc3/EkVJqXSX17D8YYa75qfwPrFpSMei+q8qJsapu74g7XOb0uJ/Mt0qGGjkGVKyINV3IpXrCaDEkWu+ta6e4LsXquVVL+pBm5GqyUGqFxC1bGmD6gFnA2Taq1X2MN3znHnGG/JqArVlsRybSvGWs4ccopzc2gtz9EW08/lcc7wjvyjlZ5URZ9QcOxtugpQ4sz/OesKYp04HjnoJqAkcLFbDtiDwPuPdpGaa6VUBHJSV9P5yQL51k4wWrJjDyOt/eOar2aUlPVuAUrEQkA5YBTc2YH1rDe+hjN19mvmwCMMSHgVWCVHZwinQGI03aqK7XTuxvae3lxf2rmq2D4rUKc44caOqmPWOfV3tPP8faeuD0rZ5uQ+MOA7Syenjfk+LySgbVW6WrzoSZmFwTC+26dNNP6ObR3pVTyUh6sRCTeJ+O3sdZ1PQrhFPVHgXNFZEXE+blYa6rewErUcPwOa17q2qjrfh5rUfF9Kbj9SS+8MLi9hxcrG5iZH4jbq0lGeBPGOBmBNc1d4aG5yN7VQaeAbYxMQLDKLUHsPa2MMew71j4kExAg4PdSVpiV1hmBmw81sXpecfhrJ1jp4mClkjcWi4JvEpF1wJPAYSAXuBB4C/ASVvUJx43AecA/RORHQCtWBYsy4F1mcJnqO4GrgFtFZB5WBYsLgUuA7xhjDo7BzzLpOPUB69t6eKmygTctnjbq+SqI3NdqaM+qtz/EkdZuPnnOQn7+3AE2H2rk/FOsTRIHtgaJHazyMn34PBKzZ1Xb0k17Tz9LZg7tWQEsmJa+GYG1zV3UtXSzek5h+Ni03EyKsv3as1JqBMYiWD0FLMdKWS8Bgli9pK8Ct0aukzLG7BORs4Cbga8AGVjDfedHllqy2/aKyNuA7wAftK+9H/gscPsY/ByTklPlYWNlA8fbe1MyXwVWT2Z6XmbM1PS6li6MsZIeTisrGNyzilFtPZKIxC25FC+5wjG/NIc/bqnBGJOSgJxKA/NVAz0rEWHJjDztWSk1AikPVsaYh4GHk2i/G7jYZdtmrPVa143o5qaA4pwMROAvO+qA1MxXOax9rYb2rJzeVllRFqvnFvHL5w/S3Rck4Pdy0E5bz8mM/0+tMDsjZjagMx+1IM581/zSHNq6+2no6A3P1aWLzYeayPJ7WTprcKA9aWYef3g1PQOsUulMtwg5wfi8HoqyrbVWZYVZ4cSIVKgozqa6eWjPytnrqqIom9Vzi+gNhthR0wJYw4DxhgAdRdn+mMOAhxs7ybV3Ko5lfhqnr28+1MSKioIhOzIvmZFHe08/tS2xsyqVUrFpsDoBldgf7qnsVYHVs6pt7qY/OHgfqeqmTjwCMwsC4TRtZxjsQENHzMoVkaye1dBhwMONncwpzo7bA1lQaiVepFtGYGdvP7vqWsPPItJSJyNQhwKVSooGqxOQMySWqvkqR0VRNsGQ4Ujr4F5BdVMXswqy8Hs9lORmMr80h00Hm+jo6ae+rSdmTcBIRXE2YHSCVTxlRVn4vTLua61auvpoSLBWaltVC8GQYU3EfJVjsT3/pmWXlEqOBqsTkLO9fep7VrHXWlU3dYWzBcFaBPvq4abw8Nz8OHNOjlgbMIZChqrGTuYkSLv3eoTyomwON45vsPq3B7bxyd9sjvv+/nornT56vgqgIMvPrIKAZgQqlSQNViegsxaW8PblM5gdEUBSwdnXKnqtVXVTZ3gdFsCauUU0dvTy9F6rDmO8TEBHYXYGPf0hunqD4WP17T309IeGnXObU5wdTo8fD6GQ4aXKhoQZfdVNXfi9woy82BtVakagUsnTYHUC+sAZc7jzI2tSft1ZBVmIDO5Z9QWtNVaRwcqZq3lwczUQf42VI1xyKaJ35WzImGgYEKxAeLihk8FL8sbOgYYOWrv7ae3uj1spvrqpk7LCrLj7h500M4999e1D5v6UUvFpsFKuZfg8zMwPDApWR1q6CZmBIUKAhdNyKcjyU3m8g2nDpK2DtbU9DA5WTm9puGA1pzibtp7+mOu0xsLWw83hv8dac2Yd7xr0PKItmZFHb3+IQwn2B/v9y4f5zL2vjvg+lTrRaLBSSakoyh60VYjz97KInpXHI+HeVazdgaMNVF4fCDiHG60Mw7JhhjKd5I1DDeMzb+Xs/AuJ6yRG9jSjLXVRdumRbbX8eXudFr2NoaWrjyf3HJvo21DjTIOVSkp5UVZ4XRUMfGBHfzg7wWq4+SqIXcy2qrGTWQVZZPgS/xN1rn94hLsYJ2trVTPLZ+UDseskdvcFOd7ekzBYLZqei0fiZwQaY9hpr1OLVcV+qvv+3/Zw1d2vJMzIVCceDVYqKeXF2dS1dNFnz7fUNHUhQriyuMMJVvGqrUcamLMa3LMabggQBoYJxyPJorsvyJ66Ns49aRq5mb6YPauB4B3/3gN+L4um57K9ujnm+9VNXbR2W5tKarAarKWrjz+8au0GdHCcetMqPWiwUkkpL8oiZKCu2VprVd3Uxcz8wJAe0Ko5hVx6ejnvPHnGsNcMDwN2DE6wcBOsAn4vM/IzxyVY7axpoT9kWFlRSHlRVsw5K+dYop4VwMqKQrZVNcdMDHGqf+QHfGw6OHQzy6nswc3VdPVZWaPjmQWqJp4GK5UU50PY+VB2Mt+iZfq83PL+FSyKsRdVtAyfh5wML812dl1nr7WYONEaq0hzi3Pibl2SSlurmgFYOaeQ8qLsEfesAFbNKaKpsy/mB+7OmhZ8HuG9p5ezs6aV7r5gjCtMPaGQ4Z6NhzitvACPwEENVlOKBiuVlAr7Q7gqHKwSJxO4VRixMNgpluu2ruGckmwOjcPC4C1VzZQVZjE9L2AX9R2aMu+ssZqel7iw7sqKQvuaQ4f5dta2smRGHhsWlgyqszjVPbvvOAeOd3D12fOZXZg1bkk1qdLW3cc/Xjsy0bcxaWmwUkmZVRDA6xGqm7roD6+xGn2x3KKcgZJLbtdYOeYWZ3O0tWfMeyBbDzez0t6fqqI4m47e4JAyUcOtsXIsmZFHdoZ3UCo8DCRXnFKWH57323Rw4uatDjd0EgqNzxq24dzz4kFKczO54JRZzCvJmXQ9q1v+sZdr79nMvmPpu2FoOtNgpZLi83qYVWCttTrS2k0wZFLSs4osuZRssJozDhmBx9q6qWnuYpXdIwrvnNwUXc0j8Rorh9cjnFZeEB5adNS1dNPY0cspZQWU5GayoDSHzYcmZt5qd10r5/7wSe58ttL1OX/bWccX79ua8kXaVY2d/HPPMa44o4IMn4c5JdkcnkQ9q5auPu7fVAXAi5UNrs/75+6j7K5rHavbmlQ0WKmkOUNgbudn3IisvF7V2Elepi+cJTicgbVWYxesnB6QM3xXkaBOotvgvbKiiF11g+eknJT1k2cXAFZW5eZDTeNWoSPSnc9UEjLws2cq6eztd3XOA5uq+cOWGl6rTe0H7G82HsIjwhVnzgVgXkk2TZ19tIzTYvDRuu+Vw3T2BsnJ8LLRZbB6bNdRrv7VJq7//ZYJ+e+fbjRYqaQ5yQWRmy6OVuSeVocaOqhIsDVItLnh9PWx+017a1UzPo9wSpkVRMpj1El0s8Yq0qo5hfQFzaAP9p01LXiE8FquNfOsRIz947wNSl1LF49sq+WM+cU0dvTy242Hhz3HGMO2aivYPrq9NmX30tUb5PevVPHOk2cws8Cqtxj+BWWcixiPRH8wxN3PH2TdgmLecfJMXqpsGDb47K9v54v3bSU/4GPv0fakemMnKg1WKmkVRdkcbeum0q4uPrswdsHWZBRm+Wnp6iMYMq7T1sPnZvvJy/SN6TDg1qpmls7KI+D3ApAf8FOQ5R80DJhsT9MZUowcCtxZ28qi6blkZVjfZ7W9zch4DwXe/fxBQsZwy2UrOHtRKT97pnJQoeFYalu6Od7eg88j/GlbneveQEdPf8K2j26rpaWrj4+snxc+5iwGnwzzVn/deYTalm6uPnsB6xYUc7y9N1yZP5a27j6u/fUmMnweHvrMWRRl+/nVCwfH74bTlAYrlbTyoiyMgVcONjIjP5NMn3fU1yzMzsAYa2y/qqnLddo6gIhYGYFj9MEVDBm2VTWzqmLwZooVxVmDhgHdrrFyTM8PMLsgwJbDAwkUO2taOMUeAgRYOC2Homz/kCSLupYuPnPvqxxtTf2Ow23dfdz70mEuPHUWFcXZfO68xRxv7+F3LyfuXW23g+4VZ86hprmLLVHzcY5dta38/LkDfPZ3W3jT95/g5G/8nbsTfBj/Y9dR5pZkc+b8gf3BnF9m0n3eyhjDXc8dYF5JNuctnc46e4+5Fytj//IRChluuH8bBxs6+Z8rTmfBtFwuXzuHx3YdpaY5dnmvqUKDlUqak1K+tao5JfNVYGUDAuw50kqvi61Bos0tyR6zntW+Y+109AbD81WO8sLsQcOAzodJMsOiq+YUhXtWx1q7OdbWEx5qBCsQO/NWDucD7c/b6/jz9roR/ESJ3fdKFW09/Vz75gUAnDG/mHULivm/p/cnzLjcWt2M3yt87rzFZHg9PLpt6FDgM3vrufAnz/LtP+1i08FGTpldQElOBi/F+fAGK9HjtPLCQcPC2Rk+ZuRnpn3P6tXDTWyraubjZ8/H4xHmFGczqyAQd97q9if38Y9dR/nqhcvC+9FduW4OYM3bTWUarFTSnJ5DX9AMW2jWLaeKxXZ7ziOZYUCrfQ7VTZ0ExyDNequ9FspJW3c4PStnCGtgjZX7YdGVFYVUN3VR39bDzlrrZ48MVmANBVYe7wjXwvvlCwd5YX8Dfq/wwv7UzmX0BUP84rkDnDm/mNPKC8PHP3feYo619fCAndEWy/aqFpbNyqc0N5NzT5rGn7fXDfrvEQwZvvuX3cwpzmbjjefx4o3n8dMrV3PmgmJ2H4mdkNHS1UdNcxfLYmxkObckJ+3XWv38uQPkB3xceno5YP3ysW5BScx5q4PHO7j18b28Z+VsrjprXvh4eVE2b1s2g9+/fHhKLxDXYKWSNiM/gN9r/ZabirR1GChm69TLmzuCnlVf0FAbNVRS1djJk3uOjSqIba1qJj/gG1JBvrwom57+EPV2EKlu6mJ2YRbeYdZYRVplB8CtVc3srLE+sJfPzh/UxllvtflQE3uPtvFff9vDeUunc+np5bx0oCGlAfovO+qobenmX89ZMOj4+gUlrJ1XxP8+tZ+e/qEfmKGQYUdNC6eVW4H2ohWzOdbWwysR5aIe3FzNniNtfOn8k8KJEmAlkxxq6KSte2hm3x47bXvZrPwh780tzk7rnlVVYyd/23mED545Z9A2OfHmre5+4SA+j/DvFy4bklz0sQ3zaOrsi9lbnSo0WKmkeT0S3oU4ZcOAdpr6tiorGy7ZXY6d4BY9FHjDA9u46u5XOO+Wp7j3pZH9ZrrlcDMrKgqHLPR1dk525q2id0x245SyAnweYWtVEztqWlhQmkNu1P5fp5UX4PcKGysb+fzvt5KX6ePmS09j/cIS2rr7ea02NRUujDHc8Uwli6bncu6S6YPeE7GG9+pausOFZCNVHm+nvaefFXZv7Lxl08nye/mTnRXY2dvPLY+9zsqKQt516qxB5zrBOVYVemeN0fIYwWpeaQ71bT2u0+rH229fOoxHhI9tmDfoeHjeKqJX3NrdxwObqrjotNlMzx/aM1+/sITF03P51YsHp2wauwYrNSLOh3KqelbOMGBNc5errUGiOQkZkUkWlfXtvHygkX85bRb5WX7+/Y87eNP3n+SeFw+6vu6xtm72HGkLf8BEcgK1M29V3dRFeWFywTvg97J0Vh5bq5p5raZlyBCg0+aUsgJ+9eJBdtW18r33nsq0vMzwnEaqhgIf2FTNa7WtXPOm+TErcJy9qJRls/K575WhQ4HbqqyAucKe18vO8HHesun8ZccR+oMhfv7sAY629vDVdw3tNTi9pl0x1mbtrmujOCcjZvmquTH+m6eTZ9+oZ828oiE7EswpzmZ2QYCNEfN0979SRUdvkKvOmh/zWiLCRzbMY2dNK69GVT2ZKjRYqRFxFsWmYo0VWBXGneGzZOerwNqixO+VQetu7ttUhdcjfP2i5Tz8mbO49xNnMr8kh689/BoHjrub63hm73EAzlkybch7A0V9u+juC1Lf5n6NVaRVFUVsOthEbUs3p5QN7UEArJlbRDBkuHxNBe84eSYA0/MCLJ6em5Jg9fDWGr78h+2ctaiES1aVx2wjIlyyajZbq5qHzBVtq24mO8PLwmm54WMXrZhNY0cvj26v5f+e3s87T57B2nnF0ZdlZn6Aomx/7GB1pJVls/JirrmbWzy+G28mo6Wzj111rTF/yXHmrTba81bBkOHuFw5yxrxiTi0f+suK472rysjL9CXMnDyRabBSI3LSzDxyM30pS7AQEQqzrKHAkQQrr0eoKMrmsP1bdl8wxIObqzlv6XSm5wUQETYsKuXmS08F4Pl9x11d96nXj1GamxlzGCo7w0dJTgbVTZ3hTEBnsXAyVlYU0tNv7Q8WmbYe6dLV5VyyqoyvXbR80PH1C0vYdLCRXvv8kfjz9jq+eP82zpxfzF0fWZuwV/svp80G4JGtg+dOtlW3cGpZwaD5unOWTCMv08eXH9xBT3+IL5+/NOY1RYTls/OHJFn0B0O8fqSNZTNjB/BYvel08crBRowhZrAC63hDRy/7jrXz2K6jVDd18fGz5yW8Zk6mjyvOnMOftteGK51MJRqs1IhcuW4uT9xwTniRbCoU2vNWyayxihS51uqfu49xvL2XD5xRMajN/NIcZhUEeGH/8MGqPxji2TeOc86SaXEL05YXD67mMZI5vFURWYYnxxgGBFg6M58fXb5yyHzWhoUldPYG427kOJy/v3aE63+/hdPnFPLzj64NL0aOZ3ZhFmfML+ahrTXhuZPe/hC7a1vDQ4COgN/L20+eQW9/iCvOnMOCiF5XtOWz8tlzpI3+4EDQPdjQQU9/KGZyBUBBlp/inAxXSRZ7j7aN687CGysbyPB5hix3cDhBbGNlA794/gDlRVm8ffnMYa/76bcsoig7g289+tqUm7vSYKVGxO/1xJwIHg1n3irZNVaOucXWWitjDPe9cpiZ+QHevHjw8J2IsGFhKS/ubxi2mvi26mZauvo496ShQ4COgTqJyS0IjjS/NIeCLD9zirMpyHJXD9Fx5vwSRJKftwqFDL996RDX3fsqp5YX8MurzhiUsZbIxStns7++g1128sOeI630BkPh5IpIH10/j7Xzirj+vMUJr7l8dj69/SEqI4Znd9VZCRfxghVYvfDhhgGDIcMH7tjIFXe+NGwVjlR56UAjqyoK4/4yV1GcxeyCAL9+8RAvH2jkYxvmucoiLcjy82/vOIlXDjbx5x2pX2OXzjRYqbThZAQmm7bumFOSQ3tPP6/VtvL03nouW1OOzzv0n/hZi0posucUEnnq9Xo8Am9aXBq3TUVRNjXNXRxu7Ex6jZVDRPjQmXN4/5rYc0WJFOVksHxW/qDMsuHsqG7hkp++wFf/uJM1c4v51cfPGNJjS+TCU2bh8wiP2GnU2+xFzafFmG9ZUVHIA5/cQElu4v29ls+yzo2ct9pd14rfKyyaHr9HNs9F5ZLdda00dvTy+tE2vv7wzoRtU6Glq4/Xals4M84QIAzMW71xrJ2cDC/vX1sRt220y9dWsGxWPt/7y55xC77pQIOVShtOz2okc1YwEORu+cfrhAy8f03sD4CzFlnBZ7ihwKf31rNqTlH4vmIpL8qiL2h49VBT0musIn3p/KVc99bEvY941i8oYfPhpmHT8ls6+7jpoR28+/bnqGnq4keXr+Dea84kP5Bcb64oJ4M3L5nGo1trCYWs4rXFORmjygxdMC2HDJ9n0C8Qu+taWTgtN+Ec2tySHGpbumKu/XI4gfyDZ1TwwObq8FYdY2XTwUZCxlpPlYgzFHjZmoqk/ht4PcI3LlpOTXMXdzzjfvuWkejuC3LbP98Y0+/hlgYrlTYWTc+lojgrPHeVLGeu68nX63nT4tK4w4kz8gMsnJbD8/vi90aOt/ewvbqFc2NkAUYaXHoqNckmydqwqITe/hCvHmpK2O4z977KvS8d5mMb5vHEv53DJavKXVe2j3bxytnUtnSz6ZBVTmhFecGIrwXWsPKSGblDelaxElsizSvNxpiB3aVjeWH/cRZMy+E77zmV9QtK+PrDO9kTp2JGKrx0oJEMr4fT5xQlbPf25TN416mzwmWtkrFuQQkXnjqTnz69b8hC+FR5cs8x3vnjZ7jlsb1jcv1kabBSaePaNy3gsS+cM+IPvcge2eXDDKuctaiUlw/Ez6J7Zm89AOeeND3m+47I0lPJrrFKlbXzivF6JOE2Ei/sP85z+47z7xcu4xsXnZx0byra25bNIMvv5d6XDrGvvn1QaaaRWj4rn911rRhjaOzo5WhrT8L5KrDKbEH89PW+YIiXDzSyYWEJXo/w3x9cSV7Az6d/+yrtPWOzmHhjZQMrE8xXOYpyMrj9Q6cnvQDeceMFywgZuPmve0Z0fjxHW7u55tebuOruV/B6hHuuPiOl1x8pDVYqbXg8MqrswoDfy4z8TIqy/bx9+YyEbTcsLKWrLzhkp17HU6/XU5qbwcmzE39YRqbuT1TPKi/g59SygrhJFsYYbv3HXmbkZ3Llurkp+Z45mT7etnwGD2+rxRjiZr0lY/msfBo6ejnW1hOuXDFcsJo3zFYhO2pa6OgNsn6BNfQ7PS/ATz6wioPHO/jWI6+N+p6jtXX3sbOmZdghwFSoKM7mk+cs5JFttSkbqjPG8NnfbeG5N47zlQuW8rfr38ybFiceXRgvGqzUCeUTZy/gxguWDbttyfoFJXgk9nqrYMjwzBv1vHlx/JR1R8DvDVdXGMkaq1TZsLCEbVXNMXsLz7xxnE2HmrjurYtTutTg4hWzcbKnYyVXJGv57IEki4FgNbSAbaTinAxrL7M4PStnvioyeKxfWMJVZ83nD1tqUr7txqaDTYQMCZMrUun68xZzyaoybnlsL//zxOgD1p+21/HygUa+ftFyPnnOwqQryYyl9LkTpVLgmjcvcJVZVZDt55SygphJFtuqm2nu7OOcBCnrkZx5q1TVSRyJDQtL6Q8ZXooaCrR6Va9TVpjF5XESTkbqzUumUZDlp6wwa9hsPzeW2oFpV10ru+pamZ6XOex1nb3M4vWsXtzfwNKZeUOuc9VZ8zDGcM+Lqd12Y2OlVQ1/uPmqVPF6hB9etoJLVpXxw3/s5fYn94Xf6w+GeH7fcb73l93c8cx+nt5bz7HW7rjrszp7+/nuX3ZzSll+3OSkieQ+X1WpE8yGhaXc9WwlHT39g9YYOSnr0Wu04ikvymLzoaYJGwYEqzJ7cU4GX/p/2/nfD50e/s3+n7uPsa26hf+69NSU/5ac4fPw9X9ZTqqWpuYHrLVmu2pbqTzeMewQoGNeSU7MYr49/UFeOdjIFWfOGfJeeVE271g+k9+/cpjrz1s87GJotzYeaGRFeWHKrueGE7CMMfzg76/T2NFLZ28/f3/tKI0dvfg8Qn/EmsKibD8fP2s+17110aD54Z8+tZ+6lm5u++CqEWe1jiXtWakp66xFJfSHDC8fHLzx39OvH2NFRSFFOfFT1iMtn5VvF1tN7SLpZGRleHngk+spyPbzobte4jcbDxEKGW55bC/zSrJ57+nJr+Fy49LV5bxvdequvXxWPtuqm9l3rM11sJpbYlURiax+AbD1cDM9/SHWxxmSu+qseTR39vHw1qFV5Eeivaffnq8anyHASF6PcMv7V/KelbP5+XMHeGRrLWcvKuX/rlzNjm++k61ffzu/v3Yd37xoOavnFnHLY3v54v3bwin/hxs6+dkzlVyyqow1Meo3pgPtWakpa83cYjK8Hl7Yd5y3nDSdrt4g//3PN9hW3cIX377E9XU+fvZ83r+mYsJ/G104LZc/fvosrv/9Fm56aCePbqtld10rP7p8Bf4Yi6PT0bJZ+fzttSP23xPPVznmleTQHzLUNncPKtX1wv4GPBJ//uiM+cUsm5XP3S8c5PK1FaNKvQdrfVUwZCYkWMFAwPrw+nmcPDt/0PxkVoaXdQtKWLeghI9umMftT+7jh//Ya63V+vBqvv3nXfg8wlcuiF2/MR1osFJTVlaGl9PnFvL8vgaefaOer/5xJ4cbO7lsdTlXnx17q4ZY/F6P617YWCvI8vPzj67l+3/fw8+etvameveKsom+LdciN54cbo1V9Dl3PlvJt99zSvj4i5UNnDy7IG4JKxHhqg3z+NKD29lY2RjecsWNqsZO/vPPu+npD7Joei6LpufyUmUjPo9w+txC19dJNa9Hwpt1xiMiXPfWxVQUZ/P/PbCd83/8LEdau/nS+ScxI8Ul1FJJg5Wa0s5aWMotj+3lwz9/mfmlOdx7zZlsWBi/vNJk4PUIN16wjHMWT2NGQWDCe3zJcAJPhs/D/NKcYVpbTikr4Jo3zefOZw+wZl4RF68so6s3yJbDTXw8zv5QjnevnM3Nf9vDL58/4CpYGWP4w6s1fMNOey8vyuL5/Q3h9Xpr5xWRnTE5PlYvXlnGrIIsrr1nE/NLc5L6BW0iTI6nqtQYOf+Umfx64yE+uLaCT79lUUpTuyfahkWTL+jOLgiEi/rGqusYz5fOX8rWqma+8uAOls/K52hrD31BM2wACvi9fPCMCn761H6qGjupKM5mZ00Ldz1bydN76zmlrIA3LS7l7EXTmFUQ4KaHd/Ln7XWcMa+YW96/goribIIhQ3VTJ/vr21k83d3QZbo4Y34xT9xwLsaYYZd7TDSZTGXmRcQDXA/8KzAPqAfuB75ujHG1A9uaNWvMpk2bxuwelVKj89On9lOam8FlSaZPH23t5l0/eZaCLD9vWjyN32w8xLZvvGPYavJ1LV2c/V9Pct7S6XT09vP8vgZyMry8ddkMdte1su9YO2D1WAX44juW8K9vXjipeqyjJSKbjTFrJvIeJlvP6kfA54A/ArcAy+yvV4nI24wxI9+BTimVFj517sIRnTcjP8BPPriKK+96if31HayeW+Rq25NZBVlccMpM/rS9jpn5AW68YCkfOGNOeK6rrqWL5944zmu1rVx6ennC3XzV2Jk0wUpETgY+C/zBGHNpxPEDwE+ADwD3TtDtKaXSwIaFpdzwjpP4wd9fj5uyHss3330yF68s45wl04asR5tVkMVlayq4LNU3q5IyaYIV8EFAgB9HHb8TuBm4Eg1WSk15nzpnIaW5Gbx1aeL6kJFKczOHrSepJtZkClZrgRDwcuRBY0y3iGy131dKTXEej3D52qFVK9TkNjlWClpmA8eNMT0x3qsBSkUkPRa7KKWUSqnJ1LPKBmIFKoDuiDa90W+KyLXAtfaXPSIy9ntbTw6lQOLtcqcGfQ4D9FkM0Gcx4KSJvoHJFKw6gXg74QUi2gxhjLkDuANARDZNdApmutBnYdHnMECfxQB9FgNEZMLX+0ymYcBarKG+WHsGlGENEQ7pVSmllJr8JlOwegXrfgftsSwiAWAlMOGRXyml1NiYTMHqPsAAn486fg3WXNVvXV7njhTe02Snz8Kiz2GAPosB+iwGTPizmGzllm4DrsOqYPEXBipYPA+8VStYKKXUiWmyBSsvVs/qWqzagMexelxfN8a0T9ydKaWUGkuTKlgppZSamtJuzkpEPCLyBRHZIyLdIlIlIreIiKvNbZI9X0QuFJEXRKRDRBpF5AERibmxi4icJCIPiUiT3f5ZEXnraH7eVP4soz3fzbMQy5Ui8nsR2ScinSJyWEQeEZEzU/Fzp+JnGe35yfy7iDrvUyJi7D9jskdHuj8LEXmXiDxu/3/SKSJ7ReR/RvrzpvJnGe35SX5erLf/v6gWkS4R2S8id4rIgtH8zKn6WUZzvoi8X0R+KSLbRKTP/vc+L8G1Z4vIr0Wk3n4Wm0QkuXKLxpi0+gP8N1YixR+wkiduBfqAJwBPKs8H3otVwmkL8GngRuAoVpr87Ki2C4EG+/0b7fZb7Gu/bao8C6w1bcZu9x3gauAmoNo+/8qp8ixifI/ZQAvQZn+v0qn2LIBv2Nf+G9Z88ieA/wAemkrPAjgfCAJ7ga/Yz+FHQAfQCJRN8mfxFNAFbAT22OfNi3PdYqASaLf/LVxrn2+Aq1z/fGPxD2gUD/tk+x/Dg1HHP2v/YFek6nzAj1Wm6RCQG3F8pf2P7I6oa9xvH18ZcSzXPv917CHVE/1ZYC0kPyfG95uBNYd41M3/GCfCs4jxff4IvArcwxgFq3R+FsDb7Gt8LdU/9yR8Fn/HqqZTGnX8E/a1Pz9Zn4V9fA7gs//+PyQOVt+3378o4pgXq85rQ+TzTHiP4/GPKokH/h37h3pT1PEA1m8kf0nV+Yn+xwL+ifUbst/+OgerpNM/Y7T9mn2dM6bCsxjmez5oX2fmVHsWwCX2h9YZwN2MXbBK22eB9Rv4UQY+xHJJ8S8uk+hZvAi0At6othfa17lmsj6LGOcOF6yqgX0xjn/YPu/9bn7GdJuziltZHdjK8JXVkznf+fuLMa6zEcgHlthfnwZkJmgbeb1USddnkUg51m+TzS7aJiOtn4WI5GP9D/szY8zLMc5LpbR8Fva8xpuBl4CrRaQGazi03Z7fHIv9N9LyWdj+DuQBvxKRFSJSJiLvxNo0djfw+2HuLVnj+SxcE5FZWBWGNsZ4O6nPznQLVqOtrJ7M+bMjjsdqC9ZDTrZtqqTrs4hJRC7E6lXcZ/8DT6V0fxb/hfX/0o0J7iFV0vVZLMIa2lmHNfdxJ9Ycz/8BlwFPikh2gvsaiXR9FgDfA34KvA/rw74aax6vElhnjGlLcF8jMZ7PItn7cq4R67rg8rMz3QrZjriy+gjOd/7HidU+si1Jtk2VdH0WQ4jIYqx5mhrghnjtRiFtn4WInAX8K/AhY0xLnO+RSun6LPLs12lYQ1x32V//UURasRIvPor1AZ4q6foswBoSrgEex5rLbATOwpoD+r2IXGyM6YvzvUdiPJ9FsvdFnGsn9dmZbj2rTqzhtlgSVlYfwfnOa6z2o2mbKun6LAax03b/iTX2fIExpj7BPY1UWj4L+zfNO4DHjTG/S/D9UyktnwVWZhhYQ0n3RLX9lf16boL7Gol0fRZgzVteDVxmjPm5MeaPxph/A64HLsAK3Kk0ns8i2fsizrWTum66BavRVlZP5vzaiOOx2sJANzWZtqmSrs8izF5X8STWRPrbjTE7EtzPaKTrs/gMsBS4VUQWOX8Y6GXMH4M1Nen6LKrt16YYQ0l19mtRgvsaibR8FiIyB/gQ8GdjTFdU2wfs13MS3NdIjOezSPa+nGvEui64/OxMt2A12srqyZz/iv26PsZ11mFl8uy1v96B1Y2N1xYX95asdH0WznXmYa2VKMAKVFuGuZ/RSNdnMde+7l+BNyL+vNd+/2Vg+zD3lqy0fBbGmKPAYaA4xtxUuf16bJh7S1ZaPgsGPoS9Mdr6ol5TZTyfhWvGmDqsYLQuxtvJfXamMn0yBemXp5I41//KiGMLgaWjON+PFfWj102swBpvvivqGg/Yx1dEHHPWWe0l9eus0vlZzAUOYGX9rZ2q/y7sY++L8edJ+7pXAe+ZCs/CPu6kP38h6vgtuFjrc6I8C6xFsP12+8Koa3/ZvvYXJ+uziPG9h0td/wHx11k1AXmufsZUPrAUPfTbGFhF/Qn7H3of1m/xnoh2BwEz0vPttpcxeEX6V7DWiRwhaoU5VrZTo/3+VxioYNEPvHOqPAusIa5K+7o/Aa6M8WfGVHgWCe71bsa2gkVaPgus9O3dWB/ePwU+CfzG/l7/JGrN0Qn+LH5oX/cA8O/2s7jHPn8fkD/Jn8WbsSrX3ISVgm7sn/km4KaotiX292wDvoVVwcL5he5q1z/fWPzPNMoH7sXKKHsda+itBqvsR25Uu3gP3NX5Ee3/xX7YnVhR/v8BC+O0XQY8jNWj6ASeY4xKLaXrs8Cqdm+G+XPuVHgWCe71bsY2WKXtswBKsQJVLVbmWCXwn0BgKj0LQLBKFr2EVWaoz76H24Fpk/1ZAN8kwWdAjPZlWMH6OFYW4KvA5cn8fFp1XSmlVNpLtwQLpZRSaggNVkoppdKeBiullFJpT4OVUkqptKfBSimlVNrTYKWUUirtabBSSimV9jRYqSlNRM4VESMiH5voe3FDRFaKyD9FpMm+729O9D0pNR7SbT8rpcaEiKwE3gPcbYw5OKE3M0Ii4gMexKpT9zWsSiqpLpSrVFrSYKWmipVYGwA+hVVuxvEMkIVVDifdLbD/3GCM+Z+JvhmlxpMOA6opzRgTMsZ0G2OCE30vLsy0XxuHayiW3DG+H6XGjQYrdcKz53V+aX/5pD3XY0Tk7lhzVpHHROTTIvK6iHSLyA4R+Re7zaki8jcRaRWRBhH5iYj4Y3zvxSJyj4jUiUiviBwUkR+ISE6SP8NTwNP2l7+M+BnmRd3vZ0RkF1ax0H+LOP9yEXlORNpEpFNEXhKR98X4Ph4RuVFEDtg/804R+ZCIfNP5fsnct1KposOAair4AzALa2uC72JtYwGwn/hbeYO1E3ARcBfWh//ngD+KyGXAncDvgIeAd2Dt+3MMa08nAERkNfAE1tzSz7CqWK+wr3OWiJxjjHE7/PifwPNY203cATxrH6/HqoQP8Hms7RjuxNq2osq+j+8AXwX+hjXXFQIuAR4QkeuMMbdHfJ9bsbZefwb4ETAdq1J4pcv7VGpsjEWpev2jf9LtD/AxYmxfApxrH/9YjGM1QEHE8dPs4yHgvVHX2QzURR3bBuwhanM5rEAx6Hu6/BmG3GvU8UZgetR7p9vvfTfG9R7C2uE2z/76JPtnG7T3lH2NEAk22NM/+mes/+gwoFLx3W2MaXG+MMZsx/pwrzXG/CGq7XPATGeeSEROxQpu9wKZIlLq/LHbdmD1yFLp18aY6K3jP4QVZH4VeQ/2fTyCtZmms1X7xVj7MN1qIubwjDGvAo+l+F6VSooOAyoVX6yhrybs4bUYx8EahmvH2qgTrJ1RvxXn+jNGdXdD7Y1xbBlWANqT4DznPhbYr7Ha7iL1wVUp1zRYKRVfvAzBRJmDEvV6C9ZcUSxNcY6PVGec+zHABcS/79dSfB9KpZwGKzVVjPeW2G/Yr0FjzOPj/L2j7+N84LAxZvcwbZ2e5FKs5JNIy1N9Y0olQ+es1FTRbr8Wj9P32wLsBD4pIgui3xQRn4iMx73cY79+V0S8Me4jcijyEayg/sXItiJyOvC2Mb1LpYahPSs1VbyCldH2VREpwkpwODBW38wYY0Tkw1ip69tF5BdYw23ZwCLgvcCNwN1jdQ/2fbxirzP7JrBVRB4AarFS+VcDFwIZdts9InI7cB3whIg8iJW6fh1WZuOqsbxXpRLRYKWmBGPMYRH5OPBl4KdY9fV+xRgGC2PMVhFZhRWU3g18EmjDKvd0N1aK+JgzxnxLRDZhre/6PJCDtSZsp30s0vVYa7SuBX6ANYz4GWAxGqzUBBJjxnsoXyk12di9s28A880kLQSsJjeds1JKKZX2dBhQqQkkIllAwXDtjDFHxuF2lEpbGqyUmliXM1BkNxEZvolSJy6ds1JqAonILODk4dpN8FotpSacBiullFJpTxMslFJKpT0NVkoppdKeBiullFJpT4OVUkqptKfBSimlVNr7/wEh9Ey8moGgAQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"BEC_center_y_time = xr.DataArray(\n",
" data=BEC_center_y_val,\n",
" dims=[\"time\"],\n",
" coords={\n",
" \"time\": runTime.runTine.to_numpy(),\n",
" }\n",
")\n",
"\n",
"# desired number of Fourier modes (uniform outputs)\n",
"N = 1001\n",
"\n",
"# calculate the transform\n",
"BEC_center_y_time_array = BEC_center_y_time.to_numpy()\n",
"BEC_center_y_time_array = np.array(BEC_center_y_time_array, dtype=complex)\n",
"f = xr.DataArray(\n",
" data=finufft.nufft1d1(time, BEC_center_y_time_array, N),\n",
" dims=['time_freq'],\n",
" coords={\n",
" \"time_freq\":np.linspace(-0.125/2,0.125/2,N)\n",
" }\n",
")\n",
"\n",
"np.abs(f).plot()\n",
"plt.xlim([0, 0.01])\n",
"plt.ylim([0, 2000])"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "only size-1 arrays can be converted to Python scalars",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32md:\\Jianshun Gao\\Simulations\\analyseScripts\\20230509_Data_Analysis.ipynb Cell 35\u001b[0m in \u001b[0;36m<cell line: 11>\u001b[1;34m()\u001b[0m\n\u001b[0;32m <a href='vscode-notebook-cell://127.0.0.1:8080/d%3A/Jianshun%20Gao/Simulations/analyseScripts/20230509_Data_Analysis.ipynb#X46sdnNjb2RlLXJlbW90ZQ%3D%3D?line=2'>3</a>\u001b[0m a \u001b[39m=\u001b[39m datetime\u001b[39m.\u001b[39mstrptime(\u001b[39m\"\u001b[39m\u001b[39m2023-05-09T14:35:00\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39m%\u001b[39m\u001b[39mY-\u001b[39m\u001b[39m%\u001b[39m\u001b[39mm-\u001b[39m\u001b[39m%d\u001b[39;00m\u001b[39mT\u001b[39m\u001b[39m%\u001b[39m\u001b[39mH:\u001b[39m\u001b[39m%\u001b[39m\u001b[39mM:\u001b[39m\u001b[39m%\u001b[39m\u001b[39mS\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m <a href='vscode-notebook-cell://127.0.0.1:8080/d%3A/Jianshun%20Gao/Simulations/analyseScripts/20230509_Data_Analysis.ipynb#X46sdnNjb2RlLXJlbW90ZQ%3D%3D?line=4'>5</a>\u001b[0m a \u001b[39m=\u001b[39m xr\u001b[39m.\u001b[39mDataArray(\n\u001b[0;32m <a href='vscode-notebook-cell://127.0.0.1:8080/d%3A/Jianshun%20Gao/Simulations/analyseScripts/20230509_Data_Analysis.ipynb#X46sdnNjb2RlLXJlbW90ZQ%3D%3D?line=5'>6</a>\u001b[0m data \u001b[39m=\u001b[39m pd\u001b[39m.\u001b[39mdate_range(\n\u001b[0;32m <a href='vscode-notebook-cell://127.0.0.1:8080/d%3A/Jianshun%20Gao/Simulations/analyseScripts/20230509_Data_Analysis.ipynb#X46sdnNjb2RlLXJlbW90ZQ%3D%3D?line=6'>7</a>\u001b[0m a, Ncount_time\u001b[39m.\u001b[39mtime[\u001b[39m0\u001b[39m]\u001b[39m.\u001b[39mitem(), periods\u001b[39m=\u001b[39m\u001b[39m2\u001b[39m\n\u001b[0;32m <a href='vscode-notebook-cell://127.0.0.1:8080/d%3A/Jianshun%20Gao/Simulations/analyseScripts/20230509_Data_Analysis.ipynb#X46sdnNjb2RlLXJlbW90ZQ%3D%3D?line=7'>8</a>\u001b[0m )\n\u001b[0;32m <a href='vscode-notebook-cell://127.0.0.1:8080/d%3A/Jianshun%20Gao/Simulations/analyseScripts/20230509_Data_Analysis.ipynb#X46sdnNjb2RlLXJlbW90ZQ%3D%3D?line=8'>9</a>\u001b[0m )\n\u001b[1;32m---> <a href='vscode-notebook-cell://127.0.0.1:8080/d%3A/Jianshun%20Gao/Simulations/analyseScripts/20230509_Data_Analysis.ipynb#X46sdnNjb2RlLXJlbW90ZQ%3D%3D?line=10'>11</a>\u001b[0m (\u001b[39mint\u001b[39;49m(a) \u001b[39m-\u001b[39m \u001b[39m1683642540000000000\u001b[39m) \u001b[39m%\u001b[39m \u001b[39m5.4e11\u001b[39m \u001b[39m<\u001b[39m \u001b[39m3.6e11\u001b[39m\n",
"File \u001b[1;32mD:\\Program Files\\Python\\Python38\\Lib\\site-packages\\xarray\\core\\common.py:159\u001b[0m, in \u001b[0;36mAbstractArray.__int__\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 158\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__int__\u001b[39m(\u001b[39mself\u001b[39m: Any) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m \u001b[39mint\u001b[39m:\n\u001b[1;32m--> 159\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mint\u001b[39;49m(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mvalues)\n",
"\u001b[1;31mTypeError\u001b[0m: only size-1 arrays can be converted to Python scalars"
]
}
],
"source": [
"from datetime import datetime\n",
"\n",
"a = datetime.strptime(\"2023-05-09T14:35:00\", \"%Y-%m-%dT%H:%M:%S\")\n",
"\n",
"a = xr.DataArray(\n",
" data = pd.date_range(\n",
" a, Ncount_time.time[0].item(), periods=2\n",
" )\n",
")\n",
"\n",
"(int(a[0]) - 1683642540000000000) % 5.4e11 < 3.6e11"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"540000000000"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"1683643080000000000 - 1683642540000000000"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"datetime.datetime(2023, 5, 9, 14, 30)"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from datetime import datetime\n",
"a = datetime.strptime(\"2023-05-09T14:30:00\", \"%Y-%m-%dT%H:%M:%S\")\n",
"a"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAAE8CAYAAABkTn4YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABOO0lEQVR4nO2debwfRZXov+deEuAmKnBZg+ZGFhdGECUIqLjhPuM+zDNEFEGiUTM6bqOi44o6Lrjgc4mCC78MT3mijvPmoYPiCCM+CSruMrIEDCBhkxC2JLfeH1XN7du3u7p679/vnu/nU5/fvd3V3ae7q+rUOXWqWowxKIqiKEqfGOtaAEVRFEVJospJURRF6R2qnBRFUZTeocpJURRF6R2qnBRFUZTeocpJURRF6R07dC3AKLD77rubZcuWdS2GoijKUHHppZfeZIzZI22fKqcaWLZsGevXr+9aDEVRlKFCRDZk7VO3nqIoitI7VDkpiqIovUOVk6IoitI7VDkpiqIovUOVk6IoitI7VDkp9bJuHSxbBmNj9nfduq4lUhRlCNFQcqU+1q2DVavgzjvt/xs22P8BVq7sTi5FUYYOtZyU+jjllBnFFHHnnXa7oihKAVQ5KfVxzTXFtiuKomSgykmpj6VLi21XFEXJQJWTUh+nngoTE7O3TUzY7YqiKAVQ5aTUx8qVsHYtTE2BiP1du1aDIRRFKYxG6yn1snKlKiNFUSqjlpOiKIrSO1Q5KcqQofOclfmAuvUUZYjQec7KfEEtJ0UZInSeszJfUOWkKEOEznNW5guqnBRliNB5zsp8QZWTogwROs9ZmS+oclKUIaKrec4aIai0jUbrKcqQ0fY8Z40QVLpALSdFUbxohKDSBaqcFEXxohGCSheoclIUxYtGCCpdoMpJURQvGiGodEGnyklE3iYi54jIlSJiROTqnPxHiMj5IrJZRG4XkfNE5NCMvEtE5KsisklE7hKR9SJybEbeHUXkvSJylYjcIyJXiMg7RGRB9btUlOFGv4SidIEYY7q7uIgBbgF+BhwG3G6MWZaR90jgh8BG4NNu82uBPYHHGmN+Fcu7G7De7TsN+BNwHPBE4ERjzJcS5/4W8DzgTOBi4CjgROArxpgT8u5j+fLlZv369QF3rCiKokSIyKXGmOVp+7oOJd/fGHMlgIj8Gljsyfsp4F7gCcaYje6YrwO/Az4GPD2W963Ag4HnGmO+4/KegVU8HxWRc4wxd7jtz8YqptOMMW90x39RRG4D3iAia40xP67lbhVFUZQgOnXrRYopDxE5ADgcOCdSTO74jcA5wFNFZO/YIccBV0SKyeXdDpwO7AY8O5EX4BOJy0b/vyRERkVRFKU+hiUg4nD3e3HKvp8AgnULIiL7APu67Wl54+eL/t5ojLk2ntH9f10ir6IoitICw6KclrjfjSn7om37lsgb5U/LG+XfN2OfoiiK0hDDopyiQNZ7UvbdnchTJG/0d1reKP9E2g4RWeUiANdv2rQp43BFqY8217fTtfSUrhkW5RQtnrJjyr6dEnmK5I3+Tssb5b8zbYcxZq0xZrkxZvkee+yRcXjLaIsyskTr223YAMbMrG/XxCtu81qKksWwKKfr3G+aiy3atrFE3ih/lutuX7Jdfv1iRFsU1beWNte307X0lD4wLMrpEvd7VMq+IwEDXApgjLkeq1COzMgLdg5U/Nz7isiD4hnd/0sSeftLVovyutd1I08NjKi+LUWb69vpWnpKHxgK5WSM+SNWSRwrIlHAA+7vY4EfGGNuiB1yNrC/iDwnlnccWAPcBvx7Ii/A6xOXjf4fjqYwq+W4+eahbc21Bz9Dm+vbzfe19OLW+u672zTfLfdOMMZ0loDjgXe49Gfg1tj/xyfyPhYbuHAFVnG83v19B/DIRN5J4GpgM/AeYBVwAdbCOilFju+4fV8ETnK/Bjgr5D4OO+wwUzeDgTFTU8aI2N/BIOeAqSljrIExN01N1S5fG4ik345I15K1z2BgzMTE7OcwMRFQLnp+rb6Rdu/JshdVqfnwPDIp3EClA6w3Wfoha0cbCbsckclIP0zJfxTwfaeQNgPfBR6dce59gbOAm7BRdz8D/kdG3p2A9zuFdg9wJfBOYEHIfdStnEo1DoOBv0YNIVn6dkh1bWVqag8KX2ty0qY2rts1vj5eMs0XhT2HGnsvvVVOo5LqVk6lG+XJyZFqzedzD74vtP0O2lLAWdfJstZHzClRjRp7jaqchkw5lXZnBbQkbfa+66Brebu+fte0ab22pQh91yliOQ2xU6IaNfrbVTkNmXKq1CB4WlO1RIqhz6vdcb+2FKHvOnljTmo5GbWchin1YswpAB3DKYY+r3afQVuKMO86aeNt0f753FG5Dx1zGp7Ui2i9ADT6rRj6vNLboaYi1vpgOfkYRRdv6Xsa9Wi9UUlNKKcmGLF4icbJasQmJ6vXy2Fq6OJjMU1aD30Yc2qCtHfdh/ffB7e1KidVTmYwMGbBgrkN7cKF4YWxDxWqTdIq74IF9plVqdB9aBTK0IZl03W0XhPXaaIM1UEf3NaqnIZUOdVZgXxWQKgsw9igViX5DuqwPvvQKJRB3ZzFKRL9Nz7ebn3qw/tU5dRj5ZSlgLJ8/atXhx2fpGpBHNYGtW7qqNB9aBSShJQjLQPFKTpvqs0OXx/epyqnhlNZ5VR2vkU0W39yMtw9kLe6UV6F6GOD2gV1VOg+NApx8qzitsacRpGi86baLAd98Iaocmo4lVVOPldb0QKdV7jz5m/kFcq+NahdUUeF7kOjEKfovB9dXy4Ap9GnEbNBpswKBvc9v7Qxp646fF2PI6tyajiVVU5FTf7QlFW48ywyn6LpW4PaJXVU6K4bhTg+q3g+d0oqhVknKssWmTDHMZgVrTc+Pn+fbYQqp4ZT3ZZT1ZRXuMu66LpuULu+/qjiU0Dz1Z1bqTMWqNG77vDl1ac26psqp4ZTnWNOdaS8QtRVb7hKYc96VicvGpjNkyVPqhhjyo19jnrvvtJ9F9DoXXW4QsYZ21CcqpwaTlWj9bLM+zIpJDQ8bc7T2Fizn0UIHXTPun5aY7GCgbmD4fU1+iI1226wikSNDtEjLk0li3EINHqeiFn7x8frLZeqnBpOVec51Tn2FFJgBgP/gGxUCaOw9Toay6KD7skGMO0ZXYXnpD0n655Xr+6fMmhbWcav19W3pILns2Ut/9C3l5ggT/mGtEl13JIqp4ZTVeVU19hT6ITa0OtFCqqOelZm0D3eS0trLLbjqUFtU7AFL/rO2wwvDr6NBrRW1ajSOkjzLEDKaio+JRR7Npsnp8yayUGvPM9lLae6y6Uqp4ZTVeVUdOxpcrLkl3JdZbmK2aGtvuSLKCrSNpUZdI+ntPDbTMsJ2m0BSvSUi1rLbQQgFLqNhqyDkEaxaUXtm+IRlDEmYF+NqDJjTk2US1VODac6li+KDz5HCsE3ybZwDzdR0u5gIlhBZaUila7MoHta4xC3oFYwMNt9mdsiz2eZ8qL6aDkVGippaFwlRGk3raiDx5sCMvZ5+KlItF5TYe+qnBpOTS78WovnJKOGXMVUacVUprAWGXT3NUyTkzaAA4yZ9mVuC1+LmqGRs1xHWadoo6ftu4055a+hGPM+W05zrhuQcVRC8ZuyAFU5NZx6vyp5Rg3ZjgQrBF97W0elC+mlpaWqyinNYo1+gzsDvkEzT+MVshKIV4aax3xCFMN9DVJDJkGTY06hjytNhtRVMQJa7Kx33KZhH0oX855UOTWceqOcskpPRkNy7fhUsBJInrZJd0URS+pGytf+kOsENYZZjVSOBs8zuIq6aqt2ZUOf+9RUM9ePy1F3tF7WvU1Opp8zXsa96wnmtNjDopy6GhtT5dRwqlM5le6d5EUOpew7LnDMKU3hNFmYB4Pw9QVXMDB3kfCPLVgQJEitEUlpLy5Hg/sMrlzxG7Rc8oJU7rOO244xr4DvXfvKbdXHPCxuva7GxlQ5NZzqUk5FG/x423Dt+JS/dKU0JIXcODnXr6NtKqKUot7n1JQxxzEwN8nkjIsvqzucIDRirnRDsnq1t9tdScG30Or1eTC/KHnvOuvrxmnHrWBgI0UDCv6wPMOulKgqp4ZTXcqpSNBXcv5R5pwfT+lKaxwXLKhx0mNS23iURtFwepFivv80Gp3LkTVwkfggV2kF30Kr19cw6DIUjY7MiiTNXJVk9erUFzkszzC4ONXcI1Xl1HCqSzkVCfpK5i27WkJjnpmscLSM78IXaTzmtPElG+raxpzSaFp5BCq/Oi4zJJ47L0U7P/H+VHw6R2Y9y7GQ+/4Mg5RoA5p2JJQTsBfwOeBa4F7gGuCTwC4peR8KfAu4FdgCXAg8JeO8DwBOBzYCdwO/AVYDEipb05ZTSPRa79aZ82mblAY6z+3iXdOrgk+iUrSer9Vpw0+S4zaswjA0qEUp6jaOUnwCuHdVkpxy3vdnmitfAx2uoVdOwJ7A1U4pnQ680v3eC/wcmIjl3R+4Gfgz8Dbg1S7PVuCpifMuBH7q9p0GnAycCxjg3aHyNT3mFFIPVjAwN5Iy7tJGjUi7RtCI+gxlB6xzDw6452SjtWhRgGszrxeZIdPmyanc1+F7ZYXGGUsyLK6osmU7eVgRheVdlcRTzht3obdBAx2uUVBOn3AKY0Vi+wq3/R2xbV8HtgOHxrYtBjYAf4hbRE5xGWBN4rzfcIpvKkS+pqP1streqKx4/eBNtzJZ7qXFi7MrbUrjWTTUN+jggHvO8j7mHp71UqIY4RSZti6cMCcsGHjPXSTossw4YwhDMYhfo9VYxOWXWteyGu3YA6safFQ3pfR6pfDSdEZBOV0G3Jl0tQFjwF3AFe7/Rc419/2Uc7zTKaLHxLZd5Nx+OyXyHu3yviVEvqbnOWU1WNEYbGZvro1PbfpqXdr1M8acovtMutiCK45Pi3vuuXRQhM8yjDRJvEs+NmamIXVdw3hApe+VJWWtc1X2QiHkLZNsSC9c7bHMS5btvOKTVFBXMWW2I9Z6DegEhkaGttEBKG0Z+7R4Sc06Csrp98AtGftucYpkd+Ao9/f7U/I9ze17jft/zCm8i1Ly7ghMA+eEyNfGJFxvT6fLVUR9104shnfX4snc1ZnzLIfc3l4B18NgUPyRRTJ43TtpK/PGUtq6hnmvUGRunrrGGUMthy4spzTZNshULWU7rTxlOQKyLjUrYtTTswpVfG10APKMfi95PaiCjIJy+oZTLIcmth/qthvg0cCL3N+rU85xkNv3Aff/pPv/axnXvBH4cYh8na8QUTSSoi3LKcfnntaO+ipOkNsv0Cc1GOR/0yrtWtExKxj4l07KSUXXNUyznCI5bpKwcP0yr9D3rtogTTZvUELg0gtZCnnRIpvip0saRpHlNE3AIpGxtRT70gHIM/qjWyncGS6hWUdBOR3txpEuB54NLAWe5caQ7nVK5vHA8e7vE1POsZ/b9wn3/4Pc/1/NuOY1wC88Mq0C1gPrly5dWvil+CjsD/b5/doYc6rgc09WxqJG4JxbCtSCZaK2kilz6aSAFLquYVz8tFs7YcHAbF1Y7h2HuLK6HqxPKw9eq9XjNo4TaskkrfbjGJgtkvG8cwp5vF77vjjQNHne79zhvBoHJYdeOdl74Fjg+piltA0bWh5F1x0yCpZTJX9wmkYrMfIZGi12376AwenQzlZoo+GtFwH37DtXFK2Xd81Mt1rAwaGWU3KsefXq2SHvNy3OeGAZQSfR8w3pBHQZAOFr61cwMFuSz72g4EU6QfHVI7wRkgUtijYCabOu67vf3L5mjeGcI6Gc7H0w7lx5RwN7um1RKPjEKIw5dR0p5Yua8xpiOTUt9L6yyn1ee1/Uo+A7V0RIA7aCgW2w8gYuYin0W1rRmIZPqYRG7BWJSKvQ1tRCiKwnLwpoYT0tftlOkPd5d115C5BVn3xzKmcVqZo068gopznCw95OMZ3v/l9MfrTeEbFtUbTejom8UbTeP4bIUceXcPsSKVWm0obUvbzOVtLlkZz/kddgFa3/IatFh1hPqbPokwPjiRtaM1ntI4/xFBqxV+S9prU1bfbyQ2QVCcyYoWWLKuug5+2LpujZRKas+ui79/us+EphtbMZSeXkLJ+vOwvnybHt57jxqUfGtkXznC5n9jyn1zgllDbPaSuwLESWKsqpy4HStAanzJhPqOJMRlfH5wmHKK54XQ9of7w3OhjMnd8UX8zcF5SUlH/WdQLcHWUbxrR0Oqvn9uZTrlkllLlGL04QobKumUwZbytQeZLlMSTlRkj6CmtGWejCtZd27bjLOCuljnFWKBRDr5yccvktcCrwCuCNLhjBAG9P5D0AG17+Z+CtzKwQsQ14RiLvQneercDH3LmjMaz3hcpXRTmFdP6amEle1n2WlkLn4KVdc8GCma/aprUpWccEP4+UE2wR+7mQRYtmrj0+PntZOt8c4jl1MS+ywDP+kzU4XrqhzFhfr4yRUeK2aqGIlXfCgoHZPDlV2O2QpUOSq4Ok1YdUV27oTUxNFdVfjVNESeeukFGwUIyCcloInA1c5dx2twDfTSqbWP6HA98GbovGlUgsXRTLuwvwaeA64B6nBF9LS2vr5dWppqJ6fCHbtUTMpVgqWUoor6xXqgMZJ0gLSIjuYfXqcPlWSkDvvcAaf0WefahLL7TxiXRaaP6mXM0+75j3dgtMIwidS1raU5ch8HYk9x23OURV1IrPXVuwYKEYeuXU99SE5RQV0Kz9FVYMMcb4A4tCC2oyrZlMb9W2jS8wLxkrPs4SUolndV4L+CmzQrmLKuegtdZirU2IGyfUcggJhijS+GRZqlmpya+5FnE533e7gf7HvOebFqRTyNLx+IRDojTbGl8OcV0XLu/zzXLqe6p7zCle4H0NZRULyqcUywRFpLqYYulGJgufE7IrT/K5ZM73yTABik6CzUq5PcnYSwrthYcqCO+yVSWDL4o2ViXm/JYmyDDK0P5FLdNK1894eaFRmm1YTqFlLKiepZT1UFQ5NZzqjNZL9qaL9vJCr+UrW2UG7PN6VNNQ6HxJuXwVxnv9lKUlQhuJyvddMEovOa6ed+28DkHRey1iMcbXl9sgU3a9u4YpG5hRtDyPj6efJ2gaU0bl2sp40Hvow0TcuCyp31DUaL3hSXXMc8pSUHkVq4gLwHeu+Dh6mSimPAuirHKKnkX82aQ1kplLCUU3Nj5upl0jcTqrMyuj774POmjuthUMzF2kLGs+Pj5nsLBIzzkvGCF5/9sRs30s3JWUbGiLKqakUtwi9beqaXUiOQk55NuKZTwBIeeJP/uybuT4s28zWi/kfbdhFatyajhVVU55Cyz4fMNFLKcQK6z2+R8ubUpx6y1cONMzSzssqxcZ5Q+xHEItJ19Yu4gxxxyT/Vw2FVjGKNS96Vt9avXq9JD80IYx7Ry1vOua/FFZnaO0gJoQS6PoOGrWbQwGM/2NzBD+jId6dYYbObqntsPIQxV205acKqeGU9Uxp4Cl6TIjyIp8lTuvkvomueclr6JYuNBcuHqQ3qCadOWcERE9q+HKHZwtMOaUNSE4z4oZHzd2AdDABzUNwW62xKLu+T3ZDCHTPnBYtBMSjxpt6jtS0bMv2jny6URfxy5tMWFfYzwY2GkMKxj4PQUpPc2TF/XHpRfdS2hEZJNjYKqcGk5NzXOK1/XKIdU514oqa0gvMysk/MuLUmbx5XQJQ5VzlDdeobwNRAk3i+9Zpp0mcusUaknBXDs+5W0MSjdeBQZlyqx+EXUMmrScynSOspbV2Tw5Nefjjsl7S1ppWR2AuJIr9M7dCatMgm4Kn7s87fmGRJoWRZVTw6mpeU7xglpwTclUQnqlIZNP458UiDfUd+9QfLS6SKVI7g9qJAvMc4oOTat8ycY816Xo+7yuu7HQcaVCjVdAC5IXbJHX+Fy42rMyd0XKTGW475mkFHDfON/UVNjC/YU6RcnkThb6ntsKI0/DN/cxrTNTxytX5dRwasJyihb9zMtXZ7RelMqsVlBkQmhIby061KdQgz62V7DBSjtV5M4Jut+44FnmSYFJoU00Xr7nHlyemuhG58iW9v5nfVepxLSBLGUYX4k86QwobC1PTQW/4zYtpyRpMi5Y4G8Pqs51U+XUcKp7nlPaeEtovlB8PdSoYhapf2UnhPoswhBFGrSUjDvRtPusdpEw8qw2L6j3vGhR8PIe8bbe53Kro/Hyvfs2B+XTyGrEk48yKBjGpSLfzgpJRa4drwPJd9zV95x8JKMhQzwpVWRW5dRwanKeU5yAzyYFE+pOC11/L8Ry8lmJyf8jpZvn5ilz/1VWwci932QaHy+8MGKoNV0Wn/umD/imVUTbM7+rlJLqmnCdVFBXR1Zb3uKIsTqQVFB1r5lZhbKRulU6TKqcGk5Nf6Y9z4IoUzhCAxGy5poEr9AQq3F542shYz3JY+ZU6DR3WmKUu4hVmBXpVaj3XPAF+Z5THRSIm+iM3NcY2MPYtsPCXEu58lqSWQInMvb9uZeN1K3ialbl1HBqUjmF9GZCC0dS0RxzTHFLzOtezDEBfeHY0SHxGemTk+nKIfNL3GmDQykHZfnWk9fyxTRECiqahJk5CbhE7a1rfNFHQ0NGtRD0GkNb0slJb9a0VRDyIhkzn1dO6F8b77UKZT0Kajn1ODWpnELqYEjhyOq1pU3G9M2nqVLByroNUtqbcg8rw70SKcWkZ2bhwuyGamws0bDXaNr6xub6pkiaIOg1FihM04i5irljjb6w8dBVy70HBXoOuozQi1PGcqpq+alyajg1qZwqjbnEWuCsQIDJyfReapZ1kpQndQkXD3GlUHSR0czKHBiTPY1kWgu+cZgspR4/14WrM7r7mWaen/gtea3bPBOozyZSBiGTxY0xhQtTFKUZEkgUn9cU1NcI6LX1xXLyjemFRhTWVZxUOTWcurKcvJ/NqBBC7as0cXky15VbvDio1NbiRijQg94gU5mNfEjUYNzKii4ZV853LZqcPQmshsXJvA1aXm+974McGYR6C+aM+QSUg3hwRF7jWsjSCcjch9cRUmTqHt/2ocqp4dT0mFNWQUntQUY1LqOEFfl0RVoljBfuG31rykUWg6fnXosbIfAkd5M+MB5VtiK92ihv0DyrinjbvDyhM/ZfOz7Va/3kG3PyPup4Wcs4aDsEv67caWohlluiAHVtyIaM+0bVtg3XsiqnhlPT0XreSpLVFcqonPG13fJW4c7qJUUuD28QAFgrwuOT8kUMRin3k+wB5tddiyczLca8sHmfa7PoMj5lGiav/snrrXuWbsrqLVf8AkJtZAW/hZbRrAe3HZlTFtLOkaUg7/PShlhqPbRSQ7wV8cnnQa7lCtSinIAx4DhgHXAJ8Af3OwBeDIyFnmvUUtPKybvoq29STEbpu4qpWT2kMkMlIgHKKaBFycuWWwEq+PqTDVOo8ojOF7oAakCUcSq5x5W0nCLXVnSPRQb/k8/owtXtmAKFgwk8PZ/kvKe0c/jGIL0ZkiZIilh9tJx8txG40EkpKisn4EHAZcB2YDolbQd+BiwJOd+opaaVU6nec16K1YqcCNhMmbxuPV+KtQaVB4krRElFj6FogxFdMsRyyutg+6zTtONmvZsSY07xccfQJaSyZGrDrRlRqpxk3FRyxYi4JzzvmdxXdAOX2Yiftw+rQhQYoi1SjUtTSTkB48B6p4TOAp4I7Oq27+r+H7j9/28+WlBNK6dS4w55qWKtGAzsxNt7KRFyl9N4FxYtR7v4esFZ10/9Amjikmsm8xvnvNeTVcGDG+O0aI3E/9eO24CNZDh1zvDMHPmSMjX9XafkbRYuJzmWY5TSFn/NnaDue7FOsCLRb21SMMixUbmrKqe/dYrn73Pyvc5ZUC/MO+eopU4tp6xaG7IoVmDpSvb+ojGgyUljTl40MDcyaaZhxs2XtYxxVOsTLUrTrg7f4G5W5Qz2secIn9f4Z72CUnNiMsrChasHmQ17EcspKVOT33XKur1C5WQwd9WSZMSqbx3J3BD+HJM4tN/Y5TynkHHftNSLMSfgbODXeflc3l8D/xKSd5RSG8sXeXuNab3nkHCngFqRVwcLTUoMmWDSEL7B3dBUpqcY0MEudJxXBs9BWQ172lJUWfJ1aTmVZc3kTKh/0nKM7q/MslpmMEj/dkysrIeWs64fV2j5zxlOK3ntasrp98CH8vK5vB8Cfh+Sd5RS08rJmIK9xtAuW0CtCDlV5mm6Hv1NoawXNFCXzyFLuad9nrvy+ERBc8vX8chyZXY15lSWkKEhX2xDcMcr5eA1k/36+m0WXVp4VZXTbcCqvHwu78nAbSF5Rym1oZwKUSRetIZTZa7YUFEpNaHbylpNgbo89z6ylE7auEduGH2SguZWSPa8Ia26o/Wy3nnZshB6j1m6JtXYD2zNty6cmPMl3sLvtCHyymSd5d9HVeW0HTguL5/LuxLYFpJ3lFLvlFONYa6FLadAd15eY1NLoESBRxNPixbVf+28Z1loqRzfRQoInmdo+cbq2hobzFLcoe8j9JEMBv7xx1n5C/RwNk9O9c15kPpM4kqzzajCqsppuqBy2h6St0wCFgNvB34FbAZuAn4MnABIIu8RwPku3+3AecChGeddAnwV2ATc5aITjw2Vq3fKqUTLXqRh8J7WN7rsMoaIVznEvMB9ZolaV6NSJXy3sCulgOC+KEbf/qYaLF+fqkpZCH0kvnudda2ivuGpKXPh6kFvlFRI3Up+dLCpoeI6lNN5wKcC0nlNKSc3CfhCZ8mdCawCXu/C1w3wz7G8RwJ3A1cA/+DSFU5RHZw4727AlcAdwHvdeX/ozvnyENmaUk6VGsiCB/sKbFa0Xupp80aXPdeKrzZeKlot8BnkWTF1uy+qjHM1+QHAwcA/Adv3Kosu+BtCUZeriKnVhey7/qxyV6K3kYwS7HKsqYzF7F0qqsJzr0M5FUlNKaejnML4eGL7Qqdcbott+6mzlvaNbdvXbfte4vgPu/M+J7Zt3J3jZmBxnmxNKKem3FpZ1KIMjPG3xO5kVQapvYqjYERBW8+4yjhXyUXNg/HN/s96B00FQhS1nNZM1hcRWiSk3hgT7vOOpeT8qq6i9PLqVt6owJrJ/A+LhlJVOU0VTXnnLJOAZzgl8uaUfT8FNrq/D3D5zkjJd4ZToHvHtv0J+GNK3uPdef4uT7YmlFNTbq2i1yscPurrguZYTjBjKRRWHKG92cQDbCOgsIrlFIlcSs6Ag3ydkqxH2lQIedExp82Tngdb8EX6OhDeclfg5SZXpuhqflNe3crrTNX5/ispp74k7GoUt2LHhY4FlgIPAz7oXH0nu3wrnFJ5Rco5Tnb7/tr9v4/7f5CS90C37yN5slVRTlntR2lLJqBBSssS0rYHd47SJs8kFnz1XSfKU2hJpS7jYXPIagyKKKjCFl6gds/rBMUNhOiVNjn5tlC0nq8VLegP9XXOCj/nDLn6YjlFYmc1E3lVqc73X7tyAiZcwz5R5viyCTgau+CsiaXbgefH8rzRbX9WyvHPdvtWuf8Pc///c0reCbcvd1JxWeXkaz8KW07J1jyjQfJdM15gK0eP5ShJX+EPaVeTp5/OqjClb6AiCQHTBsRD9Wmpd5Fx8mT02DHHhK+GEcncm8m3eQ+wAJVcvMnCmGLq9WnMKY+8jmrvLCdgDzc+c4WzVKJ0hdu+Z+i5yibgUcA3gI8ALwBOwi44eyfwNJfnnU6pPCXl+Ke4fa93/x/t/n9vSt4xt+9bGbKswkb1rV+6dGnhl2JMfhBCcGXJK02xQhOq9Gobg4rkSzTUWaL6lpOJ9+aTt7tBMg4q1dpUJPDlhVqrWfu87yLjBSZdS2nn9A3ZDAZ2TcXkmNPWhR20tiEmeMHT1ebiDeicdEXIffo6T3WOOVZWTtjotxvceM092BXKL3S/97jt1wNHhJyvTAIOxoZ5vyqxfQIbEHE1NpBhaCynkKiZoAKd14OMtWKhSqe2Ma+UFniLZH+R1zdkFcmYJtsKBmaLVJ3FGnY73ncyGBQyddI63aEWVhnLKelayjpv1n1Gp41H613FlA1O6IKsNSQbCHMMevd90UAZFLUQs+riCgZ2zK/jaL09seM8twKrgZ0T+3cGXgXcAtzYlAWFDR83wGTKvtPdvv0ZojGn2hRAXmsTq6ih16wtkq1gI5nXtvs6y8fRbOOQ+0zyTKEAszNrPDAZeJgbxZciS9K15EtZ91mrRV0HpR5OucsUfvc99N35+rFpVSYrf126v6py+rCzjh6dk+/R2LlFc6yQOhLwXacs5ig/4LNu30OpP1rvf+TJVlY55cQNhJ+kgHIKrUOFAxKyKOBempzMbttDJgQ3OeQRZBAVjkeee42saLXkfKQFCwKWDkpoupC13sB/n21HkQZRcMZoGQMn9757+WDmkheJlza226TOraqcfgN8MS+fy/tF4LcheYsm4ONOWbwlsX0X4DpnuY27bZdgAyWWxPItcdvOTxz/EXfetHlOtwL3y5OtjHLK6mQvXlyg0vi6svGU6NbmVc5aC2RGpd0gU3POnzXnJmpvfN+eabKTGmwQlY5H9j6q1PtOdWOWWAUkTUzffXZlIGSW2RyBAmIVUgOCkvUi12LsnUmZTkgQTpoXJf5c6lxPsapy2pLmIsvIezKwJSRv0YSdQ3UzMx89fBV2KaOrnHJ5dSzvY521dwV2FYnXu7/vAB6ZOO8kdrxqM/AebKDDBe6cJ4XIVkY5hRSS3EofGu5VsPdWaycwo/FIGyDOa9t9t5gZKFJDJQo2iHzaJeDaRSbrlo2YqmOMq+2hFa/+8QibdlzWM06z2uP1r6zl1Le19UI6KF59WnPvpKpyuh1YnZfP5V0N3B6St0xyY0pfca64rU62H5HygUPsihLfdwpps3MLpromsatHnIVdq+9ubARgrjsvSmWUU2hD5G1rQk5SouDU3gkMbM2KWA65z6jGSpSnNO/rSaa1fgWuWeT+m55r1KfhE69i8BTW0L5bSNkqM+aUtip5H4ahfB2Q3DanZvdlVeV0KfD1vHwu79eAn4XkHaXUlOWU29aEdOlL1ISu3OdZDUAp3VvjTfiUxoWrPd3zgs/fN+YUHDofYN4UCSXuQ4/f21nyvOcqy0al1b+i0XpZY3x9GYYq1QmpuedaVTm9E9gGPDMn3zOcNfOOvHOOWqpzzKlQQc7yW1RcQrjpnrOvkqftK+Utq7ESlXUrFbnvvDypfn/f4EnGvr5ZRSF4H3HaDbkpBGlfv433HeL371tjsCzDMAxVuBPSM8vpfm5c527sUkH7JfbvB3zA7b8qJIBg1FKVFSKiglH6GyoNdXGb6jmXaRxLNag1V6KssZpM9xrMsVZqVwpZL8lz70MSVDaLIJeapyLFQ+gjSzT52Jp4P8P4rHPp05iTPZ6HYJcNmsauCnEbsMFFs2132y8HHhZyvlFLdS382idXSu24m8vqzeZV2MLPpmIlyrPuolNnBiYkrtdqQ5XRZZ/2rA5RpDffRTkNvmbGg76KqVxZ676vYbRSg6jxQVVWTvYc7AysAf7TBQ7c635/CPw9La+z16fUu48NdklawU2ppckJoY24OkpWorxGJd7+pS7lkqJ9WnXxZDTQyfD9Mkqy9w2ub6ApxmBQ0zy+HEa6w1kDtSgnTaqccslquTIc+vFVIhpzdZRoHfKsnGT7t4KBmc4xSVq1nFLeg2/JqCLKpfeuqiwBo0laxv74PrJYGdVIwahyajjNN+WUWfcKxu5Gq0Q01vMu2c0vs7Zf3ryj1i2OxEs6zrNsUREZej/IPxhkC+neRekw6tDr99q07BeqnBpO80k5eetewdjdkHGASmS0QnkTI/Mar7TQ7hMW5H8dtMsOdV0WT28tp/jD9ZU7489SWcn29gH1E1VODaf5pJy8dS9rZ8r0+y0yYY5j4G2kKzfmgev6hawnlsyfFvHVZ3dOXR36XhoGofMyclysteiQ3puW/UKVU8OpjlDynrVlmXjrnq/lcjc7jZgNMpX74bVaGkFP5FZeo+SbX9X7jnBGwaqrvPWu3BZxJ7u5Xo2NOQVaTr17hh2hyqnhVNck3M57oAHk1r2cWhfq9ajFOxIQJZjXsR26jvCwFqwqFHEnx8YAG4nWC3j+8/EVZaHKqeFU5/JFXffI83p0VStWaGNfm1IYzP4oXlbEWtZz7+t7yqQGgYeuV1/EcmqjV1FTB20+oMqp4VTnwq9d9shDFU+VxqtVyynnXCHKdeh6uZ5xtpD3NXT3a0zYN816pAH6WPe7QpVTw2lULKc8meroURdRgHU1kmnnKrI261BZEgHjbL7n2MdymYtvblMPtexQPuOGUOXUcCo75pT2ddMu646vR1e3sghp7OtUCkOlYKqQ8qKmwdzI5CyXZlZD2KU3rDS+MacevvShtE4bQpVTT5VTcqHX2maol8TXo6vU25s3mqEnJEf7XYoHg6Qpm4D5q+kHdfFu49f1fVe+p/StSnQljyqnHiqnPpr2vh5daT+5dhPn0EpDkOPeSytnPu9Yqowtvtv4M1szmTLhOcul14eWv+d0WUVVOTWcRiUgwpjshrOwMh3qiULN0VpD4AmMyLpe4JqpM7TUw0o+s8yloiILqqdjTX2ly46yKqeG06hYTj4KNaohM/a71sId0dp7z7jQteNT9QVDtNTDSsrl/UT9sFWsHpA31tykla/KqeHUu0m4DZWo4NOGzDuZp41FaxZziQJW+JCWFEHymd2I57O1fXVJxOjbeFPWa0xZdax2I1SVU8OpV8sXpbUw7rPVrdWGvBn7TbpZ+lbzE7TasS/xLAod0pKPMv7MVjAwdzF37aF7WOh3JfekM9THIdgsmZr4dH0SVU49VU6NEGK1NF0b8saamlRMXSvmEiJ23TiVprE1gOZeJu/LwzcyOTdzDx9wX3VnWqekDSNUlVPDqVfKKXSdsSZrQ1cNRB8UcwA9N+7CaPkdR88sa7xpOzI3cw8f8BB4He+jDUWqymk+KafAdcZCl7MpTdsNxGAQdN+96Kb2gMqvpyMTYPNk+nU3TzZ73broq+WURhv9D1VO80k5hUTKEb6czVAQeM8h3dQed7pro5ZGpysTYDB3jtPWhcNTgHvudZyDRusNeeqVcjImc4WAKKV9NqKPPbdgAq3FvJsdtoajLLX03rs0AYa8BzHk4teKKqcRU065hTutlXU93azPRvTR5x2Mb5wtuUaUR9sMk8ulCrUYPfNFkyuNMhLKCXg3YDxpayL/Q4FvAbcCW4ALgadknPsBwOnARuBu4DfAakBCZGtTOQW1CZ5WdiQbYN9NFeimDtNg9RwK3GdtZUBNAKUio6KcDgFekpI+7JTTubG8+wM3A38G3ga8Gvg5sBV4auK8C4Gfun2nAScD57pzvjtEtjaVU1DD4mllR6rDG5/XUsOSNU0q7kbb8dWrC93/SJUBZagZCeWUeQPweadI/jq27evAduDQ2LbFwAbgD3GLyCkuA6xJnPcbwL3AVJ4MbSqnoN59Tis7Eh1ej+uy7E011Wg3vhpI4aXER6QMKEPPyConYBHwF+BaYDy27W7g+yn53+kU0WNi2y5ybr+dEnmPdnnfkidH7yyn+dA1bsjMaaLRbtSV6gsGGQp/pDKf8SmnMYabY4H7A182xmx32w4BdgQuTsn/E/d7OICIjAGPBn5ujLk7kfenWOV0eN1CV+HUU2FiYva2iQm7/T5WroS1a2FqCkTs79q1dvuocM01xbY71q2DZctgbMz+rls3e//KlXD11TA9bX/reGQlRa12coClS2u4gKJ0w7Arp5OwCuTM2LYl7ndjSv5o277ud1dg57S8xph7gJtieWchIqtEZL2IrN+0aVMJ0csRrHeaaGX7RFbD62mQ162DVatgwwZrWmzYYP9PKqjKJDTga3dLv0AtuiPrJCKJHouiDBlZJlXfEzYazwDnJ7Yf77afmHLMfm7fJ9z/D3L/fzXjGtcAv8iTpXfznOYDoa7LmJ/u2vH0MPpaIxVT5Nq6cMKcsGCQK2pd1zMiNkgi2j81Zaax938cAx1jUnoDozjmxEyU3osT21/ktq9OOeYgt+8D7v9J9//XMq5xI/DjPFlUOXVE3gBRSsOdNgG51qGZjDGgzZNT9Y5lxe99cjJ9cVvP/Y/aEKQynIyccgJ2AG7Aut12TOw7yimc96cc9zS37zXu/zHgTuCilLw7AtPAOXnyqHLqKRmKIr50U+2WU1ZwAtR3jVCrMef+h3pumzIS+JTTsI45PQfYCxgYOzYU51fAPVglleRI97sewBgzDfwMeJSI7JjI+xhAorzKEJIRLLCUme1zgkmqMj5ebHsZTjkF7rxz9rY777Tb4+Tcfy0BGYrSEMOqnE5yv2ckdxhj7gC+AzxJRB4ZbReRxcArgP/GRuJFnA1MAKsSp3o9sA34Wm1SK+2SESxw3fjS5oIYt28vtr0MoeF/Gfd/DUt9uxWlFwydchKRJcAzgZ8aY36Vke1t2PlP3xORt4rIq7HLF+2LnWxrYnm/AFwKnCYiHxORV4jIucALgQ8ZY65u6l6UhsmIu3/gV05tLohxaqrY9jKERiqm3P8WJng7p9ZvMSpK3WT5+/qagLdjx41Ozsn3cODbwG24cSUSSxfF8u4CfBq4DusS/C3wWnq4tp5SkC6+K9X0BOgi19BoPaXHMGoBEX1LvVNOujZNt7Tx/PUdKyOATzmJ3a9UYfny5Wb9+p7ETUQzTeMD5hMTo7dCRB7r1tkAgWuuse6uU0+dX/evKEOAiFxqjFmetm/oxpyUHEIjuUaZ1paC6BF56zIpypChllMN9MpyGhuzDXISEbuU0Xxg2TKrkJJMTdkoiFEjzVoWgVe9Cj7zme7kUpQc1HKaT5RYc27kaHSl1R6SZi0bA5/7nFpQXaLWbCVUOY0aQcuWjzjzTUFnKV1j4GUv08axC+aja7lmVDmNGvPhcxl5zDcF7VO627dr49gFOvZbGR1zqoFejTkplvkUrbduHRx/fPpYY5JRHXfrGzr2G4SOOSnzj1H/nlWclStt8INIft5RHXfrG/PNtdwAqpwUZRT4zGfgrLNm3LljGVVbG8d2mG+u5QZQ5aQoo0JkLZ51Vvoq6AsXauPYFjr2Wxkdc6oBHXNSekXWPK/JSbjpptbFUZQsdMxJUeYTWeNKt9zSrhyKUgFVTooyauhgvDICqHJSlFFDB+OVEUCVk6KMIjvvPPP35KQOxitDxw5dC6AoSo2kLQJ7113dyaMoJVHLSVFGCV02RxkRVDkpyigx31ZkV0YWVU6KMkpopJ4yIqhyUpRRYd06uOOOudvnS6Sefj9ppNCACEUZBdICIcBG6n3yk6MfqZe8/+gTITD69z6i6PJFNaDLFymdM98+TZ9kvt//kKLLF8131N0x+sz3QIj5fv8jiCqnUUc/Fz0/mO+BEPP9/kcQVU6jjs57mR/M9yWL5vv9jyBDp5xEZDcR+aiI/FFE7haRTSJygYgcnch3hIicLyKbReR2ETlPRA7NOOcSEfmqO9ddIrJeRI5t5YaaRt0d84P5/v2g+X7/I8hQBUSIyBTwQ2AxcAZwOfAA4BDgu8aY/+XyHenybQQ+7Q5/LbAn8FhjzK9i59wNWO/2nQb8CTgOeCJwojHmS3ly9TogQgeKFUXpKb6AiGELJR9gZT7EGHO9J9+ngHuBJxhjNgKIyNeB3wEfA54ey/tW4MHAc40x33F5zwAuBj4qIucYY1ImjwwJp546N8RY3R2KovScoXHricgTgMcDHzbGXC8iC0RkIiXfAcDhwDmRYgJwf58DPFVE9o4dchxwRaSYXN7twOnAbsCzG7mhtlB3h6IoQ8jQKCdmlMQ1IvId4C5gi4hcLiIvieU73P1enHKOnwACHAYgIvsA+7rtaXnj5xteVq60LrzpafuriklRlJ4zTMrpoe73C1iL5mXAiVj33Vki8nK3f4n73chcom37lsg7CxFZ5QIn1m/atCnsDhRFUZQghkk53c/9bgaebIxZ54IVjgZuAz4gImNA5Oq7J+Ucd7vficRvSN5ZGGPWGmOWG2OW77HHHuF3oSiKouQyTMop+mLa2caYe6ONxphbgX8F9sZaV9HI/44p59jJ/d6Z+A3JqyiKorTEMCmnP7nfG1L2RZF7uwLXub/T3HHRtshlVySvoiiK0hLDpJx+6n4fmLIv2nYjcIn7+6iUfEcCBrgUwIWjb3Tb0/KCnQOlKIqitMgwKadvYcebXiIii6ONLuLu+cDlxpg/GmP+iFUox4rIkli+JcCxwA+MMXHr62xgfxF5TizvOLAGO5b1703dkKIoipLO0EzCNcbcKiJvAj4P/EREzgQWAqvd75pY9tcBFwAXisjpbtsarDJ+Y+LUH8IqrX8RkdOwltQKbAj5K4wxmxu6JUVRFCWDoVFOYCPkROQm4C3A+4Bp7Hym44wx/xXL92MReRLwfpcM8GPgWGPMZYlz3iwij8Mqqddgl0b6LfBiY8zXGr8pRVEUZQ5DpZwAjDHnAucG5LsYOCbwnBuB4yuKpiiKotTEMI05KYqiKPMEVU6KoihK71DlpCiKovQOVU6KoihK71DlpCiKovQOVU6K0hLr1tkPE4+N2d9167qWSFH6y9CFkivKMLJu3ewPEm/YYP8H/byWoqShlpOitMApp8wopog777TbFUWZiyonRWmBa64ptl1R5juqnBSlBZYuLbZdUeY7qpwUpQVOPRUmEt9Unpiw2xVFmYsqJ0VpgZUrYe1amJoCEfu7dq0GQyhKFhqtpygtsXKlKiNFCUUtJ0VRFKV3qHJSFEVReocqJ0VRFKV3qHJSFEVReocqJ0VRFKV3iDGmaxmGHhHZBGwoefjuwE01ilMFlSWbPsmjsqSjsqTTZ1mmjDF7pGVU5dQxIrLeGLO8azlAZfHRJ3lUlnRUlnSGVRZ16ymKoii9Q5WToiiK0jtUOXXP2q4FiKGyZNMneVSWdFSWdIZSFh1zUhRFUXqHWk6KoihK71DlpCiKovQOVU6KoihK71Dl1BAi0ptnq7KkIyLStQwRPXsuKksKKku7jPwNtolY9hORMWPMtMrSP1mcPLsCmI6jgdxzWeJk0XeksgyNLBEisnNT51blVBMi8grgN8D3gMtF5F0isq/K0i9ZROQnwL+JyNdE5IVdyBHJAvwcOE9ELhKRV4nIwg5l6c07Uln6LYuT5yQRuQD4poh8XESOrv0ixhhNJRMgwM7AacAWbAz/B4BvA9PA/wUOdHnHVJbOZNkFGACbga+7dI2T5S3A7i2Wl8XuedwBfAX4HHCJk+WzwIO07KosfZMlJtPuwLnA7cC/At8H7gTuAV4MLKrtWm3c0Cgn4OHAdcCngMnY9n9yBeg/VJbOZXkqcBvwhkgW4KFOSU0D72xRlsdgF758D7Cb27YION3J8sV5+o5Ulp7L4q77IqeYXhmrS08CfghsAl5e27XavLFRTMAaV0ie4v4fi+37gtv3ave/qCydyDIAbgGWJbbvDFzlKtVTWyovHwHuBR6V2C7ABe65/F1LsvTpHaksPZfFXeN7rs7sEts2hu3s3Qz8GjisjmvpmFNJRGTc/bnF/UYDlCYWSfNp4JfA+0RkkXFvsqbrL4z9HV2vK1kOEpEd+yBLQq7oHW0GtmN7oNHA8g7GmLuw1tRuwJuajN6L3ftfAIOtyJEs4+4ZvBtrVb2vJVn69I60HvW0HkXyuHd1L3CvMeY2t12wsUV/wLrIDwJeUcc1VTkFICL7i8hzRORoEXmo2xwVlj9jG5toQPC+SBpjzGXAWcCuwJvduSo9cxE5UER+D3zC/S9mJnKnbVkeLSK/wY6bLHXX6fK5HCMiB0cNjjFmu9u9GZgE/ibKbozZ5vJ8E/g3rGviBVVkiMmyl4jc3/0t7jrRc7kFWAA8y/0/FslpjPlP4GzgQOBVNcmyTESOcA3f7m5z1Ii1/Y60HqXL0pt65M6xv4gsF5Fl0TZjzLQrp3cDB4jIk2L7jPs9A/gZ8HwReUJVORo1AYc9AQ8AzsT2uG/EVqQNwBNjeR4KXAHcACw2M2bumPv7wcDlWHN3l4ry7OTkmcZaAoe67eNtyoINMPgXJ8cPsI3+Tok8bcmyGPgyNsDgVifTecARsTxPdtvXAQvdNok9t8Pd/v8J7FhRljOxDcoLE/uidSwPw/aGLwZ2jskSPZeHu/3/hwqDy8D9gS+68rrZ3d/Pgcd28I60HvW8HsXK71ew47O3AduAzwMHxfL8rZP3A8AOse3Rs3uO2/8mqBakUfrAUU/YyJMNwO+BfwCeDawC7gJ+ncj7MfdC3hMVHvcbNUhnYN04B9cg1w+A/wauJmUwtGlZgDdie0+/d89jWXTuDmRZAPwv955eCTwT+EesdXItVilF1/yRq3AvSMgQ/V4E/Ci+raAsjwHOxzZ201gLKDXyDjjH5Xllhiz/6hqcUlGE7jn81qU3Ay8F3ueu+Xucgm7pHWk96nk9cue4H9aDcBXwGvfeTgO2Ar/Djddix2kvc9sel3KePdy+/x2XtZRMVV/yKCZsdNdPsb2aI4n1ZtwLvAf4q9i2B2Ebw7/gehnAOLDA/b3KHXNABZnGgR3c9f8nNqx0GniR27+gaVmA52F9zr8DHpZ4LvdPyb+0yeeCtXi2Au8nZvEAfw38CWudHOW2Pc09r/8D7BN/Zu7vc5ysu5SQY2/gfzPTo/ykk+vlpPcuH+Ly/jpW6RfE9n8Iq0j3LiHLI1zZPR94QuK5RI3cyjbKLlqPhqIexd7VNHYMNi7Pq7GW97nAg922k5jxNEQRp5EsC4H/h3Xv7VxWHmNUOWW9qEdgI2Eelti+N7aHfW7KMa9xL+y/4gXMFaJzsC6Nfahq6sIf3bUe6QrsH5hxVY03KYs7Zi22x/dwt205NiT7fFeAX8PsBvG1TT0XbFjrNPAI9//C2LlfxszcoQe47We4baclzjOG7Q3+h6tchSwnbG/xo7goO+yY0W9dJT0okTd6R+93spyT3I+N2vsl1h1W9B09CasYj4pt28H9HuOu+ZaWyovWoyGoR4nz752oSw8A3un2/aOrH4uwc63uBt6QOM8CbMdwXZX3Y4wqpyIv70HAt9xLugTbe3hWbP8O2B7zduzEtOcAjwZWu8L/wYrXF+w4ws+AN7ltUQP31kiGpmXB9rA2YkNKP+uu/0tgPda1MO0qy1QLskSNxytT9o25CnQL8Fy3bWfgF+6Yf8L2Wg/A+sf/DJxcQZb7xf6ecLJtB04hNnbEjEtmQaw8nQE8Dhvp9PeuoXlLBVkekbH9KHe9lyZk2QEbGNBI2dV61O965M5/qrvm81L2PRCrFP8APNptW4YdB9vq3uGe2PGvd2CnZjy/clmpq9CNYopV3uPdi7sM+DjwduC7btu7melt7Am8HjtJbRq4Hmu+n0lNM6ddw7XG/R25cP6Cnbn9AFwvFduLqk0WZvzbO2PHL7ZiffYvBR7o9k26irYN29u6n9u+R0OyRO6xLzBjHUks31HuOp+M7X8MM2M+d2BdK1uxLoqdisrikXEK2wu+moRvnpme+QFYV9s2l6508q6lokskQ6YVxCzNRBnfvamyq/Won/Uo8W6e4M55Cs5ii8kqruxsxY6VRcc8A/iJO+7PWOW6FdvRWVhGnlmy1V0BRjEBh2B71w+MvbgHYqPEbgX+JpH/MOBY7AS61F5sSTn2wUbunBzbdrIrHBc6Wf6zaVmw4wdnuQq1MLHvAGzP7nISYyZFZSHHvQbsCPw7dsA9bXB2MdZ6+gMu0im2bwXWTfFBXLRWFVnS8gPPxy7t8jlccAMpbhdXyV/pGoZD6pYldtyXXIO2a9Y56n5HibyN1qNQWdqoRyGytFWPAp/JFNZq+xmJyepu/35u/yWJ7YuxLsEPYlc5eXQd8hgzz5QTdrJl1DuRxL4xV3n2CSlsWLfMC12Bfp3btkMTsjDTg9kJ66Y6MZb3RVg3wHZsQ3041i8c7Hsu81xw7obk88G6Hz7onsvR0TkKyDKFc/N4ZFni/h/HRhXd6yrGLAXgZHm3k+VR0TE1y5JaXlye3bG92ttxUYIxuYoqu9KyuP0LsA3dt33lugVZ6q5HwbK0UI8KP5em6pHLvxfwdFKCfFzdeSjO4sJ29N7KTBj4wvg13Xs6E9vZekgZeYqmkZ+EG02CFJEPYV0sJ4rIjsY9XbdvHOty+DnwymiWdpwofzTJzRizFdsogvVhY9zEzrplie1fgi08N7hJhGdjXVQ3YAvNImPMJcaYe03OkvpVn4sxZkP8PMYY4yYybsM2xmBNfPJkic4jIp/AhrKeICILPbKsEpGdjJ0UeBF2DOOluImtxphpt+rCNmYmMd7j9m0nh4KypJYXd62bsNbKHdjnu0xEHo7t8R6aJ0ddsrjnvwTbG/9W7NglwAtF5OAWZalcj8rK0kQ9qvpc6q5HMXk+grWCPgw8QWZW4kBEFmDHNn8FPE/sJzjuwS4kezHWdXhUdE1Xl7Zi24ltWMsyWJ6yjLxyci97DDgRa4I+AzuQGM+zHdt43YV1x8ypHMmZ/m729D9gX9jZLcmyBdvjeTPWR34EduD9+cBXgaNF5ISWZMk658OwkXK/wM7hyEXs5wBuBv4O23s7xRhzbzxPlizGmD9hxy/+ArxTRJ4b5ReRPbHzan6PVVKNypI4T1S3Lsa69Z6GXez1K9hxpiPbksXxdPd7kYjcX0SeBnwG2yg/sS1Z6qhHNchSWz2q+R1F+UvVIyfPIe6eXowtdx8CfhDvlDlFswBrnS2Jbb8M64HYGXiXiDwukt91ZJ6OjUK9M1SeSjRplvUlYaNIrsIOMm7HNma7uH1RZM7OONdWzrkegI2s+iK2UL6BAm6aKrIA+2Mnk/4JG7p8MDOrDDwe+AaJBUU7eC5fxa4PtzLgmEdg5/rcgw1aOIK5Y0Px2fCZsmCjl6Je3ZuxYwifxM7R+Ic2ZUkcsxgbUXUvM6s0PLFtWYBvYqPDnurOeZe7xpM7ei6F61FdstRRj1p4LsH1KHH8R7FBPs8ifc5UFIxzf2D/2PbInTjhyus0NkDnpdjx2U9gO4AnFZGnSmrlIl0n7JjKLdieyAAb6vg3GXnvW9YmUcge6F78Z7GhmzfhQnJbluUJwGNx0WcdPxfB9rw+ju2l/alIhWJmEPoMYr54bIM+RWySrE+WWMX6W2yE3DQzq0S8ok1ZEvsOxEYS3uaey/Fty+K27YztfW9gZjLn6g5kqVSPapalUj1q4B2Vrkex8yzFdoLeENu2N9aKejyzP7kxliWP274GG3037crL9bSomIyZP8rpYOyaXstdobwD+BpueRnyo8IE2+O8AevHfS8FBm1rlqW2Qciqsrg8B7pzXFb0uWBdC/+JHaiPPpr2YWyP7b9deiMZwRqecy51DU+R4IcmZDncNTKf7fK5YOcWTbt0WleyVK1HNctSdRJv3e+odD2KneOZWOX0OPf/adjxqujdX4b73lLW/cflxFpxB2MnbwfXpbpSqxfrKmF7MncAR7r/P4md3XxiVqHBhtseyEwPYww7SXK3rmXp03Nx2w4i1isrKMNTXMX5HrZ39mfsenkDrH97GhtuG33YbCxLlhoanNpkcdt2AnbtiSwn4paf6fodValHdT+XnpWXUvWIGc9BNFfpaOwk81uwgQ8vxI6pbXH7l8ePc3/vQixknYDOV9Op04vXUDgOBt5GzppS2AHf25jp4fwVdqzlR1jf8dHE5pcA+2LDSX9FwLyTFmUJWthx2J4LNqJtGjsY+1fMrL48ycyqzW9KHKOyqCxlZamtHrX1XELkwXoL7sAqywuAdzF7nbwTsQrqgsRxB2Dnd51HyU5mE6lzAUoJbecfvI0Zc/UkMny8Lv8jsQPjh7n/x5lZS+p37vflzMT274WduX5LXkFWWarLgl3p4WvMXgQ06g1Ougr1A2DP2H6VRWUZeVmKyIMdQ77Y5dkGHO62R8FNOzlZp4lNWsdOsL0SG5iyLE+etlLnAhQW2JrDp2Ib1YuwPf1L8MyUxoYTbwH2iBWOM7ARaluwvuIHpBQ673I2KkutsqQNykZK8f9iffi7qSwqy3yRpYg8zLhNX8dMQNALY9ujVcNf5va/OHH8YTSwZFaVNIzznPbFfpTrJ9gwx3dh5+e8SEQWw8xcihhjWPfVA0XkVdgolOdgVwHeARs+GU1KjSYHXm6MuVtlaUcWY+dSjCW2RfNF9sLOYB9P7FdZVJZRlqWIPMbl/zTWRbcLdoX63dz1trr9kRzXx+/FGHOpMeauAHnao2vtWDRhTdPHx/5fhjWRrwWekHHMS7C9hauYWShxOTbMMloE9BkqS3eyxPLGB4gngFdgrbh/aqu8qCwqSx9kKSoPM3OYnoS11v7CzMrrY1il9lPgh9S4yHFTqXMBKt+A7dk/1xWCL+BcVIk8S7AT5r6H/RDdbrF9R+BWJ1ZZupMl5ZiDsJMBr8b2BA9SWVSW+SxLEXmwC8P+mpmJ39/GznWr5XMWbaTOBajphe2G/czAHVg/azQgGe/JPAQ78NdoiKTKUliWeDjrGHbC4DnApVhrbh0lvk6rsqgsoyhLnjwJmfbDRhFegA2UWEuPovHy0jCOOc3BGHMLNqTzNuynB/Zz26djeS43xlxp3FtTWXoji4nlmcZ+y2cxttd3pDFmpTHmNpVFZVFZ8uWJZHKLx15pjFmDXRPv2caYVcaYm+uWpzG61o7uWU5i/aG5a095zjGB/TDXdtzSLNjBv4cAEypL72WJPqi2kMT3a1QWlWVUZGlJnuB63efUvQB21dwbsKGP27EzrJ9S8lwPww74/RJr7p6Cjd9/nsrSf1kIWxJIZVFZhlKWNuUpc76+pe4ubNf7Og87QPde7ADiu7FrQd2KXZk3ij7JXfsu9vfrsSsF34odDPwB7iN0KovKorKoLG3L0kd5hiF1d2E7y/kv7iXdL7b9zdjZzRfivgAZeL77Y+cD/Jt7SZeQE/qpsqgsKovK0rQsfZRnGFI3F7WRLf+FXcL//m5btMTG3sAf3AP/DDOf5M5b7fiZ7phbgVeqLCqLyqKydC1LH+UZltR6tJ775O80thexDdhZRHYwxmxznwu+AftRNLBfpnwMzI6MSeL2bQDeDuxljPm8yqKyqCwqS5ey9FGeoaJJzYf9GuP7sOGOR8W27wh8BKv5j08ccwi2J/EJ4HbgkyanJ6GyqCwqi8rSpSx9lGfYUzMntV+7/C72W/O/x/YYbseGPu7l8jzd7duI9bs+BngB9uNdF2E/13AZcKXKorKoLCpLH2Xpozyjkpo5qfWdbsB+e/7BwKOYWavtzFi+FwFXuO1b3Uv9OjMf5/o29kuiB6osKovKorL0TZY+yjMqqf4T2g9XbQK+mNi+AzaUchpYGdv+QOAZ2KXeD8JOLosGC88A/kj5T6KrLCqLyqKyNCJLH+UZpVT/CeHxxL7+iI0siR7+Y7Gr5V6Hm8VM9rfsD3T5znH/F/6GvcqisqgsKktTsvRRnlFKTUTrbcR+GGsv9/+YMWYbgDHmx8AXseGTb3H7JX6wiOwkIocAb8UubPhxd+x2lUVlUVlUlh7J0kd5Roe6tR0wBfwM+8nfHWO9ieiLjPthl3C/DrdiLzMzo0/Gfn3119jQy1Uqi8qisqgsfZSlj/KMUqrdcjLGbADOx35e+A1usxi3ErYx5krgP7C9iSe6bVEv4UnAMdjl3Q8wxqxVWVQWlUVl6aMsfZRnpGhC42EHCf+MXeBwym0bZ8YXuxzrpz3W/b/Q/e4B7KOyqCwqi8oyDLL0UZ5RSY2sEGGM+SP2I1d7AqfFtm9zf+7pfhe57fe6303GmOtVFpVFZVFZhkGWPsozMjSl9bAhkt/E9hj+CbdSLrAPdpDwCmDPNjSwyqKyqCwqy3ySZxRS0y/sUOBs98J+BZwJ/Dt2JvU7sKZvK8t0qCwqi8qisswneYY9Rd+ebwwRWYgNk3wq1qy9A3ivMeb7jV5YZVFZVBaVZZ7LM8w0rpxmXUxkiTHmutYu6EFlSUdlSUdlSUdlyaZv8gwbrSgntzT8dOMXCkBlSUdlSUdlSUdlyaZv8gwrrVpOiqIoihJC6x8bVBRFUZQ8VDkpiqIovUOVk6IoitI7VDkpiqIovUOVk6IoitI7VDkpiqIovUOVk6IMESLyJBExInJC17IoSpOoclKUHiIih4rIu0VkWdeyKEoX7NC1AIqipHIo8C7gh8DVse0/AnYGtrYukaK0iConRRki3LI4d3cth6I0jbr1FKVniMi7gS+5fy9wY0xGRL6cNuYU3yYirxaRP4jI3SLyKxH5G5fnYBE5T0RuF5GbReRTIrIg5doHishZInK9iNwrIleLyEdEZFEb964oEWo5KUr/OBf7kbpVwAeA37ntVwA7eo57DbAr9uN2dwN/D3xTRI4FvoD91tC3gKcDa4AbgfdHB4vIYcAPgNuAzwMbgUe68zxORJ5ojFF3otIKuvCrovQQZxl9CXiyMeaHse1PAi4AXm6M+XJi23XAQcaYv7jthwCXAQb4W2PMubHzXAosMcbsE9t2GVb5HW6M2Rzb/gKswrzvmorSNOrWU5TR4cuRYgIwxvwSuB24Lq6YHBcBe4vIYrBuP+AQ4F+AHUVk9yi5vFuwFpeitIIqJ0UZHa5M2XYrcFXGdoBJ9/tw9/seYFMi3Yj9qutetUmqKDnomJOijA7bC24HkMTvx4DzMvLemrFdUWpHlZOi9JO2B4P/2/1uN8ac3/K1FWUO6tZTlH5yh/vdraXr/Rz4NfAqEdkvuVNEdhCRtmRRFLWcFKWnXAJMA6eIyK7YgIS0saNaMMYYETkeG0r+SxE5E/gNMAEcALwQeBvw5aZkUJQ4ajkpSg8xxlwDnIhdquiz2DlKqxu+5i+ARwED4LnA6cA7gCOxSun7TV5fUeLoPCdFURSld6jlpCiKovQOVU6KoihK71DlpCiKovQOVU6KoihK71DlpCiKovQOVU6KoihK71DlpCiKovQOVU6KoihK71DlpCiKovQOVU6KoihK7/j/zFO4s3ljlKAAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"mask = xr.DataArray(\n",
" data = np.full(runTime.runTine.shape,fill_value=False, dtype=bool),\n",
" dims = [\"time\"],\n",
" coords = {\n",
" \"time\":runTime.runTine.to_numpy()\n",
" }\n",
")\n",
"\n",
"for i in range(len(mask)):\n",
" if (int(mask.time[i]) - 1683642540000000000) % 5.4e11 > 3.6e11:\n",
" mask[i] = True\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"xr.where(mask, np.nan, Ncount_time).plot.errorbar(fmt='ob')\n",
"Ncount_time.where(mask).plot.errorbar(fmt='or')\n",
"\n",
"plt.show()\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Close to the BEC transition point, in evaporative cooling 2 with truncation value = 0.77"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"shotNum = \"0015\"\n",
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
"\n",
"dataSetDict = {\n",
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
" for i in [0]\n",
"}\n",
"\n",
"dataSet = dataSetDict[\"camera_0\"]\n",
"\n",
"print_scanAxis(dataSet)\n",
"\n",
"scanAxis = get_scanAxis(dataSet)\n",
"\n",
"dataSet = auto_rechunk(dataSet)\n",
"\n",
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
"\n",
"imageAnalyser.center = (879, 956)\n",
"imageAnalyser.span = (200, 200)\n",
"imageAnalyser.fraction = (0.1, 0.1)\n",
"\n",
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
"\n",
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD).load()\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"Ncount.plot.errorbar(ax=ax, fmt='ob')\n",
"\n",
"plt.ylabel('NCount')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"Ncount.plot.errorbar(ax=ax, fmt='ob')\n",
"plt.ylim([0, 3000])\n",
"plt.ylabel('NCount')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataSet_cropOD = auto_rechunk(dataSet_cropOD)\n",
"\n",
"fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
"params = fitAnalyser.guess(dataSet_cropOD, dask=\"parallelized\")\n",
"fitResult = fitAnalyser.fit(dataSet_cropOD, params, dask=\"parallelized\").load()\n",
"\n",
"fitValue = fitAnalyser.get_fit_value(fitResult)\n",
"fitStd = fitAnalyser.get_fit_std(fitResult)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"thermal_Ncount_val = fitValue['amplitude']\n",
"thermal_Ncount_std = fitStd['amplitude']\n",
"\n",
"thermal_width_x_val = fitValue['sigmax']\n",
"thermal_width_x_std = fitStd['sigmax']\n",
"thermal_width_y_val = fitValue['sigmay']\n",
"thermal_width_y_std = fitStd['sigmay']\n",
"\n",
"thermal_center_x_val = fitValue['centerx']\n",
"thermal_center_x_std = fitStd['centerx']\n",
"thermal_center_y_val = fitValue['centery']\n",
"thermal_center_y_std = fitStd['centery']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"total_Ncount_val = thermal_Ncount_val\n",
"total_Ncount_std = thermal_Ncount_std\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"total_Ncount_val.plot.errorbar(ax=ax, yerr=total_Ncount_std, fmt='ob')\n",
"plt.ylim([0, 3000])\n",
"plt.ylabel('Ncount from fit')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"thermal_width_x_val.plot.errorbar(ax=ax, yerr=thermal_width_x_std, fmt='or')\n",
"\n",
"plt.ylabel('X-axis width of thermal part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"thermal_width_y_val.plot.errorbar(ax=ax, yerr=thermal_width_y_std, fmt='or')\n",
"\n",
"plt.ylabel('Y-axis width of thermal part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"thermal_center_x_val.plot.errorbar(ax=ax, yerr=thermal_center_x_std, fmt='or')\n",
"\n",
"plt.ylabel('X-axis center of thermal part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"thermal_center_y_val.plot.errorbar(ax=ax, yerr=thermal_center_y_std, fmt='or')\n",
"\n",
"plt.ylabel('Y-axis center of thermal part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"val = Ncount.mean().item()\n",
"std = Ncount.std().item()\n",
"print(f'The total Ncount is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = total_Ncount_val.mean().item()\n",
"std = total_Ncount_val.std().item()\n",
"print(f'The total Ncount from fit is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = thermal_width_x_val.mean().item()\n",
"std = thermal_width_x_val.std().item()\n",
"print(f'The x-axis width of the thermal part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = thermal_width_y_val.mean().item()\n",
"std = thermal_width_y_val.std().item()\n",
"print(f'The y-axis width of the thermal part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = thermal_center_x_val.mean().item()\n",
"std = thermal_center_x_val.std().item()\n",
"print(f'The x-axis center of the thermal part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = thermal_center_y_val.mean().item()\n",
"std = thermal_center_y_val.std().item()\n",
"print(f'The y-axis center of the thermal part is: {val: .2f} \\u00B1 {std: .2f}')"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## At the end of ODT loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"shotNum = \"0020\"\n",
"filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n",
"\n",
"dataSetDict = {\n",
" dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n",
" for i in [0]\n",
"}\n",
"\n",
"dataSet = dataSetDict[\"camera_0\"]\n",
"\n",
"print_scanAxis(dataSet)\n",
"\n",
"scanAxis = get_scanAxis(dataSet)\n",
"\n",
"dataSet = auto_rechunk(dataSet)\n",
"\n",
"dataSet = imageAnalyser.get_absorption_images(dataSet)\n",
"\n",
"imageAnalyser.center = (550, 800)\n",
"imageAnalyser.span = (900, 1600)\n",
"imageAnalyser.fraction = (0.1, 0.1)\n",
"\n",
"dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n",
"dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n",
"\n",
"Ncount = imageAnalyser.get_Ncount(dataSet_cropOD).load()\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"Ncount.plot.errorbar(ax=ax, fmt='ob')\n",
"\n",
"plt.ylabel('NCount')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataSet"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"Ncount.plot.errorbar(ax=ax, fmt='ob')\n",
"plt.ylim([0, 150000])\n",
"plt.ylabel('NCount')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataSet_cropOD = dataSet_cropOD.chunk((1, 900, 1600))\n",
"dataSet_cropOD"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"# dataSet_cropOD = auto_rechunk(dataSet_cropOD)\n",
"\n",
"fitAnalyser = FitAnalyser(\"Gaussian-2D\", fitDim=2)\n",
"params = fitAnalyser.guess(dataSet_cropOD, dask=\"parallelized\")\n",
"fitResult = fitAnalyser.fit(dataSet_cropOD, params, dask=\"parallelized\").load()\n",
"\n",
"fitValue = fitAnalyser.get_fit_value(fitResult)\n",
"fitStd = fitAnalyser.get_fit_std(fitResult)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"thermal_Ncount_val = fitValue['amplitude']\n",
"thermal_Ncount_std = fitStd['amplitude']\n",
"\n",
"thermal_width_x_val = fitValue['sigmax']\n",
"thermal_width_x_std = fitStd['sigmax']\n",
"thermal_width_y_val = fitValue['sigmay']\n",
"thermal_width_y_std = fitStd['sigmay']\n",
"\n",
"thermal_center_x_val = fitValue['centerx']\n",
"thermal_center_x_std = fitStd['centerx']\n",
"thermal_center_y_val = fitValue['centery']\n",
"thermal_center_y_std = fitStd['centery']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"total_Ncount_val = thermal_Ncount_val\n",
"total_Ncount_std = thermal_Ncount_std\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"total_Ncount_val.plot.errorbar(ax=ax, yerr=total_Ncount_std, fmt='ob')\n",
"plt.ylim([0, 160000])\n",
"plt.ylabel('Ncount from fit')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"thermal_width_x_val.plot.errorbar(ax=ax, yerr=thermal_width_x_std, fmt='or')\n",
"\n",
"plt.ylabel('Y-axis width of thermal part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"thermal_width_y_val.plot.errorbar(ax=ax, yerr=thermal_width_y_std, fmt='or')\n",
"\n",
"plt.ylabel('X-axis width of thermal part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"thermal_center_x_val.plot.errorbar(ax=ax, yerr=thermal_center_x_std, fmt='or')\n",
"\n",
"plt.ylabel('Y-axis center of thermal part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure()\n",
"ax = fig.gca()\n",
"\n",
"thermal_center_y_val.plot.errorbar(ax=ax, yerr=thermal_center_y_std, fmt='or')\n",
"\n",
"plt.ylabel('X-axis center of thermal part')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"val = Ncount.mean().item()\n",
"std = Ncount.std().item()\n",
"print(f'The total Ncount is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = total_Ncount_val.mean().item()\n",
"std = total_Ncount_val.std().item()\n",
"print(f'The total Ncount from fit is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = thermal_width_x_val.mean().item()\n",
"std = thermal_width_x_val.std().item()\n",
"print(f'The y-axis width of the thermal part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = thermal_width_y_val.mean().item()\n",
"std = thermal_width_y_val.std().item()\n",
"print(f'The x-axis width of the thermal part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = thermal_center_x_val.mean().item()\n",
"std = thermal_center_x_val.std().item()\n",
"print(f'The y-axis center of the thermal part is: {val: .2f} \\u00B1 {std: .2f}')\n",
"\n",
"val = thermal_center_y_val.mean().item()\n",
"std = thermal_center_y_val.std().item()\n",
"print(f'The x-axis center of the thermal part is: {val: .2f} \\u00B1 {std: .2f}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"l = list(np.arange(0.001, 0.025, 0.0005))\n",
"# l = np.logspace(np.log10(100e-3), np.log10(20), num=20)\n",
"\n",
"l = [round(item, 7) for item in l]\n",
"#random.shuffle(l)\n",
"\n",
"print(l)\n",
"print(len(l))\n",
"np.mean(l)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## ODT 1 Calibration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"v_high = 2.7\n",
"\"\"\"High Power\"\"\"\n",
"P_arm1_high = 5.776 * v_high - 0.683\n",
"\n",
"v_mid = 0.2076\n",
"\"\"\"Intermediate Power\"\"\"\n",
"P_arm1_mid = 5.815 * v_mid - 0.03651\n",
"\n",
"v_low = 0.0587\n",
"\"\"\"Low Power\"\"\"\n",
"P_arm1_low = 5271 * v_low - 27.5\n",
"\n",
"print(round(P_arm1_high, 3))\n",
"print(round(P_arm1_mid, 3))\n",
"print(round(P_arm1_low, 3))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## ODT 2 Power Calibration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"v = 0.7607\n",
"P_arm2 = 2.302 * v - 0.06452\n",
"print(round(P_arm2, 3))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"vscode": {
"interpreter": {
"hash": "c05913ad4f24fdc6b2418069394dc5835b1981849b107c9ba6df693aafd66650"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}