{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Import supporting package" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [], "source": [ "import xarray as xr\n", "import numpy as np\n", "import copy\n", "\n", "from uncertainties import ufloat\n", "from uncertainties import unumpy as unp\n", "from uncertainties import umath\n", "import random\n", "import matplotlib.pyplot as plt\n", "plt.rcParams['font.size'] = 12\n", "\n", "from DataContainer.ReadData import read_hdf5_file\n", "from Analyser.ImagingAnalyser import ImageAnalyser\n", "from Analyser.FitAnalyser import FitAnalyser\n", "from Analyser.FitAnalyser import NewFitModel, DensityProfileBEC2dModel\n", "from ToolFunction.ToolFunction import *\n", "\n", "from scipy.optimize import curve_fit\n", "\n", "from ToolFunction.HomeMadeXarrayFunction import errorbar, dataarray_plot_errorbar\n", "xr.plot.dataarray_plot.errorbar = errorbar\n", "xr.plot.accessor.DataArrayPlotAccessor.errorbar = dataarray_plot_errorbar\n", "\n", "imageAnalyser = ImageAnalyser()\n", "\n", "# %matplotlib notebook" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Start a client for parallel computing" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\data\\AppData\\Roaming\\Python\\Python39\\site-packages\\distributed\\node.py:182: UserWarning: Port 8787 is already in use.\n", "Perhaps you already have a cluster running?\n", "Hosting the HTTP server on port 52367 instead\n", " warnings.warn(\n" ] }, { "data": { "text/html": [ "
\n", "
\n", "
\n", "

Client

\n", "

Client-b21bc166-4363-11ee-942c-80e82ce2fa8e

\n", " \n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "
Connection method: Cluster objectCluster type: distributed.LocalCluster
\n", " Dashboard: http://127.0.0.1:52367/status\n", "
\n", "\n", " \n", "\n", " \n", "
\n", "

Cluster Info

\n", "
\n", "
\n", "
\n", "
\n", "

LocalCluster

\n", "

f17f13c5

\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", " \n", "
\n", " Dashboard: http://127.0.0.1:52367/status\n", " \n", " Workers: 8\n", "
\n", " Total threads: 128\n", " \n", " Total memory: 149.01 GiB\n", "
Status: runningUsing processes: True
\n", "\n", "
\n", " \n", "

Scheduler Info

\n", "
\n", "\n", "
\n", "
\n", "
\n", "
\n", "

Scheduler

\n", "

Scheduler-cfebc6e8-3543-4422-83e0-ad5571cb200d

\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
\n", " Comm: tcp://127.0.0.1:52370\n", " \n", " Workers: 8\n", "
\n", " Dashboard: http://127.0.0.1:52367/status\n", " \n", " Total threads: 128\n", "
\n", " Started: Just now\n", " \n", " Total memory: 149.01 GiB\n", "
\n", "
\n", "
\n", "\n", "
\n", " \n", "

Workers

\n", "
\n", "\n", " \n", "
\n", "
\n", "
\n", "
\n", " \n", "

Worker: 0

\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", "\n", " \n", "\n", "
\n", " Comm: tcp://127.0.0.1:52406\n", " \n", " Total threads: 16\n", "
\n", " Dashboard: http://127.0.0.1:52410/status\n", " \n", " Memory: 18.63 GiB\n", "
\n", " Nanny: tcp://127.0.0.1:52373\n", "
\n", " Local directory: C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-1_z2lt_0\n", "
\n", "
\n", "
\n", "
\n", " \n", "
\n", "
\n", "
\n", "
\n", " \n", "

Worker: 1

\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", "\n", " \n", "\n", "
\n", " Comm: tcp://127.0.0.1:52417\n", " \n", " Total threads: 16\n", "
\n", " Dashboard: http://127.0.0.1:52418/status\n", " \n", " Memory: 18.63 GiB\n", "
\n", " Nanny: tcp://127.0.0.1:52374\n", "
\n", " Local directory: C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-iq7wc4yz\n", "
\n", "
\n", "
\n", "
\n", " \n", "
\n", "
\n", "
\n", "
\n", " \n", "

Worker: 2

\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", "\n", " \n", "\n", "
\n", " Comm: tcp://127.0.0.1:52412\n", " \n", " Total threads: 16\n", "
\n", " Dashboard: http://127.0.0.1:52415/status\n", " \n", " Memory: 18.63 GiB\n", "
\n", " Nanny: tcp://127.0.0.1:52375\n", "
\n", " Local directory: C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-4s052vw8\n", "
\n", "
\n", "
\n", "
\n", " \n", "
\n", "
\n", "
\n", "
\n", " \n", "

Worker: 3

\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", "\n", " \n", "\n", "
\n", " Comm: tcp://127.0.0.1:52420\n", " \n", " Total threads: 16\n", "
\n", " Dashboard: http://127.0.0.1:52421/status\n", " \n", " Memory: 18.63 GiB\n", "
\n", " Nanny: tcp://127.0.0.1:52376\n", "
\n", " Local directory: C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-u1n0zi10\n", "
\n", "
\n", "
\n", "
\n", " \n", "
\n", "
\n", "
\n", "
\n", " \n", "

Worker: 4

\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", "\n", " \n", "\n", "
\n", " Comm: tcp://127.0.0.1:52423\n", " \n", " Total threads: 16\n", "
\n", " Dashboard: http://127.0.0.1:52424/status\n", " \n", " Memory: 18.63 GiB\n", "
\n", " Nanny: tcp://127.0.0.1:52377\n", "
\n", " Local directory: C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-3vuc5miu\n", "
\n", "
\n", "
\n", "
\n", " \n", "
\n", "
\n", "
\n", "
\n", " \n", "

Worker: 5

\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", "\n", " \n", "\n", "
\n", " Comm: tcp://127.0.0.1:52405\n", " \n", " Total threads: 16\n", "
\n", " Dashboard: http://127.0.0.1:52407/status\n", " \n", " Memory: 18.63 GiB\n", "
\n", " Nanny: tcp://127.0.0.1:52378\n", "
\n", " Local directory: C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-suw918q8\n", "
\n", "
\n", "
\n", "
\n", " \n", "
\n", "
\n", "
\n", "
\n", " \n", "

Worker: 6

\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", "\n", " \n", "\n", "
\n", " Comm: tcp://127.0.0.1:52409\n", " \n", " Total threads: 16\n", "
\n", " Dashboard: http://127.0.0.1:52413/status\n", " \n", " Memory: 18.63 GiB\n", "
\n", " Nanny: tcp://127.0.0.1:52379\n", "
\n", " Local directory: C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-7dc78218\n", "
\n", "
\n", "
\n", "
\n", " \n", "
\n", "
\n", "
\n", "
\n", " \n", "

Worker: 7

\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", "\n", " \n", "\n", "
\n", " Comm: tcp://127.0.0.1:52435\n", " \n", " Total threads: 16\n", "
\n", " Dashboard: http://127.0.0.1:52436/status\n", " \n", " Memory: 18.63 GiB\n", "
\n", " Nanny: tcp://127.0.0.1:52380\n", "
\n", " Local directory: C:\\Users\\data\\AppData\\Local\\Temp\\dask-worker-space\\worker-kdlokiw6\n", "
\n", "
\n", "
\n", "
\n", " \n", "\n", "
\n", "
\n", "\n", "
\n", "
\n", "
\n", "
\n", " \n", "\n", "
\n", "
" ], "text/plain": [ "" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from dask.distributed import Client\n", "client = Client(n_workers=8, threads_per_worker=16, processes=True, memory_limit='20GB')\n", "client" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Start a client for Mongo DB" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": [ "import pymongo\n", "import xarray_mongodb\n", "\n", "from DataContainer.MongoDB import MongoDB\n", "\n", "mongoClient = pymongo.MongoClient('mongodb://control:DyLab2021@127.0.0.1:27017/?authMechanism=DEFAULT')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Set global path for experiment" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [], "source": [ "groupList = [\n", " \"images/MOT_3D_Camera/in_situ_absorption\",\n", " \"images/ODT_1_Axis_Camera/in_situ_absorption\",\n", " \"images/ODT_2_Axis_Camera/in_situ_absorption\",\n", "]\n", "\n", "dskey = {\n", " \"images/MOT_3D_Camera/in_situ_absorption\": \"camera_0\",\n", " \"images/ODT_1_Axis_Camera/in_situ_absorption\": \"camera_1\",\n", " \"images/ODT_2_Axis_Camera/in_situ_absorption\": \"camera_2\",\n", "}\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Evaporative Cooling" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [], "source": [ "# img_dir = 'C:/Users/control/DyLab/Experiments/DyBEC/'\n", "img_dir = '//DyLabNAS/Data/'\n", "SequenceName = \"Evaporative_Cooling\"\n", "folderPath = img_dir + SequenceName + \"/\" + get_date()\n", "# folderPath = img_dir + SequenceName + \"/\" + '2023/06/30'# get_date()\n", "\n", "mongoDB = mongoClient[SequenceName]\n", "\n", "DB = MongoDB(mongoClient, mongoDB, date=get_date())" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "Could not find any dimension coordinates to use to order the datasets for concatenation", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[1;32mf:\\Jianshun\\analyseScript\\20230630_Data_Analysis.ipynb Cell 11\u001b[0m in \u001b[0;36m1\n\u001b[1;32m----> 1\u001b[0m xr\u001b[39m.\u001b[39;49mopen_mfdataset(filePath)\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\backends\\api.py:1010\u001b[0m, in \u001b[0;36mopen_mfdataset\u001b[1;34m(paths, chunks, concat_dim, compat, preprocess, engine, data_vars, coords, combine, parallel, join, attrs_file, combine_attrs, **kwargs)\u001b[0m\n\u001b[0;32m 997\u001b[0m combined \u001b[39m=\u001b[39m _nested_combine(\n\u001b[0;32m 998\u001b[0m datasets,\n\u001b[0;32m 999\u001b[0m concat_dims\u001b[39m=\u001b[39mconcat_dim,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1005\u001b[0m combine_attrs\u001b[39m=\u001b[39mcombine_attrs,\n\u001b[0;32m 1006\u001b[0m )\n\u001b[0;32m 1007\u001b[0m \u001b[39melif\u001b[39;00m combine \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mby_coords\u001b[39m\u001b[39m\"\u001b[39m:\n\u001b[0;32m 1008\u001b[0m \u001b[39m# Redo ordering from coordinates, ignoring how they were ordered\u001b[39;00m\n\u001b[0;32m 1009\u001b[0m \u001b[39m# previously\u001b[39;00m\n\u001b[1;32m-> 1010\u001b[0m combined \u001b[39m=\u001b[39m combine_by_coords(\n\u001b[0;32m 1011\u001b[0m datasets,\n\u001b[0;32m 1012\u001b[0m compat\u001b[39m=\u001b[39;49mcompat,\n\u001b[0;32m 1013\u001b[0m data_vars\u001b[39m=\u001b[39;49mdata_vars,\n\u001b[0;32m 1014\u001b[0m coords\u001b[39m=\u001b[39;49mcoords,\n\u001b[0;32m 1015\u001b[0m join\u001b[39m=\u001b[39;49mjoin,\n\u001b[0;32m 1016\u001b[0m combine_attrs\u001b[39m=\u001b[39;49mcombine_attrs,\n\u001b[0;32m 1017\u001b[0m )\n\u001b[0;32m 1018\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 1019\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[0;32m 1020\u001b[0m \u001b[39m\"\u001b[39m\u001b[39m{}\u001b[39;00m\u001b[39m is an invalid option for the keyword argument\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 1021\u001b[0m \u001b[39m\"\u001b[39m\u001b[39m ``combine``\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m.\u001b[39mformat(combine)\n\u001b[0;32m 1022\u001b[0m )\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\combine.py:975\u001b[0m, in \u001b[0;36mcombine_by_coords\u001b[1;34m(data_objects, compat, data_vars, coords, fill_value, join, combine_attrs, datasets)\u001b[0m\n\u001b[0;32m 973\u001b[0m concatenated_grouped_by_data_vars \u001b[39m=\u001b[39m []\n\u001b[0;32m 974\u001b[0m \u001b[39mfor\u001b[39;00m \u001b[39mvars\u001b[39m, datasets_with_same_vars \u001b[39min\u001b[39;00m grouped_by_vars:\n\u001b[1;32m--> 975\u001b[0m concatenated \u001b[39m=\u001b[39m _combine_single_variable_hypercube(\n\u001b[0;32m 976\u001b[0m \u001b[39mlist\u001b[39;49m(datasets_with_same_vars),\n\u001b[0;32m 977\u001b[0m fill_value\u001b[39m=\u001b[39;49mfill_value,\n\u001b[0;32m 978\u001b[0m data_vars\u001b[39m=\u001b[39;49mdata_vars,\n\u001b[0;32m 979\u001b[0m coords\u001b[39m=\u001b[39;49mcoords,\n\u001b[0;32m 980\u001b[0m compat\u001b[39m=\u001b[39;49mcompat,\n\u001b[0;32m 981\u001b[0m join\u001b[39m=\u001b[39;49mjoin,\n\u001b[0;32m 982\u001b[0m combine_attrs\u001b[39m=\u001b[39;49mcombine_attrs,\n\u001b[0;32m 983\u001b[0m )\n\u001b[0;32m 984\u001b[0m concatenated_grouped_by_data_vars\u001b[39m.\u001b[39mappend(concatenated)\n\u001b[0;32m 986\u001b[0m \u001b[39mreturn\u001b[39;00m merge(\n\u001b[0;32m 987\u001b[0m concatenated_grouped_by_data_vars,\n\u001b[0;32m 988\u001b[0m compat\u001b[39m=\u001b[39mcompat,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 991\u001b[0m combine_attrs\u001b[39m=\u001b[39mcombine_attrs,\n\u001b[0;32m 992\u001b[0m )\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\combine.py:622\u001b[0m, in \u001b[0;36m_combine_single_variable_hypercube\u001b[1;34m(datasets, fill_value, data_vars, coords, compat, join, combine_attrs)\u001b[0m\n\u001b[0;32m 616\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(datasets) \u001b[39m==\u001b[39m \u001b[39m0\u001b[39m:\n\u001b[0;32m 617\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[0;32m 618\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mAt least one Dataset is required to resolve variable names \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 619\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mfor combined hypercube.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 620\u001b[0m )\n\u001b[1;32m--> 622\u001b[0m combined_ids, concat_dims \u001b[39m=\u001b[39m _infer_concat_order_from_coords(\u001b[39mlist\u001b[39;49m(datasets))\n\u001b[0;32m 624\u001b[0m \u001b[39mif\u001b[39;00m fill_value \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 625\u001b[0m \u001b[39m# check that datasets form complete hypercube\u001b[39;00m\n\u001b[0;32m 626\u001b[0m _check_shape_tile_ids(combined_ids)\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\combine.py:145\u001b[0m, in \u001b[0;36m_infer_concat_order_from_coords\u001b[1;34m(datasets)\u001b[0m\n\u001b[0;32m 140\u001b[0m tile_ids \u001b[39m=\u001b[39m [\n\u001b[0;32m 141\u001b[0m tile_id \u001b[39m+\u001b[39m (position,) \u001b[39mfor\u001b[39;00m tile_id, position \u001b[39min\u001b[39;00m \u001b[39mzip\u001b[39m(tile_ids, order)\n\u001b[0;32m 142\u001b[0m ]\n\u001b[0;32m 144\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(datasets) \u001b[39m>\u001b[39m \u001b[39m1\u001b[39m \u001b[39mand\u001b[39;00m \u001b[39mnot\u001b[39;00m concat_dims:\n\u001b[1;32m--> 145\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[0;32m 146\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mCould not find any dimension coordinates to use to \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 147\u001b[0m \u001b[39m\"\u001b[39m\u001b[39morder the datasets for concatenation\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 148\u001b[0m )\n\u001b[0;32m 150\u001b[0m combined_ids \u001b[39m=\u001b[39m \u001b[39mdict\u001b[39m(\u001b[39mzip\u001b[39m(tile_ids, datasets))\n\u001b[0;32m 152\u001b[0m \u001b[39mreturn\u001b[39;00m combined_ids, concat_dims\n", "\u001b[1;31mValueError\u001b[0m: Could not find any dimension coordinates to use to order the datasets for concatenation" ] } ], "source": [ "xr.open_mfdataset(filePath)" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "cannot reindex or align along dimension 'phony_dim_2' because of conflicting dimension sizes: {1088, 0}", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[1;32mf:\\Jianshun\\analyseScript\\20230630_Data_Analysis.ipynb Cell 11\u001b[0m in \u001b[0;36m4\n\u001b[0;32m 1\u001b[0m shotNum \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m0071\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 2\u001b[0m filePath \u001b[39m=\u001b[39m folderPath \u001b[39m+\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m/\u001b[39m\u001b[39m\"\u001b[39m \u001b[39m+\u001b[39m shotNum \u001b[39m+\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m/*.h5\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m----> 4\u001b[0m dataSetDict \u001b[39m=\u001b[39m {\n\u001b[0;32m 5\u001b[0m dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n\u001b[0;32m 6\u001b[0m \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m [\u001b[39m1\u001b[39m]\n\u001b[0;32m 7\u001b[0m }\n\u001b[0;32m 9\u001b[0m dataSet \u001b[39m=\u001b[39m dataSetDict[\u001b[39m\"\u001b[39m\u001b[39mcamera_0\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[0;32m 11\u001b[0m print_scanAxis(dataSet)\n", "\u001b[1;32mf:\\Jianshun\\analyseScript\\20230630_Data_Analysis.ipynb Cell 11\u001b[0m in \u001b[0;36m5\n\u001b[0;32m 1\u001b[0m shotNum \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m0071\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 2\u001b[0m filePath \u001b[39m=\u001b[39m folderPath \u001b[39m+\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m/\u001b[39m\u001b[39m\"\u001b[39m \u001b[39m+\u001b[39m shotNum \u001b[39m+\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m/*.h5\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 4\u001b[0m dataSetDict \u001b[39m=\u001b[39m {\n\u001b[1;32m----> 5\u001b[0m dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n\u001b[0;32m 6\u001b[0m \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m [\u001b[39m1\u001b[39m]\n\u001b[0;32m 7\u001b[0m }\n\u001b[0;32m 9\u001b[0m dataSet \u001b[39m=\u001b[39m dataSetDict[\u001b[39m\"\u001b[39m\u001b[39mcamera_0\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[0;32m 11\u001b[0m print_scanAxis(dataSet)\n", "File \u001b[1;32mf:\\Jianshun\\analyseScript\\DataContainer\\ReadData.py:226\u001b[0m, in \u001b[0;36mread_hdf5_file\u001b[1;34m(filePath, group, datesetOfGlobal, preprocess, join, parallel, engine, phony_dims, excludeAxis, maxFileNum, **kwargs)\u001b[0m\n\u001b[0;32m 223\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 224\u001b[0m kwargs\u001b[39m.\u001b[39mupdate({\u001b[39m'\u001b[39m\u001b[39mpreprocess\u001b[39m\u001b[39m'\u001b[39m:preprocess})\n\u001b[1;32m--> 226\u001b[0m ds \u001b[39m=\u001b[39m xr\u001b[39m.\u001b[39mopen_mfdataset(fullFilePath, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m 228\u001b[0m newDimKey \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mappend([\u001b[39m'\u001b[39m\u001b[39mx\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39my\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mz\u001b[39m\u001b[39m'\u001b[39m], [ \u001b[39mchr\u001b[39m(i) \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(\u001b[39m97\u001b[39m, \u001b[39m97\u001b[39m\u001b[39m+\u001b[39m\u001b[39m23\u001b[39m)])\n\u001b[0;32m 230\u001b[0m oldDimKey \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39msort(\n\u001b[0;32m 231\u001b[0m [\n\u001b[0;32m 232\u001b[0m key \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 235\u001b[0m ]\n\u001b[0;32m 236\u001b[0m )\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\backends\\api.py:1010\u001b[0m, in \u001b[0;36mopen_mfdataset\u001b[1;34m(paths, chunks, concat_dim, compat, preprocess, engine, data_vars, coords, combine, parallel, join, attrs_file, combine_attrs, **kwargs)\u001b[0m\n\u001b[0;32m 997\u001b[0m combined \u001b[39m=\u001b[39m _nested_combine(\n\u001b[0;32m 998\u001b[0m datasets,\n\u001b[0;32m 999\u001b[0m concat_dims\u001b[39m=\u001b[39mconcat_dim,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1005\u001b[0m combine_attrs\u001b[39m=\u001b[39mcombine_attrs,\n\u001b[0;32m 1006\u001b[0m )\n\u001b[0;32m 1007\u001b[0m \u001b[39melif\u001b[39;00m combine \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mby_coords\u001b[39m\u001b[39m\"\u001b[39m:\n\u001b[0;32m 1008\u001b[0m \u001b[39m# Redo ordering from coordinates, ignoring how they were ordered\u001b[39;00m\n\u001b[0;32m 1009\u001b[0m \u001b[39m# previously\u001b[39;00m\n\u001b[1;32m-> 1010\u001b[0m combined \u001b[39m=\u001b[39m combine_by_coords(\n\u001b[0;32m 1011\u001b[0m datasets,\n\u001b[0;32m 1012\u001b[0m compat\u001b[39m=\u001b[39;49mcompat,\n\u001b[0;32m 1013\u001b[0m data_vars\u001b[39m=\u001b[39;49mdata_vars,\n\u001b[0;32m 1014\u001b[0m coords\u001b[39m=\u001b[39;49mcoords,\n\u001b[0;32m 1015\u001b[0m join\u001b[39m=\u001b[39;49mjoin,\n\u001b[0;32m 1016\u001b[0m combine_attrs\u001b[39m=\u001b[39;49mcombine_attrs,\n\u001b[0;32m 1017\u001b[0m )\n\u001b[0;32m 1018\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 1019\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[0;32m 1020\u001b[0m \u001b[39m\"\u001b[39m\u001b[39m{}\u001b[39;00m\u001b[39m is an invalid option for the keyword argument\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 1021\u001b[0m \u001b[39m\"\u001b[39m\u001b[39m ``combine``\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m.\u001b[39mformat(combine)\n\u001b[0;32m 1022\u001b[0m )\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\combine.py:975\u001b[0m, in \u001b[0;36mcombine_by_coords\u001b[1;34m(data_objects, compat, data_vars, coords, fill_value, join, combine_attrs, datasets)\u001b[0m\n\u001b[0;32m 973\u001b[0m concatenated_grouped_by_data_vars \u001b[39m=\u001b[39m []\n\u001b[0;32m 974\u001b[0m \u001b[39mfor\u001b[39;00m \u001b[39mvars\u001b[39m, datasets_with_same_vars \u001b[39min\u001b[39;00m grouped_by_vars:\n\u001b[1;32m--> 975\u001b[0m concatenated \u001b[39m=\u001b[39m _combine_single_variable_hypercube(\n\u001b[0;32m 976\u001b[0m \u001b[39mlist\u001b[39;49m(datasets_with_same_vars),\n\u001b[0;32m 977\u001b[0m fill_value\u001b[39m=\u001b[39;49mfill_value,\n\u001b[0;32m 978\u001b[0m data_vars\u001b[39m=\u001b[39;49mdata_vars,\n\u001b[0;32m 979\u001b[0m coords\u001b[39m=\u001b[39;49mcoords,\n\u001b[0;32m 980\u001b[0m compat\u001b[39m=\u001b[39;49mcompat,\n\u001b[0;32m 981\u001b[0m join\u001b[39m=\u001b[39;49mjoin,\n\u001b[0;32m 982\u001b[0m combine_attrs\u001b[39m=\u001b[39;49mcombine_attrs,\n\u001b[0;32m 983\u001b[0m )\n\u001b[0;32m 984\u001b[0m concatenated_grouped_by_data_vars\u001b[39m.\u001b[39mappend(concatenated)\n\u001b[0;32m 986\u001b[0m \u001b[39mreturn\u001b[39;00m merge(\n\u001b[0;32m 987\u001b[0m concatenated_grouped_by_data_vars,\n\u001b[0;32m 988\u001b[0m compat\u001b[39m=\u001b[39mcompat,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 991\u001b[0m combine_attrs\u001b[39m=\u001b[39mcombine_attrs,\n\u001b[0;32m 992\u001b[0m )\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\combine.py:633\u001b[0m, in \u001b[0;36m_combine_single_variable_hypercube\u001b[1;34m(datasets, fill_value, data_vars, coords, compat, join, combine_attrs)\u001b[0m\n\u001b[0;32m 630\u001b[0m _check_dimension_depth_tile_ids(combined_ids)\n\u001b[0;32m 632\u001b[0m \u001b[39m# Concatenate along all of concat_dims one by one to create single ds\u001b[39;00m\n\u001b[1;32m--> 633\u001b[0m concatenated \u001b[39m=\u001b[39m _combine_nd(\n\u001b[0;32m 634\u001b[0m combined_ids,\n\u001b[0;32m 635\u001b[0m concat_dims\u001b[39m=\u001b[39;49mconcat_dims,\n\u001b[0;32m 636\u001b[0m data_vars\u001b[39m=\u001b[39;49mdata_vars,\n\u001b[0;32m 637\u001b[0m coords\u001b[39m=\u001b[39;49mcoords,\n\u001b[0;32m 638\u001b[0m compat\u001b[39m=\u001b[39;49mcompat,\n\u001b[0;32m 639\u001b[0m fill_value\u001b[39m=\u001b[39;49mfill_value,\n\u001b[0;32m 640\u001b[0m join\u001b[39m=\u001b[39;49mjoin,\n\u001b[0;32m 641\u001b[0m combine_attrs\u001b[39m=\u001b[39;49mcombine_attrs,\n\u001b[0;32m 642\u001b[0m )\n\u001b[0;32m 644\u001b[0m \u001b[39m# Check the overall coordinates are monotonically increasing\u001b[39;00m\n\u001b[0;32m 645\u001b[0m \u001b[39mfor\u001b[39;00m dim \u001b[39min\u001b[39;00m concat_dims:\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\combine.py:235\u001b[0m, in \u001b[0;36m_combine_nd\u001b[1;34m(combined_ids, concat_dims, data_vars, coords, compat, fill_value, join, combine_attrs)\u001b[0m\n\u001b[0;32m 231\u001b[0m \u001b[39m# Each iteration of this loop reduces the length of the tile_ids tuples\u001b[39;00m\n\u001b[0;32m 232\u001b[0m \u001b[39m# by one. It always combines along the first dimension, removing the first\u001b[39;00m\n\u001b[0;32m 233\u001b[0m \u001b[39m# element of the tuple\u001b[39;00m\n\u001b[0;32m 234\u001b[0m \u001b[39mfor\u001b[39;00m concat_dim \u001b[39min\u001b[39;00m concat_dims:\n\u001b[1;32m--> 235\u001b[0m combined_ids \u001b[39m=\u001b[39m _combine_all_along_first_dim(\n\u001b[0;32m 236\u001b[0m combined_ids,\n\u001b[0;32m 237\u001b[0m dim\u001b[39m=\u001b[39;49mconcat_dim,\n\u001b[0;32m 238\u001b[0m data_vars\u001b[39m=\u001b[39;49mdata_vars,\n\u001b[0;32m 239\u001b[0m coords\u001b[39m=\u001b[39;49mcoords,\n\u001b[0;32m 240\u001b[0m compat\u001b[39m=\u001b[39;49mcompat,\n\u001b[0;32m 241\u001b[0m fill_value\u001b[39m=\u001b[39;49mfill_value,\n\u001b[0;32m 242\u001b[0m join\u001b[39m=\u001b[39;49mjoin,\n\u001b[0;32m 243\u001b[0m combine_attrs\u001b[39m=\u001b[39;49mcombine_attrs,\n\u001b[0;32m 244\u001b[0m )\n\u001b[0;32m 245\u001b[0m (combined_ds,) \u001b[39m=\u001b[39m combined_ids\u001b[39m.\u001b[39mvalues()\n\u001b[0;32m 246\u001b[0m \u001b[39mreturn\u001b[39;00m combined_ds\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\combine.py:270\u001b[0m, in \u001b[0;36m_combine_all_along_first_dim\u001b[1;34m(combined_ids, dim, data_vars, coords, compat, fill_value, join, combine_attrs)\u001b[0m\n\u001b[0;32m 268\u001b[0m combined_ids \u001b[39m=\u001b[39m \u001b[39mdict\u001b[39m(\u001b[39msorted\u001b[39m(group))\n\u001b[0;32m 269\u001b[0m datasets \u001b[39m=\u001b[39m combined_ids\u001b[39m.\u001b[39mvalues()\n\u001b[1;32m--> 270\u001b[0m new_combined_ids[new_id] \u001b[39m=\u001b[39m _combine_1d(\n\u001b[0;32m 271\u001b[0m datasets, dim, compat, data_vars, coords, fill_value, join, combine_attrs\n\u001b[0;32m 272\u001b[0m )\n\u001b[0;32m 273\u001b[0m \u001b[39mreturn\u001b[39;00m new_combined_ids\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\combine.py:293\u001b[0m, in \u001b[0;36m_combine_1d\u001b[1;34m(datasets, concat_dim, compat, data_vars, coords, fill_value, join, combine_attrs)\u001b[0m\n\u001b[0;32m 291\u001b[0m \u001b[39mif\u001b[39;00m concat_dim \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 292\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m--> 293\u001b[0m combined \u001b[39m=\u001b[39m concat(\n\u001b[0;32m 294\u001b[0m datasets,\n\u001b[0;32m 295\u001b[0m dim\u001b[39m=\u001b[39;49mconcat_dim,\n\u001b[0;32m 296\u001b[0m data_vars\u001b[39m=\u001b[39;49mdata_vars,\n\u001b[0;32m 297\u001b[0m coords\u001b[39m=\u001b[39;49mcoords,\n\u001b[0;32m 298\u001b[0m compat\u001b[39m=\u001b[39;49mcompat,\n\u001b[0;32m 299\u001b[0m fill_value\u001b[39m=\u001b[39;49mfill_value,\n\u001b[0;32m 300\u001b[0m join\u001b[39m=\u001b[39;49mjoin,\n\u001b[0;32m 301\u001b[0m combine_attrs\u001b[39m=\u001b[39;49mcombine_attrs,\n\u001b[0;32m 302\u001b[0m )\n\u001b[0;32m 303\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mValueError\u001b[39;00m \u001b[39mas\u001b[39;00m err:\n\u001b[0;32m 304\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39m\"\u001b[39m\u001b[39mencountered unexpected variable\u001b[39m\u001b[39m\"\u001b[39m \u001b[39min\u001b[39;00m \u001b[39mstr\u001b[39m(err):\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\concat.py:251\u001b[0m, in \u001b[0;36mconcat\u001b[1;34m(objs, dim, data_vars, coords, compat, positions, fill_value, join, combine_attrs)\u001b[0m\n\u001b[0;32m 239\u001b[0m \u001b[39mreturn\u001b[39;00m _dataarray_concat(\n\u001b[0;32m 240\u001b[0m objs,\n\u001b[0;32m 241\u001b[0m dim\u001b[39m=\u001b[39mdim,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 248\u001b[0m combine_attrs\u001b[39m=\u001b[39mcombine_attrs,\n\u001b[0;32m 249\u001b[0m )\n\u001b[0;32m 250\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39misinstance\u001b[39m(first_obj, Dataset):\n\u001b[1;32m--> 251\u001b[0m \u001b[39mreturn\u001b[39;00m _dataset_concat(\n\u001b[0;32m 252\u001b[0m objs,\n\u001b[0;32m 253\u001b[0m dim\u001b[39m=\u001b[39;49mdim,\n\u001b[0;32m 254\u001b[0m data_vars\u001b[39m=\u001b[39;49mdata_vars,\n\u001b[0;32m 255\u001b[0m coords\u001b[39m=\u001b[39;49mcoords,\n\u001b[0;32m 256\u001b[0m compat\u001b[39m=\u001b[39;49mcompat,\n\u001b[0;32m 257\u001b[0m positions\u001b[39m=\u001b[39;49mpositions,\n\u001b[0;32m 258\u001b[0m fill_value\u001b[39m=\u001b[39;49mfill_value,\n\u001b[0;32m 259\u001b[0m join\u001b[39m=\u001b[39;49mjoin,\n\u001b[0;32m 260\u001b[0m combine_attrs\u001b[39m=\u001b[39;49mcombine_attrs,\n\u001b[0;32m 261\u001b[0m )\n\u001b[0;32m 262\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 263\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mTypeError\u001b[39;00m(\n\u001b[0;32m 264\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mcan only concatenate xarray Dataset and DataArray \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 265\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mobjects, got \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mtype\u001b[39m(first_obj)\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m\n\u001b[0;32m 266\u001b[0m )\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\concat.py:483\u001b[0m, in \u001b[0;36m_dataset_concat\u001b[1;34m(datasets, dim, data_vars, coords, compat, positions, fill_value, join, combine_attrs)\u001b[0m\n\u001b[0;32m 480\u001b[0m \u001b[39m# Make sure we're working on a copy (we'll be loading variables)\u001b[39;00m\n\u001b[0;32m 481\u001b[0m datasets \u001b[39m=\u001b[39m [ds\u001b[39m.\u001b[39mcopy() \u001b[39mfor\u001b[39;00m ds \u001b[39min\u001b[39;00m datasets]\n\u001b[0;32m 482\u001b[0m datasets \u001b[39m=\u001b[39m \u001b[39mlist\u001b[39m(\n\u001b[1;32m--> 483\u001b[0m align(\u001b[39m*\u001b[39;49mdatasets, join\u001b[39m=\u001b[39;49mjoin, copy\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m, exclude\u001b[39m=\u001b[39;49m[dim], fill_value\u001b[39m=\u001b[39;49mfill_value)\n\u001b[0;32m 484\u001b[0m )\n\u001b[0;32m 486\u001b[0m dim_coords, dims_sizes, coord_names, data_names, vars_order \u001b[39m=\u001b[39m _parse_datasets(\n\u001b[0;32m 487\u001b[0m datasets\n\u001b[0;32m 488\u001b[0m )\n\u001b[0;32m 489\u001b[0m dim_names \u001b[39m=\u001b[39m \u001b[39mset\u001b[39m(dim_coords)\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\alignment.py:787\u001b[0m, in \u001b[0;36malign\u001b[1;34m(join, copy, indexes, exclude, fill_value, *objects)\u001b[0m\n\u001b[0;32m 591\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[0;32m 592\u001b[0m \u001b[39mGiven any number of Dataset and/or DataArray objects, returns new\u001b[39;00m\n\u001b[0;32m 593\u001b[0m \u001b[39mobjects with aligned indexes and dimension sizes.\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 777\u001b[0m \n\u001b[0;32m 778\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[0;32m 779\u001b[0m aligner \u001b[39m=\u001b[39m Aligner(\n\u001b[0;32m 780\u001b[0m objects,\n\u001b[0;32m 781\u001b[0m join\u001b[39m=\u001b[39mjoin,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 785\u001b[0m fill_value\u001b[39m=\u001b[39mfill_value,\n\u001b[0;32m 786\u001b[0m )\n\u001b[1;32m--> 787\u001b[0m aligner\u001b[39m.\u001b[39;49malign()\n\u001b[0;32m 788\u001b[0m \u001b[39mreturn\u001b[39;00m aligner\u001b[39m.\u001b[39mresults\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\alignment.py:573\u001b[0m, in \u001b[0;36mAligner.align\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 571\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39massert_no_index_conflict()\n\u001b[0;32m 572\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39malign_indexes()\n\u001b[1;32m--> 573\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49massert_unindexed_dim_sizes_equal()\n\u001b[0;32m 575\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mjoin \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39moverride\u001b[39m\u001b[39m\"\u001b[39m:\n\u001b[0;32m 576\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39moverride_indexes()\n", "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python39\\site-packages\\xarray\\core\\alignment.py:472\u001b[0m, in \u001b[0;36mAligner.assert_unindexed_dim_sizes_equal\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 470\u001b[0m add_err_msg \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 471\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(sizes) \u001b[39m>\u001b[39m \u001b[39m1\u001b[39m:\n\u001b[1;32m--> 472\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[0;32m 473\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mcannot reindex or align along dimension \u001b[39m\u001b[39m{\u001b[39;00mdim\u001b[39m!r}\u001b[39;00m\u001b[39m \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 474\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mbecause of conflicting dimension sizes: \u001b[39m\u001b[39m{\u001b[39;00msizes\u001b[39m!r}\u001b[39;00m\u001b[39m\"\u001b[39m \u001b[39m+\u001b[39m add_err_msg\n\u001b[0;32m 475\u001b[0m )\n", "\u001b[1;31mValueError\u001b[0m: cannot reindex or align along dimension 'phony_dim_2' because of conflicting dimension sizes: {1088, 0}" ] } ], "source": [ "shotNum = \"0071\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [1]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# ALS" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0 - 0.025 A" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0. , 0.0009, 0.0018, 0.0027, 0.0036, 0.0045, 0.0054, 0.0063,\n", " 0.0072, 0.0081, 0.009 , 0.0099, 0.0108, 0.0117, 0.0126, 0.0135,\n", " 0.0144, 0.0153, 0.0162, 0.0171, 0.018 , 0.0189, 0.0198, 0.0207,\n", " 0.0216, 0.0225, 0.0234, 0.0243]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABNWElEQVR4nO3df1xUdaL/8fckOAho7oA/EDUtf3BVxOKmsjcTM4ktuwrprrmW4mLtamnprmGiQSnaZj9cF2vdTCyyH7Zqm+svRHT3Zhm3vnsXam13S80sfwCaPxAc8Hz/YJkcGXCAgZmDr+fjwUPncz7zmc85nznwnnM+54zFMAxDAAAAMIVrvN0BAAAAuI/wBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATMTr4e2vf/2r7rrrLnXv3l1t2rSRzWZTTEyMsrOznepNmTJFFoulxk9ERITLdlesWKGIiAhZrVb17NlT6enpstvtNeodP35cU6ZMUWhoqAIDAxUTE6Pc3NwmWVcAAIDG8vN2B06dOqVu3brp3nvvVXh4uM6dO6fXX39d9913nw4ePKjU1FRH3TZt2mjXrl1Oz2/Tpk2NNhcvXqwFCxYoJSVFcXFxys/PV2pqqo4cOaJVq1Y56pWXl2vkyJE6deqUli9fro4dOyozM1Px8fHauXOnhg8f3nQrDgAA0AAWX/1u06FDh+qbb77RV199JanqyNs777yjs2fP1vm84uJide3aVffff79+97vfOcozMjKUmpqqwsJC9evXT5K0cuVKzZgxQ3v37lVMTIwkqaKiQlFRUQoODta+ffuaaO0AAAAaxuunTWsTGhoqP7/6Hxjctm2bysrKlJSU5FSelJQkwzC0adMmR9nGjRvVt29fR3CTJD8/P02aNEkfffSRjhw50uD+AwAANAWvnzatdvHiRV28eFEnT57U+vXrtX37dv32t791qnP+/Hl17txZJ06cUFhYmMaOHasnn3xSNpvNUaewsFCSFBkZ6fTcsLAwhYaGOpZX1x02bFiNvgwcOFCS9Omnnyo8PNxlf8vLy1VeXu7U/5KSEoWEhMhisdRz7QEAQEthGIbOnDmjLl266JprPH+czGfC2/Tp0x2nOVu3bq3f/OY3evDBBx3Lo6KiFBUVpQEDBkiS9uzZo+eff165ubnKz89XcHCwpKrTplarVUFBQTVew2azqbi42PG4uLjYKfhdWq96eW2WLFmi9PT0BqwpAAC4Ghw+fFhdu3b1eLs+E94ef/xxJScn6/jx43rvvff00EMP6dy5c/rlL38pSXr00Ued6o8aNUo33nijxo0bp9///vdOy+s68nX5svrUvdS8efM0e/Zsx+PvvvtO3bt314EDB9S2bdtan9cQdrtdeXl5GjFihPz9/T3aNtzDGHgfY+BdbH/vYwy8z90xOHPmjHr27OnxPFDNZ8Jb9+7d1b17d0nSnXfeKakqIE2ePFkdOnRw+ZyEhAQFBQXpww8/dJSFhISorKxMpaWlCgwMdKpfUlKi6Ohop7qujq6VlJRIksujctWsVqusVmuNcpvNpnbt2tX6vIaw2+0KDAxUSEgIO6yXMAbexxh4F9vf+xgD73N3DKqXNdU0Kp+9YGHw4MGqqKjQl19+WWc9wzCczidXz3UrKChwqnf06FEVFRU5TrtW17283qXPvbQuAACAL/DZ8JaXl6drrrlG119/fa113nnnHZWWlmro0KGOsvj4eAUEBCgrK8upblZWliwWi8aOHesoS0hI0P79+51uCVJRUaHs7GwNGTJEXbp08dj6AAAAeILXT5s+8MADateunQYPHqxOnTqpqKhI69ev11tvvaVf/epX6tChgw4dOqSJEydqwoQJ6tWrlywWi/bs2aMXXnhB/fv3V3JysqM9m82m1NRULViwQDabzXGT3rS0NCUnJzvu8SZJU6dOVWZmpsaPH6+lS5eqY8eOWrlypT7//HPt3LnTG5sDAACgTl4PbzExMVqzZo3Wrl2rU6dOKTg4WFFRUXrttdc0adIkSVK7du3UqVMnPffcczp27JgqKyt13XXXaebMmXr88cdrXFk6f/58tW3bVpmZmVq2bJk6d+6slJQUzZ8/36me1WpVbm6u5s6dq4cfflilpaUaNGiQtm7dyrcrAAAAn+T18JaUlFTjhrqX+8EPfqANGzbUq92ZM2dq5syZV6zXqVMnrV27tl5tAwAAeIvPznkDAABATYQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmIjXw9tf//pX3XXXXerevbvatGkjm82mmJgYZWdn16j7ySef6Pbbb1dwcLDat2+vxMREffnlly7bXbFihSIiImS1WtWzZ0+lp6fLbrfXqHf8+HFNmTJFoaGhCgwMVExMjHJzcz2+ngAAAJ7g9fB26tQpdevWTRkZGdqyZYteffVV9ejRQ/fdd58WLVrkqLd//37FxsbqwoULevvtt/XKK6/oH//4h4YNG6YTJ044tbl48WLNmjVLiYmJ2r59u6ZPn66MjAzNmDHDqV55eblGjhyp3NxcLV++XO+++646deqk+Ph47dmzp1nWHwAAoD78vN2B2NhYxcbGOpWNHj1aBw4c0KpVq5SamipJWrhwoaxWqzZv3qx27dpJkqKjo9W7d28tW7ZMTz/9tCSpuLhYixYt0rRp05SRkeF4DbvdrtTUVD3yyCPq16+fJGn16tUqLCzU3r17FRMTI0kaMWKEoqKiNHfuXO3bt685NgEAAIDbvH7krTahoaHy86vKlhUVFdq8ebPuueceR3CTpOuuu04jRozQxo0bHWXbtm1TWVmZkpKSnNpLSkqSYRjatGmTo2zjxo3q27evI7hJkp+fnyZNmqSPPvpIR44caaK1AwAAaBivH3mrdvHiRV28eFEnT57U+vXrtX37dv32t7+VJH3xxRc6f/68Bg4cWON5AwcOVE5OjsrKyhQQEKDCwkJJUmRkpFO9sLAwhYaGOpZLUmFhoYYNG+ayTUn69NNPFR4e7rK/5eXlKi8vdzw+ffq0JMlut7ucW9cY1e15ul24jzHwPsbAu9j+3scYeJ+7Y9DUY+Qz4W369On63e9+J0lq3bq1fvOb3+jBBx+UVHUqVJJsNluN59lsNhmGoZMnTyosLEzFxcWyWq0KCgpyWbe6rep2a2vz0td1ZcmSJUpPT69RvmPHDgUGBta1qg2Wk5PTJO3CfYyB9zEG3sX29z7GwPuuNAalpaVN+vo+E94ef/xxJScn6/jx43rvvff00EMP6dy5c/rlL3/pqGOxWGp9/qXL3K1X37qXmjdvnmbPnu14fPr0aXXr1k1xcXFOp3Y9wW63KycnR6NGjZK/v79H24Z7GAPvYwy8i+3vfYyB97k7BtVn45qKz4S37t27q3v37pKkO++8U1JVQJo8ebJCQkIkuT4SVlJSIovFovbt20uSQkJCVFZWptLS0hpHwEpKShQdHe14HBISUmubkusjfdWsVqusVmuNcn9//ybbqZqybbiHMfA+xsC72P7exxh435XGoKnHx2cvWBg8eLAqKir05Zdf6oYbblCbNm1UUFBQo15BQYF69eqlgIAASd/Pdbu87tGjR1VUVKQBAwY4yiIjI2ttU5JTXQAAAF/gs+EtLy9P11xzja6//nr5+fnp7rvv1oYNG3TmzBlHna+++kp5eXlKTEx0lMXHxysgIEBZWVlO7WVlZclisWjs2LGOsoSEBO3fv9/pliAVFRXKzs7WkCFD1KVLlyZbPwAAgIbw+mnTBx54QO3atdPgwYPVqVMnFRUVaf369Xrrrbf0q1/9Sh06dJAkpaen6+abb9bo0aOVkpKisrIyLVy4UKGhoZozZ46jPZvNptTUVC1YsEA2m01xcXHKz89XWlqakpOTHfd4k6SpU6cqMzNT48eP19KlS9WxY0etXLlSn3/+uXbu3Nns2wIAAOBKvB7eYmJitGbNGq1du1anTp1ScHCwoqKi9Nprr2nSpEmOehEREdq9e7cee+wxjRs3Tn5+frrtttu0bNkyR8CrNn/+fLVt21aZmZlatmyZOnfurJSUFM2fP9+pntVqVW5urubOnauHH35YpaWlGjRokLZu3arhw4c3y/oDAADUh9fDW1JSUo0b6tYmOjra7SNiM2fO1MyZM69Yr1OnTlq7dq1bbQIAAHibz855AwAAQE2ENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAHjcuXOSxVL1c+6ct3sDAC0L4Q0AAMBECG8AAAAmQngD0KJxChfNjfccmhrhDQAAwEQIbwAAr+JIFVA/hDcAAAATIbwBAACYCOENAOBVlZXf///Pf3Z+jJahslLavVt6442qfxnjxiG8AQC8ZsMGqV+/7x/feafUo0dVOVqGDRuk666TRoyQJk6s+pcxbhzCGwDAKzZskMaNk44ccS4/cqSqnD/u5scYNw3CG9zGYW8AnlJZKc2aJRlGzWXVZY88wu8ZM2OMmw7hDW7ZsKHqMDeHvWE2zKfyTX/5i/T117UvNwzp8OGqejAnxrjpEN583LlzUuvW/ho7dozX7n9Ufdj78p2Qw95VuEeV7/LkfCrG2bO+/daz9eB7GOOmQ3hDnTjsDbNiro1vCwvzbD00nYZOmWGMmw7hDXXisDfMiA8dvm/YMKlr16ojma5YLFK3blX14D2NuVLUV8e4JRxFJ7z5uEv/uPzP/1ia/Y9NSz7s3RJ2YLjWFB86mDvnWa1aScuXV/3/8j/u1Y9feKGqHryjsUevm2KM+b1dhfDmwy6fr3P33X7NfpEAh72vjD/qvsfTHzp86V5kLemq78RE6Z13pC5dnMu7dq0qT0z0Tr/guaPX1WMcHu5czhg3DuHNR/nKfB1PH/ZuaZ+aPPVH3VN/kFvSH/bG8OSHDl/ZF6v70tJudpqYKH322fePt2yRDhzgj7q3efLodWKidPCglJcnrVtX9S9j3DiENx/kS/N1OLVRO0/9UffUbVha4u1cLg2je/a4P23AUx86fGlf9KUQ6WmX/v649dar8/eJr/H00etWraTYWOnee6v+ZYwbx+vhbdeuXZo6daoiIiIUFBSk8PBwjRkzRh9//LFTvSlTpshisdT4iYiIcNnuihUrFBERIavVqp49eyo9PV12u71GvePHj2vKlCkKDQ1VYGCgYmJilJub2yTr6i5fu0iAw941eeqPuqduw9ISb+dy+VGmUaP89MADcdq4sZZEdglPfejwlX3Rl0JkUwgKqloPw6j6P7x/loIpM77N6+HtxRdf1MGDBzVr1ixt2bJFy5cv1/HjxzV06FDt2rXLqW6bNm30wQcfOP289dZbNdpcvHixZs2apcTERG3fvl3Tp09XRkaGZsyY4VSvvLxcI0eOVG5urpYvX653331XnTp1Unx8vPbs2dOk610XX7xIgMPezjzxR91Tf5Bb4h/22o4yFRcHaMKEVm6FUU/Mp/KVfdFXQiSuHr56pShzjP/N8LJjx47VKDtz5ozRqVMnY+TIkY6yyZMnG0FBQVdsr6ioyAgICDAeeOABp/LFixcbFovF+PTTTx1lmZmZhiRj7969jjK73W7069fPGDx4cL3W47vvvjMkGd999129nudKXl71Z9C6f/LyGv1Sze7s2e/7f/asefpy4cIFY9OmTcaFCxcMwzCMdevcG6N162pv01Pj7Ivvl++++/51t2wxjIoK959bUWEYXbvWvh4Wy0WjWzf322xMX3xl23ri/Xa5ioqqfq9bV/XvlbbL5fsAateY91w1V7+fmnsM/vAHw7BYqn6c98Gqnz/8oVm64dSf8HDnvnTtWv9+NObvkLtj4MlM4IrXj7x17NixRllwcLD69eunw4cP17u9bdu2qaysTElJSU7lSUlJMgxDmzZtcpRt3LhRffv2VUxMjKPMz89PkyZN0kcffaQjl3/sbya++onHl7SEUwqeOqrjK0eHqjX2Io4rH2Wy1OsoU2PmU/nKvujpU1gtcX6kr/ClK5Mby5emzLTkOZ8N4eftDrjy3Xff6ZNPPtFtt93mVH7+/Hl17txZJ06cUFhYmMaOHasnn3xSNpvNUaewsFCSFBkZ6fTcsLAwhYaGOpZX1x3m4rfuwIEDJUmffvqpwi9/1/5beXm5ysvLHY9Pnz4tSbLb7S7n1tXXs89aNGFCK1ksVX+sqlksVefBli2r1MWLhi5ebPRLNauyMknylyTl5VXo9tuNBk1crdrE/v/+v10N2eT1aaN6TKv/HTpUCg/30zffOI9PNYvFUHi4NHRoRa3tduhgkTu7YIcOFbLbXZwT9XA7nrBxY9X7tup07ffb5cgRQ+PGSW++WamEhLr7cPiwe+tz+LB769PY94on98XKyqr7NX77bVXQuuUW997/nni/VWvoGF2+D/iahm5bT/LE+7+aq/dtQ8agsdvl7rurAqirNprrrVBZKc2c6Vdju0pVx88sFkOzZkl33lnh1ro15neCu2PQ1PuJT4a3GTNm6Ny5c5o/f76jLCoqSlFRURowYIAkac+ePXr++eeVm5ur/Px8BQcHS5KKi4tltVoV5GLWq81mU3FxseNxcXGxU/C7tF718tosWbJE6enpNcp37NihwMBAN9e0dlarNHdumH7/+0iVlLRxlIeEnNfPflYoq/VbbdnS6JdpVh98ULU+1TvN3Xf7KSTkvJKTCxQTU7/DQqWlrSSNliQ999z/atCg4/X+RV1W9n0b27dvV0DAlSdP5OTkOP4/aVKYnn76ZkmGnH+hGDIM6ac/zdf27bWvV2WlFBISp+LiAF3+C6m6ndDQ8zp9OqfOsfZUO41VWSlNnx4nw2hVox9VgcPQjBkX5OeXU+dYHToUIumWK77eoUMfasuW2vfRag0Z50t5al/84IMwvfxypIqLndtw9/3f2Peb5JkxunQf8BWN3bae4Kn3f7W63rfujoGnt0u7dlVnOrZvr/dTG6WgIERHjtT+O8EwLPr6a2nZsn2KjGz63wnSlcegtLS03m3WS5OcjG2E1NRUQ5KxYsWKK9Z95513DEnGc8895yibNm2aERAQ4LJ+nz59jDvuuMPx2N/f3/j5z39eo97evXsNScYbb7xR62uXlZUZ3333nePn8OHDhiSjqKjIuHDhgsd+ioouOM7Nb9x43jh/3nNtN+fPW2/ZDYvloiFdrDF/yWK5aLz1lr1ebXXp4txOeHj92rhw4YJx8uT32/bkybrrnjt3zti0aZNx7ty5K/ala1f3+1K9Xaq2TcO3i6faacxPTo7drXlZOTl19+X8+QtGeHjNdbl0nbp2vej2vlCfca7r59J98b337PXaFz31/n/rLbsRHt7w91tjxqi2fcDbP5783eIL7/+63m/1GQNf2S6e+Hn1Vfe27auvurdOjfmd4O4YFBUVNemcN58Kb2lpaYYkY/HixW7Vr6ysNIKCgowf//jHjrKUlBRDknHu3Lka9UNDQ417773X8bhz587G+PHja9TbvHmzIcnYvn27231vqsmJl06sPHnSnBOFrzwB3XB7Anr1BFpXbdR3Am19JhVfuFD7JNXGTk7+wx9qbp9u3eo/CddT7TSUJyfV1zZRWqr6w1OfdfLURTINbceT7//q9upzocGlGjNGde0D3uLpbdsYnn7/u5qY/9ZbdrfGwJe2iyd4+sIhLljwoPT0dKWlpSktLU2PP/64288zDEPXXPP9alTPdSsoKHCqd/ToURUVFTlOu1bXvbzepc+9tK63BAVJFy7YtWnTu6a9/5GnbnPgyVtieHJScWNvMOqp27B4+3YunpxUX9tE6dDQ83rzzUpT3aLG07f5aMzNTlvavbt86RYqntq2dU3MnzChlT744Mov5EvbxRN85cIhX+IT4e2pp55SWlqaUlNT9cQTT7j9vHfeeUelpaUaOnSooyw+Pl4BAQHKyspyqpuVlSWLxaKxY8c6yhISErR//37t27fPUVZRUaHs7GwNGTJEXS6/QRQaxFNXQ3rqF5IvXrXkqbuPe6Kdhn7Flqd/wV4eRnNyKvS73+W4PeHb0xp6I1lfuhq4pf0RbGnb1p0PqKtXD7jiPulL28UT+Kafmrx+wcKzzz6rhQsXKj4+XnfddZc+/PBDp+VDhw7VoUOHNHHiRE2YMEG9evWSxWLRnj179MILL6h///5KTk521LfZbEpNTdWCBQtks9kUFxen/Px8paWlKTk5Wf0uOdwydepUZWZmavz48Vq6dKk6duyolStX6vPPP9fOnTubbRu0dJ76ROqJX0hX+uVosVQdvRsz5ur6RVBtw4aq7XNpSO7ateoX55WOdlX/gh03Tv++MvP7ZQ39BVsdRiXJbjdMd5GO5FtHu5pijLzJ09u2srLqw1/1VZXDhrm/LTyxbd25TU5RUaD+538qdPvttdfzpfecp1QfjZ850/mDd9euVdvVTEfjPaJJTsbWw/Dhww1Jtf4YhmGUlJQYCQkJRo8ePYw2bdoYrVu3Nnr37m3MnTvXOHXqlMt2ly9fbvTp08do3bq10b17d+OJJ55weY766NGjxv3332/YbDYjICDAGDp0qJGTk1Pv9WjK89u+ONekPqrnX7iaq1af+ReemPfQ0DbMPgbu8NR8QlfzdTwx986sY+Cp978nNWR+pC9uf09uW1fbpCE3gG3M+9/deXOvvmqvsx1ffM95SlPdANldvjLnzevhraXw9fDmiTd8Y3jiTt2e+IXU0EnFvviHy5M8PcG5Kd5vZh4DX7tTvWG0nG9Y8MS29eSFUIbR8Pe/ux8uc3LqDm+XrpMvvec8wRMXILWE8OYTc97QtHzhjt+e+J5JT8x7aImnEzyhKSbVV2vIRRwtjS/dqb6ap+ZZeltjt21TfDdwQ9//V543Zyg0tFS33OKis5fxxfccPIfw1sL50uT8xETps8++f7xlS/2vhmxsCGxpE7Y9paVNcPZF3r4auCVrzLb1pSsz3fmA+rOfFbodBnnPtVxev2ABTccXJ+d74ohMYqJ0++3StddWPd6yRYqLc6+tljZh21M4Itk8Lr0AoyVozAR/T2votvW1Dy51TcxftqxSVuu3km50u72W9p6rvur7aseRtxbMlz5RelpjQqAnTuG2NByRRH21lC+398UPLrWdpfDWbXLgewhvLZivfaL0pIbec6uaJ07htiTcRwn1UT0d4/IPh968V2JD+eoHF+aNoi6EtxbMFz9R+hJ+OTpjgjPc0RQT/L2JDy5Xn0vfm3/+s3neq5civLVgvviJsrFHzNC0mOCMK/mf/7G0uOkYfHC5evjC3Rc8gQsWWjAm56MhWtoEZ3hWS52OkZhYdfGWr1yAAc+rPt1/+VHj6tP9ZgrqHHlr4ZicD8CTWvJ0DF+69x1nKTyrpZ3uJ7xdBZicD8BTbrnF8LnpGMCVtLS7LxDerhLt2n3/Ke5HP+JUAICGYYI/zKilne4nvAEA6oUJ/jCblna6nwsWAAD1xgR/mEn13ReOHHE9781iqVpultP9hDcAQINwZTLMoqXdfYHTpgAAoMVrSXdf4Mgbrlp8wTEAXF0SE6Xbb5euvbbq8ZYtUlyceY64VePIGwAAuGq0hK9GJLwBAACYCOENAADARJjzBgCABzGfFk2NI28AAAAmwpE3AB7HkQcAaDoceQMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwET8vN0BAACA5hIUJBmGt3vROBx5AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAAT8Xp427Vrl6ZOnaqIiAgFBQUpPDxcY8aM0ccff1yj7ieffKLbb79dwcHBat++vRITE/Xll1+6bHfFihWKiIiQ1WpVz549lZ6eLrvdXqPe8ePHNWXKFIWGhiowMFAxMTHKzc31+HoCAAB4gtfD24svvqiDBw9q1qxZ2rJli5YvX67jx49r6NCh2rVrl6Pe/v37FRsbqwsXLujtt9/WK6+8on/84x8aNmyYTpw44dTm4sWLNWvWLCUmJmr79u2aPn26MjIyNGPGDKd65eXlGjlypHJzc7V8+XK9++676tSpk+Lj47Vnz55mWX8AAID68Pp93jIzM9WxY0ensvj4ePXq1UsZGRm67bbbJEkLFy6U1WrV5s2b1a5dO0lSdHS0evfurWXLlunpp5+WJBUXF2vRokWaNm2aMjIyJEmxsbGy2+1KTU3VI488on79+kmSVq9ercLCQu3du1cxMTGSpBEjRigqKkpz587Vvn37mmUbAAAAuMvrR94uD26SFBwcrH79+unw4cOSpIqKCm3evFn33HOPI7hJ0nXXXacRI0Zo48aNjrJt27aprKxMSUlJTm0mJSXJMAxt2rTJUbZx40b17dvXEdwkyc/PT5MmTdJHH32kI0eOeGo1AQAAPMLrR95c+e677/TJJ584jrp98cUXOn/+vAYOHFij7sCBA5WTk6OysjIFBASosLBQkhQZGelULywsTKGhoY7lklRYWKhhw4a5bFOSPv30U4WHh7vsY3l5ucrLyx2PT58+LUmy2+0u59Y1RnV7nm4X7mMMvI8x8C62v/cxBt7n7hg09Rj5ZHibMWOGzp07p/nz50uqOhUqSTabrUZdm80mwzB08uRJhYWFqbi4WFarVUFBQS7rVrdV3W5tbV76uq4sWbJE6enpNcp37NihwMDAK6xhw+Tk5DRJu3AfY+B9jIF3sf29jzHwviuNQWlpaZO+foPD25NPPqnk5GR16dKlxrJvv/1Wv//977Vw4cJ6t7tgwQK9/vrrWrFihaKjo52WWSyWWp936TJ369W37qXmzZun2bNnOx6fPn1a3bp1U1xcnNOpXU+w2+3KycnRqFGj5O/v79G24R7GwPsYA+9i+3sfY+B97o5B9dm4ptLg8Jaenq74+HiX4e2bb75Renp6vcNbenq6Fi1apMWLF+uhhx5ylIeEhEhyfSSspKREFotF7du3d9QtKytTaWlpjSNgJSUlToEwJCSk1jYl10f6qlmtVlmt1hrl/v7+TbZTNWXbcA9j4H2MgXex/b2PMfC+K41BU49Pgy9YMAyj1mVnz56td8fT09OVlpamtLQ0Pf74407LbrjhBrVp00YFBQU1nldQUKBevXopICBA0vdz3S6ve/ToURUVFWnAgAGOssjIyFrblORUFwAAwBfU68jb3/72N/31r391PN6yZYv279/vVOf8+fN6/fXXdcMNN7jd7lNPPaW0tDSlpqbqiSeeqNlJPz/dfffd2rBhg37961+rbdu2kqSvvvpKeXl5evTRRx114+PjFRAQoKysLA0ZMsRRnpWVJYvForFjxzrKEhISNH36dO3bt89Rt6KiQtnZ2RoyZIjLo4oAAADeVK/wtnHjRsckfYvFoieffNJlvTZt2mjNmjVutfnss89q4cKFio+P11133aUPP/zQafnQoUMlVR2Zu/nmmzV69GilpKSorKxMCxcuVGhoqObMmeOob7PZlJqaqgULFshmsykuLk75+flKS0tTcnKy4x5vkjR16lRlZmZq/PjxWrp0qTp27KiVK1fq888/186dO+uzaQAAAJpFvcLbAw88oNGjR8swDA0ePFhr1qypcWrRarU6TnO647333pNUdX+2bdu21VhefXo2IiJCu3fv1mOPPaZx48bJz89Pt912m5YtW6YOHTo4PWf+/Plq27atMjMztWzZMnXu3FkpKSmOq1cv7Wtubq7mzp2rhx9+WKWlpRo0aJC2bt2q4cOHu71dAAAAmku9wltYWJjCwsIkSXl5eYqOjlZwcHCjOrB7926360ZHR7t9RGzmzJmaOXPmFet16tRJa9eudbsPAAAA3tTgq005MgUAAND8GnWT3uzsbK1bt06HDh3S+fPnnZZZLBZ98cUXjeocAAAAnDU4vD399NOaN2+e+vXrp6ioKJf3PAMAAIBnNTi8rVq1SjNmzNCKFSs82R8AAADUocE36T169KgSEhI82RcAAABcQYPDW3R0NHPaAAAAmlmDw9tzzz2nZ599Vh9//LEn+wMAAIA6NHjOW1JSkoqLizV48GB17tzZ8eXx1SwWi/7v//6v0R0EAADA9xoc3kJCQhQaGurJvgAAAOAKGhze6vPNCAAAAPCMBs95AwAAQPNr8JG3P//5z1esc+uttza0eQAAALjQ4PAWGxsri8VSZ53KysqGNg8AAAAXGhze8vLyapQVFRXp3Xff1fvvv6/MzMxGdQwAAAA1NTi8DR8+3GX5Pffco5///Ofatm2b4uPjG9wxAAAA1NQkFywkJCTozTffbIqmAQAArmpNEt5Onjyp8vLypmgaAADgqtbg06ZfffVVjbLy8nL97W9/07x58zR06NBGdQwAAAA1NTi89ejRw+XVpoZhqG/fvvrtb3/bqI4BAACgpgaHt1deeaVGeAsICFCPHj10880365pruP8vAACApzU4vE2ZMsWD3QAAAIA7Ghzeqp05c0YffPCBiouLFRoaqqFDh6pt27ae6BsAAAAu06jwtmzZMqWnp6u0tFSGYUiSgoKClJ6ertmzZ3ukgwAAAPheg8Pbq6++qrlz5+pHP/qRpkyZoi5duuibb77R2rVr9atf/UodOnTQfffd58m+AgAAXPUaHN6ef/55TZw4UdnZ2U7l48eP16RJk/T8888T3gAAADyswZeE7t+/X5MmTXK5bNKkSfr73//e4E4BAADAtQaHtzZt2qikpMTlspKSErVp06bBnQIAAIBrDQ5vw4YNU1pamr755hun8qNHj+rJJ5/Urbfe2ujOAQAAwFmD57xlZGTohz/8oXr16qWRI0cqLCxM3377rXbt2iV/f39t2LDBk/0EAACAGnHkrX///srPz9eYMWOUn5+vNWvWKD8/X2PHjtVHH32kfv36ebKfAAAAUCPv89anTx+98cYbnuoLAAAArqDeR94KCgr09ddf17r866+/VkFBQaM6BQAAANfqFd7+/Oc/Kzo6WseOHau1zrFjxxQdHa3t27c3unMAAABwVq/wlpmZqXHjxik6OrrWOtHR0frJT36il19+udGdAwAAgLN6hbf3339fY8eOvWK9//7v/9aHH37Y0D4BAACgFvUKbydOnFB4ePgV64WFhen48eMN7hQAAABcq1d4CwoKqvVbFS518uRJBQYGNrhTAAAAcK1e4a1///7atm3bFett3bpV/fv3b3CnAAAA4Fq9wttPfvITrV69Wnv27Km1Tl5entasWaN777230Z0DAACAs3rdpPeBBx5QVlaW4uLilJycrDFjxqhnz56SpAMHDmjTpk1avXq1oqKiNG3atCbpMAAAwNWsXuGtdevW2r59u+677z69+OKLeumll5yWG4ahH/3oR3r11VfVunVrj3YUAAAADfh6rJCQEG3ZskUff/yxduzYocOHD0uSunfvrjvuuEM33nijxzsJAACAKg3+btPo6Og6b9YLAAAAz6vXBQsDBw50+ycqKsqtNs+cOaO5c+cqLi5OHTp0kMViUVpaWo16U6ZMkcViqfETERHhst0VK1YoIiJCVqtVPXv2VHp6uux2e416x48f15QpUxQaGqrAwEDFxMQoNze3PpsFAACg2dTryJvNZpPFYqmzztmzZ/Xxxx9fsV614uJirVq1SlFRURo7dmydX6vVpk0b7dq1q0bZ5RYvXqwFCxYoJSVFcXFxys/PV2pqqo4cOaJVq1Y56pWXl2vkyJE6deqUli9fro4dOyozM1Px8fHauXOnhg8f7tY6AAAANJd6hbfdu3fXuqyiokKrVq3Sk08+KYvFookTJ7rV5nXXXaeTJ0/KYrGoqKiozvB2zTXXaOjQoXW2V1xcrEWLFmnatGnKyMiQJMXGxsputys1NVWPPPKI+vXrJ0lavXq1CgsLtXfvXsXExEiSRowYoaioKM2dO1f79u1zax0AAACaS71Om9Zm/fr16tevnx5++GFFRUXp448/1muvvebWc6tPf3rKtm3bVFZWpqSkJKfypKQkGYahTZs2Oco2btyovn37OoKbJPn5+WnSpEn66KOPdOTIEY/1CwAAwBMafMGCVHUk7rHHHlN+fr5uuukm7dixQyNHjvRU32o4f/68OnfurBMnTigsLExjx47Vk08+KZvN5qhTWFgoSYqMjHR6blhYmEJDQx3Lq+sOGzasxusMHDhQkvTpp5/W+l2u5eXlKi8vdzw+ffq0JMlut7ucW9cY1e15ul24jzHwPsbAu9j+3scYeJ+7Y9DUY9Sg8FZQUKDHHntM27dvV8+ePbVu3TpNmDDB031zEhUVpaioKA0YMECStGfPHj3//PPKzc1Vfn6+goODJVWdNrVarQoKCqrRhs1mU3FxseNxcXGxU/C7tF718tosWbJE6enpNcp37NjRZN/rmpOT0yTtwn2MgfcxBt7F9vc+xsD7rjQGpaWlTfr69Qpvhw8fVmpqqtatWyebzaYXXnhBP//5z+Xv799U/XN49NFHnR6PGjVKN954o8aNG6ff//73TsvrOg17+bL61L3UvHnzNHv2bMfj06dPq1u3boqLi1O7du1qfV5D2O125eTkaNSoUc2yrVETY+B9jIF3sf29jzHwPnfHoPpsXFOpV3jr06ePLly4oPj4eM2dO1dt27ZVQUFBrfVvuummRnewLgkJCQoKCtKHH37oKAsJCVFZWZlKS0trHAErKSlxujddSEiIy6NrJSUlkuTyqFw1q9Uqq9Vao9zf37/JdqqmbBvuYQy8jzHwLra/9zEG3nelMWjq8alXeKue47V161Zt27at1nqGYchisaiysrJxvXODYRi65prvr7uonutWUFCgIUOGOMqPHj2qoqIix2nX6rquwmd12aV1AQAAfEG9wtuaNWuaqh8N8s4776i0tNTp9iHx8fEKCAhQVlaWU3jLysqSxWLR2LFjHWUJCQmaPn269u3b56hbUVGh7OxsDRkyRF26dGm2dQEAAHBHvcLb5MmTm6QTW7du1blz53TmzBlJ0meffaZ33nlHknTnnXfqxIkTmjhxoiZMmKBevXrJYrFoz549euGFF9S/f38lJyc72rLZbEpNTdWCBQtks9kcN+lNS0tTcnKy4x5vkjR16lRlZmZq/PjxWrp0qTp27KiVK1fq888/186dO5tkXQEAABqjUbcK8ZRf/OIXOnTokOPx+vXrtX79eknSgQMHdO2116pTp0567rnndOzYMVVWVuq6667TzJkz9fjjj9e4snT+/Plq27atMjMztWzZMnXu3FkpKSmaP3++Uz2r1arc3FzNnTtXDz/8sEpLSzVo0CBt3bqVb1cAAAA+ySfC28GDB69YZ8OGDfVqc+bMmZo5c+YV63Xq1Elr166tV9sAAADe4pFvWAAAAEDzILwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARLwe3s6cOaO5c+cqLi5OHTp0kMViUVpamsu6n3zyiW6//XYFBwerffv2SkxM1Jdffumy7ooVKxQRESGr1aqePXsqPT1ddru9Rr3jx49rypQpCg0NVWBgoGJiYpSbm+vJVQQAAPAYr4e34uJirVq1SuXl5Ro7dmyt9fbv36/Y2FhduHBBb7/9tl555RX94x//0LBhw3TixAmnuosXL9asWbOUmJio7du3a/r06crIyNCMGTOc6pWXl2vkyJHKzc3V8uXL9e6776pTp06Kj4/Xnj17mmJ1AQAAGsXP2x247rrrdPLkSVksFhUVFenll192WW/hwoWyWq3avHmz2rVrJ0mKjo5W7969tWzZMj399NOSqsLgokWLNG3aNGVkZEiSYmNjZbfblZqaqkceeUT9+vWTJK1evVqFhYXau3evYmJiJEkjRoxQVFSU5s6dq3379jX16gMAANSL14+8WSwWWSyWOutUVFRo8+bNuueeexzBTaoKfiNGjNDGjRsdZdu2bVNZWZmSkpKc2khKSpJhGNq0aZOjbOPGjerbt68juEmSn5+fJk2apI8++khHjhxp5NoBAAB4ltePvLnjiy++0Pnz5zVw4MAaywYOHKicnByVlZUpICBAhYWFkqTIyEinemFhYQoNDXUsl6TCwkINGzbMZZuS9Omnnyo8PNxln8rLy1VeXu54fPr0aUmS3W53ObeuMarb83S7cB9j4H2MgXex/b2PMfA+d8egqcfIFOGtuLhYkmSz2Woss9lsMgxDJ0+eVFhYmIqLi2W1WhUUFOSybnVb1e3W1ualr+vKkiVLlJ6eXqN8x44dCgwMvPJKNUBOTk6TtAv3MQbexxh4F9vf+xgD77vSGJSWljbp65sivFWr6/TqpcvcrVffupeaN2+eZs+e7Xh8+vRpdevWTXFxcU6ndj3BbrcrJydHo0aNkr+/v0fbhnsYA+9jDLyL7e99jIH3uTsG1WfjmoopwltISIgk10fCSkpKZLFY1L59e0fdsrIylZaW1jgCVlJSoujoaKd2a2tTcn2kr5rVapXVaq1R7u/v32Q7VVO2DfcwBt7HGHgX29/7GAPvu9IYNPX4eP2CBXfccMMNatOmjQoKCmosKygoUK9evRQQECDp+7lul9c9evSoioqKNGDAAEdZZGRkrW1KcqoLAADgC0wR3vz8/HT33Xdrw4YNOnPmjKP8q6++Ul5enhITEx1l8fHxCggIUFZWllMbWVlZslgsTveSS0hI0P79+51uCVJRUaHs7GwNGTJEXbp0abJ1AgAAaAifOG26detWnTt3zhHMPvvsM73zzjuSpDvvvFOBgYFKT0/XzTffrNGjRyslJUVlZWVauHChQkNDNWfOHEdbNptNqampWrBggWw2m+Li4pSfn6+0tDQlJyc77vEmSVOnTlVmZqbGjx+vpUuXqmPHjlq5cqU+//xz7dy5s3k3AgAAgBt8Irz94he/0KFDhxyP169fr/Xr10uSDhw4oB49eigiIkK7d+/WY489pnHjxsnPz0+33Xabli1bpg4dOji1N3/+fLVt21aZmZlatmyZOnfurJSUFM2fP9+pntVqVW5urubOnauHH35YpaWlGjRokLZu3arhw4c3/YoDAADUk0+Et4MHD7pVLzo62u0jYjNnztTMmTOvWK9Tp05au3atW20CAAB4mynmvAEAAKAK4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmYprwtnv3blksFpc/H374oVPdTz75RLfffruCg4PVvn17JSYm6ssvv3TZ7ooVKxQRESGr1aqePXsqPT1ddru9OVYJAACg3vy83YH6ysjI0IgRI5zKBgwY4Pj//v37FRsbq0GDBuntt99WWVmZFi5cqGHDhumvf/2rOnTo4Ki7ePFiLViwQCkpKYqLi1N+fr5SU1N15MgRrVq1qtnWCQAAwF2mC2+9e/fW0KFDa12+cOFCWa1Wbd68We3atZMkRUdHq3fv3lq2bJmefvppSVJxcbEWLVqkadOmKSMjQ5IUGxsru92u1NRUPfLII+rXr1/TrxAAAEA9mOa0qTsqKiq0efNm3XPPPY7gJknXXXedRowYoY0bNzrKtm3bprKyMiUlJTm1kZSUJMMwtGnTpubqNgAAgNtMd+RtxowZmjBhggIDAxUTE6MFCxbolltukSR98cUXOn/+vAYOHFjjeQMHDlROTo7KysoUEBCgwsJCSVJkZKRTvbCwMIWGhjqW16a8vFzl5eWOx6dPn5Yk2e12j8+Zq26PuXjewxh4H2PgXWx/72MMvM/dMWjqMTJNeLv22ms1a9YsxcbGKiQkRP/617/0zDPPKDY2Vn/60590xx13qLi4WJJks9lqPN9ms8kwDJ08eVJhYWEqLi6W1WpVUFCQy7rVbdVmyZIlSk9Pr1G+Y8cOBQYGNnAt65aTk9Mk7cJ9jIH3MQbexfb3PsbA+640BqWlpU36+qYJbzfeeKNuvPFGx+Nhw4YpISFBkZGRmjt3ru644w7HMovFUms7ly5zt54r8+bN0+zZsx2PT58+rW7duikuLs7plK0n2O125eTkaNSoUfL39/do23APY+B9jIF3sf29jzHwPnfHoPpsXFMxTXhzpX379ho9erReeuklnT9/XiEhIZLk8qhZSUmJLBaL2rdvL0kKCQlRWVmZSktLaxwpKykpUXR0dJ2vbbVaZbVaa5T7+/s32U7VlG3DPYyB9zEG3sX29z7GwPuuNAZNPT6mv2DBMAxJVUfKbrjhBrVp00YFBQU16hUUFKhXr14KCAiQ9P1ct8vrHj16VEVFRU63HwEAAPAVpg5vJ0+e1ObNmzVo0CAFBATIz89Pd999tzZs2KAzZ8446n311VfKy8tTYmKioyw+Pl4BAQHKyspyajMrK0sWi0Vjx45tprUAAABwn2lOm06cOFHdu3fXf/7nfyo0NFT//Oc/9eyzz+rYsWNOASw9PV0333yzRo8erZSUFMdNekNDQzVnzhxHPZvNptTUVC1YsEA2m81xk960tDQlJydzjzcAAOCTTBPeBg4cqLfeeksvvfSSzp49K5vNpltuuUWvvfaabr75Zke9iIgI7d69W4899pjGjRsnPz8/3XbbbVq2bJnTtytI0vz589W2bVtlZmZq2bJl6ty5s1JSUjR//vzmXj0AAAC3mCa8paSkKCUlxa260dHR2rlzp1t1Z86cqZkzZzamawAAAM3G1HPeAAAArjaENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4U3S2bNn9cgjj6hLly4KCAjQoEGD9Oabb3q7WwAAADX4ebsDviAxMVH5+flaunSp+vTpo3Xr1unee+/VxYsXNXHiRG93DwAAwOGqD29btmxRTk6OI7BJ0ogRI3To0CH96le/0k9+8hO1atXKy70EAACoctWfNt24caOCg4M1fvx4p/KkpCR988032rdvn5d6BgAAUNNVf+StsLBQ//Ef/yE/P+dNMXDgQMfyH/7whzWeV15ervLycsfj7777TpJUUlIiu93u0T7a7XaVlpaquLhY/v7+Hm0b7mEMvI8x8C62v/cxBt7n7hicOXNGkmQYRpP046oPb8XFxbr++utrlNtsNsdyV5YsWaL09PQa5T179vRsBwEAgCmdOXNG1157rcfbverDmyRZLJZ6L5s3b55mz57teHzx4kWVlJQoJCSkzvYa4vTp0+rWrZsOHz6sdu3aebRtuIcx8D7GwLvY/t7HGHifu2NgGIbOnDmjLl26NEk/rvrwFhIS4vLoWklJiaTvj8Bdzmq1ymq1OpW1b9/e4/27VLt27dhhvYwx8D7GwLvY/t7HGHifO2PQFEfcql31FyxERkbq73//uyoqKpzKCwoKJEkDBgzwRrcAAABcuurDW0JCgs6ePas//OEPTuVr165Vly5dNGTIEC/1DAAAoKar/rTpj370I40aNUq/+MUvdPr0afXq1UtvvPGGtm3bpuzsbJ+4x5vVatUTTzxR4zQtmg9j4H2MgXex/b2PMfA+XxkDi9FU17GayNmzZzV//ny9/fbbKikpUUREhObNm6cJEyZ4u2sAAABOCG8AAAAmctXPeQMAADATwhsAAICJEN6awNmzZ/XII4+oS5cuCggI0KBBg/Tmm2+69dzjx49rypQpCg0NVWBgoGJiYpSbm+uy7s6dOxUTE6PAwECFhoZqypQpOn78eI16drtd6enp6tGjh6xWqyIiIrRixYpGraMv86Xtf/DgQVksFpc/7vbJjJpjDDZv3qz7779fkZGR8vf3r/Pm2FfbPiD51hhcjftBU2//06dPa/HixYqNjVXnzp0VHBysyMhIPf300yorK6vRJvuAd8fA4/uAAY8bNWqU0b59e+Oll14ydu3aZSQnJxuSjNdff73O55WVlRkDBgwwunbtamRnZxs7duwwxowZY/j5+Rm7d+92qrt7927Dz8/PGDNmjLFjxw4jOzvbCA8PNwYMGGCUlZU51U1OTjasVqvx61//2sjLyzNSUlIMi8ViLF682OPr7gt8afsfOHDAkGQ8/PDDxgcffOD0U1RU1CTr7wuaYwymTp1q9O7d2/jxj39sREdHG3X9Orva9gHD8K0xuBr3g6be/gUFBUZoaKjx6KOPGu+++66Rm5trpKWlGQEBAcbIkSONixcvOrXLPuDdMfD0PkB487A//elPhiRj3bp1TuWjRo0yunTpYlRUVNT63MzMTEOSsXfvXkeZ3W43+vXrZwwePNip7s0332z069fPsNvtjrL333/fkGSsXLnSUVZYWGhYLBYjIyPD6fnTpk0z2rRpYxQXFzdoPX2Vr23/6h32mWeeaeyqmUZzjUFlZaXj/zNmzKg1OFxt+4Bh+N4YXG37QXNs/7Nnzxpnz56t8fxnnnnGkGT85S9/cZSxD3zPW2Pg6X2A8OZhycnJRnBwsNMfdcMwjHXr1hmSjPfff7/W595+++1G3759a5RnZGQYkoyvv/7aMAzD+Prrrw1JxpIlS2rU7dOnjzFq1CjH40WLFhmSjG+//dap3t69e936BGI2vrb9r7Y/WobRPGNwubqCw9W2DxiG743B1bYfeGP7V9uzZ0+N0MI+8D1vjYGn9wHmvHlYYWGh/uM//kN+fs73Px44cKBjeV3Pra7n6rmffvqpUxu11b30NQoLC9WhQwd17ty53v0xI1/b/tWWLl2q1q1bKzAwULfccov++Mc/urlG5tMcY1Df/lxN+4Dke2NQ7WrZD7y5/Xft2iVJ6t+/v1Ob7ANVvDUG1Ty1DxDePKy4uNjll9lXlxUXFzf6udX/1lb30teorc2goCC1bt26zv6Yka9tf6vVqmnTpunFF1/Url279PLLL6uyslJjxozRyy+/XI81M4/mGANP9Kel7gOS743B1bYfeGv7/+1vf9Ovf/1rJSQkOIUP9oHveWsMPL0PXPVfj9UU6rrqra5l9X1ubXXdredOf8zIl7Z/WFiYVq1a5bR8/PjxGjJkiFJSUjRlypQanwxbguYag+boj1n50hhcjftBc2//gwcPavTo0erWrZvLMMA+4P6yhj63rjHw9D7AkTcPCwkJcZnKS0pKJLk+WlPf54aEhEhynf5LSkqcXqO2Ns+dO6cLFy7U2R8z8rXt74q/v79+8pOfqLi4WP/85z/rrGtGzTEGnuhPS90HJN8bA1da8n7Q3Nv/0KFDGjFihPz8/JSbm1ujDvvA97w1Bq40Zh8gvHlYZGSk/v73v6uiosKpvKCgQJI0YMCAOp9bXa+u51b/W1vdS18jMjJSJ06c0NGjR+vdHzPyte1fG+Pf30p3zTUtbxdsjjGob3+upn1A8r0xqE1L3Q+ac/sfOnRIsbGxMgxDeXl56tq1q8s22QeqeGsMatPgfcAjlz3AYcuWLYYk480333Qqj4+Pv+LlyStXrjQkGR9++KGjzG63G/379zeGDBniVHfw4MHGgAEDnNr74IMPDEnGiy++6CirvkR86dKlTs9/8MEHW+Ql4r62/V25cOGCMWjQICM0NLTO/phVc43Bpdy5VcjVsg8Yhu+NgSsteT9oru1/6NAho0ePHka3bt2ML774otY22Qe+560xcKUx+wDhrQmMGjXK+MEPfmCsWrXK2LVrlzFt2jRDkpGdne2oM3XqVKNVq1bGwYMHHWVlZWVG//79jW7duhmvv/66kZOTYyQkJLi8OWZeXp7h5+dnJCQkGDk5Ocbrr79udOvWrc6b9D7zzDPG7t27jccff7xF35zRl7b/o48+ajz00EPGG2+8YeTl5RmvvvqqcfPNNxuSjDVr1jT5tvCW5hiDgwcPGuvXrzfWr19vxMfHG5Icj/Pz853qXm37gGH41hhcjftBU2//Y8eOGddff71htVqN7OzsGjd+PXz4sFN/2Ae8Owae3gcIb03gzJkzxsyZM43OnTsbrVu3NgYOHGi88cYbTnUmT55sSDIOHDjgVH706FHj/vvvN2w2mxEQEGAMHTrUyMnJcfk6O3bsMIYOHWoEBAQYNpvNuP/++41jx47VqHfhwgXjiSeeMLp37260bt3a6NOnj/Gb3/zGY+vra3xp+69evdoYPHiwYbPZDD8/P+MHP/iBcccddxjbt2/36Dr7muYYgzVr1hiSXP5MnjzZqe7Vtg8Yhm+NwdW4HzT19s/Ly6t120synnjiCaf67APeHQNP7wMWw/j3CVcAAAD4vJY1SxQAAKCFI7wBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAzebgwYOyWCzKysryeNu5ubn6z//8TwUFBclisWjTpk3KysqSxWLRwYMHPf56l+rRo4emTJnSpK9hBp999pnS0tKafHsDVzs/b3cAABrLMAz9+Mc/Vp8+ffTHP/5RQUFB6tu3ryoqKvTBBx8oLCzM2128Knz22WdKT09XbGysevTo4e3uAC0W4Q2A6X3zzTcqKSlRQkKCRo4c6bSsQ4cOXuqVd9ntdlksFvn51fw1X1paqsDAQC/0CoAncNoUQKP961//UlJSknr37q3AwECFh4fr7rvvVkFBwRWfe+LECT3wwAPq1q2brFarOnTooP/6r//Szp073XrttLQ0de3aVZL02GOPyWKxOI76uDptGhsbqwEDBig/P1/Dhg1TYGCgrr/+ei1dulQXL1501CsrK9OcOXM0aNAgXXvttbLZbIqJidG7777r/oa5gnXr1ikmJkbBwcEKDg7WoEGDtHr1asfy2k7HxsbGKjY21vF49+7dslgseu211zRnzhyFh4fLarXqX//6l6ZMmaLg4GAVFBQoLi5Obdu2dQTcCxcuaNGiRYqIiHBs+6SkJJ04ccLp9Xr06KHRo0dr27Ztuummm9SmTRtFRETolVdecdTJysrS+PHjJUkjRoyQxWJpslPkwNWOI28AGu2bb75RSEiIli5dqg4dOqikpERr167VkCFD9P/+3/9T3759a33ufffdp08++USLFy9Wnz59dOrUKX3yyScqLi5267WTk5MVFRWlxMREPfzww5o4caKsVmudzzl69Kh++tOfas6cOXriiSe0ceNGzZs3T126dNH9998vSSovL1dJSYl++ctfKjw8XBcuXNDOnTuVmJioNWvWOOo11MKFC/XUU08pMTFRc+bM0bXXXqvCwkIdOnSowW3OmzdPMTExeumll3TNNdeoY8eOkqpC2n//93/rwQcfVEpKiioqKnTx4kWNGTNGf/nLXzR37lz98Ic/1KFDh/TEE08oNjZW//u//6s2bdo42v6///s/zZkzRykpKerUqZNefvll/exnP1OvXr1066236q677lJGRoYef/xxZWZm6qabbpIk3XDDDY3aTgBcMADAwyoqKowLFy4YvXv3Nh599FFH+YEDBwxJxpo1axxlwcHBxiOPPNKo16tu95lnnnEqX7NmjSHJOHDggKNs+PDhhiRj3759TnX79etn3HHHHXWuk91uN372s58ZN954o9Oy6667zpg8ebLb/f3yyy+NVq1aGT/96U/rrFdbu8OHDzeGDx/ueJyXl2dIMm699dYadSdPnmxIMl555RWn8jfeeMOQZPzhD39wKs/PzzckGStXrnTqR0BAgHHo0CFH2fnz5w2bzWY8+OCDjrL169cbkoy8vLw61wtA43DaFECjVVRUKCMjQ/369VPr1q3l5+en1q1b65///Kf+/ve/1/ncwYMHKysrS4sWLdKHH34ou93e5P3t3LmzBg8e7FQ2cODAGke91q9fr//6r/9ScHCw/Pz85O/vr9WrV19xna4kJydHlZWVmjFjRqPaudw999zj9rLNmzerffv2uvvuu1VRUeH4GTRokDp37qzdu3c71R80aJC6d+/ueBwQEKA+ffo06kghgIYhvAFotNmzZ2vBggUaO3as3nvvPe3bt0/5+fmKiorS+fPn63zuW2+9pcmTJ+vll19WTEyMbDab7r//fh09erTJ+hsSElKjzGq1OvV1w4YN+vGPf6zw8HBlZ2frgw8+UH5+vqZOnaqysrJGvX71nLLquXqeUttVtYGBgWrXrp1T2bFjx3Tq1Cm1bt1a/v7+Tj9Hjx5VUVGRU313thmA5sGcNwCNlp2drfvvv18ZGRlO5UVFRWrfvn2dzw0NDdULL7ygF154QV999ZX++Mc/KiUlRcePH9e2bduasNd1y87OVs+ePfXWW2/JYrE4ysvLyxvddvUVsF9//bW6detWa72AgACXr1dUVKTQ0NAa5Zf280rloaGhCgkJqXUbt23bttZ+AfAuwhuARrNYLDUuEvjTn/6kI0eOqFevXm630717dz300EPKzc3V+++/7+lu1ovFYlHr1q2dgs/Ro0c9crVpXFycWrVqpRdffFExMTG11uvRo4f+9re/OZX94x//0Oeff+4yvNXH6NGj9eabb6qyslJDhgxpVFvVqt8DHI0DmhbhDUCjjR49WllZWYqIiNDAgQP18ccf65lnnrniacHvvvtOI0aM0MSJExUREaG2bdsqPz9f27ZtU2JiYjP13rXRo0drw4YNmj59usaNG6fDhw/rqaeeUlhYmP75z382qu0ePXro8ccf11NPPaXz58/r3nvv1bXXXqvPPvtMRUVFSk9Pl1R1Je6kSZM0ffp03XPPPTp06JB+/etfe+TedRMmTNDrr7+uO++8U7NmzdLgwYPl7++vr7/+Wnl5eRozZowSEhLq1eaAAQMkSatWrVLbtm0VEBCgnj17ujzlCqDhCG8AGm358uXy9/fXkiVLdPbsWd10003asGGDUlNT63xeQECAhgwZotdee00HDx6U3W5X9+7d9dhjj2nu3LnN1HvXkpKSdPz4cb300kt65ZVXdP311yslJUVff/21I1w1xpNPPqnevXtrxYoV+ulPfyo/Pz/17t1bM2fOdNSZOHGivvnmG7300ktas2aNBgwYoBdffNEjr9+qVSv98Y9/1PLly/Xaa69pyZIl8vPzU9euXTV8+HBFRkbWu82ePXvqhRde0PLlyxUbG6vKykqtWbOGrw4DPMxiGIbh7U4AAADAPVxtCgAAYCKcNgXgswzDUGVlZZ11WrVqVetVlt5QWVmpuk5oWCwWtWrVqhl7BKCl4cgbAJ+1du3aGvcgu/xnz5493u6mkxtuuKHO/lZ/rygANBRz3gD4rOLiYh04cKDOOn379vWpe5IVFBTUeS+4tm3b1vldrwBwJYQ3AAAAE+G0KQAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJvL/AfEee/xAnzIBAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0017\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = copy.copy(Ncount_mean)\n", "Ncount_std_total = copy.copy(Ncount_std)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.025 - 0.050 A" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.025 , 0.0259, 0.0268, 0.0277, 0.0286, 0.0295, 0.0304, 0.0313,\n", " 0.0322, 0.0331, 0.034 , 0.0349, 0.0358, 0.0367, 0.0376, 0.0385,\n", " 0.0394, 0.0403, 0.0412, 0.0421, 0.043 , 0.0439, 0.0448, 0.0457,\n", " 0.0466, 0.0475, 0.0484, 0.0493]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABQeUlEQVR4nO3de1xUdeL/8fckOAhoNuAFb2l54esNi1LZzcRMItOvQrqZayWu1a4Wme4aJhqUt8pK18VaNxM3u1pq5XpDRGu3Mn71bRcqqy010zUVNC8IDnh+f7CMjtwGmGHmwOv5ePDQ+ZzPfPic8/GM7/mcm8UwDEMAAAAwhcu83QEAAAC4jvAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMxOvh7fPPP9dtt92mTp06qVmzZrLZbIqKitKaNWuc6k2cOFEWi6XcT3h4eIXtLlu2TOHh4bJarerSpYtSU1Nlt9vL1Tty5IgmTpyo0NBQBQYGKioqSpmZmR5ZVwAAgLry83YHTpw4oY4dO+rOO+9U+/btdebMGb3yyiu66667tG/fPiUnJzvqNmvWTDt27HB6f7Nmzcq1OX/+fM2ZM0dJSUmKiYlRdna2kpOTdfDgQa1YscJRr6ioSEOHDtWJEye0dOlStW7dWmlpaYqNjdX27ds1ePBgz604AABALVh89dmmAwcO1KFDh/TDDz9IKp15e+utt3T69Okq35eXl6cOHTro7rvv1p///GdH+YIFC5ScnKzc3Fz17NlTkrR8+XJNnTpVH374oaKioiRJxcXFioiIUHBwsHbv3u2htQMAAKgdrx82rUxoaKj8/Go+MbhlyxYVFhYqISHBqTwhIUGGYWjDhg2OsvXr16tHjx6O4CZJfn5+mjBhgj755BMdPHiw1v0HAADwBK8fNi1z/vx5nT9/XsePH9fatWu1detW/elPf3Kqc/bsWbVt21ZHjx5VWFiYRo8erccff1w2m81RJzc3V5LUp08fp/eGhYUpNDTUsbys7qBBg8r1pW/fvpKkL774Qu3bt6+wv0VFRSoqKnLqf35+vkJCQmSxWGq49gAAoKEwDEOnTp1Su3btdNll7p8n85nwNmXKFMdhzqZNm+qPf/yj7r//fsfyiIgIRUREqHfv3pKkXbt26bnnnlNmZqays7MVHBwsqfSwqdVqVVBQULnfYbPZlJeX53idl5fnFPwurle2vDILFy5UampqLdYUAAA0BgcOHFCHDh3c3q7PhLdHH31UkydP1pEjR/Tee+/pgQce0JkzZ/T73/9ekvTwww871R82bJiuueYajRkzRn/5y1+cllc183XpsprUvdisWbM0ffp0x+uff/5ZnTp10t69e9W8efNK31cbdrtdWVlZGjJkiPz9/d3aNlzDGHgfY+BdbH/vYwy8z9UxOHXqlLp06eL2PFDGZ8Jbp06d1KlTJ0nS8OHDJZUGpHvuuUetWrWq8D1xcXEKCgrSxx9/7CgLCQlRYWGhCgoKFBgY6FQ/Pz9fkZGRTnUrml3Lz8+XpApn5cpYrVZZrdZy5TabTS1atKj0fbVht9sVGBiokJAQdlgvYQy8jzHwLra/9zEG3ufqGJQt89RpVD57wUL//v1VXFys77//vsp6hmE4HU8uO9ctJyfHqd7hw4d17Ngxx2HXsrqX1rv4vRfXBQAA8AU+G96ysrJ02WWX6aqrrqq0zltvvaWCggINHDjQURYbG6uAgAClp6c71U1PT5fFYtHo0aMdZXFxcdqzZ4/TLUGKi4u1Zs0aDRgwQO3atXPb+gAAALiD1w+b3nfffWrRooX69++vNm3a6NixY1q7dq3eeOMN/eEPf1CrVq20f/9+jR8/XuPGjVPXrl1lsVi0a9cuLVmyRL169dLkyZMd7dlsNiUnJ2vOnDmy2WyOm/SmpKRo8uTJjnu8SdKkSZOUlpamsWPHatGiRWrdurWWL1+ur7/+Wtu3b/fG5gAAAKiS18NbVFSUVq1apdWrV+vEiRMKDg5WRESEXn75ZU2YMEGS1KJFC7Vp00bPPvusfvrpJ5WUlOjKK69UYmKiHn300XJXls6ePVvNmzdXWlqaFi9erLZt2yopKUmzZ892qme1WpWZmamZM2fqwQcfVEFBgfr166fNmzfzdAUAAOCTvB7eEhISyt1Q91JXXHGF1q1bV6N2ExMTlZiYWG29Nm3aaPXq1TVqGwAAwFt89pw3AAAAlEd4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIl4Pbx9/vnnuu2229SpUyc1a9ZMNptNUVFRWrNmTbm6n332mW6++WYFBwerZcuWio+P1/fff19hu8uWLVN4eLisVqu6dOmi1NRU2e32cvWOHDmiiRMnKjQ0VIGBgYqKilJmZqbb1xMAAMAdvB7eTpw4oY4dO2rBggXatGmT/vrXv6pz58666667NG/ePEe9PXv2KDo6WufOndObb76pl156Sd98840GDRqko0ePOrU5f/58PfTQQ4qPj9fWrVs1ZcoULViwQFOnTnWqV1RUpKFDhyozM1NLly7VO++8ozZt2ig2Nla7du2ql/UHAACoCT9vdyA6OlrR0dFOZSNGjNDevXu1YsUKJScnS5Lmzp0rq9WqjRs3qkWLFpKkyMhIdevWTYsXL9aTTz4pScrLy9O8efN07733asGCBY7fYbfblZycrGnTpqlnz56SpJUrVyo3N1cffvihoqKiJElDhgxRRESEZs6cqd27d9fHJgAAAHCZ12feKhMaGio/v9JsWVxcrI0bN+r22293BDdJuvLKKzVkyBCtX7/eUbZlyxYVFhYqISHBqb2EhAQZhqENGzY4ytavX68ePXo4gpsk+fn5acKECfrkk0908OBBD60dAABA7Xh95q3M+fPndf78eR0/flxr167V1q1b9ac//UmS9N133+ns2bPq27dvuff17dtXGRkZKiwsVEBAgHJzcyVJffr0caoXFham0NBQx3JJys3N1aBBgypsU5K++OILtW/fvsL+FhUVqaioyPH65MmTkiS73V7huXV1Udaeu9uF6xgD72MMvIvt732Mgfe5OgaeHiOfCW9TpkzRn//8Z0lS06ZN9cc//lH333+/pNJDoZJks9nKvc9ms8kwDB0/flxhYWHKy8uT1WpVUFBQhXXL2iprt7I2L/69FVm4cKFSU1PLlW/btk2BgYFVrWqtZWRkeKRduI4x8D7GwLvY/t7HGHhfdWNQUFDg0d/vM+Ht0Ucf1eTJk3XkyBG99957euCBB3TmzBn9/ve/d9SxWCyVvv/iZa7Wq2ndi82aNUvTp093vD558qQ6duyomJgYp0O77mC325WRkaFhw4bJ39/frW3DNYyB9zEG3sX29z7GwPtcHYOyo3Ge4jPhrVOnTurUqZMkafjw4ZJKA9I999yjkJAQSRXPhOXn58tisahly5aSpJCQEBUWFqqgoKDcDFh+fr4iIyMdr0NCQiptU6p4pq+M1WqV1WotV+7v7++xncqTbcM1jIH3MQbexfb3PsbA+6obA0+Pj89esNC/f38VFxfr+++/19VXX61mzZopJyenXL2cnBx17dpVAQEBki6c63Zp3cOHD+vYsWPq3bu3o6xPnz6VtinJqS4AAIAv8NnwlpWVpcsuu0xXXXWV/Pz8NHLkSK1bt06nTp1y1Pnhhx+UlZWl+Ph4R1lsbKwCAgKUnp7u1F56erosFotGjx7tKIuLi9OePXucbglSXFysNWvWaMCAAWrXrp3H1g8AAKA2vH7Y9L777lOLFi3Uv39/tWnTRseOHdPatWv1xhtv6A9/+INatWolSUpNTdX111+vESNGKCkpSYWFhZo7d65CQ0M1Y8YMR3s2m03JycmaM2eObDabYmJilJ2drZSUFE2ePNlxjzdJmjRpktLS0jR27FgtWrRIrVu31vLly/X1119r+/bt9b4tAAAAquP18BYVFaVVq1Zp9erVOnHihIKDgxUREaGXX35ZEyZMcNQLDw/Xzp079cgjj2jMmDHy8/PTTTfdpMWLFzsCXpnZs2erefPmSktL0+LFi9W2bVslJSVp9uzZTvWsVqsyMzM1c+ZMPfjggyooKFC/fv20efNmDR48uF7WHwAAoCa8Ht4SEhLK3VC3MpGRkS7PiCUmJioxMbHaem3atNHq1atdahMAAMDbfPacNwAAAJRHeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8odE6c0ayWEp/zpzxdm8AAHAN4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q1oQLjxMAA0fIQ3AAAAEyG8AQAAmAjhDQAAwET8vN0BAPCkkhLpgw+k//xHCguTBg2SmjTxdq8AoPaYeUO94oR61Kd166TOnaUhQ6Tx40v/7Ny5tBwAzIrwBqBBWrdOGjNG+vFH5/KDB0vLCXAAzIrwhnpVUnLh7++/7/wacJeSEumhhyTDKL+srGzaNP79ATAnwhvqzbp1Us+eF14PH84hLHjGBx+Un3G7mGFIBw6U1gPgeZwy416EN9SLskNYBw86l3MIC57wn/+4tx4A+BLCGzyOQ1iob2Fh7q0HAL6E8AaP4xAW6tugQVKHDqWHaCpisUgdO5bWAwCzIbzB4ziEhfrWpIm0dGnp3y8NcGWvlyzhfm8AzInwBo/z1UNYXPnasMXHS2+9JbVv71zeoUNpeXy8d/oFmA0XG/gewhs8zhcPYXHla+MQHy/t2ydlZUmvvlr65969BDcA5sbjsRoJbz4iqOwQ1pgxpUHt4gsXvHEIq+zK10svoCi78pVZmYalSRMpOtrbvQBqpqLPbKAMM2+NwLp10pVXevcRQWWHsNq1cy6v70NYXPkKwNdV9pm9fn0lhy/Q6BDeGjhfur9afLz05ZcXXm/aVP+HsLjytXonT144v2XzZu8GWc61QWNT1Wf2uHFN9NFH5ry/DecYuxfhrQHzxVmmiw+N3nhj/V/tx5WvVeNcQMB7XPnMXrmyt+mCj699rpSUSDt3Sq+9Vvqn2banRHhr0JhlKs9Xr3z1Bb40Sws0RtV/Zlt07Fig/v538xw+9bXPlXXrSoOjN08jcgevh7cdO3Zo0qRJCg8PV1BQkNq3b69Ro0bp008/dao3ceJEWSyWcj/h4eEVtrts2TKFh4fLarWqS5cuSk1Nld1uL1fvyJEjmjhxokJDQxUYGKioqChlZmZ6ZF3rmy/OMgUFlYZGwyj9e33zxStffYEvztIC9c3bMzK++JldF772uVIWJC8NyGb8gur18Pb8889r3759euihh7Rp0yYtXbpUR44c0cCBA7Vjxw6nus2aNdNHH33k9PPGG2+Ua3P+/Pl66KGHFB8fr61bt2rKlClasGCBpk6d6lSvqKhIQ4cOVWZmppYuXap33nlHbdq0UWxsrHbt2uXR9a4PzDKVx81bK8YsLRo7X5iRaWif2b70ueJrQbLODC/76aefypWdOnXKaNOmjTF06FBH2T333GMEBQVV296xY8eMgIAA47777nMqnz9/vmGxWIwvvvjCUZaWlmZIMj788ENHmd1uN3r27Gn079+/Ruvx888/G5KMn3/+uUbvq05xsWFkZNiN6dOzjYwMu1FcXLP3duhgGBZL2VyX84/FYhgdOxo1arOhePttw2jf3nl7dOxYWl6Rc+fOGRs2bDDOnTtXvx2todOnL6zP6dOuv+/VVyv+N3Lpz6uveq7vFbl4fY4fN8cYNFRm2Qdq4+23K/6ctFhKfyr7XHC36j+zzxuhoWeMs2frdwwawudKVpZrfcnKqrodV/cDT2WCMl6feWvdunW5suDgYPXs2VMHDhyocXtbtmxRYWGhEhISnMoTEhJkGIY2bNjgKFu/fr169OihqKgoR5mfn58mTJigTz75RAcvPUhfz8q+CQ4b5qdnn71Ow4b51eibILNMlfOFK199SUP7xg+4ypdmZFz5zP7Nb3JN85ntS58rDe2QtE/epPfnn3/WZ599pptuusmp/OzZs2rbtq2OHj2qsLAwjR49Wo8//rhsNpujTm5uriSpT58+Tu8NCwtTaGioY3lZ3UEVnNzUt29fSdIXX3yh9pc+W+e/ioqKVFRU5Hh98uRJSZLdbq/w3LqaWr/eonHjmvz3w+PCXnzwoKExY6TXXy9RXFwFnzaXGDlSev11ix5+uIkOHbrQTvv2hp55pkQjRxpyQ3dN6fx5SfKXJEVF2XX+fFlZeWVj6o6x9aTS7vn/9+92l8d24ECpfXs/HTpUelL0pSwWQ+3bSwMHFtfrv5dL1+fiP1G/Gur237XLoh9/rPy/wrJDe1lZxRo8uPrP3Lqq6jP7qafOKTDwP7Lbe3u8HxdrCJ8rrVpZ5ErkadWqWHZ75ePs6n7g6f3EJ8Pb1KlTdebMGc2ePdtRFhERoYiICPXuXfqPdteuXXruueeUmZmp7OxsBQcHS5Ly8vJktVoVVMHZ8DabTXl5eY7XeXl5TsHv4nplyyuzcOFCpaamlivftm2bAgMDXVzTipWUSFOmxMgwmuji4CaV7QCGpk49Jz+/DJe+gVmt0rJl0pdfhuj48QBdcUWhevbMU5MmpTNOjVVhYRNJIyRJW7duVUBA9V+tMzIyPNaXceNK+/L66xtd6ktl7dR0ncpMmBCmJ5+8XpIh5393hgxD+vWvs7V1a/1+Lb14fXbs2KGAAM+NAVzT0Lb/+++3l3RdtfU2b/5cZ87Uz9GYqj6zpfofg4bwuVJSIoWExCgvL0CX/r9a1p/Q0LM6eTLDpf8XqxuDgoKCWvXTVT4X3ubMmaNXXnlFy5YtU2RkpKP84Ycfdqo3bNgwXXPNNRozZoz+8pe/OC23VHYpYQXLalL3YrNmzdL06dMdr0+ePKmOHTsqJiZGLVq0qPR9rti1y6K8vKqGpvRy8RYtbqvRN8GRI+vUrQbn4pu+3nLLLVVe/Wq325WRkaFhw4bJ39/fq33xVDvDh0vXXlvy32/8F8o7dJCeeaZEcXHXSLqmdh2rpYvX56abbtKHH3puDOpDSYn0979bHI88uuEGwzSHwDy9D3hLUJBFzz5bfb1bb+2nwYMjPN+hi1z6me2tMWgonyvLl1s0bpxUGhwv/P9usZT+P5qW1lQjRw6vsg1Xx6DsaJyn+FR4S01N1bx58zR//nw98MAD1daPi4tTUFCQPv74Y0dZSEiICgsLVVBQUG4GLD8/3ykQhoSEVDi7lp+fL0kVzsqVsVqtslqt5cr9/f3rvFMdPepqPT81oM/QenfxtisdN1feU/fxdVdfPNHOr34lxcZKl19e+nrTJikmxqImTbzzUXHp+pT9acbwsG5d6blVF19916FD6TlOZjrX0qzbvzJDhpSOw8GDFZ/3ZrGULh8yxM9ngnZ9j8FlF50d/9FH/oqJqdm50u78XDlzRvrvgTadPl2zW0796leSn19F+6FFS5ZI8fGu96e6MfD0+Hj9goUyqampSklJUUpKih599FGX32cYhi676F9W2bluOTk5TvUOHz6sY8eOOQ67ltW9tN7F7724bn3ypZM8L8ajihqHFi0uXHt1662N84IWd3Pn/aXYD92LC7uq5q6nI3j76Tpl4uOlffukrCzp1VdL/zTjxWo+Ed6eeOIJpaSkKDk5WY899pjL73vrrbdUUFCggQMHOspiY2MVEBCg9PR0p7rp6emyWCwaPXq0oywuLk579uzR7t27HWXFxcVas2aNBgwYoHaXPkW9nnAjWaDh8KWrGVGx+HjprbekS69P69ChtNxs/7G7i689HcFdmjSRoqOlO+8s/dOMwdzrh02feeYZzZ07V7GxsbrtttucDoFK0sCBA7V//36NHz9e48aNU9euXWWxWLRr1y4tWbJEvXr10uTJkx31bTabkpOTNWfOHNlsNsXExCg7O1spKSmaPHmyel70FWLSpElKS0vT2LFjtWjRIrVu3VrLly/X119/re3bt9fbNrhU2TfBMWNKg9rFH/re/CZ46YOFazp17u6+fPCBHOcODRpkzh2wjC9tW7hXTW5UGh1db93CJeLjpVGjGtbnSl1U96XDYin90jFqVOPdRl7lkbvH1cDg0jPuK/0xDMPIz8834uLijM6dOxvNmjUzmjZtanTr1s2YOXOmceLEiQrbXbp0qdG9e3ejadOmRqdOnYzHHnuswpvqHT582Lj77rsNm81mBAQEGAMHDjQyMjJqvB6euCHf22+X3rDR1RvJelJFN7Xt0MF7fbl0u9SmLzW58WRVN2YsLi69seOrr5b+WdObHrtz29b2Zpq+qiHcpNfdNyr11hg35Jv0mkV9joG7bmpbxl3/br39GecrN+n1+szbzp07q61zxRVXaF0N52cTExOVmJhYbb02bdpo9erVNWq7vpR9E8zKKtbmzZ/r1lv7eeWk2bKp80u/gZVNndfnYQVf6ktZf+pyErq714cZPN/jq+ewAlVpaDe1bWh84pw3VK5JE2nwYEM33nhQgwfX/20FfOl8HV/qi1T3k9DdvT7uOrEY7tWQz2Hl4omGiy8dvo3whir50oOFfakv7ghe7lyfhnpicUPA1Ywwo4b8paMhILyhSr40de5LfXFH8HLX+vjajCTK42pGmA1fOnwb4Q1V8qWpc1/qizuCl7vWx5dmJFG5hnJ/KTQeZV86Lr1rVm2+dAQFXbjMobZPkMEFXr9gAb6tbOq8uruP18fUuS/1xR3By13r40szkqha2f2l6oKLUlCf4uOlm2++9OkI/JvzNmbeUCVfmjr3pb6443wQd62PL81IwrO4KAXe4CtPR5DKf3lprKeDEN5QLXdOnburL94+d8hdwcsd29YXTyw+efLCVYibNzfeD1h34qIUNHZ8ebmA8AaXxMdLX3554fWmTd47X8dXzh1yV5Cs67b1pRlJqeF+wJaUSDt3Sq+9VvpnfQZSLkoxF26h4n58eXFGeIPLfGnq3FeeTeeuIFnXbesrs6MN9QN23brSADpkiDR+fOmf9RlIuSgFjRlfXsojvMFlXC1UMV8Kkt6cHW2oH7B1vRmzO3BRChozvryUR3gDGhBvzo42xA9YXwmkXJSCxowvL+UR3gAf0BBmNT3xAXtxKPr73y31PmvnK4HUFy9KAeoLX17KI7yh0WoIgcmXuPsD9tILH0aO9NN998Vo/fpKEowH+Mo3fl+7KAWoT3x5KY/wBsAt3PkBW9mFD3l5ARo3rkm9XSjgS9/43X1RCldEwiz48lIe4Q2AW7jrA7aq88yk0obq68IHX/vG7+2LUnyZN2/lAs/zlSvqfQXhDYDbuOMDtvrzzCz1duGDL37j96Vb9vgKb9/K5VI8BcAz+PJyAeENgFvFx0v799f+3ne+cp5ZGV95qocv8oWQ4gu3crm0Pw3xJtW+gi8vpQhvANyuLve+86XzzMr4ylM9fIkvhBRfuZVLmYZ6k2r4HsIbAJ9S/XlmhleuLPOVmzH7Al8JKb5yKxfJ94KkO3Flvu8hvAHwKVWdZyaV/i/Y2K4s84TaHvL0pZDiS4fYfSlIouEjvAHwOZVd+BAaelavv17SqA9XukNdDnn+/e8WnwkpvnSI3ZeCJBo+whsAn3TplWXvvVesP/85Q3FxFd5DBC6q6yFPT4SU2t5zzpdu5eJLQRINH+ENgM+6+NDoDTcYHCqtI3cc8vSlkOJLt3LxpSCJho/wBgAmUpeTx91xXtYNNxg+FVJ85VYuvhQk0fAR3gCgkXDHIU9fDCm+cisXngKA+uLn7Q4AAOqHuw55loWUxETnc+c6dCgNbt4IKWW3cvG2+Hjp5pulyy8vfb1pkxQTw4wb3IuZNwBoJNx5XhaPKqocTwHwHO45V4rwBgCNhLsPeRJSAO8gvAFAI+KL52X5wjNSATMhvAFAI+NLhzx94RmpgNkQ3gCgEfKFQ56+8oxUwGwIbwCAeudLz0gFzIbwBgCodw35Qe5cEQlPI7wBAOodD3IHao+b9AJAI1Q2O+QtvvSMVMBsmHkDANQ7HuQO1B7hDQBQ73zxGamAWRDeAABe4Ys3DAbMgHPeAABew4PcgZpj5g0A4FW+cMNgwEwIbwAAACbCYVOgAfH27R8AAJ5HeAMA1ApfFgDv8Pph0x07dmjSpEkKDw9XUFCQ2rdvr1GjRunTTz8tV/ezzz7TzTffrODgYLVs2VLx8fH6/vvvK2x32bJlCg8Pl9VqVZcuXZSamiq73V6u3pEjRzRx4kSFhoYqMDBQUVFRyszMdPt6AgAAuIPXw9vzzz+vffv26aGHHtKmTZu0dOlSHTlyRAMHDtSOHTsc9fbs2aPo6GidO3dOb775pl566SV98803GjRokI4ePerU5vz58/XQQw8pPj5eW7du1ZQpU7RgwQJNnTrVqV5RUZGGDh2qzMxMLV26VO+8847atGmj2NhY7dq1q17WHwAAoCa8ftg0LS1NrVu3diqLjY1V165dtWDBAt10002SpLlz58pqtWrjxo1q0aKFJCkyMlLdunXT4sWL9eSTT0qS8vLyNG/ePN17771asGCBJCk6Olp2u13JycmaNm2aevbsKUlauXKlcnNz9eGHHyoqKkqSNGTIEEVERGjmzJnavXt3vWwDAGjMOPwK1IzXZ94uDW6SFBwcrJ49e+rAgQOSpOLiYm3cuFG33367I7hJ0pVXXqkhQ4Zo/fr1jrItW7aosLBQCQkJTm0mJCTIMAxt2LDBUbZ+/Xr16NHDEdwkyc/PTxMmTNAnn3yigwcPums1AQAA3MLrM28V+fnnn/XZZ585Zt2+++47nT17Vn379i1Xt2/fvsrIyFBhYaECAgKUm5srSerTp49TvbCwMIWGhjqWS1Jubq4GVfDgvLLf88UXX6h9+/YV9rGoqEhFRUWO1ydPnpQk2e32Cs+tq4uy9tzdLlzHGHhH06bSuXOlf2cMvIvt732Mgfe5OgaeHiOfDG9Tp07VmTNnNHv2bEmlh0IlyWazlatrs9lkGIaOHz+usLAw5eXlyWq1KigoqMK6ZW2VtVtZmxf/3oosXLhQqamp5cq3bdumwMDAatawdjIyMjzSLlzHGHgfY+BdbH/vYwy8r7oxKCgo8Ojvr3V4e/zxxzV58mS1u/ShdJL+85//6C9/+Yvmzp1b43bnzJmjV155RcuWLVNkZKTTMsulTy+uZJmr9Wpa92KzZs3S9OnTHa9Pnjypjh07KiYmxunQrjvY7XZlZGRo2LBh8vf3d2vbcA1j4H2MgXex/b2PMfA+V8eg7Gicp9Q6vKWmpio2NrbC8Hbo0CGlpqbWOLylpqZq3rx5mj9/vh544AFHeUhIiKSKZ8Ly8/NlsVjUsmVLR93CwkIVFBSUmwHLz893CoQhISGVtilVPNNXxmq1ymq1liv39/f32E7lybbhGsbA+xgD72L7ex9j4H3VjYGnx6fWFywYVVwadPr06Rp3PDU1VSkpKUpJSdGjjz7qtOzqq69Ws2bNlJOTU+59OTk56tq1qwICAiRdONft0rqHDx/WsWPH1Lt3b0dZnz59Km1TklNdAAAAX1Cjmbd//etf+vzzzx2vN23apD179jjVOXv2rF555RVdffXVLrf7xBNPKCUlRcnJyXrsscfKd9LPTyNHjtS6dev01FNPqXnz5pKkH374QVlZWXr44YcddWNjYxUQEKD09HQNGDDAUZ6eni6LxaLRo0c7yuLi4jRlyhTt3r3bUbe4uFhr1qzRgAEDKpxVBAAA8KYahbf169c7TtK3WCx6/PHHK6zXrFkzrVq1yqU2n3nmGc2dO1exsbG67bbb9PHHHzstHzhwoKTSmbnrr79eI0aMUFJSkgoLCzV37lyFhoZqxowZjvo2m03JycmaM2eObDabYmJilJ2drZSUFE2ePNlxjzdJmjRpktLS0jR27FgtWrRIrVu31vLly/X1119r+/btNdk0AAAA9aJG4e2+++7TiBEjZBiG+vfvr1WrVpU7tGi1Wh2HOV3x3nvvSSq9P9uWLVvKLS87PBseHq6dO3fqkUce0ZgxY+Tn56ebbrpJixcvVqtWrZzeM3v2bDVv3lxpaWlavHix2rZtq6SkJMfVqxf3NTMzUzNnztSDDz6ogoIC9evXT5s3b9bgwYNd3i4AAAD1pUbhLSwsTGFhYZKkrKwsRUZGKjg4uE4d2Llzp8t1IyMjXZ4RS0xMVGJiYrX12rRpo9WrV7vcBwAAAG+q9dWmzEwBAADUvzrdpHfNmjV69dVXtX//fp09e9ZpmcVi0XfffVenzgEAAMBZrcPbk08+qVmzZqlnz56KiIio8J5nAAAAcK9ah7cVK1Zo6tSpWrZsmTv7AwAAgCrU+ia9hw8fVlxcnDv7AgAAgGrUOrxFRkZyThsAAEA9q3V4e/bZZ/XMM8/o008/dWd/AAAAUIVan/OWkJCgvLw89e/fX23btnU8PL6MxWLRP//5zzp3EAAAABfUOryFhIQoNDTUnX0BAABANWod3mryZAQAAAC4R63PeQMAAED9q/XM2/vvv19tnRtvvLG2zQMAAKACtQ5v0dHRslgsVdYpKSmpbfMAAACoQK3DW1ZWVrmyY8eO6Z133tE//vEPpaWl1aljAAAAKK/W4W3w4MEVlt9+++367W9/qy1btig2NrbWHQMAAEB5HrlgIS4uTq+//ronmgYAAGjUPBLejh8/rqKiIk80DQAA0KjV+rDpDz/8UK6sqKhI//rXvzRr1iwNHDiwTh0DAABAebUOb507d67walPDMNSjRw/96U9/qlPHAABA3Zw5IwUHl/799GkpKMi7/YF71Dq8vfTSS+XCW0BAgDp37qzrr79el13G/X8BAADcrdbhbeLEiW7sBgAAAFxR6/BW5tSpU/roo4+Ul5en0NBQDRw4UM2bN3dH3wAAAHCJOoW3xYsXKzU1VQUFBTIMQ5IUFBSk1NRUTZ8+3S0dBAAAwAW1Dm9//etfNXPmTN16662aOHGi2rVrp0OHDmn16tX6wx/+oFatWumuu+5yZ18BAAAavVqHt+eee07jx4/XmjVrnMrHjh2rCRMm6LnnniO8AQAAuFmtLwnds2ePJkyYUOGyCRMm6Kuvvqp1pwAAAFCxWoe3Zs2aKT8/v8Jl+fn5atasWa07BQAAgIrVOrwNGjRIKSkpOnTokFP54cOH9fjjj+vGG2+sc+cAAEDtlZRc+Pv77zu/hnnV+py3BQsW6Be/+IW6du2qoUOHKiwsTP/5z3+0Y8cO+fv7a926de7sJwAAqIF166TExAuvhw+XOnSQli6V4uO91y/UXa1n3nr16qXs7GyNGjVK2dnZWrVqlbKzszV69Gh98skn6tmzpzv7CQAAXLRunTRmjHTwoHP5wYOl5cyvmFud7vPWvXt3vfbaa+7qCwAAqKOSEumhh6T/3n7ViWFIFos0bZo0apTUpEm9dw9uUOOZt5ycHP3444+VLv/xxx+Vk5NTp04BAIDa+eADqYr/pmUY0oEDpfVgTjUKb++//74iIyP1008/VVrnp59+UmRkpLZu3VrnzgEAgJr5z3/cWw++p0bhLS0tTWPGjFFkZGSldSIjI3XHHXfoxRdfrHPnAABAzYSFubcefE+Nwts//vEPjR49utp6//u//6uPP/64tn0CAAC1NGhQ6VWlFkvFyy0WqWPH0nowpxqFt6NHj6p9+/bV1gsLC9ORI0dq3SkAAFA7TZqU3g5EKh/gyl4vWcLFCmZWo/AWFBRU6VMVLnb8+HEFBgbWulMAAKD24uOlt96S2rVzLu/QobSc+7yZW43CW69evbRly5Zq623evFm9evWqdacAAEDdxMdLX3554fWmTdLevQS3hqBG4e2OO+7QypUrtWvXrkrrZGVladWqVbrzzjvr3DkAAFB7Fx8avfFGDpU2FDW6Se99992n9PR0xcTEaPLkyRo1apS6dOkiSdq7d682bNiglStXKiIiQvfee69HOgwAANCY1Si8NW3aVFu3btVdd92l559/Xi+88ILTcsMwdOutt+qvf/2rmjZt6taOAgAAoBaPxwoJCdGmTZv06aefatu2bTpw4IAkqVOnTrrlllt0zTXXuL2TAAAAKFXrZ5tGRkZWebNeAAAAuF+NLljo27evyz8REREutXnq1CnNnDlTMTExatWqlSwWi1JSUsrVmzhxoiwWS7mf8PDwCttdtmyZwsPDZbVa1aVLF6Wmpsput5erd+TIEU2cOFGhoaEKDAxUVFSUMjMza7JZAAAA6k2NZt5sNpssld2y+b9Onz6tTz/9tNp6ZfLy8rRixQpFRERo9OjRVT5Wq1mzZtqxY0e5skvNnz9fc+bMUVJSkmJiYpSdna3k5GQdPHhQK1ascNQrKirS0KFDdeLECS1dulStW7dWWlqaYmNjtX37dg0ePNildQAAAKgvNQpvO3furHRZcXGxVqxYoccff1wWi0Xjx493qc0rr7xSx48fl8Vi0bFjx6oMb5dddpkGDhxYZXt5eXmaN2+e7r33Xi1YsECSFB0dLbvdruTkZE2bNk09e/aUJK1cuVK5ubn68MMPFRUVJUkaMmSIIiIiNHPmTO3evduldQAAAKgvNTpsWpm1a9eqZ8+eevDBBxUREaFPP/1UL7/8skvvLTv86S5btmxRYWGhEhISnMoTEhJkGIY2bNjgKFu/fr169OjhCG6S5OfnpwkTJuiTTz7RwYMH3dYvAADqW1CQZBilP0FB3u4N3KXWFyxIpTNxjzzyiLKzs3Xttddq27ZtGjp0qLv6Vs7Zs2fVtm1bHT16VGFhYRo9erQef/xx2Ww2R53c3FxJUp8+fZzeGxYWptDQUMfysrqDKngyb9++fSVJX3zxRaXPci0qKlJRUZHj9cmTJyVJdru9wnPr6qKsPXe3C9cxBt7HGHgX29/7GAPvc3UMPD1GtQpvOTk5euSRR7R161Z16dJFr776qsaNG+fuvjmJiIhQRESEevfuLUnatWuXnnvuOWVmZio7O1vBwcGSSg+bWq1WBVXwFcNmsykvL8/xOi8vzyn4XVyvbHllFi5cqNTU1HLl27Zt89hzXTMyMjzSLlzHGHgfY+BdbH/vYwy8r7oxKCgo8Ojvr1F4O3DggJKTk/Xqq6/KZrNpyZIl+u1vfyt/f39P9c/h4Ycfdno9bNgwXXPNNRozZoz+8pe/OC2v6jDspctqUvdis2bN0vTp0x2vT548qY4dOyomJkYtWrSo9H21YbfblZGRoWHDhtXLtkZ5jIH3MQbexfb3PsbA+1wdg7KjcZ5So/DWvXt3nTt3TrGxsZo5c6aaN2+unJycSutfe+21de5gVeLi4hQUFKSPP/7YURYSEqLCwkIVFBSUmwHLz893ujddSEhIhbNr+fn5klThrFwZq9Uqq9Vartzf399jO5Un24ZrGAPvYwy8i+3vfYyB91U3Bp4enxqFt7JzvDZv3qwtW7ZUWs8wDFksFpWUlNStdy4wDEOXXXbhuouyc91ycnI0YMAAR/nhw4d17Ngxx2HXsroVhc+ysovrAgAA+IIahbdVq1Z5qh+18tZbb6mgoMDp9iGxsbEKCAhQenq6U3hLT0+XxWLR6NGjHWVxcXGaMmWKdu/e7ahbXFysNWvWaMCAAWrXrl29rQsAAIArahTe7rnnHo90YvPmzTpz5oxOnTolSfryyy/11ltvSZKGDx+uo0ePavz48Ro3bpy6du0qi8WiXbt2acmSJerVq5cmT57saMtmsyk5OVlz5syRzWZz3KQ3JSVFkydPdtzjTZImTZqktLQ0jR07VosWLVLr1q21fPlyff3119q+fbtH1hUAAKAu6nSrEHf53e9+p/379zter127VmvXrpUk7d27V5dffrnatGmjZ599Vj/99JNKSkp05ZVXKjExUY8++mi5K0tnz56t5s2bKy0tTYsXL1bbtm2VlJSk2bNnO9WzWq3KzMzUzJkz9eCDD6qgoED9+vXT5s2beboCAADwST4R3vbt21dtnXXr1tWozcTERCUmJlZbr02bNlq9enWN2gYAAPAWtzxhAQAAAPWD8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAAT8Xp4O3XqlGbOnKmYmBi1atVKFotFKSkpFdb97LPPdPPNNys4OFgtW7ZUfHy8vv/++wrrLlu2TOHh4bJarerSpYtSU1Nlt9vL1Tty5IgmTpyo0NBQBQYGKioqSpmZme5cRQAAALfxenjLy8vTihUrVFRUpNGjR1dab8+ePYqOjta5c+f05ptv6qWXXtI333yjQYMG6ejRo05158+fr4ceekjx8fHaunWrpkyZogULFmjq1KlO9YqKijR06FBlZmZq6dKleuedd9SmTRvFxsZq165dnlhdAACAOvHzdgeuvPJKHT9+XBaLRceOHdOLL75YYb25c+fKarVq48aNatGihSQpMjJS3bp10+LFi/Xkk09KKg2D8+bN07333qsFCxZIkqKjo2W325WcnKxp06apZ8+ekqSVK1cqNzdXH374oaKioiRJQ4YMUUREhGbOnKndu3d7evUBAABqxOszbxaLRRaLpco6xcXF2rhxo26//XZHcJNKg9+QIUO0fv16R9mWLVtUWFiohIQEpzYSEhJkGIY2bNjgKFu/fr169OjhCG6S5OfnpwkTJuiTTz7RwYMH67h2AAAA7uX1mTdXfPfddzp79qz69u1bblnfvn2VkZGhwsJCBQQEKDc3V5LUp08fp3phYWEKDQ11LJek3NxcDRo0qMI2JemLL75Q+/btK+xTUVGRioqKHK9PnjwpSbLb7RWeW1cXZe25u124jjHwPsbAu9j+3scYeJ+rY+DpMTJFeMvLy5Mk2Wy2cstsNpsMw9Dx48cVFhamvLw8Wa1WBQUFVVi3rK2yditr8+LfW5GFCxcqNTW1XPm2bdsUGBhY/UrVQkZGhkfahesYA+9jDLyL7e99jIH3VTcGBQUFHv39pghvZao6vHrxMlfr1bTuxWbNmqXp06c7Xp88eVIdO3ZUTEyM06Fdd7Db7crIyNCwYcPk7+/v1rbhGsbA+xgD72L7ex9j4H2ujkHZ0ThPMUV4CwkJkVTxTFh+fr4sFotatmzpqFtYWKiCgoJyM2D5+fmKjIx0areyNqWKZ/rKWK1WWa3WcuX+/v4e26k82TZcwxh4H2PgXWx/72MMvK+6MfD0+Hj9ggVXXH311WrWrJlycnLKLcvJyVHXrl0VEBAg6cK5bpfWPXz4sI4dO6bevXs7yvr06VNpm5Kc6gIAAPgCU4Q3Pz8/jRw5UuvWrdOpU6cc5T/88IOysrIUHx/vKIuNjVVAQIDS09Od2khPT5fFYnG6l1xcXJz27NnjdEuQ4uJirVmzRgMGDFC7du08tk4AAAC14ROHTTdv3qwzZ844gtmXX36pt956S5I0fPhwBQYGKjU1Vddff71GjBihpKQkFRYWau7cuQoNDdWMGTMcbdlsNiUnJ2vOnDmy2WyKiYlRdna2UlJSNHnyZMc93iRp0qRJSktL09ixY7Vo0SK1bt1ay5cv19dff63t27fX70YAAABwgU+Et9/97nfav3+/4/XatWu1du1aSdLevXvVuXNnhYeHa+fOnXrkkUc0ZswY+fn56aabbtLixYvVqlUrp/Zmz56t5s2bKy0tTYsXL1bbtm2VlJSk2bNnO9WzWq3KzMzUzJkz9eCDD6qgoED9+vXT5s2bNXjwYM+vOAAAQA35RHjbt2+fS/UiIyNdnhFLTExUYmJitfXatGmj1atXu9QmAACAt5ninDcAAACUIrwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADAREwT3nbu3CmLxVLhz8cff+xU97PPPtPNN9+s4OBgtWzZUvHx8fr+++8rbHfZsmUKDw+X1WpVly5dlJqaKrvdXh+rBAAAUGN+3u5ATS1YsEBDhgxxKuvdu7fj73v27FF0dLT69eunN998U4WFhZo7d64GDRqkzz//XK1atXLUnT9/vubMmaOkpCTFxMQoOztbycnJOnjwoFasWFFv6wQAAOAq04W3bt26aeDAgZUunzt3rqxWqzZu3KgWLVpIkiIjI9WtWzctXrxYTz75pCQpLy9P8+bN07333qsFCxZIkqKjo2W325WcnKxp06apZ8+enl8hAACAGjDNYVNXFBcXa+PGjbr99tsdwU2SrrzySg0ZMkTr1693lG3ZskWFhYVKSEhwaiMhIUGGYWjDhg311W0AAACXmW7mberUqRo3bpwCAwMVFRWlOXPm6IYbbpAkfffddzp79qz69u1b7n19+/ZVRkaGCgsLFRAQoNzcXElSnz59nOqFhYUpNDTUsbwyRUVFKioqcrw+efKkJMlut7v9nLmy9jgXz3sYA+9jDLyL7e99jIH3uToGnh4j04S3yy+/XA899JCio6MVEhKif//733r66acVHR2tv/3tb7rllluUl5cnSbLZbOXeb7PZZBiGjh8/rrCwMOXl5clqtSooKKjCumVtVWbhwoVKTU0tV75t2zYFBgbWci2rlpGR4ZF24TrGwPsYA+9i+3sfY+B91Y1BQUGBR3+/acLbNddco2uuucbxetCgQYqLi1OfPn00c+ZM3XLLLY5lFoul0nYuXuZqvYrMmjVL06dPd7w+efKkOnbsqJiYGKdDtu5gt9uVkZGhYcOGyd/f361twzWMgfcxBt7F9vc+xsD7XB2DsqNxnmKa8FaRli1basSIEXrhhRd09uxZhYSESFKFs2b5+fmyWCxq2bKlJCkkJESFhYUqKCgoN1OWn5+vyMjIKn+31WqV1WotV+7v7++xncqTbcM1jIH3MQbexfb3PsbA+6obA0+Pj+kvWDAMQ1LpTNnVV1+tZs2aKScnp1y9nJwcde3aVQEBAZIunOt2ad3Dhw/r2LFjTrcfAQAA8BWmDm/Hjx/Xxo0b1a9fPwUEBMjPz08jR47UunXrdOrUKUe9H374QVlZWYqPj3eUxcbGKiAgQOnp6U5tpqeny2KxaPTo0fW0FgAAAK4zzWHT8ePHq1OnTrruuusUGhqqb7/9Vs8884x++uknpwCWmpqq66+/XiNGjFBSUpLjJr2hoaGaMWOGo57NZlNycrLmzJkjm83muElvSkqKJk+ezD3eAACATzJNeOvbt6/eeOMNvfDCCzp9+rRsNptuuOEGvfzyy7r++usd9cLDw7Vz50498sgjGjNmjPz8/HTTTTdp8eLFTk9XkKTZs2erefPmSktL0+LFi9W2bVslJSVp9uzZ9b16AAAALjFNeEtKSlJSUpJLdSMjI7V9+3aX6iYmJioxMbEuXQMAAKg3pj7nDQAAoLEhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG+STp8+rWnTpqldu3YKCAhQv3799Prrr3u7WwAAAOX4ebsDviA+Pl7Z2dlatGiRunfvrldffVV33nmnzp8/r/Hjx3u7ewAAAA6NPrxt2rRJGRkZjsAmSUOGDNH+/fv1hz/8QXfccYeaNGni5V4CAACUavSHTdevX6/g4GCNHTvWqTwhIUGHDh3S7t27vdQzAACA8hr9zFtubq7+53/+R35+zpuib9++juW/+MUvyr2vqKhIRUVFjtc///yzJCk/P192u92tfbTb7SooKFBeXp78/f3d2jZcwxh4H2PgXWx/72MMvM/VMTh16pQkyTAMj/Sj0Ye3vLw8XXXVVeXKbTabY3lFFi5cqNTU1HLlXbp0cW8HAQCAKZ06dUqXX36529tt9OFNkiwWS42XzZo1S9OnT3e8Pn/+vPLz8xUSElJle7Vx8uRJdezYUQcOHFCLFi3c2jZcwxh4H2PgXWx/72MMvM/VMTAMQ6dOnVK7du080o9GH95CQkIqnF3Lz8+XdGEG7lJWq1VWq9WprGXLlm7v38VatGjBDutljIH3MQbexfb3PsbA+1wZA0/MuJVp9Bcs9OnTR1999ZWKi4udynNyciRJvXv39ka3AAAAKtTow1tcXJxOnz6tt99+26l89erVateunQYMGOClngEAAJTX6A+b3nrrrRo2bJh+97vf6eTJk+ratatee+01bdmyRWvWrPGJe7xZrVY99thj5Q7Tov4wBt7HGHgX29/7GAPv85UxsBieuo7VRE6fPq3Zs2frzTffVH5+vsLDwzVr1iyNGzfO210DAABwQngDAAAwkUZ/zhsAAICZEN4AAABMhPDmAadPn9a0adPUrl07BQQEqF+/fnr99dddeu+RI0c0ceJEhYaGKjAwUFFRUcrMzHSqc/LkSc2fP1/R0dFq27atgoOD1adPHz355JMqLCx0qrtv3z5ZLJYKf1ztk9l4evtL0uzZs3XNNdfIZrMpICBAV111le677z7t37+/XF273a7U1FR17txZVqtV4eHhWrZsWZ3X05f50hg0xn1Aqp8xuNjZs2fVvXt3WSwWLV68uNzyxrYf+NL2Zx/w3BhER0dXuF1jY2PL1XXrPmDA7YYNG2a0bNnSeOGFF4wdO3YYkydPNiQZr7zySpXvKywsNHr37m106NDBWLNmjbFt2zZj1KhRhp+fn7Fz505HvZycHCM0NNR4+OGHjXfeecfIzMw0UlJSjICAAGPo0KHG+fPnHXX37t1rSDIefPBB46OPPnL6OXbsmMe2gTd5evsbhmFMmTLFePLJJ413333XyMrKMtLS0oywsDCjTZs25bbr5MmTDavVajz11FNGVlaWkZSUZFgsFmP+/PluX3df4Utj0Bj3AcOonzG42IwZM4x27doZkoynn3663PLGth/40vZnH/DcGAwePNi46qqrym3Xr776qly77twHCG9u9re//c2QZLz66qtO5cOGDTPatWtnFBcXV/retLQ0Q5Lx4YcfOsrsdrvRs2dPo3///o6y06dPG6dPny73/qefftqQZHzwwQeOsrKdtqIP04aoPrZ/ZTZt2mRIMlauXOkoy83NNSwWi7FgwQKnuvfee6/RrFkzIy8vz9VVMw1fG4PGtg8YRv2Pwe7du42mTZsaa9eurXBbN7b9wNe2P/vABe4eg8GDBxu9evWqtj/u3gc4bOpm69evV3BwsMaOHetUnpCQoEOHDmn37t1VvrdHjx6KiopylPn5+WnChAn65JNPdPDgQUlSUFCQgoKCyr2/f//+kqQDBw64Y1VMqT62f2VatWrleE+ZDRs2yDAMJSQklOvP2bNntWXLFpfXzSx8bQwao/ocg3PnzmnSpEmaOnWqrrvuugrbbGz7ga9t/8bIm59DFXH3PkB4c7Pc3Fz9z//8T7n/PPr27etYXtV7y+pV9N4vvviiyt+9Y8cOSVKvXr3KLVu0aJGaNm2qwMBA3XDDDXr33XerXhGTqu/tX1xcrLNnz+r//u//NG3aNHXv3l3x8fFObbZq1Upt27atcX/MytfGoExj2Qek+h2Dxx9/XGfOnNETTzxRZZuNaT/wte1fhn3AM2Pw3XffyWazyc/PT1dffbVmz56ts2fPlmvTnfsA4c3N8vLyKnyYfVlZXl6eR977r3/9S0899ZTi4uKc/tFZrVbde++9ev7557Vjxw69+OKLKikp0ahRo/Tiiy+6vF5mUZ/b//Dhw/L391dgYKCuvfZaFRcXKysrS8HBwdW2GRQUpKZNm1bZH7PytTFobPuAVH9j8Pnnn+upp57SCy+8UOHRgOrabKj7ga9tf/aBC9w9BjfccIOeffZZvf3223r33Xc1fPhwPfXUU4qNjdX58+erbbO2+0DjPrbgIRaLpVbLavveffv2acSIEerYsWO5HTEsLEwrVqxwKhs7dqwGDBigpKQkTZw4scEdYqqv7R8aGqrs7GwVFRXpq6++0lNPPaUhQ4Zo586dCgsLc0t/zMqXxqAx7gOS58eguLhYkyZN0h133KFbbrnFo/0xI1/a/uwDNVtWk/fOmzfPadnw4cPVuXNn/f73v9c777yjuLg4t/TnUsy8uVlISEiFCTo/P1+SKkzedXnv/v37NWTIEPn5+SkzM7PK9sv4+/vrjjvuUF5enr799ttq65tJfW5/Pz8/XXfddfrlL3+pyZMna8eOHfr++++1aNGiats8c+aMzp0759J4mY2vjUFFGvI+INXPGCxZskTff/+9HnvsMZ04cUInTpzQyZMnJUmFhYU6ceKESkpKqmyzoe4Hvrb9K8I+4N7/iy82YcIESdLHH39cbZu13QcIb27Wp08fffXVVyouLnYqz8nJkST17t27yveW1XPlvfv371d0dLQMw1BWVpY6dOjgcj+N/z4V7bLLGtY/gfrc/pfq0KGD2rVrp2+++capzaNHj+rw4cO1atOMfG0MKtNQ9wGpfsYgNzdXP//8s7p166YrrrhCV1xxhSIiIiRJc+bM0RVXXOF4T2PbD3xt+1eGfaDy99blc6jMxdvV7ftAja5NRbXKblXw+uuvO5XHxsZWe3ny8uXLDUnGxx9/7Ciz2+1Gr169jAEDBjjV3b9/v9G5c2ejY8eOxnfffVejPp47d87o16+fERoaWmV/zKi+tn9Fvv32W+Oyyy4zHnjgAUdZ2eXhixYtcqp7//33N8hbJBiG741BRRryPmAY9TMGX331lZGVleX089prrxmSjN/+9rdGVlaWcerUKcMwGt9+4GvbvyLsA577HHryyScNScaGDRscZe7eBwhvHjBs2DDjiiuuMFasWGHs2LHDuPfeew1Jxpo1axx1Jk2aZDRp0sTYt2+fo6ywsNDo1auX0bFjR+OVV14xMjIyjLi4uHI3Bvzpp5+Mq666yrBarcaaNWvK3RzwwIEDjroPP/yw8cADDxivvfaakZWVZfz1r381rr/+ekOSsWrVqnrZHvXN09v/n//8p3HTTTcZy5cvN7Zs2WJs27bNeOaZZ4wOHToYrVq1cmrTMC7cmPHpp582du7caTz66KMN+uakhuFbY9AY9wHD8PwYVKSq+4k1tv3Al7Y/+4BnxuD99983brnlFuOFF14wtm3bZrz77rvG7373O6NJkybGTTfdZJSUlDj1x537AOHNA06dOmUkJiYabdu2NZo2bWr07dvXeO2115zq3HPPPYYkY+/evU7lhw8fNu6++27DZrMZAQEBxsCBA42MjAynOllZWYakSn8ee+wxR92VK1ca/fv3N2w2m+Hn52dcccUVxi233GJs3brVU6vvdZ7e/ocPHzYmTJhgXH311UZgYKDRtGlT46qrrjJ++9vfGj/88EO5/pw7d8547LHHjE6dOhlNmzY1unfvbvzxj390+3r7El8ag8a4DxiG58egIlWFt8a2H/jS9mcf8MwYfPvtt8bw4cON9u3bG1ar1QgICDD69OljzJ8/3ygsLCzXH3fuAxbD+O9BbwAAAPi8hneWIgAAQANGeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwDqzb59+2SxWJSenu72tjMzM3XdddcpKChIFotFGzZsUHp6uiwWi/bt2+f233exzp07a+LEiR79HWbw5ZdfKiUlxePbG2js/LzdAQCoK8Mw9Ktf/Urdu3fXu+++q6CgIPXo0UPFxcX66KOPFBYW5u0uNgpffvmlUlNTFR0drc6dO3u7O0CDRXgDYHqHDh1Sfn6+4uLiNHToUKdlrVq18lKvvMtut8tiscjPr/zHfEFBgQIDA73QKwDuwGFTAHX273//WwkJCerWrZsCAwPVvn17jRw5Ujk5OdW+9+jRo7rvvvvUsWNHWa1WtWrVSr/85S+1fft2l353SkqKOnToIEl65JFHZLFYHLM+FR02jY6OVu/evZWdna1BgwYpMDBQV111lRYtWqTz58876hUWFmrGjBnq16+fLr/8ctlsNkVFRemdd95xfcNU49VXX1VUVJSCg4MVHBysfv36aeXKlY7llR2OjY6OVnR0tOP1zp07ZbFY9PLLL2vGjBlq3769rFar/v3vf2vixIkKDg5WTk6OYmJi1Lx5c0fAPXfunObNm6fw8HDHtk9ISNDRo0edfl/nzp01YsQIbdmyRddee62aNWum8PBwvfTSS4466enpGjt2rCRpyJAhslgsHjtEDjR2zLwBqLNDhw4pJCREixYtUqtWrZSfn6/Vq1drwIAB+r//+z/16NGj0vfedddd+uyzzzR//nx1795dJ06c0Geffaa8vDyXfvfkyZMVERGh+Ph4Pfjggxo/frysVmuV7zl8+LB+/etfa8aMGXrssce0fv16zZo1S+3atdPdd98tSSoqKlJ+fr5+//vfq3379jp37py2b9+u+Ph4rVq1ylGvtubOnasnnnhC8fHxmjFjhi6//HLl5uZq//79tW5z1qxZioqK0gsvvKDLLrtMrVu3llQa0v73f/9X999/v5KSklRcXKzz589r1KhR+uCDDzRz5kz94he/0P79+/XYY48pOjpa/+///T81a9bM0fY///lPzZgxQ0lJSWrTpo1efPFF/eY3v1HXrl1144036rbbbtOCBQv06KOPKi0tTddee60k6eqrr67TdgJQAQMA3Ky4uNg4d+6c0a1bN+Phhx92lO/du9eQZKxatcpRFhwcbEybNq1Ov6+s3aefftqpfNWqVYYkY+/evY6ywYMHG5KM3bt3O9Xt2bOnccstt1S5Tna73fjNb35jXHPNNU7LrrzySuOee+5xub/ff/+90aRJE+PXv/51lfUqa3fw4MHG4MGDHa+zsrIMScaNN95Yru4999xjSDJeeuklp/LXXnvNkGS8/fbbTuXZ2dmGJGP58uVO/QgICDD279/vKDt79qxhs9mM+++/31G2du1aQ5KRlZVV5XoBqBsOmwKos+LiYi1YsEA9e/ZU06ZN5efnp6ZNm+rbb7/VV199VeV7+/fvr/T0dM2bN08ff/yx7Ha7x/vbtm1b9e/f36msb9++5Wa91q5dq1/+8pcKDg6Wn5+f/P39tXLlymrXqToZGRkqKSnR1KlT69TOpW6//XaXl23cuFEtW7bUyJEjVVxc7Pjp16+f2rZtq507dzrV79evnzp16uR4HRAQoO7du9dpphBA7RDeANTZ9OnTNWfOHI0ePVrvvfeedu/erezsbEVEROjs2bNVvveNN97QPffcoxdffFFRUVGy2Wy6++67dfjwYY/1NyQkpFyZ1Wp16uu6dev0q1/9Su3bt9eaNWv00UcfKTs7W5MmTVJhYWGdfn/ZOWVl5+q5S2VX1QYGBqpFixZOZT/99JNOnDihpk2byt/f3+nn8OHDOnbsmFN9V7YZgPrBOW8A6mzNmjW6++67tWDBAqfyY8eOqWXLllW+NzQ0VEuWLNGSJUv0ww8/6N1331VSUpKOHDmiLVu2eLDXVVuzZo26dOmiN954QxaLxVFeVFRU57bLroD98ccf1bFjx0rrBQQEVPj7jh07ptDQ0HLlF/ezuvLQ0FCFhIRUuo2bN29eab8AeBfhDUCdWSyWchcJ/O1vf9PBgwfVtWtXl9vp1KmTHnjgAWVmZuof//iHu7tZIxaLRU2bNnUKPocPH3bL1aYxMTFq0qSJnn/+eUVFRVVar3PnzvrXv/7lVPbNN9/o66+/rjC81cSIESP0+uuvq6SkRAMGDKhTW2XK/g0wGwd4FuENQJ2NGDFC6enpCg8PV9++ffXpp5/q6aefrvaw4M8//6whQ4Zo/PjxCg8PV/PmzZWdna0tW7YoPj6+nnpfsREjRmjdunWaMmWKxowZowMHDuiJJ55QWFiYvv322zq13blzZz366KN64okndPbsWd155526/PLL9eWXX+rYsWNKTU2VVHol7oQJEzRlyhTdfvvt2r9/v5566im33Ltu3LhxeuWVVzR8+HA99NBD6t+/v/z9/fXjjz8qKytLo0aNUlxcXI3a7N27tyRpxYoVat68uQICAtSlS5cKD7kCqD3CG4A6W7p0qfz9/bVw4UKdPn1a1157rdatW6fk5OQq3xcQEKABAwbo5Zdf1r59+2S329WpUyc98sgjmjlzZj31vmIJCQk6cuSIXnjhBb300ku66qqrlJSUpB9//NERruri8ccfV7du3bRs2TL9+te/lp+fn7p166bExERHnfHjx+vQoUN64YUXtGrVKvXu3VvPP/+8W35/kyZN9O6772rp0qV6+eWXtXDhQvn5+alDhw4aPHiw+vTpU+M2u3TpoiVLlmjp0qWKjo5WSUmJVq1axaPDADezGIZheLsTAAAAcA1XmwIAAJgIh00B+CzDMFRSUlJlnSZNmlR6laU3lJSUqKoDGhaLRU2aNKnHHgFoaJh5A+CzVq9eXe4eZJf+7Nq1y9vddHL11VdX2d+y54oCQG1xzhsAn5WXl6e9e/dWWadHjx4+dU+ynJycKu8F17x58yqf9QoA1SG8AQAAmAiHTQEAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMJH/DzaVpcbyd2W+AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0018\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.050 - 0.075 A" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.05 , 0.0509, 0.0518, 0.0527, 0.0536, 0.0545, 0.0554, 0.0563,\n", " 0.0572, 0.0581, 0.059 , 0.0599, 0.0608, 0.0617, 0.0626, 0.0635,\n", " 0.0644, 0.0653, 0.0662, 0.0671, 0.068 , 0.0689, 0.0698, 0.0707,\n", " 0.0716, 0.0725, 0.0734, 0.0743, 0.0752, 0.0761]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHPCAYAAADTZ+eeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOt0lEQVR4nO3de1zUVeL/8fckOAhoNuAFzVtp8jUFi01lNxMyicw2Id0110pcrG9WaNoSKhqUom12cV2sr5uJZXaxVSvXS0jqtl2Mb/32u1Br25ZaaaaC5gXBAT+/P1gmxxmQyzAzH3w9Hw8fOmfOHM7nzIfxPed8LhbDMAwBAADANC7ydQcAAADQMAQ4AAAAkyHAAQAAmAwBDgAAwGQIcAAAACZDgAMAADAZAhwAAIDJEOAAAABMhgAHAABgMj4PcH//+9918803q3v37mrTpo1sNptiY2O1atUqp3oTJ06UxWJx+RMZGem23SVLligyMlJWq1W9evVSdna27Ha7S72DBw9q4sSJCg8PV3BwsGJjY1VQUNAs2woAAOAJAb7uwNGjR9WtWzfdfvvt6tq1q06ePKmXX35Zd9xxh/bs2aPMzExH3TZt2ujdd991en2bNm1c2pw/f77mzJmjjIwMJSQkqLCwUJmZmdq3b5+WLVvmqFdRUaHhw4fr6NGjWrx4sTp27Kjc3FwlJiZq69atGjZsWPNtOAAAQCNZ/PVeqEOGDNH+/fv1zTffSKqegXvjjTd04sSJOl9XUlKiSy+9VHfeeaf+53/+x1Gek5OjzMxMFRcXq1+/fpKkpUuX6r777tMHH3yg2NhYSVJlZaWio6MVGhqqnTt3NtPWAQAANJ7Pl1BrEx4eroCAhk8Qbt68WeXl5UpJSXEqT0lJkWEYWr9+vaNs3bp16tu3ryO8SVJAQIAmTJigjz/+WPv27Wt0/wEAAJqLz5dQa5w5c0ZnzpzRkSNHtGbNGm3ZskV//OMfneqcOnVKnTt31qFDhxQREaHRo0fr0Ucflc1mc9QpLi6WJA0YMMDptREREQoPD3c8X1N36NChLn2JioqSJH322Wfq2rWr2/5WVFSooqLCqf+lpaUKCwuTxWJp4NYDAIALnWEYOn78uLp06aKLLqp7js1vAtyUKVMcS56tW7fWH/7wB91zzz2O56OjoxUdHa3+/ftLknbs2KGnn35aBQUFKiwsVGhoqKTqJVSr1aqQkBCXn2Gz2VRSUuJ4XFJS4hT+zq5X83xtFixYoOzs7EZsKQAAQO2+/fZbXXrppXXW8ZsAN2vWLKWmpurgwYN6++23df/99+vkyZN66KGHJEkPPvigU/0RI0boqquu0pgxY/SnP/3J6fm6ZsDOfa4hdc82c+ZMTZ8+3fH4xx9/VPfu3bV79261bdu21tc1lt1u17Zt2xQfH6/AwECPtw9njLf3MebexXh7H2PufWYb8+PHj6tXr171yhF+E+C6d++u7t27S5JGjhwpqTok3XXXXerQoYPb1yQlJSkkJEQfffSRoywsLEzl5eUqKytTcHCwU/3S0lLFxMQ41XU3y1ZaWipJbmfnalitVlmtVpdym82mdu3a1fq6xrLb7QoODlZYWJgpdkKzY7y9jzH3Lsbb+xhz7zPbmNf0sT6HYvntSQyDBg1SZWWlvv766zrrGYbhtE5cc+xbUVGRU70DBw7o8OHDjiXYmrrn1jv7tWfXBQAA8Bd+G+C2bdumiy66SJdddlmtdd544w2VlZVpyJAhjrLExEQFBQUpLy/PqW5eXp4sFotGjx7tKEtKStKuXbucLhdSWVmpVatWafDgwerSpYvHtgcAAMBTfL6Eevfdd6tdu3YaNGiQOnXqpMOHD2vNmjV67bXX9Lvf/U4dOnTQ3r17NX78eI0bN069e/eWxWLRjh079Mwzz+jKK69Uamqqoz2bzabMzEzNmTNHNpvNcSHfrKwspaamOq4BJ0mTJk1Sbm6uxo4dq4ULF6pjx45aunSpvvjiC23dutUXwwEAAHBePg9wsbGxWrFihVauXKmjR48qNDRU0dHReumllzRhwgRJUrt27dSpUyc99dRT+uGHH1RVVaUePXooLS1Ns2bNcjnjdPbs2Wrbtq1yc3O1aNEide7cWRkZGZo9e7ZTPavVqoKCAqWnp+uBBx5QWVmZBg4cqE2bNnEXBgAA4Ld8HuBSUlJcLrp7rksuuURr165tULtpaWlKS0s7b71OnTpp5cqVDWobAADAl/z2GDgAAAC4R4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyfg8wP3973/XzTffrO7du6tNmzay2WyKjY3VqlWrXOp++umnuuGGGxQaGqr27dsrOTlZX3/9tdt2lyxZosjISFmtVvXq1UvZ2dmy2+0u9Q4ePKiJEycqPDxcwcHBio2NVUFBgce3EwAAwFN8HuCOHj2qbt26KScnRxs3btSLL76onj176o477tC8efMc9Xbt2qW4uDidPn1ar7/+ul544QX961//0tChQ3Xo0CGnNufPn6+pU6cqOTlZW7Zs0ZQpU5STk6P77rvPqV5FRYWGDx+ugoICLV68WG+++aY6deqkxMRE7dixwyvbDwAA0FABvu5AXFyc4uLinMpGjRql3bt3a9myZcrMzJQkzZ07V1arVRs2bFC7du0kSTExMerTp48WLVqkxx9/XJJUUlKiefPmafLkycrJyXH8DLvdrszMTE2bNk39+vWTJC1fvlzFxcX64IMPFBsbK0mKj49XdHS00tPTtXPnTm8MAQAAQIP4fAauNuHh4QoIqM6XlZWV2rBhg2677TZHeJOkHj16KD4+XuvWrXOUbd68WeXl5UpJSXFqLyUlRYZhaP369Y6ydevWqW/fvo7wJkkBAQGaMGGCPv74Y+3bt6+Ztg4AAKDxfD4DV+PMmTM6c+aMjhw5ojVr1mjLli364x//KEn66quvdOrUKUVFRbm8LioqSvn5+SovL1dQUJCKi4slSQMGDHCqFxERofDwcMfzklRcXKyhQ4e6bVOSPvvsM3Xt2tVtfysqKlRRUeF4fOzYMUmS3W53e6xdU9W02RxtwxXj7X2MuXcx3t7HmHuf2ca8If30mwA3ZcoU/c///I8kqXXr1vrDH/6ge+65R1L1sqgk2Ww2l9fZbDYZhqEjR44oIiJCJSUlslqtCgkJcVu3pq2admtr8+yf686CBQuUnZ3tUv7OO+8oODi4rk1tkvz8/GZrG64Yb+9jzL2L8fY+xtz7zDLmZWVl9a7rNwFu1qxZSk1N1cGDB/X222/r/vvv18mTJ/XQQw856lgsllpff/Zz9a3X0LpnmzlzpqZPn+54fOzYMXXr1k0JCQlOy7yeYrfblZ+frxEjRigwMNDj7cMZ4+19jLl3Md7ex5h7n9nGvGY1rz78JsB1795d3bt3lySNHDlSUnVIuuuuuxQWFibJ/YxYaWmpLBaL2rdvL0kKCwtTeXm5ysrKXGbCSktLFRMT43gcFhZWa5uS+xm/GlarVVar1aU8MDCwWXeS5m4fzhhv72PMvYvx9j7G3PvMMuYN6aPfnsQwaNAgVVZW6uuvv9bll1+uNm3aqKioyKVeUVGRevfuraCgIEk/Hft2bt0DBw7o8OHD6t+/v6NswIABtbYpyakuAACAv/DbALdt2zZddNFFuuyyyxQQEKBbbrlFa9eu1fHjxx11vvnmG23btk3JycmOssTERAUFBSkvL8+pvby8PFksFo0ePdpRlpSUpF27djldLqSyslKrVq3S4MGD1aVLl2bbPgAAgMby+RLq3XffrXbt2mnQoEHq1KmTDh8+rDVr1ui1117T7373O3Xo0EGSlJ2drWuuuUajRo1SRkaGysvLNXfuXIWHh2vGjBmO9mw2mzIzMzVnzhzZbDYlJCSosLBQWVlZSk1NdVwDTpImTZqk3NxcjR07VgsXLlTHjh21dOlSffHFF9q6davXxwIAAKA+fB7gYmNjtWLFCq1cuVJHjx5VaGiooqOj9dJLL2nChAmOepGRkdq+fbsefvhhjRkzRgEBAbr++uu1aNEiR8irMXv2bLVt21a5ublatGiROnfurIyMDM2ePdupntVqVUFBgdLT0/XAAw+orKxMAwcO1KZNmzRs2DCvbD8AAEBD+TzApaSkuFx0tzYxMTH1nhlLS0tTWlraeet16tRJK1eurFebAAAA/sBvj4EDAACAewQ4AAAAkyHAAQAAmAwBDgAAwGQIcAAAACZDgAMAADAZAhwAAIDJEOAAAABMhgAHAABgMgQ4AAAAkyHAAQAAmAwBDgAAwGQIcAAAACZDgAMAADAZAhwAAIDJEOAAAABMhgAHAABgMgQ4AAAAkyHAAQAAmAwBDgAAwGQIcAAAACZDgAMAADAZAhwAAIDJEOAAAABMJsDXHYA5VFVJ770nff+9FBEhDR0qtWrl614BAHBhIsDhvNaulaZOlb777qeySy+VFi+WkpN91y8AAC5ULKGiTmvXSmPGOIc3Sdq3r7p87Vrf9AsAgAsZAQ61qqqqnnkzDNfnasqmTauuBwAAvIcAh1q9957rzNvZDEP69tvqegAAwHsIcKjV9997th4AAPAMAhxqFRHh2XoAAMAzCHCo1dCh1WebWizun7dYpG7dqusBAOCvTp6s/j/LYqn+d0tAgEOtWrWqvlSI5Briah4/8wzXgwMAwNsIcBeIxn77SE6W3nhD6trVufzSS6vLuQ4cAADex4V8cV7JydKtt3InBgAA/AUBDvXSqpUUF+frXgAAAIklVAAAANMhwAEAAJgMAQ4AAMBkOAYOgM9UVf10ckyHDhbuqwsA9USAA+ATa9dKU6eefb/dAIWFJWjpUot+9Stf9gwA/B9LqBeIs2c2/vpXMdMBn1q7Vhoz5uzwVq2kJEjjxrXS2rW+6RcAmAUB7gKwdq3Ur99Pj0eOlHr2FP9Jwieqqqpn3gzD3bPVt/iYNo0vGQBQF58HuHfffVeTJk1SZGSkQkJC1LVrV91666365JNPnOpNnDhRFovF5U9kZKTbdpcsWaLIyEhZrVb16tVL2dnZstvtLvUOHjyoiRMnKjw8XMHBwYqNjVVBQUGzbKsv1Mx07NvnXL5vX3U5Ic77qqqk7dulV16p/vtCCyrvvec683Y2w7Do22+r6wEA3PP5MXDPPvusSkpKNHXqVPXr10+HDh3Sk08+qSFDhmjLli26/vrrHXXbtGmjd9991+n1bdq0cWlz/vz5mjNnjjIyMpSQkKDCwkJlZmZq3759WrZsmaNeRUWFhg8frqNHj2rx4sXq2LGjcnNzlZiYqK1bt2rYsGHNt+FeUNdMh2FU31Zr2rTquyxwVwXvcD3uq/q2ZIsXXzi3Jfv+e8/WA4ALkc8DXG5urjp27OhUlpiYqN69eysnJ8cpwF100UUaMmRIne2VlJRo3rx5mjx5snJyciRJcXFxstvtyszM1LRp09TvP+uJy5cvV3FxsT744APFxsZKkuLj4xUdHa309HTt3LnTk5vqdeef6ZBjpoO7LDS/mtnQcwN1zWzohXJv2YgIz9YDgAuRz5dQzw1vkhQaGqp+/frp22+/bXB7mzdvVnl5uVJSUpzKU1JSZBiG1q9f7yhbt26d+vbt6whvkhQQEKAJEybo448/1r5z1x1NhpkO/3G+2VDpwjnua+jQ6llHi8X98xaLoW7dqut5w8mT1X2xWKr/DQBm4PMZOHd+/PFHffrpp06zb5J06tQpde7cWYcOHVJERIRGjx6tRx99VDabzVGnuLhYkjRgwACn10ZERCg8PNzxfE3doW7+l4iKipIkffbZZ+ratavbPlZUVKiiosLx+NixY5Iku93u9li7pqppsyFtd+hgUX3e4g4dKmW3uz2i3O9UVUl/+5tF339fPUNz7bVGsyz/Nma867Jjh0XffVf7e1EzG7ptW6WGDTPHe9EUTz5p0bhxrWSxVB/z9pPqbV+0qFJnzhg6c6b5+1L9Fgf+5992NcOvr1/y9D6O82PMvc95zP3/97wh+4ZfBrj77rtPJ0+e1OzZsx1l0dHRio6OVv/+/SVJO3bs0NNPP62CggIVFhYqNDRUUvUSqtVqVUhIiEu7NptNJSUljsclJSVO4e/sejXP12bBggXKzs52KX/nnXcUHBxczy1tuPz8/HrXraqSwsISVFISpJqz+5wZCg8/pWPH8rVxo8e62Gw+/DBCzz8/QCUlPx33GBZ2SqmpRYqNbZ5pxIaMd13++teukn523nqbNv1dJ0+ae+a3PqxWKT3d9f0MDz+l3/62WFbr917bJ8vLW0kaJUnasmWLgoIugGnQs3hqH4ez8vJWGjeuer969dUNTvsVY+591cfP+//veVlZWb3r+l2AmzNnjl5++WUtWbJEMTExjvIHH3zQqd6IESN01VVXacyYMfrTn/7k9LyltrUZN881pO7ZZs6cqenTpzseHzt2TN26dVNCQoLatWtX6+sa4+RJ6ZJLqr85HDxYpvbtA+v92qVLLRo3TpIMp5kOi6V6piM3t7VuuWWkJ7tbq7O348gRu9xk7FqtW2fR73/fymUJsrQ0SL///TV69dUqJSV5bubKbrcrPz9fI0aMUGCg83g3ZjtCQix66qnz17vppoEaNiy6MV02nZEjpaws6W9/q/zPnRgqVVaWr8TEEQoMvMpr/Th72fTGG29s0H5pZnXt42g6d/sVY+59NWN+9oqeP/+e16zm1YdfBbjs7GzNmzdP8+fP1/3333/e+klJSQoJCdFHH33kKAsLC1N5ebnKyspcZsJKS0udQmFYWJjbWbbS0lJJcjs7V8NqtcpqtbqUBwYGevwX86KzjlTcubO1bropoN7Lhr/6lRQQIKWlOV9K5NJLLXrmGSk52Xu7wNnDUj1O9XtdVZU0Y0Ztx49ZZLFIDz0UoNtu8/zZtO7ez8ZsR3x89XFf+/a53w6Lpfr5+Pj6v7ctQWCgdMMN1f+22w1t3Ng8v0Pn68NP/67/fnm2s28JFhFRffyeWd5Hb4/3haKu/Yox976zx7uxv+fe0JD9wucnMdTIzs5WVlaWsrKyNGvWrHq/zjAMXXRWwqk59q2oqMip3oEDB3T48GHHEmxN3XPrnf3as+v6yrkX4b3lloAGX4Q3OVn6/POfHm/cKO3ebZ4zHhtyNq2/atWq+lIhkuvB+zWPn3nGPP/ptyRNvUvJ2rXVF8aOj5fGj6/+mwtlA2hufhHgHnvsMWVlZSkzM1OPPPJIvV/3xhtvqKyszOnSIomJiQoKClJeXp5T3by8PFksFo0ePdpRlpSUpF27djldLqSyslKrVq3S4MGD1aVLl0Zvkyd48iK8ZweD664zV1BoKWfTJidXXyrk3PNiLr30wrmEiL9p6l1KarslGBfKBtDcfL6E+uSTT2ru3LlKTEzUzTff7LQcKklDhgzR3r17NX78eI0bN069e/eWxWLRjh079Mwzz+jKK69Uamqqo77NZlNmZqbmzJkjm83muJBvVlaWUlNTHdeAk6RJkyYpNzdXY8eO1cKFC9WxY0ctXbpUX3zxhbZu3eq1MXCHi/D+pCVdNyw5ufo9M+tyW0vS1Ovy8TsKwJd8HuDefvttSdXXb9u8ebPL84ZhqF27durUqZOeeuop/fDDD6qqqlKPHj2UlpamWbNmuZxxOnv2bLVt21a5ublatGiROnfurIyMDKezWqXq49gKCgqUnp6uBx54QGVlZRo4cKA2bdrk87swcBHen9RcN+x8x49567phTdWqVct/z/ydJ8IXv6Ooy7lL8wkJvusLWiafB7jt27eft84ll1yitQ1ci0hLS1NaWtp563Xq1EkrV65sUNve0FKWDT2h5vixMWP0n+uG/fQcx4/h5EnpP1cR0okTqtfZZZ4IX/yOojZr11afOFZj5MjqL5lPPmmRm3PfgEbxi2Pg4KolLRt6gj8dP9bUg979RUu5A0Fj3g9PhC9+R+FOXccujxvXSh9+yA4BzyDA+anz325IXr3dkD9ITpb27JG2bZNWr67+29tn0zb1oHd4VmPfD0+EL35Hca763DJv+fL+pv3SB/9CgPNTXHbCvZrjx26/vfpvb26/J88KbqqWMnvWFE15PzwRvvgdxbnOvzRv0eHDwfrb32q/SDyaR0tZOTkbAc6P1Swbnns1E7NedsLMv0DcjN6/NPX98FT48qelfU+oqpK2b5deeaX6b/bnhuG4SP/04YcRior66ZD/lrJyQoDzc8nJ0t69Un5+paZP/1/l51c2atkwJKT6PzbDqN9B3p5m9qXHlnAx4ZbEE++Hp74g+cPSvidwQeKm47hI/7NunUWPP36N9u93Lm8J12okwJlAq1bSsGGGrrtun4YNM0y3JONPS4+N5W/frM08m+kJnno/PHWXEl8u7XsCFyT2jPMvzRsKDy/Ttdd67r7NqF1VlTR9es0vo/Ob0hJWTghwaFYtZenRn75Zm3020xM8+X6Y+S4lnuDp39EL+fjM+izN//a3xRfcPuYr770n7dtn0bnhrYbZV04IcGhWLWXp0V/OOGwJs5me4C/vR0vwt79ZPPo7eqHPDte1NP/qq1WKjeUAOG/xt5UTTyPAoVm1lF8gfzjjsKXMZnqCP7wfnuarEwg8+TvK7HC12pbmk5IatnTqiX2iqTOiZp5R9aeVk+ZAgEOzakm/QL4+K9jTs5lmnynx9fvhSb48gcBTv6PMDjtr6tI8J5U03dChUteuhiT3wdnsM/UEODQrf1vqauq3SU8d9N4YzJS48uX74Sm+PoHg2muNJv+OMjvsWZ7cJ8z+Ra0pWrWSnnqqeoMtFued06wz9WcjwKFZtcSlLl8d9M5MiXvt2v10iZybbmr4++HLS+z4Q/DxxO9oSznW9Wy+Wjr05D7RUr6oNUVSkqGHHy50+Vw040z9uQhwaHYtaanLlzwxm+kPgQE/8WTwOXbsp8CxaVPD3sOmXpC4pRzr6g88tU+0tC9qTREb+73+8Y9Kx2MzztS7Q4CDV7SEpS5fY6ak5fFU8PHETEtTLkjsb8e6mvmOEp7YJ1riF7Wmvqct8XJBBDh4TUv8BfK2ps5mMlPiXzwRfDw509LYCxL707GuZj/43xP7REv7orZ2rdSjh3nf0+ZCgANMpimzmf42U3Kha2rw8ZeZFk8e69qUY898fULI2Rp7bKUnwnBL+qLGUnDtCHCACTV2NtOfZkrQ9ODjTzMtnjrWtbFnTXo6zPrq7E1PhOGW8kXNX76g+CsCHC4oLeWU+sZ+u/eXmRL8pCknEPjbTEtysrR3b+OOo5OadiyfJ8Osr8/ebOpJJZ78oubLz0x/+oLijwhwuGB46kPZl5ed8ATOCvY/jT2BwB9nWhp7HF1Tl8o8eUKIPyzZNeWkEk99UfN1kPW3Lyj+hgCHC4K/fCj7C0+cFdxSZjP9RWOCT0tZEvfEUpknwqy/Ldk1NgxLTf+i5g+fmf74BcWfEODQ4vnbh7K/aMpZwb7+Zo5qLeVC2Z5YKvNEmG1pS3aN/aLmL5+ZLeULSnMhwKHFa2kfyr7mD9/M8ZOWsCTuiaUyT4TZlrhk15gvav7ymdlSvqA0FwIcvMZXx461xA9lX/GXb+ZwZvYLZXtqqaypB/+3xCW7xnzu+tNnZlPf05YswNcdAJpbS/xQ9pWGfDOPi/Nat6Cf7glrRjVLZfv2ud8Gi6X6+foslSUnS7feWr0Pfv999e/10KENO6bQE/0wM3/7zGzKe9qSEeDQ4vGh7Dn+9M0cLUfNUtmYMdW/j2f/njZmqazm4H9f98Os/PEzs7HvaUvGEipaPI6j8Bx/+2aOlsNfjuXzl374Ep+Z7vnbtS8JcLgg8KHsGZwVhubkL8fy+Us/fInPTP9HgMMFgw/lpuObOZpbUy5v0xL74Ut8Zvo3AhwuKHwoNx3fzNGczH6nk5bGE5+ZVVXS9u3SK69U/81Z6p5BgAMuUE35j5Jv5gDqY+3a6ot8x8dL48dX/23Wi377291nCHAAGqXmshWGId10E7OZAJzVXPT73EsPmfGi3/549xkCHAAA8KiWdNFvf737DAEOAIBzcCxe0/jL7biayp+DKAEOAAB4VEu56Lc/B1HuxIALSs23agBA82kpF/325yDKDBwAAPColnLRb38OogQ4AADgUS3lot/+HEQJcAAAwK2mXi/yjTekrl2dy8100W9/DqIEOAAA0CySk6U9e6Rt26TVq6v/NttFv/317jOcxAAAAJpNq1ZSXJxv+9DUE9iSk6UbbpAuvrj68caNUkKCb5eAmYEDAAA4D3+7lzYBDgAAwGQIcAAAACbj8wD37rvvatKkSYqMjFRISIi6du2qW2+9VZ988olL3U8//VQ33HCDQkND1b59eyUnJ+vrr7922+6SJUsUGRkpq9WqXr16KTs7W3a73aXewYMHNXHiRIWHhys4OFixsbEqKCjw+HYCAADz8rfbq/k8wD377LPas2ePpk6dqo0bN2rx4sU6ePCghgwZonfffddRb9euXYqLi9Pp06f1+uuv64UXXtC//vUvDR06VIcOHXJqc/78+Zo6daqSk5O1ZcsWTZkyRTk5Obrvvvuc6lVUVGj48OEqKCjQ4sWL9eabb6pTp05KTEzUjh07vLL9AAAADeXzs1Bzc3PVsWNHp7LExET17t1bOTk5uv766yVJc+fOldVq1YYNG9SuXTtJUkxMjPr06aNFixbp8ccflySVlJRo3rx5mjx5snJyciRJcXFxstvtyszM1LRp09SvXz9J0vLly1VcXKwPPvhAsbGxkqT4+HhFR0crPT1dO3fu9MoYAAAANITPZ+DODW+SFBoaqn79+unbb7+VJFVWVmrDhg267bbbHOFNknr06KH4+HitW7fOUbZ582aVl5crJSXFqc2UlBQZhqH169c7ytatW6e+ffs6wpskBQQEaMKECfr444+1b98+T20mAACAx/h8Bs6dH3/8UZ9++qlj9u2rr77SqVOnFBUV5VI3KipK+fn5Ki8vV1BQkIqLiyVJAwYMcKoXERGh8PBwx/OSVFxcrKFu7n9R83M+++wzdT33EtL/UVFRoYqKCsfjY8eOSZLsdrvbY+2aqqbN5mgbrhhv72PMvYvx9j7G3PvMNuYN6adfBrj77rtPJ0+e1OzZsyVVL4tKks1mc6lrs9lkGIaOHDmiiIgIlZSUyGq1KsTNEYY2m83RVk27tbV59s91Z8GCBcrOznYpf+eddxQcHHyeLWy8/Pz8Zmsbrhhv72PMvYvx9j7G3PvMMuZlZWX1rtvoAPfoo48qNTVVXc69t4Sk77//Xn/60580d+7cBrc7Z84cvfzyy1qyZIliYmKcnrPUdjfZc56rb72G1j3bzJkzNX36dMfjY8eOqVu3bkpISHBa5vUUu92u/Px8jRgxQoGBgR5vH84Yb+9jzL2L8fY+xtz7zDbmNat59dHoAJedna3ExES3AW7//v3Kzs5ucIDLzs7WvHnzNH/+fN1///2O8rCwMEnuZ8RKS0tlsVjUvn17R93y8nKVlZW5zISVlpY6hcKwsLBa25Tcz/jVsFqtslqtLuWBgYHNupM0d/twxnh7H2PuXYy39zHm3meWMW9IHxt9EoNRx03FTpw40eCBys7OVlZWlrKysjRr1iyn5y6//HK1adNGRUVFLq8rKipS7969FRQUJOmnY9/OrXvgwAEdPnxY/fv3d5QNGDCg1jYlOdUFAADwFw2agfvHP/6hv//9747HGzdu1K5du5zqnDp1Si+//LIuv/zyerf72GOPKSsrS5mZmXrkkUdcOxkQoFtuuUVr167V73//e7Vt21aS9M0332jbtm168MEHHXUTExMVFBSkvLw8DR482FGel5cni8Wi0aNHO8qSkpI0ZcoU7dy501G3srJSq1at0uDBg93OLgIAAPhagwLcunXrHAfuWywWPfroo27rtWnTRitWrKhXm08++aTmzp2rxMRE3Xzzzfroo4+cnh8yZIik6hm6a665RqNGjVJGRobKy8s1d+5chYeHa8aMGY76NptNmZmZmjNnjmw2mxISElRYWKisrCylpqY6rgEnSZMmTVJubq7Gjh2rhQsXqmPHjlq6dKm++OILbd26tSFDAwAA4DUNCnB33323Ro0aJcMwNGjQIK1YscJlmdFqtTqWPOvj7bffllR9/bbNmze7PF+zVBsZGant27fr4Ycf1pgxYxQQEKDrr79eixYtUocOHZxeM3v2bLVt21a5ublatGiROnfurIyMDMdZrWf3taCgQOnp6XrggQdUVlamgQMHatOmTRo2bFi9xwUAAMCbGhTgIiIiFBERIUnatm2bYmJiFBoa2qQObN++vd51Y2Ji6j0zlpaWprS0tPPW69Spk1auXFnvPgAAAPhao89CZYYKAADAN5p0Id9Vq1Zp9erV2rt3r06dOuX0nMVi0VdffdWkzgEAAMBVowPc448/rpkzZ6pfv36Kjo52e000AAAAeF6jA9yyZct03333acmSJZ7sDwAAAM6j0RfyPXDggJKSkjzZFwAAANRDowNcTEwMx7gBAAD4QKMD3FNPPaUnn3xSn3zyiSf7AwAAgPNo9DFwKSkpKikp0aBBg9S5c2fHDedrWCwW/d///V+TOwgAAABnjQ5wYWFhCg8P92RfAAAAUA+NDnANuYMCAAAAPKfRx8ABAADANxo9A/fXv/71vHWuu+66xjYPAACAWjQ6wMXFxclisdRZp6qqqrHNAwAAoBaNDnDbtm1zKTt8+LDefPNNvf/++8rNzW1SxwAAAOBeowPcsGHD3Jbfdttt+u///m9t3rxZiYmJje4YAAAA3GuWkxiSkpL06quvNkfTAAAAF7xmCXBHjhxRRUVFczQNAABwwWv0Euo333zjUlZRUaF//OMfmjlzpoYMGdKkjgEAAMC9Rge4nj17uj0L1TAM9e3bV3/84x+b1DEAAAC41+gA98ILL7gEuKCgIPXs2VPXXHONLrqIawQDAAA0h0YHuIkTJ3qwGwAAAKivRge4GsePH9eHH36okpIShYeHa8iQIWrbtq0n+gYAAAA3mhTgFi1apOzsbJWVlckwDElSSEiIsrOzNX36dI90EAAAAM4aHeBefPFFpaen66abbtLEiRPVpUsX7d+/XytXrtTvfvc7dejQQXfccYcn+woAAAA1IcA9/fTTGj9+vFatWuVUPnbsWE2YMEFPP/00AQ4AAKAZNPpU0V27dmnChAlun5swYYL++c9/NrpTAAAAqF2jA1ybNm1UWlrq9rnS0lK1adOm0Z0CAABA7Rod4IYOHaqsrCzt37/fqfzAgQN69NFHdd111zW5cwAAAHDV6GPgcnJy9POf/1y9e/fW8OHDFRERoe+//17vvvuuAgMDtXbtWk/2EwAAAP/R6Bm4K6+8UoWFhbr11ltVWFioFStWqLCwUKNHj9bHH3+sfv36ebKfAAAA+I8mXQfuiiuu0CuvvOKpvgAAAKAeGjwDV1RUpO+++67W57/77jsVFRU1qVMAAACoXYMC3F//+lfFxMTohx9+qLXODz/8oJiYGG3ZsqXJnQMAAICrBgW43NxcjRkzRjExMbXWiYmJ0a9//Ws9//zzTe4cAAAAXDUowL3//vsaPXr0eev98pe/1EcffdTYPgEAAKAODQpwhw4dUteuXc9bLyIiQgcPHmx0pwAAAFC7BgW4kJCQWu++cLYjR44oODi40Z0CAABA7RoU4K688kpt3rz5vPU2bdqkK6+8stGdAgAAQO0aFOB+/etfa/ny5dqxY0etdbZt26YVK1bo9ttvb3LnAAAA4KpBF/K9++67lZeXp4SEBKWmpurWW29Vr169JEm7d+/W+vXrtXz5ckVHR2vy5MnN0mEAAIALXYMCXOvWrbVlyxbdcccdevbZZ/Xcc885PW8Yhm666Sa9+OKLat26tUc7CgAAgGoNvpVWWFiYNm7cqE8++UTvvPOOvv32W0lS9+7ddeONN+qqq67yeCcBAADwk0bfCzUmJqbOC/oCAACgeTToJIaoqKh6/4mOjq5Xm8ePH1d6eroSEhLUoUMHWSwWZWVludSbOHGiLBaLy5/IyEi37S5ZskSRkZGyWq3q1auXsrOzZbfbXeodPHhQEydOVHh4uIKDgxUbG6uCgoKGDAsAAIBXNWgGzmazyWKx1FnnxIkT+uSTT85br0ZJSYmWLVum6OhojR49us5bcLVp00bvvvuuS9m55s+frzlz5igjI0MJCQkqLCxUZmam9u3bp2XLljnqVVRUaPjw4Tp69KgWL16sjh07Kjc3V4mJidq6dauGDRtWr20AAADwpgYFuO3bt9f6XGVlpZYtW6ZHH31UFotF48ePr1ebPXr00JEjR2SxWHT48OE6A9xFF12kIUOG1NleSUmJ5s2bp8mTJysnJ0eSFBcXJ7vdrszMTE2bNk39+vWTJC1fvlzFxcX64IMPFBsbK0mKj49XdHS00tPTtXPnznptAwAAgDc1aAm1NmvWrFG/fv30wAMPKDo6Wp988oleeumler22ZinUUzZv3qzy8nKlpKQ4laekpMgwDK1fv95Rtm7dOvXt29cR3iQpICBAEyZM0Mcff6x9+/Z5rF8AAACe0uiTGKTqGbmHH35YhYWFuvrqq/XOO+9o+PDhnuqbi1OnTqlz5846dOiQIiIiNHr0aD366KOy2WyOOsXFxZKkAQMGOL02IiJC4eHhjudr6g4dOtTl50RFRUmSPvvss1rv/VpRUaGKigrH42PHjkmS7Ha722PtmqqmzeZoG64Yb+9jzL2L8fY+xtz7zDbmDelnowJcUVGRHn74YW3ZskW9evXS6tWrNW7cuMY0VW/R0dGKjo5W//79JUk7duzQ008/rYKCAhUWFio0NFRS9RKq1WpVSEiISxs2m00lJSWOxyUlJU7h7+x6Nc/XZsGCBcrOznYpf+edd5r1PrD5+fnN1jZcMd7ex5h7F+PtfYy595llzMvKyupdt0EB7ttvv1VmZqZWr14tm82mZ555Rv/93/+twMDABneyoR588EGnxyNGjNBVV12lMWPG6E9/+pPT83UtyZ77XEPqnm3mzJmaPn264/GxY8fUrVs3JSQkqF27drW+rrHsdrvy8/M1YsQIr4z3hY7x9j7G3LsYb+9jzL3PbGNes5pXHw0KcFdccYVOnz6txMREpaenq23btioqKqq1/tVXX92Q5hssKSlJISEh+uijjxxlYWFhKi8vV1lZmctMWGlpqdO168LCwtzOspWWlkqS29m5GlarVVar1aU8MDCwWXeS5m4fzhhv72PMvYvx9j7G3PvMMuYN6WODAlzNMV+bNm3S5s2ba61nGIYsFouqqqoa0nyjGIahiy766VyMmmPfioqKNHjwYEf5gQMHdPjwYccSbE1ddwG0puzsugAAAP6iQQFuxYoVzdWPRnnjjTdUVlbmdGmRxMREBQUFKS8vzynA5eXlyWKxaPTo0Y6ypKQkTZkyRTt37nTUrays1KpVqzR48GB16dLFa9sCAABQXw0KcHfddVezdGLTpk06efKkjh8/Lkn6/PPP9cYbb0iSRo4cqUOHDmn8+PEaN26cevfuLYvFoh07duiZZ57RlVdeqdTUVEdbNptNmZmZmjNnjmw2m+NCvllZWUpNTXVcA06SJk2apNzcXI0dO1YLFy5Ux44dtXTpUn3xxRfaunVrs2wrAABAUzXpMiKecu+992rv3r2Ox2vWrNGaNWskSbt379bFF1+sTp066amnntIPP/ygqqoq9ejRQ2lpaZo1a5bLGaezZ89W27ZtlZubq0WLFqlz587KyMjQ7NmznepZrVYVFBQoPT1dDzzwgMrKyjRw4EBt2rSJuzAAAAC/5RcBbs+ePeets3bt2ga1mZaWprS0tPPW69Spk1auXNmgtgEAAHzJI3diAAAAgPcQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyPg9wx48fV3p6uhISEtShQwdZLBZlZWW5rfvpp5/qhhtuUGhoqNq3b6/k5GR9/fXXbusuWbJEkZGRslqt6tWrl7Kzs2W3213qHTx4UBMnTlR4eLiCg4MVGxurgoICT24iAACAR/k8wJWUlGjZsmWqqKjQ6NGja623a9cuxcXF6fTp03r99df1wgsv6F//+peGDh2qQ4cOOdWdP3++pk6dquTkZG3ZskVTpkxRTk6O7rvvPqd6FRUVGj58uAoKCrR48WK9+eab6tSpkxITE7Vjx47m2FwAAIAmC/B1B3r06KEjR47IYrHo8OHDev75593Wmzt3rqxWqzZs2KB27dpJkmJiYtSnTx8tWrRIjz/+uKTqQDhv3jxNnjxZOTk5kqS4uDjZ7XZlZmZq2rRp6tevnyRp+fLlKi4u1gcffKDY2FhJUnx8vKKjo5Wenq6dO3c29+YDAAA0mM9n4CwWiywWS511KisrtWHDBt12222O8CZVh7/4+HitW7fOUbZ582aVl5crJSXFqY2UlBQZhqH169c7ytatW6e+ffs6wpskBQQEaMKECfr444+1b9++Jm4dAACA5/l8Bq4+vvrqK506dUpRUVEuz0VFRSk/P1/l5eUKCgpScXGxJGnAgAFO9SIiIhQeHu54XpKKi4s1dOhQt21K0meffaauXbu67VNFRYUqKiocj48dOyZJstvtbo+1a6qaNpujbbhivL2PMfcuxtv7GHPvM9uYN6SfpghwJSUlkiSbzebynM1mk2EYOnLkiCIiIlRSUiKr1aqQkBC3dWvaqmm3tjbP/rnuLFiwQNnZ2S7l77zzjoKDg8+/UY2Un5/fbG3DFePtfYy5dzHe3seYe59ZxrysrKzedU0R4GrUtdR69nP1rdfQumebOXOmpk+f7nh87NgxdevWTQkJCU7LvJ5it9uVn5+vESNGKDAw0OPtwxnj7X2MuXcx3t7HmHuf2ca8ZjWvPkwR4MLCwiS5nxErLS2VxWJR+/btHXXLy8tVVlbmMhNWWlqqmJgYp3Zra1NyP+NXw2q1ymq1upQHBgY2607S3O3DGePtfYy5dzHe3seYe59ZxrwhffT5SQz1cfnll6tNmzYqKipyea6oqEi9e/dWUFCQpJ+OfTu37oEDB3T48GH179/fUTZgwIBa25TkVBcAAMBfmCLABQQE6JZbbtHatWt1/PhxR/k333yjbdu2KTk52VGWmJiooKAg5eXlObWRl5cni8XidK25pKQk7dq1y+lyIZWVlVq1apUGDx6sLl26NNs2AQAANJZfLKFu2rRJJ0+edISzzz//XG+88YYkaeTIkQoODlZ2drauueYajRo1ShkZGSovL9fcuXMVHh6uGTNmONqy2WzKzMzUnDlzZLPZlJCQoMLCQmVlZSk1NdVxDThJmjRpknJzczV27FgtXLhQHTt21NKlS/XFF19o69at3h0EAACAevKLAHfvvfdq7969jsdr1qzRmjVrJEm7d+9Wz549FRkZqe3bt+vhhx/WmDFjFBAQoOuvv16LFi1Shw4dnNqbPXu22rZtq9zcXC1atEidO3dWRkaGZs+e7VTParWqoKBA6enpeuCBB1RWVqaBAwdq06ZNGjZsWPNvOAAAQCP4RYDbs2dPverFxMTUe2YsLS1NaWlp563XqVMnrVy5sl5tAgAA+ANTHAMHAACAnxDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDKmCXDbt2+XxWJx++ejjz5yqvvpp5/qhhtuUGhoqNq3b6/k5GR9/fXXbttdsmSJIiMjZbVa1atXL2VnZ8tut3tjkwAAABolwNcdaKicnBzFx8c7lfXv39/x7127dikuLk4DBw7U66+/rvLycs2dO1dDhw7V3//+d3Xo0MFRd/78+ZozZ44yMjKUkJCgwsJCZWZmat++fVq2bJnXtgkAAKAhTBfg+vTpoyFDhtT6/Ny5c2W1WrVhwwa1a9dOkhQTE6M+ffpo0aJFevzxxyVJJSUlmjdvniZPnqycnBxJUlxcnOx2uzIzMzVt2jT169ev+TcIAACggUyzhFoflZWV2rBhg2677TZHeJOkHj16KD4+XuvWrXOUbd68WeXl5UpJSXFqIyUlRYZhaP369d7qNgAAQIOYbgbuvvvu07hx4xQcHKzY2FjNmTNH1157rSTpq6++0qlTpxQVFeXyuqioKOXn56u8vFxBQUEqLi6WJA0YMMCpXkREhMLDwx3P16aiokIVFRWOx8eOHZMk2e32ZjmGrqZNjs/zDsbb+xhz72K8vY8x9z6zjXlD+mmaAHfxxRdr6tSpiouLU1hYmP7973/riSeeUFxcnP7yl7/oxhtvVElJiSTJZrO5vN5ms8kwDB05ckQREREqKSmR1WpVSEiI27o1bdVmwYIFys7Odil/5513FBwc3MitPL/8/PxmaxuuGG/vY8y9i/H2Psbc+8wy5mVlZfWua5oAd9VVV+mqq65yPB46dKiSkpI0YMAApaen68Ybb3Q8Z7FYam3n7OfqW8+dmTNnavr06Y7Hx44dU7du3ZSQkOC0fOspdrtd+fn5GjFihAIDAz3ePpwx3t7HmHsX4+19jLn3mW3Ma1bz6sM0Ac6d9u3ba9SoUXruued06tQphYWFSZLb2bPS0lJZLBa1b99ekhQWFqby8nKVlZW5zJiVlpYqJiamzp9ttVpltVpdygMDA5t1J2nu9uGM8fY+xty7GG/vY8y9zyxj3pA+mv4kBsMwJFXPmF1++eVq06aNioqKXOoVFRWpd+/eCgoKkvTTsW/n1j1w4IAOHz7sdGkSAAAAf2LqAHfkyBFt2LBBAwcOVFBQkAICAnTLLbdo7dq1On78uKPeN998o23btik5OdlRlpiYqKCgIOXl5Tm1mZeXJ4vFotGjR3tpKwAAABrGNEuo48ePV/fu3fWzn/1M4eHh+vLLL/Xkk0/qhx9+cAph2dnZuuaaazRq1ChlZGQ4LuQbHh6uGTNmOOrZbDZlZmZqzpw5stlsjgv5ZmVlKTU1lWvAAQAAv2WaABcVFaXXXntNzz33nE6cOCGbzaZrr71WL730kq655hpHvcjISG3fvl0PP/ywxowZo4CAAF1//fVatGiR010YJGn27Nlq27atcnNztWjRInXu3FkZGRmaPXu2tzcPAACg3kwT4DIyMpSRkVGvujExMdq6dWu96qalpSktLa0pXQMAAPAqUx8DBwAAcCEiwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHCSTpw4oWnTpqlLly4KCgrSwIED9eqrr/q6WwAAAG4F+LoD/iA5OVmFhYVauHChrrjiCq1evVq33367zpw5o/Hjx/u6ewAAAE4u+AC3ceNG5efnO0KbJMXHx2vv3r363e9+p1//+tdq1aqVj3sJAADwkwt+CXXdunUKDQ3V2LFjncpTUlK0f/9+7dy500c9AwAAcO+Cn4ErLi7Wf/3XfykgwHkooqKiHM///Oc/d3ldRUWFKioqHI9//PFHSVJpaansdrvH+2m321VWVqaSkhIFBgZ6vH04Y7y9jzH3Lsbb+xhz7zPbmB8/flySZBjGeete8AGupKREl112mUu5zWZzPO/OggULlJ2d7VLeq1cvz3YQAABcUI4fP66LL764zjoXfICTJIvF0uDnZs6cqenTpzsenzlzRqWlpQoLC6uzvcY6duyYunXrpm+//Vbt2rXzePtwxnh7H2PuXYy39zHm3me2MTcMQ8ePH1eXLl3OW/eCD3BhYWFuZ9lKS0sl/TQTdy6r1Sqr1epU1r59e4/371zt2rUzxU7YUjDe3seYexfj7X2MufeZaczPN/NW44I/iWHAgAH65z//qcrKSqfyoqIiSVL//v190S0AAIBaXfABLikpSSdOnNCf//xnp/KVK1eqS5cuGjx4sI96BgAA4N4Fv4R60003acSIEbr33nt17Ngx9e7dW6+88oo2b96sVatW+c014KxWqx555BGXZVs0D8bb+xhz72K8vY8x976WPOYWoz7nqrZwJ06c0OzZs/X666+rtLRUkZGRmjlzpsaNG+frrgEAALggwAEAAJjMBX8MHAAAgNkQ4AAAAEyGANcMTpw4oWnTpqlLly4KCgrSwIED9eqrr9brtQcPHtTEiRMVHh6u4OBgxcbGqqCgwKVeXFycLBaLy5/ExESXuna7XdnZ2erZs6esVqsiIyO1ZMmSJm+nP/GnMd+zZ4/behaLpd598nfeGG9JOnnypObOnasrrrhCVqtVYWFhio+P15dffulUj328bp4ec/bxutVnvOsaQ3efK+zjdfP0mJthH7/gz0JtDsnJySosLNTChQt1xRVXaPXq1br99tt15swZjR8/vtbXVVRUaPjw4Tp69KgWL16sjh07Kjc3V4mJidq6dauGDRvmVP+yyy7Tyy+/7FTm7mLCU6ZM0UsvvaTHHntM11xzjbZs2aKpU6fq+PHjmjVrlke22df8bcwl6YEHHnD52X369GncBvoZb4z3iRMnFB8fr/379ysjI0NRUVH68ccf9cEHH6isrMypXfZx74+5xD7uTn3HOyIiQh9++KHL69evX6/HH39cSUlJTuXs494fc8nP93EDHvWXv/zFkGSsXr3aqXzEiBFGly5djMrKylpfm5uba0gyPvjgA0eZ3W43+vXrZwwaNMip7rBhw4wrr7zyvP0pLi42LBaLkZOT41Q+efJko02bNkZJSUl9Nsuv+duY796925BkPPHEEw3cEnPw1nhPnTrVCAkJMb766qs6+8M+7v0xZx/3zHi7ExcXZwQHBxs//vijo4x93PtjboZ9nADnYampqUZoaKhht9udylevXm1IMt5///1aX3vDDTcYffv2dSnPyckxJBnfffedo6y+YWLevHmGJOP77793Kv/ggw8MScbLL7983jb8nb+NuRl+8ZvCG+N98uRJIyQkxJg4ceJ5+8M+7v0xZx/3zGfKuf79738bFovF5T1gH/f+mJthH+cYOA8rLi7Wf/3XfykgwHl1OioqyvF8Xa+tqefutZ999plT+VdffSWbzaaAgABdfvnlmj17tk6dOuXSZocOHdS5c+cG98cs/G3MayxcuFCtW7dWcHCwrr32Wr311lsN2i5/5Y3x/uSTT3Ty5En16dNH9957ry655BK1bt1aP/vZz/SXv/zFpU32ce+OeQ32cfevbchnytleeOEFGYah1NRUlzbZx7075jX8eR8nwHlYSUmJbDabS3lNWUlJiUdee+211+qpp57Sn//8Z7311lsaOXKkfv/73ysxMVFnzpw5b5shISFq3bp1nf0xC38bc6vVqsmTJ+vZZ5/Vu+++q+eff15VVVW69dZb9fzzzzd6O/2FN8Z73759kqTHH39cRUVFevHFF7Vu3Tq1a9dOt9xyi7Zs2XLeNtnHG/bahow5+7hnPlPOVlVVpZUrVyoyMlK/+MUv6tUm+3jTXlvXmJthH+ckhmZgsVga9VxDXjtv3jyn50aOHKmePXvqoYce0ptvvul0MGZT+mMW/jTmERERWrZsmVPdsWPHavDgwcrIyNDEiRNdvmWaTXOPd00gbt26tTZt2qS2bdtKkuLj49WnTx899thjuvHGGz3SH7PwpzFnH/fMZ8rZNm/erH379umJJ57weH/Mwp/G3Az7ODNwHhYWFuY27ZeWlkqS228JnnitJE2YMEGS9NFHH523zZMnT+r06dPnbdMM/G3M3QkMDNSvf/1rlZSUuFwCw2y8Md5hYWGSpJ///OeOICFJwcHBGjZsmD799NPztsk+3rDXNmTM3WEfb9prly9frsDAQN155531bpN9vGmvrWvM3fG3fZwA52EDBgzQP//5T1VWVjqVFxUVSZL69+9f52tr6jX0tWe76KKf3tYBAwbo0KFDOnDgQJPa9Gf+Nua1Mf5z17r61PVn3hhvd8ez1DAMg338P3w15nXVk9jHG/qZcvDgQW3YsEG//OUv1bFjR7dtso97d8xr41f7uA9PoGiRNm7caEgyXn31VafyxMTE854KvXTpUkOS8dFHHznK7Ha7ceWVVxqDBw8+789+/PHHDUnG+vXrHWU1p58vXLjQqe4999zTYk4/97cxd+f06dPGwIEDjfDw8Dr7YwbeGu/Y2FgjLCzM6dT+kydPGhEREcbw4cMdZezj3h9zd9jHqzXmM+WJJ54wJBkbN250+zz7uPfH3B1/28cJcM1gxIgRxiWXXGIsW7bMePfdd43JkycbkoxVq1Y56kyaNMlo1aqVsWfPHkdZeXm5ceWVVxrdunUzXn75ZSM/P99ISkoyAgICjO3btzvq/fWvfzVuvPFG47nnnjPeeecd46233jLuvfdeo1WrVsb1119vVFVVOfUnNTXVsFqtxhNPPGFs377dmDVrlmGxWIz58+c3/2B4iT+N+YMPPmjcf//9xiuvvGJs27bNePHFF41rrrnGkGSsWLHCK+PR3Jp7vA3DMN5//32jdevWxpAhQ4x169YZ69evN4YOHWoEBgY6Xe/JMNjHa3hrzNnHqzV1vGtERkYa3bp1c/nsPhv7eDVvjbkZ9nECXDM4fvy4kZaWZnTu3Nlo3bq1ERUVZbzyyitOde666y5DkrF7926n8gMHDhh33nmnYbPZjKCgIGPIkCFGfn6+U50vv/zSGDlypNG1a1fDarUaQUFBxoABA4z58+cb5eXlLv05ffq08cgjjxjdu3c3WrdubVxxxRXGH/7wB49vty/505gvX77cGDRokGGz2YyAgADjkksuMW688UZjy5YtzbLtvtDc413jvffeM4YNG2YEBwcbwcHBxvXXX+/2elDs49W8Nebs49U8Md7vv/++IcmYO3dunf1hH6/mrTE3wz5uMYz/LOgCAADAFPzgKDwAAAA0BAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcAB8At79uyRxWJRXl6ex9suKCjQz372M4WEhMhisWj9+vXKy8uTxWLRnj17PP7zztazZ09NnDixWX+GGXz++efKyspq9vEGLhQBvu4AADQnwzD0q1/9SldccYXeeusthYSEqG/fvqqsrNSHH36oiIgIX3fxgvD5558rOztbcXFx6tmzp6+7A5geAQ5Ai7Z//36VlpYqKSlJw4cPd3quQ4cOPuqVb9ntdlksFgUEuP4XUFZWpuDgYB/0CkBDsIQKoFn9+9//VkpKivr06aPg4GB17dpVt9xyi4qKis772kOHDunuu+9Wt27dZLVa1aFDB/3iF7/Q1q1b6/Wzs7KydOmll0qSHn74YVksFsfsj7sl1Li4OPXv31+FhYUaOnSogoODddlll2nhwoU6c+aMo155eblmzJihgQMH6uKLL5bNZlNsbKzefPPN+g/MeaxevVqxsbEKDQ1VaGioBg4cqOXLlzuer21pNi4uTnFxcY7H27dvl8Vi0UsvvaQZM2aoa9euslqt+ve//62JEycqNDRURUVFSkhIUNu2bR0h9/Tp05o3b54iIyMdY5+SkqJDhw45/byePXtq1KhR2rx5s66++mq1adNGkZGReuGFFxx18vLyNHbsWElSfHy8LBZLsy2XAxcKZuAANKv9+/crLCxMCxcuVIcOHVRaWqqVK1dq8ODB+n//7/+pb9++tb72jjvu0Keffqr58+friiuu0NGjR/Xpp5+qpKSkXj87NTVV0dHRSk5O1gMPPKDx48fLarXW+ZoDBw7oN7/5jWbMmKFHHnlE69at08yZM9WlSxfdeeedkqSKigqVlpbqoYceUteuXXX69Glt3bpVycnJWrFihaNeY82dO1ePPfaYkpOTNWPGDF188cUqLi7W3r17G93mzJkzFRsbq+eee04XXXSROnbsKKk6qP3yl7/UPffco4yMDFVWVurMmTO69dZb9d577yk9PV0///nPtXfvXj3yyCOKi4vT//7v/6pNmzaOtv/v//5PM2bMUEZGhjp16qTnn39ev/3tb9W7d29dd911uvnmm5WTk6NZs2YpNzdXV199tSTp8ssvb9I4ARc0AwC8qLKy0jh9+rTRp08f48EHH3SU796925BkrFixwlEWGhpqTJs2rUk/r6bdJ554wql8xYoVhiRj9+7djrJhw4YZkoydO3c61e3Xr59x44031rlNdrvd+O1vf2tcddVVTs/16NHDuOuuu+rd36+//tpo1aqV8Zvf/KbOerW1O2zYMGPYsGGOx9u2bTMkGdddd51L3bvuusuQZLzwwgtO5a+88oohyfjzn//sVF5YWGhIMpYuXerUj6CgIGPv3r2OslOnThk2m8245557HGVr1qwxJBnbtm2rc7sA1A9LqACaVWVlpXJyctSvXz+1bt1aAQEBat26tb788kv985//rPO1gwYNUl5enubNm6ePPvpIdru92fvbuXNnDRo0yKksKirKZfZrzZo1+sUvfqHQ0FAFBAQoMDBQy5cvP+82nU9+fr6qqqp03333Namdc9122231fm7Dhg1q3769brnlFlVWVjr+DBw4UJ07d9b27dud6g8cOFDdu3d3PA4KCtIVV1zRpBlDAHUjwAFoVtOnT9ecOXM0evRovf3229q5c6cKCwsVHR2tU6dO1fna1157TXfddZeef/55xcbGymaz6c4779SBAwearb9hYWEuZVar1amva9eu1a9+9St17dpVq1at0ocffqjCwkJNmjRJ5eXlTfr5NceY1Ry75ym1nW0bHBysdu3aOZX98MMPOnr0qFq3bq3AwECnPwcOHNDhw4ed6tdnzAB4FsfAAWhWq1at0p133qmcnByn8sOHD6t9+/Z1vjY8PFzPPPOMnnnmGX3zzTd66623lJGRoYMHD2rz5s3N2Ou6rVq1Sr169dJrr70mi8XiKK+oqGhy2zVnxn733Xfq1q1brfWCgoLc/rzDhw8rPDzcpfzsfp6vPDw8XGFhYbWOcdu2bWvtFwDvIMABaFYWi8XlxIG//OUv2rdvn3r37l3vdrp37677779fBQUFev/99z3dzQaxWCxq3bq1U/g5cOCAR85CTUhIUKtWrfTss88qNja21no9e/bUP/7xD6eyf/3rX/riiy/cBriGGDVqlF599VVVVVVp8ODBTWqrRs0+wKwc4BkEOADNatSoUcrLy1NkZKSioqL0ySef6IknnjjvEuGPP/6o+Ph4jR8/XpGRkWrbtq0KCwu1efNmJScne6n37o0aNUpr167VlClTNGbMGH377bd67LHHFBERoS+//LJJbffs2VOzZs3SY489plOnTun222/XxRdfrM8//1yHDx9Wdna2pOozdCdMmKApU6botttu0969e/X73//eI9e2GzdunF5++WWNHDlSU6dO1aBBgxQYGKjvvvtO27Zt06233qqkpKQGtdm/f39J0rJly9S2bVsFBQWpV69ebpdfAZwfAQ5As1q8eLECAwO1YMECnThxQldffbXWrl2rzMzMOl8XFBSkwYMH66WXXtKePXtkt9vVvXt3Pfzww0pPT/dS791LSUnRwYMH9dxzz+mFF17QZZddpoyMDH333XeOgNUUjz76qPr06aMlS5boN7/5jQICAtSnTx+lpaU56owfP1779+/Xc889pxUrVqh///569tlnPfLzW7VqpbfeekuLFy/WSy+9pAULFiggIECXXnqphg0bpgEDBjS4zV69eumZZ57R4sWLFRcXp6qqKq1YsYLbjAGNZDEMw/B1JwAAAFB/nIUKAABgMiyhAjAlwzBUVVVVZ51WrVrVevalL1RVVamuRQ+LxaJWrVp5sUcAzIoZOACmtHLlSpdrlJ37Z8eOHb7uppPLL7+8zv7W3IcUAM6HY+AAmFJJSYl2795dZ52+ffv61TXLioqK6rxWXNu2beu8NywA1CDAAQAAmAxLqAAAACZDgAMAADAZAhwAAIDJEOAAAABMhgAHAABgMgQ4AAAAkyHAAQAAmMz/B74jPtUVubzDAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0019\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABgIUlEQVR4nO3deXgUVdo28LvN0k0SEDthycaiLHnZgkaBqEgCghkGBhJREREIg46CAsIYggQkyKpRYZggw4iAAoJoAGXYQgjop4h55XUmUXEFZDFAEiCQtRPO90emm3R6rd6Lun/X1Rd09enT56muVD91TtUplRBCgIiIiIhk4RZvN4CIiIiI7MfkjYiIiEhGmLwRERERyQiTNyIiIiIZYfJGREREJCNM3oiIiIhkhMkbERERkYwweSMiIiKSESZvRERERDLi9eTtm2++wR//+Ee0a9cOzZo1g1arRXx8PDZu3GhUbsKECVCpVCaPmJgYs/WuXLkSMTExUKvV6NixIzIzM6HT6UzKXbhwARMmTEBYWBiCgoIQHx+PvLw8t8RKRERE5Cx/bzfg8uXLiI6OxuOPP47IyEhUVFRg06ZNePLJJ3Hy5ElkZGQYyjZr1gwHDx40en+zZs1M6ly0aBHmzp2L9PR0DBkyBAUFBcjIyMDZs2exZs0aQ7mamhoMGjQIly9fxooVK9C6dWtkZ2cjKSkJBw4cwIABA9wXOBEREZEDVL56b9N+/frh3Llz+O233wA09Lx9+OGHuHbtmtX3lZaWIioqCuPGjcM//vEPw/LFixcjIyMDRUVF6NatGwBg1apVmDJlCr744gvEx8cDAOrq6hAbG4uQkBAcPXrUTdEREREROcbrw6aWhIWFwd9fesfg3r17UV1djdTUVKPlqampEEJgx44dhmXbt29H165dDYkbAPj7+2Ps2LH46quvcPbsWYfbT0REROQOXh821bt+/TquX7+OS5cuYdu2bdi3bx/+/ve/G5WpqqpC27ZtcfHiRYSHh2PkyJFYsGABtFqtoUxRUREAoGfPnkbvDQ8PR1hYmOF1fdn+/fubtKVXr14AgG+//RaRkZFm21tTU4Oamhqj9peVlSE0NBQqlUpi9ERERKR0QghcvXoVERERuOUWy/1rPpO8TZ482TDMGRgYiL/97W/4y1/+Yng9NjYWsbGx6NGjBwDg8OHDePPNN5GXl4eCggKEhIQAaBg2VavVCA4ONvkMrVaL0tJSw/PS0lKjxK9xOf3rlixZsgSZmZkOREpERERk2enTpxEVFWXxdZ9J3l566SVMmjQJFy5cwCeffILnnnsOFRUV+Otf/woAeOGFF4zKDx48GHfeeSdGjRqFf/7zn0avW+v5avqalLKNzZ49GzNmzDA8v3LlCtq1a4cTJ06gefPmFt/nKJ1Oh/z8fCQmJiIgIMDl9fsyJccOKDt+JccOKDt+JccOKDt+Jcd+9epVdOzY0WYe4TPJW7t27dCuXTsAwNChQwE0JEjjx49Hq1atzL4nOTkZwcHB+PLLLw3LQkNDUV1djcrKSgQFBRmVLysrQ1xcnFFZc71rZWVlAGC2V05PrVZDrVabLNdqtWjRooXF9zlKp9MhKCgIoaGhituYlRw7oOz4lRw7oOz4lRw7oOz4lRy7Pl5bp1/57AULffr0QV1dHX799Ver5YQQRuPC+nPdCgsLjcoVFxejpKTEMOyqL9u0XOP3Ni5LRERE5At8NnnLz8/HLbfcgttvv91imQ8//BCVlZXo16+fYVlSUhI0Gg3Wr19vVHb9+vVQqVQYOXKkYVlycjKOHz9uNCVIXV0dNm7ciL59+yIiIsJl8RARERG5gteHTZ9++mm0aNECffr0QZs2bVBSUoJt27Zh69atePHFF9GqVSucOnUKY8aMwejRo9GpUyeoVCocPnwYy5cvR/fu3TFp0iRDfVqtFhkZGZg7dy60Wq1hkt758+dj0qRJhjneAGDixInIzs7GI488gqVLl6J169ZYtWoVfvjhBxw4cMAbq4OIiIjIKq8nb/Hx8Vi3bh02bNiAy5cvIyQkBLGxsXjvvfcwduxYAECLFi3Qpk0bvPHGGzh//jzq6+vRvn17TJ06FS+99JLJlaVz5sxB8+bNkZ2djaysLLRt2xbp6emYM2eOUTm1Wo28vDykpaXh+eefR2VlJXr37o09e/bw7gpERETkk7yevKWmpppMqNvUbbfdhpycHEn1Tp06FVOnTrVZrk2bNtiwYYOkuomIiIi8xWfPeSMiIiIiU0zeiIiIiGSEyRsRERGRjDB5IyIiIpIRJm9EREREMsLkjYiIiEhGmLwRERERyQiTNyIiIiIZYfJGREREJCNM3oiIiIhkhMkbERERkYwweSMiIiKSESZvRERERDLC5I2IiIhIRpi8EREREckIkzciIiIiGWHyRkRERCQjTN6IiIiIZITJGxEREZGMMHkjIiIikhEmb0REREQywuSNiIiISEaYvBERERHJCJM3IiIiIhlh8kZEREQkI0zeiIiIiGSEyRsRERGRjDB5IyIiIpIRJm9EREREMsLkjYiIiEhGmLwRERERyQiTNyIiIiIZYfJGREREJCNM3oiIiIhkhMkbERERkYwweSMiIiKSESZvRERERDLC5I2IiIhIRpi8EREREckIkzciIiIiGWHyRkRERCQjTN6IiIiIZITJGxEREZGMeD15++abb/DHP/4R7dq1Q7NmzaDVahEfH4+NGzealD127BgefPBBhISEoGXLlkhJScGvv/5qtt6VK1ciJiYGarUaHTt2RGZmJnQ6nUm5CxcuYMKECQgLC0NQUBDi4+ORl5fn8jiJiIiIXMHrydvly5cRHR2NxYsXY/fu3Xj33XfRoUMHPPnkk1i4cKGh3PHjx5GQkIDa2lp88MEHeOedd/Djjz+if//+uHjxolGdixYtwrRp05CSkoJ9+/Zh8uTJWLx4MaZMmWJUrqamBoMGDUJeXh5WrFiBnTt3ok2bNkhKSsLhw4c9Ej8RERGRFP7ebkBCQgISEhKMlg0bNgwnTpzAmjVrkJGRAQCYN28e1Go1du3ahRYtWgAA4uLi0LlzZ2RlZWHZsmUAgNLSUixcuBBPPfUUFi9ebPgMnU6HjIwMTJ8+Hd26dQMArF27FkVFRfjiiy8QHx8PAEhMTERsbCzS0tJw9OhRT6wCIiIiIrt5vefNkrCwMPj7N+SWdXV12LVrFx5++GFD4gYA7du3R2JiIrZv325YtnfvXlRXVyM1NdWovtTUVAghsGPHDsOy7du3o2vXrobEDQD8/f0xduxYfPXVVzh79qyboiMiIiJyjNd73vSuX7+O69ev49KlS9i2bRv27duHv//97wCAX375BVVVVejVq5fJ+3r16oXc3FxUV1dDo9GgqKgIANCzZ0+jcuHh4QgLCzO8DgBFRUXo37+/2ToB4Ntvv0VkZKTZ9tbU1KCmpsbwvLy8HACg0+nMnlvnLH2d7qjb1yk5dkDZ8Ss5dkDZ8Ss5dkDZ8TN223wmeZs8eTL+8Y9/AAACAwPxt7/9DX/5y18ANAyFAoBWqzV5n1arhRACly5dQnh4OEpLS6FWqxEcHGy2rL4ufb2W6mz8ueYsWbIEmZmZJsv379+PoKAga6E6JTc31211+zolxw4oO34lxw4oO34lxw4oO34lxl5ZWWlXOZ9J3l566SVMmjQJFy5cwCeffILnnnsOFRUV+Otf/2ooo1KpLL6/8Wv2lpNatrHZs2djxowZhufl5eWIjo7GkCFDjIZ2XUWn0yE3NxeDBw9GQECAy+v3ZUqOHVB2/EqOHVB2/EqOHVB2/EqOXT+KZ4vPJG/t2rVDu3btAABDhw4F0JAgjR8/HqGhoQDM94SVlZVBpVKhZcuWAIDQ0FBUV1ejsrLSpAesrKwMcXFxhuehoaEW6wTM9/TpqdVqqNVqk+UBAQFu3djcXb8vU3LsgLLjV3LsgLLjV3LsgLLjV2Ls9sbrsxcs9OnTB3V1dfj1119xxx13oFmzZigsLDQpV1hYiE6dOkGj0QC4ca5b07LFxcUoKSlBjx49DMt69uxpsU4ARmWJiIiIfIHPJm/5+fm45ZZbcPvtt8Pf3x/Dhw9HTk4Orl69aijz22+/IT8/HykpKYZlSUlJ0Gg0WL9+vVF969evh0qlwsiRIw3LkpOTcfz4caMpQerq6rBx40b07dsXERERbouPiIiIyBFeHzZ9+umn0aJFC/Tp0wdt2rRBSUkJtm3bhq1bt+LFF19Eq1atAACZmZm45557MGzYMKSnp6O6uhrz5s1DWFgYZs6caahPq9UiIyMDc+fOhVarxZAhQ1BQUID58+dj0qRJhjneAGDixInIzs7GI488gqVLl6J169ZYtWoVfvjhBxw4cMDj64KIiIjIFq8nb/Hx8Vi3bh02bNiAy5cvIyQkBLGxsXjvvfcwduxYQ7mYmBgcOnQIs2bNwqhRo+Dv74+BAwciKyvLkODpzZkzB82bN0d2djaysrLQtm1bpKenY86cOUbl1Go18vLykJaWhueffx6VlZXo3bs39uzZgwEDBngkfiIiIiIpvJ68paammkyoa0lcXJzdPWJTp07F1KlTbZZr06YNNmzYYFedRERERN7ms+e8EREREZEpJm9EREREMsLkjYiIiEhGmLwRERERyQiTNyIiIiIZYfJGREREJCNM3oiIiIhkhMkbERERkYwweSMiIiKSESZvRERERDLC5I2IiIhIRpi8EREREckIkzciIiIiGWHyRkRERCQjTN6IyGdUVAAqVcOjosLbrSEi8k1M3oiIiIhkhMkbERERkYwweSMiIiKSESZvRERERDLC5I2IiIhIRpi8EREREckIkzciIiIiGWHyRkRERCQjTN7IJ3ByVnIVbktEdLPz93YDiIiInFFfD3z2GfD770B4ONC/P+Dn5+1WEbkPkzciIpKtnBxg2jTgzJkby6KigBUrgJQU77WLyJ04bEqyc7MNi91s8RB5Sk4OMGqUceIGAGfPNizPyfFOu4jcjckbEZGd6uuBQ4eA999v+Le+3tstUq76+oYeNyFMX9Mvmz6d3xHdnJi8ETmBvWa23SzrKCcH6NABSEwExoxp+LdDB/bueMtnn5n2uDUmBHD6dEM5opsNkzciIhs4POd7fv/dteWI5ITJGxG5VeNhq08/ld8wFofnfFN4uGvLEckJkzciJ/h6YuLtc7RycoBu3W48HzpUfkONHJ6TzhND5f37N1xVqlKZf12lAqKjG8oRSSGHUz2YvBE5yNcTk5wcoH17752jpR9qPHvWeLnchho5POeb/PwapgMBTBM4/fPlyznfG92cmLwROcDXExNvt+9mGmrk8JzvaNojkpICfPghEBlpXC4qqmE553mjmxWTt5uMt4fJlMDXExNfaN/NNNTI4TnflpICnDwJ5OcDmzc3/HviBBM3urkxebuJKGUqA2+fZ+briYkvtO9mGmrk8Jzv8/MDEhKAxx9v+JffBd3smLzJQEUFEBgYgJEjR1g8edITUxn4wkmc1s4z81T7fD0x8YX2OTrU6O3E3BIOz1nmC/sFIqVh8nYT8IVhMk/Yvl1l9TyunTs90w5fPAeq8XD5+fP2vced7XNkqNFcYt6pkz+OHPGNk8k4PEdEvoI3pr8JSBkmS0jwWLNcqr4emDHDz2KCqlIBs2Z5pi36xOTsWfMJs0rV8LqnzoHKyQGmTjVOav38LCfrltpXUQGEhDT8/9o1IDjY/Pvr6xu2pd9/b0gA+/c3HabSDzWOGtXweY3Xk7mhRn3PcdP1ee4csGzZPbjrrno8+qjFVeAx+uG5m5k93y8ReRd73mSg8Y/w//t/KpMfZVcPk/niMMh334Xi7FkL3Tho+NFvnMC6c8jNl86BsnRVqbXEDWhI5v39pX+/UqYf0Q81RkQYL2861Gi957ihwTNn+sm+51gOvD29DN3oRd+yRYXCwlBu92QWkzcf13Qoafhwf5OdqaeG8bx5PtKlSxpJ5e2Zc82ZK3PtTUzcyVrSo9c0gYyKAjZudOzzHJl+JCUF+O67G8937zYdarTVcwyocOaMyukLLMrLbxyU7Nlj/fv2xQMYd3Pl9DK+eu6ir2t80dm4cf6YO/d+dOrkz+SZTDB582H27kztOb8oKqphh+Doj5G1CwUsJUGunLbkttuqJb/H2o+OK3oY7ElM3Ml20tOwzt980/gcrREjpH+WM+dVNk4gH3jANKH0xAUWvj6hsre58rxZR9a1vfuKmzkptHTR2blzvjF3JPkYQS5x5coVAUBcuXLFJfXV1QkRFSVEw67T9KFSCREd3VBOCCE++qhhmUplWk6lEmLTphvLrl2z/tnXrhmX1ddtrg2AEKGhxsujooR48UXT9kdFNdRlz2c2Xg+5uToxfXqBCAu7brYd1h5N11PjdWWurEpluY1S2i2FrTpqa2vFjh07RG1trdHyzZvtWwebN9v3edbakZ9v32fl50uPz5m6zZGy/Vr6vl3xvbqCpe/e1Vz1/W7aJH1df/SR+X3F1q06o9g/+kiIyEj79ylyInV/f7Pz1HZviTf//u3NJbze83bw4EFMnDgRMTExCA4ORmRkJEaMGIGvv/7aqNyECROgUqlMHjExMWbrXblyJWJiYqBWq9GxY0dkZmZCp9OZlLtw4QImTJiAsLAwBAUFIT4+Hnl5eW6JVQqpc3XZmsrAkd4WwL4j8tJS4+VnzgCvveb8tCX63rHBg/2xfPndKClRWR0iNKfpenL1lbnBwTd2sZZO8HeUfuguMDAA1dWmJ9B58qpXZ3rHbK0jWz3HgEBUlHDoAhClXIlti62eLVf1fqalSVvX1qY4Gj3az3ClsbfvGNKUqydD94W5GUlevJ68vfXWWzh58iSmTZuG3bt3Y8WKFbhw4QL69euHgwcPGpVt1qwZjhw5YvTYunWrSZ2LFi3CtGnTkJKSgn379mHy5MlYvHgxpkyZYlSupqYGgwYNQl5eHlasWIGdO3eiTZs2SEpKwuHDh90aty2O7EzdMZXB55/bHpqzl5QfS0s7a0fp19PNtJN0dOZ/R4ae3JkoWr8ApGGjef31eocuALG1/crp+3aUPZN3u+r7tfb36siB1Nq1PVBb61sJuDsmQ/eFuRlJZjzUE2jR+fPnTZZdvXpVtGnTRgwaNMiwbPz48SI4ONhmfSUlJUKj0Yinn37aaPmiRYuESqUS3377rWFZdna2ACC++OILwzKdTie6desm+vTpIykOVw+bunsoyd6y77wjbZjS3kfTdl+5cuO1Tz6xPoTQ+LF0qbTPs3eo8bnnGt7jiWGKxrHv3n3jMxt/D1u2fGJ2CMHWcHnTISVrQ0/mtpG6uob1sHGjEK1amR8Sc9Wwjvm2XRezZh2VNHziyPZr79Cypzk7fGTvkLF+2M6R77fxupKyru3dx2Vl1bl0X+gMV55y0Zir9/dyx2FTGQybtm7d2mRZSEgIunXrhtOnT0uub+/evaiurkZqaqrR8tTUVAghsGPHDsOy7du3o2vXroiPjzcs8/f3x9ixY/HVV1/hrKu6fRzgqfsp2rqqrm1b5+q3pPERpOkVtfb39j37rLT1ZG8Pw9//7plpEpw9kV7KzP+2hp6aTnLcuIdh7Fjg4sWG3VlTrpoexdwFID/9VIf4eMe7G+zdfm/Gm8pLGTL25PQ3+nVtby/SL7/YV87dvVLuHIJ3dH+vxKuiqYFPTtJ75coVHDt2DAMHDjRaXlVVhbZt2+LixYsIDw/HyJEjsWDBAmi1WkOZoqIiAEDPnj2N3hseHo6wsDDD6/qy/c1kP7169QIAfPvtt4hs+qv4XzU1NaipqTE8Ly8vBwDodDqz59Y54vXXVRg92u+/k5ze+KvWDyVlZdXj+nWB69dt11VdDQABAID8/Do8+KCAnx/Q0NSARm03Xtanjw6Rkf44d864Dc5q1aoOOp3A9u0NMTbs/KTXf/26zuZ6evXVeuTnN+zcW7cGIiP9rMQjjNpx9qzAqFHAli31SE42s9c2o76+YT4+/SSn998vzP7oWYpd/5kbNtSj8Z+oTqczW/fw4Q1Jn7nP1G+K9fXA1Kn+ZtezEA3rKi3txms5OXUYP97c96JfBzeWRUYKvP56PYYPF3B202/Ylhu2vfh4Ha5f1xlit5eU7VelEoiMBPr1qzNqu7m/C2/Qx+3IPuXwYRXOnLG8ixeiYRgzP78OAwY0bEdbtqjwwgt+OHfO/u+38bqKiBD4/Xf71nWrVirY8xPUoUM9ANtZo36fYou9f59NSV2fUjmyv/eV7dTVnNnuXfP5gLfWq70x+2TyNmXKFFRUVGDOnDmGZbGxsYiNjUWPHj0AAIcPH8abb76JvLw8FBQUIOS/U8OXlpZCrVYj2MyZ0VqtFqWNzq4vLS01Svwal9O/bsmSJUuQmZlpsnz//v0ICgqyM1Lr1GogLS0c//xnT5SVNTMsDw2twp//XAS1+nfs3m27niNHGurQb4zDh/sjNLQKkyYVIjb2AoBhAIA33vhf9O59ATqdn2HZgQP7MHZsayxbdg+aJjbmfsiNXzO/PCysCuXlufjkE2Dy5CEQws9CWdv27dsHjabe4nq6//6zeO65KJSW3lgeElIDIQItxNM0sVEBEJgypRb+/rk2d/JHjoTj7bd7Gn2efl037kGqr7ccu/4zX3hBh8Z/ogsWFNmsu0WLhiPwffuM21VYGIqzZ++32G4hVEY9ctOn6yx8Lw1ta9GiGhMnFiE0tBrdupXCzw92bYu2NFyY0bDt6b9bAMjNzbVYfvTohvJbtuyCRlNvVIet7VcI4IknCrBv3+8m9Zprh7dYit+aTz+NBHC3zXJ79nyDioqGL1+tBlaubJgU+9IlDW67zfb323hdjR79Nd54Iw72rOv6eiA0dAhKSzWwtq/o2DHXrnLl5bk2t0F7/z7NcWR9SqHf35trn6X9va9tp8668fccgC1b/Bza7l3VDm+t18rKSvsKemYU134ZGRkCgFi5cqXNsh9++KEAIN544w3DsqeeekpoNBqz5bt06SIeeughw/OAgADxzDPPmJT74osvBADx/vvvW/zs6upqceXKFcPj9OnTAoAoKSkRtbW1Ln2UlNQaxt+3b68SVVX2v3frVp1Qqa4L4HqTczQalmm1xssjI6+Ld9/VGZ5funSjnogI47KhoQ11NNTV+NyM640exp+pUl0XW7fqRG1trcjN1TV5n32Pxp+nb1/T9fTJJzrx/vvSYrf1yM3VObyuG8ftSOyjRh23u25zj8bfqasettaHI49Ll258h5cu1YqKigqxY8cOUVFRYVd5S8vMbb9RUZbXm7k6HHlUVTV81+++qxO5uTpJf7u1tbbjt/awdxtz9ntsuq6krGv930zTfUjj5xcuVFgtZ2n7N9cuqX9Djev45BPPrE/9NrNuXbV45ZXPRHm55e/eVduprzwax7NlyycObfeuboen12tJSYkAbJ/zBlsJkifNnz9fABCLFi2yq3x9fb0IDg4Wjz76qGFZenq6ACAqKipMyoeFhYnHH3/c8Lxt27bikUceMSm3a9cuAUDs27fP7ra7+oKFxhqfPHnpkv0ncNqaO8h8YmT8vPEJ9OZOrDc3R1N0tPl53qKjjU/otffigabta9xGS/OUXblie96kqCghDhxouDjBns9uelK7lHXd9IRvR2Jv+qNjqW5z7D0hWsrD2vpwVNMThWtrrZ+4bO7EYksnG1u6MMTeeqWyNH+ZlJPabcVvjTMXIUhhbr3acxGOfr2aW0+NL1z55BOdYV/T9IKWpvuUxqTuD8ytC3N1uHt96tnz3VubHzM/v+Fv1FMXXrmCPRdpebodvGDBhszMTMyfPx/z58/HSy+9ZPf7hBC45ZYbYejPdSssLDQqV1xcjJKSEsOwq75s03KN39u4rDcFBwO1tTrs2LFT0lxi9szA35QQxs8bn0BvbqZ8S9OTvPqq7WlLHDlJ3N7bO9kzRcSZMw0xPPywfZ9trb1SpyBx7AR580PLTes2x967cEjRNAZfP3m6RYsbP7V/+IN77z1rbf6yUaM8s548cRGCpQtudu26sczcXTUaa7oPycw03g/pbwkIOH5HE1dMGeNL9zTWMzftjzumMiEf5Jlc0roFCxYIACIjI0PS+7Zu3SoAiOXLlxuWlZaWCo1GYzIcumTJEpOpQlatWiUAiC+//NKwTKfTie7du4u+fftKaos7e96EcOwI3LHeHfNHlFLv0mBJ4yPCAwdsH8lGRQmxb59OzJhRIHJzG47A7TkqknL3AVf0UEi924Gtz3TkYasnTMpdOCIjpa8Pd9xtwpU9b860Qwp7emHtrduZnjc9S73jzt6ZwNa0GeZitLVebdXp6J1iXDlljLvWZ1O2vntzPZFN73bTdP35+t0o2PNmfy4BD7XHoqysLAFAJCUliSNHjpg8hBDi5MmT4t577xV/+9vfxO7du8WePXtEenq60Gg0onv37uJak7W7cOFCoVKpxEsvvSQOHTokXnvtNaFWq8VTTz1lVK66ulp0795dREdHi02bNonc3FyRnJws/P39xaFDhyTF4YvJmyuHyvSJlDMbtLmdnn5nY22esqax2/OHJXXeJKnzpTn6eW++eWMoY9s285/p6MOeOaCsDT2Zu82RlPUhZVjS0rCO1OTN3Gd6O3mT8nfnieRNCNcPozmaoFpbr/bUKWUf1Pizdu927G/Im8OS1r57S0murX24r99ii8mbjJK3AQ3XVFt8CCFEWVmZSE5OFh06dBDNmjUTgYGBonPnziItLU1cvnzZbL0rVqwQXbp0EYGBgaJdu3bi5ZdfNrshFBcXi3HjxgmtVis0Go3o16+fyM3NlRyHLyZv7ujdcXSSSFv3R9VqzScU7ord0j1PHT2itmdd+/kZP9ffA7ZpMiX1IXWnbO/5SFLWh5T7Tlo7F8xS8lZVVWvyY2npM13RQ+zMzltKj7enkjdXczRBdcX9c+1dd644X82bP+KWvntHzmV2xT7cExrvm+bO/UJUVTF5swQeas9NzxvJmz09HZZ6lBx9OHKSuj1H1I1/hJvG4ugPmCO9ac4cUUtd1/qy7713Y5m9d4ywJxZLpNyY3p71IWXWeanDYrW1tWLWrKMiMrLplc6W10fj57Z6AKWuI3v4Ys+bqzmaoFpbr1JP85CSvOkPRqTuD3wpeZN6JwtX7sM9wdzBWGTkda8M9TJ5UxBPJ29SezosnRshNalz5KjN2SNqZ37APHV+irXPa9rj1vSHo3F5Wz0ETR+OxCIlebNFylW2jgyLbd2qE+amnZHykHqFp6Prouk6sdbLY2/dtbW1YsuWT7z2Q2KJ3HreHD1fTcqpAFLbYkvT/V7jtjjz8MWeN8sHdde9cq6eHJI3n7nalOxn6zZHTa8qMnfbofPngY8+AiIi7PtMZ27H5c2bKVu6GtaeK9Rc8Xlvvmn9djlCGF8FZ89N2jMzPROLPaRcZWtP2cav19cDM2boL91z/O4elv4u3MWeqxLlzp6rl91Rp9QropuSsj9w9tZ1rtS0LY5w1S0VXc36bccaNgZHbzt2M2PyJjOO3l/P0jQfjZO6OXNuTGHQmLOXwXv7vpF+fkBCAvD44w3/OhJDfT1w6BDw/vsN/1rbkTT+vDZtpH+W/n6lTRPryMiGhHvePOdiCQ6+cWwrZeoZc+xNzH//XXoS//nnwNmzKjiTuAHW/y7cxdo9Z+2Z6sbXuSNBtafOZcscq7vp59jaH0g9QNZzx3Q527erzLZFCm9NZWIPqdMseYK5KVh8DZM3mfl//0/l0g298R/y7NnmkwZzNzmXwhNH1O7kzLxJjiauTRPruXOP4Kef6rzay2aOvfGFh0tfF8XF0ttjiTd+ACz18owY4bk2uJOlgwz9/sKRAwRbdUpZd47+ALvzBvRS6XufzbXFHP0+NjTUeLkj+3ApB6zOkHIA6Am+1ONqDZM3mXH1ht60F8bcEKuzQ3OeOqJ2B1uTrdr6g3YmcW2cWHfvXupzR8yAffHph2qkrou2bV3fXk8P4Zvr5ZHDUb293LG/SEkBTp0CcnPrMGPG/yI3t85Qp729xs78APtST9B334X+t/fZPlFRDb3z5887d6qIJyf6lXIA6G6O9rh6A5M3mfHEhm5uiNVZ1oaRpB5Re4orjsDllLg6klRImXVe6rq47z4gMlIAsLPbwQ7eHsKXy1G9FFL2F/ZuY35+wIABAg88cBYDBghJ+yBnf4CdOUB2dWJ+6ZLG7rKNE2dnThVx9oBVKikHgO7kSz2u9mDyJjP33y8c2tBdeZ6Tozx98YCzXHUELofE1ZmkwtZQV+PvV8q68PMD3nijYU+pv1hDT7/9a7W226cvb+kHoLz8xnlKe/a4b+csp6N6d/BE4uqKH2BHD5DdEd9tt1XbXdYVB9r2rL9p01x7Xp89F2l54lw9X+pxtYuHrn696XlyqhBn7wZgizcuk7b2md6a60rqLa9ssfeuAnqemm1cyjxt1rjrDgvm5nnTT+/Q+DPnzJH+d+GqiX5tzYcnZUqVxtw9VYin7kbhyDbmzrvKWJsuw9EJvl11W6/G8X/00Q4RGXndJdPO2EPqdC3OTJ/SlPm/Rc/N8+bq/b2jOFXITUxKTwc5ztVD1FKHMvS9pbW1Omg07ukOcuVQgZThMynrIj7+d/z8c53ZHltnLrix1hM2dqy1SE3rsXV+kOyO6l3Ik8NRrjgnWOoN6O2Jb9Ys+9plri03ep/Nt0UKWxchSD0n1JW9p9Yu0jLXbktX9jp6xa8vnXtnDyZvMuWOE4XJmK+ci+FOrkwq3Dk0b2+yZ+/fhT0/uPaw9/wgX7uizpM8mbi66gdYygGy1PkLpZ4Ll5wsLLZFyrQz9hxkOJKYuHLY39xFWpbavXOn85/XmNz290zeZKxFixs/ln/4g+/N3yN3Uo/A5ehmTCrs6QG05wfXFik9SnI7qnclT25jzvwAN+2xsfdAwBO9VZbaYu/5svYeZNhaf+a4uve0Mf0cd+ba/cQTN5674uIQue3vmbwRWWHrBHu593TKPalwtLdPyg+upR8GKT1KcjuqdyVPbmOu/gG250DAU71V5g7W7dn+pRxkWFt/1kjtPbVnaPP6dctz3DVd5qrhWzmdksTkjcgGuV0lK4WvJRWeuipayg+upR8GKT1KcjuqdyVPb2Oe/gH2td6qpuw9yPD3b4ihWTPggw9MD1jt4coe+u+/lzbHnT4hdnY4VS6nJDF5I7KDK26x5YuUmlRI/cE111MitUfJVlLx0EOuv7WSL/DGNubJH2BP9VY5ypFh3RdeAN54w/gezfZo+jfhzF0aLl9W218Yjl0cYql97pjr1NWYvBEpnJyGClxF6g+uuZ4SR3qU3J1UeOqWRlJ5Yxvz5A+wpfjs4e7zSR0d1n3sMaCsrOGA9fnnpW/rzt6loWXLGsntbnpxiDU5OUD79p65i4Q7MHkjE74woS95llyGClxJ6g9u054SR3uU3JVUOPJj6clbdd3s21jT+JYute997j6f1BXDuvZs60uX3hh63bzZ+gUSloY2G0+P1Lv3BURGCoemRLHF1oTZrr6S1R2YvBERAHkMFbia/j6a+fnAc8/Z957GPSWeuKDl+vUb/7eUYDlySyNv3KrrZt/GGsfz7LO+cT6pq4Z1bfWeDht2Y5mtCyTS0m4ss7RNW5vjzhnunJfPk5i8EZGi6c9nfPhh+8o37Slx5wUt27er8NxzgwzPzSVYjkyCq/RbdZnjil7IxqMWLVrY7q3SXyjg7nMcLR1k2KPpwYr+YKfxtg4YHwiUlFiuTwjj7c7aQYN+jjt7261SGZc19z1KnZfPVzF5IyKCc1dFuuOClpwcYPRoP5SVGd+cvGmCJXUSXFff8eBmOM3CUi/kvn3OxWatt0rKBLuu0PQgw9GLEJpu6zt3mj8QkMLaQUPTdmdm3riwpzGVquF7qqq6scxcYiinOSutYfJG5GU3w4/fzcDbV942Tpby8xsnWMaNaZpgSZ0EV8m36jLH3b2Qls71azzM6O7zDfUaJ16OXITQlLUDASlsHTQ0bve8eeYTYq224d+yMuPlTb9HX52zUiomb0RE/+WtK2+b9vwMH65PsMz/sjZOsKROWXIz3lXDUZ6672rTc/127vT8+Ybm2uTswYqtAwEppBw0NE2IP/mkYX46S/UCN75He3rYo6IkNd0rmLyRT2DvE/kKT18Vaannxx6JicBdd0nrQZH7XTVcyRu9kJaGGb1xvqGzByvuSPDtrbNxUunnZ//3aE/SumyZ/e31FiZvRERNeOqqSFcMO0ntQfG1u2q4iz0HhN7ohUxLc39PnxTOHKy4I8G3t87G3+/ly/a9R/892rpK3N57xnoTkzciIg9q/KNz7Jhjw05NEy8pU5Z4+9w+X+KNXkhrPazeOt/Q3H1T7WHPHHKtWjVcnHHggPsOGhz5HuV+20Mmb0REXuJIj46lHz8pP0ZKvKuGOb7aCymX8w1tHQioVMDq1cATTwCDBrnvoMHR71HOtz1k8kZE5CWO9OhYm2ZCyo/RzX7HA3v4ai+knM43lHIg4K6DBk99jxUVvnP/YSZvREReYrvHQECrvTFxlT7BctU5OZ6+44EvXpjk6V7IyEjf6+lzlpQDAXcdNCitN5nJGxGRl9jTYzBhwreGZTfjLaV8gSd7IV99teFfX+rpcwUpBwLuOmhQUm8ykzciIi+y1mOwZUs9+vQpNnmPJ28orxSe6oUcMeLm7CHylV5VS99jfT1w6BDw/vsN/8r9b4bJGxGRl1nqMUhONp1Twhs3lCfnNE1slNRD5Atychr+RhITgTFjGv515G/Glw6amLwREfkAe3p+fGmCV3KOo9NzkDT6SbCbTskj9W/G1w6amLwREcmEr03wSuTLXHX7M3ff/9YRTN6IiGTC1RO8+sp5SqQsntruPv/c+dufeer+t1IxeSMiuonIZYJXIncrNr3WxyxrfzOuSADdwd+zH0dEROboeyOcJacJXn2Jq9Y/+Y62be0rZ+1vxhUJoDuw542ISCZuxgleidzlvvucv/2ZKxJAd2DyRkQkEzfrBK9E7uCK22a5IgF0ByZvRASAJ6/Lwc06wSuRq5ibU+/DDxt6rRuz92/GV+9/y+SNiEhGOMErkTQpKcDJk0B+PrB5c8O/Uv5mfPG+qbxggYhIZjx9Q3kiufPzAxIS7Ctr7uKVlBTgwQeBW29teL57NzBkiPf+9tjzRkRERGSDLx00seeNiG4qnPKBiG52TN6IiHyYRlOP2lodAgICvN0UIvIRXh82PXjwICZOnIiYmBgEBwcjMjISI0aMwNdff21S9tixY3jwwQcREhKCli1bIiUlBb/++qvZeleuXImYmBio1Wp07NgRmZmZ0Ol0JuUuXLiACRMmICwsDEFBQYiPj0deXp7L4yQiIiL58qUr8r2evL311ls4efIkpk2bht27d2PFihW4cOEC+vXrh4MHDxrKHT9+HAkJCaitrcUHH3yAd955Bz/++CP69++PixcvGtW5aNEiTJs2DSkpKdi3bx8mT56MxYsXY8qUKUblampqMGjQIOTl5WHFihXYuXMn2rRpg6SkJBw+fNgj8RMRERFJ4fVh0+zsbLRu3dpoWVJSEjp16oTFixdj4MCBAIB58+ZBrVZj165daNGiBQAgLi4OnTt3RlZWFpYtWwYAKC0txcKFC/HUU09h8eLFAICEhATodDpkZGRg+vTp6NatGwBg7dq1KCoqwhdffIH4+HgAQGJiImJjY5GWloajR496ZB0QEUnB8/qIlM3rPW9NEzcACAkJQbdu3XD69GkAQF1dHXbt2oWHH37YkLgBQPv27ZGYmIjt27cblu3duxfV1dVITU01qjM1NRVCCOzYscOwbPv27ejatashcQMAf39/jB07Fl999RXOnj3rqjCJiIiIXMLrPW/mXLlyBceOHTP0uv3yyy+oqqpCr169TMr26tULubm5qK6uhkajQVFREQCgZ8+eRuXCw8MRFhZmeB0AioqK0N/MPS30n/Ptt98isum0zP9VU1ODmpoaw/Py8nIAgE6nM3tunbP0dbqjbl+n5NgBZcfvrdgDA4Ha2sbt8OjHN/pcfvdKjB1QdvyM3TafTN6mTJmCiooKzJkzB0DDUCgAaLVak7JarRZCCFy6dAnh4eEoLS2FWq1GsJmzCbVaraEufb2W6mz8ueYsWbIEmZmZJsv379+PoKAgGxE6Ljc31211+zolxw4oO34lxw4oO34lxw4oO34lxl5ZWWlXOYeTtwULFmDSpEmIaHq/CAC///47/vnPf2LevHmS6507dy42bdqElStXIi4uzug1laU7wzZ5zd5yUss2Nnv2bMyYMcPwvLy8HNHR0RgyZIjR0K6r6HQ65ObmYvDgwYqbMkDJsQPKjl/JsQPKjl/JsQPKjl/JsetH8WxxOHnLzMxEUlKS2eTt3LlzyMzMlJy8ZWZmYuHChVi0aBGee+45w/LQ0FAA5nvCysrKoFKp0LJlS0PZ6upqVFZWmvSAlZWVGSWEoaGhFusEzPf06anVaqjVapPlAQEBbt3Y3F2/L1Ny7ICy41dy7ICy41dy7ICy41di7PbG6/AFC8LKpU7Xrl2TvMIzMzMxf/58zJ8/Hy+99JLRa3fccQeaNWuGwsJCk/cVFhaiU6dO0Gg0AG6c69a0bHFxMUpKStCjRw/Dsp49e1qsE4BRWSIiIiJfIKnn7T//+Q+++eYbw/Pdu3fj+PHjRmWqqqqwadMm3HHHHXbX+8orr2D+/PnIyMjAyy+/bNpIf38MHz4cOTk5ePXVV9G8eXMAwG+//Yb8/Hy88MILhrJJSUnQaDRYv349+vbta1i+fv16qFQqjBw50rAsOTkZkydPxtGjRw1l6+rqsHHjRvTt29dsryIRERGRN0lK3rZv3244SV+lUmHBggVmyzVr1gzr1q2zq87XX38d8+bNQ1JSEv74xz/iyy+/NHq9X79+ABp65u655x4MGzYM6enpqK6uxrx58xAWFoaZM2caymu1WmRkZGDu3LnQarUYMmQICgoKMH/+fEyaNMkwxxsATJw4EdnZ2XjkkUewdOlStG7dGqtWrcIPP/yAAwcOSFk1RERERB4hKXl7+umnMWzYMAgh0KdPH6xbt85kaFGtVhuGOe3xySefAGiYn23v3r0mr+uHZ2NiYnDo0CHMmjULo0aNgr+/PwYOHIisrCy0atXK6D1z5sxB8+bNkZ2djaysLLRt2xbp6emGq1cbtzUvLw9paWl4/vnnUVlZid69e2PPnj0YMGCA3euFiIiIyFMkJW/h4eEIDw8HAOTn5yMuLg4hISFONeDQoUN2l42Li7O7R2zq1KmYOnWqzXJt2rTBhg0b7G4DERERkTc5fLUpe6aIiIiIPM+pSXo3btyIzZs349SpU6iqqjJ6TaVS4ZdffnGqcURERERkzOHkbdmyZZg9eza6deuG2NhYs3OeEREREZFrOZy8rVmzBlOmTMHKlStd2R4iIiIissLhSXqLi4uRnJzsyrYQERERkQ0OJ29xcXE8p42IiIjIwxxO3t544w28/vrr+Prrr13ZHiIiIiKywuFz3lJTU1FaWoo+ffqgbdu2hpvH66lUKvz73/92uoFEREREdIPDyVtoaCjCwsJc2RYiIiIissHh5E3KnRGIiIiIyDUcPueNiIiIiDzP4Z63Tz/91GaZBx54wNHqiYiIiMgMh5O3hIQEqFQqq2Xq6+sdrZ6IiIiIzHA4ecvPzzdZVlJSgp07d+Lzzz9Hdna2Uw0jIiIiIlMOJ28DBgwwu/zhhx/GM888g7179yIpKcnhhhERERGRKbdcsJCcnIwtW7a4o2oiIiIiRXNL8nbp0iXU1NS4o2oiIiIiRXN42PS3334zWVZTU4P//Oc/mD17Nvr16+dUw4iIiIjIlMPJW4cOHcxebSqEQNeuXfH3v//dqYYREZHvqKgAQkIa/n/tGhAc7N32ECmZw8nbO++8Y5K8aTQadOjQAffccw9uuYXz/xIRERG5msPJ24QJE1zYDCIiIiKyh8PJm97Vq1dx5MgRlJaWIiwsDP369UPz5s1d0TYiIiIiasKp5C0rKwuZmZmorKyEEAIAEBwcjMzMTMyYMcMlDSQiIiKiGxxO3t59912kpaXhD3/4AyZMmICIiAicO3cOGzZswIsvvohWrVrhySefdGVbiYiIiBTP4eTtzTffxJgxY7Bx40aj5Y888gjGjh2LN998k8kbERERkYs5fEno8ePHMXbsWLOvjR07Ft9//73DjSIiIiIi8xxO3po1a4aysjKzr5WVlaFZs2YON4qIiIiIzHM4eevfvz/mz5+Pc+fOGS0vLi7GggUL8MADDzjdOCIi8g319Tf+/+mnxs+JyLMcPudt8eLFuPfee9GpUycMGjQI4eHh+P3333Hw4EEEBAQgJyfHle0kIiIvyckBpk698XzoUCAqClixAkhJ8V67iJTK4Z637t27o6CgACNGjEBBQQHWrVuHgoICjBw5El999RW6devmynYSEZEX5OQAo0YBZ88aLz97tmE5j9OJPM+ped66dOmC999/31VtISIiH1JfD0ybBvx3Gk8jQgAqFTB9OjBiBODn5/HmESmW5J63wsJCnDlzxuLrZ86cQWFhoVONIiIi7/vsM8DK7h5CAKdPN5QjIs+RlLx9+umniIuLw/nz5y2WOX/+POLi4rBv3z6nG0dERN7z+++uLUdEriEpecvOzsaoUaMQFxdnsUxcXBwee+wxvP322043joiIvCc83LXliMg1JCVvn3/+OUaOHGmz3J/+9Cd8+eWXjraJiIh8QP/+DVeVqlTmX1epgOjohnJE5DmSkreLFy8iMjLSZrnw8HBcuHDB4UYREZH3+fk1TAcCmCZw+ufLl/NiBSJPk5S8BQcHW7yrQmOXLl1CUFCQw40iIiLfkJICfPghEBFhvDwqqmE553kj8jxJyVv37t2xd+9em+X27NmD7t27O9woIiLyHSkpwHff3Xi+ezdw4gQTNyJvkZS8PfbYY1i7di0OHz5ssUx+fj7WrVuHxx9/3OnGERGRb2g8NPrAAxwqJfImSZP0Pv3001i/fj2GDBmCSZMmYcSIEejYsSMA4MSJE9ixYwfWrl2L2NhYPPXUU25pMBEREZGSSUreAgMDsW/fPjz55JN46623sHr1aqPXhRD4wx/+gHfffReBgYEubSgREREROXB7rNDQUOzevRtff/019u/fj9OnTwMA2rVrh4ceegh33nmnyxtJRERERA0cvrdpXFyc1cl6iYiIiMj1JF2w0KtXL7sfsbGxdtV59epVpKWlYciQIWjVqhVUKhXmz59vUm7ChAlQqVQmj5iYGLP1rly5EjExMVCr1ejYsSMyMzOh0+lMyl24cAETJkxAWFgYgoKCEB8fj7y8PCmrhYiIiMhjJPW8abVaqCxNtf1f165dw9dff22znF5paSnWrFmD2NhYjBw50upttZo1a4aDBw+aLGtq0aJFmDt3LtLT0zFkyBAUFBQgIyMDZ8+exZo1awzlampqMGjQIFy+fBkrVqxA69atkZ2djaSkJBw4cAADBgywKwYiIiIiT5GUvB06dMjia3V1dVizZg0WLFgAlUqFMWPG2FVn+/btcenSJahUKpSUlFhN3m655Rb069fPan2lpaVYuHAhnnrqKSxevBgAkJCQAJ1Oh4yMDEyfPh3dunUDAKxduxZFRUX44osvEB8fDwBITExEbGws0tLScPToUbtiICIiIvIUScOmlmzbtg3dunXD888/j9jYWHz99dd477337HqvfvjTVfbu3Yvq6mqkpqYaLU9NTYUQAjt27DAs2759O7p27WpI3ADA398fY8eOxVdffYWzZ8+6rF1ERHIWHAwI0fAIDvZ2a4iUzeELFoCGnrhZs2ahoKAAd911F/bv349Bgwa5qm0mqqqq0LZtW1y8eBHh4eEYOXIkFixYAK1WayhTVFQEAOjZs6fRe8PDwxEWFmZ4XV+2v5k7Kvfq1QsA8O2331q8l2tNTQ1qamoMz8vLywEAOp3O7Ll1ztLX6Y66fZ2SYweUHb+SYweUHb+SYweUHT9jt82h5K2wsBCzZs3Cvn370LFjR2zevBmjR492pCq7xcbGIjY2Fj169AAAHD58GG+++Sby8vJQUFCAkJAQAA3Dpmq1GsFmDg21Wi1KS0sNz0tLS40Sv8bl9K9bsmTJEmRmZpos379/v1vv65qbm+u2un2dkmMHlB2/kmMHlB2/kmMHlB2/EmOvrKy0q5yk5O306dPIyMjA5s2bodVqsXz5cjzzzDMICAhwqJFSvPDCC0bPBw8ejDvvvBOjRo3CP//5T6PXrQ3DNn1NStnGZs+ejRkzZhiel5eXIzo6GkOGDEGLFi0svs9ROp0Oubm5GDx4sEfWty9RcuyAsuNXcuyAsuNXcuyAsuNXcuz6UTxbJCVvXbp0QW1tLZKSkpCWlobmzZujsLDQYvm77rpLSvWSJScnIzg4GF9++aVhWWhoKKqrq1FZWWnSA1ZWVmY0N11oaKjZ3rWysjIAMNsrp6dWq6FWq02WBwQEuHVjc3f9vkzJsQPKjl/JsQPKjl/JsQPKjl+Jsdsbr6TkTX+O1549e7B3716L5YQQUKlUqK+vl1K9Q4QQuOWWG9dd6M91KywsRN++fQ3Li4uLUVJSYhh21Zc1l3zqlzUuS0REROQLJCVv69atc1c7HPLhhx+isrLSaPqQpKQkaDQarF+/3ih5W79+PVQqFUaOHGlYlpycjMmTJ+Po0aOGsnV1ddi4cSP69u2LiIgIj8VCREREZA9Jydv48ePd0og9e/agoqICV69eBQB89913+PDDDwEAQ4cOxcWLFzFmzBiMHj0anTp1gkqlwuHDh7F8+XJ0794dkyZNMtSl1WqRkZGBuXPnQqvVGibpnT9/PiZNmmSY4w0AJk6ciOzsbDzyyCNYunQpWrdujVWrVuGHH37AgQMH3BIrERERkTOcmirEVZ599lmcOnXK8Hzbtm3Ytm0bAODEiRO49dZb0aZNG7zxxhs4f/486uvr0b59e0ydOhUvvfSSyZWlc+bMQfPmzZGdnY2srCy0bdsW6enpmDNnjlE5tVqNvLw8pKWl4fnnn0dlZSV69+6NPXv28O4KRERE5JN8Ink7efKkzTI5OTmS6pw6dSqmTp1qs1ybNm2wYcMGSXUTEREReYtL7rBARERERJ7B5I2IiIhIRpi8EREREckIkzciIiIiGWHyRkRERCQjTN6IiIiIZITJGxEREZGMMHkjIiIikhEmb0REREQywuSNiIiISEaYvBERERHJCJM3IiIiIhlh8kZEREQkI0zeiIiIiGSEyRsRERGRjDB5IyIiIpIRJm9EREREMsLkjYiIiEhGmLwRERERyQiTNyIiIiIZYfJGREREJCNM3oiIiIhkhMkbERERkYwweSMiIiKSESZvRERERDLC5I2IiIhIRpi8EREREckIkzciIiIiGWHyRkRERCQjTN6IiIiIZITJGxEREZGMMHkjIiIikhEmb0REREQywuSNiIiISEaYvBERERHJCJM3IiIiIhlh8kZEREQkI0zeiIiIiGSEyRsRERGRjDB5IyIiIpIRJm9EREREMsLkjYiIiEhGmLwRERERyYjXk7erV68iLS0NQ4YMQatWraBSqTB//nyzZY8dO4YHH3wQISEhaNmyJVJSUvDrr7+aLbty5UrExMRArVajY8eOyMzMhE6nMyl34cIFTJgwAWFhYQgKCkJ8fDzy8vJcGSIRERGRy3g9eSstLcWaNWtQU1ODkSNHWix3/PhxJCQkoLa2Fh988AHeeecd/Pjjj+jfvz8uXrxoVHbRokWYNm0aUlJSsG/fPkyePBmLFy/GlClTjMrV1NRg0KBByMvLw4oVK7Bz5060adMGSUlJOHz4sDvCJSIiInKKv7cb0L59e1y6dAkqlQolJSV4++23zZabN28e1Go1du3ahRYtWgAA4uLi0LlzZ2RlZWHZsmUAGpLBhQsX4qmnnsLixYsBAAkJCdDpdMjIyMD06dPRrVs3AMDatWtRVFSEL774AvHx8QCAxMRExMbGIi0tDUePHnV3+ERERESSeL3nTaVSQaVSWS1TV1eHXbt24eGHHzYkbkBD4peYmIjt27cblu3duxfV1dVITU01qiM1NRVCCOzYscOwbPv27ejatashcQMAf39/jB07Fl999RXOnj3rZHREREREruX1njd7/PLLL6iqqkKvXr1MXuvVqxdyc3NRXV0NjUaDoqIiAEDPnj2NyoWHhyMsLMzwOgAUFRWhf//+ZusEgG+//RaRkZFm21RTU4OamhrD8/LycgCATqcze26ds/R1uqNuX6fk2AFlx6/k2AFlx6/k2AFlx8/YbZNF8lZaWgoA0Gq1Jq9ptVoIIXDp0iWEh4ejtLQUarUawcHBZsvq69LXa6nOxp9rzpIlS5CZmWmyfP/+/QgKCrIdlINyc3PdVrevU3LsgLLjV3LsgLLjV3LsgLLjV2LslZWVdpWTRfKmZ214tfFr9paTWrax2bNnY8aMGYbn5eXliI6OxpAhQ4yGdl1Fp9MhNzcXgwcPRkBAgMvr92VKjh1QdvxKjh1QdvxKjh1QdvxKjl0/imeLLJK30NBQAOZ7wsrKyqBSqdCyZUtD2erqalRWVpr0gJWVlSEuLs6oXkt1AuZ7+vTUajXUarXJ8oCAALdubO6u35cpOXZA2fErOXZA2fErOXZA2fErMXZ74/X6BQv2uOOOO9CsWTMUFhaavFZYWIhOnTpBo9EAuHGuW9OyxcXFKCkpQY8ePQzLevbsabFOAEZliYiIiHyBLJI3f39/DB8+HDk5Obh69aph+W+//Yb8/HykpKQYliUlJUGj0WD9+vVGdaxfvx4qlcpoLrnk5GQcP37caEqQuro6bNy4EX379kVERITbYiIiIiJyhE8Mm+7ZswcVFRWGxOy7777Dhx9+CAAYOnQogoKCkJmZiXvuuQfDhg1Deno6qqurMW/ePISFhWHmzJmGurRaLTIyMjB37lxotVoMGTIEBQUFmD9/PiZNmmSY4w0AJk6ciOzsbDzyyCNYunQpWrdujVWrVuGHH37AgQMHPLsSiIiIiOzgE8nbs88+i1OnThmeb9u2Ddu2bQMAnDhxAh06dEBMTAwOHTqEWbNmYdSoUfD398fAgQORlZWFVq1aGdU3Z84cNG/eHNnZ2cjKykLbtm2Rnp6OOXPmGJVTq9XIy8tDWloann/+eVRWVqJ3797Ys2cPBgwY4P7AiYiIiCTyieTt5MmTdpWLi4uzu0ds6tSpmDp1qs1ybdq0wYYNG+yqk4iIiMjbZHHOGxERERE1YPJGREREJCNM3oiIiIhkhMkbERERkYwweSMiIiKSESZvRERERDLC5I2IiIhIRpi8EREREckIkzciIiIiGWHyRkRERCQjTN6IiIiIZITJGxEREZGMMHkjIiIikhEmb0REREQywuSNiIiISEaYvBERERHJCJM3IiIiIhlh8kZEREQkI0zeiIiIiGSEyRsRERGRjDB5IyIiIpIRJm9EREREMsLkjYiIiEhGmLwRERERyQiTNyIiIiIZYfJGREREJCNM3oiIiIhkhMkbERERkYwweSMiIiKSESZvRERERDLC5I2IiIhIRpi8EREREckIkzciIiIiGWHyRkRERCQjTN6IiIiIZITJGxEREZGMMHkjIiIikhEmb0REREQywuSNiIiISEaYvBERERHJCJM3IiIiIhlh8kZEREQkI0zeiIiIiGRENsnboUOHoFKpzD6+/PJLo7LHjh3Dgw8+iJCQELRs2RIpKSn49ddfzda7cuVKxMTEQK1Wo2PHjsjMzIROp/NESERERESS+Xu7AVItXrwYiYmJRst69Ohh+P/x48eRkJCA3r1744MPPkB1dTXmzZuH/v3745tvvkGrVq0MZRctWoS5c+ciPT0dQ4YMQUFBATIyMnD27FmsWbPGYzERERER2Ut2yVvnzp3Rr18/i6/PmzcParUau3btQosWLQAAcXFx6Ny5M7KysrBs2TIAQGlpKRYuXIinnnoKixcvBgAkJCRAp9MhIyMD06dPR7du3dwfEBEREZEEshk2tUddXR127dqFhx9+2JC4AUD79u2RmJiI7du3G5bt3bsX1dXVSE1NNaojNTUVQgjs2LHDU80mIiIispvset6mTJmC0aNHIygoCPHx8Zg7dy7uv/9+AMAvv/yCqqoq9OrVy+R9vXr1Qm5uLqqrq6HRaFBUVAQA6Nmzp1G58PBwhIWFGV63pKamBjU1NYbn5eXlAACdTueWc+b0dSrxfDwlxw4oO34lxw4oO34lxw4oO37Gbptskrdbb70V06ZNQ0JCAkJDQ/Hzzz/jtddeQ0JCAv71r3/hoYceQmlpKQBAq9WavF+r1UIIgUuXLiE8PBylpaVQq9UIDg42W1ZflyVLlixBZmamyfL9+/cjKCjIwShty83NdVvdvk7JsQPKjl/JsQPKjl/JsQPKjl+JsVdWVtpVTjbJ25133ok777zT8Lx///5ITk5Gz549kZaWhoceesjwmkqlslhP49fsLWfO7NmzMWPGDMPz8vJyREdHY8iQIUZDtq6i0+mQm5uLwYMHIyAgwOX1+zIlxw4oO34lxw4oO34lxw4oO34lx64fxbNFNsmbOS1btsSwYcOwevVqVFVVITQ0FADM9pqVlZVBpVKhZcuWAIDQ0FBUV1ejsrLSpKesrKwMcXFxVj9brVZDrVabLA8ICHDrxubu+n2ZkmMHlB2/kmMHlB2/kmMHlB2/EmO3N17ZX7AghADQ0FN2xx13oFmzZigsLDQpV1hYiE6dOkGj0QC4ca5b07LFxcUoKSkxmn6EiIiIyFfIOnm7dOkSdu3ahd69e0Oj0cDf3x/Dhw9HTk4Orl69aij322+/IT8/HykpKYZlSUlJ0Gg0WL9+vVGd69evh0qlwsiRIz0UBREREZH9ZDNsOmbMGLRr1w533303wsLC8NNPP+H111/H+fPnjRKwzMxM3HPPPRg2bBjS09MNk/SGhYVh5syZhnJarRYZGRmYO3cutFqtYZLe+fPnY9KkSZzjjYiIiHySbJK3Xr16YevWrVi9ejWuXbsGrVaL+++/H++99x7uueceQ7mYmBgcOnQIs2bNwqhRo+Dv74+BAwciKyvL6O4KADBnzhw0b94c2dnZyMrKQtu2bZGeno45c+Z4OjwiIiIiu8gmeUtPT0d6erpdZePi4nDgwAG7yk6dOhVTp051pmlEREREHiPrc96IiIiIlIbJGxEREZGMMHkjIiIikhEmb0REREQywuSNiIiISEaYvBERERHJCJM3IiIiIhlh8kZEREQkI0zeiIiIiGSEyRsRERGRjDB5IyIiIpIRJm9EREREMsLkjYiIiEhGmLwRERERyQiTNyIiIiIZYfJGREREJCNM3oiIiIhkhMkbERERkYwweSMiIiKSESZvRERERDLC5I2IiIhIRpi8EREREckIkzciIiIiGWHyRkRERCQjTN6IiIiIZITJGxEREZGMMHkjIiIikhEmb0REREQywuSNiIiISEaYvBERERHJCJM3IiIiIhlh8kZEREQkI0zeiIiIiGSEyRsRERGRjDB5IyIiIpIRJm9EREREMsLkjYiIiEhGmLwRERERyQiTNyIiIiIZYfJGREREJCNM3oiIiIhkhMkbERERkYwweSMiIiKSESZvAK5du4bp06cjIiICGo0GvXv3xpYtW7zdLCIiIiIT/t5ugC9ISUlBQUEBli5dii5dumDz5s14/PHHcf36dYwZM8bbzSMiIiIyUHzytnv3buTm5hoSNgBITEzEqVOn8OKLL+Kxxx6Dn5+fl1tJRERE1EDxw6bbt29HSEgIHnnkEaPlqampOHfuHI4ePeqllhERERGZUnzPW1FREf7nf/4H/v7Gq6JXr16G1++9916T99XU1KCmpsbw/MqVKwCAsrIy6HQ6l7dTp9OhsrISpaWlCAgIcHn9vkzJsQPKjl/JsQPKjl/JsQPKjl/JsV+9ehUAIISwWk7xyVtpaSluv/12k+VardbwujlLlixBZmamyfKOHTu6toFERESkKFevXsWtt95q8XXFJ28AoFKpJL82e/ZszJgxw/D8+vXrKCsrQ2hoqNX6HFVeXo7o6GicPn0aLVq0cHn9vkzJsQPKjl/JsQPKjl/JsQPKjl/JsQshcPXqVURERFgtp/jkLTQ01GzvWllZGYAbPXBNqdVqqNVqo2UtW7Z0efuaatGiheI2Zj0lxw4oO34lxw4oO34lxw4oO36lxm6tx01P8Rcs9OzZE99//z3q6uqMlhcWFgIAevTo4Y1mEREREZml+OQtOTkZ165dw0cffWS0fMOGDYiIiEDfvn291DIiIiIiU4ofNv3DH/6AwYMH49lnn0V5eTk6deqE999/H3v37sXGjRt9Zo43tVqNl19+2WSoVgmUHDug7PiVHDug7PiVHDug7PiVHLu9VMLW9agKcO3aNcyZMwcffPABysrKEBMTg9mzZ2P06NHebhoRERGRESZvRERERDKi+HPeiIiIiOSEyRsRERGRjDB585Br165h+vTpiIiIgEajQe/evbFlyxa73nvhwgVMmDABYWFhCAoKQnx8PPLy8syWPXDgAOLj4xEUFISwsDBMmDABFy5ccGUoDvFE/Lt27cK4cePQs2dPBAQEuGWyZEe4O/by8nIsWrQICQkJaNu2LUJCQtCzZ08sW7YM1dXV7ghJEk9893PmzMGdd94JrVYLjUaD22+/HU8//TROnTrl6nAk8dTfvV5VVRW6dOkClUqFrKwsV4TgFE/En5CQAJVKZfJISkpydTiSeOq7r6iowLx589ClSxeo1WqEhoYiMTERP/30kyvDkczd8Z88edLs9+4r37/bCfKIwYMHi5YtW4rVq1eLgwcPikmTJgkAYtOmTVbfV11dLXr06CGioqLExo0bxf79+8WIESOEv7+/OHTokFHZQ4cOCX9/fzFixAixf/9+sXHjRhEZGSl69Oghqqur3RmeTZ6If+LEiaJz587i0UcfFXFxccJXNm93x15YWCjCwsLECy+8IHbu3Cny8vLE/PnzhUajEYMGDRLXr193d4hWeeK7nzx5sli2bJn4+OOPRX5+vsjOzhbh4eGiTZs2oqSkxJ3hWeWJ2BubOXOmiIiIEADEa6+95upwJPNE/AMGDBC33367OHLkiNHj+++/d2doNnki9qtXr4q7775bREREiL/97W/i0KFDYufOnWLWrFnim2++cWd4Nrk7/urqapPv/MiRI2LWrFkCgFi9erW7Q/Qq3/h1u8n961//EgDE5s2bjZYPHjxYREREiLq6Oovvzc7OFgDEF198YVim0+lEt27dRJ8+fYzK3nPPPaJbt25Cp9MZln3++ecCgFi1apWLopHOU/HX19cb/j9lyhSfSN48Efu1a9fEtWvXTN7/2muvCQDis88+c0EkjvHUd2/O7t27BQCxdu1axwNwgqdjP3r0qAgMDBTbtm3zieTNU/EPGDBAdO/e3bWNd5KnYp82bZoIDg4Wv/zyi2sDcJI3/+4TEhJEUFCQuHLliuMByID3f90UYNKkSSIkJMQoqRJCiM2bNwsA4vPPP7f43gcffFB07drVZPnixYsFAHHmzBkhhBBnzpwRAMSSJUtMynbp0kUMHjzYySgc54n4m/KV5M0bsesdPnzY7A7Uk7wZf0FBgQAgNmzY4FjjneTJ2GtqakT37t3FCy+8IE6cOOETyZun4vfF5M0TsVdUVIjg4GAxYcIE1zbeBbz1d//zzz8LlUrlk+vE1XjOmwcUFRXhf/7nf+Dvbzwncq9evQyvW3uvvpy593777bdGdVgqa+0z3M0T8fsqb8Z+8OBBAED37t0ltdmVPB1/XV0dqqqq8H//93+YPn06unTpgpSUFGdCcJgnY1+wYAEqKirwyiuvONtsl/Fk/L/88gu0Wi38/f1xxx13YM6cOaiqqnI2BId5Ivavv/4aFRUV6Ny5M5599lncdtttCAwMxN13341//etfrgrFId7a773zzjsQQmDSpEmONFtWmLx5QGlpqdkb3OuXlZaWOv1e/b+Wylr7DHfzRPy+ylux/+c//8Grr76K5ORksztCT/Fk/MXFxQgICEBQUBDuuusu1NXVIT8/HyEhIc6E4DBPxf7NN9/g1VdfxerVqxEcHOxss13GU/Hff//9eOONN/DRRx/h448/xtChQ/Hqq68iKSkJ169fdzYMh3gi9rNnzwIAli1bhsLCQrz77rvYvn07WrRogeHDh2Pfvn1Ox+Eob+z36uvrsWHDBsTExOC+++5zpNmyovjbY3mKtSsfbV0VKeW9lsp6+8pLT8Xvizwd+8mTJzFs2DBER0fj7bfftq+RbuSp+MPCwlBQUICamhp8//33ePXVV5GYmIhDhw4hPDxcWqNdxN2x19XVYeLEiXjsscfw0EMPOdZIN/LEd79w4UKj14YOHYoOHTrgr3/9K3bu3Ink5GQ7W+ta7o5dn5gGBgZiz549aN68OQAgMTERnTt3xiuvvOLVbcLT+729e/fi7NmzeO211+xroMyx580DQkNDzR4tlJWVATDfWyb1vaGhoQDMH5WUlZVZ/Qx380T8vsrTsZ86dQqJiYnw9/dHXl6e19ePJ+P39/fH3Xffjfvuuw+TJk3CwYMH8euvv2Lp0qXOhOAwT8S+fPly/Prrr3j55Zdx+fJlXL58GeXl5QCA6upqXL58GfX19U7H4ghv/t2PHTsWAPDll1/a3V5X8uQ+/9577zUkbgAQFBSEAQMG4NixY44H4CRvfPdr165FQEAAxo0b50iTZYfJmwf07NkT33//Perq6oyWFxYWAgB69Ohh9b36ctbeq//XUllrn+FunojfV3ky9lOnTiEhIQFCCOTn5yMqKsrZ5jvNm999VFQUIiIi8OOPP0pttkt4IvaioiJcuXIFnTt3xm233YbbbrsNsbGxAIC5c+fitttuM1uPJ/jC3/0tt3jnJ84TsVs7HUII4bXYAc9/9xcuXMCuXbvwpz/9Ca1bt3am6fLh5QsmFEE/ZcGWLVuMliclJdm8bHrVqlUCgPjyyy8Ny3Q6nejevbvo27evUdk+ffqIHj16GNV35MgRAUC89dZbLopGOk/F35ivXG3qqdhPnTolOnToIKKjo31q2gBvfPd6P/30k7jlllvEc88953gATvBE7N9//73Iz883erz//vsCgHjmmWdEfn6+uHr1quuDs4M3v/tly5YJAGLHjh2OB+AET8UeHx8vQkNDjabFqKioEOHh4WLQoEEuikY6T3/3+mmRdu/e7ZoAZMD7v24KMXjwYHHbbbeJNWvWiIMHD4qnnnpKABAbN240lJk4caLw8/MTJ0+eNCyrrq4W3bt3F9HR0WLTpk0iNzdXJCcnm52wMT8/X/j7+4vk5GSRm5srNm3aJKKjo31mkl53x3/y5Emxbds2sW3bNpGUlCQAGJ4XFBR4LNam3B37+fPnxe233y7UarXYuHGjyaSVp0+f9mi8Tbk7/n//+99i4MCBYtWqVWLv3r1i//794vXXXxdRUVGiVatWRnV6mie2+6Z8ZaoQIdwf/6effioeeughsXr1arF//37x8ccfi2effVb4+fmJgQMHGs396Gme+O4///xzERgYKPr16ye2b98uduzYIfr37y8CAgKM5knzBk9u+zExMSI6Otqr37enMXnzkKtXr4qpU6eKtm3bisDAQNGrVy/x/vvvG5UZP368ACBOnDhhtLy4uFiMGzdOaLVaodFoRL9+/URubq7Zz9m/f7/o16+f0Gg0QqvVinHjxonz58+7Kyy7eSL+devWCQBmH+PHj3djdNa5O/b8/HyLcQMQL7/8spsjtM7d8RcXF4uxY8eKO+64QwQFBYnAwEBx++23i2eeeUb89ttv7g7PKk/93TfmS8mbu+P/6aefxNChQ0VkZKRQq9VCo9GInj17ikWLFnn9gNVT3/1nn30mBgwYIIKCgkRQUJAYOHCg1XnUPMVT8esnop83b567QvFJKiGEcOUwLBERERG5Dy9YICIiIpIRJm9EREREMsLkjYiIiEhGmLwRERERyQiTNyIiIiIZYfJGREREJCNM3oiIiIhkhMkbERERkYwweSMin3Dy5EmoVCqsX7/e5XXn5eXh7rvvRnBwMFQqFXbs2IH169dDpVLh5MmTLv+8xjp06IAJEya49TPk4LvvvsP8+fPdvr6JlMDf2w0gInInIQQeffRRdOnSBR9//DGCg4PRtWtX1NXV4ciRIwgPD/d2ExXhu+++Q2ZmJhISEtChQwdvN4dI1pi8EdFN7dy5cygrK0NycjIGDRpk9FqrVq281Crv0ul0UKlU8Pc3/QmorKxEUFCQF1pFRPbisCkRudXPP/+M1NRUdO7cGUFBQYiMjMTw4cNRWFho870XL17E008/jejoaKjVarRq1Qr33XcfDhw4YNdnz58/H1FRUQCAWbNmQaVSGXp9zA2bJiQkoEePHigoKED//v0RFBSE22+/HUuXLsX169cN5aqrqzFz5kz07t0bt956K7RaLeLj47Fz5077V4wNmzdvRnx8PEJCQhASEoLevXtj7dq1htctDccmJCQgISHB8PzQoUNQqVR47733MHPmTERGRkKtVuPnn3/GhAkTEBISgsLCQgwZMgTNmzc3JLi1tbVYuHAhYmJiDOs+NTUVFy9eNPq8Dh06YNiwYdi7dy/uuusuNGvWDDExMXjnnXcMZdavX49HHnkEAJCYmAiVSuW2IXIiJWDPGxG51blz5xAaGoqlS5eiVatWKCsrw4YNG9C3b1/83//9H7p27WrxvU8++SSOHTuGRYsWoUuXLrh8+TKOHTuG0tJSuz570qRJiI2NRUpKCp5//nmMGTMGarXa6nuKi4vxxBNPYObMmXj55Zexfft2zJ49GxERERg3bhwAoKamBmVlZfjrX/+KyMhI1NbW4sCBA0hJScG6desM5Rw1b948vPLKK0hJScHMmTNx6623oqioCKdOnXK4ztmzZyM+Ph6rV6/GLbfcgtatWwNoSNL+9Kc/4S9/+QvS09NRV1eH69evY8SIEfjss8+QlpaGe++9F6dOncLLL7+MhIQE/O///i+aNWtmqPvf//43Zs6cifT0dLRp0wZvv/02/vznP6NTp0544IEH8Mc//hGLFy/GSy+9hOzsbNx1110AgDvuuMOp9USkWIKIyIPq6upEbW2t6Ny5s3jhhRcMy0+cOCEAiHXr1hmWhYSEiOnTpzv1efp6X3vtNaPl69atEwDEiRMnDMsGDBggAIijR48ale3WrZt46KGHrMak0+nEn//8Z3HnnXcavda+fXsxfvx4u9v766+/Cj8/P/HEE09YLWep3gEDBogBAwYYnufn5wsA4oEHHjApO378eAFAvPPOO0bL33//fQFAfPTRR0bLCwoKBACxatUqo3ZoNBpx6tQpw7Kqqiqh1WrFX/7yF8Oybdu2CQAiPz/falxEZBuHTYnIrerq6rB48WJ069YNgYGB8Pf3R2BgIH766Sd8//33Vt/bp08frF+/HgsXLsSXX34JnU7n9va2bdsWffr0MVrWq1cvk16vbdu24b777kNISAj8/f0REBCAtWvX2ozJltzcXNTX12PKlClO1dPUww8/bPdru3btQsuWLTF8+HDU1dUZHr1790bbtm1x6NAho/K9e/dGu3btDM81Gg26dOniVE8hEVnG5I2I3GrGjBmYO3cuRo4ciU8++QRHjx5FQUEBYmNjUVVVZfW9W7duxfjx4/H2228jPj4eWq0W48aNQ3FxsdvaGxoaarJMrVYbtTUnJwePPvooIiMjsXHjRhw5cgQFBQWYOHEiqqurnfp8/Tll+nP1XMXSVbVBQUFo0aKF0bLz58/j8uXLCAwMREBAgNGjuLgYJSUlRuXtWWdE5Do8542I3Grjxo0YN24cFi9ebLS8pKQELVu2tPresLAwLF++HMuXL8dvv/2Gjz/+GOnp6bhw4QL27t3rxlZbt3HjRnTs2BFbt26FSqUyLK+pqXG6bv0VsGfOnEF0dLTFchqNxuznlZSUICwszGR543baWh4WFobQ0FCL67h58+YW20VE7sfkjYjcSqVSmVwk8K9//Qtnz55Fp06d7K6nXbt2eO6555CXl4fPP//c1c2URKVSITAw0CjxKS4udsnVpkOGDIGfnx/eeustxMfHWyzXoUMH/Oc//zFa9uOPP+KHH34wm7xJMWzYMGzZsgX19fXo27evU3Xp6bcB9sYROY/JGxG51bBhw7B+/XrExMSgV69e+Prrr/Haa6/ZHBa8cuUKEhMTMWbMGMTExKB58+YoKCjA3r17kZKS4qHWmzds2DDk5ORg8uTJGDVqFE6fPo1XXnkF4eHh+Omnn5yqu0OHDnjppZfwyiuvoKqqCo8//jhuvfVWfPfddygpKUFmZiaAhitxx44di8mTJ+Phhx/GqVOn8Oqrr7pk7rrRo0dj06ZNGDp0KKZNm4Y+ffogICAAZ86cQX5+PkaMGIHk5GRJdfbo0QMAsGbNGjRv3hwajQYdO3Y0O+RKRNYxeSMit1qxYgUCAgKwZMkSXLt2DXfddRdycnKQkZFh9X0ajQZ9+/bFe++9h5MnT0Kn06Fdu3aYNWsW0tLSPNR681JTU3HhwgWsXr0a77zzDm6//Xakp6fjzJkzhuTKGQsWLEDnzp2xcuVKPPHEE/D390fnzp0xdepUQ5kxY8bg3LlzWL16NdatW4cePXrgrbfecsnn+/n54eOPP8aKFSvw3nvvYcmSJfD390dUVBQGDBiAnj17Sq6zY8eOWL58OVasWIGEhATU19dj3bp1vHUYkQNUQgjh7UYQERERkX14tSkRERGRjHDYlIhkSQiB+vp6q2X8/PwsXmXpDfX19bA22KFSqeDn5+fBFhGRHLHnjYhkacOGDSZzkDV9HD582NvNNHLHHXdYba/+vqJERNbwnDcikqXS0lKcOHHCapmuXbv61JxkhYWFVueCa968udV7vRIRAUzeiIiIiGSFw6ZEREREMsLkjYiIiEhGmLwRERERyQiTNyIiIiIZYfJGREREJCNM3oiIiIhkhMkbERERkYz8f0wIZ+dZ+lvBAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean_total.plot.errorbar(ax=ax, yerr = Ncount_std_total, fmt='ob')\n", "plt.ylim([0, 3500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.075 - 0.100 A" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.075 , 0.0759, 0.0768, 0.0777, 0.0786, 0.0795, 0.0804, 0.0813,\n", " 0.0822, 0.0831, 0.084 , 0.0849, 0.0858, 0.0867, 0.0876, 0.0885,\n", " 0.0894, 0.0903, 0.0912, 0.0921, 0.093 , 0.0939, 0.0948, 0.0957,\n", " 0.0966, 0.0975, 0.0984, 0.0993, 0.1002, 0.1011]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABffklEQVR4nO3df1xUVf4/8NcVcIYfIg4oAuKPtGRJQGP9wW4opCKZrjLhrpkVuFibJpq2iIIGpmifqDQXay0TN8pKA9tcFZGQ2izjW7sbaNZuqSmmCKgoODDg/f4xzcgwAwwwvy68no8HD5lzzz1z7nvv5ttz7j1HEEVRBBERERFJQi9bd4CIiIiITMfkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSECZvRERERBJid8nbG2+8AUEQ4ObmplceFxcHQRAMfgICAoy2s3XrVgQEBEAmk2HYsGFIT0+HWq02qFdRUYG4uDh4eXnBxcUFYWFhKCwstMi1EREREXWVo6070Fx5eTmeeeYZ+Pr64tq1awbHnZ2d8fHHHxuUtbRhwwasWbMGycnJiIqKQklJCVJTU1FeXo7t27fr6tXX12Py5Mm4evUqtmzZggEDBiArKwvR0dE4cuQIJk2aZP6LJCIiIuoCwZ72Np05cyYEQYBCocDevXtx48YN3bG4uDiDMmOqqqowaNAgPProo/jrX/+qK8/IyEBqairKysoQGBgIANi2bRsWL16MY8eOISwsDADQ2NiIkJAQuLm54fjx4xa4SiIiIqLOs5tp05ycHBQXF2Pbtm1daufQoUNQqVSIj4/XK4+Pj4coiti3b5+uLC8vDyNHjtQlbgDg6OiI+fPn48svv0R5eXmX+kJERERkbnYxbVpRUYFly5Zh06ZNGDRoUKv1bt68iYEDB+Ly5cvw8fHB7NmzsW7dOigUCl2dsrIyAEBQUJDeuT4+PvDy8tId19YNDw83+J7g4GAAwIkTJ+Dn52e0L/X19aivr9d9vnXrFqqrq+Hp6QlBEEy4aiIiIqLbRFHE9evX4evri169Wh9fs4vkbdGiRRg5ciSefPLJVuuEhIQgJCQEo0aNAgAUFxfj5ZdfRmFhIUpKSnQvOFRVVUEmk8HV1dWgDYVCgaqqKt3nqqoqvcSveT3t8dZs3LgR6enppl0gERERkYnOnTvX5mCWzZO3Dz74AB999BH+9a9/tTli9fTTT+t9njp1KsaMGYPY2Fi8/vrresfbaqflsY7UbW7VqlVYvny57vO1a9cwePBgnD59Gn369Gn1vM5Sq9UoKipCZGQknJyczN4+6WO8rY8xty7G2/oYc+uTWsyvX7+OYcOGtZtH2DR5u3HjBhYvXowlS5bA19cXV69eBQA0NDQAAK5evQonJyejo2gAEBMTA1dXV3zxxRe6Mk9PT6hUKtTV1cHFxUWvfnV1NUJDQ/XqGhtdq66uBgCjo3JaMpkMMpnMoFyhUMDd3b3V8zpLrVbDxcUFnp6ekrgBpY7xtj7G3LoYb+tjzK1PajHX9rG9x69s+sJCZWUlLl26hBdffBH9+vXT/ezevRu1tbXo168fHn744TbbEEVRb15Y+6xbaWmpXr2LFy+isrJSN+2qrduyXvNzm9clIiIisgc2HXkbOHAgioqKDMo3bdqE4uJiHDx4EF5eXq2ev3fvXtTV1WHChAm6sujoaMjlcmRnZ2P8+PG68uzsbAiCgNmzZ+vKYmJisGjRIhw/flxXt7GxETk5ORg/fjx8fX3NcJVERERE5mPT5E0ulyMiIsKgPDs7Gw4ODrpjZ8+exbx58zB37lyMGDECgiCguLgYmzdvxt13342EhATduQqFAqmpqVizZg0UCoVukd60tDQkJCTo1ngDgAULFiArKwtz5szBpk2bMGDAAGzbtg3fffcdjhw5YunLJyIiIuowm7+wYAp3d3d4e3vjpZdewqVLl9DU1IQhQ4YgMTERq1evNngmLiUlBX369EFWVhYyMzMxcOBAJCcnIyUlRa+eTCZDYWEhkpKSsGTJEtTV1WH06NE4ePAgd1cgIiIiu2SXyVt2djays7N1n/v164fc3NwOtZGYmIjExMR263l7e2PXrl0d7SIRERGRTdjNDgtERERE1D4mb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSECZvRERERBLC5I2IiIhIQpi8EREREUkIkzciIiIiCWHyRkRERCQhTN6IiIiIJITJGxEREZGEMHkjIiIikhAmb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIuqnaWkAQND+1tbbuDZmL3SVvb7zxBgRBgJubm8Gxr7/+GlOmTIGbmxs8PDygVCrx448/Gm1n69atCAgIgEwmw7Bhw5Ceng61Wm1Qr6KiAnFxcfDy8oKLiwvCwsJQWFho9usiIiIiMge7St7Ky8vxzDPPwNfX1+DYqVOnEBERgYaGBrz//vt488038f333yM8PByXL1/Wq7thwwYsXboUSqUS+fn5WLRoETIyMrB48WK9evX19Zg8eTIKCwuxZcsWfPjhh/D29kZ0dDSKi4steq1EREREneFo6w4096c//QkTJ06EQqHA3r179Y6tXbsWMpkM+/fvh7u7OwAgNDQUd955JzIzM/H8888DAKqqqrB+/XosXLgQGRkZAICIiAio1WqkpqZi2bJlCAwMBADs2LEDZWVlOHbsGMLCwgAAkZGRCAkJQVJSEo4fP26tSyciIiIyid2MvOXk5KC4uBjbtm0zONbY2Ij9+/fjwQcf1CVuADBkyBBERkYiLy9PV3bo0CGoVCrEx8frtREfHw9RFLFv3z5dWV5eHkaOHKlL3ADA0dER8+fPx5dffony8nIzXiERERFR19nFyFtFRQWWLVuGTZs2YdCgQQbHf/jhB9y8eRPBwcEGx4KDg1FQUACVSgW5XI6ysjIAQFBQkF49Hx8feHl56Y4DQFlZGcLDw422CQAnTpyAn5+f0T7X19ejvr5e97mmpgYAoFarjT5b11XaNi3RNhlivK2PMbcuxtv6bBFzzVc56b63p/3PLbX73NR+2kXytmjRIowcORJPPvmk0eNVVVUAAIVCYXBMoVBAFEVcuXIFPj4+qKqqgkwmg6urq9G62ra07bbWZvPvNWbjxo1IT083KD98+DBcXFxaPa+rCgoKLNY2GWK8rY8xty7G2/qsGXOVygHADABAfn4+5PImq323PZHKfV5XV2dSPZsnbx988AE++ugj/Otf/4IgCG3Wbet482Om1uto3eZWrVqF5cuX6z7X1NTA398fUVFRelO75qJWq1FQUICpU6fCycnJ7O2TPsbb+hhz62K8rc8WMW++PMi0adNgZFyjW5Pafa6dxWuPTZO3GzduYPHixViyZAl8fX1x9epVAEBDQwMA4OrVq3BycoKnpycA4yNh1dXVEAQBHh4eAABPT0+oVCrU1dUZjIBVV1cjNDRU99nT07PVNgHjI31aMpkMMpnMoNzJycmiN4il2yd9jLf1MebWxXhbnzVj3vxrNN9rla+1O1K5z03to01fWKisrMSlS5fw4osvol+/frqf3bt3o7a2Fv369cPDDz+M4cOHw9nZGaWlpQZtlJaWYsSIEZDL5QBuP+vWsu7FixdRWVmJUaNG6cqCgoJabROAXl0iIiIie2DT5G3gwIEoKioy+Jk2bRrkcjmKioqwfv16ODo6YubMmcjNzcX169d15//0008oKiqCUqnUlUVHR0MulyM7O1vvu7KzsyEIAmbPnq0ri4mJwalTp/SWBGlsbEROTg7Gjx9vdL05IiIiIluy6bSpXC5HRESEQXl2djYcHBz0jqWnp2Ps2LGYMWMGkpOToVKpsHbtWnh5eWHFihW6egqFAqmpqVizZg0UCgWioqJQUlKCtLQ0JCQk6NZ4A4AFCxYgKysLc+bMwaZNmzBgwABs27YN3333HY4cOWLJSyciIrK4pmbvJ3zyCRAVBTg42K4/ZB52s85bewICAnD06FE4OTkhNjYWcXFxGDFiBD755BP0799fr25KSgo2b96MvXv3IioqClu3bkVycjKysrL06slkMhQWFiIyMhJLlizBzJkz8fPPP+PgwYOYNGmSNS+PiIjIrHJzgWbjFZg+HRg6VFNO0mbzt02Nyc7ONpj2BDQ7Kpg6IpaYmIjExMR263l7e2PXrl0d7SIREZHdys0FYmMBUdQvLy/XlO/dCzR74ogkRjIjb0RERNS+piZg6VLDxA24XbZsmf6UKkkLkzciIqJu5NNPgfPnWz8uisC5c5p6JE1M3oiIiLqRn382bz2yP0zeiIiIuhEfH/PW66raWkAQND/Nd3ywJnvogzkxeSMiIupGwsOBQYM0iYoxggD4+2vqkensKQFk8kZERNSNODgAW7Zofm+ZwGk/b97M9d6kjMkbERFRN6NUapYDablR0KBBHVsmxF5Gm+yhHy0XPLbl27pM3oiIiLohpRI4efL25wMHgNOne+b6bl1NvOxtwWMmb0RERN1U86nRiRNtM1Vq6xGrzz/3QXDw7T0JOpp4aRc8Li/XL9cueGyLBI7JGxEREVmErUes8vIEPP/8WFy4oF9uauJlrwseM3kjIiIis7P1iFVTE7B8uXaoUf/NDVMTL3td8JjJGxEREZmVPYxYffopUF4uoGXi1rwf7SVe9rrgMZM3IiIiMit7GLEyR+JlbwseazF5IyIiIrOyhxErcyRe9rrgMZM3IiIiMitzj1h15o3V8HDAz08EYGTuFqYlXva64DGTNyIiIjIrc45YdfaNVQcH4KWXmn75Pv0EriOJl7kWPDYnJm9ERERkVuYaserqG6sxMSJWriwxGOHraOJlbwseM3kjIiIis+vqiJW53lgNC/sZ33zTqPvc2cTLHhY81mLyRkRE1E25umoSHVHU/N5RXd0doSsjVuZ8Y9WeEi9zYPJGREREBsy1O0JnEyd7eGO1ua4mwubE5I2IiIj02Hp3BMC8b6zaU+JlDkzeiIiISMcedkcA7HeNNXvA5I2IiIh07GF3BMB+11izB0zeiIiISMfcz5p1ZcrSHtdYswdM3oiIiOxQba1mhEkQNL9bi73t52lva6zZAyZvREREdqiry3R0lj0+a9bdlvroKiZvREREdsZcy3R0Bp81s39M3oiIiOyIPSzTwWfN7BuTNyIiIjthL8t0AHzWzJ4xeSMiIrIT9rJMhxafNbNPNk/e/v3vf+OBBx7A4MGD4ezsDIVCgbCwMOTk5OjVi4uLgyAIBj8BAQFG2926dSsCAgIgk8kwbNgwpKenQ61WG9SrqKhAXFwcvLy84OLigrCwMBQWFlrkWomIqGfo7Jui9rYlFNknR1t34OrVq/D398dDDz0EPz8/1NbW4u2338YjjzyCM2fOIDU1VVfX2dkZH3/8sd75zs7OBm1u2LABa9asQXJyMqKiolBSUoLU1FSUl5dj+/btunr19fWYPHkyrl69ii1btmDAgAHIyspCdHQ0jhw5gkmTJlnuwomIiFqwt2U67IV2rTjSsHnyFhERgYiICL2yGTNm4PTp09i+fbte8tarVy9MmDChzfaqqqqwfv16LFy4EBkZGbrvUKvVSE1NxbJlyxD4yys8O3bsQFlZGY4dO4awsDAAQGRkJEJCQpCUlITjx4+b8UqJiIjapl2mo7zceLIiCJrjPXFLKLrN5tOmrfHy8oKjY8dzy0OHDkGlUiE+Pl6vPD4+HqIoYt++fbqyvLw8jBw5Upe4AYCjoyPmz5+PL7/8EuUtX/UhIiKyIC7TQaaw+cib1q1bt3Dr1i1cuXIFe/bsQX5+Pv7yl7/o1bl58yYGDhyIy5cvw8fHB7Nnz8a6deugUCh0dcrKygAAQUFBeuf6+PjAy8tLd1xbN9zIP1+Cg4MBACdOnICfn5/R/tbX16O+vl73uaamBgCgVquNPlvXVdo2LdE2GWK8rY8xty7G27I0YXX65Xc11GrTYz5zJvDuuwKeftoBFy7czuD8/ES8+GITZs4UYa3/2Yxdh5RI7T43tZ92k7wtWrQIf/3rXwEAvXv3xiuvvIInnnhCdzwkJAQhISEYNWoUAKC4uBgvv/wyCgsLUVJSAjc3NwCaaVOZTAZXIxuoKRQKVFVV6T5XVVXpJX7N62mPt2bjxo1IT083KD98+DBcXFxMueROKSgosFjbZIjxtj7G3LoYb8uoq3MAMAMA8NJL/w+jR1foRstMiblMBmRmOmDePE0ba9Z8rmvjwAFL9dqQSnX7OvLz8yGXW2mbBzOTyn1eV1dnUj27Sd5Wr16NhIQEVFRU4KOPPsJTTz2F2tpaPPPMMwCAp59+Wq/+1KlTMWbMGMTGxuL111/XOy60tqeHkWMdqdvcqlWrsHz5ct3nmpoa+Pv7IyoqCu7u7q2e11lqtRoFBQWYOnUqnJyczN4+6WO8rY8xty7Gu221tUC/fpq4XLmi7tCG6nl5Ap555va85nPPhcHPT8QLLzTAxeWQyTFv/pbq8uW/7vCm7ubQvA/Tpk2zSR+6Qmr3uXYWrz12k7wNHjwYgwcPBgBMnz4dgCZBeuyxx9C/f3+j58TExMDV1RVffPGFrszT0xMqlQp1dXUGI2DV1dUIDQ3Vq2tsdK26uhoAjI7KaclkMshkMoNyJycni94glm6f9DHe1seYWxfjbVzzkGhiZNp5ubnA3LmGLxtcuCDg4Yd7IynJB9OnmxZzD4/m7djmf6POxsHeSOU+N7WPdvvCwrhx49DY2Igff/yxzXqiKKJXr9uXoX3WrbS0VK/exYsXUVlZqZt21dZtWa/5uc3rEhERtcWU3RF27BhltQ3mqfuy2+StqKgIvXr1wh133NFqnb1796Kurk5v+ZDo6GjI5XJkZ2fr1c3OzoYgCJg9e7auLCYmBqdOndJbEqSxsRE5OTkYP348fFtu6kZERD1C8wTrk09M246q/d0RBFRWuuCf/2z9kRx7o11fTRQhuSnT7szm06aPP/443N3dMW7cOHh7e6OyshJ79uzBe++9hz//+c/o378/zp49i3nz5mHu3LkYMWIEBEFAcXExNm/ejLvvvhsJCQm69hQKBVJTU7FmzRooFArdIr1paWlISEjQrfEGAAsWLEBWVhbmzJmDTZs2YcCAAdi2bRu+++47HDlyxBbhICIiG8vNBRITb3+ePl2zttqWLW3v68ndEchabJ68hYWFYefOndi1axeuXr0KNzc3hISE4K233sL8+fMBAO7u7vD29sZLL72ES5cuoampCUOGDEFiYiJWr15t8GZpSkoK+vTpg6ysLGRmZmLgwIFITk5GSkqKXj2ZTIbCwkIkJSVhyZIlqKurw+jRo3Hw4EHurkBE1APl5gKxsYZTn+XlmvK9e1tP4Lg7AlmLzZO3+Ph4gwV1W+rXrx9yc3M71G5iYiISm//TqRXe3t7YtWtXh9omIqLup71n1gQBWLYMmDXL+CK57e+OIMLT8ybuvdf+H5wn+2a3z7wRERFZU/vPrAHnzmnqGWPK7gh//GMZd0egLmPyRkREBPM8s6ZUaqZWW77vNmgQ8O67TQgL4wNv1HVM3oiIiGC+Z9aUSuDkydufDxwATp8GYmKMzKUSdQKTNyIiItx+Zq21zXUEAfD319RrT/Op0YkTuZE8mReTNyIiIpj2zNrmzUzEyPaYvBEREf2irWfW2lomhMiabL5UCBERkT1RKoEpU4C+fTWfDxwAoqI44kb2gyNvRERELfCZNbJnHHkjIiIyM+2eoESWwJE3IiIiIgnhyBsREVELHDkje8aRNyIiIiIJYfJGRETdSm2tZl02QdD8TtTdMHkjIiIikhAmb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9ERNStNDXd/v2TT/Q/E3UHTN6IiKjbyM0FAgNvf54+HRg6VFNO1F0weSMiom4hNxeIjQXKy/XLy8s15UzgqLtg8kZERJLX1AQsXQqIouExbdmyZZxCpe6ByRsREUnep58C58+3flwUgXPnNPWIpI7JGxERSd7PP5u3HpE9Y/JGRESS5+Nj3npE9ozJGxERSV54ODBoECAIxo8LAuDvr6lHJHVM3oiISPIcHIAtWzS/t0zgtJ83b9bUI5I6mydv//73v/HAAw9g8ODBcHZ2hkKhQFhYGHJycgzqfv3115gyZQrc3Nzg4eEBpVKJH3/80Wi7W7duRUBAAGQyGYYNG4b09HSo1WqDehUVFYiLi4OXlxdcXFwQFhaGwsJCs18nERFZllIJ7N0L+Prqlw8apClXKm3TLyJzs3nydvXqVfj7+yMjIwMHDhzA3/72NwwdOhSPPPII1q9fr6t36tQpREREoKGhAe+//z7efPNNfP/99wgPD8fly5f12tywYQOWLl0KpVKJ/Px8LFq0CBkZGVi8eLFevfr6ekyePBmFhYXYsmULPvzwQ3h7eyM6OhrFxcVWuX4iIjIfpRI4efL25wMHgNOnmbhR9+Jo6w5EREQgIiJCr2zGjBk4ffo0tm/fjtTUVADA2rVrIZPJsH//fri7uwMAQkNDceeddyIzMxPPP/88AKCqqgrr16/HwoULkZGRofsOtVqN1NRULFu2DIG/LL+9Y8cOlJWV4dixYwgLCwMAREZGIiQkBElJSTh+/Lg1QkBERGbUfGp04kROlVL3Y/ORt9Z4eXnB0VGTWzY2NmL//v148MEHdYkbAAwZMgSRkZHIy8vTlR06dAgqlQrx8fF67cXHx0MURezbt09XlpeXh5EjR+oSNwBwdHTE/Pnz8eWXX6K85TLdRERERDZm85E3rVu3buHWrVu4cuUK9uzZg/z8fPzlL38BAPzwww+4efMmgoODDc4LDg5GQUEBVCoV5HI5ysrKAABBQUF69Xx8fODl5aU7DgBlZWUIN/LqkfZ7Tpw4AT8/P6P9ra+vR319ve5zTU0NAECtVht9tq6rtG1aom0yxHhbH2NuXd053ppLcvrldzXs5RK7c8ztldRibmo/7SZ5W7RoEf76178CAHr37o1XXnkFTzzxBADNVCgAKBQKg/MUCgVEUcSVK1fg4+ODqqoqyGQyuLq6Gq2rbUvbbmttNv9eYzZu3Ij09HSD8sOHD8PFxaWtS+2SgoICi7VNhhhv62PMras7xlulcgAwAwCQn58Pudy+9sTqjjG3d1KJeV1dnUn17CZ5W716NRISElBRUYGPPvoITz31FGpra/HMM8/o6gitLeDT4pip9Tpat7lVq1Zh+fLlus81NTXw9/dHVFSU3tSuuajVahQUFGDq1KlwcnIye/ukj/G2PsbcurpzvGtrb/8+bdo0GPm3vE1055jbK6nFXDuL1x67Sd4GDx6MwYMHAwCmT58OQJMgPfbYY/D09ARgfCSsuroagiDAw8MDAODp6QmVSoW6ujqDEbDq6mqEhobqPnt6erbaJmB8pE9LJpNBJpMZlDs5OVn0BrF0+6SP8bY+xty6umO8m1+O5vps1xdjumPM7Z1UYm5qH+32hYVx48ahsbERP/74I4YPHw5nZ2eUlpYa1CstLcWIESMgl8sB3H7WrWXdixcvorKyEqNGjdKVBQUFtdomAL26RERERPbAbpO3oqIi9OrVC3fccQccHR0xc+ZM5Obm4vr167o6P/30E4qKiqBstoBPdHQ05HI5srOz9drLzs6GIAiYPXu2riwmJganTp3SWxKksbEROTk5GD9+PHxbrvRIREREZGM2nzZ9/PHH4e7ujnHjxsHb2xuVlZXYs2cP3nvvPfz5z39G//79AQDp6ekYO3YsZsyYgeTkZKhUKqxduxZeXl5YsWKFrj2FQoHU1FSsWbMGCoUCUVFRKCkpQVpaGhISEnRrvAHAggULkJWVhTlz5mDTpk0YMGAAtm3bhu+++w5HjhyxeiyIiKjrXF0BUbR1L4gsx+bJW1hYGHbu3Ildu3bh6tWrcHNzQ0hICN566y3Mnz9fVy8gIABHjx7FypUrERsbC0dHR9x3333IzMzUJXhaKSkp6NOnD7KyspCZmYmBAwciOTkZKSkpevVkMhkKCwuRlJSEJUuWoK6uDqNHj8bBgwcxadIkq1w/ERERUUfYPHmLj483WFC3NaGhoSaPiCUmJiIxMbHdet7e3ti1a5dJbRIRERHZmt0+80ZEREREhpi8EREREUkIkzciIiIiCWHyRkRERCQhTN6IiIiIJITJGxEREZGEMHkjIiIikhAmb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSECZvRERERBLC5I2IiIhIQpi8EREREUkIkzciIrIbNTWAIGh+Dh4Empps3SMi+8PkjYiI7EJuLhAYePvz9OnA0KGaciK6jckbERHZXG4uEBsLlJfrl5eXa8qZwBHdxuSNiIhsqqkJWLoUEEXDY9qyZcs4hUqk1enkbd26dbhw4YLRYz///DPWrVtnUjsff/wxFixYgICAALi6usLPzw+zZs3CV199pVcvLi4OgiAY/AQEBBhtd+vWrQgICIBMJsOwYcOQnp4OtVptUK+iogJxcXHw8vKCi4sLwsLCUFhYaFLfiYio6z79FDh/vvXjogicO6epR0RdSN7S09NxvpX/t124cAHp6ekmtfPqq6/izJkzWLp0KQ4cOIAtW7agoqICEyZMwMcff6xX19nZGZ9//rnez3vvvWfQ5oYNG7B06VIolUrk5+dj0aJFyMjIwOLFi/Xq1dfXY/LkySgsLMSWLVvw4YcfwtvbG9HR0SguLjYxEkQdU1t7+4Hs2lpb94bI9n7+2bz1iLo7x86eKBob3/7FjRs34OTkZFI7WVlZGDBggF5ZdHQ0RowYgYyMDNx333268l69emHChAlttldVVYX169dj4cKFyMjIAABERERArVYjNTUVy5YtQ+AvT8Tu2LEDZWVlOHbsGMLCwgAAkZGRCAkJQVJSEo4fP27SNRARUef5+Ji3HlF316Hk7ZtvvsG///1v3ecDBw7g1KlTenVu3ryJt99+G8OHDzepzZaJGwC4ubkhMDAQ586d60j3AACHDh2CSqVCfHy8Xnl8fDxSUlKwb98+XfKWl5eHkSNH6hI3AHB0dMT8+fOxevVqlJeXw8/Pr8N9ICIi04WHA4MGaV5OMDYuIAia4+Hh1u8bkT3qUPKWl5enmw4VBKHV59qcnZ2xc+fOTnfq2rVr+Prrr/VG3QBNYjhw4EBcvnwZPj4+mD17NtatWweFQqGrU1ZWBgAICgrSO9fHxwdeXl6649q64Ub+axAcHAwAOHHiRKvJW319Perr63Wfa2pqAABqtdros3VdpW3TEm1bS20t0K+fZkT2yhU1XF1t3KE2WDLemiaddO1L+H9Ss+oO97iU2Fu8X3xRwNy5DhAEQBQFXbkgaLK5zMwm3Lol4tYtW/Ww6+wt5j2B1GJuaj87lLw9/vjjmDFjBkRRxLhx47Bz506MGjVKr45MJsPw4cPh7Ozckab1LF68GLW1tUhJSdGVhYSEICQkRPd9xcXFePnll1FYWIiSkhK4ubkB0EybymQyuBrJDBQKBaqqqnSfq6qq9BK/5vW0x1uzceNGo8/1HT58GC4uLiZeaccVFBRYrG1LU6kcAMwAAOTn50Mut/9XxywRbynGwZqkfI9Lkb3EWyYDkpJ88PrrQaiuvv33h6fnTfzxj2WQyX7GgQM27KAZ2UvMexKpxLyurs6keh1K3nx8fODzy0MHRUVFCA0N1SVN5rJmzRq8/fbb2Lp1K0JDQ3XlTz/9tF69qVOnYsyYMYiNjcXrr7+ud1wQBLSm5bGO1G1u1apVWL58ue5zTU0N/P39ERUVBXd391bP6yy1Wo2CggJMnTrV5OcJ7U3zh/OnTZtm9yNvloq3lOJgTd3hHpcSe4z39OlAWhrwz3824uefNc+43XuvExwcxgAYY+vudZk9xry7k1rMtbN47en0CwuTJk3q7KmtSk9Px/r167FhwwY89dRT7daPiYmBq6srvvjiC12Zp6cnVCoV6urqDEbAqqur9RJCT09Po6Nr1dXVAGB0VE5LJpNBJpMZlDs5OVn0BrF0+5bUvNua67BdX0xliXhLMQ7WJOV7XIrsLd5OTsCUKbbuhWXZW8x7AqnE3NQ+djp5A4CcnBy88847OHv2LG7evKl3TBAE/PDDDya3lZ6ejrS0NKSlpWH16tUmnyeKInr1ur3iifZZt9LSUowfP15XfvHiRVRWVupN8wYFBaG0tNSgTW1ZyylhIiIiIlvrdPL2/PPPY9WqVQgMDERISIjRUShTPffcc0hLS0NqaiqeffZZk8/bu3cv6urq9JYPiY6OhlwuR3Z2tl7ylp2dDUEQMHv2bF1ZTEwMFi1ahOPHj+vqNjY2IicnB+PHj4evr2+nr4mIiIjIEjqdvG3fvh2LFy/G1q1bu9SBF198EWvXrkV0dDQeeOABvSlQAJgwYQLOnj2LefPmYe7cuRgxYgQEQUBxcTE2b96Mu+++GwkJCbr6CoUCqampWLNmDRQKBaKiolBSUoK0tDQkJCTolgkBgAULFiArKwtz5szBpk2bMGDAAGzbtg3fffcdjhw50qXrIiIiIrKETidvFy9eRExMTJc78NFHHwHQrM926NAhg+OiKMLd3R3e3t546aWXcOnSJTQ1NWHIkCFITEzE6tWrDd4sTUlJQZ8+fZCVlYXMzEwMHDgQycnJem+vAprn1goLC5GUlIQlS5agrq4Oo0ePxsGDBy3yTB8RoL8/4yefAFFRgIOD7fpDRETS0unkLTQ0FD/88IPBWmwddfTo0Xbr9OvXD7m5uR1qNzExEYmJie3W8/b2xq5duzrUNlFn5eYCzW/L6dM1i49u2QIolbbrFxERSUen9zZ96aWX8OKLLxpsIE/UmpYjTk09bHmz3FwgNlazinxz5eWa8g7++4SIiHqoTidv8fHxqKqqwrhx4+Dn54fg4GC9n5CQEHP2kyQuNxdo9rghpk8Hhg7tOQlLUxOwdKnxrX+0ZcuW9byEloiIOq7T06aenp7w8vIyZ1+om9KOOLVMXLQjTnv3dv8pw08/Bc6fb/24KALnzmnqRURYrVtERCRBnU7eTHlWjai9ESdB0Iw4zZpl2kP7tbWAdlOPGzcgmd0Jfv7ZvPWIiKjn6vS0KZEpOjLi1J39squc2eoREVHP1emRt08++aTdOhMnTuxs89RNcMRJIzxc81ZpebnxUUhB0BwPD7d+34iISFo6nbxFRES0uXE7ADTx6esejyNOGg4OmuVAYmM1iVrzBE77f6PNm7neGxERta/TyVtRUZFBWWVlJT788EN89tlnyMrK6lLH6DbNc15OAGbhyhU1PDxs3SPTccTpNqVS83JGYqL+ciGDBmkSt+7+0gYREZlHp5O31nYgePDBB/GnP/0Jhw4dQnR0dKc7Rt2DuUecpL47gVIJTJkC9O2r+XzggPSugYiIbMsiLyzExMTg3XfftUTTJEHaESdfX/3yQYM6tkxId1krrnmiNnEiEzciIuoYiyRvV65cQX19vSWapk6qqdGMdAkCcPBgxxeDra29fX5tbce/X6kETp68/fnAAeD06Y4lbtydgIiIqAvTpj/99JNBWX19Pb755husWrUKEyZM6FLHyHzsZT/Nzo44mXutOCIiIinrdPI2dOhQo2+biqKIkSNH4i9/+UuXOkbm0R12N+DuBERERLd1Onl78803DZI3uVyOoUOHYuzYsejVi+v/mkvzKc5//lPA/febNsJkzhErW74owLXiiIiIbut08hYXF2fGblBrWk55zpzpaPKUp7lGrGw97cq14oiIiG7r8vDY9evXcfjwYezevRsFBQW4fv26OfpF6PpD+uYYsbKHFwW0a8W1tia0IAD+/j1jrTgiIqIuJW+ZmZnw9fXF/fffj4cffhjTpk2Dr68vXnrpJXP1r8dqb8oT0Ex5tvXWaFdHrMzRB3PQrhUHGCZw3J2AiIh6mk4nb3/729+QlJSEiRMn4t1338Wnn36K9957D5MmTcKf//xnvPXWW+bsZ49jjg3duzpiZU+byptrrTgiIiKp6/Qzby+//DLmzZuHnJwcvfI5c+Zg/vz5ePnll/HII490uYM9lTmmPLu6u4G9vShgL7sTaLYr0/x+4wbg6tqx811djY9mEhERmaLTI2+nTp3C/PnzjR6bP38+vv322053isz3kH5XRqzM/aKANmkRxY4nPFrcnYCIiHq6Tidvzs7OqK6uNnqsuroazs7One4Umfch/c7ubsAXBYiIiOxPp5O38PBwpKWl4cKFC3rlFy9exLp16zBx4sQud64nM/dD+u7ut0e9TF0nrju+KNDUBBw9CuzerfnT0i9bEBERmVunk7eMjAxcunQJI0aMwMyZM/H4449j5syZGD58OC5evIiMjAxz9rNHsoeH9O2hD+aSm6vZyD4yEpg3T/OnFDe2JyKinq3Tydvdd9+NkpISzJo1CyUlJdi5cydKSkowe/ZsfPnllwgMDDRnP3usllOeH33U2KEN3S3Rh45uKm9OnX1uTrteXcu3ZzuzXl3L3SY4ekdERNbU6bdNAeCuu+7C7t27zdUXakXzacl77xVtMk0p5RcFzLlNmK13myAiIurwyFtpaSnOt7H41/nz51FaWtqlTpH9MceborZirvXq7GG3CSIiog4lb5988glCQ0Nx6dKlVutcunQJoaGhyM/P73LniMzBHOvV2ctuE0RERB1K3rKyshAbG4vQ0NBW64SGhuIPf/gD3njjjS53jsgczLFenT3tNkFERD1bh5K3zz77DLNnz2633u9+9zt88cUXne0TteDqCjQ0qLFv34eSm7K0B+ZYr87edpsgIqKeq0PJ2+XLl+Hn59duPR8fH1RUVHS6U0TmZI716sy92wQREVFndSh5c3V1bXVXheauXLkCFxeXTneKyNy069W1/LeHqevVcbcJIiKyFx1K3u6++24cOnSo3XoHDx7E3XffbVKbH3/8MRYsWICAgAC4urrCz88Ps2bNwldffWVQ9+uvv8aUKVPg5uYGDw8PKJVK/Pjjj0bb3bp1KwICAiCTyTBs2DCkp6dDrVYb1KuoqEBcXBy8vLzg4uKCsLAwFBYWmtR3khalEjhzBigqAt55R/OnqevVdcfdJoiISJo6lLz94Q9/wI4dO1BcXNxqnaKiIuzcuRMPPfSQSW2++uqrOHPmDJYuXYoDBw5gy5YtqKiowIQJE/Dxxx/r6p06dQoRERFoaGjA+++/jzfffBPff/89wsPDcfnyZb02N2zYgKVLl0KpVCI/Px+LFi1CRkYGFi9erFevvr4ekydPRmFhIbZs2YIPP/wQ3t7eiI6ObvMaSbocHICICOChhzR/diTZ6k67TRARkYSJHVBfXy+GhoaKvXv3FhctWiTm5+eL33//vfj999+L+fn54pNPPin27t1bHDt2rFhfX29Sm5cuXTIou379uujt7S1OnjxZVzZnzhzRy8tLvHbtmq7szJkzopOTk5iUlKQrq6ysFOVyufj444/rtblhwwZREATxxIkTurKsrCwRgHjs2DFdmVqtFgMDA8Vx48aZ1H+ta9euiQD0+mdODQ0N4r59+8SGhgaLtE/62or3tWvaFe9E8cABUWxstEEHuyHe49bFeFsfY259Uou5qblEh0beevfujfz8fEyePBmvvvoq7r//fgQEBCAgIAD3338/XnvtNUyZMgUHDx5E7969TWpzwIABBmVubm4IDAzEuXPnAACNjY3Yv38/HnzwQbi7u+vqDRkyBJGRkcjLy9OVHTp0CCqVCvHx8XptxsfHQxRF7Nu3T1eWl5eHkSNHIiwsTFfm6OiI+fPn48svv0R5y9VYiSDt3SaIiEj6Orw9lqenJw4cOICvvvoKhw8f1iVYgwcPxrRp0zBmzJgud+ratWv4+uuvcd999wEAfvjhB9y8eRPBwcEGdYODg1FQUACVSgW5XI6ysjIAQFBQkF49Hx8feHl56Y4DQFlZGcKNPGGu/Z4TJ060+nZtfX096uvrdZ9ramoAAGq12uizdV2lbdMSbZOhtuKtKXLSHef/JObBe9y6GG/rY8ytT2oxN7Wfnd7bNDQ0tM3Ferti8eLFqK2tRUpKCgCgqqoKAKBQKAzqKhQKiKKIK1euwMfHB1VVVZDJZHA1siCaQqHQtaVtt7U2m3+vMRs3bkR6erpB+eHDhy36pm1BQYHF2iZDxuKtUjkAmAEAyM/Ph1xu/W0VmpqAkyc9ceWKHP36qRAYWNVtRgB5j1sX4219jLn1SSXmdXV1JtXrUPJmbOSrNYIg4D//+U9HmgcArFmzBm+//Ta2bt1qkBwKra3T0OKYqfU6Wre5VatWYfny5brPNTU18Pf3R1RUlN7Urrmo1WoUFBRg6tSpcHJyMnv7pK+9eDc0aP91NM26HQOQlydg+XIHlJffvj/9/ES89FITYmKM7N8lEbzHrYvxtj7G3PqkFnPtLF57OpS8KRSKNhMaALhx4wa++uqrdusZk56ejvXr12PDhg146qmndOWenp4AjI+EVVdXQxAEeHh46OqqVCrU1dUZjIBVV1frJYSenp6ttgkYH+nTkslkkMlkBuVOTk4WvUEs3T7ps7d45+YCc+ca7rF64YKAuXMdu8Vbr/YW8+6O8bY+xtz6pBJzU/vYoeTt6NGjrR5rbGzE9u3bsW7dOgiCgHnz5nWkaaSnpyMtLQ1paWlYvXq13rHhw4fD2dkZpaWlBueVlpZixIgRkMvlAG4/61ZaWorx48fr6l28eBGVlZUYNWqUriwoKKjVNgHo1SWytaYmYOlSw8QN0JQJArBsGTBrFl+iICLqzjr0tmlr9uzZg8DAQCxZsgQhISH46quv8NZbb5l8/nPPPYe0tDSkpqbi2WefNTju6OiImTNnIjc3F9evX9eV//TTTygqKoKy2VBDdHQ05HI5srOz9drIzs6GIAh6e7PGxMTg1KlTOH78uK6ssbEROTk5GD9+PHxbLuhFZEOffgqcP9/6cVEEzp3T1CMiou6r0y8sAJqRuJUrV6KkpAT33HMPDh8+jMmTJ3eojRdffBFr165FdHQ0HnjgAYMN7SdMmABAMzI3duxYzJgxA8nJyVCpVFi7di28vLywYsUKXX2FQoHU1FSsWbMGCoUCUVFRKCkpQVpaGhISEhAYGKiru2DBAmRlZWHOnDnYtGkTBgwYgG3btuG7777DkSNHuhAZIvMzddN7U+sREZE0dSp5Ky0txcqVK5Gfn49hw4bhnXfewdy5czvVgY8++giAZn02Y1tvib/MEQUEBOiSxdjYWDg6OuK+++5DZmYm+vfvr3dOSkoK+vTpg6ysLGRmZmLgwIFITk7Wvb2qJZPJUFhYiKSkJCxZsgR1dXUYPXo0Dh48iEmTJnXqeogsxdRN702tR0RE0tSh5O3cuXNITU3FO++8A4VCgc2bN+NPf/pTlx4CbOs5upZCQ0NNHhFLTExEYmJiu/W8vb2xa9cuk/tAZCvh4ZqtuMrLjT/3Jgia40aWLiQiom6kQ8nbXXfdhYaGBkRHRyMpKQl9+vQx+sC/1j333NPlDhKRhoMDsGULEBurSdSaJ3Dal7s3b+bLCkRE3V2HkjftjgIHDx40OsWpJYoiBEFAU5P1Fy8l6s6USmDvXs1bp81fXhg0SJO4SX2ZECIial+HkredO3daqh9EZCKlUrMcyKefal5O8PHRTJVyxI2IqGfoUPL22GOPWaofRNQBDg5ARISte0FERLZglnXeiIiIiMg6urTOGxFJV1MTp16JiKSIyRtRD5SbCyQmapYd0Ro0SPM2K196ICKyb5w2JephcnM1y400T9wAzefYWM1xIiKyX0zeiHqQ9ja3BzSb23OVHyIi+8XkjagHMefm9rW1msWBBUHzOxGgSfyPHgV279b8yX8IEJkfkzeiHsScm9s3/0v5k0/4lzRpptyHDgUiI4F58zR/Dh3KqXgic2PyRtSDmGtz+9xcIDDw9ufp0/mXdE+nfZay5cgun6UkMj8mb0Q9iHZze+1eqC0JAuDv3/bm9nzhgVris5RE1sXkjagH0W5uDxgmcKZsbs+/pMkYcz5LSUTtY/JG1MNoN7f389MvHzRIU97WOm/8S5qMMeezlETUPi7SS9QDdXZze/4lTcaY61lKIjINkzeiHqozm9vzL2kyRvssZXm58Sl1QdAcb+tZSiIyHadNichk5njhgbqfrj5LSUQdw+SNiEzGv6SpNV15lpKIOobJGxF1iPYvaV9f/XL+JU1KJXDmDFBUBLzzjubP06d5TxCZG595I6IOUyqBKVOAvn01nw8cAKKiOOJGnXuWkog6hskbEXWKu7vxh9M7orYWcHPT/H7lStf7RETUE3DalIgkraZG87ydIAAHD3KBYCLq/pi8EZFkcY9VIuqJmLwRkSRxj1Ui6qmYvBGR5HCPVSLqyZi8EZHkcI9VIurJmLwRkc00Hxn75z8Fk0fKuMcqEfVkTN6IyCZavmwwc6YjHn88Cnl5rey91Qz3WCWinozrvBGR1WlfNmj5zFpVlRxz5wKOjm2vym9vG6E3NWmmaH/+WZMwhodzwWIishybj7xdv34dSUlJiIqKQv/+/SEIAtLS0gzqxcXFQRAEg5+AgACj7W7duhUBAQGQyWQYNmwY0tPToVarDepVVFQgLi4OXl5ecHFxQVhYGAoLC819mUT0i7ZeNgA0o27tvWxgT3us5uZqlieJjATmzdP8yeVKiMiSbJ68VVVVYfv27aivr8fs2bPbrOvs7IzPP/9c7+e9994zqLdhwwYsXboUSqUS+fn5WLRoETIyMrB48WK9evX19Zg8eTIKCwuxZcsWfPjhh/D29kZ0dDSKi4vNeZlE9Iv2XzYQTHrZwFx7rNbW3l7kt7bWtHO0tCOILa+Hy5UQkSXZfNp0yJAhuHLlCgRBQGVlJd54441W6/bq1QsTJkxos72qqiqsX78eCxcuREZGBgAgIiICarUaqampWLZsGQJ/edBmx44dKCsrw7FjxxAWFgYAiIyMREhICJKSknD8+HEzXSURaZnzZQOlEpg1yzZTlu0tVyIImhHEWbM4hUpE5mXzkTft9Ke5HDp0CCqVCvHx8Xrl8fHxEEUR+/bt05Xl5eVh5MiRusQNABwdHTF//nx8+eWXKG+5+icRdZm5XzbQboT+0EOaP62VKHG5EiKyFZuPvHXEzZs3MXDgQFy+fBk+Pj6YPXs21q1bB4VCoatTVlYGAAgKCtI718fHB15eXrrj2rrhRp5oDg4OBgCcOHECfn5+RvtSX1+P+vp63eeamhoAgFqtNvpsXVdp27RE22SI8bacCRMAPz9HXLigmSJtSRBE+PkBEyY0whrh13yH0y+/q03+znPnBJjyn9Bz5xqhVht9wM+meI9bH2NufVKLuan9lEzyFhISgpCQEIwaNQoAUFxcjJdffhmFhYUoKSmBm5sbAM20qUwmg6urq0EbCoUCVVVVus9VVVV6iV/zetrjrdm4cSPS09MNyg8fPgwXF5eOXVwHFBQUWKxtMsR4W8b8+T54/vmxAERoX1LQECGKwMMPlyA/3zqLtKlUDgBmAADy8/Mhl5u22NzZs54A7jWh3hc4cKD1/5bYGu9x62PMrU8qMa+rqzOpnmSSt6efflrv89SpUzFmzBjExsbi9ddf1zve1jRsy2MdqdvcqlWrsHz5ct3nmpoa+Pv7IyoqCu7u7q2e11lqtRoFBQWYOnUqnJyczN4+6WO8LWv6dOCee5rw9NMOuHDhdrmX10288ooDYmPHABhjlb40f0lh2rRpMPLvPqOmTQNee01sdwTxmWfG2+Uzb7zHrY8xtz6pxVw7i9ceySRvxsTExMDV1RVffPGFrszT0xMqlQp1dXUGI2DV1dUIDQ3Vq2tsdK26uhoAjI7KaclkMshkMoNyJycni94glm6f9DHelvP73wPR0UDfvprPH33UiIaGAsycOd2qMe/V7Mnfzz93QlSUac/NOTkBr7yieatUEPRfXND8u0/Ali2AXG7f9w/vcetjzK1PKjE3tY82f2Ghq0RRRK9m//XVPutWWlqqV+/ixYuorKzUTbtq67as1/zc5nWJyPyaJ0n33itafYSq5S4P06d3bI027XIlLR+N7ehyJUREHSHp5G3v3r2oq6vTWz4kOjoacrkc2dnZenWzs7MhCILeWnIxMTE4deqU3pIgjY2NyMnJwfjx4+HbcgEpIuo2tGu0tXypvKNrtCmVwJkzQFER8M47mj9Pn2biRkSWYxfTpgcPHkRtbS2uX78OADh58iT27t0LAJg+fTouX76MefPmYe7cuRgxYgQEQUBxcTE2b96Mu+++GwkJCbq2FAoFUlNTsWbNGigUCkRFRaGkpARpaWlISEjQrfEGAAsWLEBWVhbmzJmDTZs2YcCAAdi2bRu+++47HDlyxLpBICKrMfcabdrlSrraJ26xRUSmsIvk7cknn8TZs2d1n/fs2YM9e/YAAE6fPo2+ffvC29sbL730Ei5duoSmpiYMGTIEiYmJWL16tcGbpSkpKejTpw+ysrKQmZmJgQMHIjk5GSkpKXr1ZDIZCgsLkZSUhCVLlqCurg6jR4/GwYMHMWnSJMtfOBHZREfWaOtqUmaK3FxNMtm8T4MGabYA4wgeEbVkF8nbmTNn2q2T28F9ZhITE5GYmNhuPW9vb+zatatDbRORtJlzl4eu0k7fthwF1E7f8tk5ImpJ0s+8EZG0ubpqkhZRhMlLdJiDuXd56Kz2pm8BzfRtk2lLzxFRD8HkjYh6nPBwzbRka0s5CgLg76+pZ0ncYouIOoPJGxH1OA4OmufJAMMETvt582bLvzBgT9O3RCQdTN6IqEfSrtHWckUga67RZi/Tt0QkLUzeiKjHUiqBkydvfz5wwLprtNnL9C0RSQuTNyLq0ZpPjU6caN211exl+paIpIXJGxGRDXGLLSLqKLtY542IqCdTKjW7OXCHBSIyBZM3IiI7YI4ttoioZ+C0KREREZGEcOSNiHo07S4PRERSwZE3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwREXUDtbWazewFQfM7EXVfTN6IiIiIJITJGxEREZGEMHkjIuoGmppu//7JJ/qfiah7YfJGRCRxublAYODtz9OnA0OHasqJqPth8kZEJGG5uUBsLFBerl9eXq4pZwJH1P0weSMikqimJmDpUkAUDY9py5Yt4xQqUXfD5I2ISKI+/RQ4f77146IInDunqUdE3QeTNyIiifr5Z/PWIyJpYPJGRCRRPj7mrUdE0sDkjYhIosLDgUGDNLsqGCMIgL+/ph4RdR9M3oiIJMrBAdiyRfN7ywRO+3nzZk09Iuo+mLwREUmYUgns3Qv4+uqXDxqkKVcqbdMvIrIcmydv169fR1JSEqKiotC/f38IgoC0tDSjdb/++mtMmTIFbm5u8PDwgFKpxI8//mi07tatWxEQEACZTIZhw4YhPT0darXaoF5FRQXi4uLg5eUFFxcXhIWFobCw0JyXSERkUUolcPLk7c8HDgCnTzNxI+qubJ68VVVVYfv27aivr8fs2bNbrXfq1ClERESgoaEB77//Pt588018//33CA8Px+XLl/XqbtiwAUuXLoVSqUR+fj4WLVqEjIwMLF68WK9efX09Jk+ejMLCQmzZsgUffvghvL29ER0djeLiYktcLhGRRTSfGp04kVOlRN2Zo607MGTIEFy5cgWCIKCyshJvvPGG0Xpr166FTCbD/v374e7uDgAIDQ3FnXfeiczMTDz//PMANMng+vXrsXDhQmRkZAAAIiIioFarkZqaimXLliHwl31kduzYgbKyMhw7dgxhYWEAgMjISISEhCApKQnHjx+39OUTERERdYjNR94EQYDQ2qtSv2hsbMT+/fvx4IMP6hI3QJP4RUZGIi8vT1d26NAhqFQqxMfH67URHx8PURSxb98+XVleXh5GjhypS9wAwNHREfPnz8eXX36J8pb7zRAR2SlXV82ivKKo+Z2Iui+bj7yZ4ocffsDNmzcRHBxscCw4OBgFBQVQqVSQy+UoKysDAAQFBenV8/HxgZeXl+44AJSVlSHcyDv02u85ceIE/Pz8jPapvr4e9fX1us81NTUAALVabfTZuq7StmmJtskQ4219jLl1Md7Wx5hbn9Ribmo/JZG8VVVVAQAUCoXBMYVCAVEUceXKFfj4+KCqqgoymQyuRv7pqVAodG1p222tzebfa8zGjRuRnp5uUH748GG4uLi0f1GdVFBQYLG2yRDjbX2MuXUx3tbHmFufVGJeV1dnUj1JJG9abU2vNj9mar2O1m1u1apVWL58ue5zTU0N/P39ERUVpTe1ay5qtRoFBQWYOnUqnJyczN4+6WO8rY8xty7G2/oYc+uTWsy1s3jtkUTy5unpCcD4SFh1dTUEQYCHh4eurkqlQl1dncEIWHV1NUJDQ/Xaba1NwPhIn5ZMJoNMJjMod3JysugNYun2SR/jbX2MuXUx3tbHmFufVGJuah9t/sKCKYYPHw5nZ2eUlpYaHCstLcWIESMgl8sB3H7WrWXdixcvorKyEqNGjdKVBQUFtdomAL26RERERPZAEsmbo6MjZs6cidzcXFy/fl1X/tNPP6GoqAjKZitRRkdHQy6XIzs7W6+N7OxsCIKgt5ZcTEwMTp06pbckSGNjI3JycjB+/Hj4tlyynIiIiMjG7GLa9ODBg6itrdUlZidPnsTevXsBANOnT4eLiwvS09MxduxYzJgxA8nJyVCpVFi7di28vLywYsUKXVsKhQKpqalYs2YNFAoFoqKiUFJSgrS0NCQkJOjWeAOABQsWICsrC3PmzMGmTZswYMAAbNu2Dd999x2OHDli3SAQERERmcAukrcnn3wSZ8+e1X3es2cP9uzZAwA4ffo0hg4dioCAABw9ehQrV65EbGwsHB0dcd999yEzMxP9+/fXay8lJQV9+vRBVlYWMjMzMXDgQCQnJyMlJUWvnkwmQ2FhIZKSkrBkyRLU1dVh9OjROHjwICZNmmT5CyciIiLqILtI3s6cOWNSvdDQUJNHxBITE5GYmNhuPW9vb+zatcukNomIiIhsTRLPvBERERGRBpM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSECZvRERERBLC5I2IiIhIQpi8EREREUkIkzciIiIiCWHyRkRERCQhTN6IiIiIJITJGxEREZGEMHkjIiIikhAmb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQySRvR48ehSAIRn+++OILvbpff/01pkyZAjc3N3h4eECpVOLHH3802u7WrVsREBAAmUyGYcOGIT09HWq12hqXRERERNRhjrbuQEdlZGQgMjJSr2zUqFG630+dOoWIiAiMHj0a77//PlQqFdauXYvw8HD8+9//Rv/+/XV1N2zYgDVr1iA5ORlRUVEoKSlBamoqysvLsX37dqtdExEREZGpJJe83XnnnZgwYUKrx9euXQuZTIb9+/fD3d0dABAaGoo777wTmZmZeP755wEAVVVVWL9+PRYuXIiMjAwAQEREBNRqNVJTU7Fs2TIEBgZa/oKIiIiIOkAy06amaGxsxP79+/Hggw/qEjcAGDJkCCIjI5GXl6crO3ToEFQqFeLj4/XaiI+PhyiK2Ldvn7W6TURERGQyyY28LV68GHPnzoWLiwvCwsKwZs0a3HvvvQCAH374ATdv3kRwcLDBecHBwSgoKIBKpYJcLkdZWRkAICgoSK+ej48PvLy8dMdbU19fj/r6et3nmpoaAIBarbbIM3PaNvk8nnUw3tbHmFsX4219jLn1SS3mpvZTMslb3759sXTpUkRERMDT0xP/+9//8MILLyAiIgL/+Mc/MG3aNFRVVQEAFAqFwfkKhQKiKOLKlSvw8fFBVVUVZDIZXF1djdbVttWajRs3Ij093aD88OHDcHFx6eRVtq+goMBibZMhxtv6GHPrYrytjzG3PqnEvK6uzqR6kknexowZgzFjxug+h4eHIyYmBkFBQUhKSsK0adN0xwRBaLWd5sdMrWfMqlWrsHz5ct3nmpoa+Pv7IyoqSm/K1lzUajUKCgowdepUODk5mb190sd4Wx9jbl2Mt/Ux5tYntZhrZ/HaI5nkzRgPDw/MmDEDr732Gm7evAlPT08AMDpqVl1dDUEQ4OHhAQDw9PSESqVCXV2dwUhZdXU1QkND2/xumUwGmUxmUO7k5GTRG8TS7ZM+xtv6GHPrYrytjzG3PqnE3NQ+Sv6FBVEUAWhGyoYPHw5nZ2eUlpYa1CstLcWIESMgl8sB3H7WrWXdixcvorKyUm/5ESIiIiJ7Ienk7cqVK9i/fz9Gjx4NuVwOR0dHzJw5E7m5ubh+/bqu3k8//YSioiIolUpdWXR0NORyObKzs/XazM7OhiAImD17tpWugoiIiMh0kpk2nTdvHgYPHoxf//rX8PLywn//+1+8+OKLuHTpkl4Clp6ejrFjx2LGjBlITk7WLdLr5eWFFStW6OopFAqkpqZizZo1UCgUukV609LSkJCQwDXeiIiIyC5JJnkLDg7Ge++9h9deew03btyAQqHAvffei7feegtjx47V1QsICMDRo0excuVKxMbGwtHREffddx8yMzP1dlcAgJSUFPTp0wdZWVnIzMzEwIEDkZycjJSUFGtfHhEREZFJJJO8JScnIzk52aS6oaGhOHLkiEl1ExMTkZiY2JWuEREREVmNpJ95IyIiIuppmLwREREAoLYWEATNT22trXtDRK1h8kZERACApqbbv3/yif5nIrIfTN6IiAi5uUDzl+ynTweGDtWUE5F9YfJGRNTD5eYCsbFAebl+eXm5ppwJHJF9YfJGRNSDNTUBS5cCv2xWo0dbtmwZp1CJ7AmTNyKiHuyf/xRw/nzrx0UROHcO+PRT6/WJiNrG5I2IqAf7+Wfz1iMiy2PyRkTUg/n4mLceEVkekzcioh7s3ntFDBqkWdvNGEEA/P2B8HDr9ouIWsfkjYioB3NwALZs0fzeMoHTft68WVOPiOwDkzcioh5OqQT27gV8ffXLBw3SlCuVtukXERknmY3piYjIcpRKYNYszVulP/+secYtPJwjbkT2iMkbEREB0CRqERG27gURtYfTpkREREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSECZvRERERBLC5A3AjRs3sGzZMvj6+kIul2P06NF49913bd0tIiIiIgOOtu6APVAqlSgpKcGmTZtw11134Z133sFDDz2EW7duYd68ebbuHhEREZFOj0/eDhw4gIKCAl3CBgCRkZE4e/Ys/vznP+MPf/gDHBwcbNxLIiIiIo0eP22al5cHNzc3zJkzR688Pj4eFy5cwPHjx23UMyIiIiJDPX7kraysDL/61a/g6KgfiuDgYN3x3/zmNwbn1dfXo76+Xvf52rVrAIDq6mqo1Wqz91OtVqOurg5VVVVwcnIye/ukj/G2Psbcuhhv62PMrU9qMb9+/ToAQBTFNuv1+OStqqoKd9xxh0G5QqHQHTdm48aNSE9PNygfNmyYeTtIREREPcr169fRt2/fVo/3+OQNAARB6PCxVatWYfny5brPt27dQnV1NTw9Pdtsr7Nqamrg7++Pc+fOwd3d3eztkz7G2/oYc+tivK2PMbc+qcVcFEVcv34dvr6+bdbr8cmbp6en0dG16upqALdH4FqSyWSQyWR6ZR4eHmbvX0vu7u6SuAG7C8bb+hhz62K8rY8xtz4pxbytETetHv/CQlBQEL799ls0NjbqlZeWlgIARo0aZYtuERERERnV45O3mJgY3LhxAx988IFe+a5du+Dr64vx48fbqGdEREREhnr8tOn999+PqVOn4sknn0RNTQ1GjBiB3bt349ChQ8jJybGbNd5kMhmeffZZg6lasgzG2/oYc+tivK2PMbe+7hpzQWzvfdQe4MaNG0hJScH777+P6upqBAQEYNWqVZg7d66tu0ZERESkh8kbERERkYT0+GfeiIiIiKSEyRsRERGRhDB5s4AbN25g2bJl8PX1hVwux+jRo/Huu++adG5FRQXi4uLg5eUFFxcXhIWFobCwUK/OmTNnIAhCqz/R0dEm1TW1T1Jg6ZgDmi3RXnjhBYwaNQqurq7w9vbG/fffj2PHjhnUVavVSE9Px9ChQyGTyRAQEICtW7d2+TrthT3Fm/d4+0yNeUNDA9auXYthw4ahd+/eGDJkCFatWoWbN28a1OU93jpzx5v3eNvOnz+PZcuWYdKkSfDw8IAgCMjOzm61/pEjRxAWFgYXFxd4eXkhLi4OFRUVBvXs+h4XyeymTp0qenh4iK+99pr48ccfiwkJCSIA8e23327zPJVKJY4aNUocNGiQmJOTIx4+fFicNWuW6OjoKB49elSv3ueff27ws3LlShGA+Nprr+nqnj59WgQgLlmyxKB+ZWWlxWJgbZaOuSiK4iOPPCL26tVLTElJEQsLC8U9e/aIoaGhoqOjo3j8+HG9ugkJCaJMJhP/7//+TywqKhKTk5NFQRDEDRs2mP3abcGe4s173HwxVyqVolwuFzMyMsSCggJx3bp1Yu/evcWZM2catMt73DhLxJv3eNsxLyoqEr28vMQpU6aIDz30kAhA3Llzp9G6R48eFR0dHcVZs2aJhw8fFnNyckQ/Pz9x1KhRokql0qtrz/c4kzcz+8c//iECEN955x298qlTp4q+vr5iY2Njq+dmZWWJAMRjx47pytRqtRgYGCiOGzeu3e+OiIgQXVxcxGvXrunKtP+nf+GFFzpxNdJgjZirVCrRwcFBnD9/vt75Fy5cEAGIiYmJurKysjJREAQxIyNDr+7ChQtFZ2dnsaqqqlPXaS/sLd68x80T888//1wEIL744ot652dkZIgAxMOHD+vKeI9bN968x9uOeVNTk+73kpKSNpO3sWPHioGBgaJardaVffbZZyIAcdu2bboye7/HOW1qZnl5eXBzc8OcOXP0yuPj43HhwgUcP368zXNHjhyJsLAwXZmjoyPmz5+PL7/8EuXl5a2e+8MPP6C4uBi///3vJbMFiLlYI+a9evVCr169DLYtcXd3R69evSCXy3Vl+/btgyiKiI+PN+jPzZs3cejQoU5fqz2wt3j3BNaI+WeffQYAmD59ut75M2bMAAC9hcx5j1s33j1BV2Leq5dpqUx5eTlKSkrwyCOPwNHx9jK3v/nNb3DXXXchLy9PV2bv9ziTNzMrKyvDr371K70bAwCCg4N1x9s6V1vP2LknTpxo9dw333wToigiISHB6PFNmzahd+/ecHFxwb333ou///3v7V6LVFgj5k5OTli0aBF27dqFffv2oaamBmfOnMHChQvRt29fLFy4UK/N/v37Y+DAgR3ujxTYW7y1eI+3fq4pMW9oaAAAg8VMtZ+/+eYbvTZ5j7d+rrnjrcV7vOvf0bzNlt/T/Dvs/R7v8TssmFtVVRXuuOMOg3LtBvdVVVVtnqut15Fzm5qasGvXLgQEBOC3v/2t3jGZTIaFCxdi6tSp8PHxwU8//YStW7di1qxZeP3111tN9qTEWjF/+eWX0bdvXzz44IO4desWAGDw4MH4+OOPMWLEiHbbdHV1Re/evdvsjxTYW7x5j5sn5oGBgQA0I0LDhg3T1fvnP/9p8B28x60bb97jbce8I9/RvM2W3yOle5zJmwUIgtCpY50999ChQygvL8cLL7xgcMzHxwfbt2/XK5szZw7Gjx+P5ORkxMXFGfxLR4qsEfMNGzYgMzMTaWlpCA8PR01NDf7yl79g6tSpOHz4MMaMGWOW/kiBPcWb97h5Yn7//fdjxIgRWLlyJby9vTF27Fh88cUXWL16NRwcHAympniPd+3cjsSb97h576nW2mpZbs/3OKdNzczT09NoRl5dXQ3AeMbf1XN37NgBJycnPProoyb10cnJCX/4wx9QVVWF//73vyadY8+sEfNvv/0Wa9euRXp6OtasWYOIiAj87ne/wz/+8Q94eHhg+fLl7bZZW1uLhoaGNvsjBfYWb2N4j3f83N69e+PgwYMYPHgwoqKi0K9fP8TGxmL16tXo168f/Pz82m2T97hl4m0M7/HOfQdgfBSvurpa7zvs/R5n8mZmQUFB+Pbbb9HY2KhXXlpaCgAYNWpUm+dq65l6bkVFBfbv34/f/e53GDBggMn9FH/ZFc3UBz3tmTVi/p///AeiKGLs2LF69ZycnBASEqL3/ENQUBAuX76Mixcvdrg/UmBv8W4N7/Hb55r635URI0bg888/x/nz5/HNN9+goqICc+bMQWVlJSZOnKjXJu/x1s81d7xbw3u8Y7RttPa/T/PvsPt73GbvuXZTBw4cEAGI7777rl55dHR0u687b9u2TQQgfvHFF7oytVot3n333eL48eONnvPCCy+IAMQDBw6Y3MeGhgZx9OjRopeXV5v9kQprxLy4uFgEIG7atEnvfJVKJQ4bNkwcPXq0rkz7innLuk888YRdvGLeVfYWb2N4j9/Wmf+uNPf000+Lrq6u4vnz53VlvMetG29jeI8b195SIePGjRNHjRql15522ZZXX31VV2bv9ziTNwuYOnWq2K9fP3H79u3ixx9/LC5cuFAEIObk5OjqLFiwQHRwcBDPnDmjK1OpVOLdd98t+vv7i2+//bZYUFAgxsTEGF3cUSsgIED09/fXW+emuaefflp86qmnxN27d4tFRUXi3/72N3Hs2LFt3txSZOmYNzU1iWPHjhXlcrm4du1a8ciRI+IHH3wgRkREiADEt956S68/2sUdX3jhBfHo0aPi6tWr7WZxR3Owp3jzHjfff1eef/55cdeuXWJRUZH47rvvikqlUuzVq5fRRVJ5j1sv3rzH2465KIrinj17xD179ojPP/+8CEBcvHixrqy5oqIi0dHRUYyJiRELCgrEt99+W/T3929zkV57vMeZvFnA9evXxcTERHHgwIFi7969xeDgYHH37t16dR577DERgHj69Gm98osXL4qPPvqoqFAoRLlcLk6YMEEsKCgw+j3ahQXXrl3bal927Nghjhs3TlQoFKKjo6PYr18/cdq0aWJ+fn6Xr9OeWCPmV69eFVNSUsRf/epXoouLizhgwAAxIiLC6KhnQ0OD+Oyzz4qDBw8We/fuLd51113iK6+8YtZrtiV7ijfv8du6GvP09HRx+PDhokwmEz08PMTo6Gjxk08+Mdof3uPWizfv8dtaizmAVn9aOnz4sDhhwgRRLpeLCoVCfPTRR8VLly4Z1LPne1wQxV8mzYmIiIjI7kn/KUciIiKiHoTJGxEREZGEMHkjIiIikhAmb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiMgunDlzBoIgIDs72+xtFxYW4te//jVcXV0hCAL27duH7OxsCIKAM2fOmP37mhs6dCji4uIs+h1ScPLkSaSlpVk83kQ9gaOtO0BEZEmiKOL3v/897rrrLvz973+Hq6srRo4cicbGRnz++efw8fGxdRd7hJMnTyI9PR0REREYOnSorbtDJGlM3oioW7tw4QKqq6sRExODyZMn6x3r37+/jXplW2q1GoIgwNHR8K+Auro6uLi42KBXRGQqTpsSkUX973//Q3x8PO688064uLjAz88PM2fORGlpabvnXr58GY8//jj8/f0hk8nQv39//Pa3v8WRI0dM+u60tDQMGjQIALBy5UoIgqAb9TE2bRoREYFRo0ahpKQE4eHhcHFxwR133IFNmzbh1q1bunoqlQorVqzA6NGj0bdvXygUCoSFheHDDz80PTDteOeddxAWFgY3Nze4ublh9OjR2LFjh+54a9OxERERiIiI0H0+evQoBEHAW2+9hRUrVsDPzw8ymQz/+9//EBcXBzc3N5SWliIqKgp9+vTRJbgNDQ1Yv349AgICdLGPj4/H5cuX9b5v6NChmDFjBg4dOoR77rkHzs7OCAgIwJtvvqmrk52djTlz5gAAIiMjIQiCxabIiXoCjrwRkUVduHABnp6e2LRpE/r374/q6mrs2rUL48ePx7/+9S+MHDmy1XMfeeQRfP3119iwYQPuuusuXL16FV9//TWqqqpM+u6EhASEhIRAqVRiyZIlmDdvHmQyWZvnXLx4EQ8//DBWrFiBZ599Fnl5eVi1ahV8fX3x6KOPAgDq6+tRXV2NZ555Bn5+fmhoaMCRI0egVCqxc+dOXb3OWrt2LZ577jkolUqsWLECffv2RVlZGc6ePdvpNletWoWwsDC89tpr6NWrFwYMGABAk6T97ne/wxNPPIHk5GQ0Njbi1q1bmDVrFj799FMkJSXhN7/5Dc6ePYtnn30WERER+H//7//B2dlZ1/Z//vMfrFixAsnJyfD29sYbb7yBP/7xjxgxYgQmTpyIBx54ABkZGVi9ejWysrJwzz33AACGDx/epTgR9VgiEZEVNTY2ig0NDeKdd94pPv3007ry06dPiwDEnTt36src3NzEZcuWden7tO2+8MILeuU7d+4UAYinT5/WlU2aNEkEIB4/flyvbmBgoDht2rQ2r0mtVot//OMfxTFjxugdGzJkiPjYY4+Z3N8ff/xRdHBwEB9++OE267XW7qRJk8RJkybpPhcVFYkAxIkTJxrUfeyxx0QA4ptvvqlXvnv3bhGA+MEHH+iVl5SUiADEbdu26fVDLpeLZ8+e1ZXdvHlTVCgU4hNPPKEr27NnjwhALCoqavO6iKh9nDYlIotqbGxERkYGAgMD0bt3bzg6OqJ3797473//i2+//bbNc8eNG4fs7GysX78eX3zxBdRqtcX7O3DgQIwbN06vLDg42GDUa8+ePfjtb38LNzc3ODo6wsnJCTt27Gj3mtpTUFCApqYmLF68uEvttPTggw+afGz//v3w8PDAzJkz0djYqPsZPXo0Bg4ciKNHj+rVHz16NAYPHqz7LJfLcdddd3VppJCIWsfkjYgsavny5VizZg1mz56Njz76CMePH0dJSQlCQkJw8+bNNs9977338Nhjj+GNN95AWFgYFAoFHn30UVy8eNFi/fX09DQok8lken3Nzc3F73//e/j5+SEnJweff/45SkpKsGDBAqhUqi59v/aZMu2zeubS2lu1Li4ucHd31yu7dOkSrl69it69e8PJyUnv5+LFi6isrNSrb0rMiMh8+MwbEVlUTk4OHn30UWRkZOiVV1ZWwsPDo81zvby8sHnzZmzevBk//fQT/v73vyM5ORkVFRU4dOiQBXvdtpycHAwbNgzvvfceBEHQldfX13e5be0bsOfPn4e/v3+r9eRyudHvq6yshJeXl0F58362V+7l5QVPT89WY9ynT59W+0VElsfkjYgsShAEg5cE/vGPf6C8vBwjRowwuZ3BgwfjqaeeQmFhIT777DNzd7NDBEFA79699RKfixcvmuVt06ioKDg4OODVV19FWFhYq/WGDh2Kb775Rq/s+++/x3fffWc0eeuIGTNm4N1330VTUxPGjx/fpba0tPcAR+OIuo7JGxFZ1IwZM5CdnY2AgAAEBwfjq6++wgsvvNDutOC1a9cQGRmJefPmISAgAH369EFJSQkOHToEpVJppd4bN2PGDOTm5mLRokWIjY3FuXPn8Nxzz8HHxwf//e9/u9T20KFDsXr1ajz33HO4efMmHnroIfTt2xcnT55EZWUl0tPTAWjexJ0/fz4WLVqEBx98EGfPnsX//d//mWXturlz5+Ltt9/G9OnTsXTpUowbNw5OTk44f/48ioqKMGvWLMTExHSozVGjRgEAtm/fjj59+kAul2PYsGFGp1yJqG1M3ojIorZs2QInJyds3LgRN27cwD333IPc3Fykpqa2eZ5cLsf48ePx1ltv4cyZM1Cr1Rg8eDBWrlyJpKQkK/XeuPj4eFRUVOC1117Dm2++iTvuuAPJyck4f/68LrnqinXr1uHOO+/E1q1b8fDDD8PR0RF33nknEhMTdXXmzZuHCxcu4LXXXsPOnTsxatQovPrqq2b5fgcHB/z973/Hli1b8NZbb2Hjxo1wdHTEoEGDMGnSJAQFBXW4zWHDhmHz5s3YsmULIiIi0NTUhJ07d3LrMKJOEERRFG3dCSIiIiIyDd82JSIiIpIQTpsSkSSJooimpqY26zg4OLT6lqUtNDU1oa3JDkEQ4ODgYMUeEZEUceSNiCRp165dBmuQtfwpLi62dTf1DB8+vM3+avcVJSJqC595IyJJqqqqwunTp9usM3LkSLtak6y0tLTNteD69OnT5l6vREQAkzciIiIiSeG0KREREZGEMHkjIiIikhAmb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIf8fo93J08HeDmkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0020\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 4500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.100 - 0.125 A" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.1 , 0.1009, 0.1018, 0.1027, 0.1036, 0.1045, 0.1054, 0.1063,\n", " 0.1072, 0.1081, 0.109 , 0.1099, 0.1108, 0.1117, 0.1126, 0.1135,\n", " 0.1144, 0.1153, 0.1162, 0.1171, 0.118 , 0.1189, 0.1198, 0.1207,\n", " 0.1216, 0.1225, 0.1234, 0.1243, 0.1252, 0.1261]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABE6UlEQVR4nO3de1xUdeL/8fckOIhoBJjiLc0ba4IWq0abCZlmpauidrUUs3bT9bK6a7heklK0zXZzXav1kYob2cUSK9cbElq/LsbmtkFltd4vmQqWFwSBzu8PvoyODAjMMHMOvJ6PBw+dcz7zmc/58GHmPZ/PmTM2wzAMAQAAwBKu8HUDAAAAUHWENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCE+D2/btm2TzWZz+fPJJ584ld25c6duu+02BQUFKTg4WPHx8dqzZ4/LepcsWaKIiAjZ7Xa1b99eSUlJKioqKlfu2LFjGjNmjMLCwhQYGKiYmBhlZGTUyrECAAC4y8/XDSiTnJysuLg4p23dunVz/H/Xrl2KjY1Vjx499MYbb6igoEBz5sxRnz599Pnnn6tZs2aOsvPnz9fs2bOVmJioAQMGKCsrS7NmzdLhw4e1bNkyR7nCwkL169dPP/74oxYvXqyrr75aS5cu1cCBA7V161b17du39g8cAACgOgwfy8zMNCQZa9asqbTcyJEjjbCwMOOnn35ybNu3b5/h7+9vTJ8+3bHtxIkTRkBAgPHoo4863X/+/PmGzWYzvvzyS8e2pUuXGpKMjz76yLGtqKjI6Nq1q9GrVy93Dw0AAMDjfL5sWhXFxcVav369hg8frqZNmzq2X3PNNYqLi1NaWppj26ZNm1RQUKCEhASnOhISEmQYhtatW+fYlpaWpi5duigmJsaxzc/PT6NGjdKnn36qw4cP195BAQAA1IBplk0nTJige++913He2ezZs3XzzTdLknbv3q1z584pKiqq3P2ioqKUnp6ugoICBQQEKCcnR5IUGRnpVC48PFxhYWGO/ZKUk5OjPn36uKxTkr788ku1atXKZXsLCwtVWFjouP3zzz8rLy9PoaGhstls1Tx6AABQ3xmGodOnT6tly5a64oqK59d8Ht6uvPJKTZ48WbGxsQoNDdX//vc/PfPMM4qNjdW//vUv3X777crNzZUkhYSElLt/SEiIDMPQyZMnFR4ertzcXNntdjVu3Nhl2bK6JCk3N7fCOsv2V2TBggVKSkqq9vECAABU5uDBg2rdunWF+30e3q6//npdf/31jtt9+vTRsGHDFBkZqenTp+v222937KtsRuvifVUtV92yF5sxY4amTp3quP3TTz+pbdu22rt3r5o0aVLh/WqqqKhImZmZiouLk7+/v8frhzP62/voc++iv72PPvc+q/X56dOn1b59+8vmCJ+HN1eCg4M1aNAgvfjiizp37pxCQ0MluZ4Jy8vLk81mU3BwsCQpNDRUBQUFys/PV2BgYLmy0dHRjtuhoaEV1im5nukrY7fbZbfby20PCQlxOi/PU4qKihQYGKjQ0FBLDECro7+9jz73Lvrb++hz77Nan5e18XKnX5n2AwuGYUgqPYAOHTqoUaNGys7OLlcuOztbHTt2VEBAgKQL57pdWvbo0aM6ceKE0+VHIiMjK6xTcr5UCQAAgBmYMrydPHlS69evV48ePRQQECA/Pz8NHjxYa9eu1enTpx3lDhw4oMzMTMXHxzu2DRw4UAEBAUpJSXGqMyUlRTabTUOHDnVsGzZsmHbt2qUdO3Y4thUXFys1NVW9e/dWy5Yta+0YAQAAasLny6b333+/2rZtq1/+8pcKCwvTd999p2effVY//PCDUwBLSkpSz549NWjQICUmJjou0hsWFqZp06Y5yoWEhGjWrFmaPXu2QkJCHBfpnTt3rsaNG6euXbs6yo4dO1ZLly7VyJEjtXDhQl199dV6/vnn9c0332jr1q3e7AYAAIAq8Xl4i4qK0uuvv64XX3xRZ86cUUhIiG6++Wa9/PLL6tmzp6NcRESEtm3bpscff1wjRoyQn5+fbr31Vi1atMjp2xUkaebMmWrSpImWLl2qRYsWqUWLFkpMTNTMmTOdytntdmVkZGj69OmaOHGi8vPz1aNHD23cuJFvVwAAAKbk8/CWmJioxMTEKpWNjo6u8ozYpEmTNGnSpMuWa968uVatWlWlOgEAAHzNlOe8AQAAwDXCGwAAgIUQ3gAAACyE8AYAAGAhhDcAAAALIbwBAABYCOENAADAQghvAAAAFkJ4AwAAsBDCGwAAgIUQ3gAAACyE8AYAAGAhhDcAAAALIbwBAABYCOENAADAQghvAAAAFkJ4AwAAsBDCGwAAgIUQ3gAAACyE8AYAAGAhhDcAAAALIbwBAABYCOENAADAQghvAAAAFkJ4AwAAsBDCGwAAgIUQ3gAAACyE8AYAAGAhhDcAAAALIbwBAABYCOENAADAQghvAAAAFkJ4AwAAsBDCGwAAgIUQ3gAAACyE8AYAAGAhhDcAAAALIbwBAABYCOENAADAQghvAAAAFkJ4AwAAsBDCGwAAgIUQ3gAAACyE8AYAAGAhhDcAAAALIbwBAABYCOENAADAQghvAAAAFkJ4AwAAsBDCGwAAgIUQ3gAAACyE8AYAAGAhhDcAAAALIbwBAOBhZ89KNlvpz9mzvm4N6hrCGwAAgIUQ3gAAACyE8AYAAGAhhDcAAAALIbwBAABYCOENAADAQghvAAAAFkJ4AwAAsBDCGwAAgIUQ3gAAACyE8AYAAGAhpgtvL730kmw2m4KCgsrt27lzp2677TYFBQUpODhY8fHx2rNnj8t6lixZooiICNntdrVv315JSUkqKioqV+7YsWMaM2aMwsLCFBgYqJiYGGVkZHj8uAAA9UdJyYX/v/++823AXaYKb4cPH9Yf/vAHtWzZsty+Xbt2KTY2VufPn9cbb7yhFStW6Ntvv1WfPn10/Phxp7Lz58/X5MmTFR8fr82bN2v8+PFKTk7WhAkTnMoVFhaqX79+ysjI0OLFi/X222+refPmGjhwoLZv316rx1of8UXNqKsY27jY2rVS164Xbt95p9SunZSWZvNZm1C3+Pm6ARf77W9/q1tuuUUhISF68803nfbNmTNHdrtd69evV9OmTSVJ0dHR6tSpkxYtWqSnn35akpSbm6t58+bpkUceUXJysiQpNjZWRUVFmjVrlqZMmaKu//dXtXz5cuXk5Oijjz5STEyMJCkuLk7du3fX9OnTtWPHDm8dOgCgDli7VhoxQjIM5+2HD0v33ttA06eH6847fdM21B2mmXlLTU3V9u3b9fzzz5fbV1xcrPXr12v48OGO4CZJ11xzjeLi4pSWlubYtmnTJhUUFCghIcGpjoSEBBmGoXXr1jm2paWlqUuXLo7gJkl+fn4aNWqUPv30Ux0+fNiDRwigNjDrBbMoKZEmTy4f3KQL25Yv78YSKtxmipm3Y8eOacqUKVq4cKFat25dbv/u3bt17tw5RUVFldsXFRWl9PR0FRQUKCAgQDk5OZKkyMhIp3Lh4eEKCwtz7JeknJwc9enTx2WdkvTll1+qVatWLttcWFiowsJCx+1Tp05JkoqKilyeW+eusjpro25vKW26///9v0hmPpTa7O+zZ6Wrrirth5Mni9S4sccfwpJq2udmGFdmaEN1x1VdeE4xm+3bbTp0qOKXVcOw6cSJQG3bVqB+/S5fH88V7rPaOK9qO00R3saPH68uXbrosccec7k/NzdXkhQSElJuX0hIiAzD0MmTJxUeHq7c3FzZ7XY1djHKQ0JCHHWV1VtRnRc/risLFixQUlJSue1btmxRYGBghfdzV3p6eq3VXdsKChpIGiRJ2rx5swICzP/2szb62xP9UFIiffVVqE6eDNBVVxWoa9dcNWjg4Yb6SHX7PD//Qn/+5S//Vo8ex7zeF2YY2zVtg6fHeF0em5fz/vutJP3ysuXS03NUWHj5lR0zjKu6wiqvnfn5+VUq5/Pw9tZbb+ndd9/Vf/7zH9lslZ/MWdn+i/dVtVx1y15sxowZmjp1quP2qVOn1KZNGw0YMMBpaddTioqKlJ6erv79+8vf39/j9XvDxUtat99+u0/eRVb1nWxt9re7/ZCWZtPvf99AR45cGJ+tWhn6y19KNGyYi/Uai6hJn6el2fSHP1xIBk89FeOTvjDL2K5OG2pjjKel2TR1agMdPly3xmZVNW5s01/+cvly/ft3U79+3S9bzgzjyuqs9tpZtop3OT4Nb2fOnNGECRM0ceJEtWzZUj/++KMk6fz585KkH3/8Uf7+/goNDZXkeiYsLy9PNptNwcHBkqTQ0FAVFBQoPz+/3AxYXl6eoqOjHbdDQ0MrrFNyPdNXxm63y263l9vu7+9fqwOktuuvTRc3u/Q4zN+G2uhvd/ph7Vrp3nvLn1Nz5IhN997rpzfflOLjPdNOX6lqn5upLzwxts+elcqukHTmjKr9Ql3TNnhqjJvp9+ErcXFS69alH05wdd6bzWYoNPScYmOr1udmeM40i1OnpCuvLP3/hg3SgAGq1oyuVV47q9pGn35g4cSJE/rhhx/07LPP6qqrrnL8vPrqqzp79qyuuuoqPfDAA+rQoYMaNWqk7OzscnVkZ2erY8eOCggIkHThXLdLyx49elQnTpxQt27dHNsiIyMrrFOSU9n6jpPCfa8qJ0NPmVI/ridFX9SOmv6d8/so1aCBtHhx6f8vXbgpu/3wwzn1ZhnZUyq69MratT5rks/5NLy1aNFCmZmZ5X5uv/12BQQEKDMzU/PmzZOfn58GDx6stWvX6vTp0477HzhwQJmZmYq/6O3cwIEDFRAQoJSUFKfHSklJkc1m09ChQx3bhg0bpl27djldEqS4uFipqanq3bu3y+vNAb7ywQfSoUMV7zcM6eDB0nLe4MtAb7a+qO88+fuw+hvF+HjpzTelS18+WreWXnutRDEx31e5Li70e+HSK5de/OHw4dLt9TXA+TS8BQQEKDY2ttxPixYt1KBBA8XGxjpmv5KSkpSfn69BgwZp48aNSktL01133aWwsDBNmzbNUWdISIhmzZqlf/zjH5o5c6a2b9+uRYsWae7cuRo3bpzjGm+SNHbsWF133XUaOXKkVq9era1bt+ruu+/WN99847huHErVlScRKx/H91V8zq9qOSujL8zFk78PK/+NlomPl7766sLtDRukvXtVrfP+mG1iRrcyprnO2+VERERo27Zt8vf314gRIzRmzBh17NhR77//vpo1a+ZUdubMmXruuef05ptvasCAAVqyZIkSExO1dOlSp3J2u10ZGRmKi4vTxIkTNXjwYH3//ffauHGj+vbt683DM7W68iRi9eMID/dsOSvzZF+UlEjbtkmvvlr6r69eCKwcWjz1+7D63+jFLl4aveWW6p2fVddmm2o6m8oMeyUMeMRPP/1kSDJ++umnWqn//Pnzxrp164zz58/XSv0Veestw7DZDKP0z+TCj81W+vPWW1Wv66efLtx/wwbDKC6uvXZfqrrHUZv9febMhcc/c6bq9ysuNozWrV0fR9mxtGnjvX6t6XFUpDp97qm+eOstw2jVyvm+rVtXb1wbhvt94Yl2VLcNrvrbl2PTk881nh6bNeGqDVUZ42V96aofffF37gk1/X2sXl1xP1z8s3p1xXX46rWzpqqaJSwz8wbv8+SUtS/fUdeVqfeqnAz93HPVe4dvVZ7oC7PMbniqHb6cuXP391FX/kY9wdOzTVY+h5DVhooR3lAhTz2J+PpFsi5NvZedDH3pF3+0bq16cSmGi1V2Yvjl+sIsYcFT7TDDcqM7Y7Mu/Y26i/M5L+jTp3T8VHTJVZtNatOmtFx9Q3hDhTzxJGKGF8m69mQYHy/t2ydlZkqrV5f+u3dv/QpuZSo6MfxyfWGWsOCJdvj6zdHFajo269rfqDuYbbqA1YaKEd5QIU88iZjhRdJsT4aeWN5q0ECKjZXuu6/03/r45FWmJieGmyUsuNsOT7858tXYNNvfqC8x2+TMnRn2uozwhgp54knEDC+Snn4ydOfTiWZY3ipj5XNhLta48YVTl6v6rQRmCQvutsOTb458OTYJLBfUxdkmd98U1HSGvS4jvFnA2bNSw4b+Gjp0iFdfZD3xJGKGF0lPPhmuXVv6ghYXJ91/f+m/VX2BM9PyVn1nlrDgbjs89ebI12OzLgYWd3hytsnXl6Dx1JuCpk0vvEm74476MxYqQnhDpdx9EjHLi6QnngzLXuAunemoygucGc79wwVmCQvutsMTb47MMjZZHnPmidkmX8/0+/pNQV1GeMNlufMk4ukXSXeW+tw5Dndf4Mxw7p8ZXbwEvX27zavh1Syf3HUntHjizdH/+38204zN+Hhp/34+jFPGyhf6NcubgrqK8IYqcedJxEzvqGt6HO6GLzOc++dp7i7HXLoE3b+/nx59dIDS0ipIIrXALJ/crekbC0+8OTLb2KwrH8apybmYnmKG4GS2N6xm+SYVTyG81RO+Pjnd6iecuvsCZ4Zz/zzJ3eWYipagc3MDdO+9Dby6nGKWsFDTNxbuvjmqa2PTU6z8Ym+G4GSmNwUffxyujh39anSuslkR3uoJd2dJPPEu0p3ZO19z9wXOLOf+eYK7yzGVzQpIpR3Eckr1uPPm6OabjTozNst4elbYai/2ZghOZnlTkJZm09NP96xz590R3uoBX5+0aiY1DaHuhi+znCDvLk8sx1x+VsBWL8//c1dN3xzVlbFZprZmhX3xYl/T5yszBCczvGEtKZGmTi0buM4Nsfp5d4S3Os7XJ63WFZ54gTPTuX815YnlGDPMCpiRL8+RqgtjU6rdWWErvdibITiZ4U3BBx9Ihw/bdGlwK1Pd5WMzLaUT3izg4gHy//5f1T+RV1eeiMzCE59OrO/n/knmmBVAeVYfm96ZFbbGp8LNEJwk378p8OQbRbMtpRPeTO7SJYDBg/2qPGDqyhORmXji04lmOfevJucFeSJ4XX5WwLDcOVZ1hVnGZk0wK+zM18Hp4nb46k2Bp94ommkpvQzhzcTcXQKoS09EZXx9tXDJPJ9OdEdNzwvyxHJMZbMCUukUiZXOsYI5MCtcnllmU331pqBPH6lVK0NlzyuXqsrzlVlXsAhvJuWJAVPXnoj44IVnuPOmwFPLMRUtQYeFndNrr5VYZqkO5uGdWWHrffLWyrOp7mrQQPrLX0pfJG025xfTqj5fmXUFi/BmUp4YMHXpiYgPXniGJ94UeGo55tIl6PT0Yv3jH+kaNsz1u2SgMrU9K2zFT956gq+vEequYcMMPf54Vo2fr8y6gkV4MylPDJi68kRk1mlrK/LUu0hPLcdcvATdt69h+rFYETMs5/vy06pmUNuzwlb75C0uiIn5Xv/7X3GNzlU26woW4c2kPDVgzHLSqjvMOm1tRZ58F1mfl2MuxnK+edTWrHB9/47VuqCm5yqbdQXLz7sPh6oqGzCHD7uecbLZSvdXZcDEx0u33SZdeWXp7Q0bpAEDvP9iWzYzUF1mnba2IrO+i7SqsuX8S8d12XK+Vd4glanp36iZeOr5ruzF3urM8Ds1QxtqqmxGd8SI0tfdi4/DlytYzLyZlKeXPJs2vbCkcscd1polIXB4jlnfRVoRy/nmxawwPMmMS+mENxOrC0uenkDg8Jy6ch6kGbCcD9QfZltKJ7yZ3KUnhr/7bnG9O/eCwOFZvCnwDJbzgfrFTNf4JLxZwMUD5OabrfuJPHcQODzLLBfvtDKW8wH4CuENlkHg8CzOC3IPy/kAfIXwBkupC4Gjvl+Pq65gOR+ArxDeAKCGWM4H4Atc5w0A3GCW6ygCqD+YeQMAN9WF5XwA1kF4s4DGjaXz54u0bt3bnCMF0+DcPZgVYxN1HeENAAC4dPE3hLz/Pt8YYhaENwAAUM7atVLXrhdu33mn1K5d6Xb4FuENlsJyCADUvrVrS7+M/fBh5+2HD5duJ8D5FuENqKcIwgBcKSmRJk8ufW64VNm2KVNYQvUlwhsAAHD44APp0KGK9xuGdPBgaTn4BuENAAA4fP+9Z8vB8whvAADAITzcs+XgeYQ3AADg0KdP6Ve8XfqdvWVsNqlNm9Jy8A3CGwAAcGjQQFq8uPT/lwa4stvPPcc3ifgS4Q0AADiJj5fefFNq2dJ5e+vWpdvj433TLpTii+kBAEA58fHSbbdJV15ZenvDBmnAAGbczICZNwAA4NLFQe2WWwhuZkF4AwAAsBDCGwAAgIUQ3gAAACyE8AYAAGAhhDcAAAALIbwBAABYCOENAADAQghvAAAAFkJ4AwAAsBDCGwAAgIUQ3gAAACyEL6YHAAAuNW4sGYavW4FLMfMGAABgIYQ3AAAACyG8AQAAWAjnvAGAmzgvCIA3MfMGAABgIYQ3AAAACyG8AQAAWAjhDQAAwEIIbwAAABZCeAMAALAQwhsAAICF+Dy8ff7557rrrrvUtm1bNWrUSCEhIYqJiVFqamq5sjt37tRtt92moKAgBQcHKz4+Xnv27HFZ75IlSxQRESG73a727dsrKSlJRUVF5codO3ZMY8aMUVhYmAIDAxUTE6OMjAyPHycAAIAn+Dy8/fjjj2rTpo2Sk5O1YcMG/fOf/1S7du304IMPat68eY5yu3btUmxsrM6fP6833nhDK1as0Lfffqs+ffro+PHjTnXOnz9fkydPVnx8vDZv3qzx48crOTlZEyZMcCpXWFiofv36KSMjQ4sXL9bbb7+t5s2ba+DAgdq+fbtXjh8AAKA6fP4NC7GxsYqNjXXaNmjQIO3du1fLli3TrFmzJElz5syR3W7X+vXr1bRpU0lSdHS0OnXqpEWLFunpp5+WJOXm5mrevHl65JFHlJyc7HiMoqIizZo1S1OmTFHXrl0lScuXL1dOTo4++ugjxcTESJLi4uLUvXt3TZ8+XTt27PBGFwAAAFSZz2feKhIWFiY/v9JsWVxcrPXr12v48OGO4CZJ11xzjeLi4pSWlubYtmnTJhUUFCghIcGpvoSEBBmGoXXr1jm2paWlqUuXLo7gJkl+fn4aNWqUPv30Ux0+fLiWjg4AAKBmfD7zVubnn3/Wzz//rJMnT2rNmjXavHmz/v73v0uSdu/erXPnzikqKqrc/aKiopSenq6CggIFBAQoJydHkhQZGelULjw8XGFhYY79kpSTk6M+ffq4rFOSvvzyS7Vq1cplewsLC1VYWOi4ferUKUlSUVGRy3Pr3FVWZ23UjfLob++jz72L/vY++tz7rNbnVW2nacLb+PHj9Y9//EOS1LBhQ/3tb3/Tb37zG0mlS6GSFBISUu5+ISEhMgxDJ0+eVHh4uHJzc2W329W4cWOXZcvqKqu3ojovflxXFixYoKSkpHLbt2zZosDAwMoO1S3p6em1VjfKo7+9jz73Lvrb++hz77NKn+fn51epnGnC25/+9CeNGzdOx44d07vvvqvf/e53Onv2rP7whz84ythstgrvf/G+qparbtmLzZgxQ1OnTnXcPnXqlNq0aaMBAwY4Le16SlFRkdLT09W/f3/5+/t7vH44o7+9jz73Lvrb++hz77Nan5et4l2OacJb27Zt1bZtW0nSnXfeKak0II0ePVqhoaGSXM+E5eXlyWazKTg4WJIUGhqqgoIC5efnl5sBy8vLU3R0tON2aGhohXVKrmf6ytjtdtnt9nLb/f39a3WA1Hb9cEZ/ex997l30t/fR595nlT6vahtN+4GFXr16qbi4WHv27FGHDh3UqFEjZWdnlyuXnZ2tjh07KiAgQNKFc90uLXv06FGdOHFC3bp1c2yLjIyssE5JTmUBAADMwLThLTMzU1dccYWuvfZa+fn5afDgwVq7dq1Onz7tKHPgwAFlZmYqPj7esW3gwIEKCAhQSkqKU30pKSmy2WwaOnSoY9uwYcO0a9cup0uCFBcXKzU1Vb1791bLli1r7fgAAABqwufLpo8++qiaNm2qXr16qXnz5jpx4oTWrFmj119/XX/84x/VrFkzSVJSUpJ69uypQYMGKTExUQUFBZozZ47CwsI0bdo0R30hISGaNWuWZs+erZCQEA0YMEBZWVmaO3euxo0b57jGmySNHTtWS5cu1ciRI7Vw4UJdffXVev755/XNN99o69atXu8LAACAy/F5eIuJidHKlSu1atUq/fjjjwoKClL37t318ssva9SoUY5yERER2rZtmx5//HGNGDFCfn5+uvXWW7Vo0SJHwCszc+ZMNWnSREuXLtWiRYvUokULJSYmaubMmU7l7Ha7MjIyNH36dE2cOFH5+fnq0aOHNm7cqL59+3rl+AEAAKrD5+EtISGh3AV1KxIdHV3lGbFJkyZp0qRJly3XvHlzrVq1qkp1AgAA+Jppz3kDAABAeYQ3AAAACyG8AQAAWAjhDQAAwEJqHN6efPJJHTlyxOW+77//Xk8++WSNGwUAAADXahzekpKSdOjQIZf7jhw54vJL2wEAAOCeGoc3wzAq3HfmzBlLfIcYAACA1VTrOm9ffPGFPv/8c8ftDRs2aNeuXU5lzp07p1deeUUdOnTwSAMBAABwQbXCW1pammM51GazVXheW6NGjbRy5Ur3WwcAAAAn1Qpvjz76qAYNGiTDMNSrVy+tXLlS3bp1cypjt9vVoUMHNWrUyKMNBQAAQDXDW3h4uMLDwyVJmZmZio6OVlBQUK00DAAAAOXV+LtN+eJ2AAAA73Pri+lTU1O1evVq7d+/X+fOnXPaZ7PZtHv3brcaBwAAAGc1Dm9PP/20ZsyYoa5du6p79+6y2+2ebBcAAABcqHF4W7ZsmSZMmKAlS5Z4sj0AAACoRI0v0nv06FENGzbMk20BAADAZdQ4vEVHR3NOGwAAgJfVOLz95S9/0bPPPqvPPvvMk+0BAABAJWp8zltCQoJyc3PVq1cvtWjRQqGhoU77bTab/vvf/7rdQAAAAFxQ4/AWGhqqsLAwT7YFAAAAl1Hj8LZt2zYPNgMAAABVUeNz3gAAAOB9NZ55e//99y9b5pZbbqlp9QAAAHChxuEtNjZWNput0jIlJSU1rR4AAAAu1Di8ZWZmltt24sQJvf322/rwww+1dOlStxoGAACA8moc3vr27ety+/Dhw/Xb3/5WmzZt0sCBA2vcMAAAAJRXKx9YGDZsmF577bXaqBoAAKBeq5XwdvLkSRUWFtZG1QAAAPVajZdNDxw4UG5bYWGhvvjiC82YMUM33nijWw0DAABAeTUOb+3atXP5aVPDMNSlSxf9/e9/d6thAAAAKK/G4W3FihXlwltAQIDatWunnj176ooruP4vAACAp9U4vI0ZM8aDzQAAAEBV1Di8lTl9+rQ+/vhj5ebmKiwsTDfeeKOaNGniibYBAADgEm6Ft0WLFikpKUn5+fkyDEOS1LhxYyUlJWnq1KkeaSAAAAAuqHF4++c//6np06frjjvu0JgxY9SyZUsdOXJEq1at0h//+Ec1a9ZMDz74oCfbCgAAUO/VOLz99a9/1f3336/U1FSn7SNHjtSoUaP017/+lfAGAADgYTX+SOiuXbs0atQol/tGjRqlr7/+usaNAgAAgGs1Dm+NGjVSXl6ey315eXlq1KhRjRsFAAAA12oc3vr06aO5c+fqyJEjTtuPHj2qJ598UrfccovbjQMAAICzGp/zlpycrJtuukkdO3ZUv379FB4eru+//17vvfee/P39tXbtWk+2EwAAAHJj5u26665TVlaWhgwZoqysLK1cuVJZWVkaOnSoPv30U3Xt2tWT7QQAAIDcvM5b586d9eqrr3qqLQAAALiMas+8ZWdn69ChQxXuP3TokLKzs91qFAAAAFyrVnh7//33FR0drR9++KHCMj/88IOio6O1efNmtxsHAAAAZ9UKb0uXLtWIESMUHR1dYZno6Gjdc889eumll9xuHAAAAJxVK7x9+OGHGjp06GXL/frXv9Ynn3xS0zYBAACgAtUKb8ePH1erVq0uWy48PFzHjh2rcaMAAADgWrXCW+PGjSv8VoWLnTx5UoGBgTVuFAAAAFyrVni77rrrtGnTpsuW27hxo6677roaNwoAAACuVSu83XPPPVq+fLm2b99eYZnMzEytXLlS9913n9uNAwAAgLNqXaT30UcfVUpKigYMGKBx48ZpyJAhat++vSRp7969WrdunZYvX67u3bvrkUceqZUGAwAA1GfVCm8NGzbU5s2b9eCDD+qFF17Qiy++6LTfMAzdcccd+uc//6mGDRt6tKEAAACowddjhYaGasOGDfrss8+0ZcsWHTx4UJLUtm1b3X777br++us93kgAAACUqvF3m0ZHR1d6sV4AAAB4XrXCW1RUVJXL2mw2/fe//612gwAAAFCxaoW3kJAQ2Wy2SsucOXNGn3322WXLAQAAoPqqFd62bdtW4b7i4mItW7ZMTz75pGw2m+6//3532wYAAIBLVOs6bxVZs2aNunbtqokTJ6p79+767LPP9PLLL3uiagAAAFzErfC2bds29e7dW/fcc4+aNm2qLVu2aPPmzerRo4eHmgcAAICL1Si8ZWdn684771S/fv2Um5ur1atX69///rf69evn6fYBAADgItUKbwcPHtTo0aN1ww036LPPPtNzzz2nr7/+Wvfee29ttQ8AAAAXqdYHFjp37qzz589r4MCBmj59upo0aaLs7OwKy99www1uNxAAAAAXVCu8FRYWSpI2btyoTZs2VVjOMAzZbDaVlJS41zoAAAA4qVZ4W7lyZW21AwAAAFVQrfA2evTo2moHAAAAqsAj13lzx3vvvaexY8cqIiJCjRs3VqtWrTRkyBB99tln5cru3LlTt912m4KCghQcHKz4+Hjt2bPHZb1LlixRRESE7Ha72rdvr6SkJBUVFZUrd+zYMY0ZM0ZhYWEKDAxUTEyMMjIyPH6cAAAAnuDz8PbCCy9o3759mjx5sjZs2KDFixfr2LFjuvHGG/Xee+85yu3atUuxsbE6f/683njjDa1YsULffvut+vTpo+PHjzvVOX/+fE2ePFnx8fHavHmzxo8fr+TkZE2YMMGpXGFhofr166eMjAwtXrxYb7/9tpo3b66BAwdq+/btXjl+AACA6qjWsmltWLp0qa6++mqnbQMHDlTHjh2VnJysW2+9VZI0Z84c2e12rV+/Xk2bNpUkRUdHq1OnTlq0aJGefvppSVJubq7mzZunRx55RMnJyZKk2NhYFRUVadasWZoyZYq6du0qSVq+fLlycnL00UcfKSYmRpIUFxen7t27a/r06dqxY4dX+gAAAKCqfD7zdmlwk6SgoCB17dpVBw8elFT6vanr16/X8OHDHcFNkq655hrFxcUpLS3NsW3Tpk0qKChQQkKCU50JCQkyDEPr1q1zbEtLS1OXLl0cwU2S/Pz8NGrUKH366ac6fPiwpw4TAADAI3w+8+bKTz/9pJ07dzpm3Xbv3q1z584pKiqqXNmoqCilp6eroKBAAQEBysnJkSRFRkY6lQsPD1dYWJhjvyTl5OSoT58+LuuUpC+//FKtWrVy2cbCwkLHpVMk6dSpU5KkoqIil+fWuausztqoG+XR395Hn3sX/e199Ln3Wa3Pq9pOU4a3CRMm6OzZs5o5c6ak0qVQSQoJCSlXNiQkRIZh6OTJkwoPD1dubq7sdrsaN27ssmxZXWX1VlTnxY/ryoIFC5SUlFRu+5YtWxQYGHiZI6y59PT0Wqsb5dHf3kefexf97X30ufdZpc/z8/OrVM504W327Nl65ZVXtGTJEkVHRzvts9lsFd7v4n1VLVfdshebMWOGpk6d6rh96tQptWnTRgMGDHBa2vWUoqIipaenq3///vL39/d4/XBGf3sffe5d9Lf30efeZ7U+L1vFuxxThbekpCTNmzdP8+fP1+9+9zvH9tDQUEmuZ8Ly8vJks9kUHBzsKFtQUKD8/PxyM2B5eXlOgTA0NLTCOiXXM31l7Ha77HZ7ue3+/v61OkBqu344o7+9jz73Lvrb++hz77NKn1e1jT7/wEKZpKQkzZ07V3PnztWf/vQnp30dOnRQo0aNXH6PanZ2tjp27KiAgABJF851u7Ts0aNHdeLECXXr1s2xLTIyssI6JTmVBQAAMANThLennnpKc+fO1axZs/TEE0+U2+/n56fBgwdr7dq1On36tGP7gQMHlJmZqfj4eMe2gQMHKiAgQCkpKU51pKSkyGazaejQoY5tw4YN065du5wuCVJcXKzU1FT17t1bLVu29NxBAgAAeIDPl02fffZZzZkzRwMHDtRdd92lTz75xGn/jTfeKKl0Zq5nz54aNGiQEhMTVVBQoDlz5igsLEzTpk1zlA8JCdGsWbM0e/ZshYSEaMCAAcrKytLcuXM1btw4xzXeJGns2LFaunSpRo4cqYULF+rqq6/W888/r2+++UZbt271TgcAAABUg8/D27vvviup9PpsmzZtKrffMAxJUkREhLZt26bHH39cI0aMkJ+fn2699VYtWrRIzZo1c7rPzJkz1aRJEy1dulSLFi1SixYtlJiY6Pj0ahm73a6MjAxNnz5dEydOVH5+vnr06KGNGzeqb9++tXTEAAAANefz8LZt27Yql42Ojq7yjNikSZM0adKky5Zr3ry5Vq1aVeU2AAAA+JIpznkDAABA1RDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhfg8vJ0+fVrTp0/XgAED1KxZM9lsNs2dO9dl2Z07d+q2225TUFCQgoODFR8frz179rgsu2TJEkVERMhut6t9+/ZKSkpSUVFRuXLHjh3TmDFjFBYWpsDAQMXExCgjI8OThwgAAOAxPg9vubm5WrZsmQoLCzV06NAKy+3atUuxsbE6f/683njjDa1YsULffvut+vTpo+PHjzuVnT9/viZPnqz4+Hht3rxZ48ePV3JysiZMmOBUrrCwUP369VNGRoYWL16st99+W82bN9fAgQO1ffv22jhcAAAAt/j5ugHXXHONTp48KZvNphMnTuill15yWW7OnDmy2+1av369mjZtKkmKjo5Wp06dtGjRIj399NOSSsPgvHnz9Mgjjyg5OVmSFBsbq6KiIs2aNUtTpkxR165dJUnLly9XTk6OPvroI8XExEiS4uLi1L17d02fPl07duyo7cMHAACoFp/PvNlsNtlstkrLFBcXa/369Ro+fLgjuEmlwS8uLk5paWmObZs2bVJBQYESEhKc6khISJBhGFq3bp1jW1pamrp06eIIbpLk5+enUaNG6dNPP9Xhw4fdPDoAAADP8vnMW1Xs3r1b586dU1RUVLl9UVFRSk9PV0FBgQICApSTkyNJioyMdCoXHh6usLAwx35JysnJUZ8+fVzWKUlffvmlWrVq5bJNhYWFKiwsdNw+deqUJKmoqMjluXXuKquzNupGefS399Hn3kV/ex997n1W6/OqttMS4S03N1eSFBISUm5fSEiIDMPQyZMnFR4ertzcXNntdjVu3Nhl2bK6yuqtqM6LH9eVBQsWKCkpqdz2LVu2KDAw8PIHVUPp6em1VjfKo7+9jz73Lvrb++hz77NKn+fn51epnCXCW5nKllcv3lfVctUte7EZM2Zo6tSpjtunTp1SmzZtNGDAAKelXU8pKipSenq6+vfvL39/f4/XD2f0t/fR595Ff3sffe59VuvzslW8y7FEeAsNDZXkeiYsLy9PNptNwcHBjrIFBQXKz88vNwOWl5en6Ohop3orqlNyPdNXxm63y263l9vu7+9fqwOktuuHM/rb++hz76K/vY8+9z6r9HlV2+jzDyxURYcOHdSoUSNlZ2eX25edna2OHTsqICBA0oVz3S4te/ToUZ04cULdunVzbIuMjKywTklOZQEAAMzAEuHNz89PgwcP1tq1a3X69GnH9gMHDigzM1Px8fGObQMHDlRAQIBSUlKc6khJSZHNZnO6ltywYcO0a9cup0uCFBcXKzU1Vb1791bLli1r7ZgAAABqwhTLphs3btTZs2cdweyrr77Sm2++KUm68847FRgYqKSkJPXs2VODBg1SYmKiCgoKNGfOHIWFhWnatGmOukJCQjRr1izNnj1bISEhGjBggLKysjR37lyNGzfOcY03SRo7dqyWLl2qkSNHauHChbr66qv1/PPP65tvvtHWrVu92wkAAABVYIrw9thjj2n//v2O22vWrNGaNWskSXv37lW7du0UERGhbdu26fHHH9eIESPk5+enW2+9VYsWLVKzZs2c6ps5c6aaNGmipUuXatGiRWrRooUSExM1c+ZMp3J2u10ZGRmaPn26Jk6cqPz8fPXo0UMbN25U3759a//AAQAAqskU4W3fvn1VKhcdHV3lGbFJkyZp0qRJly3XvHlzrVq1qkp1AgAA+JolznkDAABAKcIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeJJ05c0ZTpkxRy5YtFRAQoB49eui1117zdbMAAADK8fN1A8wgPj5eWVlZWrhwoTp37qzVq1frvvvu088//6z777/f180DAABwqPfhbcOGDUpPT3cENkmKi4vT/v379cc//lH33HOPGjRo4ONWAgAAlKr3y6ZpaWkKCgrSyJEjnbYnJCToyJEj2rFjh49aBgAAUF69n3nLycnRL37xC/n5OXdFVFSUY/9NN91U7n6FhYUqLCx03P7pp58kSXl5eSoqKvJ4O4uKipSfn6/c3Fz5+/t7vH44o7+9jz73Lvrb++hz77Nan58+fVqSZBhGpeXqfXjLzc3VtddeW257SEiIY78rCxYsUFJSUrnt7du392wDAQBAvXL69GldeeWVFe6v9+FNkmw2W7X3zZgxQ1OnTnXc/vnnn5WXl6fQ0NBK66upU6dOqU2bNjp48KCaNm3q8frhjP72Pvrcu+hv76PPvc9qfW4Yhk6fPq2WLVtWWq7eh7fQ0FCXs2t5eXmSLszAXcput8tutzttCw4O9nj7LtW0aVNLDMC6gv72Pvrcu+hv76PPvc9KfV7ZjFuZev+BhcjISH399dcqLi522p6dnS1J6tatmy+aBQAA4FK9D2/Dhg3TmTNn9NZbbzltX7VqlVq2bKnevXv7qGUAAADl1ftl0zvuuEP9+/fXY489plOnTqljx4569dVXtWnTJqWmpprmGm92u11PPPFEuaVa1A762/voc++iv72PPve+utrnNuNyn0etB86cOaOZM2fqjTfeUF5eniIiIjRjxgzde++9vm4aAACAE8IbAACAhdT7c94AAACshPAGAABgIYS3WnDmzBlNmTJFLVu2VEBAgHr06KHXXnvtsvc7dOiQpkyZor59+yo4OFg2m00pKSkVlt+6datiYmIUGBiosLAwjRkzRseOHStXrqioSElJSWrXrp3sdrsiIiK0ZMkSdw7RdMzU5/v27ZPNZnP5U5U2WYE3+nv9+vV66KGHFBkZKX9//0ovfs0Yr1ht9DljvGJV7e9Tp05p/vz5io2NVYsWLRQUFKTIyEg9/fTTKigoKFeeMV6x2uhz049xAx7Xv39/Izg42HjxxReN9957zxg3bpwhyXjllVcqvV9mZqYRFhZm3HbbbcZ9991nSDJWrlzpsuy2bdsMPz8/Y8iQIcaWLVuM1NRUo1WrVka3bt2MgoICp7Ljxo0z7Ha78ec//9nIzMw0EhMTDZvNZsyfP99Th+xzZurzvXv3GpKMiRMnGh9//LHTz4kTJzx52D7jjf4eO3as0alTJ+Puu+82oqOjjcqerhjjFauNPmeMV6yq/Z2dnW2EhYUZv//97423337byMjIMObOnWsEBAQY/fr1M37++Wen8ozxitVGn5t9jBPePOxf//qXIclYvXq10/b+/fsbLVu2NIqLiyu8b0lJieP/WVlZlT7J9uzZ0+jatatRVFTk2Pbhhx8akoznn3/esS0nJ8ew2WxGcnKy0/0feeQRo1GjRkZubm51Ds+UzNbnZX/0zzzzTA2PyNy81d8Xl50wYUKFQYIx7v0+Z4y7399nzpwxzpw5U277M888Y0gyPvjgA8c2xrj3+9zsY5xlUw9LS0tTUFCQRo4c6bQ9ISFBR44c0Y4dOyq87xVXVO3XcfjwYWVlZenBBx+Un9+FS/XddNNN6ty5s9LS0hzb1q1bJ8MwlJCQUK49586d06ZNm6r0mGZmtj6v67zR39Upyxj3fp/Xdd7o78aNG6tx48bltvfq1UuSdPDgQcc2xrj3+9zs+Ev1sJycHP3iF79weoGXpKioKMd+TzzGxXVe+jgXP0ZOTo6aNWumFi1a1Fp7fM1sfV5m4cKFatiwoQIDA3XzzTfrnXfecbsdZuCN/q5uexjjvjlGxrjnvffee5Kk6667zqk9jHHv9nkZs45xwpuH5ebmuvwy+7Jtubm5HnmMi+u89HEufoyK2tO4cWM1bNjQI+3xNbP1ud1u1yOPPKIXXnhB7733nl566SWVlJRoyJAheumll9xui695o7890R7GeO1hjNdOf3/xxRf685//rGHDhjm9UWSMe7/PzT7G6/3XY9WGyj4VV9k+Tz3Opdu91R5fMlOfh4eHa9myZU77R44cqd69eysxMVFjxowp9+7Sasw2pszWntpgpmNkjHu+v/ft26dBgwapTZs2LsOBmX7/tcVMfW72Mc7Mm4eFhoa6fIeQl5cnyfXMTU0eQ3L9TiQvL8/pMSpqz9mzZ3X+/HmPtMfXzNbnrvj7++uee+5Rbm6uvvvuO7fb40ve6G9PtIcx7l2M8Zrbv3+/4uLi5Ofnp4yMjHL1M8a93+eumGmME948LDIyUl9//bWKi4udtmdnZ0uSunXr5vZjlNVRVuelj3PxY0RGRur48eM6evRorbXH18zW5xUx/u+b6Kx+Urg3+ru67WGMm+MYGePVt3//fsXGxsowDGVmZqp169Yu28MY926fV8QsY9zaf2EmNGzYMJ05c0ZvvfWW0/ZVq1apZcuW6t27t9uP0apVK/Xq1UupqakqKSlxbP/kk0/0zTffKD4+3rFtyJAhstlsWrVqlVMdKSkpatSokQYOHOh2e3zNbH3uSlFRkV5//XWFhYWpY8eObrfHl7zR39XBGPd+n7vCGK++AwcOKDY2ViUlJXrvvfd0zTXXuCzHGPd+n7tipjFu7ZMSTOiOO+5Q//799dhjj+nUqVPq2LGjXn31VW3atEmpqalq0KCBJOnhhx/WqlWrtHv3bqfB8+abb0qS9uzZI0n697//raCgIEnSiBEjHOWefvpp9e/fXyNHjtT48eN17NgxJSYmqlu3bk4fJ7/uuuv08MMP64knnlCDBg3Us2dPbdmyRcuWLdO8efPqxHS72fp86tSpKioq0q9+9Su1aNFCBw8e1JIlS/T5559r5cqVjvZYlbf6e//+/crKypIk7d692+m+7dq10y9/+UtJjHFf9Dlj3P3+PnbsmOLi4vT9999r+fLlOnbsmNO3tbRu3doxI8QY936fm36M++4Sc3XX6dOnjUmTJhktWrQwGjZsaERFRRmvvvqqU5nRo0cbkoy9e/c6bZdU4c+ltmzZYtx4441GQECAERISYjz00EPGDz/8UK7c+fPnjSeeeMJo27at0bBhQ6Nz587G3/72N48es6+Zqc+XL19u9OrVywgJCTH8/PyMq666yrj99tuNzZs3e/y4fcUb/b1y5coKy40ePdqpLGO8lLf6nDFeyp3+zszMrLTcE0884VQnY7yUt/rc7GPcZhj/t4ALAAAA0+OcNwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwCmsG/fPtlsNqWkpHi87oyMDP3yl79U48aNZbPZtG7dOqWkpMhms2nfvn0ef7yLtWvXTmPGjKnVx7CCr776SnPnzq31/gbqA77bFECdZhiG7r77bnXu3FnvvPOOGjdurC5duqi4uFgff/yxwsPDfd3EeuGrr75SUlKSYmNj1a5dO183B7A0whuAOu3IkSPKy8vTsGHD1K9fP6d9zZo181GrfKuoqEg2m01+fuVfAvLz8xUYGOiDVgGoKpZNAdSq//3vf0pISFCnTp0UGBioVq1aafDgwcrOzr7sfY8fP65HH31Ubdq0kd1uV7NmzfSrX/1KW7durdJjz507V61bt5YkPf7447LZbI5ZH1fLprGxserWrZuysrLUp08fBQYG6tprr9XChQv1888/O8oVFBRo2rRp6tGjh6688kqFhIQoJiZGb7/9dtU75jJWr16tmJgYBQUFKSgoSD169NDy5csd+ytajo2NjVVsbKzj9rZt22Sz2fTyyy9r2rRpatWqlex2u/73v/9pzJgxCgoKUnZ2tgYMGKAmTZo4Au758+c1b948RUREOPo+ISFBx48fd3q8du3aadCgQdq0aZNuuOEGNWrUSBEREVqxYoWjTEpKikaOHClJiouLk81mq7UlcqA+YOYNQK06cuSIQkNDtXDhQjVr1kx5eXlatWqVevfurf/85z/q0qVLhfd98MEHtXPnTs2fP1+dO3fWjz/+qJ07dyo3N7dKjz1u3Dh1795d8fHxmjhxou6//37Z7fZK73P06FE98MADmjZtmp544gmlpaVpxowZatmypR566CFJUmFhofLy8vSHP/xBrVq10vnz57V161bFx8dr5cqVjnI1NWfOHD311FOKj4/XtGnTdOWVVyonJ0f79++vcZ0zZsxQTEyMXnzxRV1xxRW6+uqrJZWGtF//+tf6zW9+o8TERBUXF+vnn3/WkCFD9MEHH2j69Om66aabtH//fj3xxBOKjY3Vv//9bzVq1MhR93//+19NmzZNiYmJat68uV566SU9/PDD6tixo2655RbdddddSk5O1p/+9CctXbpUN9xwgySpQ4cObvUTUG8ZAOBFxcXFxvnz541OnToZv//97x3b9+7da0gyVq5c6dgWFBRkTJkyxa3HK6v3mWeecdq+cuVKQ5Kxd+9ex7a+ffsakowdO3Y4le3atatx++23V3pMRUVFxsMPP2xcf/31TvuuueYaY/To0VVu7549e4wGDRoYDzzwQKXlKqq3b9++Rt++fR23MzMzDUnGLbfcUq7s6NGjDUnGihUrnLa/+uqrhiTjrbfectqelZVlSDKef/55p3YEBAQY+/fvd2w7d+6cERISYvzmN79xbFuzZo0hycjMzKz0uABcHsumAGpVcXGxkpOT1bVrVzVs2FB+fn5q2LChvvvuO3399deV3rdXr15KSUnRvHnz9Mknn6ioqKjW29uiRQv16tXLaVtUVFS5Wa81a9boV7/6lYKCguTn5yd/f38tX778ssd0Oenp6SopKdGECRPcqudSw4cPr/K+9evXKzg4WIMHD1ZxcbHjp0ePHmrRooW2bdvmVL5Hjx5q27at43ZAQIA6d+7s1kwhgIoR3gDUqqlTp2r27NkaOnSo3n33Xe3YsUNZWVnq3r27zp07V+l9X3/9dY0ePVovvfSSYmJiFBISooceekhHjx6ttfaGhoaW22a3253aunbtWt19991q1aqVUlNT9fHHHysrK0tjx45VQUGBW49fdk5Z2bl6nlLRp2oDAwPVtGlTp20//PCDfvzxRzVs2FD+/v5OP0ePHtWJEyecylelzwB4Due8AahVqampeuihh5ScnOy0/cSJEwoODq70vmFhYXruuef03HPP6cCBA3rnnXeUmJioY8eOadOmTbXY6sqlpqaqffv2ev3112Wz2RzbCwsL3a677BOwhw4dUps2bSosFxAQ4PLxTpw4obCwsHLbL27n5baHhYUpNDS0wj5u0qRJhe0CUPsIbwBqlc1mK/chgX/96186fPiwOnbsWOV62rZtq9/97nfKyMjQhx9+6OlmVovNZlPDhg2dgs/Ro0c98mnTAQMGqEGDBnrhhRcUExNTYbl27drpiy++cNr27bff6ptvvnEZ3qpj0KBBeu2111RSUqLevXu7VVeZsjHAbBzgPsIbgFo1aNAgpaSkKCIiQlFRUfrss8/0zDPPXHZZ8KefflJcXJzuv/9+RUREqEmTJsrKytKmTZsUHx/vpda7NmjQIK1du1bjx4/XiBEjdPDgQT311FMKDw/Xd99951bd7dq105/+9Cc99dRTOnfunO677z5deeWV+uqrr3TixAklJSVJKv0k7qhRozR+/HgNHz5c+/fv15///GePXLvu3nvv1SuvvKI777xTkydPVq9eveTv769Dhw4pMzNTQ4YM0bBhw6pVZ7du3SRJy5YtU5MmTRQQEKD27du7XHIFUDnCG4BatXjxYvn7+2vBggU6c+aMbrjhBq1du1azZs2q9H4BAQHq3bu3Xn75Ze3bt09FRUVq27atHn/8cU2fPt1LrXctISFBx44d04svvqgVK1bo2muvVWJiog4dOuQIV+548skn1alTJy1ZskQPPPCA/Pz81KlTJ02aNMlR5v7779eRI0f04osvauXKlerWrZteeOEFjzx+gwYN9M4772jx4sV6+eWXtWDBAvn5+al169bq27evIiMjq11n+/bt9dxzz2nx4sWKjY1VSUmJVq5cyVeHATVgMwzD8HUjAAAAUDV82hQAAMBCWDYFYEmGYaikpKTSMg0aNKjwU5a+UFJSosoWO2w2mxo0aODFFgGwImbeAFjSqlWryl2D7NKf7du3+7qZTjp06FBpe8u+VxQAKsM5bwAsKTc3V3v37q20TJcuXUx1TbLs7OxKrwXXpEmTSr/rFQAkwhsAAIClsGwKAABgIYQ3AAAACyG8AQAAWAjhDQAAwEIIbwAAABZCeAMAALAQwhsAAICF/H8onkjURnNEtQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0021\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 5000])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.125 - 0.150 A" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.125 , 0.1259, 0.1268, 0.1277, 0.1286, 0.1295, 0.1304, 0.1313,\n", " 0.1322, 0.1331, 0.134 , 0.1349, 0.1358, 0.1367, 0.1376, 0.1385,\n", " 0.1394, 0.1403, 0.1412, 0.1421, 0.143 , 0.1439, 0.1448, 0.1457,\n", " 0.1466, 0.1475, 0.1484, 0.1493, 0.1502, 0.1511]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGzElEQVR4nO3de1xUdeL/8fckOIhoNuAFb3mXNUGL1NgyIQvJ1VVQtzLbxKwtXS+rrWFeKW+V7ea6VF9/qbhZVpZauV5Cwuq7lbG1bVDZzbtmJmheEAQ8vz/4MjoyKDDXA6/n48FD53M+85nP+XCYeZ/PuYzFMAxDAAAAMIUrfN0BAAAAVB3hDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmIjPw9v27dtlsVic/nz88ccOdT/77DPdeuutCgkJUZMmTZSUlKRdu3Y5bXfp0qWKiIiQ1WpV+/btlZqaquLi4gr1jhw5otGjRyssLEzBwcGKiYlRZmamR9YVAADAVQG+7kC5BQsWKC4uzqGse/fu9v/v3LlTsbGx6tmzp1577TUVFhZq9uzZ6tu3rz7//HM1bdrUXnf+/PmaNWuWUlJSFB8fr+zsbM2cOVMHDx7UsmXL7PWKiorUv39/HT9+XEuWLFGzZs2UlpamhIQEbdu2Tf369fP8igMAAFSH4WNZWVmGJGPt2rWXrDdixAgjLCzM+OWXX+xle/bsMQIDA41p06bZy44ePWoEBQUZDzzwgMPz58+fb1gsFuPLL7+0l6WlpRmSjA8//NBeVlxcbHTr1s3o3bu3q6sGAADgdj4/bFoVJSUl2rhxo4YNG6bGjRvby6+++mrFxcVp/fr19rItW7aosLBQycnJDm0kJyfLMAxt2LDBXrZ+/Xp17dpVMTEx9rKAgACNGjVKn3zyiQ4ePOi5lQIAAKgBvzlsOn78eN155532885mzZqlm266SZL0ww8/6MyZM4qKiqrwvKioKGVkZKiwsFBBQUHKzc2VJEVGRjrUCw8PV1hYmH25JOXm5qpv375O25SkL7/8Uq1atXLa36KiIhUVFdkfnzt3Tvn5+QoNDZXFYqnm2gMAgLrOMAydPHlSLVu21BVXVD6/5vPwduWVV2rSpEmKjY1VaGiovv/+ez311FOKjY3VP//5Tw0YMEB5eXmSJJvNVuH5NptNhmHo2LFjCg8PV15enqxWqxo2bOi0bnlbkpSXl1dpm+XLK7Nw4UKlpqZWe30BAAAuZf/+/WrdunWly30e3q699lpde+219sd9+/ZVYmKiIiMjNW3aNA0YMMC+7FIzWhcuq2q96ta90PTp0zVlyhT7419++UVt27bV7t271ahRo0qfV1PFxcXKyspSXFycAgMD3d4+HDHe3seYexfj7X2MufeZbcxPnjyp9u3bXzZH+Dy8OdOkSRMNGjRIzz//vM6cOaPQ0FBJzmfC8vPzZbFY1KRJE0lSaGioCgsLVVBQoODg4Ap1o6Oj7Y9DQ0MrbVNyPtNXzmq1ymq1Vii32WwO5+W5S3FxsYKDgxUaGmqKDdDsGG/vY8y9i/H2Psbc+8w25uV9vNzpV357wYJhGJLKVqBjx45q0KCBcnJyKtTLyclRp06dFBQUJOn8uW4X1z18+LCOHj3qcPuRyMjIStuUHG9VAgAA4A/8MrwdO3ZMGzduVM+ePRUUFKSAgAANHjxY69at08mTJ+319u3bp6ysLCUlJdnLEhISFBQUpPT0dIc209PTZbFYNHToUHtZYmKidu7cqR07dtjLSkpKtHr1avXp00ctW7b02DoCAADUhM8Pm44cOVJt27bV9ddfr7CwMH333Xd6+umn9dNPPzkEsNTUVPXq1UuDBg1SSkqK/Sa9YWFhmjp1qr2ezWbTzJkzNWvWLNlsNvtNeufOnauxY8eqW7du9rpjxoxRWlqaRowYoUWLFqlZs2Z69tln9c0332jbtm3eHAYAAIAq8Xl4i4qK0quvvqrnn39ep06dks1m00033aQXX3xRvXr1steLiIjQ9u3b9cgjj2j48OEKCAjQLbfcosWLFzt8u4IkzZgxQ40aNVJaWpoWL16sFi1aKCUlRTNmzHCoZ7ValZmZqWnTpmnChAkqKChQz549tXnzZr5dAQAA+CWfh7eUlBSlpKRUqW50dHSVZ8QmTpyoiRMnXrZe8+bNtWrVqiq1CQAA4Gt+ec4bAAAAnCO8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAoJY6fVqyWMp+Tp/2dW/gLoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwBqhHNpAMA3/C68vfDCC7JYLAoJCamw7LPPPtOtt96qkJAQNWnSRElJSdq1a5fTdpYuXaqIiAhZrVa1b99eqampKi4urlDvyJEjGj16tMLCwhQcHKyYmBhlZma6fb0AAADcwa/C28GDB/Xwww+rZcuWFZbt3LlTsbGxOnv2rF577TWtWLFC3377rfr27auff/7Zoe78+fM1adIkJSUlaevWrRo3bpwWLFig8ePHO9QrKipS//79lZmZqSVLlujNN99U8+bNlZCQoPfee8+j6woAAFATAb7uwIUefPBB3XzzzbLZbHr99dcdls2ePVtWq1UbN25U48aNJUnR0dHq3LmzFi9erCeeeEKSlJeXp3nz5un+++/XggULJEmxsbEqLi7WzJkzNXnyZHXr1k2StHz5cuXm5urDDz9UTEyMJCkuLk49evTQtGnTtGPHDm+tOuqQ06el8onlU6ekhg192x/4B7YLwL/509+o38y8rV69Wu+9956effbZCstKSkq0ceNGDRs2zB7cJOnqq69WXFyc1q9fby/bsmWLCgsLlZyc7NBGcnKyDMPQhg0b7GXr169X165d7cFNkgICAjRq1Ch98sknOnjwoBvXEAAAwHV+MfN25MgRTZ48WYsWLVLr1q0rLP/hhx905swZRUVFVVgWFRWljIwMFRYWKigoSLm5uZKkyMhIh3rh4eEKCwuzL5ek3Nxc9e3b12mbkvTll1+qVatWTvtcVFSkoqIi++MTJ05IkoqLi52eW+eq8jY90baZnD4tXXVVoCTp2LFij+35eHK8y5oMtLdv1l+pu9ejrm/jhYVS+XhmZZXo1lsN1avnuder6+PtC74Y89ryflNT7hxzb/yNVrWffhHexo0bp65du+qhhx5yujwvL0+SZLPZKiyz2WwyDEPHjh1TeHi48vLyZLVa1dDJp7rNZrO3Vd5uZW1e+LrOLFy4UKmpqRXK33nnHQUHB1f6PFdlZGR4rG0zKCysJ2mQJGnr1q0KCir16Ot5Yry9vQ6e4qn1qIvb+Ecfhev//b9IlX8wDB4coNDQMxo7NkcxMT969LXr4nj7mjfHvLa837jK1TH31t9oQUFBler5PLy98cYbevvtt/Wf//xHFovlknUvtfzCZVWtV926F5o+fbqmTJlif3zixAm1adNG8fHxDod23aW4uFgZGRm67bbbFBgY6Pb2zeLCW1IMGDDAozNvnhpvb62Dp7l7PerqNr5+vUVPPllPhuFYnp8fpCef7KVXXilVYqLh/MkuqM3j7a0Z+uryxZj/30EhSVLDhgken9H1N+4Yc2/+jZ648Bd2CT4Nb6dOndL48eM1YcIEtWzZUsePH5cknT17VpJ0/PhxBQYGKjQ0VJLzmbD8/HxZLBY1adJEkhQaGqrCwkIVFBRUmAHLz89XdHS0/XFoaGilbUrOZ/rKWa1WWa3WCuWBgYEe/aP0dPv+7sJVLxsLT7+e+8fb2+vgKZ5aj7q0jZeWSlOnqsKHgiQZhkUWi/TwwwEaNkwe+8CtjePt739j3hrzdeukiRPPPx48OECtW0tLlkhJSR5/eb9S0zH39t9oVfvo0wsWjh49qp9++klPP/20rrrqKvvPmjVrdPr0aV111VW6++671bFjRzVo0EA5OTkV2sjJyVGnTp0UFBQk6fy5bhfXPXz4sI4eParu3bvbyyIjIyttU5JDXQBwtw8+kA4cqHy5YUj795fVA6pj3Tpp+HDp4uvuDh4sK1+3zjf9Mht//Rv1aXhr0aKFsrKyKvwMGDBAQUFBysrK0rx58xQQEKDBgwdr3bp1OnnypP35+/btU1ZWlpIu2IVISEhQUFCQ0tPTHV4rPT1dFotFQ4cOtZclJiZq586dDrcEKSkp0erVq9WnTx+n95sDAHf5sYqnylS1HmqXmn6LSWmpNGlSZbNFZf9OnlxWD5fmr3+jPj1sGhQUpNjY2Arl6enpqlevnsOy1NRU9erVS4MGDVJKSooKCws1e/ZshYWFaerUqfZ6NptNM2fO1KxZs2Sz2RQfH6/s7GzNnTtXY8eOtd/jTZLGjBmjtLQ0jRgxQosWLVKzZs307LPP6ptvvtG2bds8uep1Umlp2d7Jjz9K4eFS376eOxTkzy58w3z/fSk+vm6Og7/w5b2bwsPdV8+f7kHlitqyHr5UndkiJx/BuIA7/0bdyW/u83Y5ERER2r59uwIDAzV8+HCNHj1anTp10vvvv6+mTZs61J0xY4aeeeYZvf7664qPj9fSpUuVkpKitLQ0h3pWq1WZmZmKi4vThAkTNHjwYP3444/avHmz+vXr583Vq/XWrZOuvlqKi5NGjiz7t127ujd1v26ddMH+gwYOrJvjgDJ9+0qtW5fNrDhjsUht2pTVg3eVlkrbt0tr1pT964tZqot39KraB3+dLTIjv/0bNeAWv/zyiyHJ+OWXXzzS/tmzZ40NGzYYZ8+e9Uj7nvTGG4ZhsRhG2f7e+R+LpeznjTeq3tapU+eff+qU5/rsifF25zj4A3f/Lny1jXtrm6pM+XZx8bZR3e2iuuvhr+8p7vh9uNrGG28YRuvWjr+P1q1d/xutzpi/8YZhtGpVsz5kZVV8n3H2k5Xl2vqYgTu2c3f9jVZFVbOEaWbeYE6ce1HG3eNQ03Nh4H+SkqTXX5cuPsW2deuy8rp2VaCvlZ/of/FhR2+e6O/qxQZ+O1vkQ67MpPrj3yjhDR7lr1fqeBvjgEtJSpK++ur8402bpN27CW7e5g87m+7oQ716ZbcDkSoGuPLHzzxTd861/eijcHXqFODSaTv+9jdKeINHce5FGcbBf9X0vCJ3u/CD9Oabq//B6i/rYWb+sJPlrj7442yRL6xfb9ETT/Ryyy1TXP0bdSfCGzzKX6/U8TbGwT/50wUkDRueP5umuldY+tN6mJk/7GS5sw/+NlvkbaWl0pQp5QnLcQrS7KftEN7gUbXx3IuanDvh7nFgluW8mp7/V1tuYlpb1sMf+MNOlrv74E+zRd72wQfSwYMWXRzcylV3JtWVHSx3I7zBo2rbuRfr1pXNaFT33Al3jgOzLK7zh3Ob3KG2rIe/8IedTX/oQ23hDzOpnkJ4g8eVn3vRqpVjudnOvXD1KjR3nIPiT7MsZp79c/e5Tb66+tfd63HixPn12LzZXL9Td/CHnU1/6ENt4Q8zqZ5CeKsjfH3DyaQkac8eKStLevnlsn9rcu6FrwKDu2Y4XDkHxZ9mWcw++1db9sjduR7u+p2a/TY2/rCzycUG7tG3r9SqlSHJyZumzD2LSXirA2p6qM/d6tUr+yqWu+4q+7e6e46+DAzunOGo6Tko/nAlnORfs381VVv2yN21HrXhd+pO7trZdLUP/nCxgZnDeL160l/+UrY3a7E4Bjizz2IS3mo5f7jhpDv4+sPFH2Zq3N2Hmrwp+9Psnytqy3lF7liP2vI7dTdXdzbd1Ydyde1iA3dJTDT0yCPZtW4Wk/BmAqdPS/XrB2ro0CHV2vOpLW/K7lyPmh4+9oeZGn/og7/M/rmqtpxX5I71+N//tdSK36m/ccepKv50daOZxcT8qO+/L/HpTKq7Ed5qsdryQeuu9XDl8LE/zNT4w+1G/GEG0l1qy3lFrq5Hbfqd+ovK3mvWr6/kj9ePmfnCpAv5w0yqOxHearHa8qbsjvVw9fCxP8zU+MPtRvxh9u9irny4+Mt5Ra5yZT388XdqZpd6r7nzznr66CPzDKTZL0yqzQhvtVhteVN2dT3ceaVobbgKzZXzB/1hBvJC7vhwccd5Rf4wO1HT9bjpJsOvfqdmVpX3muXLu5ti9srX5xnj0ghvtZi/fdDWlKvr4c7Dx2a/Cs3VIOsPM5Dl/OXDxeyzE+7+nboaZP0hCNfU5d9rLDp6NFj/+7/eO3xak/Pmasv50rUZ4c0ELvwD+d//tVT5D8adb8q+vFzc1fVw9+FjV8+dcMdJyL683Yg/nCvmLx8u/hIgXeWu36mrQdbsQbi2nKpSW86Xrs0Ib37u4jezwYMDqvVm5g+H+tzBlQ+X2nL42B3c9eHi63PF/OHDxV8CpLskJUl799Z8VtnVIOvOIOyr2bva8l5TW0JobUZ482PuejPzh0N97lDTwFBbDh+7gzs/XHx5Dyp/+HDxhwB5IXfN6NZkVtnVIOvOIOzL2bvLv9cYCgsr0E03Ob/jv7+oLSG0NiO8+Sl379XXlsukaxIY/Ok8LXep6Qd1bQmy7vxwqelY+kOA9BeuBll33g7Il4exq/Jec999uX7/XlNb3idqM8Kbn/K3vXqzqy2Hj11VW4KsP3y4MDtxnqtB1h1B2F8OY1/qveaVV0oVE+P/ab62vE/UZoQ3P8VevfvVlsPHrvKHCw5c5Q8fLv4QIP2Fq0HWHUHYn3Z4K3uvSUz078OlF6oN7xO1GeHNT/nbXr2ZL9+/UG05fOwqX19w4A6+/nDxhwDpL1wNsu4Iwv62w1sb3mtqw/tEbUV481P+tFdv9sv34Vxt+NJrX3+4+DpA+gtXg6w7grC/7fDWFrXhfaI2Irz5KX/Zq/f1CcDwnNrypde+/nDxdYD0F64GWVef7087vICnEd78mK/36v3lBGDA3/k6QPoLV4OsK8/3lx1eeEZpqbR9u7RmTdm/df1zh/Dm5y5+M3v77RKv7dX70wnAAMzB1SDryvN9vcNbG/nDDP26dWWn6sTFSSNHlv1b10/dCfB1B3B5F7553XST4bU9R387ARi1T2lpWfj/8UepadOqf/UbUJmkJOnWW6Urryx7vGmTFB/PjJtZlZ+6c/ERoPJTd+pqKCe8oVKcAAxPWreu7LD8+dndAIWGxuvZZy363e982TOYHYexa4fLnbpjsZSdujNkSN37HXPYFJXiBGB4Svne9MWH5fPygnTnnfXq9OEQAGU4dadyhDdUihOA4QmX2puWyjYss10I4w/nBQG1DafuVI7wZgING0pnzxZrw4Y3vf7BwAnAcLfL701b6uzeNIDzOHWncoQ3XBb3sYI7uXtvmlkv/8LvA+7CqTuVI7yhSjgBGO7C3jSAquDUncoR3mAq7NWb3+X3po06uzcNwFH5qTutWjmW1/VTd7hVCACvKt+bHj68LMA5XrhQ9qCu7k0DqCgpqex2IOX3hAwPL9u5q8vvEYQ3AF5XvjfteJ83KSzsjNLS6ispibcmAOfVqyfFxvq6F/6Dd0hUSfnhSqCcq9vExXvTTZuW6MSJDA0ePNB9nQSAWojwBsBnLtybLi42tGmTT7sDAKbABQsAAAAmQngDAAAwEQ6bAgD8BufXApfHzBsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARbtILAKhVuNEvajtm3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAAB4zOnTksVS9nP6tK97UzsQ3gAAgMeUlp7///vvOz5GzRDeAACAR6xbJ3Xrdv7xwIFSu3Zl5ag5whsAAHC7deuk4cOlgwcdyw8eLCsnwNWcz8Pb559/rt/85jdq27atGjRoIJvNppiYGK1evbpC3c8++0y33nqrQkJC1KRJEyUlJWnXrl1O2126dKkiIiJktVrVvn17paamqri4uEK9I0eOaPTo0QoLC1NwcLBiYmKUmZnp9vUEAKCuKC2VJk2SDKPisvKyyZM5hFpTPg9vx48fV5s2bbRgwQJt2rRJ//jHP9SuXTvdc889mjdvnr3ezp07FRsbq7Nnz+q1117TihUr9O2336pv3776+eefHdqcP3++Jk2apKSkJG3dulXjxo3TggULNH78eId6RUVF6t+/vzIzM7VkyRK9+eabat68uRISEvTee+95Zf0BAKhtPvhAOnCg8uWGIe3fX1YP1Rfg6w7ExsYqNjbWoWzQoEHavXu3li1bppkzZ0qSZs+eLavVqo0bN6px48aSpOjoaHXu3FmLFy/WE088IUnKy8vTvHnzdP/992vBggX21yguLtbMmTM1efJkdfu/A/DLly9Xbm6uPvzwQ8XExEiS4uLi1KNHD02bNk07duzwxhAAAFCr/Pije+vBkc9n3ioTFhamgICybFlSUqKNGzdq2LBh9uAmSVdffbXi4uK0fv16e9mWLVtUWFio5ORkh/aSk5NlGIY2bNhgL1u/fr26du1qD26SFBAQoFGjRumTTz7RwYsP1AMAgMsKD3dvPTjy+cxbuXPnzuncuXM6duyY1q5dq61bt+rvf/+7JOmHH37QmTNnFBUVVeF5UVFRysjIUGFhoYKCgpSbmytJioyMdKgXHh6usLAw+3JJys3NVd++fZ22KUlffvmlWrVq5bS/RUVFKioqsj8+ceKEJKm4uNjpuXWuKm/TE22jIsbb+xhz72K8va8ujfkNN0itWgXo0CHJMCwVllsshlq1km64oUSeHA6zjXlV++k34W3cuHH6n//5H0lS/fr19be//U1/+MMfJJUdCpUkm81W4Xk2m02GYejYsWMKDw9XXl6erFarGjZs6LRueVvl7VbW5oWv68zChQuVmppaofydd95RcHDwpVbVJRkZGR5rGxUx3t7HmHsX4+19dWXMR40K1xNP9JJkSLowwBkyDOnuu7O1dat3jpuaZcwLCgqqVM9vwtujjz6qsWPH6siRI3r77bf1xz/+UadPn9bDDz9sr2OxVEzvzpZVtV51615o+vTpmjJliv3xiRMn1KZNG8XHxzsc2nWX4uJiZWRk6LbbblNgYKDb24cjxtv7GHPvYry9r66N+cCB0nXXlepPf6qnQ4fOl7duLT39dKkSE6+VdK1H+2C2MS8/inc5fhPe2rZtq7Zt20qSBg4cKKksIN17770KDQ2V5HwmLD8/XxaLRU2aNJEkhYaGqrCwUAUFBRVmwPLz8xUdHW1/HBoaWmmbkvOZvnJWq1VWq7VCeWBgoEc3EE+3D0eMt/cx5t7FeHtfXRrz3/1OSkiQrryy7PGmTVJ8vEX16nk3fphlzKvaR7+9YKF3794qKSnRrl271LFjRzVo0EA5OTkV6uXk5KhTp04KCgqSdP5ct4vrHj58WEePHlX37t3tZZGRkZW2KcmhLgAAqL569c7//+abHR+jZvw2vGVlZemKK65Qhw4dFBAQoMGDB2vdunU6efKkvc6+ffuUlZWlpKQke1lCQoKCgoKUnp7u0F56erosFouGDh1qL0tMTNTOnTsdbglSUlKi1atXq0+fPmrZsqXH1g8AgLqgYcOy+7oZRtn/4TqfHzZ94IEH1LhxY/Xu3VvNmzfX0aNHtXbtWr366qv685//rKZNm0qSUlNT1atXLw0aNEgpKSkqLCzU7NmzFRYWpqlTp9rbs9lsmjlzpmbNmiWbzab4+HhlZ2dr7ty5Gjt2rP0eb5I0ZswYpaWlacSIEVq0aJGaNWumZ599Vt988422bdvm9bEAAAC4HJ+Ht5iYGK1cuVKrVq3S8ePHFRISoh49eujFF1/UqFGj7PUiIiK0fft2PfLIIxo+fLgCAgJ0yy23aPHixfaAV27GjBlq1KiR0tLStHjxYrVo0UIpKSmaMWOGQz2r1arMzExNmzZNEyZMUEFBgXr27KnNmzerX79+Xll/AACA6vB5eEtOTq5wQ93KREdHV3lGbOLEiZo4ceJl6zVv3lyrVq2qUpsAAAC+5rfnvAEAAKAiwhsAAICJEN4AAABMhPAGAABgIjUOb4899pgOXfh9Fxf48ccf9dhjj9W4UwAAAHCuxuEtNTVVBw4ccLrs0KFDTr+0HQAAAK6pcXgzDKPSZadOnTLFd4gBAACYTbXu8/bFF1/o888/tz/etGmTdu7c6VDnzJkzeumll9SxY0e3dBAAAADnVSu8rV+/3n441GKxVHpeW4MGDbRy5UrXewcAAAAH1QpvDzzwgAYNGiTDMNS7d2+tXLlS3bt3d6hjtVrVsWNHNWjQwK0dBQAAQDXDW3h4uMLDwyVJWVlZio6OVkhIiEc6BgAAgIpq/N2mfHE7AACA97n0xfSrV6/Wyy+/rL179+rMmTMOyywWi3744QeXOgcAAABHNQ5vTzzxhKZPn65u3bqpR48eslqt7uwXAAAAnKhxeFu2bJnGjx+vpUuXurM/AAAAuIQa36T38OHDSkxMdGdfAAAAcBk1Dm/R0dGc0wYAAOBlNQ5vf/nLX/T000/r008/dWd/AAAAcAk1PuctOTlZeXl56t27t1q0aKHQ0FCH5RaLRf/9739d7iAAAADOq3F4Cw0NVVhYmDv7AgAAgMuocXjbvn27G7sBAACAqqjxOW8AAADwvhrPvL3//vuXrXPzzTfXtHkAAAA4UePwFhsbK4vFcsk6paWlNW0eAAAATtQ4vGVlZVUoO3r0qN58803961//UlpamksdAwAAQEU1Dm/9+vVzWj5s2DA9+OCD2rJlixISEmrcMQAAAFTkkQsWEhMT9corr3iiaQAAgDrNI+Ht2LFjKioq8kTTAAAAdVqND5vu27evQllRUZG++OILTZ8+XTfccINLHQMAAEBFNQ5v7dq1c3q1qWEY6tq1q/7+97+71DEAAABUVOPwtmLFigrhLSgoSO3atVOvXr10xRXc/xcAAMDdahzeRo8e7cZuAAAAoCpqHN7KnTx5Uh999JHy8vIUFhamG264QY0aNXJH3wAAAHARl8Lb4sWLlZqaqoKCAhmGIUlq2LChUlNTNWXKFLd0EAAAAOfVOLz94x//0LRp03T77bdr9OjRatmypQ4dOqRVq1bpz3/+s5o2bap77rnHnX0FAACo82oc3v76179q5MiRWr16tUP5iBEjNGrUKP31r38lvAEAALhZjS8J3blzp0aNGuV02ahRo/T111/XuFMAAABwrsbhrUGDBsrPz3e6LD8/Xw0aNKhxpwAAAOBcjcNb3759NXfuXB06dMih/PDhw3rsscd08803u9w5AAAAOKrxOW8LFizQr3/9a3Xq1En9+/dXeHi4fvzxR7377rsKDAzUunXr3NlPAAAAyIWZt2uuuUbZ2dkaMmSIsrOztXLlSmVnZ2vo0KH65JNP1K1bN3f2EwAAAHLxPm9dunTRmjVr3NUXAAAAXEa1Z95ycnJ04MCBSpcfOHBAOTk5LnUKAAAAzlUrvL3//vuKjo7WTz/9VGmdn376SdHR0dq6davLnQMAAICjaoW3tLQ0DR8+XNHR0ZXWiY6O1h133KEXXnjB5c4BAADAUbXC27/+9S8NHTr0svV++9vf6uOPP65pnwAAAFCJaoW3n3/+Wa1atbpsvfDwcB05cqTGnQIAAIBz1QpvDRs2rPRbFS507NgxBQcH17hTAAAAcK5a4e2aa67Rli1bLltv8+bNuuaaa2rcKQAAADhXrfB2xx13aPny5XrvvfcqrZOVlaWVK1fqrrvucrlzAAAAcFStm/Q+8MADSk9PV3x8vMaOHashQ4aoffv2kqTdu3drw4YNWr58uXr06KH777/fIx0GAACoy6oV3urXr6+tW7fqnnvu0XPPPafnn3/eYblhGLr99tv1j3/8Q/Xr13drRwEAAFCDr8cKDQ3Vpk2b9Omnn+qdd97R/v37JUlt27bVgAEDdO2117q9kwAAAChT4+82jY6OvuTNegEAAOB+1QpvUVFRVa5rsVj03//+t9odAgAAQOWqFd5sNpssFssl65w6dUqffvrpZesBAACg+qoV3rZv317pspKSEi1btkyPPfaYLBaLRo4c6WrfAAAAcJFq3eetMmvXrlW3bt00YcIE9ejRQ59++qlefPFFdzQNAACAC7gU3rZv364+ffrojjvuUOPGjfXOO+9o69at6tmzp5u6BwAAgAvVKLzl5ORo4MCB6t+/v/Ly8vTyyy/r3//+t/r37+/u/gEAAOAC1Qpv+/fv17333qvrrrtOn376qZ555hl9/fXXuvPOOz3VPwAAAFygWhcsdOnSRWfPnlVCQoKmTZumRo0aKScnp9L61113ncsdBAAAwHnVCm9FRUWSpM2bN2vLli2V1jMMQxaLRaWlpa71DgAAAA6qFd5WrlzpqX4AAACgCqoV3u69915P9QMAAABV4Jb7vLni3Xff1ZgxYxQREaGGDRuqVatWGjJkiD799NMKdT/77DPdeuutCgkJUZMmTZSUlKRdu3Y5bXfp0qWKiIiQ1WpV+/btlZqaquLi4gr1jhw5otGjRyssLEzBwcGKiYlRZmam29cTAADAHXwe3p577jnt2bNHkyZN0qZNm7RkyRIdOXJEN9xwg9599117vZ07dyo2NlZnz57Va6+9phUrVujbb79V37599fPPPzu0OX/+fE2aNElJSUnaunWrxo0bpwULFmj8+PEO9YqKitS/f39lZmZqyZIlevPNN9W8eXMlJCTovffe88r6AwAAVEe1Dpt6Qlpampo1a+ZQlpCQoE6dOmnBggW65ZZbJEmzZ8+W1WrVxo0b1bhxY0lSdHS0OnfurMWLF+uJJ56QJOXl5WnevHm6//77tWDBAklSbGysiouLNXPmTE2ePFndunWTJC1fvly5ubn68MMPFRMTI0mKi4tTjx49NG3aNO3YscMrYwAAAFBVPp95uzi4SVJISIi6deum/fv3Syr73tSNGzdq2LBh9uAmSVdffbXi4uK0fv16e9mWLVtUWFio5ORkhzaTk5NlGIY2bNhgL1u/fr26du1qD26SFBAQoFGjRumTTz7RwYMH3bWaAAAAbuHzmTdnfvnlF3322Wf2WbcffvhBZ86cUVRUVIW6UVFRysjIUGFhoYKCgpSbmytJioyMdKgXHh6usLAw+3JJys3NVd++fZ22KUlffvmlWrVq5bSPRUVF9lunSNKJEyckScXFxU7PrXNVeZueaBsVMd7ex5h7F+PtfYy595ltzKvaT78Mb+PHj9fp06c1Y8YMSWWHQiXJZrNVqGuz2WQYho4dO6bw8HDl5eXJarWqYcOGTuuWt1XebmVtXvi6zixcuFCpqakVyt955x0FBwdfZg1rLiMjw2NtoyLG2/sYc+9ivL2PMfc+s4x5QUFBler5XXibNWuWXnrpJS1dulTR0dEOyywWS6XPu3BZVetVt+6Fpk+frilTptgfnzhxQm3atFF8fLzDoV13KS4uVkZGhm677TYFBga6vX04Yry9jzH3Lsbb+xhz7zPbmJcfxbscvwpvqampmjdvnubPn68//vGP9vLQ0FBJzmfC8vPzZbFY1KRJE3vdwsJCFRQUVJgBy8/PdwiEoaGhlbYpOZ/pK2e1WmW1WiuUBwYGenQD8XT7cMR4ex9j7l2Mt/cx5t5nljGvah99fsFCudTUVM2dO1dz587Vo48+6rCsY8eOatCggdPvUc3JyVGnTp0UFBQk6fy5bhfXPXz4sI4eParu3bvbyyIjIyttU5JDXQAAAH/gF+Ht8ccf19y5czVz5kzNmTOnwvKAgAANHjxY69at08mTJ+3l+/btU1ZWlpKSkuxlCQkJCgoKUnp6ukMb6enpslgsGjp0qL0sMTFRO3fudLglSElJiVavXq0+ffqoZcuW7ltJAAAAN/D5YdOnn35as2fPVkJCgn7zm9/o448/dlh+ww03SCqbmevVq5cGDRqklJQUFRYWavbs2QoLC9PUqVPt9W02m2bOnKlZs2bJZrMpPj5e2dnZmjt3rsaOHWu/x5skjRkzRmlpaRoxYoQWLVqkZs2a6dlnn9U333yjbdu2eWcAAAAAqsHn4e3tt9+WVHZ/ti1btlRYbhiGJCkiIkLbt2/XI488ouHDhysgIEC33HKLFi9erKZNmzo8Z8aMGWrUqJHS0tK0ePFitWjRQikpKfarV8tZrVZlZmZq2rRpmjBhggoKCtSzZ09t3rxZ/fr189AaAwAA1JzPw9v27durXDc6OrrKM2ITJ07UxIkTL1uvefPmWrVqVZX7AAAA4Et+cc4bAAAAqobwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATMTn4e3kyZOaNm2a4uPj1bRpU1ksFs2dO9dp3c8++0y33nqrQkJC1KRJEyUlJWnXrl1O6y5dulQRERGyWq1q3769UlNTVVxcXKHekSNHNHr0aIWFhSk4OFgxMTHKzMx05yoCAAC4jc/DW15enpYtW6aioiINHTq00no7d+5UbGyszp49q9dee00rVqzQt99+q759++rnn392qDt//nxNmjRJSUlJ2rp1q8aNG6cFCxZo/PjxDvWKiorUv39/ZWZmasmSJXrzzTfVvHlzJSQk6L333vPE6gIAALgkwNcduPrqq3Xs2DFZLBYdPXpUL7zwgtN6s2fPltVq1caNG9W4cWNJUnR0tDp37qzFixfriSeekFQWBufNm6f7779fCxYskCTFxsaquLhYM2fO1OTJk9WtWzdJ0vLly5Wbm6sPP/xQMTExkqS4uDj16NFD06ZN044dOzy9+gAAANXi85k3i8Uii8VyyTolJSXauHGjhg0bZg9uUlnwi4uL0/r16+1lW7ZsUWFhoZKTkx3aSE5OlmEY2rBhg71s/fr16tq1qz24SVJAQIBGjRqlTz75RAcPHnRx7QAAANzL5zNvVfHDDz/ozJkzioqKqrAsKipKGRkZKiwsVFBQkHJzcyVJkZGRDvXCw8MVFhZmXy5Jubm56tu3r9M2JenLL79Uq1atnPapqKhIRUVF9scnTpyQJBUXFzs9t85V5W16om1UxHh7H2PuXYy39zHm3me2Ma9qP00R3vLy8iRJNputwjKbzSbDMHTs2DGFh4crLy9PVqtVDRs2dFq3vK3yditr88LXdWbhwoVKTU2tUP7OO+8oODj48itVQxkZGR5rGxUx3t7HmHsX4+19jLn3mWXMCwoKqlTPFOGt3KUOr164rKr1qlv3QtOnT9eUKVPsj0+cOKE2bdooPj7e4dCuuxQXFysjI0O33XabAgMD3d4+HDHe3seYexfj7X2MufeZbczLj+JdjinCW2hoqCTnM2H5+fmyWCxq0qSJvW5hYaEKCgoqzIDl5+crOjraod3K2pScz/SVs1qtslqtFcoDAwM9uoF4un04Yry9jzH3Lsbb+xhz7zPLmFe1jz6/YKEqOnbsqAYNGignJ6fCspycHHXq1ElBQUGSzp/rdnHdw4cP6+jRo+revbu9LDIystI2JTnUBQAA8AemCG8BAQEaPHiw1q1bp5MnT9rL9+3bp6ysLCUlJdnLEhISFBQUpPT0dIc20tPTZbFYHO4ll5iYqJ07dzrcEqSkpESrV69Wnz591LJlS4+tEwAAQE34xWHTzZs36/Tp0/Zg9tVXX+n111+XJA0cOFDBwcFKTU1Vr169NGjQIKWkpKiwsFCzZ89WWFiYpk6dam/LZrNp5syZmjVrlmw2m+Lj45Wdna25c+dq7Nix9nu8SdKYMWOUlpamESNGaNGiRWrWrJmeffZZffPNN9q2bZt3BwEAAKAK/CK8PfTQQ9q7d6/98dq1a7V27VpJ0u7du9WuXTtFRERo+/bteuSRRzR8+HAFBATolltu0eLFi9W0aVOH9mbMmKFGjRopLS1NixcvVosWLZSSkqIZM2Y41LNarcrMzNS0adM0YcIEFRQUqGfPntq8ebP69evn+RUHAACoJr8Ib3v27KlSvejo6CrPiE2cOFETJ068bL3mzZtr1apVVWoTAADA10xxzhsAAADKEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAm6dSpU5o8ebJatmypoKAg9ezZU6+88oqvuwUAAFBBgK874A+SkpKUnZ2tRYsWqUuXLnr55Zd111136dy5cxo5cqSvuwcAAGBX58Pbpk2blJGRYQ9skhQXF6e9e/fqz3/+s+644w7Vq1fPx70EAAAoU+cPm65fv14hISEaMWKEQ3lycrIOHTqkHTt2+KhnAAAAFdX5mbfc3Fz96le/UkCA41BERUXZl//617+u8LyioiIVFRXZH//yyy+SpPz8fBUXF7u9n8XFxSooKFBeXp4CAwPd3j4cMd7ex5h7F+PtfYy595ltzE+ePClJMgzjkvXqfHjLy8tThw4dKpTbbDb7cmcWLlyo1NTUCuXt27d3bwcBAECdcvLkSV155ZWVLq/z4U2SLBZLtZdNnz5dU6ZMsT8+d+6c8vPzFRoaesn2aurEiRNq06aN9u/fr8aNG7u9fThivL2PMfcuxtv7GHPvM9uYG4ahkydPqmXLlpesV+fDW2hoqNPZtfz8fEnnZ+AuZrVaZbVaHcqaNGni9v5drHHjxqbYAGsLxtv7GHPvYry9jzH3PjON+aVm3MrV+QsWIiMj9fXXX6ukpMShPCcnR5LUvXt3X3QLAADAqTof3hITE3Xq1Cm98cYbDuWrVq1Sy5Yt1adPHx/1DAAAoKI6f9j09ttv12233aaHHnpIJ06cUKdOnbRmzRpt2bJFq1ev9pt7vFmtVs2ZM6fCoVp4BuPtfYy5dzHe3seYe19tHXOLcbnrUeuAU6dOacaMGXrttdeUn5+viIgITZ8+XXfeeaevuwYAAOCA8AYAAGAidf6cNwAAADMhvAEAAJgI4c0DTp06pcmTJ6tly5YKCgpSz5499corr1z2eQcOHNDkyZPVr18/NWnSRBaLRenp6RXqnThxQvPnz1dsbKxatGihkJAQRUZG6oknnlBhYaFD3T179shisTj9qUqfzMLTYy5JM2bM0LXXXiubzaagoCB16NBBDzzwgPbu3VuhbnFxsVJTU9WuXTtZrVZFRERo6dKlrq6m3/Cn8WYbv7TqjPmFzpw5oy5dushisWjx4sUVlrONO+eJ8WYbv7TqjHlsbKzTcUxISKhQ15+38Tp/taknJCUlKTs7W4sWLVKXLl308ssv66677tK5c+c0cuTISp/3/fff66WXXlLPnj01cOBArVmzxmm9ffv26ZlnntE999yjKVOmKCQkRB988IHmzp2rjIwMZWRkVPiWhwkTJlR47c6dO7u+sn7C02MuScePH9ddd92lX/3qV2rUqJG++uorzZs3T2+99Za+/PJLhYaG2uuOGzdOL774oh5//HH16tVLW7du1aRJk3Ty5Ek9+uijbl13X/C38ZbYxitTnTG/0KxZs3T69OlKl7ONO+ep8ZbYxitT3THv0KGDXnrpJYcyZzfZ9+tt3IBb/fOf/zQkGS+//LJD+W233Wa0bNnSKCkpqfS5paWl9v9nZ2cbkoyVK1dWqHfq1Cnj1KlTFcqfeuopQ5LxwQcf2Mt2795tSDKeeuqpGqyNOXhjzCuzadMmQ5KxfPlye1lubq5hsViMBQsWONS9//77jQYNGhh5eXlVbt8f+dt4s427f8x37Nhh1K9f31i7dq3TsWUb9+54s427b8z79etnXHPNNZftj79v4xw2dbP169crJCREI0aMcChPTk7WoUOHtGPHjkqfe8UVVft1NGzYUA0bNqxQ3rt3b0nS/v37q9Fj8/PGmFemadOmkqSAgPOT2Bs2bJBhGEpOTq7QnzNnzmjLli0uvaav+dt41wXeHPOzZ89qzJgxGj9+vK6//nqnddjGvTvedYEv31ec8fdtnPDmZrm5ufrVr35V4cMlKirKvtxT3n33XUnSNddcU2HZokWLVL9+fQUHB+umm27SW2+95bF+eJu3x7ykpERnzpzRf/7zH02ePFldunRRUlKSQ3+aNm2qFi1aeKU/3uZv412Obdw9HnvsMZ0+fVqPP/74JfvDNu4eVRnvcmzj7vHDDz/IZrMpICBAHTt21IwZM3TmzJkK/fHnbZzw5mZ5eXlOv8y+vCwvL88jr/vFF1/oySefVGJion3jksruLn3//ffrueee07vvvqsXXnhBpaWlGjJkiF544QWP9MXbvDnmhw8fVmBgoIKDg3XdddeppKREWVlZCgkJuWx/GjZsqPr163tsG/AWfxtvtnH3jfnnn3+uJ598Us8//7zT2f3L9YdtvHqqOt5s4+4b85tuukl/+ctf9MYbb+itt97SwIED9eSTTyohIUHnzp27bH/8ZRuvW8cevOTiiwWquqym9uzZo0GDBqlNmzYV/pDDw8O1bNkyh7IRI0aoT58+SklJ0ejRo2vFIShvjXlYWJiys7NVVFSkr7/+Wk8++aTi4uK0fft2hYeHe70/vuJP48027p4xLykp0ZgxY3THHXdowIABPu+Pr/nTeLONu2+bmjdvnsPjgQMHql27dnr44Yf15ptvKjEx0av9qSlm3twsNDTUaSLPz8+XJKdJ3hV79+5VXFycAgIClJmZWaX2AwMDdccddygvL0/fffedW/vjC94c84CAAF1//fW68cYbNXbsWL377rvatWuXFi1adNn+nD59WmfPnnX7NuBt/jbezrCNV98zzzyjXbt2ac6cOTp+/LiOHz+uEydOSJIKCwt1/PhxlZaWXrI/bONVV53xdoZt3H1GjRolSfr4448v2x9/2cYJb24WGRmpr7/+WiUlJQ7lOTk5kqTu3bu77bX27t2r2NhYGYahrKwstW7dusrPNf7vW9E8caKnt3lzzC/WunVrtWzZUt9++61Df37++WcdPnzY6/3xBn8b78qwjVdPbm6ufvnlF3Xu3FlXXXWVrrrqKvXo0UNS2W0srrrqKvvrsY17d7wrwzbuXheOo79v4+b/jfuZxMREnTp1Sm+88YZD+apVq9SyZUv16dPHLa+zb98+xcbGqrS0VO+++66uvvrqKj+3uLhYr776qsLCwtSpUye39MeXvDXmznz//fc6cOCAwzgOGTJEFotFq1atcqibnp6uBg0aOL0ZpJn423g7wzZefSkpKcrKynL4Kb9f1oMPPqisrCz7WLKNe3e8nWEbd5/y7fiGG26wl/n7Nm7+g+R+5vbbb9dtt92mhx56SCdOnFCnTp20Zs0abdmyRatXr1a9evUkSffdd59WrVqlH374wSF4vf7665KkXbt2SZL+/e9/20/OHj58uCTpyJEjiouL048//qjly5fryJEjOnLkiL2N1q1b22fhpkyZouLiYt14441q0aKF9u/fr6VLl+rzzz/XypUr7f0xM2+M+RdffKE//elPGj58uDp06KArrrhCOTk5+utf/6rQ0FA9/PDD9vauueYa3XfffZozZ47q1aunXr166Z133tGyZcs0b948n0+3u8rfxptt3D1jHhERoYiICIfX3bNnjySpY8eOio2NtZezjXt3vNnG3TPmH3zwgebPn6/ExER16NBBhYWF2rx5s5YtW6ZbbrlFgwcPtrfn99u4D+8xV2udPHnSmDhxotGiRQujfv36RlRUlLFmzRqHOvfee68hydi9e7dDuaRKf8plZWVdst6cOXPsdZcvX2707t3bsNlsRkBAgHHVVVcZAwYMMLZu3erJIfA6T4/54cOHjVGjRhkdO3Y0goODjfr16xsdOnQwHnzwQWPfvn0V+nP27Fljzpw5Rtu2bY369esbXbp0Mf72t795ZN19wZ/Gm238PFfG3JlL3RyWbdx74802fp4rY/7dd98ZAwcONFq1amVYrVYjKCjIiIyMNObPn28UFhZW6I8/b+MWw/i/g+YAAADwe5zzBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBsAv7NmzRxaLRenp6W5vOzMzU9dff70aNmwoi8WiDRs2KD09XRaLxf6VRJ7Srl07jR492qOvYQZfffWV5s6d6/HxBuoCvtsUQK1mGIZ+97vfqUuXLnrrrbfUsGFDde3aVSUlJfroo48UHh7u6y7WCV999ZVSU1MVGxurdu3a+bo7gKkR3gDUaocOHVJ+fr4SExPVv39/h2VNmzb1Ua98q7i4WBaLRQEBFT8CCgoKFBwc7INeAagqDpsC8Kjvv/9eycnJ6ty5s4KDg9WqVSsNHjxYOTk5l33uzz//rAceeEBt2rSR1WpV06ZNdeONN2rbtm1Veu25c+eqdevWkqRHHnlEFovFPuvj7LBpbGysunfvruzsbPXt21fBwcHq0KGDFi1apHPnztnrFRYWaurUqerZs6euvPJK2Ww2xcTE6M0336z6wFzGyy+/rJiYGIWEhCgkJEQ9e/bU8uXL7csrOxwbGxur2NhY++Pt27fLYrHoxRdf1NSpU9WqVStZrVZ9//33Gj16tEJCQpSTk6P4+Hg1atTIHnDPnj2refPmKSIiwj72ycnJ+vnnnx1er127dho0aJC2bNmi6667Tg0aNFBERIRWrFhhr5Oenq4RI0ZIkuLi4mSxWDx2iByoC5h5A+BRhw4dUmhoqBYtWqSmTZsqPz9fq1atUp8+ffSf//xHXbt2rfS599xzjz777DPNnz9fXbp00fHjx/XZZ58pLy+vSq89duxY9ejRQ0lJSZowYYJGjhwpq9V6yeccPnxYd999t6ZOnao5c+Zo/fr1mj59ulq2bKnf//73kqSioiLl5+fr4YcfVqtWrXT27Flt27ZNSUlJWrlypb1eTc2ePVuPP/64kpKSNHXqVF155ZXKzc3V3r17a9zm9OnTFRMTo+eff15XXHGFmjVrJqkspP32t7/VH/7wB6WkpKikpETnzp3TkCFD9MEHH2jatGn69a9/rb1792rOnDmKjY3Vv//9bzVo0MDe9n//+19NnTpVKSkpat68uV544QXdd9996tSpk26++Wb95je/0YIFC/Too48qLS1N1113nSSpY8eOLo0TUGcZAOBFJSUlxtmzZ43OnTsbf/rTn+zlu3fvNiQZK1eutJeFhIQYkydPdun1ytt96qmnHMpXrlxpSDJ2795tL+vXr58hydixY4dD3W7duhkDBgy45DoVFxcb9913n3Httdc6LLv66quNe++9t8r93bVrl1GvXj3j7rvvvmS9ytrt16+f0a9fP/vjrKwsQ5Jx8803V6h77733GpKMFStWOJSvWbPGkGS88cYbDuXZ2dmGJOPZZ5916EdQUJCxd+9ee9mZM2cMm81m/OEPf7CXrV271pBkZGVlXXK9AFweh00BeFRJSYkWLFigbt26qX79+goICFD9+vX13Xff6euvv77kc3v37q309HTNmzdPH3/8sYqLiz3e3xYtWqh3794OZVFRURVmvdauXasbb7xRISEhCggIUGBgoJYvX37ZdbqcjIwMlZaWavz48S61c7Fhw4ZVednGjRvVpEkTDR48WCUlJfafnj17qkWLFtq+fbtD/Z49e6pt27b2x0FBQerSpYtLM4UAKkd4A+BRU6ZM0axZszR06FC9/fbb2rFjh7Kzs9WjRw+dOXPmks999dVXde+99+qFF15QTEyMbDabfv/73+vw4cMe629oaGiFMqvV6tDXdevW6Xe/+51atWql1atX66OPPlJ2drbGjBmjwsJCl16//Jyy8nP13KWyq2qDg4PVuHFjh7KffvpJx48fV/369RUYGOjwc/jwYR09etShflXGDID7cM4bAI9avXq1fv/732vBggUO5UePHlWTJk0u+dywsDA988wzeuaZZ7Rv3z699dZbSklJ0ZEjR7RlyxYP9vrSVq9erfbt2+vVV1+VxWKxlxcVFbncdvkVsAcOHFCbNm0qrRcUFOT09Y4ePaqwsLAK5Rf283LlYWFhCg0NrXSMGzVqVGm/AHge4Q2AR1kslgoXCfzzn//UwYMH1alTpyq307ZtW/3xj39UZmam/vWvf7m7m9VisVhUv359h+Bz+PBht1xtGh8fr3r16um5555TTExMpfXatWunL774wqHs22+/1TfffOM0vFXHoEGD9Morr6i0tFR9+vRxqa1y5dsAs3GA6whvADxq0KBBSk9PV0REhKKiovTpp5/qqaeeuuxhwV9++UVxcXEaOXKkIiIi1KhRI2VnZ2vLli1KSkryUu+dGzRokNatW6dx48Zp+PDh2r9/vx5//HGFh4fru+++c6ntdu3a6dFHH9Xjjz+uM2fO6K677tKVV16pr776SkePHlVqaqqksitxR40apXHjxmnYsGHau3evnnzySbfcu+7OO+/USy+9pIEDB2rSpEnq3bu3AgMDdeDAAWVlZWnIkCFKTEysVpvdu3eXJC1btkyNGjVSUFCQ2rdv7/SQK4BLI7wB8KglS5YoMDBQCxcu1KlTp3Tddddp3bp1mjlz5iWfFxQUpD59+ujFF1/Unj17VFxcrLZt2+qRRx7RtGnTvNR755KTk3XkyBE9//zzWrFihTp06KCUlBQdOHDAHq5c8dhjj6lz585aunSp7r77bgUEBKhz586aOHGivc7IkSN16NAhPf/881q5cqW6d++u5557zi2vX69ePb311ltasmSJXnzxRS1cuFABAQFq3bq1+vXrp8jIyGq32b59ez3zzDNasmSJYmNjVVpaqpUrV/LVYUANWAzDMHzdCQAAAFQNV5sCAACYCIdNAZiSYRgqLS29ZJ169epVepWlL5SWlupSBzssFovq1avnxR4BMCNm3gCY0qpVqyrcg+zin/fee8/X3XTQsWPHS/a3/HtFAeBSOOcNgCnl5eVp9+7dl6zTtWtXv7onWU5OziXvBdeoUaNLftcrAEiENwAAAFPhsCkAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACby/wHAhp0tM6Gf6QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0022\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 5000])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.150 - 0.175 A" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.15 , 0.1509, 0.1518, 0.1527, 0.1536, 0.1545, 0.1554, 0.1563,\n", " 0.1572, 0.1581, 0.159 , 0.1599, 0.1608, 0.1617, 0.1626, 0.1635,\n", " 0.1644, 0.1653, 0.1662, 0.1671, 0.168 , 0.1689, 0.1698, 0.1707,\n", " 0.1716, 0.1725, 0.1734, 0.1743, 0.1752, 0.1761]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABX/klEQVR4nO3de1xUZf4H8M9RcIaLpAPKzWve+KlcjPXCbiR4QTJdBbU1cwtM200TTVtCQQMvaL+odFmsdb3ARllpYOUqiIjUL8vY3HbBVmu9VZgig4o6Mg54fn+wjIwzwABzOUc+79eLV81znnl4ztfDzGfObQRRFEUQERERkSx0svcEiIiIiMh8DG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjkgtv27ZtgyAIcHV1NWiPiYmBIAhGP35+fibHSU9Ph5+fHxQKBfr374+UlBTodDqjfhUVFYiJiYGHhwecnZ0REhKCwsJCq6wbERERUXs52HsCjZWXl+PFF1+Ej48Prl27ZrTcyckJhw8fNmq71/r167Fq1SokJCQgIiICJSUlSEpKQnl5ObZu3arvp9VqMX78eFy9ehWbN29Gz549kZGRgcjISBw6dAhjx461/EoSERERtYMgpe82nTp1KgRBgEqlwp49e3Djxg39spiYGKM2U9RqNXr16oWnnnoKf/7zn/XtqampSEpKQllZGYYOHQoA2LJlCxYtWoSjR48iJCQEAFBbW4vAwEC4urri2LFjVlhLIiIioraTzGHT7OxsFBcXY8uWLe0aJy8vDzU1NYiNjTVoj42NhSiK2Lt3r74tNzcXQ4YM0Qc3AHBwcMDcuXPx1Vdfoby8vF1zISIiIrI0SRw2raiowNKlS7Fx40b06tWryX63bt2Cl5cXLl++DG9vb0yfPh1r1qyBSqXS9ykrKwMA+Pv7GzzX29sbHh4e+uUNfUNDQ41+T0BAAADgxIkT8PX1NTkXrVYLrVarf3znzh1UVVXB3d0dgiCYsdZEREREd4miiOvXr8PHxwedOjW9f00S4W3hwoUYMmQInnvuuSb7BAYGIjAwEMOHDwcAFBcX44033kBhYSFKSkr0Fzio1WooFAq4uLgYjaFSqaBWq/WP1Wq1QfBr3K9heVM2bNiAlJQU81aQiIiIyEw//vhjszuz7B7ePvzwQ3zyySf4xz/+0eweqxdeeMHg8cSJEzFixAjMnDkTf/nLXwyWNzfOvcta07exFStWYNmyZfrH165dQ58+fXD27Fl07dq1yee1lU6nQ1FREcLDw+Ho6Gjx8ckQ6217rLltsd62x5rbntxqfv36dfTv37/FHGHX8Hbjxg0sWrQIixcvho+PD65evQoAuH37NgDg6tWrcHR0NLkXDQCioqLg4uKCL7/8Ut/m7u6OmpoaaDQaODs7G/SvqqpCcHCwQV9Te9eqqqoAwOReuQYKhQIKhcKoXaVSwc3NrcnntZVOp4OzszPc3d1lsQHKHette6y5bbHetsea257cat4wx5ZOv7LrBQuVlZW4dOkSXnvtNXTv3l3/s2vXLty8eRPdu3fHk08+2ewYoigaHBduONettLTUoN/FixdRWVmpP+za0Pfefo2f27gvERERkRTYdc+bl5cXioqKjNo3btyI4uJiHDhwAB4eHk0+f8+ePdBoNBgzZoy+LTIyEkqlEpmZmRg9erS+PTMzE4IgYPr06fq2qKgoLFy4EMeOHdP3ra2tRXZ2NkaPHg0fHx8LrCURERGR5dg1vCmVSoSFhRm1Z2ZmonPnzvpl58+fx5w5czB79mwMHDgQgiCguLgYmzZtwrBhwzB//nz9c1UqFZKSkrBq1SqoVCr9TXqTk5Mxf/58/T3eAGDevHnIyMjArFmzsHHjRvTs2RNbtmzBqVOncOjQIWuvPhEREVGr2f2CBXO4ubnB09MTr7/+Oi5duoS6ujr07dsXcXFxWLlypdE5cYmJiejatSsyMjKQlpYGLy8vJCQkIDEx0aCfQqFAYWEh4uPjsXjxYmg0GgQFBeHAgQP8dgUiIiKSJEmGt8zMTGRmZuofd+/eHTk5Oa0aIy4uDnFxcS328/T0RFZWVmunSERERGQXkvmGBSIiIiJqGcMbERERkYwwvBERERHJCMMbERERkYwwvBERERHJCMMbERERkYwwvBERERHJCMMbERERkYwwvBERERHJCMMbERERkYwwvBERERHJCMMbERERkYwwvBERERHJCMMbERERkYwwvBERERHJCMMbERERkYwwvBERERHJCMMbERERkYwwvBERERHJCMMbERERkYwwvBERERHJCMMbERERkYwwvBERERHJCMMbERERkYwwvBERERHJCMMbERERmXTzJiAI9T83b9p7NtSA4Y2IiIhIRhjeiIiIiGSE4Y2IiIhIRhjeiIiIiGSE4Y2IiIhIRiQX3rZt2wZBEODq6mq07Pjx45gwYQJcXV3RrVs3REdH48yZMybHSU9Ph5+fHxQKBfr374+UlBTodDqjfhUVFYiJiYGHhwecnZ0REhKCwsJCi68XERERkSVIKryVl5fjxRdfhI+Pj9GykydPIiwsDLdv38YHH3yAHTt24LvvvkNoaCguX75s0Hf9+vVYsmQJoqOjkZ+fj4ULFyI1NRWLFi0y6KfVajF+/HgUFhZi8+bN+Oijj+Dp6YnIyEgUFxdbdV2JiIiI2sLB3hNo7Pe//z0eeeQRqFQq7Nmzx2DZ6tWroVAosG/fPri5uQEAgoODMWjQIKSlpeGVV14BAKjVaqxbtw4LFixAamoqACAsLAw6nQ5JSUlYunQphg4dCgDYvn07ysrKcPToUYSEhAAAwsPDERgYiPj4eBw7dsxWq05ERERkFsnsecvOzkZxcTG2bNlitKy2thb79u3DjBkz9MENAPr27Yvw8HDk5ubq2/Ly8lBTU4PY2FiDMWJjYyGKIvbu3atvy83NxZAhQ/TBDQAcHBwwd+5cfPXVVygvL7fgGhIRWc/9cjNVrgdRyySx562iogJLly7Fxo0b0atXL6Plp0+fxq1btxAQEGC0LCAgAAUFBaipqYFSqURZWRkAwN/f36Cft7c3PDw89MsBoKysDKGhoSbHBIATJ07A19fX5Jy1Wi20Wq3+cXV1NQBAp9OZPLeuvRrGtMbYZIz1to2bN4Hu3R0BABUVrHl71JfN8b//r0NLZZTqNt7a9ZAqU+sh1Zo3R+7/Hg21vnpVh54969fjyhUdXFzsOaummbttSCK8LVy4EEOGDMFzzz1ncrlarQYAqFQqo2UqlQqiKOLKlSvw9vaGWq2GQqGAi4l/GZVKpR+rYdymxmz8e03ZsGEDUlJSjNoPHjwIZ2fnJp/XXgUFBVYbm4xJtd41NZ0xe/YUAMB77+2DUlln5xm1jUbTGUD9eqSn/xNBQdKtudTV1NytZX5+vtnbhNTq3XibeP31vyMoqAKdO9t3Tm3R3L+H1GrenLZuV9aYR3te8w4fPgwprEdLNBqNWf3sHt4+/PBDfPLJJ/jHP/4BQRCa7dvc8sbLzO3X2r6NrVixAsuWLdM/rq6uRu/evREREWFwaNdSdDodCgoKMHHiRDg6Olp8fDIk9Xo3PgwzadIku3yKbLzXrC2fZHNzBbz44t135bVrQ+Dufgvp6Z0wc6ZkzuiQjdZuE1Lcxk1tE76+Il5/vQ5RUaIdZ9Z6pv49pFjzlvz3oBIAwMUlEhMmiHYJ0219zWuo+bhx49r0fFurblzwZtg1vN24cQOLFi3C4sWL4ePjg6tXrwIAbt++DQC4evUqHB0d4e7uDsD0nrCqqioIgoBu3boBANzd3VFTUwONRmO0B6yqqgrBwcH6x+7u7k2OCZje09dAoVBAoVAYtTs6Olr1j9La49/v6uqAzz4Dfv4Z8PYGQkPR7AuRVOvdeEr1c5TXHHJygNmzAfGe92O1WoknnwQUCgHR0ZaZZ0fR1n8PqWzjTW0TFy4ImD3bAXv2QFbbRHP/HlKpeUtycoC4uLuPp051QK9ewObNtv+3aO9rXuN6t/U1s7XvH21h7nZh14+3lZWVuHTpEl577TV0795d/7Nr1y7cvHkT3bt3x5NPPokBAwbAyckJpaWlRmOUlpZi4MCBUCqVAO6e63Zv34sXL6KyshLDhw/Xt/n7+zc5JgCDviR/OTlA375AeDgwZ079f/v1q2/viOx1QnVdHbBkifGbdL36vd1Ll9b3I/M1rtenn8qrfs1tEw1t3CZsKycHmDkTuPe6vfLy+vaO9rqZk1P/fiGV9w+7hjcvLy8UFRUZ/UyaNAlKpRJFRUVYt24dHBwcMHXqVOTk5OD69ev65//www8oKipCdKOPAJGRkVAqlcjMzDT4XZmZmRAEAdOnT9e3RUVF4eTJkwa3BKmtrUV2djZGjx5t8n5zZF9tDRx8IZKOzz4Dfvqp6eWiKODHH+v7kXlycoD/3gEJADB5srw+mLS8TYDbhA0xTBtqeP+4dxu15/uHXQ+bKpVKhIWFGbVnZmaic+fOBstSUlIwcuRITJkyBQkJCaipqcHq1avh4eGB5cuX6/upVCokJSVh1apVUKlUiIiIQElJCZKTkzF//nz9Pd4AYN68ecjIyMCsWbOwceNG9OzZE1u2bMGpU6dw6NAha6462VBLL0SCUP9CNG2a5XeBk7Gff7Zsv46u4Y3l3u274Y1FDocbuU1IS2vCtIm38PuKVN8/ZHNWsJ+fH44cOQJHR0fMnDkTMTExGDhwID799FP06NHDoG9iYiI2bdqEPXv2ICIiAunp6UhISEBGRoZBP4VCgcLCQoSHh2Px4sWYOnUqfv75Zxw4cABjx4615eqRFfFTvbR4e1u2X0d2v+wh4TYhLQzTd0n1/cPuV5uakpmZaXTYE6j/RgVz94jFxcUhrvGZlk3w9PREVlZWa6dIMsIXItPuPUcqIsI2nxxDQ4Fever3DJkKHYIgolcvASZuwUj3kOIekupq4IEH6v9//37ztquWt4n65dwmbINh+i6pvn/IZs8bUVvxhciYPc+R6ty5/mo1oP5N2VD9O/emTTyEbQ6pvbG0dbtqbptoeMxtwnYawnRTd8sSBKB3744RpqX6/sHwRrLSlivq+EJkSAoXb0RH15+Lde81QR4et/Dee3WSP0dLKqT0xtLe7aqpbaJXL3mct3c/uR/DdFuvxpbq+wfDG8kGP9Xf1dYXIimdIxUdDXz77d3Hn3xSiz//uUB2N2O1J6m8sVhqu7p3m9i/Hzh7lsHNHu6nMP3FF94ICLh7llhrjjRI9f2D4Y1kgZ/q72rPIU+pnXzb+AXv4Yftc+d2OZPKG4slt6vGc33kEXl9qLrf3A9hOjdXwCuvjMSFC4btrTnS0PD+ce9Xndvz/YPhjSTPkp/qz58HioqAd9+t/29bXojq6oAjR4Bdu+r/a8sr+dobYi15jpQlbgrr4lL/byiKkOzX1UidFD6YWHK74jZhWe19vZJzmK6rA5Yta5iw4aeb1h5piI4Gzp1r//uHpTC8kVksEVjaeoNdS3+qDwsDnnii/r+tfSGy5122LRFiLXWOlNxvCnu/sfceEimde0d3Se1bAWzts8+A8nIB9wa3Bq090tDe9w9LYnijFtn7BUAqV9TZ+y7blgixljhHSgoXPEiNvb5qrDF77iGRyrl3dJe9X6+kQCrvHdbA8EbNksILgBQ+1VvyRP+2vtFb4oWovedISemCh/uNFAJgW0nl3Duqx7/TelJ477AWhjdqklReAKTwqV4KJ/pb6oWoPedISaEOJE1SOPeO6vHvtF5oKODrK6Lh/pH3kvMeYYY3apJUXgCk8KleCrvfLRli23qOlBTqIEWWuHjDEmO0V3v3/lnqoqD2kvNeTEuQ2t+pJc6ZbsvfR+fOwOuv13cUBMMAJ/c9wgxv1CQpvQDY+1O9FHa/WzrEtuUcKSnUQWoscfHG/XQBiBRO6pZCELYnKf2d5uQAffu275zp9vx9REWJeOmlEqN1lfseYYa3DqItn0Sl9AIA2PeKOikcugXsH2KlUgepsMTFG5a6AIS32KgnlSBszwAplb9Tqfx9hIT8jH/9q1b/WI73q7sXwxs1ydIvAJZ4MbPXFXVSOHTbwJ4hVkp1sJS2HtKxxDmhUjmv9H4hlSuhmwqQublNvJhamBT+TqX29yHn+9WZwvBGTbLkC4BUPg23h5Tusm3PFyJ77/2zpPYc0rHEOaFSOa/0fiCVINxcgJw9uzO++MI2hyrs/XrFvw/rYnijZlniBUAqn4YtwRJ32ZbK+TjtOcxm75vCWoIUvq1CSueVyp0U3ujNCZDbtw+32d+8Pb8VgH8f1uXQchfq6KKjgWnT6l/0fv65/hy30FDz9va09GImCPWfhqdNk89u7IYTstsiJweIi7v7ePLk+iC8ebO8gg8g78MQltguLXFOqNTOK5UzKbzRtxwgBVRWOuP//q8WEyZYbx6Ntef1Crj7Ia+1+PdhXdzzRmZp6xVklv40LOeTsu+nPZByJ5Vvq5DKieX3Aym80UshQEoF/z6si+GNrIovZvWkcj4O1ZPCt1VYagxLksoh/baw9Bv9/XCFvj3dj38fUsLwJgM3bwJdujhi+vRpsrvhJF/M6knhfBy6SwrfVmHJMSxB7hcVSeGNvuUAKcLDQ4OHH27DcUgZssQ501L5+5AahjeyKu72rsc9kNIihW+rsPQY7XG/HNK39xu9OQHymWfKOtSeIktcNGHvvw8pYnjrIOx1OEQKn4algHsgpUUK31ZhjTHa4n47pG/vr+hqLkC+914dQkI63ic0S3zrRnv/PuR8vrQpDG8dgL0Ph9j707AUcA+k9Ehtu7TXm8v//Z9w3x3St/dXdDW1pygqqmMcLiXrY3i7z0nlcEhH3+3NPZDSZKm9NHL+VM9D+qa192iFnG+lQ9LH8HYfk9rhkI7+YmbJPT1yDgtSY++9NPbGQ/rG7H20gqglDG/3MV7hKD0dfQ8kSc/DD4s8pN+IVI5WEDWH4e0+xsMh0tTR90CStPCQ/l1SO1pB1BSGt/sYD4eQNfHQ7f1Dahdv2AuPVpBcMLzJQONPef/3f4LZn/p4hSN1BNXVd++Ef+AA94q0FQ/p82gFyQfDm8Tde+Ls1KkOZp84y8MhdL/jieWW1dEP6fNoBckFw5uEWeLEWSkdDuFhNrIknlhOlsajFSQXdg9v33zzDR577DH06dMHTk5OUKlUCAkJQXZ2tkG/mJgYCIJg9OPn52dy3PT0dPj5+UGhUKB///5ISUmBTqcz6ldRUYGYmBh4eHjA2dkZISEhKCwstMq6toYlT5zl4RBpYYhtP55YTtbAoxUkFw72nsDVq1fRu3dvPPHEE/D19cXNmzfxzjvv4Le//S3OnTuHpKQkfV8nJyccPnzY4PlOTk5GY65fvx6rVq1CQkICIiIiUFJSgqSkJJSXl2Pr1q36flqtFuPHj8fVq1exefNm9OzZExkZGYiMjMShQ4cwduxY6614C1pz4mxYWMvjdfTDIXR/sfTfB1GDhqMVcXGGe3V79aoPbvzQS1Jg9/AWFhaGsHteXadMmYKzZ89i69atBuGtU6dOGDNmTLPjqdVqrFu3DgsWLEBqaqr+d+h0OiQlJWHp0qUY+t+TZLZv346ysjIcPXoUISEhAIDw8HAEBgYiPj4ex44ds+Catg5PnCVqGv8+yJqio4EJE4AHHqh/vH8/EBHBD70kHXY/bNoUDw8PODi0Plvm5eWhpqYGsbGxBu2xsbEQRRF79+7Vt+Xm5mLIkCH64AYADg4OmDt3Lr766iuU33syjQ3xxFmipvHvg6yNRytIyuy+563BnTt3cOfOHVy5cgW7d+9Gfn4+/vSnPxn0uXXrFry8vHD58mV4e3tj+vTpWLNmDVQqlb5PWVkZAMDf39/gud7e3vDw8NAvb+gbauLM04CAAADAiRMn4Ovra3K+Wq0WWq1W/7i6uhoAoNPpTJ5b11pjxgC+vg64cAEQReOzZwVBhK8vMGZMLcz5dfV9HBvNsd1TvK81/Bta4t+SzNOamlv676MjMlVvvk7c1d5amHo+X1farq3/HnKrubnzlEx4W7hwIf785z8DALp06YI//vGP+N3vfqdfHhgYiMDAQAwfPhwAUFxcjDfeeAOFhYUoKSmBq6srgPrDpgqFAi4mzgRXqVRQq9X6x2q12iD4Ne7XsLwpGzZsQEpKilH7wYMH4ezsbM4qt2juXG+88spIACKAxm9QIkQRePLJEuTnm3dcqKamM4ApAID8/HwolTyT2xwFBQX2nkKHY27NLfn30ZHdW++GgxPFxbafi5S09zWzuefzdaVt2rNtyqXmGo3GrH6SCW8rV67E/PnzUVFRgU8++QTPP/88bt68iRdffBEA8MILLxj0nzhxIkaMGIGZM2fiL3/5i8FyoanrvE0sa03fxlasWIFly5bpH1dXV6N3796IiIiAm5tbk89rjcmTgYceqsMLL3TGhQt323v1Al57rQ5RUSMAjDBrrJs37/7/pEmTeJVjC3Q6HQoKCjBx4kQ4OjraezodQmtrbsm/j46I23jz2vuaaer5rLntya3mDUfxWiKZ8NanTx/06dMHADB58mQA9QHp6aefRo8ePUw+JyoqCi4uLvjyyy/1be7u7qipqYFGozHaA1ZVVYXg4GCDvqb2rlVVVQGAyb1yDRQKBRQKhVG7o6OjRTeQxx8HIiPvnjj7ySe1ePRRB3Tu3Lp/usZTqp+jxaZ4X7P0vye1rDU1f/xxYMaM+qtKf/65/hy30FCh1X8fHRm3cdO6dWt8K5rW16e511zW3PbkUnNz5yjZCxZGjRqF2tpanDlzptl+oiiiU6e7q9FwrltpaalBv4sXL6KyslJ/2LWh7739Gj+3cV97anyi7MMPi206cZb3FqP7VefO9bcDeeKJ+v/yxHIiut9JNrwVFRWhU6dOePDBB5vss2fPHmg0GoPbh0RGRkKpVCIzM9Ogb2ZmJgRBwPTp0/VtUVFROHnypMEtQWpra5GdnY3Ro0fD596vJSAiIiKyM7sfW3j22Wfh5uaGUaNGwdPTE5WVldi9ezfef/99/OEPf0CPHj1w/vx5zJkzB7Nnz8bAgQMhCAKKi4uxadMmDBs2DPPnz9ePp1KpkJSUhFWrVkGlUulv0pucnIz58+fr7/EGAPPmzUNGRgZmzZqFjRs3omfPntiyZQtOnTqFQ4cO2aMcRERERM2ye3gLCQnBzp07kZWVhatXr8LV1RWBgYF4++23MXfuXACAm5sbPD098frrr+PSpUuoq6tD3759ERcXh5UrVxpdWZqYmIiuXbsiIyMDaWlp8PLyQkJCAhITEw36KRQKFBYWIj4+HosXL4ZGo0FQUBAOHDhg129XICIiImqK3cNbbGys0Q1179W9e3fktPJbpuPi4hAXF9diP09PT2RlZbVqbCIiouY0nGdMZA2SPeeNiIiIiIwxvBERERHJCMMbERERkYwwvBERERHJCMObDLi4ALdv67B370e8wS4REVEHx/BGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQyYvfw9s033+Cxxx5Dnz594OTkBJVKhZCQEGRnZxv1PX78OCZMmABXV1d069YN0dHROHPmjMlx09PT4efnB4VCgf79+yMlJQU6nc6oX0VFBWJiYuDh4QFnZ2eEhISgsLDQ4utJREREZAl2D29Xr15F7969kZqaiv379+Ovf/0r+vXrh9/+9rdYt26dvt/JkycRFhaG27dv44MPPsCOHTvw3XffITQ0FJcvXzYYc/369ViyZAmio6ORn5+PhQsXIjU1FYsWLTLop9VqMX78eBQWFmLz5s346KOP4OnpicjISBQXF9tk/YmIiIhaw8HeEwgLC0NYWJhB25QpU3D27Fls3boVSUlJAIDVq1dDoVBg3759cHNzAwAEBwdj0KBBSEtLwyuvvAIAUKvVWLduHRYsWIDU1FT979DpdEhKSsLSpUsxdOhQAMD27dtRVlaGo0ePIiQkBAAQHh6OwMBAxMfH49ixY7YoAREREZHZ7L7nrSkeHh5wcKjPlrW1tdi3bx9mzJihD24A0LdvX4SHhyM3N1fflpeXh5qaGsTGxhqMFxsbC1EUsXfvXn1bbm4uhgwZog9uAODg4IC5c+fiq6++Qnl5uZXWjoiIiKht7L7nrcGdO3dw584dXLlyBbt370Z+fj7+9Kc/AQBOnz6NW7duISAgwOh5AQEBKCgoQE1NDZRKJcrKygAA/v7+Bv28vb3h4eGhXw4AZWVlCA0NNTkmAJw4cQK+vr4m56vVaqHVavWPq6urAQA6nc7kuXXt1TCmNcYmY6y37bHmtsV62x5rbntyq7m585RMeFu4cCH+/Oc/AwC6dOmCP/7xj/jd734HoP5QKACoVCqj56lUKoiiiCtXrsDb2xtqtRoKhQIuLi4m+zaM1TBuU2M2/r2mbNiwASkpKUbtBw8ehLOzc3Or2i4FBQVWG5uMsd62x5rbFutte6y57cml5hqNxqx+kglvK1euxPz581FRUYFPPvkEzz//PG7evIkXX3xR30cQhCaf33iZuf1a27exFStWYNmyZfrH1dXV6N27NyIiIgwO7VqKTqdDQUEBJk6cCEdHR4uPT4ZYb9tjzW2L9bY91tz25FbzhqN4LZFMeOvTpw/69OkDAJg8eTKA+oD09NNPw93dHYDpPWFVVVUQBAHdunUDALi7u6OmpgYajcZoD1hVVRWCg4P1j93d3ZscEzC9p6+BQqGAQqEwand0dLTqBmLt8ckQ6217rLltsd62x5rbnlxqbu4cJXvBwqhRo1BbW4szZ85gwIABcHJyQmlpqVG/0tJSDBw4EEqlEsDdc93u7Xvx4kVUVlZi+PDh+jZ/f/8mxwRg0JeIiIhICiQb3oqKitCpUyc8+OCDcHBwwNSpU5GTk4Pr16/r+/zwww8oKipCdHS0vi0yMhJKpRKZmZkG42VmZkIQBEyfPl3fFhUVhZMnTxrcEqS2thbZ2dkYPXo0fHx8rLZ+RERERG1h98Omzz77LNzc3DBq1Ch4enqisrISu3fvxvvvv48//OEP6NGjBwAgJSUFI0eOxJQpU5CQkICamhqsXr0aHh4eWL58uX48lUqFpKQkrFq1CiqVChERESgpKUFycjLmz5+vv8cbAMybNw8ZGRmYNWsWNm7ciJ49e2LLli04deoUDh06ZPNaEBEREbXE7uEtJCQEO3fuRFZWFq5evQpXV1cEBgbi7bffxty5c/X9/Pz8cOTIEbz00kuYOXMmHBwcMG7cOKSlpekDXoPExER07doVGRkZSEtLg5eXFxISEpCYmGjQT6FQoLCwEPHx8Vi8eDE0Gg2CgoJw4MABjB071ibrT0RERNQadg9vsbGxRjfUbUpwcLDZe8Ti4uIQFxfXYj9PT09kZWWZNSYRERGRvUn2nDciIiIiMsbwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjbQ5va9aswYULF0wu+/nnn7FmzRqzxjl8+DDmzZsHPz8/uLi4wNfXF9OmTcPXX39t0C8mJgaCIBj9+Pn5mRw3PT0dfn5+UCgU6N+/P1JSUqDT6Yz6VVRUICYmBh4eHnB2dkZISAgKCwvNmjsRERGRrbU5vKWkpOCnn34yuezChQtISUkxa5w333wT586dw5IlS7B//35s3rwZFRUVGDNmDA4fPmzQ18nJCV988YXBz/vvv2805vr167FkyRJER0cjPz8fCxcuRGpqKhYtWmTQT6vVYvz48SgsLMTmzZvx0UcfwdPTE5GRkSguLjazEkRERES249DWJ4qi2OSyGzduwNHR0axxMjIy0LNnT4O2yMhIDBw4EKmpqRg3bpy+vVOnThgzZkyz46nVaqxbtw4LFixAamoqACAsLAw6nQ5JSUlYunQphg4dCgDYvn07ysrKcPToUYSEhAAAwsPDERgYiPj4eBw7dsysdSAiIiKylVaFt3/961/45ptv9I/379+PkydPGvS5desW3nnnHQwYMMCsMe8NbgDg6uqKoUOH4scff2zN9AAAeXl5qKmpQWxsrEF7bGwsEhMTsXfvXn14y83NxZAhQ/TBDQAcHBwwd+5crFy5EuXl5fD19W31HIiIiIispVXhLTc3V384VBCEJs9rc3Jyws6dO9s8qWvXruH48eMGe92A+mDo5eWFy5cvw9vbG9OnT8eaNWugUqn0fcrKygAA/v7+Bs/19vaGh4eHfnlD39DQUKPfHxAQAAA4ceJEk+FNq9VCq9XqH1dXVwMAdDqdyXPr2qthTGuMTcZYb9tjzW2L9bY91tz25FZzc+fZqvD27LPPYsqUKRBFEaNGjcLOnTsxfPhwgz4KhQIDBgyAk5NTa4Y2sGjRIty8eROJiYn6tsDAQAQGBup/X3FxMd544w0UFhaipKQErq6uAOoPmyoUCri4uBiNq1KpoFar9Y/VarVB8Gvcr2F5UzZs2GDyvL6DBw/C2dnZzDVtvYKCAquNTcZYb9tjzW2L9bY91tz25FJzjUZjVr9WhTdvb294e3sDAIqKihAcHKwPTZayatUqvPPOO0hPT0dwcLC+/YUXXjDoN3HiRIwYMQIzZ87EX/7yF4PlgiA0Of69y1rTt7EVK1Zg2bJl+sfV1dXo3bs3IiIi4Obm1uTz2kqn06GgoAATJ040+3xCajvW2/ZYc9tivW2PNbc9udW84SheS9p8wcLYsWPb+tQmpaSkYN26dVi/fj2ef/75FvtHRUXBxcUFX375pb7N3d0dNTU10Gg0RnvAqqqqDAKhu7u7yb1rVVVVAGByr1wDhUIBhUJh1O7o6GjVDcTa45Mh1tv2WHPbYr1tjzW3PbnU3Nw5tjm8AUB2djbeffddnD9/Hrdu3TJYJggCTp8+bfZYKSkpSE5ORnJyMlauXGn280RRRKdOd+940nCuW2lpKUaPHq1vv3jxIiorKw0O8/r7+6O0tNRozIa2ew8JExEREdlbm8PbK6+8ghUrVmDo0KEIDAw0uRfKXGvXrkVycjKSkpLw8ssvm/28PXv2QKPRGNw+JDIyEkqlEpmZmQbhLTMzE4IgYPr06fq2qKgoLFy4EMeOHdP3ra2tRXZ2NkaPHg0fH582rxMRERGRNbQ5vG3duhWLFi1Cenp6uybw2muvYfXq1YiMjMRjjz1mcAgUAMaMGYPz589jzpw5mD17NgYOHAhBEFBcXIxNmzZh2LBhmD9/vr6/SqVCUlISVq1aBZVKhYiICJSUlCA5ORnz58/X3yYEAObNm4eMjAzMmjULGzduRM+ePbFlyxacOnUKhw4datd6EREREVlDm8PbxYsXERUV1e4JfPLJJwDq78+Wl5dntFwURbi5ucHT0xOvv/46Ll26hLq6OvTt2xdxcXFYuXKl0ZWliYmJ6Nq1KzIyMpCWlgYvLy8kJCQYXL0K1J+3VlhYiPj4eCxevBgajQZBQUE4cOCAVc7pIyIiImqvNoe34OBgnD592uhebK115MiRFvt0794dOTk5rRo3Li4OcXFxLfbz9PREVlZWq8YmIiIispc2f7fp66+/jtdee83oC+SJiIiIyHravOctNjYWarUao0aNgpeXF9zd3Q2WC4KAf/7zn+2eIBERERHd1ebw5u7uDg8PD0vOhYiIiIha0ObwZs65akRERERkWW0+542IiIiIbK/Ne94+/fTTFvs88sgjbR2eiIiIiExoc3gLCwtr9ovbAaCurq6twxMRERGRCW0Ob0VFRUZtlZWV+Oijj/D5558jIyOjXRMjIiIiImNtDm9NfQPBjBkz8Pvf/x55eXmIjIxs88SIiIiIyJhVLliIiorCe++9Z42hiYiIiDo0q4S3K1euQKvVWmNoIiIiog6tzYdNf/jhB6M2rVaLf/3rX1ixYgXGjBnTrokRERERkbE2h7d+/fqZvNpUFEUMGTIEf/rTn9o1MSIiIiIy1ubwtmPHDqPwplQq0a9fP4wcORKdOvH+v0RERG118ybg6lr//zduAC4u9p0PSUebw1tMTIwFp0FERERE5mhzeGtw/fp1fPHFF1Cr1fDw8MCYMWPQtWtXS8yNiIiIiO7RrvCWlpaGlJQUaDQaiKIIAHBxcUFKSgqWLVtmkQkSERER0V1tDm9//etfER8fj0cffRQxMTHw8fHBhQsXkJWVhT/84Q/o0aMHfvvb31pyrkREREQdXpvD2xtvvIE5c+YgOzvboH3WrFmYO3cu3njjDYY3IiIiIgtr8yWhJ0+exNy5c00umzt3Lv7973+3eVJEREREZFqbw5uTkxOqqqpMLquqqoKTk1ObJ0VEREREprU5vIWGhiI5ORkXLlwwaL948SLWrFmDRx55pN2TIyIiIiJDbT7nLTU1Fb/85S8xcOBAjB8/Ht7e3vj5559x+PBhODo6Iicnx5LzJCIiIiK0Y8/bsGHDUFJSgmnTpqGkpAQ7d+5ESUkJpk+fjq+++gpDhw615DyJiIiICO28z9vgwYOxa9cuS82FiIiIiFrQ6j1vpaWl+Omnn5pc/tNPP6G0tLRdkyIiIiIi01oV3j799FMEBwfj0qVLTfa5dOkSgoODkZ+f3+7JEREREZGhVoW3jIwMzJw5E8HBwU32CQ4Oxm9+8xts27at3ZMjIiIiIkOtCm+ff/45pk+f3mK/X//61/jyyy/bOiciIiIiakKrwtvly5fh6+vbYj9vb29UVFS0eVJEREREZFqrwpuLi0uT36rQ2JUrV+Ds7NzmSRERERGRaa0Kb8OGDUNeXl6L/Q4cOIBhw4aZNebhw4cxb948+Pn5wcXFBb6+vpg2bRq+/vpro77Hjx/HhAkT4Orqim7duiE6OhpnzpwxOW56ejr8/PygUCjQv39/pKSkQKfTGfWrqKhATEwMPDw84OzsjJCQEBQWFpo1dyIiIiJba1V4+81vfoPt27ejuLi4yT5FRUXYuXMnnnjiCbPGfPPNN3Hu3DksWbIE+/fvx+bNm1FRUYExY8bg8OHD+n4nT55EWFgYbt++jQ8++AA7duzAd999h9DQUFy+fNlgzPXr12PJkiWIjo5Gfn4+Fi5ciNTUVCxatMign1arxfjx41FYWIjNmzfjo48+gqenJyIjI5tdRyIiIiK7EVtBq9WKwcHBYpcuXcSFCxeK+fn54nfffSd+9913Yn5+vvjcc8+JXbp0EUeOHClqtVqzxrx06ZJR2/Xr10VPT09x/Pjx+rZZs2aJHh4e4rVr1/Rt586dEx0dHcX4+Hh9W2VlpahUKsVnn33WYMz169eLgiCIJ06c0LdlZGSIAMSjR4/q23Q6nTh06FBx1KhRZs2/wbVr10QABvOzpNu3b4t79+4Vb9++bZXxyRDrbXusuW2x3rbX2prfuCGKQP3PjRtWntx9Sm7bublZolV73rp06YL8/HyMHz8eb775Jh599FH4+fnBz88Pjz76KN566y1MmDABBw4cQJcuXcwas2fPnkZtrq6uGDp0KH788UcAQG1tLfbt24cZM2bAzc1N369v374IDw9Hbm6uvi0vLw81NTWIjY01GDM2NhaiKGLv3r36ttzcXAwZMgQhISH6NgcHB8ydOxdfffUVysvLzVoHIiIiIltp9ddjubu7Y//+/fj6669x8OBBfcDq06cPJk2ahBEjRrR7UteuXcPx48cxbtw4AMDp06dx69YtBAQEGPUNCAhAQUEBampqoFQqUVZWBgDw9/c36Oft7Q0PDw/9cgAoKytDaGioyTEB4MSJE01eXavVaqHVavWPq6urAQA6nc7kuXXt1TCmNcYmY6y37bHmtsV6215ra17fzVH/HP5TtZ7ctnNz59nm7zYNDg5u9ma97bFo0SLcvHkTiYmJAAC1Wg0AUKlURn1VKhVEUcSVK1fg7e0NtVoNhUIBFxcXk30bxmoYt6kxG/9eUzZs2ICUlBSj9oMHD1r1StuCggKrjU3GWG/bY81ti/W2PXNrXlPTGcAUAEB+fj6Uyjorzur+JpftXKPRmNWvVeHN1J6vpgiCgH/+85+tGR4AsGrVKrzzzjtIT083CoeCIDT7+1rbr7V9G1uxYgWWLVumf1xdXY3evXsjIiLC4NCupeh0OhQUFGDixIlwdHS0+PhkiPW2Pdbctlhv22ttzW/evPv/kyZNgol9EtQCuW3nDUfxWtKq8KZSqZoNNABw48YNfP311y32MyUlJQXr1q3D+vXr8fzzz+vb3d3dAZjeE1ZVVQVBENCtWzd935qaGmg0GqM9YFVVVQaB0N3dvckxAdN7+hooFAooFAqjdkdHR6tuINYenwyx3rbHmtsW62175ta8cZf651hxUvc5uWzn5s6xVeHtyJEjTS6rra3F1q1bsWbNGgiCgDlz5rRmaKSkpCA5ORnJyclYuXKlwbIBAwbAyckJpaWlRs8rLS3FwIEDoVQqAdw91620tBSjR4/W97t48SIqKysxfPhwfZu/v3+TYwIw6EtERGRLdY2Okn76KRARAXTubL/5kHS06mrTpuzevRtDhw7F4sWLERgYiK+//hpvv/222c9fu3YtkpOTkZSUhJdfftlouYODA6ZOnYqcnBxcv35d3/7DDz+gqKgI0dHR+rbIyEgolUpkZmYajJGZmQlBEAy+mzUqKgonT57EsWPH9G21tbXIzs7G6NGj4ePjY/Y6EBERWUpODjB06N3HkycD/frVtxO1+YIFoH5P3EsvvYSSkhI89NBDOHjwIMaPH9+qMV577TWsXr0akZGReOyxx4y+0H7MmDEA6vfMjRw5ElOmTEFCQgJqamqwevVqeHh4YPny5fr+KpUKSUlJWLVqFVQqFSIiIlBSUoLk5GTMnz8fQxv9NcybNw8ZGRmYNWsWNm7ciJ49e2LLli04deoUDh061I7KEBERtU1ODjBzZv0d3horL69v37MHaLTPgjqgNoW30tJSvPTSS8jPz0f//v3x7rvvYvbs2W2awCeffAKg/v5spr56S/zv1uvn56cPizNnzoSDgwPGjRuHtLQ09OjRw+A5iYmJ6Nq1KzIyMpCWlgYvLy8kJCTor15toFAoUFhYiPj4eCxevBgajQZBQUE4cOAAxo4d26b1ISIiaqu6OmDJEuPgBtS3CQKwdCkwbRoPoXZkrQpvP/74I5KSkvDuu+9CpVJh06ZN+P3vf9+ukwCbO4/uXsHBwWbvEYuLi0NcXFyL/Tw9PZGVlWX2HIiIiKzls8+An35qerkoAj/+WN8vLMxm0yKJaVV4Gzx4MG7fvo3IyEjEx8eja9euJk/4b/DQQw+1e4JEREQdxc8/W7Yf3Z9aFd4avlHgwIEDJg9xNhBFEYIgoK6ONxQkIiIyl7e3ZfvR/alV4W3nzp3WmgcREVGHFxoK9OpVf3GCqfPeBKF+uYlvdqQOpFXh7emnn7bWPIiIiDq8zp2BzZvrryoVBMMA13Dv+02beLFCR2eR+7wRERGRZURH198O5N5bjfbqxduEUL123eeNiIiILC86GpgwAXjggfrH+/fzGxboLu55IyIikqDGQe2RRxjc6C6GNyIiIiIZYXgjIiIikhGGNyIiIiIZYXgjIiIikhGGNyIiIiIZYXgjIiIikhGGNyIiIiIZYXgjIiIikhGGNyIiIiIZYXgjIiIikhGGNyIiIiIZYXgjIiIikhGGNyIiIiIZYXgjIiIikhGGNyIiIiIZYXgjIiIikhGGNyIiIiIZYXgjIiIikhGGNyIiIiIZYXgjIiIikhGGNyIiIiIZYXgjIiIikhGGNyIiIiIZsXt4u379OuLj4xEREYEePXpAEAQkJycb9YuJiYEgCEY/fn5+JsdNT0+Hn58fFAoF+vfvj5SUFOh0OqN+FRUViImJgYeHB5ydnRESEoLCwkJLryYRERGRRTjYewJqtRpbt25FYGAgpk+fjm3btjXZ18nJCYcPHzZqu9f69euxatUqJCQkICIiAiUlJUhKSkJ5eTm2bt2q76fVajF+/HhcvXoVmzdvRs+ePZGRkYHIyEgcOnQIY8eOtdyKEhERtYKLCyCK9p4FSZHdw1vfvn1x5coVCIKAysrKZsNbp06dMGbMmGbHU6vVWLduHRYsWIDU1FQAQFhYGHQ6HZKSkrB06VIMHToUALB9+3aUlZXh6NGjCAkJAQCEh4cjMDAQ8fHxOHbsmIXWkoiIiMgy7H7YtOHwp6Xk5eWhpqYGsbGxBu2xsbEQRRF79+7Vt+Xm5mLIkCH64AYADg4OmDt3Lr766iuUl5dbbF5ERERElmD3PW+tcevWLXh5eeHy5cvw9vbG9OnTsWbNGqhUKn2fsrIyAIC/v7/Bc729veHh4aFf3tA3NDTU6PcEBAQAAE6cOAFfX1+Tc9FqtdBqtfrH1dXVAACdTmfy3Lr2ahjTGmOTMdbb9lhz22K9bY81tz251dzcecomvAUGBiIwMBDDhw8HABQXF+ONN95AYWEhSkpK4OrqCqD+sKlCoYCLi4vRGCqVCmq1Wv9YrVYbBL/G/RqWN2XDhg1ISUkxaj948CCcnZ1bt3KtUFBQYLWxyRjrbXusuW2x3rbHmtueXGqu0WjM6ieb8PbCCy8YPJ44cSJGjBiBmTNn4i9/+YvB8uYOw967rDV9G1uxYgWWLVumf1xdXY3evXsjIiICbm5uTT6vrXQ6HQoKCjBx4kQ4OjpafHwyxHrbHmtuW6y37bHmtie3mjccxWuJbMKbKVFRUXBxccGXX36pb3N3d0dNTQ00Go3RHrCqqioEBwcb9DW1d62qqgoATO6Va6BQKKBQKIzaHR0drbqBWHt8MsR62x5rblust+2x5rYnl5qbO0e7X7DQXqIoolOnu6vRcK5baWmpQb+LFy+isrJSf9i1oe+9/Ro/t3FfIiIiIimQdXjbs2cPNBqNwe1DIiMjoVQqkZmZadA3MzMTgiBg+vTp+raoqCicPHnS4JYgtbW1yM7OxujRo+Hj42PtVSAiIiJqFUkcNj1w4ABu3ryJ69evAwC+/fZb7NmzBwAwefJkXL58GXPmzMHs2bMxcOBACIKA4uJibNq0CcOGDcP8+fP1Y6lUKiQlJWHVqlVQqVT6m/QmJydj/vz5+nu8AcC8efOQkZGBWbNmYePGjejZsye2bNmCU6dO4dChQ7YtAhEREZEZJBHennvuOZw/f17/ePfu3di9ezcA4OzZs3jggQfg6emJ119/HZcuXUJdXR369u2LuLg4rFy50ujK0sTERHTt2hUZGRlIS0uDl5cXEhISkJiYaNBPoVCgsLAQ8fHxWLx4MTQaDYKCgnDgwAF+uwIRERFJkiTC27lz51rsk5OT06ox4+LiEBcX12I/T09PZGVltWpsIiIiInuR9TlvRERERB0NwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREcmI3cPb9evXER8fj4iICPTo0QOCICA5Odlk3+PHj2PChAlwdXVFt27dEB0djTNnzpjsm56eDj8/PygUCvTv3x8pKSnQ6XRG/SoqKhATEwMPDw84OzsjJCQEhYWFllxFIiIiIouxe3hTq9XYunUrtFotpk+f3mS/kydPIiwsDLdv38YHH3yAHTt24LvvvkNoaCguX75s0Hf9+vVYsmQJoqOjkZ+fj4ULFyI1NRWLFi0y6KfVajF+/HgUFhZi8+bN+Oijj+Dp6YnIyEgUFxdbY3WJiIiI2sXB3hPo27cvrly5AkEQUFlZiW3btpnst3r1aigUCuzbtw9ubm4AgODgYAwaNAhpaWl45ZVXANSHwXXr1mHBggVITU0FAISFhUGn0yEpKQlLly7F0KFDAQDbt29HWVkZjh49ipCQEABAeHg4AgMDER8fj2PHjll79YmIiIhaxe573gRBgCAIzfapra3Fvn37MGPGDH1wA+qDX3h4OHJzc/VteXl5qKmpQWxsrMEYsbGxEEURe/fu1bfl5uZiyJAh+uAGAA4ODpg7dy6++uorlJeXt3PtiIiIiCzL7nvezHH69GncunULAQEBRssCAgJQUFCAmpoaKJVKlJWVAQD8/f0N+nl7e8PDw0O/HADKysoQGhpqckwAOHHiBHx9fU3OSavVQqvV6h9XV1cDAHQ6nclz69qrYUxrjE3GWG/bY81ti/W2Pdbc9uRWc3PnKYvwplarAQAqlcpomUqlgiiKuHLlCry9vaFWq6FQKODi4mKyb8NYDeM2NWbj32vKhg0bkJKSYtR+8OBBODs7t7xSbVRQUGC1sckY6217rLltsd62x5rbnlxqrtFozOoni/DWoLnDq42XmduvtX0bW7FiBZYtW6Z/XF1djd69eyMiIsLg0K6l6HQ6FBQUYOLEiXB0dLT4+GSI9bY91ty2WG/bY81tT241bziK1xJZhDd3d3cApveEVVVVQRAEdOvWTd+3pqYGGo3GaA9YVVUVgoODDcZtakzA9J6+BgqFAgqFwqjd0dHRqhuItccnQ6y37bHmtsV62x5rbntyqbm5c7T7BQvmGDBgAJycnFBaWmq0rLS0FAMHDoRSqQRw91y3e/tevHgRlZWVGD58uL7N39+/yTEBGPQlIiIikgJZhDcHBwdMnToVOTk5uH79ur79hx9+QFFREaKjo/VtkZGRUCqVyMzMNBgjMzMTgiAY3EsuKioKJ0+eNLglSG1tLbKzszF69Gj4+PhYbZ2IiIiI2kISh00PHDiAmzdv6oPZt99+iz179gAAJk+eDGdnZ6SkpGDkyJGYMmUKEhISUFNTg9WrV8PDwwPLly/Xj6VSqZCUlIRVq1ZBpVIhIiICJSUlSE5Oxvz58/X3eAOAefPmISMjA7NmzcLGjRvRs2dPbNmyBadOncKhQ4dsWwQiIiIiM0givD333HM4f/68/vHu3buxe/duAMDZs2fRr18/+Pn54ciRI3jppZcwc+ZMODg4YNy4cUhLS0OPHj0MxktMTETXrl2RkZGBtLQ0eHl5ISEhAYmJiQb9FAoFCgsLER8fj8WLF0Oj0SAoKAgHDhzA2LFjrb/iRERERK0kifB27tw5s/oFBwebvUcsLi4OcXFxLfbz9PREVlaWWWMSERER2ZssznkjIiIionoMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQywvBGREREJCMMb0REREQyIpvwduTIEQiCYPLnyy+/NOh7/PhxTJgwAa6urujWrRuio6Nx5swZk+Omp6fDz88PCoUC/fv3R0pKCnQ6nS1WiYiIiKjVHOw9gdZKTU1FeHi4Qdvw4cP1/3/y5EmEhYUhKCgIH3zwAWpqarB69WqEhobim2++QY8ePfR9169fj1WrViEhIQEREREoKSlBUlISysvLsXXrVputExEREZG5ZBfeBg0ahDFjxjS5fPXq1VAoFNi3bx/c3NwAAMHBwRg0aBDS0tLwyiuvAADUajXWrVuHBQsWIDU1FQAQFhYGnU6HpKQkLF26FEOHDrX+ChERERG1gmwOm5qjtrYW+/btw4wZM/TBDQD69u2L8PBw5Obm6tvy8vJQU1OD2NhYgzFiY2MhiiL27t1rq2kTERERmU12e94WLVqE2bNnw9nZGSEhIVi1ahUefvhhAMDp06dx69YtBAQEGD0vICAABQUFqKmpgVKpRFlZGQDA39/foJ+3tzc8PDz0y5ui1Wqh1Wr1j6urqwEAOp3OKufMNYzJ8/Fsg/W2Pdbctlhv22PNbU9uNTd3nrIJbw888ACWLFmCsLAwuLu74z//+Q9effVVhIWF4W9/+xsmTZoEtVoNAFCpVEbPV6lUEEURV65cgbe3N9RqNRQKBVxcXEz2bRirKRs2bEBKSopR+8GDB+Hs7NzGtWxZQUGB1cYmY6y37bHmtsV62x5rbntyqblGozGrn2zC24gRIzBixAj949DQUERFRcHf3x/x8fGYNGmSfpkgCE2O03iZuf1MWbFiBZYtW6Z/XF1djd69eyMiIsLgkK2l6HQ6FBQUYOLEiXB0dLT4+GSI9bY91ty2WG/bY81tT241bziK1xLZhDdTunXrhilTpuCtt97CrVu34O7uDgAm95pVVVVBEAR069YNAODu7o6amhpoNBqjPWVVVVUIDg5u9ncrFAooFAqjdkdHR6tuINYenwyx3rbHmtsW6217rLntyaXm5s5R9hcsiKIIoH5P2YABA+Dk5ITS0lKjfqWlpRg4cCCUSiWAu+e63dv34sWLqKysNLj9CBEREZFUyDq8XblyBfv27UNQUBCUSiUcHBwwdepU5OTk4Pr16/p+P/zwA4qKihAdHa1vi4yMhFKpRGZmpsGYmZmZEAQB06dPt9FaEBEREZlPNodN58yZgz59+uAXv/gFPDw88P333+O1117DpUuXDAJYSkoKRo4ciSlTpiAhIUF/k14PDw8sX75c30+lUiEpKQmrVq2CSqXS36Q3OTkZ8+fP5z3eiIiISJJkE94CAgLw/vvv46233sKNGzegUqnw8MMP4+2338bIkSP1/fz8/HDkyBG89NJLmDlzJhwcHDBu3DikpaUZfLsCACQmJqJr167IyMhAWloavLy8kJCQgMTERFuvHhEREZFZZBPeEhISkJCQYFbf4OBgHDp0yKy+cXFxiIuLa8/UiIiIiGxG1ue8EREREXU0DG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG8Abty4gaVLl8LHxwdKpRJBQUF477337D0tIiIiIiMO9p6AFERHR6OkpAQbN27E4MGD8e677+KJJ57AnTt3MGfOHHtPj4iIiEivw4e3/fv3o6CgQB/YACA8PBznz5/HH/7wB/zmN79B586d7TxLIiIionod/rBpbm4uXF1dMWvWLIP22NhYXLhwAceOHbPTzIiIiIiMdfg9b2VlZfif//kfODgYliIgIEC//Je//KXR87RaLbRarf7xtWvXAABVVVXQ6XQWn6dOp4NGo4FarYajo6PFxydDrLftsea2xXrbHmtue3Kr+fXr1wEAoig226/Dhze1Wo0HH3zQqF2lUumXm7JhwwakpKQYtffv39+yEyQiIqIO5fr163jggQeaXN7hwxsACILQ6mUrVqzAsmXL9I/v3LmDqqoquLu7NzteW1VXV6N379748ccf4ebmZvHxyRDrbXusuW2x3rbHmtue3GouiiKuX78OHx+fZvt1+PDm7u5ucu9aVVUVgLt74O6lUCigUCgM2rp162bx+d3Lzc1NFhvg/YL1tj3W3LZYb9tjzW1PTjVvbo9bgw5/wYK/vz/+/e9/o7a21qC9tLQUADB8+HB7TIuIiIjIpA4f3qKionDjxg18+OGHBu1ZWVnw8fHB6NGj7TQzIiIiImMd/rDpo48+iokTJ+K5555DdXU1Bg4ciF27diEvLw/Z2dmSucebQqHAyy+/bHSolqyD9bY91ty2WG/bY81t736tuSC2dD1qB3Djxg0kJibigw8+QFVVFfz8/LBixQrMnj3b3lMjIiIiMsDwRkRERCQjHf6cNyIiIiI5YXgjIiIikhGGNyu4ceMGli5dCh8fHyiVSgQFBeG9995r8Xk//fQTli5dirFjx6Jbt24QBAGZmZkm+4aFhUEQBKOfyMhIo746nQ4pKSno168fFAoF/Pz8kJ6e3t7VlBQp1fzcuXMm+wmCYNac5MAW9QaAmzdvYvXq1Rg8eDAUCgXc3d0RHh6O77//3qAft/GmWaPm3MabZm69m6uhqdcVbuNNs0bNpb6Nd/irTa0hOjoaJSUl2LhxIwYPHox3330XTzzxBO7cuYM5c+Y0+bz//Oc/eOeddxAUFITJkydj165dzf6eBx98EO+8845Bm6kbBS9cuBBvv/021q5di5EjRyI/Px9LlizB9evXsXLlyjato9RIreYAsHjxYqPfPWjQIPNWSOJsUe8bN24gPDwcFy5cQEJCAgICAnDt2jUcPXoUGo3GoC+3cdvXHOA2boq59fb29sYXX3xh1L5371688soriIqKMmjnNm77mgMS3sZFsqi//e1vIgDx3XffNWifOHGi6OPjI9bW1jb53Lq6Ov3/l5SUiADEnTt3muw7duxYcdiwYS3Op6ysTBQEQUxNTTVoX7Bggejk5CSq1eoWx5A6qdX87NmzIgDx1VdfNW8FZMZW9V6yZIno4uIinj59utn5cBu3fc25jVum3qaEhYWJzs7O4rVr1/Rt3MZtX3Opb+M8bGphubm5cHV1xaxZswzaY2NjceHCBRw7dqzJ53bqZPl/jr1790IURcTGxhrN59atW8jLy7P477Q1qdX8fmeLems0Gmzbtg2zZs3Cgw8+2GxfbuO2r/n9zl6vKadPn0ZxcTEef/xxg69y4jZu+5pLHd+5LKysrAz/8z//AwcHwyPSAQEB+uWWcvr0aahUKjg4OGDAgAFITEzErVu3jObTo0cPeHl5WX0+9iK1mjfYuHEjunTpAmdnZzz88MP4+OOPLTYPe7JFvb/++mvcvHkTgwYNwnPPPYfu3bujS5cu+MUvfoG//e1vRvPhNm7bmjfgNm5ZO3bsgCiKmD9/vtF8uI3btuYNpLqNM7xZmFqtNvll9g1tarXaIr/n4Ycfxuuvv44PP/wQH3/8MSZPnoz//d//RWRkJO7cudPifFxcXNClSxeLzceepFZzhUKBBQsW4M0338Thw4exbds21NXVYdq0adi2bZtF5mJPtqh3eXk5AOCVV15BaWkp/vrXvyI3Nxdubm6YOnUq8vPzW5wPt/HWaU3NuY1bfpuqq6tDVlYW/Pz88Ktf/cqs+XAbb5/mai71bZwXLFiBIAhtWtYa69atM3g8efJk9OvXDy+++CI++ugjgxMvbTEfe5NSzb29vbF161aDvrNmzcLo0aORkJCAmJgYo0+XcmPtejeE4S5duuDAgQPo2rUrACA8PByDBg3C2rVrMWnSJJvNRwqkVHNu45bfpvLy8lBeXo5XX31VEvOxBynVXOrbOPe8WZi7u7vJTwhVVVUAYPKThaXMnTsXAPDll1+2OJ+bN2/i9u3bVp2PrUit5qY4OjriN7/5DdRqtdFtLuTGFvV2d3cHAPzyl7/UhwgAcHZ2xtixY3H8+PEW58NtvPW/AzCv5qZwG2+f7du3w9HREU899ZTZ8+E23j7N1dwUKW3jDG8W5u/vj3//+9+ora01aC8tLQUADB8+3OpzaHzypr+/Py5fvoyLFy/abT7WJrWaN0X87zfRyf0iCVvUu+E8F1NEUeQ2/l/2qnlz/QBu461VUVGBffv24de//jV69uxpcj7cxm1b86ZIZRuX91+YBEVFReHGjRv48MMPDdqzsrLg4+OD0aNHW+13Z2VlAQDGjBmjb5s2bRoEQdAva5CZmQknJyeTN/WVG6nV3BSdTof3338fHh4eGDhwoNXmYwu2qLe3tzdCQkLw+eefo7q6Wt+u0WhQXFzMbfy/7FVzU7iNt91f//pX6HQ6PPPMMyaXcxu3fc1NkdI2Lu+TEiTo0UcfxcSJE/Hcc8+huroaAwcOxK5du5CXl4fs7Gx07twZAPDMM88gKysLp0+fRt++ffXP37NnDwDgzJkzAIC///3vcHV1BQDMnDkTAPDZZ59h/fr1iIqKwoMPPoiamhocOHAAW7duxbhx4zB16lT9eMOGDcMzzzyDl19+GZ07d8bIkSNx8OBBbN26FevWrbsvdrdLrebLli2DTqfDr371K3h5eeHHH39Eeno6vvnmG+zcuVM/H7myRb0BIC0tDeHh4Zg0aRJeeuklCIKA1157DZWVlVi7dq2+H7dx29ec27hl6t1g+/bt6N27t8F5nI1xG7d9zSW/jdvrBnP3s+vXr4txcXGil5eX2KVLFzEgIEDctWuXQZ+nn35aBCCePXvWoB1Akz8Nvv/+e3Hy5Mmir6+vqFAoRKVSKfr7+4vr168Xa2pqjOZz+/Zt8eWXXxb79OkjdunSRRw8eLD4xz/+0Srrbi9Sqvn27dvFUaNGiSqVSnRwcBC7d+8uTpo0SczPz7fa+tuatevd4LPPPhPHjh0rOjs7i87OzuK4cePEzz//3Kgft/F6tqo5t/F6lqj3559/LgIQV69e3ex8uI3Xs1XNpb6NC6L43wO4RERERCR5POeNiIiISEYY3oiIiIhkhOGNiIiISEYY3oiIiIhkhOGNiIiISEYY3oiIiIhkhOGNiIiISEYY3oiIiIhkhOGNiCTh3LlzEAQBmZmZFh+7sLAQv/jFL+Di4gJBELB3715kZmZCEAScO3fO4r+vsX79+iEmJsaqv0MOvv32WyQnJ1u93kQdAb/blIjua6Io4vHHH8fgwYPx8ccfw8XFBUOGDEFtbS2++OILeHt723uKHcK3336LlJQUhIWFoV+/fvaeDpGsMbwR0X3twoULqKqqQlRUFMaPH2+wrEePHnaalX3pdDoIggAHB+O3AI1GA2dnZzvMiojMxcOmRGRV//nPfxAbG4tBgwbB2dkZvr6+mDp1KkpLS1t87uXLl/Hss8+id+/eUCgU6NGjB371q1/h0KFDZv3u5ORk9OrVCwDw0ksvQRAE/V4fU4dNw8LCMHz4cJSUlCA0NBTOzs548MEHsXHjRty5c0ffr6amBsuXL0dQUBAeeOABqFQqhISE4KOPPjK/MC149913ERISAldXV7i6uiIoKAjbt2/XL2/qcGxYWBjCwsL0j48cOQJBEPD2229j+fLl8PX1hUKhwH/+8x/ExMTA1dUVpaWliIiIQNeuXfUB9/bt21i3bh38/Pz0tY+NjcXly5cNfl+/fv0wZcoU5OXl4aGHHoKTkxP8/PywY8cOfZ/MzEzMmjULABAeHg5BEKx2iJyoI+CeNyKyqgsXLsDd3R0bN25Ejx49UFVVhaysLIwePRr/+Mc/MGTIkCaf+9vf/hbHjx/H+vXrMXjwYFy9ehXHjx+HWq0263fPnz8fgYGBiI6OxuLFizFnzhwoFIpmn3Px4kU8+eSTWL58OV5++WXk5uZixYoV8PHxwVNPPQUA0Gq1qKqqwosvvghfX1/cvn0bhw4dQnR0NHbu3Knv11arV6/G2rVrER0djeXLl+OBBx5AWVkZzp8/3+YxV6xYgZCQELz11lvo1KkTevbsCaA+pP3617/G7373OyQkJKC2thZ37tzBtGnT8NlnnyE+Ph6//OUvcf78ebz88ssICwvD3//+dzg5OenH/uc//4nly5cjISEBnp6e2LZtG5555hkMHDgQjzzyCB577DGkpqZi5cqVyMjIwEMPPQQAGDBgQLvqRNRhiURENlRbWyvevn1bHDRokPjCCy/o28+ePSsCEHfu3Klvc3V1FZcuXdqu39cw7quvvmrQvnPnThGAePbsWX3b2LFjRQDisWPHDPoOHTpUnDRpUrPrpNPpxGeeeUYcMWKEwbK+ffuKTz/9tNnzPXPmjNi5c2fxySefbLZfU+OOHTtWHDt2rP5xUVGRCEB85JFHjPo+/fTTIgBxx44dBu27du0SAYgffvihQXtJSYkIQNyyZYvBPJRKpXj+/Hl9261bt0SVSiX+7ne/07ft3r1bBCAWFRU1u15E1DIeNiUiq6qtrUVqaiqGDh2KLl26wMHBAV26dMH333+Pf//7380+d9SoUcjMzMS6devw5ZdfQqfTWX2+Xl5eGDVqlEFbQECA0V6v3bt341e/+hVcXV3h4OAAR0dHbN++vcV1aklBQQHq6uqwaNGido1zrxkzZpi9bN++fejWrRumTp2K2tpa/U9QUBC8vLxw5MgRg/5BQUHo06eP/rFSqcTgwYPbtaeQiJrG8EZEVrVs2TKsWrUK06dPxyeffIJjx46hpKQEgYGBuHXrVrPPff/99/H0009j27ZtCAkJgUqlwlNPPYWLFy9abb7u7u5GbQqFwmCuOTk5ePzxx+Hr64vs7Gx88cUXKCkpwbx581BTU9Ou399wTlnDuXqW0tRVtc7OznBzczNou3TpEq5evYouXbrA0dHR4OfixYuorKw06G9OzYjIcnjOGxFZVXZ2Np566imkpqYatFdWVqJbt27NPtfDwwObNm3Cpk2b8MMPP+Djjz9GQkICKioqkJeXZ8VZNy87Oxv9+/fH+++/D0EQ9O1arbbdYzdcAfvTTz+hd+/eTfZTKpUmf19lZSU8PDyM2hvPs6V2Dw8PuLu7N1njrl27NjkvIrI+hjcisipBEIwuEvjb3/6G8vJyDBw40Oxx+vTpg+effx6FhYX4/PPPLT3NVhEEAV26dDEIPhcvXrTI1aYRERHo3Lkz3nzzTYSEhDTZr1+/fvjXv/5l0Pbdd9/h1KlTJsNba0yZMgXvvfce6urqMHr06HaN1aBhG+DeOKL2Y3gjIquaMmUKMjMz4efnh4CAAHz99dd49dVXWzwseO3aNYSHh2POnDnw8/ND165dUVJSgry8PERHR9to9qZNmTIFOTk5WLhwIWbOnIkff/wRa9euhbe3N77//vt2jd2vXz+sXLkSa9euxa1bt/DEE0/ggQcewLfffovKykqkpKQAqL8Sd+7cuVi4cCFmzJiB8+fP43//938tcu+62bNn45133sHkyZOxZMkSjBo1Co6Ojvjpp59QVFSEadOmISoqqlVjDh8+HACwdetWdO3aFUqlEv379zd5yJWImsfwRkRWtXnzZjg6OmLDhg24ceMGHnroIeTk5CApKanZ5ymVSowePRpvv/02zp07B51Ohz59+uCll15CfHy8jWZvWmxsLCoqKvDWW29hx44dePDBB5GQkICffvpJH67aY82aNRg0aBDS09Px5JNPwsHBAYMGDUJcXJy+z5w5c3DhwgW89dZb2LlzJ4YPH44333zTIr+/c+fO+Pjjj7F582a8/fbb2LBhAxwcHNCrVy+MHTsW/v7+rR6zf//+2LRpEzZv3oywsDDU1dVh586d/OowojYQRFEU7T0JIiIiIjIPrzYlIiIikhEeNiUiWRJFEXV1dc326dy5c5NXWdpDXV0dmjvYIQgCOnfubMMZEZEccc8bEclSVlaW0T3I7v0pLi629zQNDBgwoNn5NnyvKBFRc3jOGxHJklqtxtmzZ5vtM2TIEEndk6y0tLTZe8F17dq12e96JSICGN6IiIiIZIWHTYmIiIhkhOGNiIiISEYY3oiIiIhkhOGNiIiISEYY3oiIiIhkhOGNiIiISEYY3oiIiIhk5P8BipGC5Kmq/hgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0023\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 4500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.175 - 0.200 A" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.175 , 0.1759, 0.1768, 0.1777, 0.1786, 0.1795, 0.1804, 0.1813,\n", " 0.1822, 0.1831, 0.184 , 0.1849, 0.1858, 0.1867, 0.1876, 0.1885,\n", " 0.1894, 0.1903, 0.1912, 0.1921, 0.193 , 0.1939, 0.1948, 0.1957,\n", " 0.1966, 0.1975, 0.1984, 0.1993, 0.2002, 0.2011, 0.202 ]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbqElEQVR4nO3de1xUZf4H8M9RcLiJOKDcxEtisshF4+eF3VBMITJNQd01swLFdtNE05ZQ0MAUbaPSdbHWvMBKVw1scxVFRNrNS2xuG1Tabl5STJFBRUWGAc/vD3ZGxhlggLkd+LxfL146z3nOM8/5cjjzPec85xlBFEURRERERCQJ3SzdASIiIiIyHJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwRERERSYjVJW9bt26FIAhwcnLSKo+NjYUgCDo/fn5+etvZtGkT/Pz8IJPJMGjQIKSlpUGlUunUq6ioQGxsLNzc3ODg4IDQ0FAUFhaaZNuIiIiIOsrG0h1oqry8HC+99BK8vLxw48YNneX29vY4fPiwTtn91q5di5UrVyIpKQmRkZEoKSlBSkoKysvLsWXLFk09pVKJCRMm4Pr169i4cSP69u2LzMxMREVF4dChQxg3bpzxN5KIiIioAwRr+m7TKVOmQBAEyOVy7N69G7du3dIsi42N1SnTR6FQoF+/fnjmmWfw5z//WVOenp6OlJQUlJWVwd/fHwCwefNmLFy4EEePHkVoaCgAoL6+HsHBwXBycsKJEydMsJVERERE7Wc1t01zcnJQXFyMzZs3d6id/Px81NbWIi4uTqs8Li4Ooihiz549mrK8vDwMHTpUk7gBgI2NDebMmYMvv/wS5eXlHeoLERERkbFZxW3TiooKLFmyBOvXr0e/fv2arXfnzh14eHjg6tWr8PT0xLRp07B69WrI5XJNnbKyMgBAYGCg1rqenp5wc3PTLFfXDQsL03mfoKAgAMC3334Lb29vvX1RKpVQKpWa13fv3kVVVRVcXV0hCIIBW01ERER0jyiKuHnzJry8vNCtW/PX16wieVuwYAGGDh2K559/vtk6wcHBCA4ORkBAAACguLgYb731FgoLC1FSUqJ5wEGhUEAmk8HR0VGnDblcDoVCoXmtUCi0Er+m9dTLm7Nu3TqkpaUZtoFEREREBrpw4UKLF7Msnrx98skn+Oyzz/Cvf/2rxStWL774otbriIgIjBgxAjNmzMC7776rtbyldu5f1pa6TS1fvhxLly7VvL5x4wb69++Ps2fPomfPns2u114qlQpFRUUYP348bG1tjd4+McbmwjibHmNsHoyz6XW1GN+8eRODBg1qNY+waPJ269YtLFy4EIsWLYKXlxeuX78OAKirqwMAXL9+Hba2tnqvogFAdHQ0HB0dcfz4cU2Zq6sramtrUVNTAwcHB636VVVVCAkJ0aqr7+paVVUVAOi9Kqcmk8kgk8l0yuVyOZydnZtdr71UKhUcHBzg6uraJXZgS2CMzYNxNj3G2DwYZ9PrajFWb2Nrw68s+sBCZWUlrly5gjfeeAO9e/fW/HzwwQe4ffs2evfujaeeeqrFNkRR1LovrB7rVlpaqlXv8uXLqKys1Nx2Vde9v17TdZvWJSIiIrIGFr3y5uHhgaKiIp3y9evXo7i4GPv374ebm1uz6+/evRs1NTUYM2aMpiwqKgp2dnbIysrC6NGjNeVZWVkQBAHTpk3TlEVHR2PBggU4ceKEpm59fT1ycnIwevRoeHl5GWEriYiIiIzHosmbnZ0dwsPDdcqzsrLQvXt3zbLz589j9uzZmDVrFnx9fSEIAoqLi7FhwwYMGzYM8fHxmnXlcjlSUlKwcuVKyOVyzSS9qampiI+P18zxBgBz585FZmYmZs6cifXr16Nv377YvHkzTp8+jUOHDpl684mIiIjazOIPLBjC2dkZ7u7uePPNN3HlyhU0NDRgwIABSEhIwIoVK3TGxCUnJ6Nnz57IzMxERkYGPDw8kJSUhOTkZK16MpkMhYWFSExMxKJFi1BTU4Phw4dj//79/HYFIiIiskpWmbxlZWUhKytL87p3797Izc1tUxsJCQlISEhotZ67uzuys7Pb2kUiIiIii7Cab1ggIiIiotYxeSMiIiKSECZvRERERBLC5I2IiIhIQpi8EREREUkIkzciIiIiCWHyRkRERCQhTN6IiIiIJITJGxEREZGEMHkjIiIikhAmb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSECZvRERERBLC5I2IiIhIQpi8ERERteL2bUAQGn9u37Z0b8yvq2+/tWHyRkRERCQhNpbuALXu9m3AyckWwFRcu6aCi4ule9T1NP4OGv9/6xbg6GjZ/hARUddldVfetm7dCkEQ4KT+pGzi5MmTmDhxIpycnODi4oKYmBicOXNGbzubNm2Cn58fZDIZBg0ahLS0NKhUKp16FRUViI2NhZubGxwcHBAaGorCwkKjbxcRERGRMVhV8lZeXo6XXnoJXl5eOstOnTqF8PBw1NXV4eOPP8b27dvxww8/ICwsDFevXtWqu3btWixevBgxMTE4cOAAFixYgPT0dCxcuFCrnlKpxIQJE1BYWIiNGzfi008/hbu7O6KiolBcXGzSbSUiIuloaLj3/88/135NZG5Wddv0d7/7HcaOHQu5XI7du3drLVu1ahVkMhn27t0LZ2dnAEBISAiGDBmCjIwMvPbaawAAhUKBNWvWYP78+UhPTwcAhIeHQ6VSISUlBUuWLIG/vz8AYNu2bSgrK8PRo0cRGhoKABg/fjyCg4ORmJiIEydOmGvTiYjISuXmAgkJ915PmgT06we88YYAmcxy/aKuy2quvOXk5KC4uBibN2/WWVZfX4+9e/di+vTpmsQNAAYMGIDx48cjLy9PU5afn4/a2lrExcVptREXFwdRFLFnzx5NWV5eHoYOHapJ3ADAxsYGc+bMwZdffony8nIjbiG1F59yIiJLyc0FZswA7v84KC8HZs3qjmPHPC3TMerSrOLKW0VFBZYsWYL169ejX79+Ost//PFH3LlzB0FBQTrLgoKCUFBQgNraWtjZ2aGsrAwAEBgYqFXP09MTbm5umuUAUFZWhrCwML1tAsC3334Lb29vvX1WKpVQKpWa19XV1QAAlUqld2xdRzQ2Z9ukfaM2b/XMtf3q35u+319X/x0YU0txJuNgjI2joQFISLCBKAKAoLVMFBtPKLdtC0BycuePs6WOgV1tXzZ0O60ieVuwYAGGDh2K559/Xu9yhUIBAJDL5TrL5HI5RFHEtWvX4OnpCYVCAZlMBkc9jwPK5XJNW+p2m2uz6fvqs27dOqSlpemUHzx4EA4ODs2u1x61td0BTAYAHD58GHZ2XWuwRdPtP3DggMm3v6CgwOJ96Ar0xZmMizHumNJSV5SXP9zsclEUUFnpgI0b/4HAwOY/LzqDmpp7x8A33/wnhg+vQPfu5nv/rrIv19TUGFTP4snbJ598gs8++wz/+te/IAhCi3VbWt50maH12lq3qeXLl2Pp0qWa19XV1fDx8UFkZKTWrV1jaHqr8JFHHoGLi61R27d2Tbf/0UcfNdk0HSqVCgUFBYiIiICtrXaMzdWHrqClOHdWt28DvXs3buu1ayqT7z/WGOPqasDNrbEvn31Wj4kTRbN++LdHdXXLn0lq/fqNxKRJVjMKyejy8gS89NK9X9arr4bC21vEm282IDpaNOl7W+O+bErqu3itsWjyduvWLSxcuBCLFi2Cl5cXrl+/DgCoq6sDAFy/fh22trZwdXUFoP9KWFVVFQRBgMv/Jj9zdXVFbW0tampqdK6AVVVVISQkRPPa1dW12TYB/Vf61GQyGWR6Rqra2toafQdr2pwp2je1hgbg738Hfv4Z8PQEwsLQpoO27vYbv4/a76cbY3P3oSuQ4r7cXpbaf5rG2JJzFd4/4H/KFBv06wds3AjExJivH23l42NYvX79usPW1uLXQkwiNxeYNQv/u3V8z6VLAmbNssHu3eb5HXaV44Wh22jRU4XKykpcuXIFb7zxBnr37q35+eCDD3D79m307t0bTz31FAYPHgx7e3uUlpbqtFFaWgpfX1/Y2dkBuDfW7f66ly9fRmVlJQICAjRlgYGBzbYJQKsutU9uLjBwIDB+PDB7duO/Awc2lhuKj+gTSVdLA/5nzGjbscDcwsIanypt7iaMIIhwc6vBww+3fvWpuvreg1f790vjONbQACxerJu4AffKliyRxrZ0NhZN3jw8PFBUVKTz8+ijj8LOzg5FRUVYs2YNbGxsMGXKFOTm5uLmzZua9X/66ScUFRUhpknaHxUVBTs7O2RlZWm9V1ZWFgRBwLRp0zRl0dHROHXqlNaUIPX19cjJycHo0aP1zjdHhlMftC9e1C5vy0E7Nxf438wuABof0W9r8kdkaV31BETqH/7duzdeHQR0Ezj163nzylq9kyDV49jf/657/G5KFIELFxrrkZmJVujZZ58VHR0dtcq+//570cnJSRw7dqy4b98+MTc3VwwICBC9vLzEiooKrbpr1qwRBUEQV6xYIR45ckR8/fXXRZlMJs6fP1+rXm1trThs2DDRx8dHfO+998SCggIxOjpatLGxEY8cOdKmPt+4cUMEIN64caN9G92CW7dEsfHPRBSvXaszevumUF8viv363ev3/T+CIIo+Po31mvPJJ4319K0rCI3Ljamurk7cs2ePWFenG+Omv4Nbt4z7vl1NS3HujD75RBS9vbX34X79jL//NqUvxpbYh4uKmj8GNP0pKjJPf9pL3+/Qx0cUP/pI1eq+bO7jmDG9/75hv7/33zesvRs37q2zb1/Lx3+1rna8MDSXkMwISz8/Pxw5cgS2traYMWMGYmNj4evri88//xx9+vTRqpucnIwNGzZg9+7diIyMxKZNm5CUlITMzEytejKZDIWFhRg/fjwWLVqEKVOm4Oeff8b+/fsxbtw4c25ep9PRMzapn7ETAdK+ZXi/9sy3+PPPxq1nKTExwHff3Xu9bx9w9ixaHawv9eOYp4FT2BlST6pXH62VVSZvWVlZuHXrlk55SEgIDh06hNu3b+PGjRvIy8vD4MGD9baRkJCA06dPQ6lU4vz580hNTdU7ENDd3R3Z2dlQKBS4c+cOjh07hokTJxp9m7qajh60jXm53hiT/HbV217UflL/4DYGY374W1rTW6Njxxr20JUxj2OWGDPX+pi/xoc69EyXqqUzncRYC6tM3kj6OnrQtqYzdp4xUntwvJDxPvylyljHMUsdgwwZ87dhQ8uJLE9iTIPJG5lERw/a1nLGzjNGai9rOgGxFGN8+FsLR8d7o7wMnWbFGMcxSx+DYmKA3buB+5/f69cPBk0TwpMY02DyRibR0YO2NZyx84zxHn6/bNtZywmIpXX0w1/KOnocs5ZjUHNj/gz53fEkxjSYvJHJqA/a9389rCEHbWOesbd3vBrPGO/hmL+2s4YTEGsREwOcPw8UFQHvv9/4r6Ef/lLW0eOYMY9BDQ3AkSPABx80/tvWv+H2jPkDOtdJjDWdxDJ5k4Cmf2T/+IcgqQ/OmBjg3Ln2HbSNccbekbEiPGNsxDF/7WNttwwtnYB37w6EhwNPPtn4rxRulRpDR45jxhwzN2BAxyZLby+exJgGkzcrd/8H55QpNpL74OzIQbsjl+s7OlakM50xtpelx9tInbXcMmQCblntvfLYGcbMWdtJTGfB5M2KWfqPzlq053K9McaKGPOM0ZoutxvKWsbbSF1HTkCMgccR69Cek9jONGauvUNoSD8mb1bKWv7opMoYY0U60xlje+aI4pg/42nveKGO4nFE2qxpzFxHdWQIDeli8malrOmPToqMNVbEWm57dUR7b5lxzJ/0/eMfAo8jEteRq1bW9jds6XGPHX1ow5rYWLoDpJ+1/dFZknp+pbYw5ni1mBhg4kSgV6/G1/v2AZGR0rjipr5ldn/81LfMWjr4c8yf9PE40jnExABTpzYm2T//3Pg3FxbW+jHImH/D7TkOW5Pc3Mar0E1PZvr1a7yyKYWT8PvxypuV4gdnxxj7CSdL3fbqiI7eMuNTYsbTnglejYHHkc7DEmPmOgv1Sez9V6GlPO6TyZuV4h9dx3Sm8WpA+x546Oit984WQylr7/daPvywaLTjiKWnGqG2499w5x33yeTNSvGPruOsabyaJT74jHHLzFgxbDrWpLjY/HMVSvFpX7WOTPNhrOMIpxqRrq7+pKexJzpWs/QJDJM3K2ZNyYdUWXqaBsA4H3ztOWgY65ZZR2OYm9u4veoJQiMibPDcc5HIy2vmchBpGGOaj44eRzjViPR15Sc9jTnRsVWdwIhkFDdu3BABiDdu3DBB2+rRMqL42Wcqsb7e6G/Rqd26dS9+t241X6+urk7cs2ePWFdX1+427vfJJ6IoCPfWVf8IQuPPJ58Y1oa3t/b6/fq1vm59fWM9fe+v7oOPj2jS/am57QfuioJw16DtN4b2/v4sSf370/e7a+33p29fbnoc2bfPsN97R/pgbPX1olhUJIrvv9/4rzUcB1s6ZpBxdDTGRUXN779Nf4qKmm/DGMdxQxmaS/DKmwQ0vaXx8MMib5VKhDHGWnTkqoelb723tP1AYwekONbEXIw9XVB7HrqxlimLLPn1TiRtnWWi4/sxeaNOz1JP+nX0g88YBw1L3npvffsFzjHWAmuY5sMa+sDbtqTWnnnaOtNEx00xeSMykY5+8BnroNHe71XsKGv44Jcya5jmw9J9sNarHmR+eXlCu6++dqaJjtWYvBGZSEc/+Ix50LDEzOaW/uBvypqeEjOUNUwXZOk+WOtVDzKvY8c8MWtW9w4/uNOehzas6TjWFJM3IhPp6AeftR40DNX69otmmavQ6p4SM5ClxyxaQx+MeQLTmb4aqStpaAC2bg00ytXXzjTRMZO3LqC9E3yqSXmOLEvq6AeftR40DNXS9gONR11TJx9SHy9lDXN0WXLcpLFOYO6froYPPEjHP/4hQKGwh/ohp/uZ+uqrpU9gmsPkrZOT6lUHa9Pehx468sFnrQeNtmgu+XBzu4MPP2ww6Qd/ZxkvZQ1zdFlqvkRjnMB0xq9G6kqsYcyZNc65yuStE5P6VYfOoiMffNZ40Gir+5OPgoJ6/PnPBYiONu23XHem8VKWGLOorw9q5vp+346ewHSWBL4rs5bhI9Yw4XtTTN46KR60rEtHPvis7aDRHk2Tj3HjzDNXoTWcsVPHdeTWcWdK4Luqhx8W4ep6B4Kg/2TPnMNHLHEC0xwmb50UD1qdi7Pzvdu2jz1m3bdKrYW1nLFTx7X31jETeOnr3h2Ijy8FIN3hI6bA5K2T4kGLujqpP/BhbJaarNpY2nPrmAl85xAa+jM+/LBB0sNHjM3G0h0g0+BBi7o69XipGTMaE7WmQwjaesbe0NB4lfrnnxv/ZsLCut6ZvhSpE/jycv1DSAShcXlXSeClLDpaxPTp/DtU45W3TopXHYiM88AHp5mQrs7wxDbdYw0P7lgLJm+dFA9a1kXqt6ykrCMPfHCaCemzhrnyiIyNyVsnZqxpJqT41UJETbXnKTE+sd15WMNceUTGZPHk7euvv8bjjz+O/v37w97eHnK5HKGhocjJydGqFxsbC0EQdH78/Pz0trtp0yb4+flBJpNh0KBBSEtLg0ql0qlXUVGB2NhYuLm5wcHBAaGhoSgsLDTJtlpCR6eZ4CS/1FXxie3OhbfcqKOs6Q6KxR9YuH79Onx8fPDkk0/C29sbt2/fxnvvvYenn34a586dQ0pKiqauvb09Dh8+rLW+vb29Tptr167FypUrkZSUhMjISJSUlCAlJQXl5eXYsmWLpp5SqcSECRNw/fp1bNy4EX379kVmZiaioqJw6NAhjBs3znQbbkbqaSbaSn3L6P511beMeMuBOjM+sU1E1sriyVt4eDjCw8O1yiZPnoyzZ89iy5YtWslbt27dMGbMmBbbUygUWLNmDebPn4/09HTNe6hUKqSkpGDJkiXw/9+lpG3btqGsrAxHjx5FaGgoAGD8+PEIDg5GYmIiTpw4YcQtbT9HR6CuToV9+/bB0XGSWd6ztVtGgtB4y2jqVJ7BUufEJ7aJyFpZ/LZpc9zc3GBj0/bcMj8/H7W1tYiLi9Mqj4uLgyiK2LNnj6YsLy8PQ4cO1SRuAGBjY4M5c+bgyy+/RPn93yvVhfCWEXV1fGKbiKyVxa+8qd29exd3797FtWvXsGvXLhw4cAB/+tOftOrcuXMHHh4euHr1Kjw9PTFt2jSsXr0acrlcU6esrAwAEBgYqLWup6cn3NzcNMvVdcP0HHmDgoIAAN9++y28739E6X+USiWUSqXmdXV1NQBApVLpHVvXUeo2TdG2PhcuCDBk97hwoR4qlWm/o9JczB3jrsoScW58K1vN+xr61m+8IWDWrO7/myfuXhan/qqejIwG3L0r4u5dI3e4g0wR4x49gLq6pu9htKYli8cM0+tqMTZ0O60meVuwYAH+/Oc/AwB69OiBP/7xj/jtb3+rWR4cHIzg4GAEBAQAAIqLi/HWW2+hsLAQJSUlcHJyAtB421Qmk8FRz2hCuVwOhUKhea1QKLQSv6b11Mubs27dOqSlpemUHzx4EA4ODoZscrsUFBSYrO2mzp93BfCwAfWOY9++5uMkReaKcVdn7jirL7oXFxu+jkwGJCZ6YuvWQCgU98bXurrewbx5ZZDJfsa+fcbtpzFxXzYPxtn0ukqMa2pqDKpnNcnbihUrEB8fj4qKCnz22Wd44YUXcPv2bbz00ksAgBdffFGrfkREBEaMGIEZM2bg3Xff1VouNHefQ8+yttRtavny5Vi6dKnmdXV1NXx8fBAZGQlnZ+dm12svlUqFgoICREREwNbW1ujt3+/RR4F33hFx6ZL2FQc1QRDh7Q289NLoTjPmzdwx7qqkFudJk4DUVOAf/6jXzOz+8MO26N59BIARlu6eXlKLsVQxzqbX1WKsvovXGqtJ3vr374/+/fsDACZNahyUv3z5cjz77LPo06eP3nWio6Ph6OiI48ePa8pcXV1RW1uLmpoanStgVVVVCAkJ0aqr7+paVVUVAOi9Kqcmk8kgk8l0ym1tbU26g5m6/XvvA/zxjy19tZCAjRsBO7vO98dkrhh3dVKKs60tMHGipXvRdlKKsZQxzqbXVWJs6DZa7QMLo0aNQn19Pc6cOdNiPVEU0a3bvc1Qj3UrLS3Vqnf58mVUVlZqbruq695fr+m6Tet2Rcaa5JeIiIiMx2qTt6KiInTr1g0PPPBAs3V2796NmpoarelDoqKiYGdnh6ysLK26WVlZEAQB06ZN05RFR0fj1KlTWlOC1NfXIycnB6NHj4bX/VlLF9TRSX6JiIjIuCx+2/S5556Ds7MzRo0aBXd3d1RWVmLXrl346KOP8Pvf/x59+vTB+fPnMXv2bMyaNQu+vr4QBAHFxcXYsGEDhg0bhvj4eE17crkcKSkpWLlyJeRyuWaS3tTUVMTHx2vmeAOAuXPnIjMzEzNnzsT69evRt29fbN68GadPn8ahQ4csEQ6r1J6vFiIiIiLTsHjyFhoaih07diA7OxvXr1+Hk5MTgoODsXPnTsyZMwcA4OzsDHd3d7z55pu4cuUKGhoaMGDAACQkJGDFihU6T5YmJyejZ8+eyMzMREZGBjw8PJCUlITk5GStejKZDIWFhUhMTMSiRYtQU1OD4cOHY//+/Z3m2xWIiIioc7F48hYXF6czoe79evfujdw2fplmQkICEhISWq3n7u6O7OzsNrVNREREZClWO+aNiIiIiHQxeSMiIiKSECZvRERERBLC5I2IiIhIQpi8EREREUmIxZ82Jevn6Kj99VhERERkObzyRkRERCQhTN6IiIiIJITJGxEREZGEMHkjIiIikhAmb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSECZvRERERBLC5I2IiIhIQpi8EREREUkIkzciIiIiCWHyRkRERCQhFk/evv76azz++OPo378/7O3tIZfLERoaipycHJ26J0+exMSJE+Hk5AQXFxfExMTgzJkzetvdtGkT/Pz8IJPJMGjQIKSlpUGlUunUq6ioQGxsLNzc3ODg4IDQ0FAUFhYafTuJiIiIjMHiydv169fh4+OD9PR07Nu3D3/5y18wcOBAPP3001izZo2m3qlTpxAeHo66ujp8/PHH2L59O3744QeEhYXh6tWrWm2uXbsWixcvRkxMDA4cOIAFCxYgPT0dCxcu1KqnVCoxYcIEFBYWYuPGjfj000/h7u6OqKgoFBcXm2X7iYiIiNrCxtIdCA8PR3h4uFbZ5MmTcfbsWWzZsgUpKSkAgFWrVkEmk2Hv3r1wdnYGAISEhGDIkCHIyMjAa6+9BgBQKBRYs2YN5s+fj/T0dM17qFQqpKSkYMmSJfD39wcAbNu2DWVlZTh69ChCQ0MBAOPHj0dwcDASExNx4sQJc4SAiIiIyGAWv/LWHDc3N9jYNOaW9fX12Lt3L6ZPn65J3ABgwIABGD9+PPLy8jRl+fn5qK2tRVxcnFZ7cXFxEEURe/bs0ZTl5eVh6NChmsQNAGxsbDBnzhx8+eWXKC8vN9HWEREREbWPxa+8qd29exd3797FtWvXsGvXLhw4cAB/+tOfAAA//vgj7ty5g6CgIJ31goKCUFBQgNraWtjZ2aGsrAwAEBgYqFXP09MTbm5umuUAUFZWhrCwML1tAsC3334Lb29vvf1VKpVQKpWa19XV1QAAlUqld2xdR6nbNEXb1IgxNg/G2fQYY/NgnE2vq8XY0O20muRtwYIF+POf/wwA6NGjB/74xz/it7/9LYDGW6EAIJfLddaTy+UQRRHXrl2Dp6cnFAoFZDIZHB0d9dZVt6Vut7k2m76vPuvWrUNaWppO+cGDB+Hg4NDSpnZIQUGBydqmRoyxeTDOpscYmwfjbHpdJcY1NTUG1bOa5G3FihWIj49HRUUFPvvsM7zwwgu4ffs2XnrpJU0dQRCaXb/pMkPrtbVuU8uXL8fSpUs1r6urq+Hj44PIyEitW7vGolKpUFBQgIiICNja2hq9fWKMzYVxNj3G2DwYZ9PrajFW38VrjdUkb/3790f//v0BAJMmTQLQmCA9++yzcHV1BaD/SlhVVRUEQYCLiwsAwNXVFbW1taipqdG5AlZVVYWQkBDNa1dX12bbBPRf6VOTyWSQyWQ65ba2tibdwUzdPjHG5sI4mx5jbB6Ms+l1lRgbuo1W+8DCqFGjUF9fjzNnzmDw4MGwt7dHaWmpTr3S0lL4+vrCzs4OwL2xbvfXvXz5MiorKxEQEKApCwwMbLZNAFp1iYiIiKyB1SZvRUVF6NatGx544AHY2NhgypQpyM3Nxc2bNzV1fvrpJxQVFSEmJkZTFhUVBTs7O2RlZWm1l5WVBUEQMG3aNE1ZdHQ0Tp06pTUlSH19PXJycjB69Gh4eXmZbPuIiIiI2sPit02fe+45ODs7Y9SoUXB3d0dlZSV27dqFjz76CL///e/Rp08fAEBaWhpGjhyJyZMnIykpCbW1tVi1ahXc3NywbNkyTXtyuRwpKSlYuXIl5HI5IiMjUVJSgtTUVMTHx2vmeAOAuXPnIjMzEzNnzsT69evRt29fbN68GadPn8ahQ4fMHgsiIiKi1lg8eQsNDcWOHTuQnZ2N69evw8nJCcHBwdi5cyfmzJmjqefn54cjR47g5ZdfxowZM2BjY4NHHnkEGRkZmgRPLTk5GT179kRmZiYyMjLg4eGBpKQkJCcna9WTyWQoLCxEYmIiFi1ahJqaGgwfPhz79+/HuHHjzLL9RERERG1h8eQtLi5OZ0Ld5oSEhBh8RSwhIQEJCQmt1nN3d0d2drZBbRIRERFZmtWOeSMiIiIiXUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSECZvRERERBLC5I2IiIhIQpi8EREREUkIkzciIiIiCWHyRkRERCQhTN6IiIiIJITJGxEREZGEMHkjIiIikhAmb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhC2p28rV69GpcuXdK77Oeff8bq1asNaufw4cOYO3cu/Pz84OjoCG9vb0ydOhVfffWVVr3Y2FgIgqDz4+fnp7fdTZs2wc/PDzKZDIMGDUJaWhpUKpVOvYqKCsTGxsLNzQ0ODg4IDQ1FYWGhQX0nIiIiMrd2J29paWm4ePGi3mWXLl1CWlqaQe28/fbbOHfuHBYvXox9+/Zh48aNqKiowJgxY3D48GGtuvb29jh27JjWz0cffaTT5tq1a7F48WLExMTgwIEDWLBgAdLT07Fw4UKtekqlEhMmTEBhYSE2btyITz/9FO7u7oiKikJxcbGBkSAiIiIyH5v2riiKYrPLbt26BVtbW4PayczMRN++fbXKoqKi4Ovri/T0dDzyyCOa8m7dumHMmDEttqdQKLBmzRrMnz8f6enpAIDw8HCoVCqkpKRgyZIl8Pf3BwBs27YNZWVlOHr0KEJDQwEA48ePR3BwMBITE3HixAmDtoGIiIjIXNqUvH3zzTf4+uuvNa/37duHU6dOadW5c+cO3nvvPQwePNigNu9P3ADAyckJ/v7+uHDhQlu6BwDIz89HbW0t4uLitMrj4uKQnJyMPXv2aJK3vLw8DB06VJO4AYCNjQ3mzJmDFStWoLy8HN7e3m3uAxEREZGptCl5y8vL09wOFQSh2XFt9vb22LFjR7s7dePGDZw8eVLrqhvQmBh6eHjg6tWr8PT0xLRp07B69WrI5XJNnbKyMgBAYGCg1rqenp5wc3PTLFfXDQsL03n/oKAgAMC3337bbPKmVCqhVCo1r6urqwEAKpVK79i6jlK3aYq2qRFjbB6Ms+kxxubBOJteV4uxodvZpuTtueeew+TJkyGKIkaNGoUdO3YgICBAq45MJsPgwYNhb2/flqa1LFy4ELdv30ZycrKmLDg4GMHBwZr3Ky4uxltvvYXCwkKUlJTAyckJQONtU5lMBkdHR5125XI5FAqF5rVCodBK/JrWUy9vzrp16/SO6zt48CAcHBwM3NK2KygoMFnb1IgxNg/G2fQYY/NgnE2vq8S4pqbGoHptSt48PT3h6ekJACgqKkJISIgmaTKWlStX4r333sOmTZsQEhKiKX/xxRe16kVERGDEiBGYMWMG3n33Xa3lgiA02/79y9pSt6nly5dj6dKlmtfV1dXw8fFBZGQknJ2dm12vvVQqFQoKChAREWHweEJqG8bYPBhn02OMzYNxNr2uFmP1XbzWtPuBhXHjxrV31WalpaVhzZo1WLt2LV544YVW60dHR8PR0RHHjx/XlLm6uqK2thY1NTU6V8Cqqqq0EkJXV1e9V9eqqqoAQO9VOTWZTAaZTKZTbmtra9IdzNTtE2NsLoyz6THG5sE4m15XibGh29ju5A0AcnJy8P777+P8+fO4c+eO1jJBEPDjjz8a3FZaWhpSU1ORmpqKFStWGLyeKIro1u3ejCfqsW6lpaUYPXq0pvzy5cuorKzUus0bGBiI0tJSnTbVZfffEiYiIiKytHYnb6+99hqWL18Of39/BAcH670KZahXX30VqampSElJwSuvvGLwert370ZNTY3W9CFRUVGws7NDVlaWVvKWlZUFQRAwbdo0TVl0dDQWLFiAEydOaOrW19cjJycHo0ePhpeXV7u3iYiIiMgU2p28bdmyBQsXLsSmTZs61IE33ngDq1atQlRUFB5//HGtW6AAMGbMGJw/fx6zZ8/GrFmz4OvrC0EQUFxcjA0bNmDYsGGIj4/X1JfL5UhJScHKlSshl8sRGRmJkpISpKamIj4+XjNNCADMnTsXmZmZmDlzJtavX4++ffti8+bNOH36NA4dOtSh7SIiIiIyhXYnb5cvX0Z0dHSHO/DZZ58BaJyfLT8/X2e5KIpwdnaGu7s73nzzTVy5cgUNDQ0YMGAAEhISsGLFCp0nS5OTk9GzZ09kZmYiIyMDHh4eSEpK0np6FWgct1ZYWIjExEQsWrQINTU1GD58OPbv32+SMX1EREREHdXu5C0kJAQ//vijzlxsbXXkyJFW6/Tu3Ru5ubltajchIQEJCQmt1nN3d0d2dnab2iYiIiKylHZ/t+mbb76JN954Q+cL5ImIiIjIdNp95S0uLg4KhQKjRo2Ch4cHXF1dtZYLgoB///vfHe4gEREREd3T7uTN1dUVbm5uxuwLEREREbWi3cmbIWPViIiIiMi42j3mjYiIiIjMr91X3j7//PNW64wdO7a9zRMRERGRHu1O3sLDw1v84nYAaGhoaG/zRERERKRHu5O3oqIinbLKykp8+umn+OKLL5CZmdmhjhERERGRrnYnb819A8H06dPxu9/9Dvn5+YiKimp3x4iIiIhIl0keWIiOjsaHH35oiqaJiIiIujSTJG/Xrl2DUqk0RdNEREREXVq7b5v+9NNPOmVKpRLffPMNli9fjjFjxnSoY0REardvA05Ojf+/dQtwdLRsf4iILKndydvAgQP1Pm0qiiKGDh2KP/3pTx3qGBERERHpanfytn37dp3kzc7ODgMHDsTIkSPRrRvn/yUiIiIytnYnb7GxsUbsBhEREREZot3Jm9rNmzdx7NgxKBQKuLm5YcyYMejZs6cx+kZERERE9+lQ8paRkYG0tDTU1NRAFEUAgKOjI9LS0rB06VKjdJCIiIiI7ml38vaXv/wFiYmJeOyxxxAbGwsvLy9cunQJ2dnZ+P3vf48+ffrg6aefNmZfiYiIiLq8didvb731FmbPno2cnByt8pkzZ2LOnDl46623mLwRERERGVm7Hwk9deoU5syZo3fZnDlz8P3337e7U0RERESkX7uTN3t7e1RVVeldVlVVBXt7+3Z3ioiIiIj0a3fyFhYWhtTUVFy6dEmr/PLly1i9ejXGjh3b4c4RERERkbZ2j3lLT0/HL3/5S/j6+mLChAnw9PTEzz//jMOHD8PW1ha5ubnG7CcRERERoQNX3oYNG4aSkhJMnToVJSUl2LFjB0pKSjBt2jR8+eWX8Pf3N2Y/iYiIiAgdnOftwQcfxAcffGCsvhARERFRK9p85a20tBQXL15sdvnFixdRWlraoU4RERERkX5tSt4+//xzhISE4MqVK83WuXLlCkJCQnDgwIEOd46IiIiItLUpecvMzMSMGTMQEhLSbJ2QkBD85je/wdatWzvcOSIiIiLS1qbk7YsvvsC0adNarffEE0/g+PHj7e0TERERETWjTcnb1atX4e3t3Wo9T09PVFRUtLtTRERERKRfm5I3R0fHZr9Voalr167BwcGh3Z0iIiIiIv3alLwNGzYM+fn5rdbbv38/hg0bZlCbhw8fxty5c+Hn5wdHR0d4e3tj6tSp+Oqrr3Tqnjx5EhMnToSTkxNcXFwQExODM2fO6G1306ZN8PPzg0wmw6BBg5CWlgaVSqVTr6KiArGxsXBzc4ODgwNCQ0NRWFhoUN+JiIiIzK1NydtvfvMbbNu2DcXFxc3WKSoqwo4dO/Dkk08a1Obbb7+Nc+fOYfHixdi3bx82btyIiooKjBkzBocPH9bUO3XqFMLDw1FXV4ePP/4Y27dvxw8//ICwsDBcvXpVq821a9di8eLFiImJwYEDB7BgwQKkp6dj4cKFWvWUSiUmTJiAwsJCbNy4EZ9++inc3d0RFRXV4jYSkXk1NNz7/+efa78mIupyxDZQKpViSEiI2KNHD3HBggXigQMHxB9++EH84YcfxAMHDojPP/+82KNHD3HkyJGiUqk0qM0rV67olN28eVN0d3cXJ0yYoCmbOXOm6ObmJt64cUNTdu7cOdHW1lZMTEzUlFVWVop2dnbic889p9Xm2rVrRUEQxG+//VZTlpmZKQIQjx49qilTqVSiv7+/OGrUKIP6r3bjxg0RgFb/jKmurk7cs2ePWFdXZ5L2iTE2l7bG+ZNPRNHbWxSBez/9+jWWk37cl82DcTa9rhZjQ3OJNl1569GjBw4cOIAJEybg7bffxmOPPQY/Pz/4+fnhsccewzvvvIOJEydi//796NGjh0Ft9u3bV6fMyckJ/v7+uHDhAgCgvr4ee/fuxfTp0+Hs7KypN2DAAIwfPx55eXmasvz8fNTW1iIuLk6rzbi4OIiiiD179mjK8vLyMHToUISGhmrKbGxsMGfOHHz55ZcoLy83aBuIyDRyc4EZM4D7/xTLyxvL+RXKRNQVtfnrsVxdXbFv3z589dVXOHjwoCbB6t+/Px599FGMGDGiw526ceMGTp48iUceeQQA8OOPP+LOnTsICgrSqRsUFISCggLU1tbCzs4OZWVlAIDAwECtep6ennBzc9MsB4CysjKEhYXpbRMAvv3222afrlUqlVAqlZrX1dXVAACVSqV3bF1Hqds0RdvUiDE2D0Pj3NAAJCTYQBQBQNBaJoqAIIhYvBiYNKke3bubqLMSxX3ZPBhn0+tqMTZ0O9v93aYhISEtTtbbEQsXLsTt27eRnJwMAFAoFAAAuVyuU1cul0MURVy7dg2enp5QKBSQyWRwdHTUW1fdlrrd5tps+r76rFu3DmlpaTrlBw8eNOmTtgUFBSZrmxoxxubRWpxLS11RXv5ws8tFUcDFi0BGxgkEBjb/t9qVcV82D8bZ9LpKjGtqagyq16bkTd+Vr+YIgoB///vfbWkeALBy5Uq899572LRpk05yKAhCM2tpLzO0XlvrNrV8+XIsXbpU87q6uho+Pj6IjIzUurVrLCqVCgUFBYiIiICtra3R2yfG2FwMjXN1dfN/f00NGDAGkyaJxupep8B92TwYZ9PrajFW38VrTZuSN7lc3mJCAwC3bt3CV1991Wo9fdLS0rBmzRqsXbsWL7zwgqbc1dUVgP4rYVVVVRAEAS4uLpq6tbW1qKmp0bkCVlVVpZUQurq6NtsmoP9Kn5pMJoNMJtMpt7W1NekOZur2iTE2l9bi7ONjWDs+Pjbgr0s/7svmwTibXleJsaHb2Kbk7ciRI80uq6+vx5YtW7B69WoIgoDZs2e3pWmkpaUhNTUVqampWLFihdaywYMHw97eHqWlpTrrlZaWwtfXF3Z2dgDujXUrLS3F6NGjNfUuX76MyspKBAQEaMoCAwObbROAVl0iMq+wMKBfv8aHE0Q9F9YEoXG5nmGrRESdWpueNm3Orl274O/vj0WLFiE4OBhfffUVdu7cafD6r776KlJTU5GSkoJXXnlFZ7mNjQ2mTJmC3Nxc3Lx5U1P+008/oaioCDExMZqyqKgo2NnZISsrS6uNrKwsCIKg9d2s0dHROHXqFE6cOKEpq6+vR05ODkaPHg0vLy+Dt4GIjKt7d2Djxsb/338hX/16wwbwYQUi6nLa/cAC0Hgl7uWXX0ZJSQkeeughHDx4EBMmTGhTG2+88QZWrVqFqKgoPP744zpfaD9mzBgAjVfmRo4cicmTJyMpKQm1tbVYtWoV3NzcsGzZMk19uVyOlJQUrFy5EnK5HJGRkSgpKUFqairi4+Ph7++vqTt37lxkZmZi5syZWL9+Pfr27YvNmzfj9OnTOHToUAciQ0TGEBMD7N4NJCRoTxfSr19j4tbkvI2IqMtoV/JWWlqKl19+GQcOHMCgQYPw/vvvY9asWe3qwGeffQagcX42fV+9Jf7vfomfn58mWZwxYwZsbGzwyCOPICMjA3369NFaJzk5GT179kRmZiYyMjLg4eGBpKQkzdOrajKZDIWFhUhMTMSiRYtQU1OD4cOHY//+/Rg3bly7toeIjCsmBpg4EejVq/H1vn1AZCSvuBFR19Wm5O3ChQtISUnB+++/D7lcjg0bNuB3v/tdhwYRtjSO7n4hISEGXxFLSEhAQkJCq/Xc3d2RnZ1tcB+IyPyaJmpjxzJxI6KurU3J24MPPoi6ujpERUUhMTERPXv21DvgX+2hhx7qcAeJiIiI6J42JW/qbxTYv3+/3lucaqIoQhAENPDbo4mIiIiMqk3J244dO0zVDyIiIiIyQJuSt2effdZU/SAiIiIiAxhlnjciIiIiMg8mb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCE2lu4AEVFrHB0BUbR0L4iIrAOvvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCEWT95u3ryJxMREREZGok+fPhAEAampqTr1YmNjIQiCzo+fn5/edjdt2gQ/Pz/IZDIMGjQIaWlpUKlUOvUqKioQGxsLNzc3ODg4IDQ0FIWFhcbeTCIiIiKjsPgX0ysUCmzZsgXBwcGYNm0atm7d2mxde3t7HD58WKfsfmvXrsXKlSuRlJSEyMhIlJSUICUlBeXl5diyZYumnlKpxIQJE3D9+nVs3LgRffv2RWZmJqKionDo0CGMGzfOeBtKREREZAQWT94GDBiAa9euQRAEVFZWtpi8devWDWPGjGmxPYVCgTVr1mD+/PlIT08HAISHh0OlUiElJQVLliyBv78/AGDbtm0oKyvD0aNHERoaCgAYP348goODkZiYiBMnThhpK4mIiIiMw+K3TdW3P40lPz8ftbW1iIuL0yqPi4uDKIrYs2ePpiwvLw9Dhw7VJG4AYGNjgzlz5uDLL79EeXm50fpFREREZAwWv/LWFnfu3IGHhweuXr0KT09PTJs2DatXr4ZcLtfUKSsrAwAEBgZqrevp6Qk3NzfNcnXdsLAwnfcJCgoCAHz77bfw9vbW2xelUgmlUql5XV1dDQBQqVR6x9Z1lLpNU7RNjRhj82CcTY8xNg/G2fS6WowN3U7JJG/BwcEIDg5GQEAAAKC4uBhvvfUWCgsLUVJSAicnJwCNt01lMhkcHR112pDL5VAoFJrXCoVCK/FrWk+9vDnr1q1DWlqaTvnBgwfh4ODQto1rg4KCApO1TY0YY/NgnE2PMTYPxtn0ukqMa2pqDKonmeTtxRdf1HodERGBESNGYMaMGXj33Xe1lrd0G/b+ZW2p29Ty5cuxdOlSzevq6mr4+PggMjISzs7Oza7XXiqVCgUFBYiIiICtra3R2yfG2FwYZ9NjjM2DcTa9rhZj9V281kgmedMnOjoajo6OOH78uKbM1dUVtbW1qKmp0bkCVlVVhZCQEK26+q6uVVVVAYDeq3JqMpkMMplMp9zW1takO5ip2yfG2FwYZ9NjjM2DcTa9rhJjQ7fR4g8sdJQoiujW7d5mqMe6lZaWatW7fPkyKisrNbdd1XXvr9d03aZ1iYiIiKyBpJO33bt3o6amRmv6kKioKNjZ2SErK0urblZWFgRBwLRp0zRl0dHROHXqlNaUIPX19cjJycHo0aPh5eVl6k0gIiIiahOruG26f/9+3L59Gzdv3gQAfPfdd9i9ezcAYNKkSbh69Spmz56NWbNmwdfXF4IgoLi4GBs2bMCwYcMQHx+vaUsulyMlJQUrV66EXC7XTNKbmpqK+Ph4zRxvADB37lxkZmZi5syZWL9+Pfr27YvNmzfj9OnTOHTokHmDQERERGQAq0jenn/+eZw/f17zeteuXdi1axcA4OzZs+jVqxfc3d3x5ptv4sqVK2hoaMCAAQOQkJCAFStW6DxZmpycjJ49eyIzMxMZGRnw8PBAUlISkpOTterJZDIUFhYiMTERixYtQk1NDYYPH479+/fz2xWIiIjIKllF8nbu3LlW6+Tm5rapzYSEBCQkJLRaz93dHdnZ2W1qm4iIiMhSJD3mjYiIiKirYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSECZvRERERBLC5I2IiIhIQpi8EREREUkIkzciIiIiCWHyRkRERCQhTN6IiIiIJITJGxEREZGEMHkjIiIikhAmb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSECZvRERERBLC5I2IiIhIQiyevN28eROJiYmIjIxEnz59IAgCUlNT9dY9efIkJk6cCCcnJ7i4uCAmJgZnzpzRW3fTpk3w8/ODTCbDoEGDkJaWBpVKpVOvoqICsbGxcHNzg4ODA0JDQ1FYWGjMTSQiIiIyGosnbwqFAlu2bIFSqcS0adOarXfq1CmEh4ejrq4OH3/8MbZv344ffvgBYWFhuHr1qlbdtWvXYvHixYiJicGBAwewYMECpKenY+HChVr1lEolJkyYgMLCQmzcuBGffvop3N3dERUVheLiYlNsLhEREVGH2Fi6AwMGDMC1a9cgCAIqKyuxdetWvfVWrVoFmUyGvXv3wtnZGQAQEhKCIUOGICMjA6+99hqAxmRwzZo1mD9/PtLT0wEA4eHhUKlUSElJwZIlS+Dv7w8A2LZtG8rKynD06FGEhoYCAMaPH4/g4GAkJibixIkTpt58IiIiojax+JU3QRAgCEKLderr67F3715Mnz5dk7gBjYnf+PHjkZeXpynLz89HbW0t4uLitNqIi4uDKIrYs2ePpiwvLw9Dhw7VJG4AYGNjgzlz5uDLL79EeXl5B7eOiIiIyLgsfuXNED/++CPu3LmDoKAgnWVBQUEoKChAbW0t7OzsUFZWBgAIDAzUqufp6Qk3NzfNcgAoKytDWFiY3jYB4Ntvv4W3t7fePimVSiiVSs3r6upqAIBKpdI7tq6j1G2aom1qxBibB+NseoyxeTDOptfVYmzodkoieVMoFAAAuVyus0wul0MURVy7dg2enp5QKBSQyWRwdHTUW1fdlrrd5tps+r76rFu3DmlpaTrlBw8ehIODQ+sb1U4FBQUma5saMcbmwTibHmNsHoyz6XWVGNfU1BhUTxLJm1pLt1ebLjO0XlvrNrV8+XIsXbpU87q6uho+Pj6IjIzUurVrLCqVCgUFBYiIiICtra3R2yfG2FwYZ9NjjM2DcTa9rhZj9V281kgieXN1dQWg/0pYVVUVBEGAi4uLpm5tbS1qamp0roBVVVUhJCREq93m2gT0X+lTk8lkkMlkOuW2trYm3cFM3T4xxubCOJseY2wejLPpdZUYG7qNFn9gwRCDBw+Gvb09SktLdZaVlpbC19cXdnZ2AO6Ndbu/7uXLl1FZWYmAgABNWWBgYLNtAtCqS0RERGQNJJG82djYYMqUKcjNzcXNmzc15T/99BOKiooQExOjKYuKioKdnR2ysrK02sjKyoIgCFpzyUVHR+PUqVNaU4LU19cjJycHo0ePhpeXl8m2iYiIiKg9rOK26f79+3H79m1NYvbdd99h9+7dAIBJkybBwcEBaWlpGDlyJCZPnoykpCTU1tZi1apVcHNzw7JlyzRtyeVypKSkYOXKlZDL5YiMjERJSQlSU1MRHx+vmeMNAObOnYvMzEzMnDkT69evR9++fbF582acPn0ahw4dMm8QiIiIiAxgFcnb888/j/Pnz2te79q1C7t27QIAnD17FgMHDoSfnx+OHDmCl19+GTNmzICNjQ0eeeQRZGRkoE+fPlrtJScno2fPnsjMzERGRgY8PDyQlJSE5ORkrXoymQyFhYVITEzEokWLUFNTg+HDh2P//v0YN26c6TeciIiIqI2sInk7d+6cQfVCQkIMviKWkJCAhISEVuu5u7sjOzvboDaJiIiILE0SY96IiIiIqBGTNyIiIiIJYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSECZvRERERBLC5I2IiIhIQpi8EREREUkIkzciIiIiCWHyRkRERCQhTN6IiIiIJITJGxEREZGEMHkjIiIikhAmb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSEMkkb0eOHIEgCHp/jh8/rlX35MmTmDhxIpycnODi4oKYmBicOXNGb7ubNm2Cn58fZDIZBg0ahLS0NKhUKnNsEhEREVGb2Vi6A22Vnp6O8ePHa5UFBARo/n/q1CmEh4dj+PDh+Pjjj1FbW4tVq1YhLCwMX3/9Nfr06aOpu3btWqxcuRJJSUmIjIxESUkJUlJSUF5eji1btphtm4iIiIgMJbnkbciQIRgzZkyzy1etWgWZTIa9e/fC2dkZABASEoIhQ4YgIyMDr732GgBAoVBgzZo1mD9/PtLT0wEA4eHhUKlUSElJwZIlS+Dv72/6DSIiIiJqA8ncNjVEfX099u7di+nTp2sSNwAYMGAAxo8fj7y8PE1Zfn4+amtrERcXp9VGXFwcRFHEnj17zNVtIiIiIoNJ7srbwoULMWvWLDg4OCA0NBQrV67Eww8/DAD48ccfcefOHQQFBemsFxQUhIKCAtTW1sLOzg5lZWUAgMDAQK16np6ecHNz0yxvjlKphFKp1Lyurq4GAKhUKpOMmVO3yfF4psMYmwfjbHqMsXkwzqbX1WJs6HZKJnnr1asXFi9ejPDwcLi6uuK///0vXn/9dYSHh+Nvf/sbHn30USgUCgCAXC7XWV8ul0MURVy7dg2enp5QKBSQyWRwdHTUW1fdVnPWrVuHtLQ0nfKDBw/CwcGhnVvZuoKCApO1TY0YY/NgnE2PMTYPxtn0ukqMa2pqDKonmeRtxIgRGDFihOZ1WFgYoqOjERgYiMTERDz66KOaZYIgNNtO02WG1tNn+fLlWLp0qeZ1dXU1fHx8EBkZqXXL1lhUKhUKCgoQEREBW1tbo7dPjLG5MM6mxxibB+Nsel0txuq7eK2RTPKmj4uLCyZPnox33nkHd+7cgaurKwDovWpWVVUFQRDg4uICAHB1dUVtbS1qamp0rpRVVVUhJCSkxfeWyWSQyWQ65ba2tibdwUzdPjHG5sI4mx5jbB6Ms+l1lRgbuo2Sf2BBFEUAjVfKBg8eDHt7e5SWlurUKy0tha+vL+zs7ADcG+t2f93Lly+jsrJSa/oRIiIiImsh6eTt2rVr2Lt3L4YPHw47OzvY2NhgypQpyM3Nxc2bNzX1fvrpJxQVFSEmJkZTFhUVBTs7O2RlZWm1mZWVBUEQMG3aNDNtBREREZHhJHPbdPbs2ejfvz/+7//+D25ubvjPf/6DN954A1euXNFKwNLS0jBy5EhMnjwZSUlJmkl63dzcsGzZMk09uVyOlJQUrFy5EnK5XDNJb2pqKuLj4znHGxEREVklySRvQUFB+Oijj/DOO+/g1q1bkMvlePjhh7Fz506MHDlSU8/Pzw9HjhzByy+/jBkzZsDGxgaPPPIIMjIytL5dAQCSk5PRs2dPZGZmIiMjAx4eHkhKSkJycrK5N4+IiIjIIJJJ3pKSkpCUlGRQ3ZCQEBw6dMigugkJCUhISOhI14iIiIjMRtJj3oiIiIi6GiZvRERERBLC5I2IiIhIQpi8EREREUkIkzciIiIiCWHyRkRERCQhTN6IiIiIJITJGxEREZGEMHkjIiIikhAmb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCSEyRsRERGRhDB5IyIiIpIQJm9EREREEsLkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSECZvRERERBLC5I2IiIhIQpi8EREREUkIkzciIiIiCWHyRkRERCQhTN6IiIiIJITJG4Bbt25hyZIl8PLygp2dHYYPH44PP/zQ0t0iIiIi0mFj6Q5Yg5iYGJSUlGD9+vV48MEH8f777+PJJ5/E3bt3MXv2bEt3j4iIiEijyydv+/btQ0FBgSZhA4Dx48fj/Pnz+P3vf4/f/OY36N69u4V7SURERNSoy982zcvLg5OTE2bOnKlVHhcXh0uXLuHEiRMW6hkRERGRri5/5a2srAy/+MUvYGOjHYqgoCDN8l/+8pc66ymVSiiVSs3rGzduAACqqqqgUqmM3k+VSoWamhooFArY2toavX1ijM2FcTY9xtg8GGfT62oxvnnzJgBAFMUW63X55E2hUOCBBx7QKZfL5Zrl+qxbtw5paWk65YMGDTJuB4mIiKhLuXnzJnr16tXs8i6fvAGAIAhtXrZ8+XIsXbpU8/ru3buoqqqCq6tri+21V3V1NXx8fHDhwgU4OzsbvX1ijM2FcTY9xtg8GGfT62oxFkURN2/ehJeXV4v1unzy5urqqvfqWlVVFYB7V+DuJ5PJIJPJtMpcXFyM3r/7OTs7d4kd2JIYY/NgnE2PMTYPxtn0ulKMW7riptblH1gIDAzE999/j/r6eq3y0tJSAEBAQIAlukVERESkV5dP3qKjo3Hr1i188sknWuXZ2dnw8vLC6NGjLdQzIiIiIl1d/rbpY489hoiICDz//POorq6Gr68vPvjgA+Tn5yMnJ8dq5niTyWR45ZVXdG7VkvEwxubBOJseY2wejLPpMcb6CWJrz6N2Abdu3UJycjI+/vhjVFVVwc/PD8uXL8esWbMs3TUiIiIiLUzeiIiIiCSky495IyIiIpISJm9EREREEsLkzQRu3bqFJUuWwMvLC3Z2dhg+fDg+/PDDVte7ePEilixZgnHjxsHFxQWCICArK0un3rlz5yAIQrM/UVFRBtU1pE/WzNRxBhq/Bu31119HQEAAHB0d4e7ujsceewxHjx7VqatSqZCWloaBAwdCJpPBz88PmzZt6uhmWpQ1xbiz7svmiHFdXR1WrVqFQYMGoUePHhgwYACWL1+OO3fu6NTtjPsxYF1x5r6sLTc3F08++SR8fX1hb2+PgQMH4qmnnsJ//vMfvfUPHTqE0NBQODg4wM3NDbGxsaioqNCp11n3ZQCASEYXEREhuri4iO+88454+PBhMT4+XgQgvvfeey2uV1RUJLq5uYkTJ04Un3zySRGAuGPHDp16tbW14rFjx3R+Xn75ZRGA+M4772jqnj17VgQgLlq0SKd+ZWWlsTfdrEwdZ1EUxaefflrs1q2bmJycLBYWFoq7du0SQ0JCRBsbG/HEiRNadePj40WZTCb+4Q9/EIuKisSkpCRREARx7dq1xtpks7OmGHfWfdkcMY6JiRHt7OzE9PR0saCgQFy9erXYo0cPccqUKTp1O+N+LIrWFWfuy9pGjRolPvHEE+L27dvFI0eOiDt37hR/8YtfiE5OTmJZWZlW3SNHjog2Njbi1KlTxYMHD4o5OTmit7e3GBAQINbW1mrV7az7siiKIpM3I/vb3/4mAhDff/99rfKIiAjRy8tLrK+vb3bdhoYGzf9LSkpaPEjoEx4eLjo4OIg3btzQlKkPEq+//rrhGyEB5ohzbW2t2L17d3HOnDla5ZcuXRIBiAkJCZqysrIyURAEMT09Xavu/PnzRXt7e1GhULRl86yCtcW4M+7L5ojxsWPHRADiG2+8oVWenp4uAhAPHjyoKeuM+7EoWl+cuS9ru3Llik5ZeXm5aGtrK86bN0+rfOTIkaK/v7+oUqk0ZV988YUIQNy8ebOmrLPuy2q8bWpkeXl5cHJywsyZM7XK4+LicOnSJZw4caLZdbt1a/+v48cff0RxcTF+/etfd4mvEDFHnLt164Zu3brpfFWJs7MzunXrBjs7O03Znj17IIoi4uLidPpz584d5OfnG/Se1sTaYtwZmSPGX3zxBQBg0qRJWuWTJ08GAK0JyjvjfgxYX5w7o47EuG/fvjplXl5e6NevHy5cuKApKy8vR0lJCZ5++mnY2NybpvaXv/wlHnzwQeTl5WnKOuu+rMbkzcjKysrwi1/8QmvHAoCgoCDNclPYvn07RFFEfHy83uXr169Hjx494ODggIcffhh//etfTdIPczFHnG1tbbFgwQJkZ2djz549qK6uxrlz5zB//nz06tUL8+fP1+pPnz594OHhYbL+mJu1xVitM+3L5ohxXV0dAOhMcqp+/c0332j1p7Ptx4D1xVmN+3Lzzpw5g/Pnz2PYsGFa79G0zfvfp+l7dNZ9Wa3Lf8OCsSkUCjzwwAM65eovuFcoFEZ/z4aGBmRnZ8PPzw+/+tWvtJbJZDLMnz8fERER8PT0xE8//YRNmzZh6tSpePfdd5tN9qydueL81ltvoVevXpg+fTru3r0LAOjfvz8OHz4MX19frf6o37spR0dH9OjRwyS/d1Ozthh3xn3ZHDH29/cH0HhlaNCgQZryf/zjHzrv0Rn3Y8D64sx9uWX19fWYN28enJyc8OKLL2q9R9M273+frrAvqzF5MwFBENq1rL3y8/NRXl6O119/XWeZp6cntmzZolU2c+ZMjB49GklJSYiNjdU5U5IKc8R57dq1yMjIQGpqKsLCwlBdXY0//elPiIiIwMGDBzFixAiz9sfcrCnGnXVfNnWMH3vsMfj6+uLll1+Gu7s7Ro4ciePHj2PFihXo3r27zm3BzrgfA9YVZ+7LzRNFEfPmzcPf//53fPLJJ/Dx8TG4rfvLO+u+DPC2qdG5urrqzeirqqoA6D9j6Kht27bB1tYWzzzzjEH1bW1t8Zvf/AYKhaLZR7GtnTni/P3332PVqlVIS0vDypUrER4ejieeeAJ/+9vf4OLigqVLl7ban9u3b6Ours4kv3dTs7YY6yP1fdkcMe7Rowf279+P/v37IzIyEr1798aMGTOwYsUK9O7dG97e3q32R8r7MWB9cdaH+zI0Q39ycnKQlZWFqVOn6rwHoP8qXlVVldZ7dNZ9WY3Jm5EFBgbi+++/R319vVZ5aWkpACAgIMCo71dRUYG9e/fiiSee0Dvoszni/74VrSMPSViSOeL873//G6IoYuTIkVrltra2CA4O1hozERgYiKtXr+Ly5csm64+5WVuMmyPlfdlcxwtfX18cO3YMFy9exDfffIOKigrMnDkTlZWVGDt2rFZ/Ott+DFhfnJvTlfdldeK2Y8cObN26FXPmzNGpo25D3eb979P0PTrrvqwmvT3EykVHR+PWrVs6TxZlZ2fDy8sLo0ePNur7/eUvf4FKpcK8efMMXkelUuGjjz6Cm5ub1pgiKTFHnL28vAAAx48f1ypXKpU4efIk+vXrpymbOnUqBEFAdna2Vt2srCzY29trTZwsFdYWY32kvi+b+3jh7e2NwMBAODg44PXXX4ejo6PWsaMz7seA9cVZn668L4uiiPnz52PHjh3485//rPOEqJq3tzdGjRqFnJwcNDQ0aMqPHz+O06dPIyYmRlPWWfdlNendVLdyjz32GCIiIvD888+juroavr6++OCDD5Cfn4+cnBx0794dADBv3jxkZ2fjxx9/xIABAzTr7969G0DjkzYA8M9//hNOTk4AgBkzZui837Zt2+Dj44NHH31Ub3+WLl0KlUqFX/3qV/Dw8MCFCxewadMmfP3119ixY4emP1Jjjjg//PDDGDlyJFJTU1FTU4OxY8fixo0b2LRpE86ePYudO3dq2hs2bBjmzZuHV155Bd27d8fIkSNx8OBBbNmyBWvWrJHkJXpri3Fn3JfNdbz4wx/+AA8PD/Tv3x9XrlzBxx9/jD179mDnzp1at/M6434MWF+cuS9rxzghIQHbtm3D3LlzERgYqHUyJ5PJtMYWv/baa4iIiMDMmTOxYMECVFRUICkpCQEBAVpJX2fdlzUsMrtcJ3fz5k0xISFB9PDwEHv06CEGBQWJH3zwgVadZ599VgQgnj17VqscQLM/91NPTLhq1apm+7Jt2zZx1KhRolwuF21sbMTevXuLjz76qHjgwAGjbKslmSPO169fF5OTk8Vf/OIXooODg9i3b18xPDxc3Ldvn05/6urqxFdeeUXs37+/2KNHD/HBBx8U//jHPxp9u83JmmLcWfdlc8Q4LS1NHDx4sCiTyUQXFxcxKipK/Pzzz/X2pzPux6JoXXHmvqwd4wEDBjQb3wEDBui8z8GDB8UxY8aIdnZ2olwuF5955hm9E/121n1ZFEVREMX/3WQnIiIiIqvHMW9EREREEsLkjYiIiEhCmLwRERERSQiTNyIiIiIJYfJGREREJCFM3oiIiIgkhMkbERERkYQweSMiIiKSECZvRGQVzp07B0EQkJWVZfS2CwsL8X//939wdHSEIAjYs2cPsrKyIAgCzp07Z/T3a2rgwIGIjY016XtIwXfffYfU1FSTx5uoK+B3mxJRpyaKIn7961/jwQcfxF//+lc4Ojpi6NChqK+vx7Fjx+Dp6WnpLnYJ3333HdLS0hAeHo6BAwdaujtEksbkjYg6tUuXLqGqqgrR0dGYMGGC1rI+ffpYqFeWpVKpIAgCbGx0PwJqamrg4OBggV4RkaF425SITOq///0v4uLiMGTIEDg4OMDb2xtTpkxBaWlpq+tevXoVzz33HHx8fCCTydCnTx/86le/wqFDhwx679TUVPTr1w8A8PLLL0MQBM1VH323TcPDwxEQEICSkhKEhYXBwcEBDzzwANavX4+7d+9q6tXW1mLZsmUYPnw4evXqBblcjtDQUHz66aeGB6YV77//PkJDQ+Hk5AQnJycMHz4c27Zt0yxv7nZseHg4wsPDNa+PHDkCQRCwc+dOLFu2DN7e3pDJZPjvf/+L2NhYODk5obS0FJGRkejZs6cmwa2rq8OaNWvg5+eniX1cXByuXr2q9X4DBw7E5MmTkZ+fj4ceegj29vbw8/PD9u3bNXWysrIwc+ZMAMD48eMhCILJbpETdQW88kZEJnXp0iW4urpi/fr16NOnD6qqqpCdnY3Ro0fjX//6F4YOHdrsuk8//TROnjyJtWvX4sEHH8T169dx8uRJKBQKg947Pj4ewcHBiImJwaJFizB79mzIZLIW17l8+TKeeuopLFu2DK+88gry8vKwfPlyeHl54ZlnngEAKJVKVFVV4aWXXoK3tzfq6upw6NAhxMTEYMeOHZp67bVq1Sq8+uqriImJwbJly9CrVy+UlZXh/Pnz7W5z+fLlCA0NxTvvvINu3bqhb9++ABqTtCeeeAK//e1vkZSUhPr6ety9exdTp07F3//+dyQmJuKXv/wlzp8/j1deeQXh4eH45z//CXt7e03b//73v7Fs2TIkJSXB3d0dW7duxbx58+Dr64uxY8fi8ccfR3p6OlasWIHMzEw89NBDAIDBgwd3KE5EXZZIRGRG9fX1Yl1dnThkyBDxxRdf1JSfPXtWBCDu2LFDU+bk5CQuWbKkQ++nbvf111/XKt+xY4cIQDx79qymbNy4cSIA8cSJE1p1/f39xUcffbTFbVKpVOK8efPEESNGaC0bMGCA+Oyzzxrc3zNnzojdu3cXn3rqqRbrNdfuuHHjxHHjxmleFxUViQDEsWPH6tR99tlnRQDi9u3btco/+OADEYD4ySefaJWXlJSIAMTNmzdr9cPOzk48f/68puzOnTuiXC4Xf/vb32rKdu3aJQIQi4qKWtwuImodb5sSkUnV19cjPT0d/v7+6NGjB2xsbNCjRw/85z//wffff9/iuqNGjUJWVhbWrFmD48ePQ6VSmby/Hh4eGDVqlFZZUFCQzlWvXbt24Ve/+hWcnJxgY2MDW1tbbNu2rdVtak1BQQEaGhqwcOHCDrVzv+nTpxu8bO/evXBxccGUKVNQX1+v+Rk+fDg8PDxw5MgRrfrDhw9H//79Na/t7Ozw4IMPduhKIRE1j8kbEZnU0qVLsXLlSkybNg2fffYZTpw4gZKSEgQHB+POnTstrvvRRx/h2WefxdatWxEaGgq5XI5nnnkGly9fNll/XV1ddcpkMplWX3Nzc/HrX/8a3t7eyMnJwbFjx1BSUoK5c+eitra2Q++vHlOmHqtnLM09Vevg4ABnZ2etsitXruD69evo0aMHbG1ttX4uX76MyspKrfqGxIyIjIdj3ojIpHJycvDMM88gPT1dq7yyshIuLi4truvm5oYNGzZgw4YN+Omnn/DXv/4VSUlJqKioQH5+vgl73bKcnBwMGjQIH330EQRB0JQrlcoOt61+AvbixYvw8fFptp6dnZ3e96usrISbm5tOedN+tlbu5uYGV1fXZmPcs2fPZvtFRKbH5I2ITEoQBJ2HBP72t7+hvLwcvr6+BrfTv39/vPDCCygsLMQXX3xh7G62iSAI6NGjh1bic/nyZaM8bRoZGYnu3bvj7bffRmhoaLP1Bg4ciG+++Uar7IcffsDp06f1Jm9tMXnyZHz44YdoaGjA6NGjO9SWmnof4NU4oo5j8kZEJjV58mRkZWXBz88PQUFB+Oqrr/D666+3elvwxo0bGD9+PGbPng0/Pz/07NkTJSUlyM/PR0xMjJl6r9/kyZORm5uLBQsWYMaMGbhw4QJeffVVeHp64j//+U+H2h44cCBWrFiBV199FXfu3MGTTz6JXr164bvvvkNlZSXS0tIAND6JO2fOHCxYsADTp0/H+fPn8Yc//MEoc9fNmjUL7733HiZNmoTFixdj1KhRsLW1xcWLF1FUVISpU6ciOjq6TW0GBAQAALZs2YKePXvCzs4OgwYN0nvLlYhaxuSNiExq48aNsLW1xbp163Dr1i089NBDyM3NRUpKSovr2dnZYfTo0di5cyfOnTsHlUqF/v374+WXX0ZiYqKZeq9fXFwcKioq8M4772D79u144IEHkJSUhIsXL2qSq45YvXo1hgwZgk2bNuGpp56CjY0NhgwZgoSEBE2d2bNn49KlS3jnnXewY8cOBAQE4O233zbK+3fv3h1//etfsXHjRuzcuRPr1q2DjY0N+vXrh3HjxiEwMLDNbQ4aNAgbNmzAxo0bER4ejoaGBuzYsYNfHUbUDoIoiqKlO0FEREREhuHTpkREREQSwtumRCRJoiiioaGhxTrdu3dv9ilLS2hoaEBLNzsEQUD37t3N2CMikiJeeSMiScrOztaZg+z+n+LiYkt3U8vgwYNb7K/6e0WJiFrCMW9EJEkKhQJnz55tsc7QoUOtak6y0tLSFueC69mzZ4vf9UpEBDB5IyIiIpIU3jYlIiIikhAmb0REREQSwuSNiIiISEKYvBERERFJCJM3IiIiIglh8kZEREQkIUzeiIiIiCTk/wFxbffu5iZgEwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0024\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 4500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.200 - 0.225 A" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.2 , 0.2009, 0.2018, 0.2027, 0.2036, 0.2045, 0.2054, 0.2063,\n", " 0.2072, 0.2081, 0.209 , 0.2099, 0.2108, 0.2117, 0.2126, 0.2135,\n", " 0.2144, 0.2153, 0.2162, 0.2171, 0.218 , 0.2189, 0.2198, 0.2207,\n", " 0.2216, 0.2225, 0.2234, 0.2243, 0.2252, 0.2261]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHPCAYAAADTZ+eeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdM0lEQVR4nO3df1xUVd4H8M8VcIYfkg6jCIg/0pIlAYtHkZ5QTCUyXWXSzcwKjGrTRNMiVDQwRdusZF2sdU1xpaw0sM1VFBHNXc14cncDW6stNcMfyKCiIjDgff6YnZFhBpyB4c5c+LxfL15wzz33zLlfr/L1nHvPFURRFEFEREREstHF0R0gIiIiItswgSMiIiKSGSZwRERERDLDBI6IiIhIZpjAEREREckMEzgiIiIimWECR0RERCQzTOCIiIiIZIYJHBEREZHMOF0Ct2HDBgiCAC8vL5Py+Ph4CIJg9hUUFGSxnbVr1yIoKAgKhQIDBgxAeno6dDqdWb3y8nLEx8dDrVbDw8MDkZGRKCwsbJdzIyIiIrIHV0d3oLGysjK8/PLL8Pf3x5UrV8z2u7u7Y//+/WZlTa1YsQJLlixBSkoKYmJiUFxcjNTUVJSVlWH9+vXGerW1tRgzZgwuX76MzMxM9OrVC1lZWYiNjcW+ffswatQo+58kERERURsJzvQu1IkTJ0IQBKhUKmzfvh3Xrl0z7ouPjzcrs0Sr1aJPnz546qmn8Mc//tFYnpGRgdTUVJSWliI4OBgAsG7dOsyePRuHDx9GZGQkAKC+vh5hYWHw8vLC0aNH2+EsiYiIiNrGaaZQc3JycPDgQaxbt65N7eTn56OmpgYJCQkm5QkJCRBFETt27DCW5eXlYfDgwcbkDQBcXV0xY8YMfPXVVygrK2tTX4iIiIjag1NMoZaXl2PevHlYtWoV+vTp02y9GzduoHfv3rh48SL8/PwwefJkLFu2DCqVylintLQUABASEmJyrJ+fH9RqtXG/oW5UVJTZ54SGhgIAjh8/joCAAIt9qa2tRW1trXH75s2bqKyshI+PDwRBsOKsiYiIiG4RRRFXr16Fv78/unRpeYzNKRK4WbNmYfDgwXjhhRearRMWFoawsDAMGTIEAHDw4EG88847KCwsRHFxsfGhB61WC4VCAU9PT7M2VCoVtFqtcVur1Zokf43rGfY3Z+XKlUhPT7fuBImIiIisdObMmRYHtAAnSOA+/fRTfP755/jHP/7R4sjVSy+9ZLI9btw43HvvvZgyZQr+9Kc/mexvqZ2m+2yp29jChQsxf/584/aVK1fQt29fnDx5Et26dWv2uNbS6XQoKirC6NGj4ebmZvf2yRTjLT3GXFqMt/QYc+nJLeZXr17FgAEDrMojHJrAXbt2DbNnz8acOXPg7++Py5cvAwDq6uoAAJcvX4abm5vF0TQAiIuLg6enJ7788ktjmY+PD2pqalBdXQ0PDw+T+pWVlQgPDzepa2mUrbKyEgAsjs4ZKBQKKBQKs3KVSgVvb+9mj2stnU4HDw8P+Pj4yOIilDvGW3qMubQYb+kx5tKTW8wNfbTmViyHPsRQUVGBCxcu4K233kKPHj2MX1u3bsX169fRo0cPPPHEEy22IYqiyTyx4d63kpISk3rnz59HRUWFcQrWULdpvcbHNq5LRERE5CwcOgLXu3dvFBUVmZWvWrUKBw8exO7du6FWq5s9fvv27aiursaIESOMZbGxsVAqlcjOzkZERISxPDs7G4IgYPLkycayuLg4zJo1C0ePHjXWra+vR05ODiIiIuDv72+HsyQiIiKyL4cmcEqlEtHR0Wbl2dnZcHFxMe47ffo0pk+fjmnTpmHQoEEQBAEHDx7EmjVrcM899yAxMdF4rEqlQmpqKpYsWQKVSmVcyDctLQ2JiYnGNeAAYObMmcjKysLUqVOxatUq9OrVC+vWrcN3332Hffv2tffpExEREbWKwx9isIa3tzd8fX3x9ttv48KFC2hoaEC/fv2QlJSERYsWmd0jt3jxYnTr1g1ZWVlYvXo1evfujZSUFCxevNiknkKhQGFhIZKTkzFnzhxUV1dj6NCh2L17N9/CQERERE7LKRO47OxsZGdnG7d79OiB3Nxcm9pISkpCUlLSbev5+vpi8+bNtnaRiIiIyGGc5k0MRERERGQdJnBEREREMsMEjoiIiEhmmMARERERyQwTOCIiIiKZYQJHREREJDNM4IiIiIhkhgkcERERkcwwgSMiIiKSGSZwRERERDLDBI6IiIhIZpjAEREREckMEzgiIiIimWECR0RERCQzTOCIiIiIZIYJHBEREZHMMIEjIiIikhkmcEREREQywwSOiIiISGaYwBERERHJDBM4IiIiIplhAkdEREQkM0zgiIiIiGSGCRwRERGRzDCBIyIiIpIZJnBEREREMsMEjoiIiEhmmMARERERyQwTOCIiIiKZYQJHREREJDNM4IiIiIhkxukSuA0bNkAQBHh5eZntO3bsGMaOHQsvLy90794dGo0GP/30k8V21q5di6CgICgUCgwYMADp6enQ6XRm9crLyxEfHw+1Wg0PDw9ERkaisLDQ7udFREREZC9OlcCVlZXh5Zdfhr+/v9m+EydOIDo6GnV1dfjkk0+wceNGfP/994iKisLFixdN6q5YsQJz586FRqPBnj17MGvWLGRkZGD27Nkm9WprazFmzBgUFhYiMzMTn332GXx9fREbG4uDBw+267kSERERtZarozvQ2G9/+1uMHDkSKpUK27dvN9m3dOlSKBQK7Ny5E97e3gCA8PBw3HXXXVi9ejXeeOMNAIBWq8Xy5cvx7LPPIiMjAwAQHR0NnU6H1NRUzJs3D8HBwQCA999/H6WlpTh8+DAiIyMBAKNHj0ZYWBiSk5Nx9OhRqU6diIiIyGpOMwKXk5ODgwcPYt26dWb76uvrsXPnTjz66KPG5A0A+vXrh9GjRyMvL89Ylp+fj5qaGiQkJJi0kZCQAFEUsWPHDmNZXl4eBg8ebEzeAMDV1RUzZszAV199hbKyMjueIREREZF9OMUIXHl5OebNm4dVq1ahT58+Zvt//PFH3LhxA6GhoWb7QkNDUVBQgJqaGiiVSpSWlgIAQkJCTOr5+flBrVYb9wNAaWkpoqKiLLYJAMePH0dAQIDFPtfW1qK2tta4XVVVBQDQ6XQW77VrK0Ob7dE2mWO8pceYS4vxlh5jLj25xdyWfjpFAjdr1iwMHjwYL7zwgsX9Wq0WAKBSqcz2qVQqiKKIS5cuwc/PD1qtFgqFAp6enhbrGtoytNtcm40/15KVK1ciPT3drHzv3r3w8PBo9ri2KigoaLe2yRzjLT3GXFqMt/QYc+nJJebV1dVW13V4Avfpp5/i888/xz/+8Q8IgtBi3Zb2N95nbT1b6za2cOFCzJ8/37hdVVWFwMBAxMTEmEzz2otOp0NBQQHGjRsHNzc3u7dPphhv6THm0mK8pceYS09uMTfM5lnDoQnctWvXMHv2bMyZMwf+/v64fPkyAKCurg4AcPnyZbi5ucHHxweA5RGxyspKCIKA7t27AwB8fHxQU1OD6upqs5GwyspKhIeHG7d9fHyabROwPOJnoFAooFAozMrd3Nza9SJp7/bJFOMtPcZcWoy39Bhz6ckl5rb00aEPMVRUVODChQt466230KNHD+PX1q1bcf36dfTo0QNPPPEEBg4cCHd3d5SUlJi1UVJSgkGDBkGpVAK4de9b07rnz59HRUUFhgwZYiwLCQlptk0AJnWJiIiInIVDE7jevXujqKjI7Ouhhx6CUqlEUVERli9fDldXV0ycOBG5ubm4evWq8fiff/4ZRUVF0Gg0xrLY2FgolUpkZ2ebfFZ2djYEQcDkyZONZXFxcThx4oTJciH19fXIyclBRESExfXoiIiIiBzNoVOoSqUS0dHRZuXZ2dlwcXEx2Zeeno5hw4ZhwoQJSElJQU1NDZYuXQq1Wo0FCxYY66lUKqSmpmLJkiVQqVSIiYlBcXEx0tLSkJiYaFwDDgBmzpyJrKwsTJ06FatWrUKvXr2wbt06fPfdd9i3b197njoRERFRqznNOnC3ExQUhAMHDsDNzQ1TpkxBfHw8Bg0ahC+++AI9e/Y0qbt48WKsWbMG27dvR0xMDNauXYuUlBRkZWWZ1FMoFCgsLMTo0aMxZ84cTJw4EefOncPu3bsxatQoKU+PiIiIyGoOfwrVkuzsbLMpUED/5gVrR8aSkpKQlJR023q+vr7YvHmzrV0kIiIichinTODI/hoagEOHgHPnAD8/ICoKcHFxdK+IiIioNZjAdQK5ucDcucAvv9wq69MHyMwEGj3/QURERDIhm3vgqHVyc4EpU0yTNwAoK9OX5+Y6pl9ERETUekzgOrCGBv3Imyia7zOUzZunr0dERETywQSuAzt0yHzkrTFRBM6c0dcjIiIi+WAC14GdO2ffekREROQcmMB1YH5+9q1HREREzoEJXAcWFaV/2lQQLO8XBCAwUF+PiIiI5IMJXAfm4qJfKgQwT+IM22vWcD04IiIiuWEC18FpNMD27UBAgGl5nz76cq4DR0REJD9cyLcT0GiASZP4JgYiIqKOgglcJ+HiAkRHO7oXREREZA+cQiUiIiKSGSZwRERERDLDBI6IiIhIZpjAkVWuX9cvPSII+p87ez+IiIgciQkcScYeyVdDw62fv/jCdJuIiKizYAJHspGbCwQH39oePx7o319fLiccRSQiorZiAicD168DXbu6YfLkSbL+hd+W0bPcXGDKFKCszLS8rExfLrckjoiIqC2YwJEk2jJ61tAAzJ0LiKL5PkPZvHnymU7lNDAREbUVEzgZaPwL/m9/E2T3C7+to2eHDgG//NL8flEEzpzR13N2HWUamIiIHIsJnJNr+gt/4kRXWf3Ct8fo2blz1n2WNfUaGoADB4CtW/XfpUyGOQ1MRET2wgTOiXWEX/j2GD3z87Pus25XLzcX6NcPGD0amD5d/12qZLijTQMTEZFjMYFzUh3lF749Rs+iooA+ffRPbVoiCEBgoL5ecxydDHekaWAiInI8JnBOqqP8wrfH6JmLC5CZqf+5aRJn2F6zRl/PEmdIhu05DUxERMQEzkl1lF/49hg9AwCNBti+HfD3Ny3v00dfrtE0f6wzJMP2mgYmIiICAFdHd4As6yi/8A2jZ1Om6JO1xqNg1oyeNabRAJMm6ROtc+f05x4VdftjnSEZNiSyZWWWRwIFQb//doksERERwBE4p2WvkStn0JbRs6ZcXIDoaODxx/XfrUn8nCEZbus0MBERUWNM4JyUs/3Cb+visxoN8O23t7Z37QJOnrQteWsteyfDrX0Vlj0TWSIi6tyYwDkxZ/mFb6/FZxsnmyNHSpd82jsZbksy68hEtilHrolHRERt4/AE7p///CceeeQR9O3bF+7u7lCpVIiMjEROTo5Jvfj4eAiCYPYVFBRksd21a9ciKCgICoUCAwYMQHp6OnQ6nVm98vJyxMfHQ61Ww8PDA5GRkSgsLGyXc22Npr/wP/+8XtJf+PZcfsPTU3//lyjqf5aSIRkOCDAttzUZtkcy6+19Kw4PP+yYadPcXH2/HbEmHhERtZ3DH2K4fPkyAgMD8fjjjyMgIADXr1/HBx98gCeffBKnTp1Camqqsa67uzv2799vcry7u7tZmytWrMCSJUuQkpKCmJgYFBcXIzU1FWVlZVi/fr2xXm1tLcaMGYPLly8jMzMTvXr1QlZWFmJjY7Fv3z6MGjWq/U7cBo1/wT/wgCjptGlLy28Ign75jUmT5HHvVmsfgjAwJLNN42FIZuUyDdpRzoOIqFMTnVRERIQYGBho3H766adFT0/P2x5XUVEhKpVK8bnnnjMpX7FihSgIgnj8+HFjWVZWlghAPHz4sLFMp9OJwcHB4vDhw23q75UrV0QA4pUrV2w6zlp1dXXijh07xLq6unZp35KiIsM4UctfRUWSdUkyTeNdXy+Kffo0HwNBEMXAQH09Z+bM5+GIa7wzY7ylx5hLT24xtyWXcPgUanPUajVcXW0fIMzPz0dNTQ0SEhJMyhMSEiCKInbs2GEsy8vLw+DBgxEZGWksc3V1xYwZM/DVV1+hrOm8YSfjDMtvOAtnWEvOHjrKeRARdXYOn0I1uHnzJm7evIlLly5h27Zt2LNnD/7whz+Y1Llx4wZ69+6Nixcvws/PD5MnT8ayZcugUqmMdUpLSwEAISEhJsf6+flBrVYb9xvqRll49DA0NBQAcPz4cQQ0vWnqv2pra1FbW2vcrqqqAgDodDqL99q1laHN9mi7OT17CrDmEunZsx46nYV5VhlrGu8zZ6yLxZkz0sSioQH4298E41SwtVPrznYejTniGu/MGG/pMebSk1vMbemn0yRws2bNwh//+EcAQNeuXfH73/8ezz//vHF/WFgYwsLCMGTIEADAwYMH8c4776CwsBDFxcXw8vICAGi1WigUCnhauEtepVJBq9Uat7VarUny17ieYX9zVq5cifT0dLPyvXv3wsPDw5pTbpWCgoJ2a7uphgbAxycGWq0SgKU1OESo1TdQVVWAXbsk65akDPE+fdoHwAO3rX/69JfYtav568Yejhzxw4YNIdBqb93/6eNzA4mJJYiMbHk41JnOozlSXuPEeDsCYy49ucS8urra6rqCKFq6RV16P//8M8rLy1FeXo7PP/8c69evxxtvvIGXX3652WM+/fRTTJkyBW+//TZeeuklAMBzzz2HLVu24MaNG2b1Bw8ejAEDBiA/Px+APlF85pln8O6775rUO3LkCO6//35s3boV06ZNs/jZlkbgAgMDUVFRAW9vb5vP/3Z0Oh0KCgowbtw4uLm52b395uTlCZg2TT+0I4q3kjhB0F82H33UgLg4p7iE7KppvBsagEGDXHH2rGkcDARBREAA8MMP9e36QIfhz0P/t9b2Pw9nOQ9LHHWNd1aMt/QYc+nJLeZVVVVQq9W4cuXKbXMJpxmB69u3L/r27QsAGD9+PABg4cKFePrpp9GzZ0+Lx8TFxcHT0xNffvmlsczHxwc1NTWorq42GwmrrKxEeHi4SV1Lo2yVlZUAYHF0zkChUEChUJiVu7m5tetF0t7tN/Wb3wCurkBSkulSIn36CFizBtBonOYSaheGeLu5Ab//fUuvBBOQmQkole33Z9PQACxY0NxTwQIEAXj5ZVc8+mjzT9Y6w3ncjtTXeGfHeEuPMZeeXGJuSx+d9iGG4cOHo76+Hj/99FOL9URRRJcut07DcO9bSUmJSb3z58+joqLCOAVrqNu0XuNjG9ftzJxp8VlHcvTCyvZ6AMFea+LRLVwUmYik5rQJXFFREbp06YI777yz2Trbt29HdXU1RowYYSyLjY2FUqlEdna2Sd3s7GwIgoDJkycby+Li4nDixAkcPXrUWFZfX4+cnBxERETAv+lv6k7MUW9RcDaOTGbt+VSwRgOcOgUUFQEffqj/3hmTcnvgoshE5AgOn/967rnn4O3tjeHDh8PX1xcVFRXYtm0bPv74Y7zyyivo2bMnTp8+jenTp2PatGkYNGgQBEHAwYMHsWbNGtxzzz1ITEw0tqdSqZCamoolS5ZApVIZF/JNS0tDYmIighstoz9z5kxkZWVh6tSpWLVqFXr16oV169bhu+++w759+xwRDpIBRyWzfn72refiAkRHt7o7BC6KTESO4/AELjIyEps2bcLmzZtx+fJleHl5ISwsDFu2bMGMGTMAAN7e3vD19cXbb7+NCxcuoKGhAf369UNSUhIWLVpk9sTp4sWL0a1bN2RlZWH16tXo3bs3UlJSsHjxYpN6CoUChYWFSE5Oxpw5c1BdXY2hQ4di9+7dTvMWBnI+hleCSS0qSj/NWVZm+fMFQb/fwso41A462ptKAP05tfZNJUQkLYcncAkJCWaL7jbVo0cP5No4H5GUlISkpKTb1vP19cXmzZttapvIEVxcgMzMlh5AANas4S9cqdhyT6IcRjpzc/UJaeNz6tNHf81xFJHI+TjtPXBEZI4PIDiPjvSmEsNUcNOE1DAVzPv5iJyPw0fgiMg2Go1+Wo5TXY5l73sSHaUjTgUTdQZM4IhkiA8gOJ6970m8fh347wtlcO2a/l5LKfztb0KHmgom6iw4hUpE1AqGexKBW/cgGrTmnsTGa8d98YV0a8l1pKlgos6ECRwRUSvZ657E3Fyg0QpHGD9eurXkOspUMFFnwylUIqI2aOs9iY5eS+6BB0QuT0MkQxyBIyJqI8M9iY8/rv9uy7RpSw8QAPoHCNpzOtXeU8FEJA0mcEREDmKv99u2FZenIZIfTqGSVRz19gGijsyZHiDg8jRE8sIEjojIQZztAQIuT0MkH5xCJSJyEMNack3vPTMQBCAwUF4PEFy/ru+3IOh/JqL2wQSOiMhB+AABEbUWEzgiIgcyPEDg729azgcIiKglvAeOiMjBOtIDBE3fKBETI8/zIHJ2HIEjInICrV1Lzpk48o0SRJ0NEzgiImozwxslyspMyw1vlGASR2RfTOCIiKhNnOGNEkSdDRM4IiJqE2d5owRRZ8IEjoiI2sSZ3ihB1FkwgSMiojZxtjdKEHUGTOCIqFPjmwPariO+UYLI2TGBIyKiNuEbJYikxwSOiIjajG+UIJIWEzgiog7AGaaCNRrg229vbe/aBZw8yeSNqD0wgSMiIrtpPE06ciSnTYnaCxM4IurUmr67U66LzXaU8yAi6zCBI6JOq6O8u9OZzsPTU79wryjqf6bWc4ZpcXJeTOCIqFPqKO/u7Cjn0dE0NAAHDgBbt+q/c0SU7I0JHBF1Oh3l3Z0d5Tw6mtxcoF8/YPRoYPp0/ff+/YG8vGYWyiNqBSZwRNTpdJR3d3aU8+hIWhoRnTbNBUeO8HUUZB9M4Iio0+ko7+7sKOfRUVgzIvr++0M4Ikp24fAE7p///CceeeQR9O3bF+7u7lCpVIiMjEROTo5Z3WPHjmHs2LHw8vJC9+7dodFo8NNPP1lsd+3atQgKCoJCocCAAQOQnp4OnU5nVq+8vBzx8fFQq9Xw8PBAZGQkCgsL7X6eROQ8Osq7OzvKeTQm5xv3bz8iKqCiwgN/+xunUqntHJ7AXb58GYGBgcjIyMCuXbvw5z//Gf3798eTTz6J5cuXG+udOHEC0dHRqKurwyeffIKNGzfi+++/R1RUFC5evGjS5ooVKzB37lxoNBrs2bMHs2bNQkZGBmbPnm1Sr7a2FmPGjEFhYSEyMzPx2WefwdfXF7GxsTh48KAk509E0uso7+7sKOfRUXBElCQlOqmIiAgxMDDQuD116lRRrVaLV65cMZadOnVKdHNzE5OTk41lFRUVolKpFJ977jmT9lasWCEKgiAeP37cWJaVlSUCEA8fPmws0+l0YnBwsDh8+HCb+nvlyhURgEn/7Kmurk7csWOHWFdX1y7tkynG+/bq60WxqEgUP/xQ/72+vm3tSR3zTz8VRUHQf91a+OJW2aefStKNNmvteTjrNX7t2q1zuHbN0b2xTVGR6Z9Bc18FBTqr2pNzLJyFs17nzbEll3D4CFxz1Go1XF1dAQD19fXYuXMnHn30UXh7exvr9OvXD6NHj0ZeXp6xLD8/HzU1NUhISDBpLyEhAaIoYseOHcayvLw8DB48GJGRkcYyV1dXzJgxA1999RXKmt6FSkQA9Ddq9+9v/pSdnJas6Cjv7uwo59ER3H5EVIRaXY0HHrBwkxyRjVwd3QGDmzdv4ubNm7h06RK2bduGPXv24A9/+AMA4Mcff8SNGzcQGhpqdlxoaCgKCgpQU1MDpVKJ0tJSAEBISIhJPT8/P6jVauN+ACgtLUWUhbkFw+ccP34cAQEBFvtbW1uL2tpa43ZVVRUAQKfTWbzXrq0MbbZH22SO8W5eXp6AadNc/ntT9q3fVGVlIqZMAT76qAFxcbb/gnJEzCdOBEaNAtRqNwDA55/XY+xYES4ugJz+6FtzHs56jeu74/bfn3Wt+nO4fh3o0UPfxqVLOkkXFH7rLf3fD0HQ3/NmIAj6vxPPPFOKmzeHWHVe9ohFZ+es13lzbOmn0yRws2bNwh//+EcAQNeuXfH73/8ezz//PABAq9UCAFQqldlxKpUKoiji0qVL8PPzg1arhUKhgKeFv7EqlcrYlqHd5tps/LmWrFy5Eunp6Wble/fuhYeHR0un2iYFBQXt1jaZY7xNNTQAs2bFQBRd0Dh5Awy/rETMnl0HV9eCVr8DU+qY19S4AJgAALh+PR979sjzEcHWnoezXeONz2PPnj1QKm3/87BHGw0NwLff+uDSJSV69KhBcLDWqmtaoQCSk/2wYUMItFp3Y7mPzw0880wpIiPPoaDAupvg7HEepOds13lzqqurra7rNAncokWLkJiYiPLycnz++ed48cUXcf36dbz88svGOkJz49JN9llbz9a6jS1cuBDz5883bldVVSEwMBAxMTEm07z2otPpUFBQgHHjxsHNzc3u7ZMpxtuygwcFaLUt/bOhf8rO2/sRjBpl2yico2Le+EnHhx56SLavf7L1PJz1GrfHn0db28jLEzB/vgvKym79DggIEPH229aNLo8fD6SlAX/7Wz3OndM/BfzAA264eXMICgrOWR3zjnJtOpKzXufNMczmWcNpEri+ffuib9++AIDx48cD0CdJTz/9NHx8fABYHhGrrKyEIAjo3r07AMDHxwc1NTWorq42GwmrrKxEeHi4cdvHx6fZNgHLI34GCoUCCoXCrNzNza1dL5L2bp9MMd6mmjzw3UI9V7Q2bFLHvPFH6T9bso+2q+7dG68/Zv1JONs13qXRndlHjrghJgY2j+a2pY3cXGDaNPO13M6eFTBtmqvV9xW6uQFjx5qWGWbHrI15R7k2nYGzXefNsaWPTvsQw/Dhw1FfX4+ffvoJAwcOhLu7O0pKSszqlZSUYNCgQVAqlQBu3fvWtO758+dRUVGBIUOGGMtCQkKabROASV0i6pjrjpHzyM0FgoNvbY8fb/vDMW1pg68mIzlx2gSuqKgIXbp0wZ133glXV1dMnDgRubm5uHr1qrHOzz//jKKiImga/XcoNjYWSqUS2dnZJu1lZ2dDEARMnjzZWBYXF4cTJ07g6NGjxrL6+nrk5OQgIiIC/k0f6yLq5LjuGLWXll5BNWWKdQlYW9twtleTNU4Uv/iCiSOZcvgU6nPPPQdvb28MHz4cvr6+qKiowLZt2/Dxxx/jlVdeQc+ePQEA6enpGDZsGCZMmICUlBTU1NRg6dKlUKvVWLBggbE9lUqF1NRULFmyBCqVCjExMSguLkZaWhoSExMR3Oi/ZjNnzkRWVhamTp2KVatWoVevXli3bh2+++477Nu3T/JYEDk7FxcgM1P/y1D/lN2tfYakbs0a26e8HMnT0/KIC0nndiNfgqAf+Zo0qflryx5tONNCvLm5QFLSre3x4/X/ecrM5NIwpOfwEbjIyEh89dVXmD17NsaOHYvExEScP38eW7Zswe9+9ztjvaCgIBw4cABubm6YMmUK4uPjMWjQIHzxxRfGJM9g8eLFWLNmDbZv346YmBisXbsWKSkpyMrKMqmnUChQWFiI0aNHY86cOZg4cSLOnTuH3bt3Y9SoUZKcP5HcGNYda7rCDtcdo9ayx8iXPdpwllsE7DEaSR2fw0fgEhISzBbdbU54eLjVI2NJSUlIavzfl2b4+vpi8+bNVrVJRHoajX4k49AhGJ+yi4qS18gbOQ97jHzZow3DLQJlZZZH8gRBv789bxGwx0gidQ4OT+CISJ5cXIDoaEf3gjoCe4x82aMNZ7hFwJaRRP7969wcPoVKRESdmz0ejrHXAzaOvkXAme7DI+fGBI6IiBzKMPIFmCdg1o582aMNA40GOHUKKCoCPvxQ//3kSWnu73SW+/DI+TGBIyIihzOMfDVdvcmWkS97tGFguEXg8cf136W634xL9ZC1mMAREZFT0GiAb7+9tb1rl+0jX/Zow5HsOZJIHRsTOCIichqNE5ORI1uXqNijDUey50gidVx8CpWIiDqUjrA4s0ajf5fqHXfot3ftQqveC0sdF0fgiIiInJDcRxKpfTGBIyIi6qCuX9ffOycI+p+p42ACR0RERCQzTOCIiIg6qIaGWz9/8YXpNskbEzgiInIahgcQRFH/M7Vebi4QHHxre/x4oH9/fTnJHxM4IiKiDiY3V/9O17Iy0/KyMn05kzj5YwJHRETUgTQ0AHPnWl5KxVA2bx6nU+WOCRwREVEHcugQ8Msvze8XReDMGX09ki8mcERERB3IuXP2q8dlSJwXEzgiIqIOxM/PvvXIOTGBIyIi6kCiovTvTRUEy/sFAQgM1Ne7HS5D4ryYwBEREXUgLi5AZqb+56ZJnGF7zZrbv5qLy5A4NyZwREREHYxGA2zfDvj7m5b36aMv12haPp7LkDg/JnBEREROqK2LGms0wLff3tretQs4efL2yRuXIZEHV0d3gIiIiNqHt7flRKwltixDEh3dpu5RG3AEjoiIiIzsuQwJtR8mcERERGTEZUjkgQkcERERGdlzGRJqP0zgiIiIyMhey5BQ+2ICR0RERCbaugwJtT8+hUpERERmNBpg7Fjgjjv027t2ATExHHlzFhyBIyIiIosaJ2sjRzJ5cyZM4IiIiIhkptUJ3LJly3D27FmL+86dO4dly5ZZ1c7+/fsxc+ZMBAUFwdPTEwEBAZg0aRK+/vprk3rx8fEQBMHsKygoyGK7a9euRVBQEBQKBQYMGID09HTodDqzeuXl5YiPj4darYaHhwciIyNRWFhoVd+JiIg6sra+DYLaT6sTuPT0dPzSzFLNZ8+eRXp6ulXtvPvuuzh16hTmzp2LXbt2ITMzE+Xl5RgxYgT2799vUtfd3R1Hjhwx+fr444/N2lyxYgXmzp0LjUaDPXv2YNasWcjIyMDs2bNN6tXW1mLMmDEoLCxEZmYmPvvsM/j6+iI2NhYHDx60MhJERERE0mr1QwxiC+/muHbtGtzc3KxqJysrC7169TIpi42NxaBBg5CRkYEHH3zQWN6lSxeMGDGixfa0Wi2WL1+OZ599FhkZGQCA6Oho6HQ6pKamYt68eQgODgYAvP/++ygtLcXhw4cRGRkJABg9ejTCwsKQnJyMo0ePWnUORERERFKyKYH75ptv8M9//tO4vWvXLpw4ccKkzo0bN/DBBx9g4MCBVrXZNHkDAC8vLwQHB+PMmTO2dA8AkJ+fj5qaGiQkJJiUJyQkYPHixdixY4cxgcvLy8PgwYONyRsAuLq6YsaMGVi0aBHKysoQEBBgcx+IiIiI2pNNCVxeXp5xalQQhGbvc3N3d8emTZta3akrV67g2LFjJqNvgD457N27Ny5evAg/Pz9MnjwZy5Ytg0qlMtYpLS0FAISEhJgc6+fnB7VabdxvqBtlYSnp0NBQAMDx48ebTeBqa2tRW1tr3K6qqgIA6HQ6i/fatZWhzfZom8wx3tJjzKXFeEuPMZee3GJuSz9tSuCee+45TJgwAaIoYvjw4di0aROGDBliUkehUGDgwIFwd3e3pWkTs2fPxvXr17F48WJjWVhYGMLCwoyfd/DgQbzzzjsoLCxEcXExvLy8AOinUBUKBTwt3G2pUqmg1WqN21qt1iT5a1zPsL85K1eutHif3969e+Hh4WHlmdquoKCg3domc4y39BhzaTHe0mPMpSeXmFdXV1td16YEzs/PD37/fXttUVERwsPDjYmTvSxZsgQffPAB1q5di/DwcGP5Sy+9ZFJv3LhxuPfeezFlyhT86U9/MtkvNPcCNwv7bKnb2MKFCzF//nzjdlVVFQIDAxETEwNvb+9mj2stnU6HgoICjBs3zur7C6n1GG/pMebSYrylx5hLT24xN8zmWaPVDzGMGjWqtYc2Kz09HcuXL8eKFSvw4osv3rZ+XFwcPD098eWXXxrLfHx8UFNTg+rqarORsMrKSpOk0MfHx+IoW2VlJQBYHJ0zUCgUUCgUZuVubm7tepG0d/tkivGWHmMuLcZbeoy59OQSc1v62KZXaeXk5ODDDz/E6dOncePGDZN9giDgxx9/tLqt9PR0pKWlIS0tDYsWLbL6OFEU0aXLrdVQDPe+lZSUICIiwlh+/vx5VFRUmEz5hoSEoKSkxKxNQ1nT6WEiIiIiZ9DqBO6NN97AwoULERwcjLCwMIujUdZ6/fXXkZaWhtTUVLz22mtWH7d9+3ZUV1ebLC0SGxsLpVKJ7OxskwQuOzsbgiBg8uTJxrK4uDjMmjULR48eNdatr69HTk4OIiIi4N/0Lb5E5HQaGoBDh4Bz5wA/PyAqiq/7IaKOr9UJ3Pr16zF79mysXbu2TR146623sHTpUsTGxuKRRx4xmQ4FgBEjRuD06dOYPn06pk2bhkGDBkEQBBw8eBBr1qzBPffcg8TERGN9lUqF1NRULFmyBCqVCjExMSguLkZaWhoSExONS4gAwMyZM5GVlYWpU6di1apV6NWrF9atW4fvvvsO+/bta9N5EVH7y80FkpKAsrJbZX36AJmZ+hdxExF1VK1O4M6fP4+4uLg2d+Dzzz8HoF+/LT8/32y/KIrw9vaGr68v3n77bVy4cAENDQ3o168fkpKSsGjRIrMnThcvXoxu3bohKysLq1evRu/evZGSkmLyVCugv4+tsLAQycnJmDNnDqqrqzF06FDs3r27Xe7xIyL7yc0FpkzRv+KnsbIyffn27UziiKjjanUCFx4ejh9//NFsrTZbHThw4LZ1evTogdzcXJvaTUpKQlJS0m3r+fr6YvPmzTa1TUSO1dAAzJ1rnrwB+jJBAObNAyZN4nQqEXVMrX4X6ttvv4233nrL7KXzRETt7dAhoJlXMQPQJ3FnzujrERF1RK0egUtISIBWq8Xw4cPRu3dv+Pj4mOwXBAH/+te/2txBIqKmzp2zbz0iIrlpdQLn4+MDtVptz74QEVnlv+uJ260eEZHctDqBs+beNSKi9hAVpX/atKzM8n1wgqDfb+FVx0QksevXAcNLm65dAyy86ZJaodX3wBEROYqLi36pEECfrDVm2F6zhg8wEFHH1eoRuC+++OK2dUaOHNna5omIWqTR6JcKmTvX9IGGPn30yRuXECGijqzVCVx0dHSLL3sHgIaGhtY2T0R0WxqNfqkQvomBiDqbVidwRUVFZmUVFRX47LPP8Pe//x1ZWVlt6hgRkTVcXIDoaEf3gohIWq1O4Jp7U8Gjjz6K3/72t8jPz0dsbGyrO0ZERERElrXLQwxxcXH46KOP2qNpIiIiok6vXRK4S5cuoba2tj2aJiIiIur0Wj2F+vPPP5uV1dbW4ptvvsHChQsxYsSINnWMiIiICNC//5gPK5lqdQLXv39/i0+hiqKIwYMH4w9/+EObOkZERESUm2t5uaDMzM69XFCrE7iNGzeaJXBKpRL9+/fHsGHD0KUL1wgmIiKi1svNBaZMMX/jSlmZvnz79s6bxLU6gYuPj7djN4iIiKgjarwk7BdfADEx1k1/NjToR94svS5PFPVvXZk3T78WZGecTm3zMNnVq1exd+9ebN26FQUFBbh69ao9+kVEREQyl5sLBAff2h4/HujfX19+O4cOmU6bNiWKwJkz+nqdUZsSuNWrV8Pf3x8PP/wwnnjiCTz00EPw9/fH22+/ba/+ERERkQwZpj/LykzLDdOft0vizp2z7nOsrdfRtDqB+/Of/4zk5GSMHDkSH330EQ4dOoSPP/4Yo0aNwiuvvIItW7bYs59EREQkE7eb/gT0058tvXHTz8+6z7K2XkfT6nvg3nnnHUyfPh05OTkm5VOnTsWMGTPwzjvv4Mknn2xzB4mIiEhebJn+bO5VeFFR+qdNy8osJ4KCoN8fFWWXLstOq0fgTpw4gRkzZljcN2PGDPz73/9udaeIiIhIvuwx/eniol8qBNAna40Zttes6ZwPMABtSODc3d1RWVlpcV9lZSXc3d1b3SkiIiKSL3tNf2o0+qVCAgJMy/v06dxLiABtSOCioqKQlpaGs2fPmpSfP38ey5Ytw8iRI9vcOSIiIpIfw/SnhfX+AejLAwOtm/7UaIBTp4CiIuDDD/XfT57s3Mkb0IZ74DIyMnD//fdj0KBBGDNmDPz8/HDu3Dns378fbm5uyLXmGWEiIiLqcAzTn1Om6JO1xvewtWb608Wl+XvlOqtWj8Ddc889KC4uxqRJk1BcXIxNmzahuLgYkydPxldffYXgxgu/EBERUadimP709zct5/SnfbR6BA4A7r77bmzdutVefSEiIqIORKMBxo4F7rhDv71rl/VvYqCW2TwCV1JSgl9aeDb4l19+QUlJSZs6RURERB1D42Rt5Egmb/ZiUwL3xRdfIDw8HBcuXGi2zoULFxAeHo49e/a0uXNEREREZM6mBC4rKwtTpkxBeHh4s3XCw8Px2GOPYcOGDW3uHBERERGZsymB+/vf/47Jkyfftt6vf/1rfPnll63tExERERG1wKYE7uLFiwhoupqeBX5+figvL291p4iIiIioeTYlcJ6ens2+faGxS5cuwcPDo9WdIiIiIqLm2ZTA3XPPPcjPz79tvd27d+Oee+6xqs39+/dj5syZCAoKgqenJwICAjBp0iR8/fXXZnWPHTuGsWPHwsvLC927d4dGo8FPP/1ksd21a9ciKCgICoUCAwYMQHp6OnQ6nVm98vJyxMfHQ61Ww8PDA5GRkSgsLLSq70RERESOYFMC99hjj+H999/HwYMHm61TVFSETZs24fHHH7eqzXfffRenTp3C3LlzsWvXLmRmZqK8vBwjRozA/v37jfVOnDiB6Oho1NXV4ZNPPsHGjRvx/fffIyoqChcvXjRpc8WKFZg7dy40Gg327NmDWbNmISMjA7NnzzapV1tbizFjxqCwsBCZmZn47LPP4Ovri9jY2BbPkYiIiMihRBvU1taK4eHhYteuXcVZs2aJe/bsEb///nvx+++/F/fs2SO+8MILYteuXcVhw4aJtbW1VrV54cIFs7KrV6+Kvr6+4pgxY4xlU6dOFdVqtXjlyhVj2alTp0Q3NzcxOTnZWFZRUSEqlUrxueeeM2lzxYoVoiAI4vHjx41lWVlZIgDx8OHDxjKdTicGBweLw4cPt6r/BleuXBEBmPTPnurq6sQdO3aIdXV17dI+mWK8pceYS4vxll5njfm1a6Kof5mW/mcpGWJeUVFn7MOuXaJYXy9tP6xlSy5h0whc165dsWfPHowZMwbvvvsuHn74YQQFBSEoKAgPP/ww3nvvPYwdOxa7d+9G165drWqzV69eZmVeXl4IDg7GmTNnAAD19fXYuXMnHn30UXh7exvr9evXD6NHj0ZeXp6xLD8/HzU1NUhISDBpMyEhAaIoYseOHcayvLw8DB48GJGRkcYyV1dXzJgxA1999RXKysqsOgciIiKyzNPTkDrpf5bakSN+CA299eKp8eOB/v0Bub+y3eZXafn4+GDXrl34+uuvsXfvXmOS1bdvXzz00EO4995729ypK1eu4NixY3jwwQcBAD/++CNu3LiB0NBQs7qhoaEoKChATU0NlEolSktLAQAhISEm9fz8/KBWq437AaC0tBRRUVEW2wSA48ePN/vUbW1tLWpra43bVVVVAACdTmfxXru2MrTZHm2TOcZbeoy5tBhv6THm0tu+/SbeeGOYWXlZmYgpU4CPPmpAXJzogJ5ZZsu10ep3oYaHh7e4oG9bzJ49G9evX8fixYsBAFqtFgCgUqnM6qpUKoiiiEuXLsHPzw9arRYKhQKeFtJ8lUplbMvQbnNtNv5cS1auXIn09HSz8r1797brE7gFBQXt1jaZY7ylx5hLi/GWHmMujYYGYM6cmP9uCSb7RFEAIGL27Dq4uhY4zeu9qqurra5rUwJnaQSsOYIg4F//+pctzQMAlixZgg8++ABr1641SxAFQWjmKNN91taztW5jCxcuxPz5843bVVVVCAwMRExMjMk0r73odDoUFBRg3LhxcHNzs3v7ZIrxlh5jLi3GW3qMubQOHhSg1baU5gioqPCAt/cjGDXKOUbhDLN51rApgVOpVC0mNQBw7do1fP3117etZ0l6ejqWL1+OFStW4MUXXzSW+/j4ALA8IlZZWQlBENC9e3dj3ZqaGlRXV5uNhFVWVpokhT4+Ps22CVge8TNQKBRQKBRm5W5ubu36F7O92ydTjLf0GHNpMd7SY8yl0WSBihbqucJZ/jhsuS5sSuAOHDjQ7L76+nqsX78ey5YtgyAImD59ui1NIz09HWlpaUhLS8OiRYtM9g0cOBDu7u4oKSkxO66kpASDBg2CUqkEcOvet5KSEkRERBjrnT9/HhUVFRgyZIixLCQkpNk2AZjUJSIiIvnw87NvPWdj01Oozdm2bRuCg4MxZ84chIWF4euvv8aWLVusPv71119HWloaUlNT8dprr5ntd3V1xcSJE5Gbm4urV68ay3/++WcUFRVBo9EYy2JjY6FUKpGdnW3SRnZ2NgRBMHmXa1xcHE6cOIGjR48ay+rr65GTk4OIiAj4+/tbfQ5ERETkPKKigIAAEYDl6VFBAAID9fXkqNUPMQD6EblXX30VxcXFuO+++7B3716MGTPGpjbeeustLF26FLGxsXjkkUfw5ZdfmuwfMWIEAP0I3bBhwzBhwgSkpKSgpqYGS5cuhVqtxoIFC4z1VSoVUlNTsWTJEqhUKsTExKC4uBhpaWlITExEcHCwse7MmTORlZWFqVOnYtWqVejVqxfWrVuH7777Dvv27WtDZIiIiMiRXFyAt99uwGOPuUAQxP8+uKBnuMtrzRo4zQMMNmvNQnPffPON+PDDD4tdunQRBw4cKG7durU1zYiiKIqj9HcONvvV2P/93/+JY8aMET08PERvb29x8uTJ4n/+8x+L7WZmZop333232LVrV7Fv377ia6+9ZnHxxPPnz4tPPfWUqFKpRKVSKY4YMUIsKCiw+Ty4kG/HwnhLjzGXFuMtPcZcenV1deKrrx4V/f1virdWoxPFwEBR/PRTR/fOnC25hE0jcGfOnEFqaio+/PBDqFQqrFmzBr/97W/bdDNmS/fVNRUeHm71yFhSUhKSkpJuW8/X1xebN2+2ug9EREQkH5GR5/DKK/VQq/W5yq5dQEyMjEfe/sumBO7uu+9GXV0dYmNjkZycjG7dull8CMDgvvvua3MHiYiIiNrC21s/9tYWDQ3AoUPAuXP6Bx+iohybBNqUwBnePLB7927k5+c3W08URQiCgIaGhrb1joiIiMjBcnOBpCSg8Rs2+/QBMjOBRs9RSsqmBG7Tpk3t1Q8iIiIip5ObC0yZYj6CV1amL9++3TFJnE0J3NNPP91e/SAiIiJyKg0NwNy5lqdfRVH/NOu8ecCkSdJPp9plHTgiIiKijubQIeCXX5rfL4rAmTP6elJjAkdERERkwblz9q1nT0zgiIiIiCxw5tdxMYEjIiIisiAqSv+0qSBY3u/I13ExgSMiIiKywMVFv1QIYJ7EOfp1XEzgiIiIiJqh0eiXCvH3Ny3v08dxS4gAbXyZPREREVFHp9HolwqR7ZsYiIiIiDojFxcgOtrRvbiFU6hEREREMsMEjoiIiEhmmMARERERyQwTOCIiIiKZYQJHREREJDNM4IiIiIhkhgkcERERkcwwgSMiIiKSGSZwRERERDLDBI6IiIhIZpjAEREREckMEzgiIiIimWECR0RERCQzTOCIiIiIZIYJHBEREZHMMIEjIiIikhkmcEREREQywwSOiIiISGYcnsBdvXoVycnJiImJQc+ePSEIAtLS0szqxcfHQxAEs6+goCCL7a5duxZBQUFQKBQYMGAA0tPTodPpzOqVl5cjPj4earUaHh4eiIyMRGFhob1Pk4iIiMhuXB3dAa1Wi/Xr1yMsLAyTJ0/Ghg0bmq3r7u6O/fv3m5U1tWLFCixZsgQpKSmIiYlBcXExUlNTUVZWhvXr1xvr1dbWYsyYMbh8+TIyMzPRq1cvZGVlITY2Fvv27cOoUaPsd6JEREREduLwBK5fv364dOkSBEFARUVFiwlcly5dMGLEiBbb02q1WL58OZ599llkZGQAAKKjo6HT6ZCamop58+YhODgYAPD++++jtLQUhw8fRmRkJABg9OjRCAsLQ3JyMo4ePWqnsyQiIiKyH4dPoRqmQu0lPz8fNTU1SEhIMClPSEiAKIrYsWOHsSwvLw+DBw82Jm8A4OrqihkzZuCrr75CWVmZ3fpFREREZC8OH4GzxY0bN9C7d29cvHgRfn5+mDx5MpYtWwaVSmWsU1paCgAICQkxOdbPzw9qtdq431A3KirK7HNCQ0MBAMePH0dAQIDFvtTW1qK2tta4XVVVBQDQ6XQW77VrK0Ob7dE2mWO8pceYS4vxlh5jLj25xdyWfsomgQsLC0NYWBiGDBkCADh48CDeeecdFBYWori4GF5eXgD0U6gKhQKenp5mbahUKmi1WuO2Vqs1Sf4a1zPsb87KlSuRnp5uVr537154eHjYdnI2KCgoaLe2yRzjLT3GXFqMt/QYc+nJJebV1dVW15VNAvfSSy+ZbI8bNw733nsvpkyZgj/96U8m+1uakm26z5a6jS1cuBDz5883bldVVSEwMBAxMTHw9vZu9rjW0ul0KCgowLhx4+Dm5mb39skU4y09xlxajLf0GHPpyS3mhtk8a8gmgbMkLi4Onp6e+PLLL41lPj4+qKmpQXV1tdlIWGVlJcLDw03qWhplq6ysBACLo3MGCoUCCoXCrNzNza1dL5L2bp9MMd7SY8ylxXhLjzGXnlxibksfHf4QQ1uJooguXW6dhuHet5KSEpN658+fR0VFhXEK1lC3ab3GxzauS0REROQsZJ3Abd++HdXV1SZLi8TGxkKpVCI7O9ukbnZ2NgRBwOTJk41lcXFxOHHihMlyIfX19cjJyUFERAT8/f3b+xSIiIiIbOYUU6i7d+/G9evXcfXqVQDAt99+i+3btwMAxo8fj4sXL2L69OmYNm0aBg0aBEEQcPDgQaxZswb33HMPEhMTjW2pVCqkpqZiyZIlUKlUxoV809LSkJiYaFwDDgBmzpyJrKwsTJ06FatWrUKvXr2wbt06fPfdd9i3b5+0QSAiIiKyklMkcC+88AJOnz5t3N62bRu2bdsGADh58iTuuOMO+Pr64u2338aFCxfQ0NCAfv36ISkpCYsWLTJ74nTx4sXo1q0bsrKysHr1avTu3RspKSlYvHixST2FQoHCwkIkJydjzpw5qK6uxtChQ7F7926+hYGIiIicllMkcKdOnbptndzcXJvaTEpKQlJS0m3r+fr6YvPmzTa1TURERORIsr4HjoiIiKgzYgJHREREJDNM4IiIiIhkhgkcERERkcwwgSMiIiKSGSZwRERERDLDBI6IiIhIZpjAEREREckMEzgiIiIimWECR0RERCQzTOCIiIiIZIYJHBEREZHMMIEjIiIikhkmcEREREQywwSOiIiISGaYwBERERHJDBM4IiIiIplhAkdEREQkM0zgiIiIiGSGCRwRERGRzDCBIyIiIpIZJnBEREREMsMEjoiIiEhmmMARERERyQwTOCIiIiKZYQJHREREJDNM4IiIiIhkhgkcERERkcwwgSMiIiKSGSZwRERERDLDBI6IiIhIZhyewF29ehXJycmIiYlBz549IQgC0tLSLNY9duwYxo4dCy8vL3Tv3h0ajQY//fSTxbpr165FUFAQFAoFBgwYgPT0dOh0OrN65eXliI+Ph1qthoeHByIjI1FYWGjPUyQiIiKyK4cncFqtFuvXr0dtbS0mT57cbL0TJ04gOjoadXV1+OSTT7Bx40Z8//33iIqKwsWLF03qrlixAnPnzoVGo8GePXswa9YsZGRkYPbs2Sb1amtrMWbMGBQWFiIzMxOfffYZfH19ERsbi4MHD7bH6RIRERG1maujO9CvXz9cunQJgiCgoqICGzZssFhv6dKlUCgU2LlzJ7y9vQEA4eHhuOuuu7B69Wq88cYbAPQJ4fLly/Hss88iIyMDABAdHQ2dTofU1FTMmzcPwcHBAID3338fpaWlOHz4MCIjIwEAo0ePRlhYGJKTk3H06NH2Pn0iIiIimzl8BE4QBAiC0GKd+vp67Ny5E48++qgxeQP0yd/o0aORl5dnLMvPz0dNTQ0SEhJM2khISIAoitixY4exLC8vD4MHDzYmbwDg6uqKGTNm4KuvvkJZWVkbz46IiIjI/hw+AmeNH3/8ETdu3EBoaKjZvtDQUBQUFKCmpgZKpRKlpaUAgJCQEJN6fn5+UKvVxv0AUFpaiqioKIttAsDx48cREBBgsU+1tbWora01bldVVQEAdDqdxXvt2srQZnu0TeYYb+kx5tJivKXHmEtPbjG3pZ+ySOC0Wi0AQKVSme1TqVQQRRGXLl2Cn58ftFotFAoFPD09LdY1tGVot7k2G3+uJStXrkR6erpZ+d69e+Hh4XH7k2qlgoKCdmubzDHe0mPMpcV4S48xl55cYl5dXW11XVkkcAYtTbU23mdtPVvrNrZw4ULMnz/fuF1VVYXAwEDExMSYTPPai06nQ0FBAcaNGwc3Nze7t0+mGG/pMebSYrylx5hLT24xN8zmWUMWCZyPjw8AyyNilZWVEAQB3bt3N9atqalBdXW12UhYZWUlwsPDTdptrk3A8oifgUKhgEKhMCt3c3Nr14ukvdsnU4y39BhzaTHe0mPMpSeXmNvSR4c/xGCNgQMHwt3dHSUlJWb7SkpKMGjQICiVSgC37n1rWvf8+fOoqKjAkCFDjGUhISHNtgnApC4RERGRs5BFAufq6oqJEyciNzcXV69eNZb//PPPKCoqgkajMZbFxsZCqVQiOzvbpI3s7GwIgmCy1lxcXBxOnDhhslxIfX09cnJyEBERAX9//3Y7JyIiIqLWcoop1N27d+P69evG5Ozbb7/F9u3bAQDjx4+Hh4cH0tPTMWzYMEyYMAEpKSmoqanB0qVLoVarsWDBAmNbKpUKqampWLJkCVQqFWJiYlBcXIy0tDQkJiYa14ADgJkzZyIrKwtTp07FqlWr0KtXL6xbtw7fffcd9u3bJ20QiIiIiKzkFAncCy+8gNOnTxu3t23bhm3btgEATp48if79+yMoKAgHDhzAq6++iilTpsDV1RUPPvggVq9ejZ49e5q0t3jxYnTr1g1ZWVlYvXo1evfujZSUFCxevNiknkKhQGFhIZKTkzFnzhxUV1dj6NCh2L17N0aNGtX+J05ERETUCk6RwJ06dcqqeuHh4VaPjCUlJSEpKem29Xx9fbF582ar2iQiIiJyBrK4B46IiIiIbmECR0RERCQzTOCIiIiIZIYJHBEREZHMMIEjIiIikhkmcEREREQywwSOiIiISGaYwBERERHJDBM4IiIiIplhAkdEREQkM0zgiIiIiGSGCRwRERGRzDCBIyIiIpIZJnBEREREMsMEjoiIiEhmmMARERERyQwTOCIiIiKZYQJHREREJDNM4IjIYa5fBwRB/3X9uqN7Q0QkH0zgiIiIiGSGCRwRERGRzDCBIyIiIpIZJnBEREREMsMEjogcpqHh1s9/+5tgsk1ERM1jAkdEDpGbCwQH39qeONEVzz0Xg7w8wXGdIiKSCVdHd4CIOp/cXGDKFEAUTcu1WiWmTQNcXQGNxjF9IyKSA47AEZGkGhqAuXPNkzc9/ejbvHngdCoRUQuYwBGRpA4dAn75pfn9oijgzBl9PSIisowJHBFJ6tw5+9YjIuqMmMARkaT8/Oxbj4ioM5JNAnfgwAEIgmDx68svvzSpe+zYMYwdOxZeXl7o3r07NBoNfvrpJ4vtrl27FkFBQVAoFBgwYADS09Oh0+mkOCWiTikqCujTR//+U0sEQURgoL4eERFZJpsEziAjIwNHjhwx+RoyZIhx/4kTJxAdHY26ujp88skn2LhxI77//ntERUXh4sWLJm2tWLECc+fOhUajwZ49ezBr1ixkZGRg9uzZUp8WUafh4gJkZup/Nk/i9E82rFmjr0dERJbJbhmRu+66CyNGjGh2/9KlS6FQKLBz5054e3sDAMLDw3HXXXdh9erVeOONNwAAWq0Wy5cvx7PPPouMjAwAQHR0NHQ6HVJTUzFv3jwEN16kiojsRqMBtm8HkpKAsrJb5Wr1DWRldYVGI7t/moiIJCW7EbiW1NfXY+fOnXj00UeNyRsA9OvXD6NHj0ZeXp6xLD8/HzU1NUhISDBpIyEhAaIoYseOHVJ1m6hT0miAb7+9tf355/X44x8LEBdncX0RIiJqRHb/zZ09ezamTZsGDw8PREZGYsmSJXjggQcAAD/++CNu3LiB0NBQs+NCQ0NRUFCAmpoaKJVKlJaWAgBCQkJM6vn5+UGtVhv3N6e2tha1tbXG7aqqKgCATqdrl3voDG3y/jxpMN7SuHkTANwAABERdTh8mDGXCq9x6THm0pNbzG3pp2wSuDvuuANz585FdHQ0fHx88J///AdvvvkmoqOj8de//hUPPfQQtFotAEClUpkdr1KpIIoiLl26BD8/P2i1WigUCnh6elqsa2irOStXrkR6erpZ+d69e+Hh4dHKs7y9goKCdmubzDHe7aumxgXABADA/v37oVQy5lJjvKXHmEtPLjGvrq62uq5sErh7770X9957r3E7KioKcXFxCAkJQXJyMh566CHjPqG5x9ua7LO2niULFy7E/PnzjdtVVVUIDAxETEyMyfStveh0OhQUFGDcuHFwc3Oze/tkivGWxvXrt35+8MEHcfgwYy4VXuPSY8ylJ7eYG2bzrCGbBM6S7t27Y8KECXjvvfdw48YN+Pj4AIDF0bPKykoIgoDu3bsDAHx8fFBTU4Pq6mqzEbPKykqEh4e3+NkKhQIKhcKs3M3NrV0vkvZun0wx3u2rcWgNcWbMpcV4S48xl55cYm5LH2X/EIP43xcqCoKAgQMHwt3dHSUlJWb1SkpKMGjQICiVSgC37n1rWvf8+fOoqKgwWZqEiNqHp6f+naiiqP+ZiIisI+sE7tKlS9i5cyeGDh0KpVIJV1dXTJw4Ebm5ubh69aqx3s8//4yioiJoNBpjWWxsLJRKJbKzs03azM7OhiAImDx5skRnQURERGQb2UyhTp8+HX379sX//M//QK1W44cffsBbb72FCxcumCRh6enpGDZsGCZMmICUlBTU1NRg6dKlUKvVWLBggbGeSqVCamoqlixZApVKhZiYGBQXFyMtLQ2JiYlcA46IiIiclmwSuNDQUHz88cd47733cO3aNahUKjzwwAPYsmULhg0bZqwXFBSEAwcO4NVXX8WUKVPg6uqKBx98EKtXr0bPnj1N2ly8eDG6deuGrKwsrF69Gr1790ZKSgoWL14s9ekRERERWU02CVxKSgpSUlKsqhseHo59+/ZZVTcpKQlJSUlt6RoRERGRpGR9DxwRERFRZ8QEjoiIiEhmmMARERERyQwTOCIiIiKZYQJHREREJDNM4IiIiIhkhgkcERERkcwwgSMiIiKSGSZwRERERDLDBI6IiIhIZpjAEREREckMEzgiIiIimWECR0RERCQzTOCIiIiIZIYJHBEREZHMMIEjIiIikhkmcEREREQywwSOiIiISGaYwBERERHJDBM4IiIiIplhAkdEREQkM0zgiIiIiGSGCRwRERGRzDCBIyIiIpIZJnBEREREMsMEjoiIiEhmmMARERERyQwTOCIiIiKZYQJHREREJDNM4IiIiIhkhgkcERERkcwwgQNw7do1zJs3D/7+/lAqlRg6dCg++ugjR3eLiIiIyCJXR3fAGWg0GhQXF2PVqlW4++678eGHH+Lxxx/HzZs3MX36dEd3j4iIiMhEp0/gdu3ahYKCAmPSBgCjR4/G6dOn8corr+Cxxx6Di4uLg3tJREREdEunn0LNy8uDl5cXpk6dalKekJCAs2fP4ujRow7qGREREZFlnX4ErrS0FL/61a/g6moaitDQUOP++++/3+y42tpa1NbWGrevXLkCAKisrIROp7N7P3U6Haqrq6HVauHm5mb39skU4y09xlxajLf0GHPpyS3mV69eBQCIonjbup0+gdNqtbjzzjvNylUqlXG/JStXrkR6erpZ+YABA+zbQSIiIupUrl69ijvuuKPFOp0+gQMAQRBs3rdw4ULMnz/fuH3z5k1UVlbCx8enxfZaq6qqCoGBgThz5gy8vb3t3j6ZYrylx5hLi/GWHmMuPbnFXBRFXL16Ff7+/ret2+kTOB8fH4ujbJWVlQBujcQ1pVAooFAoTMq6d+9u9/415e3tLYuLsKNgvKXHmEuL8ZYeYy49OcX8diNvBp3+IYaQkBD8+9//Rn19vUl5SUkJAGDIkCGO6BYRERFRszp9AhcXF4dr167h008/NSnfvHkz/P39ERER4aCeEREREVnW6adQH374YYwbNw4vvPACqqqqMGjQIGzduhX5+fnIyclxmjXgFAoFXnvtNbNpW2ofjLf0GHNpMd7SY8yl15FjLojWPKvawV27dg2LFy/GJ598gsrKSgQFBWHhwoWYNm2ao7tGREREZIYJHBEREZHMdPp74IiIiIjkhgkcERERkcwwgWsH165dw7x58+Dv7w+lUomhQ4fio48+uu1xubm5ePzxxzFo0CC4u7ujf//+eOKJJ/DDDz9YrL9v3z5ERkbCw8MDarUa8fHxKC8vN6un0+mQnp6O/v37Q6FQICgoCGvXrm3zeToTZ4r5qVOnIAiCxS9r+iQHUsR7586deOqppxASEgI3N7cWF8jmNd689og5r/HmWRvvqqoqrFixAtHR0ejduze8vLwQEhKCN954AzU1NWbt8hpvXnvEXBbXuEh2N27cOLF79+7ie++9J+7fv19MTEwUAYgffPBBi8cNHz5c/PWvfy1u3LhRPHDggLhlyxbxV7/6lejl5SWWlpaa1D1w4IDo6uoqTpo0Sdy7d6+Yk5MjBgQEiEOGDBFrampM6iYmJooKhUL83e9+JxYVFYkpKSmiIAjiihUr7H7ujuJMMT958qQIQJwzZ4545MgRk6+Kiop2OX+pSRHvmTNninfddZf4m9/8RgwPDxdb+ueK13jz2iPmvMabZ228S0pKRLVaLb700kviZ599JhYWFoppaWmiUqkUx4wZI968edOkXV7jzWuPmMvhGmcCZ2d//etfRQDihx9+aFI+btw40d/fX6yvr2/22AsXLpiVlZWViW5ubuIzzzxjUj5s2DAxODhY1Ol0xrK///3vIgBx3bp1xrLS0lJREAQxIyPD5Phnn31WdHd3F7VarU3n54ycLeaGv/hvvvlma0/JqUkV74aGBuPPs2fPbjaZ4DUufcx5jbc93teuXROvXbtmVvfNN98UAYiHDh0ylvEalz7mcrjGOYVqZ3l5efDy8sLUqVNNyhMSEnD27FkcPXq02WN79eplVubv748+ffrgzJkzxrKysjIUFxfjySefhKvrraX87r//ftx9993Iy8szlu3YsQOiKCIhIcGsPzdu3EB+fr7N5+hsnC3mHZ0U8QaALl2s++eJ17j0Me/opIi3p6cnPD09zeoOHz4cAEzq8hqXPuZywL+tdlZaWopf/epXJr/kASA0NNS43xY//fQTTp8+jXvuucfkMxq32fRzGn9GaWkpevbsid69e9ulP87I2WJusGrVKnTt2hUeHh544IEH8Je//MWmfjgrKeJta394jUsbcwNe49axJd779+8HALN/f3iNSxtzA2e+xpnA2ZlWq4VKpTIrN5RptVqr26qvr8czzzwDLy8vvPTSSyaf0bjNpp/T+DOa64+npye6du1qU3+clbPFXKFQ4Nlnn8W7776L/fv3Y8OGDWhoaMCkSZOwYcMGq/virKSItz36w2vcMnvEnNd4+8T7m2++we9+9zvExcWZ/GeR17j0MZfDNd7pX6XVHlp6Wq6lfY2JoohnnnkGhw4dwqefforAwECr22pabo/+ODtnirmfnx/Wr19vsn/q1KmIiIhASkoK4uPjzf6XKTdSxVvK/jg7Z4o5r3H7x/vUqVOYMGECAgMDLSYIvMaljbkcrnGOwNmZj4+Pxf8pVFZWArA8gtOUKIpITExETk4OsrOzMWnSJLPPACz/j6SystLkM5rrz/Xr11FXV2dVf5yds8XcEjc3Nzz22GPQarXNLlEiF1LE2x794TVuyp4xt4TXuClb4n369GmMHj0arq6uKCwsNGuf17j0MbfE2a5xJnB2FhISgn//+9+or683KS8pKQEADBkypMXjDRfgpk2bsGHDBsyYMcOsjqENQ5tNP6fxZ4SEhODixYs4f/58q/ojB84W85Y+B5D/jeJSxNvW/vAalzbmLX0OwGvclnifPn0a0dHREEURRUVF6NOnj8X+8BqXNuYtfQ7gJNe4VI+7dha7du0SAYgfffSRSXlsbOxtH4W+efOm+Mwzz4iCIIjr169v8XOGDx8uDhkyxKS9I0eOiADEd99911hmePx81apVJsc///zzHebxc2eLuSV1dXXi0KFDRbVa3WJ/5ECqeDdmzTIivMYta4+YW8JrXM+WeJ8+fVrs37+/GBgYKP7444/N1uM1Ln3MLXG2a5wJXDsYN26c2KNHD3H9+vXi/v37xWeffVYEIObk5BjrzJw5U3RxcRFPnTplLHvxxRdFAOLMmTPNFg48duyYyWcUFRWJrq6uYlxcnFhQUCB+8MEHYmBgYIsL+b755pvigQMHxEWLFnXIBSCdJeYvvfSS+OKLL4pbt24Vi4qKxD//+c/isGHDRADipk2b2j0WUpAi3qdOnRK3bdsmbtu2TYyNjRUBGLeLi4tN6vIa15Mq5rzG9doS7wsXLoh33nmnqFAoxJycHLO6Z86cMekPr3E9qWIuh2ucCVw7uHr1qpiUlCT27t1b7Nq1qxgaGipu3brVpM7TTz8tAhBPnjxpLOvXr58IwOJXv379zD5n79694ogRI0SlUimqVCrxqaeesrigYV1dnfjaa6+Jffv2Fbt27Srefffd4u9//3t7n7ZDOVPM33//fXH48OGiSqUSXV1dxR49eogPPfSQuGfPnvY4dYeQIt6bNm1qtu7TTz9tUpfXuJ5UMec1rteWeBcVFTVbD4D42muvmXwWr3E9qWIuh2tcEMX/TugSERERkSw4wV14RERERGQLJnBEREREMsMEjoiIiEhmmMARERERyQwTOCIiIiKZYQJHREREJDNM4IiIiIhkhgkcERERkcwwgSMip3Dq1CkIgoDs7Gy7t11YWIj/+Z//gaenJwRBwI4dO5CdnQ1BEHDq1Cm7f15j/fv3R3x8fLt+hhx8++23SEtLa/d4E3UWro7uABFRexJFEb/5zW9w99134y9/+Qs8PT0xePBg1NfX48iRI/Dz83N0FzuFb7/9Funp6YiOjkb//v0d3R0i2WMCR0Qd2tmzZ1FZWYm4uDiMGTPGZF/Pnj0d1CvH0ul0EAQBrq7mvwKqq6vh4eHhgF4RkS04hUpE7eo///kPEhIScNddd8HDwwMBAQGYOHEiSkpKbnvsxYsX8dxzzyEwMBAKhQI9e/bE//7v/2Lfvn1WfXZaWhr69OkDAHj11VchCIJx9MfSFGp0dDSGDBmC4uJiREVFwcPDA3feeSdWrVqFmzdvGuvV1NRgwYIFGDp0KO644w6oVCpERkbis88+sz4wt/Hhhx8iMjISXl5e8PLywtChQ/H+++8b9zc3NRsdHY3o6Gjj9oEDByAIArZs2YIFCxYgICAACoUC//nPfxAfHw8vLy+UlJQgJiYG3bp1Mya5dXV1WL58OYKCgoyxT0hIwMWLF00+r3///pgwYQLy8/Nx3333wd3dHUFBQdi4caOxTnZ2NqZOnQoAGD16NARBaLfpcqLOgiNwRNSuzp49Cx8fH6xatQo9e/ZEZWUlNm/ejIiICPzjH//A4MGDmz32ySefxLFjx7BixQrcfffduHz5Mo4dOwatVmvVZycmJiIsLAwajQZz5szB9OnToVAoWjzm/PnzeOKJJ7BgwQK89tpryMvLw8KFC+Hv74+nnnoKAFBbW4vKykq8/PLLCAgIQF1dHfbt2weNRoNNmzYZ67XW0qVL8frrr0Oj0WDBggW44447UFpaitOnT7e6zYULFyIyMhLvvfceunTpgl69egHQJ2q//vWv8fzzzyMlJQX19fW4efMmJk2ahEOHDiE5ORn3338/Tp8+jddeew3R0dH4v//7P7i7uxvb/te//oUFCxYgJSUFvr6+2LBhA5555hkMGjQII0eOxCOPPIKMjAwsWrQIWVlZuO+++wAAAwcObFOciDo1kYhIQvX19WJdXZ141113iS+99JKx/OTJkyIAcdOmTcYyLy8vcd68eW36PEO7b775pkn5pk2bRADiyZMnjWWjRo0SAYhHjx41qRscHCw+9NBDLZ6TTqcTn3nmGfHee+812devXz/x6aeftrq/P/30k+ji4iI+8cQTLdZrrt1Ro0aJo0aNMm4XFRWJAMSRI0ea1X366adFAOLGjRtNyrdu3SoCED/99FOT8uLiYhGAuG7dOpN+KJVK8fTp08ayGzduiCqVSnz++eeNZdu2bRMBiEVFRS2eFxFZh1OoRNSu6uvrkZGRgeDgYHTt2hWurq7o2rUrfvjhB/z73/9u8djhw4cjOzsby5cvx5dffgmdTtfu/e3duzeGDx9uUhYaGmo2+rVt2zb87//+L7y8vODq6go3Nze8//77tz2n2ykoKEBDQwNmz57dpnaaevTRR63et3PnTnTv3h0TJ05EfX298Wvo0KHo3bs3Dhw4YFJ/6NCh6Nu3r3FbqVTi7rvvbtOIIRG1jAkcEbWr+fPnY8mSJZg8eTI+//xzHD16FMXFxQgLC8ONGzdaPPbjjz/G008/jQ0bNiAyMhIqlQpPPfUUzp8/32799fHxMStTKBQmfc3NzcVvfvMbBAQEICcnB0eOHEFxcTFmzpyJmpqaNn2+4R4zw7179tLc07YeHh7w9vY2Kbtw4QIuX76Mrl27ws3NzeTr/PnzqKioMKlvTcyIyL54DxwRtaucnBw89dRTyMjIMCmvqKhA9+7dWzxWrVZjzZo1WLNmDX7++Wf85S9/QUpKCsrLy5Gfn9+OvW5ZTk4OBgwYgI8//hiCIBjLa2tr29y24cnYX375BYGBgc3WUyqVFj+voqICarXarLxxP29Xrlar4ePj02yMu3Xr1my/iEgaTOCIqF0JgmD24MBf//pXlJWVYdCgQVa307dvX7z44osoLCzE3//+d3t30yaCIKBr164myc/58+ft8hRqTEwMXFxc8O677yIyMrLZev3798c333xjUvb999/ju+++s5jA2WLChAn46KOP0NDQgIiIiDa1ZWC4BjgqR2QfTOCIqF1NmDAB2dnZCAoKQmhoKL7++mu8+eabt50ivHLlCkaPHo3p06cjKCgI3bp1Q3FxMfLz86HRaCTqvWUTJkxAbm4uZs2ahSlTpuDMmTN4/fXX4efnhx9++KFNbffv3x+LFi3C66+/jhs3buDxxx/HHXfcgW+//RYVFRVIT08HoH9Cd8aMGZg1axYeffRRnD59Gr/73e/ssrbdtGnT8MEHH2D8+PGYO3cuhg8fDjc3N/zyyy8oKirCpEmTEBcXZ1ObQ4YMAQCsX78e3bp1g1KpxIABAyxOvxLR7TGBI6J2lZmZCTc3N6xcuRLXrl3Dfffdh9zcXKSmprZ4nFKpREREBLZs2YJTp05Bp9Ohb9++ePXVV5GcnCxR7y1LSEhAeXk53nvvPWzcuBF33nknUlJS8MsvvxgTrLZYtmwZ7rrrLqxduxZPPPEEXF1dcddddyEpKclYZ/r06Th79izee+89bNq0CUOGDMG7775rl893cXHBX/7yF2RmZmLLli1YuXIlXF1d0adPH4waNQohISE2tzlgwACsWbMGmZmZiI6ORkNDAzZt2sTXjBG1kiCKoujoThARERGR9fgUKhEREZHMcAqViGRJFEU0NDS0WMfFxaXZpy8doaGhAS1NegiCABcXFwl7RERyxRE4IpKlzZs3m61R1vTr4MGDju6miYEDB7bYX8N7SImIbof3wBGRLGm1Wpw8ebLFOoMHD3aqNctKSkpaXCuuW7duLb4blojIgAkcERERkcxwCpWIiIhIZpjAEREREckMEzgiIiIimWECR0RERCQzTOCIiIiIZIYJHBEREZHMMIEjIiIikpn/B8Zk15lXkR2XAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0025\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 4500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.220 - 0.250 A" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.22 , 0.2209, 0.2218, 0.2227, 0.2236, 0.2245, 0.2254, 0.2263,\n", " 0.2272, 0.2281, 0.229 , 0.2299, 0.2308, 0.2317, 0.2326, 0.2335,\n", " 0.2344, 0.2353, 0.2362, 0.2371, 0.238 , 0.2389, 0.2398, 0.2407,\n", " 0.2416, 0.2425, 0.2434, 0.2443, 0.2452, 0.2461, 0.247 , 0.2479,\n", " 0.2488, 0.2497, 0.2506, 0.2515]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXNUlEQVR4nO3de1xUdf4/8NcRcLh5G/DCTfHOqoDGprIbCqlIpqtMupnZJoa1q4m3FlHRwBS1sHRdzLVMTCtLF61cRRHR3K2MX37boLLavKR4ZdBQbg54fn9MMzLMAHOGGWYOvJ6PBw+Zz/nM4TPvjvbic875HEEURRFEREREJAtt7D0AIiIiIjIfwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREckIwxsRERGRjDC8EREREcmI3cPbV199hUcffRTdu3eHm5sblEolwsPDsWvXLoN+M2bMgCAIRl9BQUEm97tp0yYEBQVBoVCgZ8+eSE1NhUajMep3/fp1zJgxA97e3nB3d0d4eDhyc3Nt8lmJiIiImsrZ3gO4desWAgIC8MQTT8DPzw9lZWV455138NRTT+H8+fNITk7W93Vzc8OxY8cM3u/m5ma0z9WrV2P58uVISkpCdHQ08vPzkZycjKKiImzdulXfr6qqCqNGjcKtW7ewceNGdOnSBRkZGYiJicHRo0cxcuRI231wIiIiIgsIjvps0+HDh+Py5cv4+eefAWhn3vbu3Ys7d+40+D61Wg1/f3/86U9/wj/+8Q99e1paGpKTk1FYWIgBAwYAADZv3ow5c+bg008/RXh4OACguroaoaGh8PT0xKlTp2z06YiIiIgsY/fTpvXx9vaGs7P0icHs7GxUVlYiLi7OoD0uLg6iKGL//v36tn379qF///764AYAzs7OmD59Or744gsUFRVZPH4iIiIiW7D7aVOde/fu4d69e7h58yb27NmDw4cP4+9//7tBn4qKCnTr1g03btyAj48PJk2ahJUrV0KpVOr7FBYWAgCCg4MN3uvj4wNvb2/9dl3fiIgIo7GEhIQAAL755hv4+fmZHG9VVRWqqqoMxl9SUgIvLy8IgiDx0xMREVFrJ4oibt++DV9fX7RpU//8msOEt9mzZ+tPc7Zt2xZ/+9vf8Nxzz+m3h4aGIjQ0FIMGDQIAnDhxAq+99hpyc3ORn58PT09PANrTpgqFAh4eHkY/Q6lUQq1W61+r1WqD4Fe7n257fdasWYPU1FQLPikRERFR/S5evAh/f/96tztMeFu6dCni4+Nx/fp1fPzxx3j++edRVlaGF154AQCwYMECg/5jxozBkCFDMHnyZLzxxhsG2xua+aq7TUrf2pYsWYKFCxfqX//yyy/o3r07zp07h3bt2tX7PktpNBrk5eUhKioKLi4uVt9/S8SaScN6SceaSceaScN6SSfnmt2+fRs9e/ZsNEc4THjr3r07unfvDgAYN24cAG1Aevrpp9G5c2eT74mNjYWHhwc+//xzfZuXlxcqKytRXl4Od3d3g/4lJSUICwsz6Gtqdq2kpAQATM7K6SgUCigUCqN2pVKJ9u3b1/s+S2k0Gri7u8PLy0t2B6O9sGbSsF7SsWbSsWbSsF7SyblmuvE2dvmVw96wMHToUFRXV+Ps2bMN9hNF0eC8sO5at4KCAoN+V69eRXFxsf60q65v3X6131u7LxEREZEjcNjwlpeXhzZt2qBXr1719tm7dy/Ky8sxfPhwfVtMTAxcXV2RmZlp0DczMxOCIGDSpEn6ttjYWJw5c8ZgSZDq6mrs2rULw4YNg6+vr9U+DxEREZE12P206bPPPov27dtj6NCh6Nq1K4qLi7Fnzx68//77+Otf/4rOnTvjwoULmDZtGqZOnYo+ffpAEAScOHECGzZswMCBAxEfH6/fn1KpRHJyMpYvXw6lUqlfpDclJQXx8fH6Nd4AYObMmcjIyMCUKVOwdu1adOnSBZs3b8b333+Po0eP2qMcRERERA2ye3gLDw/H9u3bsWPHDty6dQuenp4IDQ3Fzp07MX36dABA+/bt0bVrV7z66qu4du0aampq0KNHDyQkJGDp0qVGd5YuW7YM7dq1Q0ZGBtLT09GtWzckJSVh2bJlBv0UCgVyc3ORmJiIuXPnory8HIMHD8ahQ4f4dAUiIiJySHYPb3FxcUYL6tbVqVMnZGVlSdpvQkICEhISGu3XtWtX7NixQ9K+iYiIiOzFYa95IyIiIiJjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkRERCQjdg9vX331FR599FF0794dbm5uUCqVCA8Px65du4z6nj59GqNHj4anpyc6duwIlUqFs2fPmtzvpk2bEBQUBIVCgZ49eyI1NRUajcao3/Xr1zFjxgx4e3vD3d0d4eHhyM3NtfrnJCIiIrIGu4e3W7duISAgAGlpaTh48CDefvttBAYG4qmnnsKqVav0/c6cOYPIyEjcvXsXH3zwAd566y388MMPiIiIwI0bNwz2uXr1asybNw8qlQqHDx/G7NmzkZaWhjlz5hj0q6qqwqhRo5Cbm4uNGzfiww8/RNeuXRETE4MTJ040y+cnIiIiksLZ3gOIjIxEZGSkQdv48eNx7tw5bN26FcnJyQCAFStWQKFQ4MCBA2jfvj0AICwsDH379kV6ejrWrVsHAFCr1Vi1ahVmzZqFtLQ0/c/QaDRITk7G/PnzMWDAAADAtm3bUFhYiE8//RTh4eEAgKioKISGhiIxMRGnTp1qjhIQERERmc3uM2/18fb2hrOzNltWV1fjwIEDeOyxx/TBDQB69OiBqKgo7Nu3T9+WnZ2NyspKxMXFGewvLi4Ooihi//79+rZ9+/ahf//++uAGAM7Ozpg+fTq++OILFBUV2ejTEREREVnG7jNvOvfu3cO9e/dw8+ZN7NmzB4cPH8bf//53AMBPP/2EiooKhISEGL0vJCQEOTk5qKyshKurKwoLCwEAwcHBBv18fHzg7e2t3w4AhYWFiIiIMLlPAPjmm2/g5+dncrxVVVWoqqrSvy4tLQUAaDQak9fWNZVun7bYd0vFmknDeknHmknHmknDekkn55qZO2aHCW+zZ8/GP/7xDwBA27Zt8be//Q3PPfccAO2pUABQKpVG71MqlRBFETdv3oSPjw/UajUUCgU8PDxM9tXtS7ff+vZZ++easmbNGqSmphq1HzlyBO7u7g191CbJycmx2b5bKtZMGtZLOtZMOtZMGtZLOjnWrLy83Kx+DhPeli5divj4eFy/fh0ff/wxnn/+eZSVleGFF17Q9xEEod73195mbj+pfWtbsmQJFi5cqH9dWlqKgIAAREdHG5zatRaNRoOcnByMGTMGLi4uVt9/S8SaScN6SceaSceaScN6SSfnmunO4jXGYcJb9+7d0b17dwDAuHHjAGgD0tNPPw0vLy8ApmfCSkpKIAgCOnbsCADw8vJCZWUlysvLjWbASkpKEBYWpn/t5eVV7z4B0zN9OgqFAgqFwqjdxcXFpgeLlP2XlQGentrv79wBTExGtgq2/m/S0rBe0rFm0rFm0rBe0smxZuaO12FvWBg6dCiqq6tx9uxZ9O7dG25ubigoKDDqV1BQgD59+sDV1RXA/Wvd6va9evUqiouLMWjQIH1bcHBwvfsEYNCXiIiIyBE4bHjLy8tDmzZt0KtXLzg7O2PChAnIysrC7du39X1+/vln5OXlQaVS6dtiYmLg6uqKzMxMg/1lZmZCEARMmjRJ3xYbG4szZ84YLAlSXV2NXbt2YdiwYfD19bXZ5yMiIiKyhN1Pmz777LNo3749hg4diq5du6K4uBh79uzB+++/j7/+9a/o3LkzACA1NRUPPvggxo8fj6SkJFRWVmLFihXw9vbGokWL9PtTKpVITk7G8uXLoVQqER0djfz8fKSkpCA+Pl6/xhsAzJw5ExkZGZgyZQrWrl2LLl26YPPmzfj+++9x9OjRZq8FERERUWPsHt7Cw8Oxfft27NixA7du3YKnpydCQ0Oxc+dOTJ8+Xd8vKCgIx48fx+LFizF58mQ4Ozvj4YcfRnp6uj7g6Sxbtgzt2rVDRkYG0tPT0a1bNyQlJWHZsmUG/RQKBXJzc5GYmIi5c+eivLwcgwcPxqFDhzBy5Mhm+fxEREREUtg9vMXFxRktqFufsLAws2fEEhISkJCQ0Gi/rl27YseOHWbtk4iIiMjeHPaaNyIiIiIyZveZN2qcdskPFwATcfOmBr+uikJEREStEGfeiIiIiGSE4Y2IiIhIRhjeZKCm5v73//63YPCaiIioNSorAwRB+1VWZu/RNC+GNweXlQXUWpoOEyY4IzBQ205EREStD8ObA8vKAiZPBoqKDNuLirTtDHBEREStD8Obg6qpAebNA0TReJuubf588BQqERFRK8Pw5qBOngQuXap/uygCFy9q+xEREVHrwfDmoK5caXq/2rNyn3zCWToiIqKWgOHNQfn4NK1f3Rsdxo0Db3QgIiJqARjeHFREBODvr70F2hRBAAICtP3q4o0ORERELRfDm4NycgI2btR+XzfA6V5v2KDtVxtvdCAiIqpfS1gfjuHNgalUwN69gK+vYbu/v7ZdpTJ+D290ICIiatkY3hycSgV8++391x9/XI1z50wHN8A6NzoQERGR42J4k4Hap0Yfekg0OlVaW1NvdCAiIpKD1ryiAsObDHh4AHfvarB//4fw8Gi4b1NudCAiIpKDpqyoYGnoq6kBjh8H3ntP+6c9wyLDWwtj6Y0OREQkjRwufHekwGEtja2osG9fPbMXsDz0ZWVp+0VFAdOmaf+05/JbDG8tkCU3OhARUcviaIHDGsxZUWHRIieTIdXSZbR076t7M6A9l99ieGuh6t7ocPAgGrzRgYiIpHHka64cMXBYgzkrKly6JODbb70M2i1dRstRl99ieGvBap8aHTGCp0qJiKzFkZ9i46iBwxrMXSnh5k1Xg9eWLqPlqMtvMbwRERFJ4OhPsXHUwGEN5q6U0KlTpcFrS5fRctTltxjeiIiIzCSHWS1HDRzWYM6KCv7+IgYMUBu0W7qMlqMuv8XwRkREZCY5zGo5auCwBnNWVFi/vsboMiFLl9Fy1OW3GN6IiIjMJIdZLUcNHNbS2IoKsbHG06KWLqPlqMtvMbwRERGZSQ6zWvYMHM21rpwlKypYuoyW7n1+ftLeZ0sMb0RERGaSy6yWPQJHVhbQo0fzrStnyYoKli6jpVIB588DeXnAu+9q/7Tn8lvO9vmxRERE8qOb1Zo8WRvUat+44GhPsVGpgIkTtdffXbminQ2MiLDN2HR34Na9kUN3B25DgbGmpnnGqGPpMlpOTkBkpE2GJBln3oiIiCSQ01NsdIHjiSe0f9rqVKmld+A292xdS8HwRkREJBGfYnOfpXfg2mu9PA8P7ZhEUfu9HDG8ERERWYBPsdGy5A5cOayX58gY3shIc90tRERkTWVl2uvOBEH7va21hBkca7DkDlw5rJfnyBjeyEBWlvZ6A15/QERy48gPim/JLLkDVw7r5TkyhrcWTOpvhbrrD+r+NuQoz+sjIqqPIz8ovqWzZF05OayX58gY3ggArz8gIvly9AfFtwZS78CVy3p5jorhjQDw+gMikidr/OLZ3NfKtVQqFXDhgnkL2TrqY6fkguGNAPD6AyKSJ2v84slr5axHyrpyTX0KRGu+YYThjQDw+gMikqem/uLJa+Xsy9EeOyUXfDwWAbh//UFRkenTD4Kg3c7rD4jI1srKAE9P7fd37jQ8q9KUXzyb8kgnsh5HeuyUXHDmjQDw+gMikidLL3znTVoN43qfjo3hjfSaev0BEVFzs/QXT96kVT+u9+n4GN7IAK8/ICJTSkvv35F56JBjzcRY8qB43qRlGtf7lAeGNzIi5W4hImr55HBRv9QHxfMmLWM8lSwfdg9vx44dw8yZMxEUFAQPDw/4+flh4sSJ+PLLLw36zZgxA4IgGH0FBQWZ3O+mTZsQFBQEhUKBnj17IjU1FRqNxqjf9evXMWPGDHh7e8Pd3R3h4eHIzc21yWclIpIbOS2A2779/aUjHnmk4V88uUisMZ5Klg+73236+uuvQ61WY968eRgwYABu3LiB9evXY/jw4Th8+DAefvhhfV83NzccO3bM4P1ubm5G+1y9ejWWL1+OpKQkREdHIz8/H8nJySgqKsLWrVv1/aqqqjBq1CjcunULGzduRJcuXZCRkYGYmBgcPXoUI0eOtN0HJyJycI3NxAiCdiZm4kT5zdDrrpWbPFn7OWp/xtZ6kxZPJcuH3cNbRkYGunTpYtAWExODPn36IC0tzSC8tWnTBsOHD29wf2q1GqtWrcKsWbOQlpYGAIiMjIRGo0FycjLmz5+PAb/O/2/btg2FhYX49NNPER4eDgCIiopCaGgoEhMTcerUKWt+1BZNyq39RCQPUmZi5LjUg+5auYQEw5lFf39tcGtt1/ryVLJ82P20ad3gBgCenp4YMGAALl68KHl/2dnZqKysRFxcnEF7XFwcRFHE/v379W379u1D//799cENAJydnTF9+nR88cUXKKp7noCIqBVpDTMxUq+Va8l4Klk+7D7zZsovv/yC06dPG8y6AUBFRQW6deuGGzduwMfHB5MmTcLKlSuhVCr1fQoLCwEAwcHBBu/18fGBt7e3fruub4SJozAkJAQA8M0338Cv7roZv6qqqkJVVZX+dWlpKQBAo9GYvLauqXT7tMW+raGyEgBcAAB5edUYPVq0++kGR6+Zo2G9pGvpNevcWYA5/5vo3LkaGo3xudWyMqBTJ+2/CzdvauDhYV7NtJtc9P1sXV43N+Du3fuv793TfjmC5j7G1q8XMHWq06+nku+nOEHQ/vdNT6/BvXuiw9THFDn/vTR3zA4Z3ubMmYOysjIsW7ZM3xYaGorQ0FAMGjQIAHDixAm89tpryM3NRX5+Pjx/PWenVquhUCjgYeK8nVKphFqt1r9Wq9UGwa92P932+qxZswapqalG7UeOHIG7u7uZn1S6nJwcm+3bUp995oM33giG7h/bCROc4eVVgfj4AoSH2/9XckesmSNjvaRrqTWrqQG8vKKhVrsCMDUdI8LbuwKlpTk4eNB4a2WlE4DxAIDDhw/D1fX+bYoN1ayh98ldZaUTpk7Vfrbduw+Y/dma6xhTKIDERB+8+WYw1Or715R7eVXgmWcKoVBcMfnf2hHJ8e9leXm5Wf0cLrwtX74c77zzDjZt2oSwsDB9+4IFCwz6jRkzBkOGDMHkyZPxxhtvGGwX6pvzNbFNSt/alixZgoULF+pfl5aWIiAgANHR0Wjfvn2977OURqNBTk4OxowZAxcXF6vv31L79gl4+WUnowuaS0pc8fLLD2L37hrExpq42rkZOGrNHBXrJV1rqNnmzQKmTgUA0eRMTEZGW0yYMM7ke8vK7n8/duxY/cxbYzX79UQGAMDDI8YhZvKtxVRNGmKPY2zcOCAlBfj3v6tx5Yr2GreHHnKBk9MQAEOaZQxNIee/l6W1D/4GOFR4S01NxapVq7B69Wo8//zzjfaPjY2Fh4cHPv/8c32bl5cXKisrUV5ebjQDVlJSYhAIvby8TM6ulZSUAIDJWTkdhUIBhUJh1O7i4mLTg8XW+5eipgZYtKi+O9EECALwwgvOeOwx+96x5Ug1kwPWS7qWXLM//hFwdtbedVr75gV/f+HXi/rr/99I7ZJoa1T3tXHNsrK0NxDoTJjgDH9/7Z2hLeE6tIZq0vD7mvcYc3EBRo9uth9nE3L8e2nueO1+w4JOamoqUlJSkJKSgqVLl5r9PlEU0abN/Y+hu9atoKDAoN/Vq1dRXFysP+2q61u3X+331u5LxrgmEFHr0FxPXpHTmnJE9uQQ4e2ll15CSkoKkpOT8eKLL5r9vr1796K8vNxg+ZCYmBi4uroiMzPToG9mZiYEQcCkSZP0bbGxsThz5ozBkiDV1dXYtWsXhg0bBt+6z1ohA63hTjQi0rL1k1e4uj+R+ex+2nT9+vVYsWIFYmJi8OijjxqcAgWA4cOH48KFC5g2bRqmTp2KPn36QBAEnDhxAhs2bMDAgQMRHx+v769UKpGcnIzly5dDqVTqF+lNSUlBfHy8fo03AJg5cyYyMjIwZcoUrF27Fl26dMHmzZvx/fff4+jRo81WA7nimkBEZC0tfU05ndrh85NPgOjo1rUQMFmH3cPbxx9/DEC7Plt2drbRdlEU0b59e3Tt2hWvvvoqrl27hpqaGvTo0QMJCQlYunSp0Z2ly5YtQ7t27ZCRkYH09HR069YNSUlJBnevAtrr1nJzc5GYmIi5c+eivLwcgwcPxqFDh/h0BTPo1gQqKjL927IgaLdzTSCi1slUUKlPa5jJr3s937hxaFHX81HzsXt4O378eKN9OnXqhCyJFzskJCQgofbfknp07doVO3bskLRv0uLjZYioPvUFlfXrBZi416vFz+Trruer+4uu7nq+vXsZ4Mh8DnHNG8mX7vEydS8P9PfnP0ZE5igr0/6yIwiGy0jIWUM3Hkyd6oTPPjNOYC15dX9ez0fWxvBGTcbHyxCRjjlBZdu2QUZBRTeTDxgHOLnP5PPOfLI2hjeyivbttf8AiSLwyCPy/AeWiJqu8aAioLjYHf/+t/EUW0udyW8N1/NR87L7NW9Elqip0f5PQrf6d0QEAyOROcrKgF+fJog7d9DoCv9SNTWoqFTaxWE7dNC+PnhQ/ndktvTr+aj5ceaNZCcrC+jRA4iKAqZN0/4ZGMgFPIkcgTWCSu2gNmKEvIMb0LKv5yP7YHgjWeEK7ESOrfGgIsLbuxwPPWSfZx7bQ0u+no/sg+GNZIN3bBE5PnOCyjPPFLa6oNLU6/la4l3JZDmGN5IN3rFFLVHdhWxbwi8fDQWV3btrEB7eOq/M5535ZC0MbyQbvGOLWpqsLKDWE/swblzLuX6zvqASG9t6Tpea0tKu5yP7YHgj2eAdW9SSNPX6zZoa4Phx4L33tH864owdgwqRbTC8kWzwji1qKZp6/WZWlnaGzpI7rlviaVqi1obhjWSDd2xRS9GU6zd1M3Z132/OjF1LPk3b0jF0U20MbyQruguh/fwM2+W+AjvJn5S7AS29frMpM3ZcZscxeHjcfxqNuQskf/aZD0JC7q+pz9BNDG8kOyoVcP48kJcHvPuu9k/esUVyYun1m5bO2HGZHfnat0/AunUP4vJlw3aG7taN4Y1kyckJiIwEnnhC+ydPlZKcWHr9pqUzdlxmR55qaoCFC3X/uBkeLAzdrRvDGxFRM7P0+k1LZ+zstcyOJacIm/K+lubkSaCoSEDd4KbD0N16MbwREdmBJSvuWzpjx2V25IlrW1J9GN6IiOxE6or7ls7YcZkdeWLopvowvBER2ZHUhWwtueOay+zIU0QE4OcnAjD9VAqG7taL4Y2ISGYsueO6qQ9Gp+bn5AS8+qr2bgRBMAxwDN2tG8MbEZEVNPciqpbccc0Ho8tPbKyIxYvzjU6NMnS3bgxvRERNtG+fIJsnF/B5o/ITHn4FX39drX/N0E0Mb0RETfDZZz6YOtWJTy4gm2LoptoY3oiILFRTA7z5ZnCTnlzANc2ISCqGNyIiC/373wLUajdwEVUiak4Mb0REFuIiqkRkDwxvRER1lJVpl2IQBO339eEiqtRceHqdamN4IyKy0EMPifDyqjBag0vHERdRZQggkj+GNyIiCzk5AfHxBQD45AIiaj4Mb0REdUhZcDc8/Ap2767hkwuIqNkwvBER1ZKVBckL7sbGinxyARE1G4Y3IqJfZWVpF9a1ZMFdLqJKRM2F4Y2ICNpTo/PmoUkL7hIRNQeGN2pVamqA48eB997T/sn/EZPOyZPApUv1b+eCu0TkKJztPQCi5pKVpZ1Zqf0/aH9/YONGXptEXHCXiOSDM2/UKuiuZao7s8KHh5MOF9wlIrlgeKMWj9cykTkiIrQzsXXXa9NxxAV3iah1YnijFu/f/xZ4LRM1yslJewod4IK7ROTYGN6oxeO1TGQulUq7sK4lC+7ysVNE1Fx4wwK1eLyWiaRQqYDRo4EOHbSvDx4EoqM540ZEjoMzb9TiPfSQyGuZSBIuuEtEjozhjVo8XstEUvEUKBE5MoY3ahV01zL5+Rm28+HhREQkN3YPb8eOHcPMmTMRFBQEDw8P+Pn5YeLEifjyyy+N+p4+fRqjR4+Gp6cnOnbsCJVKhbNnz5rc76ZNmxAUFASFQoGePXsiNTUVGo3GqN/169cxY8YMeHt7w93dHeHh4cjNzbX65yT7U6mA8+eBvDzg3Xe1f/Lh4UREJDd2D2+vv/46zp8/j3nz5uHgwYPYuHEjrl+/juHDh+PYsWP6fmfOnEFkZCTu3r2LDz74AG+99RZ++OEHRERE4MaNGwb7XL16NebNmweVSoXDhw9j9uzZSEtLw5w5cwz6VVVVYdSoUcjNzcXGjRvx4YcfomvXroiJicGJEyea5fNT83JyAiIjgSee0P7JU6VERCQ3dr/bNCMjA126dDFoi4mJQZ8+fZCWloaHH34YALBixQooFAocOHAA7du3BwCEhYWhb9++SE9Px7p16wAAarUaq1atwqxZs5CWlgYAiIyMhEajQXJyMubPn48BAwYAALZt24bCwkJ8+umnCA8PBwBERUUhNDQUiYmJOHXqVLPUgIiIiMhcdp95qxvcAMDT0xMDBgzAxYsXAQDV1dU4cOAAHnvsMX1wA4AePXogKioK+/bt07dlZ2ejsrIScXFxBvuMi4uDKIrYv3+/vm3fvn3o37+/PrgBgLOzM6ZPn44vvvgCRUVF1vqYRERERFZh95k3U3755RecPn1aP+v2008/oaKiAiEhIUZ9Q0JCkJOTg8rKSri6uqKwsBAAEBwcbNDPx8cH3t7e+u0AUFhYiAgT60Pofs4333wDv7pXuP+qqqoKVVVV+telpaUAAI1GY/LauqbS7dMW+26pWDNpWC/pWDPpWDNpWC/p5Fwzc8fskOFtzpw5KCsrw7JlywBoT4UCgFKpNOqrVCohiiJu3rwJHx8fqNVqKBQKeJi4v1+pVOr3pdtvffus/XNNWbNmDVJTU43ajxw5And390Y+oeVycnJstu+WijWThvWSjjWTjjWThvWSTo41Ky8vN6ufxeFt5cqViI+Ph2/d58gAuHLlCt544w2sWLFC8n6XL1+Od955B5s2bUJYWJjBNqG+VVbrbDO3n9S+tS1ZsgQLFy7Uvy4tLUVAQACio6MNTu1ai0ajQU5ODsaMGQMXFxer778lYs2kYb2kY82kY82kYb2kk3PNdGfxGmNxeEtNTUVMTIzJ8Hb58mWkpqZKDm+pqalYtWoVVq9ejeeff17f7uXlBcD0TFhJSQkEQUDHjh31fSsrK1FeXm40A1ZSUmIQCL28vOrdJ2B6pk9HoVBAoVAYtbu4uNj0YLH1/lsi1kwa1ks61kw61kwa1ks6OdbM3PFafMOCKIr1brtz547kgqWmpiIlJQUpKSlYunSpwbbevXvDzc0NBQUFRu8rKChAnz594OrqCuD+tW51+169ehXFxcUYNGiQvi04OLjefQIw6EtERETkCCTNvH399df46quv9K8PHjyIM2fOGPSpqKjAO++8g969e5u935deegkpKSlITk7Giy++aDxIZ2dMmDABWVlZePnll9GuXTsAwM8//4y8vDwsWLBA3zcmJgaurq7IzMzEsGHD9O2ZmZkQBAGTJk3St8XGxmL27Nk4deqUvm91dTV27dqFYcOGmZxVJCL5KCsDPD2139+5w0ddEVHLICm87du3T3+RviAIWLlypcl+bm5u2L59u1n7XL9+PVasWIGYmBg8+uij+Pzzzw22Dx8+HIB2Zu7BBx/E+PHjkZSUhMrKSqxYsQLe3t5YtGiRvr9SqURycjKWL18OpVKJ6Oho5OfnIyUlBfHx8fo13gBg5syZyMjIwJQpU7B27Vp06dIFmzdvxvfff4+jR49KKQ0RERFRs5AU3p599lmMHz8eoihi6NCh2L59u9GpRYVCoT/NaY6PP/4YgHZ9tuzsbKPtutOzQUFBOH78OBYvXozJkyfD2dkZDz/8MNLT09G5c2eD9yxbtgzt2rVDRkYG0tPT0a1bNyQlJenvXq091tzcXCQmJmLu3LkoLy/H4MGDcejQIYwcOdLsuhARERE1F0nhzcfHBz4+PgCAvLw8hIWFwVN3TsJCx48fN7tvWFiY2TNiCQkJSEhIaLRf165dsWPHDrPHQERERGRPFt9typkpIiIioubXpEV6d+3ahXfffRcXLlxARUWFwTZBEPDTTz81aXBEREREZMji8LZu3TosWbIEAwYMQGhoqMk1z4iIiIjIuiwOb1u3bsWcOXOwadMma46HiMhqamruf//JJ0B0NODkZL/xEBFZg8WL9F69ehWxsbHWHAsRkdVkZQG1VgbCuHFAYKC2nYhIziwOb2FhYbymjYgcUlYWMHkyUFRk2F5UpG1ngCMiObM4vL366qtYv349vvzyS2uOh4ioSWpqgHnzAFNP8NO1zZ9veEqViEhOLL7mLS4uDmq1GkOHDkW3bt30D4/XEQQB//3vf5s8QCIiKU6eBC5dqn+7KAIXL2r7RUY227CIiKzG4vDm5eUFb29va46FiKjJrlyxbj8iIkdjcXiT8mQEIqLm8utDYKzWj4jI0Vh8zRsRkSOKiAD8/QFBML1dEICAAG0/IiI5snjm7ZNPPmm0z4gRIyzdPRGRRZycgI0btXeVCoLhjQu6QLdhA9d7IyL5sji8RUZGQqjvV9tf1fB2LiKyA5UK2LsXSEgwXC7E318b3FQquw2NiKjJLA5veXl5Rm3FxcX48MMP8Z///AcZGRlNGhgRUVOoVMDo0UCHDtrXBw/yCQtE1DJYHN5Gjhxpsv2xxx7Dn//8Z2RnZyMmJsbigRER6dTUaJf2uHJFe6NBRIR5Iax2nxEjGNyIqGWwyQ0LsbGx2L17ty12TUStTFaW9rFWUVHAtGnaP/mYKyJqzWwS3m7evImqqipb7JqIWhHdY67qLrrLx1wRUWtm8WnTn3/+2aitqqoKX3/9NZYsWYLhw4c3aWBE1Lo19pgrQdA+5mriRJ4OJaLWxeLwFhgYaPJuU1EU0b9/f/z9739v0sCIqHXjY66IiEyzOLy99dZbRuHN1dUVgYGBePDBB9GmDdf/JSLL8TFXRESmWRzeZsyYYcVhEBEZ4mOuiIhMszi86dy+fRufffYZ1Go1vL29MXz4cLRr184aYyNyGKWlXC+suekec1VUZPq6N0HQbm/oMVceHqbfS0QkZ006t5meng5fX1888sgjePLJJzF27Fj4+vri1Vdftdb4iOwuKwsYMOD+63HjuFRFc9A95gowfk4pH3NFRK2ZxeHt7bffRmJiIkaMGIHdu3fj5MmTeP/99zFy5Ej89a9/xc6dO605TiK70C1VUfsRSwCXqmguusdc+fkZtvv7a9v5mCsiao0sPm362muvYdq0adi1a5dB+5QpUzB9+nS89tpreOqpp5o8QCJ74VIVjkGl0tbYkicsEBG1RBbPvJ05cwbTp083uW369On47rvvLB4UkSOQslQF2ZaTk3Y5kCee0P7J4EZErZnF4c3NzQ0lJSUmt5WUlMDNzc3iQRE5Ai5VQUREjsji8BYREYGUlBRcvnzZoP3q1atYuXIlRowY0eTBEdkTl6ogIiJHZPE1b2lpafjd736HPn36YNSoUfDx8cGVK1dw7NgxuLi4IItXcpPMWWOpCiIiImuzeOZt4MCByM/Px8SJE5Gfn4/t27cjPz8fkyZNwhdffIEBtddWIJIhLlVBRESOqEmL9Pbr1w/vvfeetcZC5HB0S1XMm2d484K/vza4cakKIiJqbpLDW0FBATp16gR/f3+T2y9duoSbN28iODi4yYMjcgRcqoKIiByJpNOmn3zyCcLCwnDt2rV6+1y7dg1hYWE4fPhwkwdH5Ci4VAURETkKSeEtIyMDkydPRlhYWL19wsLC8Pjjj+PNN99s8uCIiIiIyJCk8Paf//wHkyZNarTfH/7wB3z++eeWjomIiIiI6iEpvN24cQN+dR8yaIKPjw+uX79u8aCIiIiIyDRJ4c3Dw6PepyrUdvPmTbi7u1s8KCIiIiIyTVJ4GzhwILKzsxvtd+jQIQwcONDiQRERERGRaZLC2+OPP45t27bhxIkT9fbJy8vD9u3b8cQTTzR5cERERERkSNI6b88++ywyMzMRHR2N+Ph4TJw4ET179gQAnDt3Dvv378e2bdsQGhqKWbNm2WTARERERK2ZpPDWtm1bHD58GE899RRef/11bNmyxWC7KIp45JFH8Pbbb6Nt27ZWHSgRERERWfCEBS8vLxw8eBBffvkljhw5gosXLwIAunfvjrFjx2LIkCFWHyQRERERaVn8bNOwsLAGF+slIiIiIuuTdMNCSEiI2V+hoaFm7fP27dtITExEdHQ0OnfuDEEQkJKSYtRvxowZEATB6CsoKMjkfjdt2oSgoCAoFAr07NkTqamp0Gg0Rv2uX7+OGTNmwNvbG+7u7ggPD0dubq6UshARERE1G0kzb0qlEoIgNNjnzp07+PLLLxvtp6NWq7F161aEhoZi0qRJDT5Wy83NDceOHTNqq2v16tVYvnw5kpKSEB0djfz8fCQnJ6OoqAhbt27V96uqqsKoUaNw69YtbNy4EV26dEFGRgZiYmJw9OhRjBw50qzPQERERNRcJIW348eP17uturoaW7duxcqVKyEIAqZNm2bWPnv06IGbN29CEAQUFxc3GN7atGmD4cOHN7g/tVqNVatWYdasWUhLSwMAREZGQqPRIDk5GfPnz8eAAQMAANu2bUNhYSE+/fRThIeHAwCioqIQGhqKxMREnDp1yqzPQERERNRcJJ02rc+ePXswYMAAzJ07F6Ghofjyyy+xc+dOs96rO/1pLdnZ2aisrERcXJxBe1xcHERRxP79+/Vt+/btQ//+/fXBDQCcnZ0xffp0fPHFFygqKrLauIiIiIisweIbFgDtTNzixYuRn5+PBx54AEeOHMGoUaOsNTYjFRUV6NatG27cuAEfHx9MmjQJK1euhFKp1PcpLCwEAAQHBxu818fHB97e3vrtur4RERFGPyckJAQA8M0339T7LNeqqipUVVXpX5eWlgIANBqNyWvrmkq3T1vsu6VizaRhvaRjzaRjzaRhvaSTc83MHbNF4a2goACLFy/G4cOH0bNnT7z77ruYOnWqJbsyW2hoKEJDQzFo0CAAwIkTJ/Daa68hNzcX+fn58PT0BKA9bapQKODh4WG0D6VSCbVarX+tVqsNgl/tfrrt9VmzZg1SU1ON2o8cOWLT57rm5OTYbN8tFWsmDeslHWsmHWsmDeslnRxrVl5eblY/SeHt4sWLSE5OxrvvvgulUokNGzbgz3/+M1xcXCwapBQLFiwweD1mzBgMGTIEkydPxhtvvGGwvaHTsHW3Selb25IlS7Bw4UL969LSUgQEBCA6Ohrt27ev932W0mg0yMnJwZgxY5ql3i2BvWtWVgZ06qT9uTdvamDi9wmHYu96yRFrJh1rJg3rJZ2ca6Y7i9cYSeGtX79+uHv3LmJiYpCYmIh27dqhoKCg3v4PPPCAlN1LFhsbCw8PD3z++ef6Ni8vL1RWVqK8vNxoBqykpMRgbTovLy+Ts2slJSUAYHJWTkehUEChUBi1u7i42PRgsfX+WyJ71az2j9SOodmHYBEeY9KxZtKxZtKwXtLJsWbmjldSeNNd43Xo0CFkZ2fX208URQiCgJqaGim7t4goimjT5v59F7pr3QoKCjBs2DB9+9WrV1FcXKw/7arrayp86tpq9yWSqvbh/8knQHQ04ORkv/EQEVHLICm8bd++3VbjsMjevXtRXl5usHxITEwMXF1dkZmZaRDeMjMzIQgCJk2apG+LjY3F7NmzcerUKX3f6upq7Nq1C8OGDYOvr2+zfRZqWbKygISE+6/HjQP8/YGNGwGVyn7jIiIi+ZMU3p5++mmbDOLQoUMoKyvD7du3AQDffvst9u7dCwAYN24cbty4gWnTpmHq1Kno06cPBEHAiRMnsGHDBgwcOBDx8fH6fSmVSiQnJ2P58uVQKpX6RXpTUlIQHx+vX+MNAGbOnImMjAxMmTIFa9euRZcuXbB582Z8//33OHr0qE0+K7V8WVnA5MmAKBq2FxVp2/fuZYAjIiLLNWmpEGv5y1/+ggsXLuhf79mzB3v27AEAnDt3Dh06dEDXrl3x6quv4tq1a6ipqUGPHj2QkJCApUuXGt1ZumzZMrRr1w4ZGRlIT09Ht27dkJSUhGXLlhn0UygUyM3NRWJiIubOnYvy8nIMHjwYhw4d4tMVyCI1NcC8ecbBDdC2CQIwfz4wcSJPoRIRkWUcIrydP3++0T5ZWVmS9pmQkICE2uet6tG1a1fs2LFD0r6J6nPyJHDpUv3bRRG4eFHbLzKy2YZFREQtiFWesEBEWleuWLcfERFRXQxvRFbk42PdfkRERHUxvBFZUUSE9q7S+tZ3FgQgIEDbj4iIyBIMb0RW5OSkXQ4EMA5wutcbNvBmBSIishzDG5GVqVTa5UDqLhPo789lQoiIqOkc4m5TopZGpQJGjwY6dNC+PniQT1ggIiLr4MwbkY3UDmojRjC4ERGRdTC8EREREckIT5sS2YiHh+knLRARETUFZ96IiIiIZIThjYiIiEhGGN6IiIiIZIThjYiIiEhGGN6IiIiIZIThjYiaTVmZ9jFhgqD9noiIpGN4IyIiIpIRhjciajY1Nfe//+QTw9dERGQehjciahZZWcCAAfdfjxsHBAZq24mIyHwMb0Rkc1lZwOTJQFGRYXtRkbadAY6IyHwMb0RkUzU1wLx5ph8VpmubP5+nUImIzMXwRkQ2dfIkcOlS/dtFEbh4UduPiIgax/BGRDZ15Yp1+xERtXYMb0RkUz4+1u1HRNTaMbwRkU1FRAD+/tqFeU0RBCAgQNuPiIgax/BGRDbl5ARs3Kj9vm6A073esEHbj4iIGsfwRkQ2p1IBe/cCvr6G7f7+2naVyj7jIiKSI2d7D4CIWgeVChg9GujQQfv64EEgOpozbkREUjG8EVGzad/e9HpvRERkPp42JSIiIpIRhjciIiIiGWF4IyIiIpIRhjciIiIiGWF4I3IwZWXa9c8EQfs9ERFRbQxvRERERDLC8EZEREQkIwxvRERERDLC8EZEREQkIwxvRERERDLC8EZEREQkIwxvRERERDLC8EbkYGpq7n//ySeGr4mIiBjeiBxIVhYwYMD91+PGAYGB2nYiIiKA4Y3IYWRlAZMnA0VFhu1FRdp2BjgiIgIcILzdvn0biYmJiI6ORufOnSEIAlJSUkz2PX36NEaPHg1PT0907NgRKpUKZ8+eNdl306ZNCAoKgkKhQM+ePZGamgqNRmPU7/r165gxYwa8vb3h7u6O8PBw5ObmWvMjEjWqpgaYNw8QReNturb583kKlYiIHCC8qdVqbN26FVVVVZg0aVK9/c6cOYPIyEjcvXsXH3zwAd566y388MMPiIiIwI0bNwz6rl69GvPmzYNKpcLhw4cxe/ZspKWlYc6cOQb9qqqqMGrUKOTm5mLjxo348MMP0bVrV8TExODEiRO2+LhEJp08CVy6VP92UQQuXtT2IyKi1s3Z3gPo0aMHbt68CUEQUFxcjDfffNNkvxUrVkChUODAgQNo3749ACAsLAx9+/ZFeno61q1bB0AbBletWoVZs2YhLS0NABAZGQmNRoPk5GTMnz8fA369qGjbtm0oLCzEp59+ivDwcABAVFQUQkNDkZiYiFOnTtn64xMBAK5csW4/IiJquew+8yYIAgRBaLBPdXU1Dhw4gMcee0wf3ABt8IuKisK+ffv0bdnZ2aisrERcXJzBPuLi4iCKIvbv369v27dvH/r3768PbgDg7OyM6dOn44svvkBR3YuPiGzEx8e6/YiIqOWy+8ybOX766SdUVFQgJCTEaFtISAhycnJQWVkJV1dXFBYWAgCCg4MN+vn4+MDb21u/HQAKCwsRERFhcp8A8M0338DPz8/kmKqqqlBVVaV/XVpaCgDQaDQmr61rKt0+bbHvlkpONRs+HPDzc8bly4AoGv8yIwgi/PyA4cOrYauPI6d6OQrWTDrWTBrWSzo518zcMcsivKnVagCAUqk02qZUKiGKIm7evAkfHx+o1WooFAp4eHiY7Kvbl26/9e2z9s81Zc2aNUhNTTVqP3LkCNzd3Rv/UBbKycmx2b5bKrnUbPp0H6xb9yAAEUDtACdCFIEnn8zH4cO2P28ql3o5EtZMOtZMGtZLOjnWrLy83Kx+sghvOg2dXq29zdx+UvvWtmTJEixcuFD/urS0FAEBAYiOjjY4tWstGo0GOTk5GDNmDFxcXKy+/5ZIbjUbNw544IEaLFjghMuX77f7+wPr19cgNnYIgCE2+/lyq5cjYM2kY82kYb2kk3PNdGfxGiOL8Obl5QXA9ExYSUkJBEFAx44d9X0rKytRXl5uNANWUlKCsLAwg/3Wt0/A9EyfjkKhgEKhMGp3cXGx6cFi6/23RHKq2R//CMTEAB06aF8fPAhERwtwcmq+v6pyqpejYM2kY82kYb2kk2PNzB2v3W9YMEfv3r3h5uaGgoICo20FBQXo06cPXF1dAdy/1q1u36tXr6K4uBiDBg3StwUHB9e7TwAGfYmai5PT/e9HjDB8TUREJIvw5uzsjAkTJiArKwu3b9/Wt//888/Iy8uDSqXSt8XExMDV1RWZmZkG+8jMzIQgCAZrycXGxuLMmTMGS4JUV1dj165dGDZsGHx9fW32mYiIiIgs4RCnTQ8dOoSysjJ9MPv222+xd+9eAMC4cePg7u6O1NRUPPjggxg/fjySkpJQWVmJFStWwNvbG4sWLdLvS6lUIjk5GcuXL4dSqUR0dDTy8/ORkpKC+Ph4/RpvADBz5kxkZGRgypQpWLt2Lbp06YLNmzfj+++/x9GjR5u3CERERERmcIjw9pe//AUXLlzQv96zZw/27NkDADh37hwCAwMRFBSE48ePY/HixZg8eTKcnZ3x8MMPIz09HZ07dzbY37Jly9CuXTtkZGQgPT0d3bp1Q1JSEpYtW2bQT6FQIDc3F4mJiZg7dy7Ky8sxePBgHDp0CCNHjrT9ByciIiKSyCHC2/nz583qFxYWZvaMWEJCAhISEhrt17VrV+zYscOsfRLRfWVlgKen9vs7dwATq/MQEZENyOKaNyIiIiLScoiZNyK6z8ND+yB6IiIiUzjzRkRERCQjDG9EREREMsLwRkRERCQjDG9EREREMsLwRkQWqam5//0nnxi+JiIi22F4IyLJsrKAWg8rwbhxQGCgtp2IiGyL4Y2IJMnKAiZPBoqKDNuLirTtDHBERLbF8EZEZqupAebNM70Ona5t/nyeQiUisiWGNyIy28mTwKVL9W8XReDiRW0/IiKyDYY3IjLblSvW7UdERNIxvBGR2Xx8rNuPiIikY3gjIrNFRAD+/oAgmN4uCEBAgLYfERHZBsMbEZnNyQnYuFH7fd0Ap3u9YYO2HxER2QbDGxFJolIBe/cCvr6G7f7+2naVyj7jIiJqLZztPQAikh+VChg9GujQQfv64EEgOpozbkREzYEzb0RkkdpBbcQIBjcioubC8EZEREQkIwxvRERERDLC8EZEREQkIwxvRERERDLC8EZEREQkIwxvRERERDLCdd6IyCIeHoAo2nsUREStD2feiIiIiGSE4Y2IiIhIRhjeiIiIiGSE4Y2IiIhIRhjeiIiIiGSE4Y2IiIhIRhjeiIiIiGSE67yRXdXUACdPAleuAD4+QEQE4ORk71ERERE5LoY3spusLGDePODSpftt/v7Axo2ASmW/cRERETkynjYlu8jKAiZPNgxuAFBUpG3PyrLPuIiIiBwdwxs1u5oa7YybqUcr6drmz9f2IyIiIkMMb9TsTp40nnGrTRSBixe1/YiIiMgQwxs1uytXrNuPiIioNWF4o2bn42PdfkRERK0Jwxs1u4gI7V2lgmB6uyAAAQHafkRERGSI4Y2anZOTdjkQwDjA6V5v2MD13qQqK9PWTxC03xMRUcvE8EZ2oVIBe/cCfn6G7f7+2nau80ZERGQaF+klu1GpgIkT+YQFIiIiKWQz83b8+HEIgmDy6/PPPzfoe/r0aYwePRqenp7o2LEjVCoVzp49a3K/mzZtQlBQEBQKBXr27InU1FRoNJrm+EgEbVCLjASeeEL7J4MbERFRw2Q385aWloaoqCiDtkGDBum/P3PmDCIjIzF48GB88MEHqKysxIoVKxAREYGvvvoKnTt31vddvXo1li9fjqSkJERHRyM/Px/JyckoKirC1q1bm+0zEREREZlLduGtb9++GD58eL3bV6xYAYVCgQMHDqB9+/YAgLCwMPTt2xfp6elYt24dAECtVmPVqlWYNWsW0tLSAACRkZHQaDRITk7G/PnzMWDAANt/ICIiIiIJZHPa1BzV1dU4cOAAHnvsMX1wA4AePXogKioK+/bt07dlZ2ejsrIScXFxBvuIi4uDKIrYv39/cw2biIiIyGyym3mbM2cOpk6dCnd3d4SHh2P58uV46KGHAAA//fQTKioqEBISYvS+kJAQ5OTkoLKyEq6urigsLAQABAcHG/Tz8fGBt7e3fnt9qqqqUFVVpX9dWloKANBoNDa5Zk63T16PZ77WVjPtx3T59XsNpH7s1lYva2DNpGPNpGG9pJNzzcwds2zCW4cOHTBv3jxERkbCy8sL//vf//DKK68gMjIS//rXvzB27Fio1WoAgFKpNHq/UqmEKIq4efMmfHx8oFaroVAo4OHhYbKvbl/1WbNmDVJTU43ajxw5And3dws/ZeNycnJstu+WqrXUrLLSCcB4AMDhw4fh6lpj9vumTh0PwAW7dzu1mnpZE2smHWsmDeslnRxrVl5eblY/2YS3IUOGYMiQIfrXERERiI2NRXBwMBITEzF27Fj9NqG+pfvrbDO3nylLlizBwoUL9a9LS0sREBCA6Ohog1O21qLRaJCTk4MxY8bAxcXF6vtviVpbzWovzDt27FiY+L2k0fcBaDX1sobWdoxZA2smDeslnZxrpjuL1xjZhDdTOnbsiPHjx2PLli2oqKiAl5cXAJicNSspKYEgCOjYsSMAwMvLC5WVlSgvLzeaKSspKUFYWFiDP1uhUEChUBi1u7i42PRgsfX+W6LWUrPaH1H7maW/7/57W369rIk1k441k4b1kk6ONTN3vLK/YUEURQDambLevXvDzc0NBQUFRv0KCgrQp08fuLq6Arh/rVvdvlevXkVxcbHB8iNEclBT6yzpJ58YviYiopZD1uHt5s2bOHDgAAYPHgxXV1c4OztjwoQJyMrKwu3bt/X9fv75Z+Tl5UFV65lLMTExcHV1RWZmpsE+MzMzIQgCJk2a1EyfgqjpsrKA2ivbjBsHBAZq24mIqGWRzWnTadOmoXv37vjtb38Lb29v/Pjjj1i/fj2uXbtmEMBSU1Px4IMPYvz48UhKStIv0uvt7Y1Fixbp+ymVSiQnJ2P58uVQKpX6RXpTUlIQHx/PNd5INrKygMmTgV8nofWKirTtfFYsEVHLIpvwFhISgvfffx9btmzBnTt3oFQq8dBDD2Hnzp148MEH9f2CgoJw/PhxLF68GJMnT4azszMefvhhpKenGzxdAQCWLVuGdu3aISMjA+np6ejWrRuSkpKwbNmy5v54RBapqQHmzTMOboC2TRCA+fO1z5Dlo8eIiFoG2YS3pKQkJCUlmdU3LCwMR48eNatvQkICEhISmjI0Irs5eRK4dKn+7aIIXLyo7RcZ2WzDIiIiG5L1NW9Erd2VK9btR0REjo/hjUjGfHys24+IiBwfwxuRjEVEAP7+2mvbTBEEICBA24+IiFoGhjciGXNyAjZu1H5fN8DpXm/YwJsViIhaEoY3IplTqbTLgfj6Grb7+3OZECKilkg2d5sSUf1UKmD0aKBDB+3rgweB6GjOuBERtUSceSNqIWoHtREjzA9utR+j9c03XnysFhGRg2N4I2rF6j5W66WXwtGnjzMfq0VE5MAY3ohaKd1jtYqKDNsvX9a2M8ARETkmhjeiVqjhx2ppb1OdPx88hUpE5IAY3ohaISmP1SIiIsfC8EbUCvGxWkRE8sXwRtQK8bFaRETyxfBG1ArxsVpERPLF8EbUCjX8WC3tXQx8rBYRkWNieCNqpep7rJafHx+rRUTkyBjeiFoIDw/tXaKiqP3eHCoV8O23918vX/4ZfvyxmsGNiMiBMbwRtXK1T40OHKjmqVIiIgfH8EZEREQkIwxvRERERDLC8EZEREQkIwxvRERERDLC8EZEREQkIwxvRERERDLC8EZEREQkIwxvRERERDLC8EZEREQkIwxvRERERDLC8EZEREQkIwxvRERERDLC8EbUynl4AKII3L2rgatrjb2HQ0REjWB4IyIiIpIRhjciIiIiGWF4IyIiIpIRhjciIiIiGWF4IyIiIpIRhjciIiIiGWF4IyIiIpIRhjciIiIiGWF4IyIiIpIRhjciIiIiGWF4IyIiIpIRhjciIiIiGWF4A3Dnzh3Mnz8fvr6+cHV1xeDBg7F79257D4uIiIjIiLO9B+AIVCoV8vPzsXbtWvTr1w/vvvsunnjiCdy7dw/Tpk2z9/CIiIiI9Fp9eDt48CBycnL0gQ0AoqKicOHCBfz1r3/F448/DicnJzuPkoiIiEir1Z823bdvHzw9PTFlyhSD9ri4OFy+fBmnTp2y08iIiIiIjLX6mbfCwkL85je/gbOzYSlCQkL023/3u98Zva+qqgpVVVX617/88gsAoKSkBBqNxurj1Gg0KC8vh1qthouLi9X33xKxZtKwXtKxZtKxZtKwXtLJuWa3b98GAIii2GC/Vh/e1Go1evXqZdSuVCr1201Zs2YNUlNTjdp79uxp3QESERFRq3L79m106NCh3u2tPrwBgCAIkrctWbIECxcu1L++d+8eSkpK4OXl1eD+LFVaWoqAgABcvHgR7du3t/r+WyLWTBrWSzrWTDrWTBrWSzo510wURdy+fRu+vr4N9mv14c3Ly8vk7FpJSQmA+zNwdSkUCigUCoO2jh07Wn18dbVv3152B6O9sWbSsF7SsWbSsWbSsF7SybVmDc246bT6GxaCg4Px3Xffobq62qC9oKAAADBo0CB7DIuIiIjIpFYf3mJjY3Hnzh3885//NGjfsWMHfH19MWzYMDuNjIiIiMhYqz9t+sgjj2DMmDH4y1/+gtLSUvTp0wfvvfcesrOzsWvXLodZ402hUODFF180OlVL9WPNpGG9pGPNpGPNpGG9pGsNNRPExu5HbQXu3LmDZcuW4YMPPkBJSQmCgoKwZMkSTJ061d5DIyIiIjLA8EZEREQkI63+mjciIiIiOWF4IyIiIpIRhjcbuHPnDubPnw9fX1+4urpi8ODB2L17d6Pvy8rKwhNPPIE+ffrAzc0NgYGBePLJJ/Hjjz8a9CstLcXq1asRGRmJbt26wdPTE8HBwVi3bh0qKyuN9qvRaJCamorAwEAoFAoEBQVh06ZNVvu81uBINTt//jwEQTD5Zc6YmoOt6wUAy5Ytw5AhQ6BUKuHq6opevXrh2WefxYULF4z68hjTMrdmcjjGgOapWW0VFRXo168fBEFAenq60XZHP84cqV48xu6LjIw0WYeYmBijvo5+jOmJZHVjxowRO3bsKG7ZskU8duyYGB8fLwIQ33nnnQbfN3ToUPEPf/iD+NZbb4nHjx8Xd+7cKf7mN78RPT09xcLCQn2/goIC0dvbW1ywYIH44Ycfirm5uWJKSoro6uoqjho1Srx3757BfuPj40WFQiG+/PLLYl5enpiUlCQKgiCuXr3aJp/fEo5Us3PnzokAxLlz54qfffaZwVdxcbHNaiCFresliqI4e/Zscd26deJHH30k5uXliRkZGaKPj4/YtWtXozrwGNMyt2ZyOMZEsXlqVtuiRYtEX19fEYD4yiuvGG139OPMkerFY+y+kSNHir169TKqw3fffWe0X0c/xnQY3qzsX//6lwhAfPfddw3ax4wZI/r6+orV1dX1vvfatWtGbUVFRaKLi4v4zDPP6Nvu3Lkj3rlzx6jvK6+8IgIQT548qW8rLCwUBUEQ09LSDPrOmjVLdHNzE9VqtdmfzVYcrWa6f/RM/c/DETRHvepz8OBBEYC4bds2fRuPsYaZqpmjH2Oi2Pw1O3XqlNi2bVtxz549Jmvj6MeZo9WLx9h9I0eOFAcOHNjoeBz9GKuNp02tbN++ffD09MSUKVMM2uPi4nD58mWcOnWq3vd26dLFqM3X1xf+/v64ePGivs3DwwMeHh5GfYcOHQoABn33798PURQRFxdnNJ6KigpkZ2eb98FsyNFq5uiao1716dy5MwDA2fn+EpE8xhpmqmZy0Jw1u3v3LmbOnIk5c+bgt7/9rcl9Ovpx5mj1kgN7/r00xdGPsdoY3qyssLAQv/nNb4z+oQ4JCdFvl+Ls2bO4cOECBg4c2GjfY8eOAYBB38LCQnTu3BndunWzynhswdFqprN27Vq0bdsW7u7ueOihh/DRRx9JGoetNHe9qqurUVFRgf/7v//D/Pnz0a9fP6hUKoPx8Bgz1FjNdBz1GAOat2YrV65EWVkZXnrppQbH48jHmaPVS4fHmNZPP/0EpVIJZ2dn9O7dG8uWLUNFRYXReBz5GKuN4c3K1Gq1yYfZ69rUarXZ+6qursYzzzwDT09PLFiwoMG+X3/9NV5++WXExsbqD7SGxuPh4YG2bdtKGo+tOFrNFAoFZs2ahddffx3Hjh3Dm2++iZqaGkycOBFvvvmm2WOxleas19WrV+Hi4gJ3d3c88MADqK6uRl5eHjw9PRsdT2s9xsypmaMfY0Dz1eyrr77Cyy+/jC1btpicHW9sPI5ynDlavXiM3ffQQw/h1VdfxT//+U989NFHGDduHF5++WXExMTg3r17jY7HUY6x2uQ1jy8TgiBYtK02URTxzDPP4OTJk/jnP/+JgICAevueP38e48ePR0BAgMm/lNYYj605Us18fHywdetWg7YpU6Zg2LBhSEpKwowZM+x+Cqy56uXt7Y38/HxUVVXhu+++w8svv4yoqCgcP34cPj4+Vh2PrTlSzeRwjAG2r1l1dTVmzpyJxx9/HGPHjm2W8diSI9WLx9h9q1atMng9btw4BAYG4oUXXsCHH36I2NhYq46nOXDmzcq8vLxMpvOSkhIAMJnq6xJFEfHx8di1axcyMzMxceLEevteuHABUVFRcHZ2Rm5urtH+6xtPWVkZ7t69a9Z4bM3RamaKi4sLHn/8cajV6kZv37e15qyXs7Mzfvvb3+L3v/894uPjcezYMZw9exZr165tdDyt9Rgzp2amONIxBjRPzTZs2ICzZ8/ixRdfxK1bt3Dr1i2UlpYCACorK3Hr1i3U1NQ0OB5HOc4crV6mtMZjrD7Tp08HAHz++eeNjsdRjrHaGN6sLDg4GN999x2qq6sN2gsKCgAAgwYNavD9ugNx+/btePPNN/UHmCkXLlxAZGQkRFFEXl4e/P39TY7nxo0buHr1qkXjaQ6OVrOGfg4AtGlj3782zVmvuvz9/eHr64sffvjBYDw8xupnqmYN/RzA/scY0Dw1KywsxC+//IK+ffuiU6dO6NSpE0JDQwEAy5cvR6dOnfQ/z9GPM0erV0M/B2g9x1hjatfB0Y8xA81xS2trolsWYPfu3QbtMTExjd76fO/ePfGZZ54RBUEQt27d2uDPuXDhghgYGCgGBASIP/30U739dLc+r1271qD9ueeec5hbnx2tZqbcvXtXHDx4sOjt7d3geJpDc9XLlB9//FFs06aN+Pzzz+vbeIw1zFTNTHGkY0wUm6dm3333nZiXl2fw9d5774kAxD//+c9iXl6eePv2bVEUHf84c7R6mdIaj7H6rFu3TgQg7t+/X9/m6MdYbQxvNjBmzBixU6dO4tatW8Vjx46Js2bNEgGIu3bt0veZOXOm6OTkJJ4/f17f9vzzz4sAxJkzZxotJnj69Gl9v2vXrom9evUSFQqFuGvXLqO+Fy9eNBiPbtHBV155RTx+/Li4dOlSh1t00JFqtmDBAvH5558X33vvPTEvL098++23xQcffFAEIG7fvr1Z6tEYW9frv//9r/jwww+LmzdvFrOzs8UjR46I69evF/39/cXOnTsb7FMUeYyJorSayeEYE0Xb18yUhtYnc/TjzJHqxWNM65NPPhHHjh0rbtmyRTxy5Ij40UcfiX/5y19EJycn8eGHHxZramoMxuPox5gOw5sN3L59W0xISBC7desmtm3bVgwJCRHfe+89gz5PP/20CEA8d+6cvq1Hjx4iAJNfPXr00PfLy8urtx8A8cUXXzT4WXfv3hVffPFFsXv37mLbtm3Ffv36iX/7299sWAHpHKlm27ZtE4cOHSoqlUrR2dlZ7NSpkzh27Fjx8OHDNq6C+Wxdr6tXr4rTp08Xe/fuLbq7u4tt27YVe/XqJf75z38Wf/75Z6Px8BiTVjM5HGOiaPuamdJQeHP048yR6sVjTOvHH38Ux40bJ/r5+YkKhUJ0dXUVg4ODxdWrV4uVlZVG43H0Y0xHEMVfT4ATERERkcOz/xWLRERERGQ2hjciIiIiGWF4IyIiIpIRhjciIiIiGWF4IyIiIpIRhjciIiIiGWF4IyIiIpIRhjciIiIiGWF4IyKHcP78eQiCgMzMTKvvOzc3F7/97W/h4eEBQRCwf/9+ZGZmQhAEnD9/3uo/r7bAwEDMmDHDpj9DDr799lukpKTYvN5ErYGzvQdARGRLoijij3/8I/r164ePPvoIHh4e6N+/P6qrq/HZZ5/Bx8fH3kNsFb799lukpqYiMjISgYGB9h4OkawxvBFRi3b58mWUlJQgNjYWo0aNMtjWuXNnO43KvjQaDQRBgLOz8f8CysvL4e7ubodREZG5eNqUiGzqf//7H+Li4tC3b1+4u7vDz88PEyZMQEFBQaPvvXHjBp599lkEBARAoVCgc+fO+P3vf4+jR4+a9bNTUlLg7+8PAFi8eDEEQdDP+pg6bRoZGYlBgwYhPz8fERERcHd3R69evbB27Vrcu3dP36+yshKLFi3C4MGD0aFDByiVSoSHh+PDDz80vzCNePfddxEeHg5PT094enpi8ODB2LZtm357fadjIyMjERkZqX99/PhxCIKAnTt3YtGiRfDz84NCocD//vc/zJgxA56enigoKEB0dDTatWunD7h3797FqlWrEBQUpK99XFwcbty4YfDzAgMDMX78eGRnZ+OBBx6Am5sbgoKC8NZbb+n7ZGZmYsqUKQCAqKgoCIJgs1PkRK0BZ96IyKYuX74MLy8vrF27Fp07d0ZJSQl27NiBYcOG4f/+7//Qv3//et/71FNP4fTp01i9ejX69euHW7du4fTp01Cr1Wb97Pj4eISGhkKlUmHu3LmYNm0aFApFg++5evUqnnzySSxatAgvvvgi9u3bhyVLlsDX1xd/+tOfAABVVVUoKSnBCy+8AD8/P9y9exdHjx6FSqXC9u3b9f0stWLFCrz00ktQqVRYtGgROnTogMLCQly4cMHifS5ZsgTh4eHYsmUL2rRpgy5dugDQhrQ//OEPeO6555CUlITq6mrcu3cPEydOxMmTJ5GYmIjf/e53uHDhAl588UVERkbi//2//wc3Nzf9vv/73/9i0aJFSEpKQteuXfHmm2/imWeeQZ8+fTBixAg8+uijSEtLw9KlS5GRkYEHHngAANC7d+8m1Ymo1RKJiJpRdXW1ePfuXbFv377iggUL9O3nzp0TAYjbt2/Xt3l6eorz589v0s/T7feVV14xaN++fbsIQDx37py+beTIkSIA8dSpUwZ9BwwYII4dO7bBz6TRaMRnnnlGHDJkiMG2Hj16iE8//bTZ4z179qzo5OQkPvnkkw32q2+/I0eOFEeOHKl/nZeXJwIQR4wYYdT36aefFgGIb731lkH7e++9JwIQ//nPfxq05+fniwDEzZs3G4zD1dVVvHDhgr6toqJCVCqV4nPPPadv27NnjwhAzMvLa/BzEVHjeNqUiGyquroaaWlpGDBgANq2bQtnZ2e0bdsWP/74I7777rsG3zt06FBkZmZi1apV+Pzzz6HRaGw+3m7dumHo0KEGbSEhIUazXnv27MHvf/97eHp6wtnZGS4uLti2bVujn6kxOTk5qKmpwZw5c5q0n7oee+wxs7cdOHAAHTt2xIQJE1BdXa3/Gjx4MLp164bjx48b9B88eDC6d++uf+3q6op+/fo1aaaQiOrH8EZENrVw4UIsX74ckyZNwscff4xTp04hPz8foaGhqKioaPC977//Pp5++mm8+eabCA8Ph1KpxJ/+9CdcvXrVZuP18vIyalMoFAZjzcrKwh//+Ef4+flh165d+Oyzz5Cfn4+ZM2eisrKyST9fd02Z7lo9a6nvrlp3d3e0b9/eoO3atWu4desW2rZtCxcXF4Ovq1evori42KC/OTUjIuvhNW9EZFO7du3Cn/70J6SlpRm0FxcXo2PHjg2+19vbGxs2bMCGDRvw888/46OPPkJSUhKuX7+O7OxsG466Ybt27ULPnj3x/vvvQxAEfXtVVVWT9627A/bSpUsICAiot5+rq6vJn1dcXAxvb2+j9trjbKzd29sbXl5e9da4Xbt29Y6LiGyP4Y2IbEoQBKObBP71r3+hqKgIffr0MXs/3bt3x/PPP4/c3Fz85z//sfYwJREEAW3btjUIPlevXrXK3abR0dFwcnLC66+/jvDw8Hr7BQYG4uuvvzZo++GHH/D999+bDG9SjB8/Hrt370ZNTQ2GDRvWpH3p6I4BzsYRNR3DGxHZ1Pjx45GZmYmgoCCEhITgyy+/xCuvvNLoacFffvkFUVFRmDZtGoKCgtCuXTvk5+cjOzsbKpWqmUZv2vjx45GVlYXZs2dj8uTJuHjxIl566SX4+Pjgxx9/bNK+AwMDsXTpUrz00kuoqKjAE088gQ4dOuDbb79FcXExUlNTAWjvxJ0+fTpmz56Nxx57DBcuXMDLL79slbXrpk6dinfeeQfjxo3DvHnzMHToULi4uODSpUvIy8vDxIkTERsbK2mfgwYNAgBs3boV7dq1g6urK3r27GnylCsRNYzhjYhsauPGjXBxccGaNWtw584dPPDAA8jKykJycnKD73N1dcWwYcOwc+dOnD9/HhqNBt27d8fixYuRmJjYTKM3LS4uDtevX8eWLVvw1ltvoVevXkhKSsKlS5f04aopVq5cib59+2LTpk148skn4ezsjL59+yIhIUHfZ9q0abh8+TK2bNmC7du3Y9CgQXj99det8vOdnJzw0UcfYePGjdi5cyfWrFkDZ2dn+Pv7Y+TIkQgODpa8z549e2LDhg3YuHEjIiMjUVNTg+3bt/PRYUQWEERRFO09CCIiIiIyD+82JSIiIpIRnjYlIlkSRRE1NTUN9nFycqr3Lkt7qKmpQUMnOwRBgJOTUzOOiIjkiDNvRCRLO3bsMFqDrO7XiRMn7D1MA717925wvLrnihIRNYTXvBGRLKnVapw7d67BPv3793eoNckKCgoaXAuuXbt2DT7rlYgIYHgjIiIikhWeNiUiIiKSEYY3IiIiIhlheCMiIiKSEYY3IiIiIhlheCMiIiKSEYY3IiIiIhlheCMiIiKSkf8P9XKJSzOzhKsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0026\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.250 - 0.275 A" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.25 , 0.2509, 0.2518, 0.2527, 0.2536, 0.2545, 0.2554, 0.2563,\n", " 0.2572, 0.2581, 0.259 , 0.2599, 0.2608, 0.2617, 0.2626, 0.2635,\n", " 0.2644, 0.2653, 0.2662, 0.2671, 0.268 , 0.2689, 0.2698, 0.2707,\n", " 0.2716, 0.2725, 0.2734, 0.2743, 0.2752, 0.2761, 0.277 ]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABSjklEQVR4nO3de1xVVf7/8fcJ8CCg2QEveLe88DUVi0llJhMzkTEdlXTGHCsxq29aWjZjqGhS3pqsdByqcSqx7GqhleMlJLW+XYxv/uY7WGMzU2qGmQrmBQQB9++PMxw5crif24bX8/HgIWfttddZ+8P2nM9Za+91LIZhGAIAAIApXObrDgAAAKD2SN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADARHyevP3tb3/TzTffrM6dO6t58+ay2WyKjY3V+vXrnepNmTJFFoul0k9UVJTLdlevXq2oqChZrVZ169ZNqampKikpqVTv2LFjmjJliiIiIhQSEqLY2FhlZWV55FgBAAAaKtDXHfjpp5/UqVMn3XrrrerQoYMKCgr0yiuv6LbbbtPBgweVkpLiqNu8eXN98MEHTvs3b968UptLlizRggULlJycrPj4eGVnZyslJUW5ublas2aNo15xcbGGDRumn376SatWrVKbNm2UlpamhIQE7dixQ0OGDPHcgQMAANSDxV+/23TQoEE6cuSIvvvuO0n2kbe33npLZ8+erXa/vLw8dezYUbfffrv+/Oc/O8qXLl2qlJQU7du3T71795YkPfPMM5oxY4Y++eQTxcbGSpJKS0sVHR2tsLAw7dmzx0NHBwAAUD8+nzatSkREhAID6z4wuG3bNhUVFSkpKcmpPCkpSYZhaNOmTY6yjRs3qlevXo7ETZICAwM1efJkff7558rNza13/wEAADzB59Om5S5cuKALFy7o5MmT2rBhg7Zv364//elPTnXOnTundu3a6fjx44qMjNTYsWP16KOPymazOers27dPktS3b1+nfSMjIxUREeHYXl538ODBlfrSr18/SdKXX36pDh06uOxvcXGxiouLnfqfn5+v8PBwWSyWOh49AABo6gzD0JkzZ9S+fXtddlnV42t+k7xNnz7dMc3ZrFkz/fGPf9Q999zj2B4dHa3o6Gj16dNHkrR79249/fTTysrKUnZ2tsLCwiTZp02tVqtCQ0MrPYfNZlNeXp7jcV5enlPiV7Fe+faqLFu2TKmpqfU4UgAAgKodPnxYHTt2rHK73yRv8+bN07Rp03Ts2DG99957uu+++1RQUKDf/e53kqQHH3zQqf7w4cN1zTXXaPz48frLX/7itL26ka9Lt9WlbkVz587V7NmzHY9PnTqlzp0768CBA2rRokWV+9VXSUmJdu7cqaFDhyooKMjt7YMYewtx9jxi7B3E2fOaWozPnDmjbt261ZhH+E3y1rlzZ3Xu3FmSNHLkSEn2BOmOO+5Q69atXe4zbtw4hYaG6rPPPnOUhYeHq6ioSIWFhQoJCXGqn5+fr5iYGKe6rkbX8vPzJcnlqFw5q9Uqq9Vaqdxms6lly5ZV7ldfJSUlCgkJUXh4eJM4gX2BGHsHcfY8YuwdxNnzmlqMy4+xpsuv/PaGhQEDBqi0tFTffvtttfUMw3CaFy6/1i0nJ8ep3tGjR3XixAnHtGt53UvrVdy3Yl0AAAB/4LfJ286dO3XZZZfpyiuvrLLOW2+9pcLCQg0aNMhRlpCQoODgYKWnpzvVTU9Pl8Vi0dixYx1l48aN0/79+52WBCktLdX69es1cOBAtW/f3m3HAwAA4A4+nza9++671bJlSw0YMEBt27bViRMntGHDBr3xxhv6/e9/r9atW+vQoUOaNGmSJk6cqO7du8tisWj37t1auXKlrr76ak2bNs3Rns1mU0pKihYsWCCbzeZYpHfRokWaNm2aY403SZo6darS0tI0YcIELV++XG3atNEzzzyjr7/+Wjt27PBFOAAAAKrl8+QtNjZWa9eu1bp16/TTTz8pLCxM0dHRevnllzV58mRJUsuWLdW2bVs99dRT+vHHH1VWVqYuXbpo5syZmjdvXqU7S+fPn68WLVooLS1NK1asULt27ZScnKz58+c71bNarcrKytKcOXN0//33q7CwUP3799fWrVv5dgUAAOCXfJ68JSUlVVpQ91JXXHGFMjIy6tTuzJkzNXPmzBrrtW3bVuvWratT2wAAAL7it9e8AQAAoDKSNwAAABMheQMAADARkjcAAAATIXkDAAAwEZI3AAAAEyF5AwAAMBGSNwAAABMheQMAADARkjcAAAATIXkDAAAwEZI3AAAAEyF5AwAAMBGSNwAAABMheQMAADARkjcAAAATIXkDAAAwEZI3AAAAEyF5AwAAMBGSNwAAABMheQMAADARkjcAAAATIXkDAAAwEZI3AAAAEyF5AwAAMBGSNwAAABMheQMAADARkjcAAAATIXkDAAAwEZI3AAAAEyF5AwAAMBGSNwAAABMheQMAADARkjcAAAATIXkDAAAwEZI3AAAAEyF5AwAAMBGSNwAAABMheQMAADARkjcAAAATIXkDAAAwEZI3AAAAEyF5AwAAMBGfJ29/+9vfdPPNN6tz585q3ry5bDabYmNjtX79+kp19+7dq5tuuklhYWFq1aqVEhMT9e2337psd/Xq1YqKipLValW3bt2UmpqqkpKSSvWOHTumKVOmKCIiQiEhIYqNjVVWVpbbjxMAAMAdfJ68/fTTT+rUqZOWLl2qLVu26KWXXlLXrl112223afHixY56+/fvV1xcnM6fP68333xTL774ov75z39q8ODBOn78uFObS5Ys0axZs5SYmKjt27dr+vTpWrp0qWbMmOFUr7i4WMOGDVNWVpZWrVqld955R23btlVCQoJ2797tleMHAACoi0BfdyAuLk5xcXFOZaNGjdKBAwe0Zs0apaSkSJIWLlwoq9WqzZs3q2XLlpKkmJgY9ejRQytWrNDjjz8uScrLy9PixYt11113aenSpY7nKCkpUUpKih544AH17t1bkvTCCy9o3759+uSTTxQbGytJGjp0qKKjozVnzhzt2bPHGyEAAACoNZ+PvFUlIiJCgYH23LK0tFSbN2/WLbfc4kjcJKlLly4aOnSoNm7c6Cjbtm2bioqKlJSU5NReUlKSDMPQpk2bHGUbN25Ur169HImbJAUGBmry5Mn6/PPPlZub66GjAwAAqB+fj7yVu3Dhgi5cuKCTJ09qw4YN2r59u/70pz9Jkr755hudO3dO/fr1q7Rfv379lJmZqaKiIgUHB2vfvn2SpL59+zrVi4yMVEREhGO7JO3bt0+DBw922aYkffnll+rQoYPL/hYXF6u4uNjx+PTp05KkkpISl9fWNVR5m55oG3bE2DuIs+cRY+8gzp7X1GJc2+P0m+Rt+vTp+vOf/yxJatasmf74xz/qnnvukWSfCpUkm81WaT+bzSbDMHTy5ElFRkYqLy9PVqtVoaGhLuuWt1XeblVtVnxeV5YtW6bU1NRK5e+//75CQkKqO9QGyczM9FjbsCPG3kGcPY8Yewdx9rymEuPCwsJa1fOb5G3evHmaNm2ajh07pvfee0/33XefCgoK9Lvf/c5Rx2KxVLl/xW21rVfXuhXNnTtXs2fPdjw+ffq0OnXqpPj4eKepXXcpKSlRZmamhg8frqCgILe3D2LsLfWJc0GBdMUV9ronT5bIxWczVMC57B3E2fOaWozLZ/Fq4jfJW+fOndW5c2dJ0siRIyXZE6Q77rhD4eHhklyPhOXn58tisahVq1aSpPDwcBUVFamwsLDSCFh+fr5iYmIcj8PDw6tsU3I90lfOarXKarVWKg8KCvLoCebp9tE4Y1xQIIWF2X8/e1Z+kfzUJc4Vq9n381CnGpnGeC77I+LseU0lxrU9Rr+9YWHAgAEqLS3Vt99+q6uuukrNmzdXTk5OpXo5OTnq3r27goODJV281u3SukePHtWJEyfUp08fR1nfvn2rbFOSU10AAAB/4LfJ286dO3XZZZfpyiuvVGBgoEaPHq2MjAydOXPGUee7777Tzp07lZiY6ChLSEhQcHCw0tPTndpLT0+XxWLR2LFjHWXjxo3T/v37nZYEKS0t1fr16zVw4EC1b9/eY8eHpqWgQLJY7D8FBb7uDQDAzHw+bXr33XerZcuWGjBggNq2basTJ05ow4YNeuONN/T73/9erVu3liSlpqbquuuu06hRo5ScnKyioiItXLhQEREReuihhxzt2Ww2paSkaMGCBbLZbIqPj1d2drYWLVqkadOmOdZ4k6SpU6cqLS1NEyZM0PLly9WmTRs988wz+vrrr7Vjxw6vxwIAAKAmPk/eYmNjtXbtWq1bt04//fSTwsLCFB0drZdfflmTJ0921IuKitKuXbv08MMPa/z48QoMDNSNN96oFStWOBK8cvPnz1eLFi2UlpamFStWqF27dkpOTtb8+fOd6lmtVmVlZWnOnDm6//77VVhYqP79+2vr1q0aMmSIV44fMAN/vGYOAJoqnydvSUlJlRbUrUpMTEytR8RmzpypmTNn1livbdu2WrduXa3aBAAA8DW/veYNAAAAlZG8AQAAmAjJG9AElJVd/P3DD50fAwDMheQNaOQyMqQKN1lr5Eipa1d7OQDAfEjegEYsI0MaP17KzXUuz821l5PAAYD5kLwBjVRZmTRrlmQYlbeVlz3wgDmmUJn2BYCLSN6ARuqjj6Tvv696u2FIhw/b6/kzpn0BwBnJG9BI/fCD++r5auSLaV8AqIzkDWikIiPdU89XI1+NadoXANyJ5A1opAYPljp2lCwW19stFqlTJ3u9qvhy5KuxTPsCgLuRvAGNVECAtGqV/fdLE7jyxytX2uu54uuRL3dO+wJAY0LyBjRiiYnSW29J7ds7l3fsaC9PTKx6X1+PfLlr2hcAGhuSN6CRS0yUvvrq4uMtW6QDB6pP3CTfj3y5Y9oXABojkjegCag4NXrDDVVPlVbk65Gvhk77AkBjRfIGv1dQYH+ztljsv8M7/GHkqyHTvgDQWJG8AXDJX0a+6jvtCwCNFckbPK4xjJw19BjM+vVO/jLyVZ9pXwBorEjeAA8z+9c7MfIFAP6F5A0eZ9ZRJ3doLF/vxMgXAPgPkjd4lNlHnRrC14vcovFoDJceAHAfkjd4TGMZdaovXy9yW1FoqP35DMP+OwDAvEje4BGMOvl+kVs0Hk350gMAlZG8wSP8adTJV3y9yC0ah6Z86QEA10je4BGMOvnHIrcwt6Z+6QEA10jeUKOyMmnXLum11+z/1mbKhlEn/1nk1h9wwX3dcekBgKqQvKFaGRn2KZqhQ6VJk+z/1mbKhlEnO39Z5Bbmw6UHAKpC8oYqlU/ZXPoGUpspG0adLmKRW+fRof/5HwujRbXApQcAqkLyBpfcMWXDqNNFZl/ktiFLjVx6wf3o0YG6++54bdxYxbAsJHHpAYCqBfq6A/BPdZmyiYurul5ionTTTdLll9sfb9kixcebL3lB/ZSP3l76ISAvL1gTJ0qBgbVL4suTx/oqK7Ofqz/8YE92Bg/2/3Ow/NKD3FzXx26x2Lc39ksP3MWM5wBQFUbe4JI7p2waOurEGlfmVN3orWQfdfPGBfcZGVKXLnW/btPXuPTAfep77S7gr0je4JI7p2zcOeXGGlfmUfPorcXjF9ybfakNLj1ouIZcu+tPuGMbFZG8wSV/uFvUn954Gf2rO19fcN9Yltrghpf686dzgOQL7kTyBpd8PWXjTy+6jP7Vj68vuG9MS22Y/YYXX2lM5wAfIFERyRuqVD5l06GDc7k3pmz85UXXn0b/zKbm0VvDo6O3vh75c6eGXHrQlDWWc4APkLgUyRuqlZgoHTwo7dwpvfqq/V9vTNn4w4uuP43+mVF1o7eSPYCeHL319cgffK8xnAN8gIQrJG+oUUCAfTmQW2+1/+uNKRt/eNH1l9E/M6vqgvuIiHN6/fUyj34I8IfrNuFbZj8H+ACJqpC8wS+580W3Pt/NKvnH6F9jcOkF9++9V6o//zlT48Y1YOG2WvD1dZvwPbOfA3yARFVI3uCX3PWi25D1nfxh9K+xqPh3uv56w2tvliy1AV9eu9tQfIBEVUje4Lca+sbb0PWdzD7l4k98ecF9YqJ06JD3r9uE//DVtbsV1eduUT5Aoiokb/Br9V3jyh3Xiph9ygUX+eK6TfgXX54D9b1blA+QqArJG/xefda4cte1Iky7Af7h9OmLi9xu3Wqei/QbcrcoHyBRFZI3NEruvFaEFe7RUKyuX/8bhyTzrnPmjhkAPkDCFZI3NEruvlbE1yvcN+SND/C1htw4ZOZ1ztw5A8AHSFTk8+Ttgw8+0NSpUxUVFaXQ0FB16NBBY8aM0RdffOFUb8qUKbJYLJV+oqKiXLa7evVqRUVFyWq1qlu3bkpNTVVJSUmleseOHdOUKVMUERGhkJAQxcbGKisryyPHCu9pTNeKNOSND/6hKX+1UUNuHDL7OmfunAFo2fLiTT+//CVTpU2dz5O3Z599VgcPHtSsWbO0ZcsWrVq1SseOHdOgQYP0wQcfONVt3ry5Pv30U6efN954o1KbS5Ys0axZs5SYmKjt27dr+vTpWrp0qWbMmOFUr7i4WMOGDVNWVpZWrVqld955R23btlVCQoJ2797t0eP2JrNeK9IQjeVakYbeMQvf85cpP19M3TY0+TL7OmfcLQqPMXzsxx9/rFR25swZo23btsawYcMcZXfccYcRGhpaY3snTpwwgoODjbvvvtupfMmSJYbFYjG+/PJLR1laWpohyfjkk08cZSUlJUbv3r2NAQMG1Ok4Tp06ZUgyTp06Vaf9auv8+fPGpk2bjPPnz9dpv7ffNowOHco/r9l/Ona0l5vF2bMX+372bN32fftt+/FWPP5OnVwff3Uxbkgf6rt/aWnlvlf8sVjsx1JaWvf++FJ9z2Uzevtt+9/J1d/OYvHc/0NXMW7oOVwfO3dWff5W/Nm50/X+r75au/1ffdXzx1Jaau/nq6/a/y0trflcLv8/7OocMNv/YVfH7w1N6fXCMGqfS/h85K1NmzaVysLCwtS7d28dPny4zu1t27ZNRUVFSkpKcipPSkqSYRjatGmTo2zjxo3q1auXYmNjHWWBgYGaPHmyPv/8c+VeepGFyZj5WhF38Yf1naT6rXNm9lGHps7sU37u0NBpQ38ZucrIkLp0qXzpwsaNVVyX8R+NaQaASzf8S6CvO+DKqVOntHfvXt14441O5efOnVO7du10/PhxRUZGauzYsXr00Udls9kcdfbt2ydJ6tu3r9O+kZGRioiIcGwvrzvYxUVP/fr1kyR9+eWX6nDpstz/UVxcrOLiYsfj06dPS5JKSkpcXlvXUOVt1rbtsjJp5szA/7xJOL9qGIZksRiaNUsaObLU71847Icc9J/fS1Sf8P7iFxd/v3DB/lP5eaqOsTv6UFeHD1tUm/+ihw+XqqTEs1815U51PZfNavdui77/vuq/X3nyvXNnqYYMce/fz1WMfXEOt25du3O4dWvX5/CgQVKHDoE6ckQyjMqJksViqEMHadCgUo8dz8aNFk2cGFDptTQ319DEiQGaMydSw4dX/eSjR0uvv27Rgw8G6MiRi/t36GDoySfLNHq04ZW/RX1Vd/zjx0uvv17m0a+6ayqvF+Vqe5x+mbzNmDFDBQUFmj9/vqMsOjpa0dHR6tOnjyRp9+7devrpp5WVlaXs7GyFhYVJkvLy8mS1WhXqYnjDZrMpLy/P8TgvL88p8atYr3x7VZYtW6bU1NRK5e+//75CQkJqeaR1l5mZWat6OTnhys29vsrthmHR999LK1bsUd++VR+nPygqCpA0SpK0fft2BQd7dqjCVYy93QdJOnQoXFLVf8OL9T7Tli3+/Td0pbbnsll9+GEHST+rsd7WrX9TQYFnRvkrxtgX53BZmRQeHq+8vGBd+iHSzlBExDmdPp2pLVtctzF5cqQef/w6ScYlbRgyDOm3v83W9u2e+X6osjJp+vR4GUaAKn8Itkgy9MILfTRgQGa1H4KtVmnFigBNmmSP/4IFn6p//2MKCFCVx+1uZWXSV1+F6+TJYF1xRZF6986r8YN7bY5/xozzCgys/vjdobG/XpQrLCysVT2/S94WLFigV155RatXr1ZMTIyj/MEHH3SqN3z4cF1zzTUaP368/vKXvzhtt1R1i6GLbXWpW9HcuXM1e/Zsx+PTp0+rU6dOio+PV8uWLavcr75KSkqUmZmp4cOHKygoqMb6p09XP5xfrkuXQRo50r9HbSpeXD1ixAiPfb1SdTH2Vh8qGjFCeu45o8ZRh9/9bqDfj55WVNdz2R8UFEhXXGHv68mTJbX6+4eGWvTUUzXX++Uv+2vIkOgG9tCZqxj74hyWpGeesWjiRMmebF08jy0W++tOWlozjR49ssr9R46Urr227D8jVxfLO3aUnnyyTOPGXSPpGo/0ffdui/LyqnubtOjEiRCFhIzQsGHV/yesGP/Zs3/m1a+J27jRotmzA5Sb6zzy99RT1Y+a1fb4W7a82e2jx+XM+HrREOWzeDXxq+QtNTVVixcv1pIlS3TffffVWH/cuHEKDQ3VZ5995igLDw9XUVGRCgsLK42A5efnOyWE4eHhLkfX8vPzJcnlqFw5q9Uqq9VaqTwoKMijJ1ht2+/UqXbtdeoUKH///1Cxf/bj9/TzVY6xt/tQ/px//KP9+kSLxfnaKfvnCotWrZKCg/38D1gFT/9fcaf6/P2HDrUnGLm5rq97s1js24cODfRY8l0xxr44hyXp17+WAgPt1/9VvIazY0eLVq6UEhNrfhv69a+lW26xX9/5ww/2a9wGD7YoIMCzb2HHj9e2XqCCgqrvi6/in5EhTZxY+Rw8csSiiRMDq13ot27H37B+1sRMrxcNUdtj9PkNC+VSU1O1aNEiLVq0SPPmzav1foZh6LLLLh5G+bVuOTk5TvWOHj2qEydOOKZdy+teWq/ivhXrmk1jWuesKStfXf3SSy9ZXd3/+dvF6r5ca84dNw754rtJ/eWGifpq6E0zZj/+xswvkrfHHntMixYtUkpKih555JFa7/fWW2+psLBQgwYNcpQlJCQoODhY6enpTnXT09NlsVg0duxYR9m4ceO0f/9+7dmzx1FWWlqq9evXa+DAgWp/6feRmIi/vXGg/vzljlnUnb98tZE/rDXnyy+Gr6+aPwQbiogo1PXX++elJw29Y51BAP/l82nTJ598UgsXLlRCQoJuvvlmpylQSRo0aJAOHTqkSZMmaeLEierevbssFot2796tlStX6uqrr9a0adMc9W02m1JSUrRgwQLZbDbFx8crOztbixYt0rRp09S7wivY1KlTlZaWpgkTJmj58uVq06aNnnnmGX399dfasWOH12LgKeVvHJWnK/Sf6Qqfda1OypfZaMrK3/hgPomJ0k03SZdfbn+8ZYsUH++95KV8yaBL/w+VLxnECG7Vyj8EV33pgnTnnfsUEOCZa+4aqqFLtdTm+BkE8BGvrDpXjSH2qxyr/DEMw8jPzzfGjRtndO3a1WjevLnRrFkzo0ePHsacOXOMn376yWW7q1atMnr27Gk0a9bM6Ny5s/HII4+4XOTv6NGjxu23327YbDYjODjYGDRokJGZmVnn4/DXRXoNw3eLK5qNJxfpxUVmXHTTbH//8hifO3e+US707G1VLfb9xhsltT6XzbhIcrm6LHbubmZ8vWiI2uYSPh9527VrV411rrjiCmXUcXx/5syZmjlzZo312rZtq3Xr1tWpbbNh1KbhGP2DGf3P/1hqPW3Ga0TVEhOlMWMuvWFCunDBqPVSH754DSmf9qzpppmapj2rOn5G3HzH58kbAMAz3PnF6E2dqw/Brhb79ifunPZkEMC/+MUNCwDgz3x5p2ZDcLcguGO9cSJ5M4HTp6VmzYI0duwYbd9uMc0bB9AY+MOdmvV1/fUGdwuCO9YbIZI3P3fpG8fo0YGmeeMAzK78Ts3cS769qvxOTX//f8iSQShnxqVaUDWSNz9m9jcOwMwausCpv/CXteYAuA/Jm59qLG8cgFk1dIFTf5KYKH311cXHW7YwbQaYGcmbn2pMbxyAGTW2OzUrTpPdcAPTZoCZkbz5qcb2xgGYDXdqAvBXrPPmp3jjAHzLXQucArArK2OhX3dh5M1P8YXAgG9xpybgPhkZ9iV2hg6VJk2y/8vKCfVH8uaneOMAfI87NYGGK1854dLruFk5of5I3vwYbxyA73GnJlB/rJzgGSRvfi4xUTp0SMrMLNXs2f+rzMxS3jgAL2sMd2qWfzG6Ydh/B7yBlRM8gxsWTCAgQBoyxFBBQa6GDIk25RsHAKDpYeUEz2DkDQAAeAQrJ3gGyRsAAPAIVk7wDJI3AADgEayc4BkkbwAAwGPKV07o0MG5nJUT6o8bFgAAgEclJkpjxvANC+5C8gYAADwuIECKi/N1LxoHkjcAqEH5GmkA4A+45g0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAECjV1Bg/z5Vi8X+u5mRvAEAAJgIyRsAAICJkLwBAACYCMkbAADwe43pmrWGInkDAAAwEZI3AAAAEyF5AwAAjV5Z2cXfP/zQ+bHZkLwBAIBGLSND6t374uORI6WuXe3lZkTyBgAA/F59R84yMqTx46XcXOfy3Fx7uRkTOJI3AADg1zZutNRr5KysTJo1SzKMytvKyx54wHxTqCRvAADAb336aaQmTgyo18jZRx9J339f9XbDkA4fttczE5I3AADgl8rKpOef71vvkbMffqjd89S2nr8geQMAAH7pf/7Hory85pIsLrfXNHIWGVm756ltPX9B8gYAAPxSQ0fOBg+WOna0fyuDKxaL1KmTvZ6Z+Dx5++CDDzR16lRFRUUpNDRUHTp00JgxY/TFF19Uqrt3717ddNNNCgsLU6tWrZSYmKhvv/3WZburV69WVFSUrFarunXrptTUVJWUlFSqd+zYMU2ZMkUREREKCQlRbGyssrKy3H6cAACgbho6chYQIK1aZf/90gSu/PHKlfZ6ZuLz5O3ZZ5/VwYMHNWvWLG3ZskWrVq3SsWPHNGjQIH3wwQeOevv371dcXJzOnz+vN998Uy+++KL++c9/avDgwTp+/LhTm0uWLNGsWbOUmJio7du3a/r06Vq6dKlmzJjhVK+4uFjDhg1TVlaWVq1apXfeeUdt27ZVQkKCdu/e7ZXjBwAArl1/vaHw8HOyWFxc9KbajZwlJkpvvSW1b+9c3rGjvTwx0Y0d9hbDx3788cdKZWfOnDHatm1rDBs2zFE2YcIEIyIiwjh16pSj7ODBg0ZQUJAxZ84cR9mJEyeM4OBg4+6773Zqc8mSJYbFYjG+/PJLR1laWpohyfjkk08cZSUlJUbv3r2NAQMG1Ok4Tp06ZUhy6p87nT9/3ti0aZNx/vx5j7QPYuwtxNnziLF3EGfPO3/+vPHww3sMi+WCYbEYhv0qN/uPxWL/efvt2rV16tTFfbdsMYzSUs/2vT5qm0v4fOStTZs2lcrCwsLUu3dvHT58WJJUWlqqzZs365ZbblHLli0d9bp06aKhQ4dq48aNjrJt27apqKhISUlJTm0mJSXJMAxt2rTJUbZx40b16tVLsbGxjrLAwEBNnjxZn3/+uXIvvS8ZAAB4VWzsD3r99bIGj5xVnBq94QbzTZVWFOjrDrhy6tQp7d27VzfeeKMk6ZtvvtG5c+fUr1+/SnX79eunzMxMFRUVKTg4WPv27ZMk9e3b16leZGSkIiIiHNslad++fRrsYqy1/Hm+/PJLdejQwWUfi4uLVVxc7Hh8+vRpSVJJSYnLa+saqrxNT7QNO2LsHcTZ84ixdxBnzyuP7ahR5zVsmKGIiCBJ0nvvleqmmwwFBEi1Db+9XpCjXX/8s9X2XPLL5G3GjBkqKCjQ/PnzJUl5eXmSJJvNVqmuzWaTYRg6efKkIiMjlZeXJ6vVqtDQUJd1y9sqb7eqNis+ryvLli1TampqpfL3339fISEhNRxh/WVmZnqsbdgRY+8gzp5HjL2DOHuefZAmQNIoSVJBwTZt3163r0WouP/27dsVHOx/X6tQWFhYq3r1Tt4effRRTZs2Te0vHceU9MMPP+gvf/mLFi5cWOd2FyxYoFdeeUWrV69WTEyM0zZLVff6XrKttvXqWreiuXPnavbs2Y7Hp0+fVqdOnRQfH+80tesuJSUlyszM1PDhwxUUFOT29kGMvYU4ex4x9g7i7HkVY3z+/MUYjxgxQi7GaKpVUHDx9/rs7w3ls3g1qXfylpqaqoSEBJfJ25EjR5Samlrn5C01NVWLFy/WkiVLdN999znKw8PDJbkeCcvPz5fFYlGrVq0cdYuKilRYWFhpBCw/P98pIQwPD6+yTcn1SF85q9Uqq9VaqTwoKMij/4k93T6IsbcQZ88jxt5BnD0vKChIhhHk9LiuIa9Yvz77e0Ntz6N637BguPquiv84e/ZsnU/k1NRULVq0SIsWLdK8efOctl111VVq3ry5cnJyKu2Xk5Oj7t27Kzg4WNLFa90urXv06FGdOHFCffr0cZT17du3yjYlOdUFAAC+Exp68V5Tfxw186Y6jbz9/e9/19/+9jfH4y1btmj//v1Odc6dO6dXXnlFV111Va3bfeyxx7Ro0SKlpKTokUceqdzJwECNHj1aGRkZ+sMf/qAWLVpIkr777jvt3LlTDz74oKNuQkKCgoODlZ6eroEDBzrK09PTZbFYNHbsWEfZuHHjNH36dO3Zs8dRt7S0VOvXr9fAgQNdjioCAADzKU/+GoM6JW8bN250XKRvsVj06KOPuqzXvHlzrV27tlZtPvnkk1q4cKESEhJ0880367PPPnPaPmjQIEn2kbnrrrtOo0aNUnJysoqKirRw4UJFRETooYcectS32WxKSUnRggULZLPZFB8fr+zsbC1atEjTpk1T7969HXWnTp2qtLQ0TZgwQcuXL1ebNm30zDPP6Ouvv9aOHTvqEhoAAACvqFPydvfdd2vUqFEyDEMDBgzQ2rVrK00tWq1WxzRnbbz33nuS7Ouzbdu2rdL28unZqKgo7dq1Sw8//LDGjx+vwMBA3XjjjVqxYoVat27ttM/8+fPVokULpaWlacWKFWrXrp2Sk5Mdd69W7GtWVpbmzJmj+++/X4WFherfv7+2bt2qIUOG1DouAAAA3lKn5C0yMlKR//kCsZ07dyomJkZhYWEN6sCuXbtqXTcmJqbWI2IzZ87UzJkza6zXtm1brVu3rtZ9AAAA8KV6323KyBQAAID3NWiR3vXr1+vVV1/VoUOHdO7cOadtFotF33zzTYM6BwAAAGf1Tt4ef/xxzZ07V71791Z0dLTLNc8AAADgXvVO3tasWaMZM2Zo9erV7uwPAAAAqlHvRXqPHj2qcePGubMvAAAAqEG9k7eYmBiuaQMAAPCyeidvTz31lJ588kl98cUX7uwPAACA3ykokCwW+0/FL7n3hXpf85aUlKS8vDwNGDBA7dq1c3x5fDmLxaL/+7//a3AHAQAAfK2s7OLvH34oxcdLAQG+6Uu9k7fw8HBFRES4sy8AAAB+JyNDqrju/8iRUseO0qpVUmKi9/tT7+StLt+MAAAAYEYZGdL48ZW/1D43117+1lveT+Dqfc0bAABAY1ZWJs2aVTlxky6WPfCA85SqN9R75O3DDz+ssc4NN9xQ3+YBAAB86qOPpO+/r3q7YUiHD9vrxcV5rVv1T97i4uJksViqrVPm7VQUAADATX74wb313KXeydvOnTsrlZ04cULvvPOOPv74Y6WlpTWoYwAAAL4UGeneeu5S7+RtyJAhLstvueUW/fd//7e2bdumhISEencMAADAlwYPtt9Vmpvr+ro3i8W+ffBg7/bLIzcsjBs3Tq+//ronmgYAAPCKgAD7ciCSPVGrqPzxypXeX+/NI8nbyZMnVVxc7ImmAQAAvCYx0b4cSPv2zuUdO/pmmRCpAdOm3333XaWy4uJi/f3vf9fcuXM1aNCgBnUMAADAHyQmSjfdJF1+uf3xli0m/YaFrl27urzb1DAM9erVS3/6058a1DEAAAB/0bKl6+vefKHeyduLL75YKXkLDg5W165ddd111+myy1j/FwAAwN3qnbxNmTLFjd0AAABAbdQ7eSt35swZffrpp8rLy1NERIQGDRqkFi1auKNvAAAAuESDkrcVK1YoNTVVhYWFMv4zERwaGqrU1FTNnj3bLR0EAADARfVO3l566SXNmTNHv/zlLzVlyhS1b99eR44c0bp16/T73/9erVu31m233ebOvgIAADR59U7enn76aU2aNEnr1693Kp8wYYImT56sp59+muQNAADAzep9S+j+/fs1efJkl9smT56sf/zjH/XuFAAAAFyrd/LWvHlz5efnu9yWn5+v5s2b17tTAAAAcK3eydvgwYO1aNEiHTlyxKn86NGjevTRR3XDDTc0uHMAAP9QUGD/LkeLxf47AN+p9zVvS5cu1c9//nN1795dw4YNU2RkpH744Qd98MEHCgoKUkZGhjv7CQAAADVg5O3qq69Wdna2xowZo+zsbK1du1bZ2dkaO3asPv/8c/Xu3dud/QQAAIAauM5bz5499dprr7mrLwAAAKhBnUfecnJy9P3331e5/fvvv1dOTk6DOgUAAADX6pS8ffjhh4qJidGPP/5YZZ0ff/xRMTEx2r59e4M7BwAAAGd1St7S0tI0fvx4xcTEVFknJiZGv/nNb/T88883uHMAAABwVqfk7eOPP9bYsWNrrPerX/1Kn332WX37BAAAgCrUKXk7fvy4OnToUGO9yMhIHTt2rN6dAgAAgGt1St5CQ0Or/FaFik6ePKmQkJB6dwoAAACu1Sl5u/rqq7Vt27Ya623dulVXX311vTsFAAAA1+qUvP3mN7/RCy+8oN27d1dZZ+fOnVq7dq1uvfXWBncOAAAAzuq0SO/dd9+t9PR0xcfHa9q0aRozZoy6desmSTpw4IA2bdqkF154QdHR0brrrrs80mEAAICmrE7JW7NmzbR9+3bddtttevbZZ/Xcc885bTcMQ7/85S/10ksvqVmzZm7tKAAAAOrx9Vjh4eHasmWLvvjiC73//vs6fPiwJKlz584aMWKErrnmGrd3EgAAAHb1/m7TmJiYahfrBQAAgPvV6YaFfv361fonOjq6Vm2eOXNGc+bMUXx8vFq3bi2LxaJFixZVqjdlyhRZLJZKP1FRUS7bXb16taKiomS1WtWtWzelpqaqpKSkUr1jx45pypQpioiIUEhIiGJjY5WVlVWXsAAAAHhNnUbebDabLBZLtXXOnj2rL774osZ65fLy8rRmzRpFR0dr7Nix1X6tVvPmzfXBBx9UKrvUkiVLtGDBAiUnJys+Pl7Z2dlKSUlRbm6u1qxZ46hXXFysYcOG6aefftKqVavUpk0bpaWlKSEhQTt27NCQIUNqdQwAAADeUqfkbdeuXVVuKy0t1Zo1a/Too4/KYrFo0qRJtWqzS5cuOnnypCwWi06cOFFt8nbZZZdp0KBB1baXl5enxYsX66677tLSpUslSXFxcSopKVFKSooeeOAB9e7dW5L0wgsvaN++ffrkk08UGxsrSRo6dKiio6M1Z84c7dmzp1bHAAAA4C11mjatyoYNG9S7d2/df//9io6O1hdffKGXX365VvuWT3+6y7Zt21RUVKSkpCSn8qSkJBmGoU2bNjnKNm7cqF69ejkSN0kKDAzU5MmT9fnnnys3N9dt/QIAAHCHet+wINlH4h5++GFlZ2fr2muv1fvvv69hw4a5q2+VnDt3Tu3atdPx48cVGRmpsWPH6tFHH5XNZnPU2bdvnySpb9++TvtGRkYqIiLCsb287uDBgys9T79+/SRJX375ZZXf5VpcXKzi4mLH49OnT0uSSkpKXF5b11DlbXqibdgRY+8gzp7niRjbmwpytMufj3PZG5pajGt7nPVK3nJycvTwww9r+/bt6tatm1599VVNnDixPk3VWnR0tKKjo9WnTx9J0u7du/X0008rKytL2dnZCgsLk2SfNrVarQoNDa3Uhs1mU15enuNxXl6eU+JXsV759qosW7ZMqamplcrff/99j36va2Zmpsfahh0x9g7i7HnujHFRUYCkUZKk7du3Kzi4zG1tmx3nsuc1lRgXFhbWql6dkrfDhw8rJSVFr776qmw2m1auXKn//u//VlBQUL06WRcPPvig0+Phw4frmmuu0fjx4/WXv/zFaXt107CXbqtL3Yrmzp2r2bNnOx6fPn1anTp1Unx8vFq2bFnlfvVVUlKizMxMDR8+3CvxboqIsXcQZ8/zRIwLCi7+PmLECLn4fNzkcC57XlOLcfksXk3qlLz17NlT58+fV0JCgubMmaMWLVooJyenyvrXXnttXZqvs3Hjxik0NFSfffaZoyw8PFxFRUUqLCysNAKWn5/vtDZdeHi4y9G1/Px8SXI5KlfOarXKarVWKg8KCvLoCebp9kGMvYU4e547Y3xZhSukP/00SPHxUkCAW5o2Pc5lz2sqMa7tMdYpeSu/xmvr1q3atm1blfUMw5DFYlFZmeeH1Q3D0GUVXlXKr3XLycnRwIEDHeVHjx7ViRMnHNOu5XVdJZ/lZRXrAkBTlZEhzZx58fHIkVLHjtKqVVJiou/6BTRVdUre1q5d66l+1Mtbb72lwsJCp+VDEhISFBwcrPT0dKfkLT09XRaLRWPHjnWUjRs3TtOnT9eePXscdUtLS7V+/XoNHDhQ7du399qxAIA/ysiQxo+XDMO5PDfXXv7WWyRwgLfVKXm74447PNKJrVu3qqCgQGfOnJEkffXVV3rrrbckSSNHjtTx48c1adIkTZw4Ud27d5fFYtHu3bu1cuVKXX311Zo2bZqjLZvNppSUFC1YsEA2m82xSO+iRYs0bdo0xxpvkjR16lSlpaVpwoQJWr58udq0aaNnnnlGX3/9tXbs2OGRYwUAsygrk2bNqpy4SfYyi0V64AFpzBimUAFvatBSIe5y77336tChQ47HGzZs0IYNGyRJBw4c0OWXX662bdvqqaee0o8//qiysjJ16dJFM2fO1Lx58yrdWTp//ny1aNFCaWlpWrFihdq1a6fk5GTNnz/fqZ7ValVWVpbmzJmj+++/X4WFherfv7+2bt3KtysAaPI++kj6/vuqtxuGdPiwvV5cnNe6BTR5fpG8HTx4sMY6GRkZdWpz5syZmlnxIo0qtG3bVuvWratT2wDQFPzwg3vrAXAPt3zDAgCg8YmMdG89AO5B8gYAcGnwYPtdpVUteWmxSJ062esB8B6SNwCASwEB9uVApMoJXPnjlSu5WQHwNpI3AECVEhPty4FcunJSx44sEwL4il/csAAA8F+JidJNN0mXX25/vGWL+IYFwIcYeQMA1KhionbDDSRugC+RvAEAAJgIyRsAAICJkLwBAACYCMkbAACAiZC8AQAAmAjJGwAAgImQvAEAAJgIyRsAAICJkLwBAACYCMkbAACAiZC8AQAAmAjJGwAAgImQvAEAAJgIyRsAAICJkLwBAACYCMkbAACAiZC8AQAAmAjJGwAAgImQvAEAAJgIyRsAAICJkLwBAACYSKCvOwAA8H+hoZJh+LoXACRG3gAAAEyF5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMxOfJ25kzZzRnzhzFx8erdevWslgsWrRokcu6e/fu1U033aSwsDC1atVKiYmJ+vbbb13WXb16taKiomS1WtWtWzelpqaqpKSkUr1jx45pypQpioiIUEhIiGJjY5WVleXOQwQAAHAbnydveXl5WrNmjYqLizV27Ngq6+3fv19xcXE6f/683nzzTb344ov65z//qcGDB+v48eNOdZcsWaJZs2YpMTFR27dv1/Tp07V06VLNmDHDqV5xcbGGDRumrKwsrVq1Su+8847atm2rhIQE7d692xOHCwAA0CCBvu5Aly5ddPLkSVksFp04cULPP/+8y3oLFy6U1WrV5s2b1bJlS0lSTEyMevTooRUrVujxxx+XZE8GFy9erLvuuktLly6VJMXFxamkpEQpKSl64IEH1Lt3b0nSCy+8oH379umTTz5RbGysJGno0KGKjo7WnDlztGfPHk8fPgAAQJ34fOTNYrHIYrFUW6e0tFSbN2/WLbfc4kjcJHviN3ToUG3cuNFRtm3bNhUVFSkpKcmpjaSkJBmGoU2bNjnKNm7cqF69ejkSN0kKDAzU5MmT9fnnnys3N7eBRwcAAOBePh95q41vvvlG586dU79+/Spt69evnzIzM1VUVKTg4GDt27dPktS3b1+nepGRkYqIiHBsl6R9+/Zp8ODBLtuUpC+//FIdOnRw2afi4mIVFxc7Hp8+fVqSVFJS4vLauoYqb9MTbcOOGHsHcfY8YuwdxNnzmlqMa3ucpkje8vLyJEk2m63SNpvNJsMwdPLkSUVGRiovL09Wq1WhoaEu65a3Vd5uVW1WfF5Xli1bptTU1Erl77//vkJCQmo+qHrKzMz0WNuwI8beQZw9jxh7B3H2vKYS48LCwlrVM0XyVq666dWK22pbr651K5o7d65mz57teHz69Gl16tRJ8fHxTlO77lJSUqLMzEwNHz5cQUFBbm8fxNhbiLPnEWPvIM6e19RiXD6LVxNTJG/h4eGSXI+E5efny2KxqFWrVo66RUVFKiwsrDQClp+fr5iYGKd2q2pTcj3SV85qtcpqtVYqDwoK8ugJ5un2QYy9hTh7HjH2DuLseU0lxrU9Rp/fsFAbV111lZo3b66cnJxK23JyctS9e3cFBwdLunit26V1jx49qhMnTqhPnz6Osr59+1bZpiSnugAAAP7AFMlbYGCgRo8erYyMDJ05c8ZR/t1332nnzp1KTEx0lCUkJCg4OFjp6elObaSnp8tisTitJTdu3Djt37/faUmQ0tJSrV+/XgMHDlT79u09dkwAAAD14RfTplu3blVBQYEjMfvqq6/01ltvSZJGjhypkJAQpaam6rrrrtOoUaOUnJysoqIiLVy4UBEREXrooYccbdlsNqWkpGjBggWy2WyKj49Xdna2Fi1apGnTpjnWeJOkqVOnKi0tTRMmTNDy5cvVpk0bPfPMM/r666+1Y8cO7wYBAACgFvwiebv33nt16NAhx+MNGzZow4YNkqQDBw6oa9euioqK0q5du/Twww9r/PjxCgwM1I033qgVK1aodevWTu3Nnz9fLVq0UFpamlasWKF27dopOTlZ8+fPd6pntVqVlZWlOXPm6P7771dhYaH69++vrVu3asiQIZ4/cAAAgDryi+Tt4MGDtaoXExNT6xGxmTNnaubMmTXWa9u2rdatW1erNgEAAHzNFNe8AQAAwI7kDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATMQ0yduuXbtksVhc/nz22WdOdffu3aubbrpJYWFhatWqlRITE/Xtt9+6bHf16tWKioqS1WpVt27dlJqaqpKSEm8cEgAAQJ0F+roDdbV06VINHTrUqaxPnz6O3/fv36+4uDj1799fb775poqKirRw4UINHjxYf/vb39S6dWtH3SVLlmjBggVKTk5WfHy8srOzlZKSotzcXK1Zs8ZrxwQAAFBbpkveevTooUGDBlW5feHChbJardq8ebNatmwpSYqJiVGPHj20YsUKPf7445KkvLw8LV68WHfddZeWLl0qSYqLi1NJSYlSUlL0wAMPqHfv3p4/IAAAgDowzbRpbZSWlmrz5s265ZZbHImbJHXp0kVDhw7Vxo0bHWXbtm1TUVGRkpKSnNpISkqSYRjatGmTt7oNAABQa6YbeZsxY4YmTpyokJAQxcbGasGCBbr++uslSd98843OnTunfv36VdqvX79+yszMVFFRkYKDg7Vv3z5JUt++fZ3qRUZGKiIiwrG9KsXFxSouLnY8Pn36tCSppKTEI9fMlbfJ9XieQ4y9gzh7HjH2DuLseU0txrU9TtMkb5dffrlmzZqluLg4hYeH69///reeeOIJxcXF6a9//atGjBihvLw8SZLNZqu0v81mk2EYOnnypCIjI5WXlyer1arQ0FCXdcvbqsqyZcuUmppaqfz9999XSEhIPY+yZpmZmR5rG3bE2DuIs+cRY+8gzp7XVGJcWFhYq3qmSd6uueYaXXPNNY7HgwcP1rhx49S3b1/NmTNHI0aMcGyzWCxVtlNxW23ruTJ37lzNnj3b8fj06dPq1KmT4uPjnaZs3aWkpESZmZkaPny4goKC3N4+iLG3EGfPI8beQZw9r6nFuHwWryamSd5cadWqlUaNGqXnnntO586dU3h4uCS5HDXLz8+XxWJRq1atJEnh4eEqKipSYWFhpZGy/Px8xcTEVPvcVqtVVqu1UnlQUJBHTzBPtw9i7C3E2fOIsXcQZ89rKjGu7TGa/oYFwzAk2UfKrrrqKjVv3lw5OTmV6uXk5Kh79+4KDg6WdPFat0vrHj16VCdOnHBafgQAAMBfmDp5O3nypDZv3qz+/fsrODhYgYGBGj16tDIyMnTmzBlHve+++047d+5UYmKioywhIUHBwcFKT093ajM9PV0Wi0Vjx4710lEAAADUnmmmTSdNmqTOnTvrZz/7mSIiIvSvf/1LTz75pH788UenBCw1NVXXXXedRo0apeTkZMcivREREXrooYcc9Ww2m1JSUrRgwQLZbDbHIr2LFi3StGnTWOMNAAD4JdMkb/369dMbb7yh5557TmfPnpXNZtP111+vl19+Wdddd52jXlRUlHbt2qWHH35Y48ePV2BgoG688UatWLHC6dsVJGn+/Plq0aKF0tLStGLFCrVr107JycmaP3++tw8PAACgVkyTvCUnJys5OblWdWNiYrRjx45a1Z05c6ZmzpzZkK4BAAB4jamveQMAAGhqSN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4knT17Vg888IDat2+v4OBg9e/fX6+//rqvuwUAAFBJoK874A8SExOVnZ2t5cuXq2fPnnr11Vd166236sKFC5o0aZKvuwcAAODQ5JO3LVu2KDMz05GwSdLQoUN16NAh/f73v9dvfvMbBQQE+LiXAAAAdk1+2nTjxo0KCwvThAkTnMqTkpJ05MgR7dmzx0c9AwAAqKzJj7zt27dP//Vf/6XAQOdQ9OvXz7H95z//eaX9iouLVVxc7Hh86tQpSVJ+fr5KSkrc3s+SkhIVFhYqLy9PQUFBbm8fxNhbiLPnEWPvIM6e19RifObMGUmSYRjV1mvyyVteXp6uvPLKSuU2m82x3ZVly5YpNTW1Unm3bt3c20EAANCknDlzRpdffnmV25t88iZJFoulztvmzp2r2bNnOx5fuHBB+fn5Cg8Pr7a9+jp9+rQ6deqkw4cPq2XLlm5vH8TYW4iz5xFj7yDOntfUYmwYhs6cOaP27dtXW6/JJ2/h4eEuR9fy8/MlXRyBu5TVapXVanUqa9Wqldv7d6mWLVs2iRPYl4ixdxBnzyPG3kGcPa8pxbi6EbdyTf6Ghb59++of//iHSktLncpzcnIkSX369PFFtwAAAFxq8snbuHHjdPbsWb399ttO5evWrVP79u01cOBAH/UMAACgsiY/bfrLX/5Sw4cP17333qvTp0+re/fueu2117Rt2zatX7/eb9Z4s1qteuSRRypN1cJ9iLF3EGfPI8beQZw9jxi7ZjFquh+1CTh79qzmz5+vN998U/n5+YqKitLcuXM1ceJEX3cNAADACckbAACAiTT5a94AAADMhOQNAADAREjePODs2bN64IEH1L59ewUHB6t///56/fXXa9wvIyNDt956q7p3767mzZura9eu+u1vf6t//etflerGxcXJYrFU+klISKhUt6SkRKmpqeratausVquioqK0evVqtxyrL/lTnA8ePOiynsViqVWf/JU3YixJBQUFWrhwoXr27Cmr1arw8HANHTq0Uv3GeC77U4wb63kseT7O1cXO1WsG5/JFnohxYz6XJe429YjExERlZ2dr+fLl6tmzp1599VXdeuutunDhgiZNmlTlfo8//rjatWun+fPn68orr9Thw4e1dOlSXXvttfrss8909dVXO9W/8sor9corrziVuVooePr06Xr55Zf12GOP6brrrtP27ds1a9YsnTlzRvPmzXPLMfuCv8VZku6///5Kz92jR4/6HaAf8EaMz549q6FDh+rIkSNKTk5Wv379dOrUKX3yyScqLCx0arcxnsv+FmOp8Z3HkufjHBkZqU8//bTS/ps2bdLjjz+ucePGOZVzLl/kqRhLjfNcliQZcKu//vWvhiTj1VdfdSofPny40b59e6O0tLTKfX/88cdKZbm5uUZQUJBx5513OpUPGTLEuPrqq2vsz759+wyLxWIsXbrUqfyuu+4ymjdvbuTl5dXYhj/ytzgfOHDAkGQ88cQTtTwC/+etGM+aNcsIDQ01vvnmm2r70xjPZX+LcWM8jw3De3F2JS4uzggJCTFOnTrlKONcduaJGDfWc7kc06ZutnHjRoWFhWnChAlO5UlJSTpy5Ij27NlT5b5t2rSpVNa+fXt17NhRhw8frld/Nm3aJMMwlJSUVKk/586d07Zt2+rVrq/5W5wbI2/EuLCwUM8//7wmTJigK6+8str+NMZz2d9i3Fj56vXim2++0e7du/XrX//a6audOJedeSLGjR3Jm5vt27dP//Vf/6XAQOcZ6X79+jm218W3336rQ4cOVZrKk+wnrc1mU2BgoK666irNnz9f586dq9Sf1q1bq127dm7pj7/wtziXW758uZo1a6aQkBBdf/31evfdd+vUD3/ijRh/8cUXKigoUI8ePXTvvffqiiuuULNmzfSzn/1Mf/3rXyv1p7Gdy/4W43KN6TyWvPt6UdGLL74owzA0bdq0Sv3hXK5eQ2NcrrGdy+VI3twsLy/P5ZfZl5fl5eXVuq3S0lLdeeedCgsL04MPPui07frrr9dTTz2lt99+W++++65GjhypP/zhD0pISNCFCxdq7E9oaKiaNWtWp/74E3+Ls9Vq1V133aVnn31WH3zwgZ5//nmVlZVpzJgxev755+t5lL7ljRjn5uZKsl/zkpOTo5deekkbN25Uy5YtNXr0aG3fvr3G/pj5XPa3GDfG81jy3utFRWVlZVq3bp2ioqL0i1/8olb94Vy2c0eMG+u5XI4bFjzAYrHUa1tFhmHozjvv1EcffaS3335bnTp1ctq+ePFip8cjR45U165d9bvf/U7vvPOO04Wb7uiPP/KnOEdGRmrNmjVOdSdMmKCBAwcqOTlZU6ZMqfSJ1Aw8HePyBLhZs2baunWrWrRoIUkaOnSoevTooccee0wjRoxwa3/8jT/FuLGex5J3Xi8q2rZtm3Jzc/XEE094rD/+xp9i3JjPZYmRN7cLDw93+QkjPz9fklx+MrlU+RDw+vXrlZ6erjFjxtTquSdPnixJ+uyzz2rsT0FBgc6fP1+r/vgjf4uzK0FBQfrNb36jvLy8Kpdv8GfeiHF4eLgk6ec//7kjqZCkkJAQDRkyRHv37q2xP2Y+l/0txq6Y/TyWfPN68cILLygoKEi33357rfvDuey+GLvSGM7lciRvbta3b1/94x//UGlpqVN5Tk6OJKlPnz7V7l9+8q5du1bPP/+8I1Goi8suu/hn7du3r44fP66jR4/Wqz/+yt/iXN3z1Lauv/FGjMuvh6lq/8Z+LvtbjKurJ5nzPJa8/3px7Ngxbd68Wb/61a9cXozPuVyZu2Nc3fNI5j2XHbxzU2vTsWXLFkOS8frrrzuVJyQk1Hi79IULF4w777zTsFgsxpo1a+r83I8//rghydi0aZOjrPyW9OXLlzvVveeee0x7S7ph+F+cXTl//rzRv39/IyIiotr++CtvxTg2NtYIDw93us2/oKDAiIyMNIYNG+Yoa4znsr/F2BWzn8eG4f3XiyeeeMKQZGzZssXlds5lZ56IsSuN4VwuR/LmAcOHDzeuuOIKY82aNcYHH3xg3HXXXYYkY/369Y46U6dONQICAoyDBw86yu677z5DkjF16lTj008/dfrZu3evo96HH35ojBgxwnjuueeM999/33j33XeNe++91wgICDBuvPFGo6yszKk/06ZNM6xWq/HEE08Yu3btMubNm2dYLBZjyZIlng+GB/lTnB988EHjvvvuM1577TVj586dxksvvWRcd911hiRj7dq1XomHJ3g6xoZhGB9//LHRrFkzY9CgQcbGjRuNTZs2GYMHDzaCgoKMTz75xKluYzyX/SnGjfU8NgzvxLlcVFSU0alTp0qvxRVxLns2xo35XDYMkjePOHPmjDFz5kyjXbt2RrNmzYx+/foZr732mlOdO+64w5BkHDhwwFHWpUsXQ5LLny5dujjq/etf/zJGjhxpdOjQwbBarUZwcLDRt29fY8mSJUZRUVGl/pw/f9545JFHjM6dOxvNmjUzevbsafzxj3/01OF7jT/F+YUXXjAGDBhg2Gw2IzAw0LjiiiuMESNGGNu3b/dkCDzO0zEu99FHHxlDhgwxQkJCjJCQEOPGG280Pv7440r1GuO57E8xbqznsWF4L84ff/yxIclYuHBhtf3hXD7gKPNEjBvzuWwYhmExjP9MAAMAAMDvmfyKPQAAgKaF5A0AAMBESN4AAABMhOQNAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4A+IWDBw/KYrEoPT3d7W1nZWXpZz/7mUJDQ2WxWLRp0yalp6fLYrHo4MGDbn++irp27aopU6Z49DnM4KuvvtKiRYs8Hm+gKQj0dQcAwJMMw9Cvf/1r9ezZU++++65CQ0PVq1cvlZaW6tNPP1VkZKSvu9gkfPXVV0pNTVVcXJy6du3q6+4ApkbyBqBRO3LkiPLz8zVu3DgNGzbMaVvr1q191CvfKikpkcViUWBg5beAwsJChYSE+KBXAGqLaVMAHvXvf/9bSUlJ6tGjh0JCQtShQweNHj1aOTk5Ne57/Phx3X333erUqZOsVqtat26tX/ziF9qxY0etnnvRokXq2LGjJOnhhx+WxWJxjPq4mjaNi4tTnz59lJ2drcGDByskJERXXnmlli9frgsXLjjqFRUV6aGHHlL//v11+eWXy2azKTY2Vu+8807tA1ODV199VbGxsQoLC1NYWJj69++vF154wbG9qunYuLg4xcXFOR7v2rVLFotFL7/8sh566CF16NBBVqtV//73vzVlyhSFhYUpJydH8fHxatGihSPBPX/+vBYvXqyoqChH7JOSknT8+HGn5+vatatGjRqlbdu26dprr1Xz5s0VFRWlF1980VEnPT1dEyZMkCQNHTpUFovFY1PkQFPAyBsAjzpy5IjCw8O1fPlytW7dWvn5+Vq3bp0GDhyo//f//p969epV5b633Xab9u7dqyVLlqhnz5766aeftHfvXuXl5dXquadNm6bo6GglJibq/vvv16RJk2S1Wqvd5+jRo/rtb3+rhx56SI888og2btyouXPnqn379rr99tslScXFxcrPz9fvfvc7dejQQefPn9eOHTuUmJiotWvXOurV18KFC/XYY48pMTFRDz30kC6//HLt27dPhw4dqnebc+fOVWxsrJ577jlddtllatOmjSR7kvarX/1K99xzj5KTk1VaWqoLFy5ozJgx+uijjzRnzhz9/Oc/16FDh/TII48oLi5O//u//6vmzZs72v6///s/PfTQQ0pOTlbbtm31/PPP684771T37t11ww036Oabb9bSpUs1b948paWl6dprr5UkXXXVVQ2KE9BkGQDgRaWlpcb58+eNHj16GA8++KCj/MCBA4YkY+3atY6ysLAw44EHHmjQ85W3+8QTTziVr1271pBkHDhwwFE2ZMgQQ5KxZ88ep7q9e/c2RowYUe0xlZSUGHfeeadxzTXXOG3r0qWLcccdd9S6v99++60REBBg/Pa3v622XlXtDhkyxBgyZIjj8c6dOw1Jxg033FCp7h133GFIMl588UWn8tdee82QZLz99ttO5dnZ2YYk45lnnnHqR3BwsHHo0CFH2blz5wybzWbcc889jrINGzYYkoydO3dWe1wAasa0KQCPKi0t1dKlS9W7d281a9ZMgYGBatasmf71r3/pH//4R7X7DhgwQOnp6Vq8eLE+++wzlZSUeLy/7dq104ABA5zK+vXrV2nUa8OGDfrFL36hsLAwBQYGKigoSC+88EKNx1STzMxMlZWVacaMGQ1q51K33HJLrbdt3rxZrVq10ujRo1VaWur46d+/v9q1a6ddu3Y51e/fv786d+7seBwcHKyePXs2aKQQQNVI3gB41OzZs7VgwQKNHTtW7733nvbs2aPs7GxFR0fr3Llz1e77xhtv6I477tDzzz+v2NhY2Ww23X777Tp69KjH+hseHl6pzGq1OvU1IyNDv/71r9WhQwetX79en376qbKzszV16lQVFRU16PnLrykrv1bPXaq6qzYkJEQtW7Z0Kvvxxx/1008/qVmzZgoKCnL6OXr0qE6cOOFUvzYxA+A+XPMGwKPWr1+v22+/XUuXLnUqP3HihFq1alXtvhEREVq5cqVWrlyp7777Tu+++66Sk5N17Ngxbdu2zYO9rt769evVrVs3vfHGG7JYLI7y4uLiBrddfgfs999/r06dOlVZLzg42OXznThxQhEREZXKK/azpvKIiAiFh4dXGeMWLVpU2S8AnkfyBsCjLBZLpZsE/vrXvyo3N1fdu3evdTudO3fWfffdp6ysLH388cfu7madWCwWNWvWzCnxOXr0qFvuNo2Pj1dAQICeffZZxcbGVlmva9eu+vvf/+5U9s9//lNff/21y+StLkaNGqXXX39dZWVlGjhwYIPaKld+DjAaBzQcyRsAjxo1apTS09MVFRWlfv366YsvvtATTzxR47TgqVOnNHToUE2aNElRUVFq0aKFsrOztW3bNiUmJnqp966NGjVKGRkZmj59usaPH6/Dhw/rscceU2RkpP71r381qO2uXbtq3rx5euyxx3Tu3Dndeuutuvzyy/XVV1/pxIkTSk1NlWS/E3fy5MmaPn26brnlFh06dEh/+MMf3LJ23cSJE/XKK69o5MiRmjVrlgYMGKCgoCB9//332rlzp8aMGaNx48bVqc0+ffpIktasWaMWLVooODhY3bp1cznlCqB6JG8APGrVqlUKCgrSsmXLdPbsWV177bXKyMhQSkpKtfsFBwdr4MCBevnll3Xw4EGVlJSoc+fOevjhhzVnzhwv9d61pKQkHTt2TM8995xefPFFXXnllUpOTtb333/vSK4a4tFHH1WPHj20evVq/fa3v1VgYKB69OihmTNnOupMmjRJR44c0XPPPae1a9eqT58+evbZZ93y/AEBAXr33Xe1atUqvfzyy1q2bJkCAwPVsWNHDRkyRH379q1zm926ddPKlSu1atUqxcXFqaysTGvXruWrw4B6sBiGYfi6EwAAAKgd7jYFAAAwEaZNAZiSYRgqKyurtk5AQECVd1n6QllZmaqb7LBYLAoICPBijwCYESNvAExp3bp1ldYgu/Rn9+7dvu6mk6uuuqra/pZ/rygAVIdr3gCYUl5eng4cOFBtnV69evnVmmQ5OTnVrgXXokWLar/rFQAkkjcAAABTYdoUAADAREjeAAAATITkDQAAwERI3gAAAEyE5A0AAMBESN4AAABMhOQNAADARP4/c5tY4XsHwZAAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0027\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.270 - 0.300 A" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.27 , 0.2709, 0.2718, 0.2727, 0.2736, 0.2745, 0.2754, 0.2763,\n", " 0.2772, 0.2781, 0.279 , 0.2799, 0.2808, 0.2817, 0.2826, 0.2835,\n", " 0.2844, 0.2853, 0.2862, 0.2871, 0.288 , 0.2889, 0.2898, 0.2907,\n", " 0.2916, 0.2925, 0.2934, 0.2943, 0.2952, 0.2961, 0.297 , 0.2979,\n", " 0.2988, 0.2997, 0.3006]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABSzklEQVR4nO3de1xVVf7/8fcR8CDgJcAL4rW0GPNWjBdmIjGTyCyVdDLHSkyb32Sp6YzhNam8VFY6jtXXydTJyrLQZsy7gVmZ+a3vTFpZM6WmqKlgeUEQcP/+OHH0eA63zYFzNryejwcPOGuvs/baHzf4OXvtvZbNMAxDAAAAsIQ6vu4AAAAAyo/kDQAAwEJI3gAAACyE5A0AAMBCSN4AAAAshOQNAADAQkjeAAAALITkDQAAwEJI3gAAACzE58nbv/71L912221q1aqV6tWrp/DwcMXFxWnFihVudT///HPdfPPNCgsLU6NGjZScnKzvv//eY7sLFy5UTEyM7Ha72rZtq7S0NBUUFLjVO3bsmEaMGKHIyEiFhIQoLi5OW7du9fpxAgAAeIPPk7effvpJLVu21OzZs7Vu3Tr9/e9/V5s2bXTPPffoySefdNbbu3evEhISdP78eb311lt65ZVX9O233yo+Pl7Hjx93aXPWrFkaN26ckpOTtXHjRj344IOaPXu2xowZ41IvPz9fffr00datW7VgwQK9++67atq0qZKSkrRt27ZqOX4AAICKsPnr2qY9e/bU4cOH9cMPP0iSfve73ykjI0PfffedGjRoIEk6cOCA2rdvr0ceeURPPfWUJCk7O1stWrTQvffeq//5n/9xtjd79mxNmzZNe/bsUYcOHSRJL7zwgsaMGaOPP/5YcXFxkqTCwkJ16dJFYWFh2rlzZ3UeMgAAQJl8fuWtJJGRkQoMDJTkSKjWrl2rO++805m4SVLr1q3Vu3dvrV692lm2YcMG5eXlKSUlxaW9lJQUGYahNWvWOMtWr16ta665xpm4SVJgYKCGDx+uTz/9VFlZWVV0dAAAAOYE+roDxS5cuKALFy7o5MmTWrVqlTZu3Ki//vWvkqTvvvtO586dU+fOnd3e17lzZ23evFl5eXkKDg7Wnj17JEmdOnVyqRcVFaXIyEjndknas2eP4uPjPbYpSV9++aWio6M99jc/P1/5+fku/c/JyVFERIRsNlsFjx4AANR2hmHo9OnTat68uerUKfn6mt8kbw8++KBzmLNu3br6y1/+oj/84Q+SHEOhkhQeHu72vvDwcBmGoZMnTyoqKkrZ2dmy2+0KDQ31WLe4reJ2S2rz0v16MmfOHKWlpVXgCAEAAMp28OBBtWjRosTtfpO8TZkyRaNGjdKxY8f0z3/+Uw899JDOnj2rP/3pT846pV3RunRbeetVtO6lJk+erAkTJjhf//zzz2rVqpX27dun+vXrl/g+swoKCpSRkaHevXsrKCjI6+3XZMTOPGJnHrEzj9iZQ9zM85fYnT59Wm3bti0zj/Cb5K1Vq1Zq1aqVJKlfv36SHAnSfffdp4iICEmer4Tl5OTIZrOpUaNGkqSIiAjl5eUpNzdXISEhbnVjY2OdryMiIkpsU/J8pa+Y3W6X3W53Kw8PD3e5L89bCgoKFBISooiICH4pK4jYmUfszCN25hE7c4ibef4Su+J9l3X7ld8+sNC9e3cVFhbq+++/11VXXaV69epp9+7dbvV2796tdu3aKTg4WNLFe90ur3v06FGdOHFCHTt2dJZ16tSpxDYludQFAADwB36bvGVkZKhOnTq68sorFRgYqNtvv13p6ek6ffq0s84PP/ygjIwMJScnO8uSkpIUHBysZcuWubS3bNky2Ww2DRw40Fk2aNAg7d2712VKkMLCQq1YsUI9evRQ8+bNq+z4AAAAzPD5sOkDDzygBg0aqHv37mratKlOnDihVatW6c0339Sf//xnNW7cWJKUlpambt26qX///kpNTVVeXp5mzJihyMhITZw40dleeHi4pk2bpunTpys8PFyJiYnatWuXZs6cqVGjRjnneJOkkSNHatGiRRoyZIjmzp2rJk2a6IUXXtA333yjLVu2VHssAAAAyuLz5C0uLk5Lly7V8uXL9dNPPyksLExdunTRq6++quHDhzvrxcTEKDMzU48++qgGDx6swMBA3XTTTZo3b54zwSs2depU1a9fX4sWLdK8efPUrFkzpaamaurUqS717Ha7tm7dqkmTJunhhx9Wbm6uunbtqvXr16tXr17VcvwAAAAV4fPkLSUlxW1C3ZLExsaW+4rY2LFjNXbs2DLrNW3aVMuXLy9XmwAAAL7mt/e8AQAAwB3JGwAAgIWQvAEAAFgIyRsAAICFkLwBAABYCMkbAACoNc6elWw2x9fZs77ujTkkbwAAABZC8gYAAGAhJG8AAAAWQvIGAABgISRvAAAAFkLyBgAAYCEkbwAAABZC8gYAAGAhJG8AAAAWQvIGAABgISRvAAAAFkLyBgAAYCEkbwAAABZC8gYAAGAhJG8AAAAWQvIGAABgISRvAAAAFkLyBgAAYCEkbwAAABYS6OsOAAAA+LuiImn7dunIESkqSoqPlwICfNMXkjcAAIBSpKdLY8dKWVkXy1q0kBYskJKTq78/DJsCAACUID1dGjzYNXGTHK8HD3Zsr24kbwAAAB4UFUnjxkmG4b6tuGz8eEe96kTyBgAA4MH27dKhQyVvNwzp4EFHvepE8gYAAGqNS6+SffBB6VfNjhwpX5vlrectJG8AAKBWSE+XOnS4+LpfP6lNG2n1apvH+lFR5Wu3vPW8heQNAABYSlGRlJkpvfGG43t57jkr7cGDoUMDtGOHewYWH+94qtTmObeTzSa1bOmoV51I3gAAgGWkp0utW0u9e0vDhjm+t2lT+lOf5XnwYMmSjm5JYECAYzoQyT2BK349f371z/dG8gYAACzB7LQdZT94YNOJEyH68EP3S2zJydLbb0vNm7uWt2jhKPfFPG9M0gsAACrl7FkpLMzx85kzUmio9/dR1tUzm80xbceAAe5Xwir74EFysqNdVlgAAAAop4pM25GQ4LrNGw8eBAS4t+srDJsCAAC/V5mrZ2U/eGAoMjJXN9zg4bKeHyJ5AwAAfq8yV8/K8+DB/ffv8dkwaEWRvAEAAJ84e9aRPNlsjp9LU9lpO0p78GDlyiLFxVXzTLuVQPIGAAD8njem7UhOlr766uLrdeukffukQYOsMVxajOQNAIAa5tSpi1e01q+v/oXTq0rx1bPoaNfyikzbcWlyd+ONvntitDJI3gAAqEFWr7Z5XAKqtElsrSQ5Wdq/X8rIkF5/3fF93z7fzLfmK0wVAgBADbFjR5SefjrAbS604klsfTWprLf507QdvsCVNwAA/FBF1+8sKpJefrlTqUtAjR9fc4ZQazOSNwAA/IyZ9Ts//NCm7Ox6kjw/jnnpJLbedmlC+MEHJIhVjeQNAAA/Ynb9zsouAWVWerpq9D12/ojkzQKKiqRt22z64INobdtm4xMNANRQZa3fKZU89OmNJaAqymyiWYwrduaQvPm59HTHJ5i+fQP13HO/Vt++gXyiAYAaqiLrd17uhhsMRUSck83mec6ysiaxrajKJJoSV+wqg+TNjxV/orn8F7m8n2gAANZSmaHPgABp1KjdksxPYlsRlUk0K3vFrrYjefNTlf1EAwCwnsoOfcbFHdHKlUWVmsS2vMwmmvz/Vnkkb36qMp9oAADWVNn1OyXHUk/VMYmt2UST/98qz+fJ2/vvv6+RI0cqJiZGoaGhio6O1oABA/TZZ5+51BsxYoRsNpvbV0xMjMd2Fy5cqJiYGNntdrVt21ZpaWkqKChwq3fs2DGNGDFCkZGRCgkJUVxcnLZu3Volx1oRvnpqCADgO95Yv7O4nYQE6e67Hd/LO1RaHQvF8/9b5fk8eXvxxRe1f/9+jRs3TuvWrdOCBQt07Ngx9ezZU++//75L3Xr16mnHjh0uX2+++aZbm7NmzdK4ceOUnJysjRs36sEHH9Ts2bM1ZswYl3r5+fnq06ePtm7dqgULFujdd99V06ZNlZSUpG3btlXpcZfFF08NAQB8zxvrd1YHs4km/795geFjP/74o1vZ6dOnjaZNmxp9+vRxlt13331GaGhome2dOHHCCA4ONh544AGX8lmzZhk2m8348ssvnWWLFi0yJBkff/yxs6ygoMDo0KGD0b179wodx88//2xIMn7++ecKva8khYWG0aKFYdhshuG4iOz6ZbMZRsuWjnoo3fnz5401a9YY58+f93VXLIfYmUfszCN2DoWFhpGRYRivv+74Xtbfe2/E7cyZi//PnDlTvve8845hREe7/h/VsqWj3BNf///m6Rj95Zwrby7h8ytvTZo0cSsLCwtThw4ddPDgwQq3t2HDBuXl5SklJcWlPCUlRYZhaM2aNc6y1atX65prrlFcXJyzLDAwUMOHD9enn36qrMsfg6lG3rp0DgCwJrNDn9UtOVn66quLr9etK/0eO/5/qzy/XJj+559/1ueff66bbrrJpfzcuXNq1qyZjh8/rqioKA0cOFCPP/64wsPDnXX27NkjSerUqZPLe6OiohQZGencXlw33sNdn507d5Ykffnll4q+/Lr1L/Lz85Wfn+98ferUKUlSQUGBx3vrzLj9dmnlSpsmTAhQVtbFMzw62tCzzxbp9tsNeWlXNVrxv4e3/l1qE2JnHrEzj9iZ4424Od4a5GynvE1duHDxfXFxBbpwobjMs+L/3x55JECHD1fv/2+ejtFfzrny7t8vk7cxY8bo7Nmzmjp1qrOsS5cu6tKlizp27ChJ2rZtm55//nlt3bpVu3btUlhYmCQpOztbdrtdoaGhbu2Gh4crOzvb+To7O9sl8bu0XvH2ksyZM0dpaWlu5Zs2bVJISEg5j7Rsdrv0l79IX30VoZMng3XFFXnq0CFbAQGOTzcov82bN/u6C5ZF7MwjduYRO3MqE7fc3ABJ/SVJzz33v+ra9Vi5roDl5V1838aNGxUcXPY8H3a7NG9egIYNc7xv+vQdzv1V5f9vpfXV1+dcbm5uuer5XfI2ffp0vfbaa1q4cKFiY2Od5Y888ohLvb59++q6667T4MGD9be//c1lu62kR188bKtI3UtNnjxZEyZMcL4+deqUWrZsqcTERDVo0KDE95mVlFSgzZs3q2/fvgoKCvJ6+zVZQQGxM4vYmUfszKvq2J09K11xhaPdkycL5OGzviVVNm6rV9v0pz9dzNSeeCJO0dGGnnuuSIMGeV61odilT6becsst5Y7ppe+bMOHX1fJv4amv/vL7WjyKVxa/St7S0tL05JNPatasWXrooYfKrD9o0CCFhobqk08+cZZFREQoLy9Pubm5blfAcnJyXBLCiIgIj1fXcnJyJMnjVblidrtddrvdrTwoKKhK/+Gruv2ajNiZR+zMI3bmVVXsLm3SsQ+v78KnzMQtPV0aOtR94tzDh20aOjSwzKdczcbUF/8Wpe3T17+v5d23zx9YKJaWlqaZM2dq5syZmjJlSrnfZxiG6tS5eBjF97rt3r3bpd7Ro0d14sQJ57Brcd3L61363kvrWlFF5uux8j4BoDoUFUmZmdIbbzi+15QVAFjxwHr8Inl74oknNHPmTE2bNk2PPfZYud/39ttvKzc3Vz179nSWJSUlKTg4WMuWLXOpu2zZMtlsNg0cONBZNmjQIO3du1c7d+50lhUWFmrFihXq0aOHmjdvbvqYAABVqzqTqfR0qXVrqXdvadgwx/easog6Kx5Yj8+HTZ999lnNmDFDSUlJuu2221yGQCWpZ8+eOnDggIYNG6ahQ4eqXbt2stls2rZtm+bPn69rr71Wo0aNctYPDw/XtGnTNH36dIWHhysxMVG7du3SzJkzNWrUKHXo0MFZd+TIkVq0aJGGDBmiuXPnqkmTJnrhhRf0zTffaMuWLdUWAwBAxaSnO64WXZp0tGjhmILC25PYFi+ifvmVqeJF1P1p4lwzWPHAenyevP3zn/+U5JifbcOGDW7bDcNQgwYN1LRpUz333HP68ccfVVRUpNatW2vs2LGaMmWK25OlU6dOVf369bVo0SLNmzdPzZo1U2pqqsvTq5LjvrWtW7dq0qRJevjhh5Wbm6uuXbtq/fr16tWrV9UdNADUMGfPSr889K8zZ1SlN55XZzJV1pCizeYYUhwwwLrzkrHigfX4PHnLzMwss84VV1yh9Apemx47dqzGjh1bZr2mTZtq+fLlFWobAOAb1Z1MVWRIMSHBc53qTGzNKF6jNCvLc1xtNsd2D9OiWlJoqOfjtBK/uOcNAGBtl95v9sEHVXf/WXXfn+WNIcXqio1Z3ljxoDghMgz/S05rIpI3+AWeUgWsKz1duuR2YvXrV3U381d3MlXZIcXqjE1lJCc7hpsvf06vRYuqvaePpM8ckjf4BX//ZArAs+L7zy5fCrr4/jNvJynVnUwVDymWNGe7zSa1bOl5SLG6Y1NZFV2jFL5D8gafs8onUwCufDE/WHUnU2aHFK06d9qlx3HjjdZ9CKOmI3mDT1ntkymAi3wxP5gvkikzQ4rMnYaqRPIGn7HqJ1MADr6aH6w4mYqOdi2vymQqOVk6cEDKyJBef93xvbQhReZOQ1Xy+VQhqL288Qg+AN/x5fxgycmO6UC2b3ckQFFRjqHSkob5vJFMBQSU/2+RVedOqwnTaNQGJG/wqssfPEhMrNo/pgB8x9fzg/lzMuXr2KBmY9gUXlPRBw+s+skUgIM35gerLpV50MEMK8UG1kPyVoNV5/QbZh48qO4/pgC8z1fzg1WUL5Ipq8QG1kPyVkNV5/QbZh884JMpUDNYZX4wXyRTVokNrIXkrQaq7uk3KvMUF59MgZrBKvOD+SKZatDg4ioCt97qv7GBdfDAQg1T3Ys2S5V/8KCiT40BQGVYJdEESkLyVsN4Y/qNs2elsDDHz2fOlL3enDcePKjIU2MA/I/ZKSYq+vcGAMOmNY4vpt/gwQMAAKoPyVsN44vpN3jwAACA6kPyVsP46ioYDx4AAFA9SN5qGG9cBTM7PxyPxAOoqOqcjxKoKUjeaqDKXAWr7PxwPMUFoLxK+nuzenUJQwcAJJG81VhmroJV9/xwAGqv0v7eDB0aoB07WBcPKAnJWw1WkatgZldJAICKKs/fmyVLOlbZ35viaU0Mg6lJYE0kb5BUuVUSAKAiyv57Y9OJEyH68EOGTwFPSN4gyTfzwwGonfh7A1QOyRsk+WZ+OAC1E39vgMoheYMkVkkAapqzZx2/tzab42d/UvbfG0ORkbm64QYT620BtQDJGySxSgKA6lOevzf337+HvzdACUje4MQqCQCq64pdaX9vVq4sUlwcN7wBJSF5gwtWSQBQXUr6ezNoEMOlQGlI3uDGSqsk+PN9PYAvWWXZKSv9vQH8BckbvIrJLwHfq+wydwD8G8kbANQgLHMH1Hwkb3BjpatnVhkaAqqDN5a543cK8H8kb7AshoYAV5Vd5s4Xv1NW+rAI+AuSN1gSQ0OAu8osO8XvFGAdJG81WE39ROuNoSGgJjK77BS/U4C1kLzBcio7NATUVGaXueN3CrAWkjdYTmWGhoCazOwyd/xOAdZC8gbLMTs0BNQGZpa543cKsBaSN1iO2aEhoLao6DJ3/E4B1kLyBssxOzQE1CYVWXaK3ynAWkjeYElmhoYAlIzfKcA6An3dAcCs5GTp5pulhg0dr9etkxITuToAmMXvFGANJG+wtIoMDQG1SfE8jxXF7xTg/xg2BQAAsBCuvMHSzF5dKCpyTDh65Ihj+oP4eK4wAACsgeQNtU56umMpoEtnlG/RwvG0HTdlAwD8HcOmqFWKF9++fCkgFt8GAFgFyRtqDRbfBspWfCuCYTh+BuB/SN5Qa3z4oY3FtwEAlkfyhlqDxbcBADUByRtqDRbfBgDUBCRvqDVuuMFg8W0AgOWRvKHWYPFtAEBN4PPk7f3339fIkSMVExOj0NBQRUdHa8CAAfrss8/c6n7++ee6+eabFRYWpkaNGik5OVnff/+9x3YXLlyomJgY2e12tW3bVmlpaSooKHCrd+zYMY0YMUKRkZEKCQlRXFyctm7d6vXjhH8oXnw7Otq1nMW3AQBW4fPk7cUXX9T+/fs1btw4rVu3TgsWLNCxY8fUs2dPvf/++856e/fuVUJCgs6fP6+33npLr7zyir799lvFx8fr+PHjLm3OmjVL48aNU3JysjZu3KgHH3xQs2fP1pgxY1zq5efnq0+fPtq6dasWLFigd999V02bNlVSUpK2bdtWLceP6pecLO3fL2VkSK+/7vi+bx+JGwDAGny+wsKiRYvUpEkTl7KkpCS1a9dOs2fP1k033SRJmjFjhux2u9auXasGDRpIkmJjY9W+fXvNmzdPTz31lCQpOztbTz75pEaPHq3Zs2dLkhISElRQUKBp06Zp/Pjx6tChgyRpyZIl2rNnjz7++GPFxcVJknr37q0uXbpo0qRJ2rlzZ7XEANUvIEBKSPB1LwAAqDifX3m7PHGTpLCwMHXo0EEHDx6UJBUWFmrt2rW68847nYmbJLVu3Vq9e/fW6tWrnWUbNmxQXl6eUlJSXNpMSUmRYRhas2aNs2z16tW65pprnImbJAUGBmr48OH69NNPlZWV5a3DBAAA8AqfX3nz5Oeff9bnn3/uvOr23Xff6dy5c+rcubNb3c6dO2vz5s3Ky8tTcHCw9uzZI0nq1KmTS72oqChFRkY6t0vSnj17FO/h0cLi/Xz55ZeKvvzmqF/k5+crPz/f+frUqVOSpIKCAo/31lVWcZtV0XZN583YFRU5JvstXtD+hhuMGv2AA+edecTOPGJnDnEzz19iV979+2XyNmbMGJ09e1ZTp06V5BgKlaTw8HC3uuHh4TIMQydPnlRUVJSys7Nlt9sV6mFdl/DwcGdbxe2W1Oal+/Vkzpw5SktLcyvftGmTQkJCyjhC8zZv3lxlbdd0lY3djh1RevnlTsrOrucsi4g4p1GjdisurmbP7Mt5Zx6xM4/YmUPczPN17HJzc8tVz++St+nTp+u1117TwoULFRsb67LNVtIEXZdtK2+9ita91OTJkzVhwgTn61OnTqlly5ZKTEx0Gdr1loKCAm3evFl9+/ZVUFCQ19uvybwRu9WrbXr66QC3dVFzcoL19NPdtHJlkQYN8rBoqsVx3plH7MwjduYQN/P8JXbFo3hl8avkLS0tTU8++aRmzZqlhx56yFkeEREhyfOVsJycHNlsNjVq1MhZNy8vT7m5uW5XwHJyclwSwoiIiBLblDxf6Stmt9tlt9vdyoOCgqr0H76q26/JzMauqEiaOLGkBe1tstmkP/0pUHfeWXPniOO8M4/YmUfszCFu5vk6duXdt88fWCiWlpammTNnaubMmZoyZYrLtquuukr16tXT7t273d63e/dutWvXTsHBwZIu3ut2ed2jR4/qxIkT6tixo7OsU6dOJbYpyaUuaq/t28WC9gAAv+EXydsTTzyhmTNnatq0aXrsscfctgcGBur2229Xenq6Tp8+7Sz/4YcflJGRoeRLJuhKSkpScHCwli1b5tLGsmXLZLPZNHDgQGfZoEGDtHfvXpcpQQoLC7VixQr16NFDzZs3995BwrJY0B6+dPasYwUQm83xMwD4fNj02Wef1YwZM5SUlKTbbrtNn3zyicv2nj17SnJcmevWrZv69++v1NRU5eXlacaMGYqMjNTEiROd9cPDwzVt2jRNnz5d4eHhSkxM1K5duzRz5kyNGjXKOcebJI0cOVKLFi3SkCFDNHfuXDVp0kQvvPCCvvnmG23ZsqV6AgC/x4L2AAB/4vPk7Z///Kckx/xsGzZscNtu/HKjUUxMjDIzM/Xoo49q8ODBCgwM1E033aR58+apcePGLu+ZOnWq6tevr0WLFmnevHlq1qyZUlNTnU+vFrPb7dq6dasmTZqkhx9+WLm5ueratavWr1+vXr16VdERw2ri4x3LZ2Vleb7vzWZzbGdBewBAdfB58paZmVnuurGxseW+IjZ27FiNHTu2zHpNmzbV8uXLy90H1D7FC9oPHuxI1C5N4FjQHlWtqOjizx98ICUmcq4BtZ1f3PMG+DsWtIcvpKdLl9zpoX79pDZtHOUAai+fX3kDrCI5WRowwPFUafEKC/HxXAVB1UhPd1ztvXyoPivLUc6HBqD2InkDKoAF7VEdioqkceNKmlvQMVw/frzjwwQfHoDah2FTAPAzzC0IoDQkbwDgZ5hbEEBpSN4AwM8wtyCA0pC8AYCfKZ5bsHgqmsvZbFLLlswtCNRWJG8A4GeK5xaU3BM45hYEQPIGAH6oeG7By5dYZm5BAEwVAgB+KjlZuvlmqWFDx+t161hhAQBX3gDAr12aqN14I4kbAK68AYBfCw31PFkvgNqLK28AAAAWQvIGAABgISRvAAAAFsI9b0A1KSpyrEV55IhjZvz4eG4+BwBUHMkbUA3S06Vx41wXG2/RwjERK/N1AQAqgmFToIqlp0uDB7smbpKUleUoT0/3Tb8AANZE8gZUoaIixxU3T1M9FJeNH++oBwBAeZC8AVVo+3b3K26XMgzp4EFHPQAAyoPkDahCR454tx4AACRvQBWKivJuPQAASN6AKhQf73iq1GbzvN1mk1q2dNQDAKA8SN6AKhQQ4JgORHJP4Ipfz5/PfG8AgPIjeQOqWHKy9PbbUnS0a3mLFo5y5nkDAFQEk/QC1SA5WRowgBUWAACVR/IGVJOAACkhwde9AABYHcOmAAAAFsKVNwCoYkVFDJkD8B6SNwCoQqtX2zRxoutKGy1aOJ5C5mEVAGaYHjZ9/PHHdfjwYY/bjhw5oscff9x0pwCgJtixI0pDhwa4LZGWlSUNHiylp/umXwCszXTylpaWpkMlLNp4+PBhpaWlme4UAFhdUZH08sudZBju24rLxo931AOAijCdvBme/iL94syZMwoKCjLbNABY3ocf2pSdXU+S5+U1DEM6eNBxLxwAVESF7nn74osv9K9//cv5et26ddq7d69LnXPnzum1117TVVdd5ZUOAoAVHTni3XoAUKxCydvq1audw6E2m63E+9rq1aunpUuXVr53AGBRUVHerQcAxSqUvD3wwAPq37+/DMNQ9+7dtXTpUnXs2NGljt1u11VXXaV69ep5taMAYCU33GAoIuKccnKCZRjuQ6c2m+Op0/h4H3QOgKVVKHmLiopS1C8fEzMyMhQbG6uwsLAq6RgAWFlAgDRq1G49/XQ32WxyeXDB9ksuN38+870BqDjTDyz06tWLxA0AShEXd0QrVxYpOtq1vEUL6e23mecNgDmVmqR3xYoVev3113XgwAGdO3fOZZvNZtN3331Xqc4BgNUNGmTozjtZYQGA95hO3p566ilNnjxZHTp0UJcuXWS3273ZLwCoMQICpIQEX/cCQE1hOnlbvHixxowZo4ULF3qzPwAAACiF6Xvejh49qkGDBnmzLwAAACiD6eQtNjaWe9oAAACqmenk7bnnntOzzz6rzz77zJv9AQAAQClM3/OWkpKi7Oxsde/eXc2aNVNERITLdpvNpn//+9+V7iAAAAAuMp28RUREKDIy0pt9AQAAQBlMJ2+ZmZle7AYAAADKw/Q9bwAAAKh+pq+8ffDBB2XWufHGG802DwAAAA9MJ28JCQmyFa+uXIKioiKzzQMAAMAD08lbRkaGW9mJEyf07rvv6qOPPtKiRYsq1TEAAAC4M5289erVy2P5nXfeqf/3//6fNmzYoKSkJNMdAwAAgLsqeWBh0KBBWrlyZbnqnj59WpMmTVJiYqIaN24sm82mmTNnutUbMWKEbDab21dMTIzHdhcuXKiYmBjZ7Xa1bdtWaWlpKigocKt37NgxjRgxQpGRkQoJCVFcXJy2bt1aoeMFUDucPSvZbI6vs2d93RsAtZXpK2+lOXnypPLz88tVNzs7W4sXL1aXLl00cOBAvfzyyyXWrVevnt5//323ssvNmjVL06dPV2pqqhITE7Vr1y5NmzZNWVlZWrx4sbNefn6++vTpo59++kkLFixQkyZNtGjRIiUlJWnLli0lXl0EAADwFdPJ2w8//OBWlp+fry+++EKTJ09Wz549y9VO69atdfLkSdlsNp04caLU5K1OnTpltpudna0nn3xSo0eP1uzZsyU5Hq4oKCjQtGnTNH78eHXo0EGStGTJEu3Zs0cff/yx4uLiJEm9e/dWly5dNGnSJO3cubNcxwAAAFBdTA+btmnTRm3btnX5iomJ0ZAhQxQcHKy//vWv5WqnePjTWzZs2KC8vDylpKS4lKekpMgwDK1Zs8ZZtnr1al1zzTXOxE2SAgMDNXz4cH366afKysryWr8AAAC8wfSVt1deecUt6QoODlabNm3UrVs31anj/dvpzp07p2bNmun48eOKiorSwIED9fjjjys8PNxZZ8+ePZKkTp06ubw3KipKkZGRzu3FdePj493207lzZ0nSl19+qejoaI99yc/PdxkaPnXqlCSpoKDA4711lVXcZlW0XdMRO/OInStHGIJ++blApYWF2JlH7Mwhbub5S+zKu3/TyduIESPMvtWULl26qEuXLurYsaMkadu2bXr++ee1detW7dq1S2FhYZIcw6Z2u12hoaFubYSHhys7O9v5Ojs72yXxu7Re8faSzJkzR2lpaW7lmzZtUkhISMUOrgI2b95cZW3XdMTOPGLnkJcXIKm/JGnjxo0KDi57LktiZx6xM4e4mefr2OXm5parXqUfWDh9+rR27Nih7OxsRUZGqmfPnqpfv35lm3XzyCOPuLzu27evrrvuOg0ePFh/+9vfXLaXNgx7+baK1L3U5MmTNWHCBOfrU6dOqWXLlkpMTFSDBg1KfJ9ZBQUF2rx5s/r27augoCCvt1+TETvziJ2rS58wveWWW+ThM6ITsTOP2JlD3Mzzl9gVj+KVpVLJ27x585SWlqbc3FwZhiFJCg0NVVpamktiU1UGDRqk0NBQffLJJ86yiIgI5eXlKTc31+0KWE5OjmJjY13qerq6lpOTI0ker8oVs9vtstvtbuVBQUFV+g9f1e3XZFaN3dmz0i8XlnXmjEpNGKqKVWPnbZeGwBGT8ryH2JlF7Mwhbub5Onbl3bfpG9P+/ve/a9KkSbrxxhu1cuVKbd++XW+++aZ69eqlP//5z3r11VfNNl0hhmG43F9XfK/b7t27XeodPXpUJ06ccA67Fte9vN6l7720LuArl64y98EHrq8BALWP6eTt+eef17Bhw/Tee+9pyJAh+u1vf6shQ4Zo7dq1uvvuu/X88897s58evf3228rNzXWZPiQpKUnBwcFatmyZS91ly5bJZrNp4MCBzrJBgwZp7969LlOCFBYWasWKFerRo4eaN29e1YcAlCo9XfplZhtJUr9+Ups2jnIAQO1keth07969mjNnjsdtw4cP16BBg8rd1vr163X27FmdPn1akvTVV1/p7bffliT169dPx48f17BhwzR06FC1a9dONptN27Zt0/z583Xttddq1KhRzrbCw8M1bdo0TZ8+XeHh4c5JemfOnKlRo0Y553iTpJEjR2rRokUaMmSI5s6dqyZNmuiFF17QN998oy1btpgJC+A16enS4MHSL3ckOGVlOcrffltKTvZN3wAAvmM6eatXr57z3rDL5eTkeFz5oCR//OMfdeDAAefrVatWadWqVZKkffv2qWHDhmratKmee+45/fjjjyoqKlLr1q01duxYTZkyxe3J0qlTp6p+/fpatGiR5s2bp2bNmik1NVVTp051qWe327V161ZNmjRJDz/8sHJzc9W1a1etX7+e1RXgU0VF0rhx7omb5Ciz2aTx46UBA6SAgGrvXq11+RB2YiLxB1D9TCdv8fHxmjlzphISElyGF48eParHH39cN954Y7nb2r9/f5l10is4TjR27FiNHTu2zHpNmzbV8uXLK9Q2UNW2b5cOHSp5u2FIBw866iUkVFu3arX0dOnSPyn9+kktWkgLFnAFFED1Mp28zZ49W7/5zW/Url079enTR1FRUTpy5Ijef/99BQUFVTjZAnDRkSPerYfKYQgbgD8x/cDCtddeq127dmnAgAHatWuXli5dql27dmngwIH69NNPXe4tA1AxUVHerQfzyhrClhxD2DwFDKC6VGqet6uvvlpvvPGGt/oC4Bfx8Y4huawsz0mDzebY7mF1N3gZQ9gA/E2Fr7zt3r1bh0r5S3bo0CGPc6cBKL+AAMe9VJIjUbtU8ev587lZvjowhA3A31Qoefvggw8UGxurH3/8scQ6P/74o2JjY7Vx48ZKdw6ozZKTHfdSXT7dYIsW3GNVnRjCBuBvKpS8LVq0SIMHD3ZZYupysbGxuuuuu/Tyyy9XunNAbZecLH311cXX69ZJ+/aRuFWn4iHskpY6ttmkli0ZwgZQfSqUvH300UcuKxSU5I477nBZbxSAeQ0aOO6rMgzp1lsZKq1uDGED8DcVSt6OHz+u6OjoMutFRUXp2LFjpjsFAP6EIWwA/qRCT5uGhoaWuKrCpU6ePKmQkBDTnQIAf5OcLN18s9SwoeP1unWssADANyp05e3aa6/Vhg0byqy3fv16XXvttaY7BQD+6NJE7cYbSdwA+EaFkre77rpLS5Ys0bZt20qsk5GRoaVLl+ruu++udOcAAADgqkLDpg888ICWLVumxMREjRo1SgMGDFDbtm0lORaQX7NmjZYsWaIuXbpo9OjRVdJhAACA2qxCyVvdunW1ceNG3XPPPXrxxRf10ksvuWw3DEO33nqr/v73v6tu3bpe7SgAAABMLI8VERGhdevW6bPPPtOmTZt08OBBSVKrVq10yy236LrrrvN6JwEAAOBgem3T2NjYUifrBQAAgPdVKHnr3LlzuevabDb9+9//rnCHAAAAULIKJW/h4eGylbRGzC/OnDmjzz77rMx6AAAAqLgKJW+ZmZklbissLNTixYv1+OOPy2azadiwYZXtG4BKOHtWCgtz/HzmjBQa6tv+AAC8o0LzvJVk1apV6tChgx5++GF16dJFn332mV599VVvNA0AfiM09OI6syTDAHylUslbZmamevToobvuuksNGjTQpk2btHHjRnXt2tVL3QMAAMClTCVvu3fvVr9+/dSnTx9lZ2fr9ddf1//+7/+qT58+3u4fAAAALlGh5O3gwYO67777dP311+uzzz7T/Pnz9fXXX2vo0KFV1T8AAABcokIPLFx99dU6f/68kpKSNGnSJNWvX1+7d+8usf71119f6Q4CAADgogolb/n5+ZKk9evXa8OGDSXWMwxDNptNRUVFlesdAAAAXFQoeVu6dGlV9QMAAADlUKHk7b777quqfgAAAKAcvDLPGwD/c+ldCx984PoaAGBdJG9ADZSeLnXocPF1v35SmzaOcgCAtZG8ATVMero0eLCUleVanpXlKCeBAwBrI3kDapCiImncOMfyTZcrLhs/niFUALAykjegBtm+XTp0qOTthiEdPOioBwCwJpI3oAY5csS79QAA/ofkDahBoqK8Ww8A4H9I3oAaJD5eatFCstk8b7fZpJYtHfUAANZE8gbUIAEB0oIFjp8vT+CKX8+f76hXmxUVSZmZ0htvOL7zAAcAKyF5A2qY5GTp7bel5s1dy1u0cJQnJ/umX/4iPd0x513v3tKwYY7vzIEHwEpI3oAaKDlZ+uqri6/XrZP27SNxK54D7/IncpkDD4CVkLwBNdSlQ6M33shQKXPgAagpSN4A1ArMgQegpiB5A1ArMAcegJqC5A1ArcAceABqCpI3ALUCc+ABqClI3gDUCsyBB6CmIHkDUGsUz4EXHe1azhx4AKwk0NcdAIDqlJwsDRjgeKr0yBHHPW7x8VxxA2AdJG8Aap2AACkhwde9AABzSN6AGio01POEtAAAa+OeNwAAAAsheQMAALAQkjcAAAALIXkDAACwEJI3AAAAC/F58nb69GlNmjRJiYmJaty4sWw2m2bOnOmx7ueff66bb75ZYWFhatSokZKTk/X99997rLtw4ULFxMTIbrerbdu2SktLU0FBgVu9Y8eOacSIEYqMjFRISIji4uK0detWbx4iAACA1/g8ecvOztbixYuVn5+vgQMHllhv7969SkhI0Pnz5/XWW2/plVde0bfffqv4+HgdP37cpe6sWbM0btw4JScna+PGjXrwwQc1e/ZsjRkzxqVefn6++vTpo61bt2rBggV699131bRpUyUlJWnbtm1VcbgAAACV4vN53lq3bq2TJ0/KZrPpxIkTevnllz3WmzFjhux2u9auXasGDRpIkmJjY9W+fXvNmzdPTz31lCRHMvjkk09q9OjRmj17tiQpISFBBQUFmjZtmsaPH68OHTpIkpYsWaI9e/bo448/VlxcnCSpd+/e6tKliyZNmqSdO3dW9eEDAABUiM+vvNlsNtkuXyX6MoWFhVq7dq3uvPNOZ+ImORK/3r17a/Xq1c6yDRs2KC8vTykpKS5tpKSkyDAMrVmzxlm2evVqXXPNNc7ETZICAwM1fPhwffrpp8rKyqrk0QEAAHiXz6+8lcd3332nc+fOqXPnzm7bOnfurM2bNysvL0/BwcHas2ePJKlTp04u9aKiohQZGencLkl79uxRfHy8xzYl6csvv1T05StY/yI/P1/5+fnO16dOnZIkFRQUeLy3rrKK26yKtms6YmcesTOP2JlH7Mwhbub5S+zKu39LJG/Z2dmSpPDwcLdt4eHhMgxDJ0+eVFRUlLKzs2W32xUaGuqxbnFbxe2W1Oal+/Vkzpw5SktLcyvftGmTQkJCyj4okzZv3lxlbdd0xM48YmcesTOP2JlD3Mzzdexyc3PLVc8SyVux0oZXL91W3noVrXupyZMna8KECc7Xp06dUsuWLZWYmOgytOstBQUF2rx5s/r27augoCCvt1+TETvziJ15xM48YmcOcTPPX2JXPIpXFkskbxEREZI8XwnLycmRzWZTo0aNnHXz8vKUm5vrdgUsJydHsbGxLu2W1Kbk+UpfMbvdLrvd7lYeFBRUpf/wVd1+TUbszCN25hE784idOcTNPF/Hrrz79vkDC+Vx1VVXqV69etq9e7fbtt27d6tdu3YKDg6WdPFet8vrHj16VCdOnFDHjh2dZZ06dSqxTUkudQEAAPyBJZK3wMBA3X777UpPT9fp06ed5T/88IMyMjKUnJzsLEtKSlJwcLCWLVvm0sayZctks9lc5pIbNGiQ9u7d6zIlSGFhoVasWKEePXqoefPmVXZMAAAAZvjFsOn69et19uxZZ2L21Vdf6e2335Yk9evXTyEhIUpLS1O3bt3Uv39/paamKi8vTzNmzFBkZKQmTpzobCs8PFzTpk3T9OnTFR4ersTERO3atUszZ87UqFGjnHO8SdLIkSO1aNEiDRkyRHPnzlWTJk30wgsv6JtvvtGWLVuqNwgAAADl4BfJ2x//+EcdOHDA+XrVqlVatWqVJGnfvn1q06aNYmJilJmZqUcffVSDBw9WYGCgbrrpJs2bN0+NGzd2aW/q1KmqX7++Fi1apHnz5qlZs2ZKTU3V1KlTXerZ7XZt3bpVkyZN0sMPP6zc3Fx17dpV69evV69evar+wAEAACrIL5K3/fv3l6tebGxsua+IjR07VmPHji2zXtOmTbV8+fJytQkAAOBrlrjnDQAAAA4kbwAAABZC8gYAAGAhJG8AAAAWQvIGAABgISRvAAAAFkLyBgAAYCEkbwAAABZC8gYAAGAhJG8AAAAWQvIGAABgISRvAAAAFkLyBgAAYCEkbwAAABZC8gYAAGAhJG8AAAAWQvIGAABgISRvAAAAFkLyBgAAYCEkbwAAABZC8gYAAGAhJG8AAAAWQvIGAABgISRvAFycPSvZbI6vs2d93RsAwOVI3gAAACyE5A0AAMBCSN4AAAAshOQNAADAQkjeAAAALITkDQAAwEJI3gAAACyE5A0AAMBCSN4AuCgquvjzhx/aXF4DAHyP5A2AU3q61KHDxde33x6oBx5I1OrVNt91CgDgItDXHQDgH9LTpcGDJcNwLc/ODtbQoVJgoJSc7Ju+AQAu4sobABUVSePGuSduDo6rbuPHiyFUAPADJG8AtH27dOhQydsNw6aDBx31AAC+RfIGQEeOeLceAKDqkLwBUFSUd+sBAKoOyRsAxcdLLVpIthIeKrXZDLVs6agHAPAtkjcACgiQFixw/OyewDmeYpg/31HPnxQVSZmZ0htvOL7zQAWA2oDkDYAkxzQgb78tNW/uWh4ZeU4rVxb53TQh6elSmzZS797SsGGO723aOMoBoCYjeQPglJwsffXVxdf//Geh/ud/NmvQII9ziPhM8Zx0lz8hm5XlKCeBA1CTkbwBcHHp0OgNNxh+OVRa0px0xWXMSQegJiN5A2ApZc9JJ+akA1CjkbwBsBTmpANQ25G8AbAU5qQDUNuRvAGwlLLnpBNz0gGo0UjeAFhKaXPSFb/2xznpAMBbSN4AWE7xnHTR0a7lLVo4yv1tTjoA8KZAX3cAAMxITpYGDHA8VXrkiOMet/h4rrgBqPlI3gBYVkCAlJDg614AQPWyzLBpZmambDabx69PPvnEpe7nn3+um2++WWFhYWrUqJGSk5P1/fffe2x34cKFiomJkd1uV9u2bZWWlqaCgoLqOCTAL4WGOuZKMwzHzwAA/2K5K2+zZ89W7969Xco6duzo/Hnv3r1KSEhQ165d9dZbbykvL08zZsxQfHy8/vWvf6lx48bOurNmzdL06dOVmpqqxMRE7dq1S9OmTVNWVpYWL15cbccEAABQXpZL3tq3b6+ePXuWuH3GjBmy2+1au3atGjRoIEmKjY1V+/btNW/ePD311FOSpOzsbD355JMaPXq0Zs+eLUlKSEhQQUGBpk2bpvHjx6tDhw5Vf0AAAAAVYJlh0/IoLCzU2rVrdeeddzoTN0lq3bq1evfurdWrVzvLNmzYoLy8PKWkpLi0kZKSIsMwtGbNmurqNgAAQLlZ7srbmDFjNHToUIWEhCguLk7Tp0/XDTfcIEn67rvvdO7cOXXu3NntfZ07d9bmzZuVl5en4OBg7dmzR5LUqVMnl3pRUVGKjIx0bi9Jfn6+8vPzna9PnTolSSooKKiSe+aK2+R+vIojduYRO/OInXnEzhziZp6/xK68+7dM8tawYUONGzdOCQkJioiI0H//+18988wzSkhI0HvvvadbbrlF2dnZkqTw8HC394eHh8swDJ08eVJRUVHKzs6W3W5XqIc7ssPDw51tlWTOnDlKS0tzK9+0aZNCQkJMHmXZNm/eXGVt13TEzjxiZx6xM4/YmUPczPN17HJzc8tVzzLJ23XXXafrrrvO+To+Pl6DBg1Sp06dNGnSJN1yyy3ObbaS1s25bFt563kyefJkTZgwwfn61KlTatmypRITE12GbL2loKBAmzdvVt++fRUUFOT19msyYmcesTOP2JlH7Mwhbub5S+yKR/HKYpnkzZNGjRqpf//+eumll3Tu3DlFRERIkserZjk5ObLZbGrUqJEkKSIiQnl5ecrNzXW7UpaTk6PY2NhS922322W3293Kg4KCqvQfvqrbr8mInXnEzjxiZx6xM4e4mefr2JV335Z/YMEwDEmOK2VXXXWV6tWrp927d7vV2717t9q1a6fg4GBJF+91u7zu0aNHdeLECZfpRwAAAPyFpZO3kydPau3ateratauCg4MVGBio22+/Xenp6Tp9+rSz3g8//KCMjAwlX7LgYVJSkoKDg7Vs2TKXNpctWyabzaaBAwdW01EAAACUn2WGTYcNG6ZWrVrp17/+tSIjI/Wf//xHzz77rH788UeXBCwtLU3dunVT//79lZqa6pykNzIyUhMnTnTWCw8P17Rp0zR9+nSFh4c7J+mdOXOmRo0axRxvAADAL1kmeevcubPefPNNvfTSSzpz5ozCw8N1ww036NVXX1W3bt2c9WJiYpSZmalHH31UgwcPVmBgoG666SbNmzfPZXUFSZo6darq16+vRYsWad68eWrWrJlSU1M1derU6j48AACAcrFM8paamqrU1NRy1Y2NjdWWLVvKVXfs2LEaO3ZsZboGAABQbSx9zxsAAEBtQ/IGAABgISRvAAAAFkLyBgAAYCEkbwAAABZC8gYAAGAhJG8AfO7sWclmc3ydPevr3gCAfyN5A+BzRUUXf/7gA9fXAABXJG8AfCo9Xbp0Nbp+/aQ2bRzlAAB3JG8AfCY9XRo8WMrKci3PynKUk8ABgDuSNwA+UVQkjRsnGYb7tuKy8eMZQgWAy5G8AfCJ7dulQ4dK3m4Y0sGDjnoAgItI3gD4xJEj3q0HALUFyRsAn4iK8m49AKgtSN4A+ER8vNSihWNuN09sNqllS0c9AMBFJG8AfCIgQFqwwPHz5Qlc8ev58x31AAAXkbwB8JnkZOntt6XmzV3LW7RwlCcn+6ZfAODPAn3dAQC1W3KydPPNUsOGjtfr1kmJiVxxA4CSkLwB8LkGDTzP9wYAcMewKQAAgIWQvAEAAFgIyRsAAICFkLwBAABYCMkbAACAhZC8AQAAWAjJGwAAgIWQvAEAAFgIyRsArzh71rEmqc3m+BkAUDVI3gAAACyE5A2AVxQVXfz5gw9cXwMAvIfkDUClpadLHTpcfN2vn9SmjaMcAOBdJG8AKiU9XRo8WMrKci3PynKUk8ABgHeRvAEwrahIGjdOMgz3bcVl48czhAoA3kTyBsC07dulQ4dK3m4Y0sGDjnoAAO8geQNg2pEj3q0HACgbyRsA06KivFsPAFA2kjcApsXHSy1aOCbm9cRmk1q2dNQDAHgHyRsA0wICpAULHD9fnsAVv54/31EPAOAdJG8AKiU5WXr7bal5c9fyFi0c5cnJvukXANRUgb7uAADrS06Wbr5ZatjQ8XrdOikxkStuAFAVSN4AeEWDBp7newMAeBfDpgAAABZC8gYAAGAhJG8AAAAWQvIGAABgISRvAAAAFkLyBgAAYCEkbwAAABZC8gYAAGAhJG8AAAAWQvIGAABgISRvAAAAFkLyBgAAYCEkb5LOnDmj8ePHq3nz5goODlbXrl21cuVKX3cLAADATaCvO+APkpOTtWvXLs2dO1dXX321Xn/9dd199926cOGChg0b5uvuAQAAONX65G3dunXavHmzM2GTpN69e+vAgQP685//rLvuuksBAQE+7iUAAIBDrR82Xb16tcLCwjRkyBCX8pSUFB0+fFg7d+70Uc8AAADc1forb3v27NGvfvUrBQa6hqJz587O7b/5zW/c3pefn6/8/Hzn659//lmSlJOTo4KCAq/3s6CgQLm5ucrOzlZQUJDX26/JiJ15xM48YmcesTOHuJnnL7E7ffq0JMkwjFLr1frkLTs7W1deeaVbeXh4uHO7J3PmzFFaWppbedu2bb3bQQAAUKucPn1aDRs2LHF7rU/eJMlms1V42+TJkzVhwgTn6wsXLignJ0cRERGltmfWqVOn1LJlSx08eFANGjTwevs1GbEzj9iZR+zMI3bmEDfz/CV2hmHo9OnTat68ean1an3yFhER4fHqWk5OjqSLV+AuZ7fbZbfbXcoaNWrk9f5drkGDBvxSmkTszCN25hE784idOcTNPH+IXWlX3IrV+gcWOnXqpK+//lqFhYUu5bt375YkdezY0RfdAgAA8KjWJ2+DBg3SmTNn9M4777iUL1++XM2bN1ePHj181DMAAAB3tX7Y9NZbb1Xfvn31xz/+UadOnVK7du30xhtvaMOGDVqxYoXfzPFmt9v12GOPuQ3VomzEzjxiZx6xM4/YmUPczLNa7GxGWc+j1gJnzpzR1KlT9dZbbyknJ0cxMTGaPHmyhg4d6uuuAQAAuCB5AwAAsJBaf88bAACAlZC8AQAAWAjJWxU4c+aMxo8fr+bNmys4OFhdu3bVypUry3xfenq67r77brVr10716tVTmzZt9Pvf/17/+c9/XOrt379fNputxK+kpCSX+gUFBUpLS1ObNm1kt9sVExOjhQsXevWYvcWfYlda3fL0qbpVdewkx7JwzzzzjDp27KjQ0FA1bdpUt956qz7++GO3upx3rsobO84799idP39eM2bMUNu2bVW3bl21bt1akydP1rlz59zqct65Km/sast5t2XLFvXt21fNmzeX3W5XkyZNdNNNN2ndunUl1o+Li1NISIgiIyM1YsQIHTt2zK1etZ93Bryub9++RqNGjYyXXnrJeP/9941Ro0YZkozXXnut1Pd1797duOOOO4xXXnnFyMzMNF599VXjV7/6lREWFmbs2bPHWS8vL8/YsWOH29ejjz5qSDJeeukll3ZHjRpl2O124+mnnzYyMjKM1NRUw2azGbNmzaqS468Mf4rdvn37DEnGww8/7Fb/xIkTVRYDs6o6doZhGPfcc49Rp04dY+rUqcbWrVuNVatWGbGxsUZgYKCxc+dOl7qcd+Zix3nnHrvk5GQjODjYmD17trF582bj8ccfN+rWrWvcfvvtbu1y3pmLXW0571auXGmMGzfOWLlypZGZmWmkp6cbiYmJhiTj1VdfdambmZlpBAYGGgMGDDA2bdpkrFixwoiOjjY6duxo5OXludSt7vOO5M3L3nvvPUOS8frrr7uU9+3b12jevLlRWFhY4nt//PFHt7KsrCwjKCjIuP/++8vcd0JCghESEmL8/PPPzrI9e/YYNpvNmD17tkvd0aNHG/Xq1TOys7PLbLe6+Fvsiv+YPfPMMxU4Ct+ojtjl5eUZAQEBxvDhw13qHj582JBkjB071lnGeWc+dpx3rrHbsWOHIcl49tlnXerOnj3bkGRs2rTJWcZ5Zz52teW88+T8+fNGdHS0ER8f71LerVs3o0OHDkZBQYGz7KOPPjIkGS+88IKzzBfnHcOmXrZ69WqFhYVpyJAhLuUpKSk6fPiwdu7cWeJ7mzRp4lbWvHlztWjRQgcPHix1v9999522bdum3/3udy5Le6xZs0aGYSglJcWtP+fOndOGDRvKc1jVwt9iZyXVEbs6deqoTp06bku3NGjQQHXq1FFwcLCzjPPOfOyspDpi99FHH0mS+vXr51K3f//+kuQywTrnnfnYWUllYudJUFCQGjVqpMDAi1PfZmVladeuXbrnnntcyn/zm9/o6quv1urVq51lvjjvSN68bM+ePfrVr37l8o8tSZ07d3Zur4jvv/9eBw4c0LXXXltqvVdeeUWGYWjUqFFu/WncuLGaNWvmlf5UJX+LXbG5c+eqbt26CgkJ0Q033KB//OMfFepHdaiO2AUFBenBBx/U8uXLtWbNGp06dUr79+/X6NGj1bBhQ40ePdqlP5x35mJXjPPO4fz585LkNnlq8esvvvjCpT+cd+ZiV6y2nHcXLlxQYWGhDh8+rMcee0zffvutJk6c6LKPS9u8fD+X7sMX512tX2HB27Kzs3XllVe6lRcvcJ+dnV3utgoLC3X//fcrLCxMjzzySIn1ioqKtHz5csXExOi3v/2tW3+K932p0NBQ1a1bt0L9qWr+Fju73a7Ro0erb9++ioqK0g8//KCFCxdqwIAB+tvf/lZisucL1RW7559/Xg0bNtSdd96pCxcuSJJatWql999/X+3atXPpD+edudhx3rnGrkOHDpIcV5Hatm3rLP/www/d9sF5Zz52te2869evnzZu3CjJcQX8zTff1G233eayj0vbvHw/vj7vSN6qgM1mM7XtUoZh6P7779f27dv1zjvvqGXLliXW3bBhg7KysvTMM89UWX+qiz/FLioqSosXL3YpGzJkiHr06KHU1FSNGDHC7ZOfL1VH7GbNmqV58+Zp5syZio+P16lTp/TXv/5Vffv21aZNm3Tdddd5tT/VxZ9ix3nnGrtbb71V7dq106OPPqqmTZuqW7du+uSTTzRlyhQFBASoTh3XASTOO3Oxq23n3cKFC/XTTz/pyJEjWrFihe666y4tX75cd999d7naury8us87hk29LCIiwmOWnZOTI8lzFn+54iG8FStWaNmyZRowYECp9ZcsWaKgoCDde++95e7P2bNndf78+XL1p7r4W+w8CQoK0l133aXs7GyPj+X7SnXE7uuvv9aMGTOUlpam6dOnKyEhQXfccYfee+89NWrUSBMmTCizP7X1vKtI7Dypzedd3bp1tX79erVq1UqJiYm64oorNHjwYE2ZMkVXXHGFoqOjy+xPbT3vKhI7T2ryede+fXt169ZNd9xxh9566y316dNHY8aMcV4Vj4iIkOT5Kl5OTo7LPnxx3pG8eVmnTp309ddfq7Cw0KV89+7dkqSOHTuW+v7iX8alS5fq5Zdf1vDhw0utf+zYMa1du1Z33HGHx5tYO3XqpOPHj+vo0aOm+lOd/C12pe1Hktsnfl+qjtj9+9//lmEY6tatm0t5UFCQunTp4nJfB+edq4rErrT9SLXvvJOkdu3aaceOHTp06JC++OILHTt2TEOGDNGJEyd04403uvSH885VeWNX2n6kmnXeedK9e3edPHlSx48fd2mjuM3L93PpPnxy3nn9+dVabt26dYYkY+XKlS7lSUlJZT7CfOHCBeP+++83bDabsXjx4nLt75lnnjEkGevWrfO4vfgR5rlz57qU/+EPf/C7R+f9LXaenD9/3ujatasRGRlZ4cfRq1J1xG7btm2GJLdzKS8vz2jbtq3RtWtXZxnnnauKxM6T2nzeleSRRx4xQkNDjUOHDjnLOO/Kx1PsPKmJ550nFy5cMHr16mU0atTIZVqQ7t27Gx07dnRpr3j6lRdffNFZ5ovzjuStCvTt29e44oorjMWLFxvvv/++MXr0aEOSsWLFCmedkSNHGgEBAcb+/fudZQ899JAhyRg5cqTbJImff/65x33FxMQYLVu2NIqKikrsT/Hkgc8884yRmZlpTJkyxa8nrfSX2D3yyCPGQw89ZLzxxhtGRkaG8fe//93o1q2bIclYunSpV4/bG6o6dkVFRUa3bt2M4OBgY8aMGcaWLVuMd955x0hISPA4wSXnnbnYcd65/84+9dRTxvLly42MjAxj5cqVRnJyslGnTh2PE7Jy3pmLXW057+644w5j+vTpxjvvvGNkZmYar7/+unOS3kWLFrnsIyMjwwgMDDQGDRpkbN682XjttdeMli1bljpJb3WddyRvVeD06dPG2LFjjWbNmhl169Y1OnfubLzxxhsude677z5DkrFv3z5nWevWrQ1JHr9at27ttp/iyQJnzJhRan/Onz9vPPbYY0arVq2MunXrGldffbXxl7/8xRuH6nX+FLslS5YY3bt3N8LDw43AwEDjiiuuMG655RZj48aN3jpcr6qO2P3000/G1KlTjV/96ldGSEiI0aRJEyMhIcHj1UvOu9Yu7y9v7Djv3GOXlpZmXHXVVYbdbjcaNWpkJCUlGR988IHH/nDetXZ5f3ljV1vOu6eeesro1q2bccUVVxgBAQFGRESEccsttxhr1671uJ9NmzYZPXv2NIKDg43w8HDj3nvv9ThJcnWfdzbD+GVAGwAAAH7Pf+5ABAAAQJlI3gAAACyE5A0AAMBCSN4AAAAshOQNAADAQkjeAAAALITkDQAAwEJI3gAAACyE5A2AX9i/f79sNpuWLVvm9ba3bt2qX//61woNDZXNZtOaNWu0bNky2Ww27d+/3+v7u1SbNm00YsSIKt2HFXz11VeaOXNmlccbqA0Cfd0BAKhKhmHod7/7na6++mr94x//UGhoqK655hoVFhZqx44dioqK8nUXa4WvvvpKaWlpSkhIUJs2bXzdHcDSSN4A1GiHDx9WTk6OBg0apD59+rhsa9y4sY965VsFBQWy2WwKDHT/LyA3N1chISE+6BWA8mLYFECV+u9//6uUlBS1b99eISEhio6O1u23367du3eX+d7jx4/rgQceUMuWLWW329W4cWP99re/1ZYtW8q175kzZ6pFixaSpEcffVQ2m8151cfTsGlCQoI6duyoXbt2KT4+XiEhIbryyis1d+5cXbhwwVkvLy9PEydOVNeuXdWwYUOFh4crLi5O7777bvkDU4bXX39dcXFxCgsLU1hYmLp27aolS5Y4t5c0HJuQkKCEhATn68zMTNlsNr366quaOHGioqOjZbfb9d///lcjRoxQWFiYdu/ercTERNWvX9+Z4J4/f15PPvmkYmJinLFPSUnR8ePHXfbXpk0b9e/fXxs2bND111+vevXqKSYmRq+88oqzzrJlyzRkyBBJUu/evWWz2apsiByoDbjyBqBKHT58WBEREZo7d64aN26snJwcLV++XD169ND//d//6Zprrinxvffcc48+//xzzZo1S1dffbV++uknff7558rOzi7XvkeNGqUuXbooOTlZDz/8sIYNGya73V7qe44eParf//73mjhxoh577DGtXr1akydPVvPmzXXvvfdKkvLz85WTk6M//elPio6O1vnz57VlyxYlJydr6dKlznpmzZgxQ0888YSSk5M1ceJENWzYUHv27NGBAwdMtzl58mTFxcXppZdeUp06ddSkSRNJjiTtjjvu0B/+8AelpqaqsLBQFy5c0IABA7R9+3ZNmjRJv/nNb3TgwAE99thjSkhI0P/+7/+qXr16zrb//e9/a+LEiUpNTVXTpk318ssv6/7771e7du1044036rbbbtPs2bM1ZcoULVq0SNdff70k6aqrrqpUnIBaywCAalRYWGicP3/eaN++vfHII484y/ft22dIMpYuXeosCwsLM8aPH1+p/RW3+8wzz7iUL1261JBk7Nu3z1nWq1cvQ5Kxc+dOl7odOnQwbrnlllKPqaCgwLj//vuN6667zmVb69atjfvuu6/c/f3++++NgIAA4/e//32p9Upqt1evXkavXr2crzMyMgxJxo033uhW97777jMkGa+88opL+RtvvGFIMt555x2X8l27dhmSjBdeeMGlH8HBwcaBAwecZefOnTPCw8ONP/zhD86yVatWGZKMjIyMUo8LQNkYNgVQpQoLCzV79mx16NBBdevWVWBgoOrWrav//Oc/+vrrr0t9b/fu3bVs2TI9+eST+uSTT1RQUFDl/W3WrJm6d+/uUta5c2e3q16rVq3Sb3/7W4WFhSkwMFBBQUFasmRJmcdUls2bN6uoqEhjxoypVDuXu/POO8u9be3atWrUqJFuv/12FRYWOr+6du2qZs2aKTMz06V+165d1apVK+fr4OBgXX311ZW6UgigZCRvAKrUhAkTNH36dA0cOFD//Oc/tXPnTu3atUtdunTRuXPnSn3vm2++qfvuu08vv/yy4uLiFB4ernvvvVdHjx6tsv5GRES4ldntdpe+pqen63e/+52io6O1YsUK7dixQ7t27dLIkSOVl5dXqf0X31NWfK+et5T0VG1ISIgaNGjgUvbjjz/qp59+Ut26dRUUFOTydfToUZ04ccKlfnliBsB7uOcNQJVasWKF7r33Xs2ePdul/MSJE2rUqFGp742MjNT8+fM1f/58/fDDD/rHP/6h1NRUHTt2TBs2bKjCXpduxYoVatu2rd58803ZbDZneX5+fqXbLn4C9tChQ2rZsmWJ9YKDgz3u78SJE4qMjHQrv7SfZZVHRkYqIiKixBjXr1+/xH4BqHokbwCqlM1mc3tI4L333lNWVpbatWtX7nZatWqlhx56SFu3btVHH33k7W5WiM1mU926dV0Sn6NHj3rladPExEQFBAToxRdfVFxcXIn12rRpoy+++MKl7Ntvv9U333zjMXmriP79+2vlypUqKipSjx49KtVWseJzgKtxQOWRvAGoUv3799eyZcsUExOjzp0767PPPtMzzzxT5rDgzz//rN69e2vYsGGKiYlR/fr1tWvXLm3YsEHJycnV1HvP+vfvr/T0dD344IMaPHiwDh48qCeeeEJRUVH6z3/+U6m227RpoylTpuiJJ57QuXPndPfdd6thw4b66quvdOLECaWlpUlyPIk7fPhwPfjgg7rzzjt14MABPf30016Zu27o0KF67bXX1K9fP40bN07du3dXUFCQDh06pIyMDA0YMECDBg2qUJsdO3aUJC1evFj169dXcHCw2rZt63HIFUDpSN4AVKkFCxYoKChIc+bM0ZkzZ3T99dcrPT1d06ZNK/V9wcHB6tGjh1599VXt379fBQUFatWqlR599FFNmjSpmnrvWUpKio4dO6aXXnpJr7zyiq688kqlpqbq0KFDzuSqMh5//HG1b99eCxcu1O9//3sFBgaqffv2Gjt2rLPOsGHDdPjwYb300ktaunSpOnbsqBdffNEr+w8ICNA//vEPLViwQK+++qrmzJmjwMBAtWjRQr169VKnTp0q3Gbbtm01f/58LViwQAkJCSoqKtLSpUtZOgwwwWYYhuHrTgAAAKB8eNoUAADAQhg2BWBJhmGoqKio1DoBAQElPmXpC0VFRSptsMNmsykgIKAaewTAirjyBsCSli9f7jYH2eVf27Zt83U3XVx11VWl9rd4XVEAKA33vAGwpOzsbO3bt6/UOtdcc41fzUm2e/fuUueCq1+/fqlrvQKARPIGAABgKQybAgAAWAjJGwAAgIWQvAEAAFgIyRsAAICFkLwBAABYCMkbAACAhZC8AQAAWMj/B2V3Uor99XptAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0028\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3000])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.300 - 0.325 A" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.3 , 0.3009, 0.3018, 0.3027, 0.3036, 0.3045, 0.3054, 0.3063,\n", " 0.3072, 0.3081, 0.309 , 0.3099, 0.3108, 0.3117, 0.3126, 0.3135,\n", " 0.3144, 0.3153, 0.3162, 0.3171, 0.318 , 0.3189, 0.3198, 0.3207,\n", " 0.3216, 0.3225, 0.3234, 0.3243, 0.3252, 0.3261, 0.327 ]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHPCAYAAADTZ+eeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOtklEQVR4nO3dfVxUdd7/8fckOAhoNuAN3luaXKZisd6wm4mZRKWrkm7mWolLda0Wme4aJhqUopXduC7WWiZuVpat2uZ6h4TuTWVc9etaqLV2S800U0FDRXDQ8/uDi4mRQe7m7sDr+Xj4qDnzne98z4fD8J5zvucci2EYhgAAAGAal/l6AAAAAKgfAhwAAIDJEOAAAABMhgAHAABgMgQ4AAAAkyHAAQAAmAwBDgAAwGQIcAAAACZDgAMAADAZnwe4Tz/9VLfddpu6deumVq1ayWazKSYmRmvXrnVqN3XqVFkslmr/IiMjXfa7fPlyRUZGymq1qmfPnkpPT5fdbq/W7ujRo5o6darCw8MVHBysmJgY5eTkeGRdAQAA3CHA1wM4efKkunbtqjvvvFOdO3fWmTNn9Nprr+muu+7S/v37lZqa6mjbqlUrvffee06vb9WqVbU+Fy1apPnz5yslJUVxcXHKy8tTamqqDh06pJUrVzralZWVaeTIkTp58qSWLVum9u3bKzMzU/Hx8dq5c6eGDx/uuRUHAABoIIu/3gt16NChOnz4sL755htJFXvg3n77bZ0+ffqSryssLFSXLl1099136w9/+INjeUZGhlJTU1VQUKC+fftKklasWKEZM2bo/fffV0xMjCSpvLxcUVFRCg0N1Z49ezy0dgAAAA3n80OoNQkPD1dAQP13EG7btk2lpaVKTEx0Wp6YmCjDMLRp0ybHso0bN6pPnz6O8CZJAQEBmjJlij766CMdOnSoweMHAADwFJ8fQq104cIFXbhwQSdOnND69eu1fft2/f73v3dqc/bsWXXs2FHHjh1TRESExo0bp8cff1w2m83RpqCgQJLUv39/p9dGREQoPDzc8Xxl22HDhlUby4ABAyRJn332mTp37uxyvGVlZSorK3Maf1FRkcLCwmSxWOq59gAAoLkzDEOnTp1Sp06ddNlll97H5jcBbvr06Y5Dni1bttTvfvc73X///Y7no6KiFBUVpX79+kmSdu/ereeee045OTnKy8tTaGiopIpDqFarVSEhIdXew2azqbCw0PG4sLDQKfxVbVf5fE0WL16s9PT0BqwpAABAzQ4ePKguXbpcso3fBLhHH31USUlJOnr0qN5991098MADOnPmjH7zm99Ikh5++GGn9qNGjdK1116rCRMm6KWXXnJ6/lJ7wC5+rj5tq5o7d65mzZrlePzDDz+oW7du2rdvn1q3bl3j6xrKbrcrNzdXI0aMUGBgoNv7BzX2FursedTYO6iz5zW3Gp86dUo9e/asU47wmwDXrVs3devWTZJ06623SqoISffcc4/atWvn8jXjx49XSEiIPvzwQ8eysLAwlZaWqqSkRMHBwU7ti4qKFB0d7dTW1V62oqIiSXK5d66S1WqV1Wqtttxms6lNmzY1vq6h7Ha7goODFRYW1iw2Yl+gxt5BnT2PGnsHdfa85lbjynWsy1Qsvz2JYfDgwSovL9fXX399yXaGYTgdJ66c+5afn+/U7siRIzp+/LjjEGxl24vbVX1t1bYAAAD+wm8DXG5uri677DJdeeWVNbZ5++23VVJSoqFDhzqWxcfHKygoSFlZWU5ts7KyZLFYNG7cOMey8ePHa+/evU6XCykvL9fatWs1ZMgQderUyW3rAwAA4C4+P4R63333qU2bNho8eLA6dOig48ePa/369XrzzTf129/+Vu3atdOBAwc0efJkTZo0Sb169ZLFYtHu3bv1/PPP65prrlFSUpKjP5vNptTUVM2fP182m81xId+0tDQlJSU5rgEnSdOmTVNmZqYmTpyoJUuWqH379lqxYoW++OIL7dy50xflAAAAqJXPA1xMTIxWr16tNWvW6OTJkwoNDVVUVJReffVVTZkyRZLUpk0bdejQQc8++6y+//57nT9/Xt27d1dycrIeffTRameczps3T61bt1ZmZqaWLl2qjh07KiUlRfPmzXNqZ7ValZOTozlz5ujBBx9USUmJBg4cqK1bt3IXBgAA4Ld8HuASExOrXXT3YldccYU2bNhQr36Tk5OVnJxca7sOHTpozZo19eobAADAl/x2DhwAAABcI8ABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZHwe4D799FPddttt6tatm1q1aiWbzaaYmBitXbu2WttPPvlEN910k0JDQ9W2bVslJCTo66+/dtnv8uXLFRkZKavVqp49eyo9PV12u71au6NHj2rq1KkKDw9XcHCwYmJilJOT4/b1BAAAcBefB7iTJ0+qa9euysjI0JYtW/THP/5RPXr00F133aWFCxc62u3du1exsbE6d+6c3nrrLb3yyiv68ssvNWzYMB07dsypz0WLFumhhx5SQkKCtm/frunTpysjI0MzZsxwaldWVqaRI0cqJydHy5Yt0zvvvKMOHTooPj5eu3fv9sr6AwCavjNnJIul4t+ZM74eDZqCAF8PIDY2VrGxsU7LRo8erX379mnlypVKTU2VJC1YsEBWq1WbN29WmzZtJEnR0dHq3bu3li5dqieffFKSVFhYqIULF+ree+9VRkaG4z3sdrtSU1M1c+ZM9e3bV5K0atUqFRQU6P3331dMTIwkacSIEYqKitKcOXO0Z88eb5QAAACgXny+B64m4eHhCgioyJfl5eXavHmzbr/9dkd4k6Tu3btrxIgR2rhxo2PZtm3bVFpaqsTERKf+EhMTZRiGNm3a5Fi2ceNG9enTxxHeJCkgIEBTpkzRRx99pEOHDnlo7QAAABrO53vgKl24cEEXLlzQiRMntH79em3fvl2///3vJUlfffWVzp49qwEDBlR73YABA5Sdna3S0lIFBQWpoKBAktS/f3+ndhEREQoPD3c8L0kFBQUaNmyYyz4l6bPPPlPnzp1djresrExlZWWOx8XFxZIku93ucq5dY1X26Ym+UYEaewd19jxq7B31qXNpqSQFSpJyc8t1002GWrTw4OCaiOa2LddnPf0mwE2fPl1/+MMfJEktW7bU7373O91///2SKg6LSpLNZqv2OpvNJsMwdOLECUVERKiwsFBWq1UhISEu21b2VdlvTX1WfV9XFi9erPT09GrLd+zYoeDg4EutaqNkZ2d7rG9UoMbeQZ09jxp7R211/uCDCL30Un9VBrgxYwIUFnZWSUn5ion5zgsj9A+lpS00adJoSdK6dZsVFHS+zq9tLttySUlJndv6TYB79NFHlZSUpKNHj+rdd9/VAw88oDNnzug3v/mNo43FYqnx9VWfq2u7+ratau7cuZo1a5bjcXFxsbp27aq4uDinw7zuYrfblZ2drVGjRikwMNDt/YMaewt19jxq7B11qfPGjRY99VQLGYbz8qKiID311CCtW3de48cbLl/b1FQ9eePmm2+Wi/0s1TS3bbnyaF5d+E2A69atm7p16yZJuvXWWyVVhKR77rlHYWFhklzvESsqKpLFYlHbtm0lSWFhYSotLVVJSUm1PWFFRUWKjo52PA4LC6uxT8n1Hr9KVqtVVqu12vLAwECPbmSe7h/U2Fuos+dRY++oqc7nz0uzZ6taeJMkw7DIYpF+85sA3X67msXh1KolqqhZfV7bPLbl+qyj357EMHjwYJWXl+vrr7/WVVddpVatWik/P79au/z8fPXq1UtBQUGSfpz7dnHbI0eO6Pjx4+rXr59jWf/+/WvsU5JTWwAA6uNvf5O+/bbm5w1DOniwoh1QX34b4HJzc3XZZZfpyiuvVEBAgMaMGaMNGzbo1KlTjjbffPONcnNzlZCQ4FgWHx+voKAgZWVlOfWXlZUli8WicePGOZaNHz9ee/fudbpcSHl5udauXashQ4aoU6dOHls/AEDT9l0dp7fVtR1Qlc8Pod53331q06aNBg8erA4dOuj48eNav3693nzzTf32t79Vu3btJEnp6ekaNGiQRo8erZSUFJWWlmrBggUKDw/X7NmzHf3ZbDalpqZq/vz5stlsiouLU15entLS0pSUlOS4BpwkTZs2TZmZmZo4caKWLFmi9u3ba8WKFfriiy+0c+dOr9cCANB0RES4tx1Qlc8DXExMjFavXq01a9bo5MmTCg0NVVRUlF599VVNmTLF0S4yMlK7du3SI488ogkTJiggIEA33nijli5d6gh5lebNm6fWrVsrMzNTS5cuVceOHZWSkqJ58+Y5tbNarcrJydGcOXP04IMPqqSkRAMHDtTWrVs1fPhwr6w/AKBpGjZM6tJFOnTI9Tw4i6XieRdXswJq5fMAl5iYWO2iuzWJjo6u856x5ORkJScn19quQ4cOWrNmTZ36BACgrlq0kJYtkyZMqAhrVUNc5UUOnn++eZzAAPfz2zlwAACYXUKC9Pbb0sVTqrt0qVheZQo3UC8+3wMHAEBTlpAg3XSTdPnlFY+3bJHi4tjzhsYhwAEA4GFVw9oNNxDefOH8+YpLtnz3XcWJI8OGmfvnQIADgGagqf3xAupjwwbpoYecr8vXpUvFHEWzHsZmDhwANHEbNkg9ekgjRkiTJ1f8t0ePiuXwjpCQipMYDEN1uoUU3GfDhooTSS6+qPKhQxXLzfp7QIADgCasqf7xAuri/PmKPW+ub2dW8d+ZMyvamQ0BDgCaqKb8xwuoi6Z8OzMCHAA0UX//u6XJ/vEC6qIp386MAAcATVRT/uMF86m6p/evf/XOnt+mfDszAhwA1OLMmYor51ssFf9vFk35jxfqp7j4x21461bvHzbfsEGqcity3Xqrd06kqbydWeWdLy5msUhdu5rzdmYEOMAEzp+Xdu2S3nij4r9mm7Nk1gBkdtdfbzTZP16oO1+Fp6rvP2FCxYkzVXnjRJrK25lJ1X8PzH47MwIc4Oe4BAQaqin/8ULd+DI8Sf5xIk3l7cw6d3ZebvbbmRHgAD/GJSDQWE31jxdq5w/hyV/OAk1IkPbvl3Jzpddfr/jvvn3m3v65EwPgp2r78LVYKj58x45lDwouLSGhYjvhTgwNd+aMFBpa8f+nT5vjYrz1CU+xsZ4Zgz+dSNOihefW0xcIcICf8ocPX3ep+g3/73+3mG4OX1PQ1P54oXb+EJ44kcZzOIQK+Cl/+PB1h4snUI8ZE6D77ovTxo01zKxHNWY/iaUp8MUlMBrLH8JTUzoL1N9+DwlwqJW/bbTNhT98+DZWTROoCwuDNGlSC+bw1QEnsfheTWdx+vuXEH8IT03lRBp//D0kwOGSNmyQunf3r422ufCHD9/GuNQcPqlipcxyGydf7X3hJBbfu9RZnJMmtdAHH/jvNyh/CU+VJ9J06uS83Cwn0vjr7yEBrhlo6DW4fH36eXPnLx++DVX7HD6LKW7j5KtraPnDGYTNXV1+BqtW9fPKz6Chn+P+Ep4SEqTPP//x8ZYt5jgL1J9/DwlwcMmfN9rmxMyXgGgKc/h8+SXGXy6/0JzV5UvI8ePB+vvf/ftQqr+Ep6pfNm+4of5fPn1xQXB//j3kLFS41JTOgDQ7s14Cwuxz+Hx9GZemEIDNrin9DNq0qWk6Ay7Fn7cBAhxc8ueN1hd8fQ0oM14ConIO36FDrv9wWCyGunSx1GkO3/nz3g+wvv4SY/YAfLHG/gx98TvY1H4GjeGL30F/4M/bAIdQTeD8eWn3bov++tfO2r3bO9fQ8ueNFuZwqTl8UkWiq8scPl+d/eXrLzFmP4mlKrOeDFX7z8BQeHiJrr++ae/a8sczML3Fn38PCXB+rvIXZ9SoAD377E80alSAV35x/HmjhXnUNIE6PPys1q07X+scHF+e/eXrLzFmP4mlkplPhqrLz+BXvyrw+59BY/jrGZje4s+/hwQ4P+bLXxx/3mh9wYwX8fQXF0+gfvfdcv3hD9kaP/7Sey3ceSJNQ65l6M4vMY09g9CMJ7FITeNkqEudxblu3XnFxHhnHokvPoP87efnq89hf/09JMD5KX/4xfGX0899ceZRVb66jERTUjXoX3+9Uafg766zvxp6+MdfvsSY+Sbc/nwGX33UdBZnbV9C3MVXn0H+9PPbuNHi089hf/w9JMD5KXf+4jTmW0tCgnTggH9ttN5k5sM/ZueOOWiN3YvtL19iKk9iufPOiv+aZc+3r+cRulNjL4HRUL78DPKXn98HH0Ro0qQWPv8c9rffQwKcn3LXL447vrn520brLf6wF7Q5a+wcNHf9/NxxDa3megje1/MIzc7Xn0H+8PM7f156+eX+fA67QIDzU+74xWHvUeP40+EDswsJqaiXYdT98g+NnYPmzp9fY/a+NOdD8O6cR+jrENyQbbixfP0Z5A8ns/397xYVFrZS5e33LtacP4cJcH6qsb84vv7m5k6++uD2l8MHzVVj56D5w8+vuX+Jctc8QneE4IacyOJrvt6G/WEeqK9r4M8IcH6qsb84vv7m5i6+3HvhD4cPmrvGnP3l659fU/oS1RiNPYPPHSHYrNcx8/U2LPn+DEx/qIHfMuAWP/zwgyHJ+OGHH9za75/+ZBhdulTuuK/417VrxfJLef1159fU9O/11906XJdOn/7x/U6frvvr/vQnw7BYqo/ZYqn4V1sN6uvcuXPGpk2bjHPnzhmGYRjl5RW1dzWGynF07VrRDnV3cZ3rorzcMHJzK7bX3Ny61dydP7+GbMO5uXX7HczNrVt/9dGQGntaY36GNdWuLj9DT36OeLrO/vQZ1JCf38Ua8nt09uw5IyysxLBYLvi8Bt5QnyzBHjg/V3nqcnZ2uWbN+h9lZ5fXaQK1P31racghUH/Ye+EPhw9QoSEn0vj658ehH2cN+Rk29kiCP3yONIavt+GLx+KLk9latJCSkvIl+b4G/oYAZwItWkjDhxu64YZDGj68btfQ8ofJp1LDD4H6yyFgf7mMBBrGl4d//OlLlFk1NgT7y+dIY/AZJMXEfKd168436xq4QoBrovzhm1tj5q64c+9FYycvu+MyEvAdX12A01++RJlZY0NwU9kL2lQ+gxpzJu/48UaTqIE7EeCaMF9+c2vsoQt37b1w1020fXURT7iHLw7/+MOXKLNrbAhuSntB+QyiBhcjwDVxvvrm1thDF+7Ye+HOSzj44hpQ8B8N/flz+KtxGhuC2QuKpowA1wz44ltLYw9dNPaD2+yTl9F0NJXDX766jlpjQjB7QdGUEeDgEe44dNGYD+6mMHkZTYfZD/34+jpqjQnBvr6OGeApAb4eAJqmykMXhw653gtmsVQ8X9uhi4QE6aabpMsvr3i8ZYsUF1f7H8CmMnkZTUPlIVgzqpyKcPH4K6cieCsENSYEJyRIY8dWfGH77ruKL47DhpkvSANVsQcOHuHOQxcN+eBuSpOX/cGZMxU/N4ul4v/RPDSlqQi+uo6ZuzAPlxpcjAAHj/HlBG4mLzsrLv4xgG3dWv8/uL6+kTh8g6kIgP8iwMGjfDWBm8nLP2rs/WR9eT9a+BZTEQD/5fMA995772natGmKjIxUSEiIOnfurLFjx+rjjz92ajd16lRZLJZq/yIjI132u3z5ckVGRspqtapnz55KT0+X3W6v1u7o0aOaOnWqwsPDFRwcrJiYGOXk5HhkXZsrX03gZvJy4y+l4s5LscB8mIoA+C+fn8TwwgsvqLCwUA899JD69u2rY8eO6ZlnntHQoUO1fft23XjjjY62rVq10nvvvef0+latWlXrc9GiRZo/f75SUlIUFxenvLw8paam6tChQ1q5cqWjXVlZmUaOHKmTJ09q2bJlat++vTIzMxUfH6+dO3dq+PDhnltxL/L1BOrGvn9jXt+cJy/XNn/JYqmYvzR2rOt6NPb1MD93nYwEwP18HuAyMzPVvn17p2Xx8fHq1auXMjIynALcZZddpqFDh16yv8LCQi1cuFD33nuvMjIyJEmxsbGy2+1KTU3VzJkz1ff/jgetWrVKBQUFev/99xUTEyNJGjFihKKiojRnzhzt2bPHnasKH6mcvNzc1Gf+kqv6NPb1ML/KqQgTJlSEtaohrrlNRQD8jc8PoV4c3iQpNDRUffv21cGDB+vd37Zt21RaWqrExESn5YmJiTIMQ5s2bXIs27hxo/r06eMIb5IUEBCgKVOm6KOPPtKhi48bASbS2PlLzH+C5D9TETgDEXDm8z1wrvzwww/65JNPnPa+SdLZs2fVsWNHHTt2TBERERo3bpwef/xx2Ww2R5uCggJJUv/+/Z1eGxERofDwcMfzlW2Hudj3P2DAAEnSZ599ps4Xf2r9n7KyMpWVlTkeFxcXS5LsdrvLuXaNVdmnJ/pGBU/W+MwZ6YorAiVJJ07YvfIHqF07i+ryK96uXbns9urHxxr7+pqwLXueu2s8ZkzFySt//7vFMRXh+usNtWghNecfI9uy5zW3GtdnPf0ywM2YMUNnzpzRvHnzHMuioqIUFRWlfv36SZJ2796t5557Tjk5OcrLy1NoaKikikOoVqtVIS7+QtpsNhUWFjoeFxYWOoW/qu0qn6/J4sWLlZ6eXm35jh07FBwcXMc1rb/s7GyP9Y0KnqhxaWkLSaMlSdu3b1dQkOevw3H+vBQWFqfCwiBJrq6nYig8/KyKi7O1ZYv7X18btmXP80SN27Sp+EKyfbvbuzYttmXPay41LikpqXNbvwtw8+fP12uvvably5crOjrasfzhhx92ajdq1Chde+21mjBhgl566SWn5y01XfzLxXP1aVvV3LlzNWvWLMfj4uJide3aVXFxcWrTpk2Nr2sou92u7OxsjRo1SoGBgW7vH56t8f/toJUkhYTE66abDK/MG1qxwqJJkyTJkGH8uD1bLBV7zDIzW2rMmFs99npX2JY9jxp7B3X2vOZW4+Kqfyxq4VcBLj09XQsXLtSiRYv0wAMP1Np+/PjxCgkJ0YcffuhYFhYWptLSUpWUlFTbE1ZUVOQUCsPCwlzuZSsqKpIkl3vnKlmtVlmt1mrLAwMDPbqRebp/uL/GGzZIyck/Ph4zJkBdulRMDvf0/KFf/EIKCKh4/6pTOrt0sej556WEhEt/BDT29ZfCtux51Ng7qLPnNZca12cdfX4SQ6X09HSlpaUpLS1Njz76aJ1fZxiGLrvsx9WonPuWn5/v1O7IkSM6fvy44xBsZduL21V9bdW2QEP4w3XUEhKkAwek3Fzp9dcr/lufiyn76mLMAICa+UWAe+KJJ5SWlqbU1FQ99thjdX7d22+/rZKSEqdLi8THxysoKEhZWVlObbOysmSxWDRu3DjHsvHjx2vv3r1OlwspLy/X2rVrNWTIEHW6+B5QQD34030kG3sfyDZtfjwD8JZbuGwEAPiazw+hPvPMM1qwYIHi4+N12223OR0OlaShQ4fqwIEDmjx5siZNmqRevXrJYrFo9+7dev7553XNNdcoKSnJ0d5msyk1NVXz58+XzWZzXMg3LS1NSUlJjmvASdK0adOUmZmpiRMnasmSJWrfvr1WrFihL774Qjt37vRaDdA0cR01AICn+DzAvfvuu5Iqrt+2bdu2as8bhqE2bdqoQ4cOevbZZ/X999/r/Pnz6t69u5KTk/Xoo49WO+N03rx5at26tTIzM7V06VJ17NhRKSkpTme1ShXz2HJycjRnzhw9+OCDKikp0cCBA7V169YmcxcG+A7XUQMAeIrPA9yuXbtqbXPFFVdoQz0nCyUnJyu56szxGnTo0EFr1qypV99AXXAfSQCAp/jFHDigKaq8j2RNV6OxWKSuXbmPJACg/ghwgIdU3kdSqh7iuI8kAKAxCHCAB1XeR/LiE5q9fR9JAEDT4vM5cEBTl5Ag3XSTdPnlFY+3bJHi4tjzBgBoOPbAAV5QNazdcAPhDQDQOOyBA7wgJMT1BX0BAGgI9sABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMn4PMC99957mjZtmiIjIxUSEqLOnTtr7Nix+vjjj6u1/eSTT3TTTTcpNDRUbdu2VUJCgr7++muX/S5fvlyRkZGyWq3q2bOn0tPTZbfbq7U7evSopk6dqvDwcAUHBysmJkY5OTluX08AAAB38XmAe+GFF7R//3499NBD2rJli5YtW6ajR49q6NCheu+99xzt9u7dq9jYWJ07d05vvfWWXnnlFX355ZcaNmyYjh075tTnokWL9NBDDykhIUHbt2/X9OnTlZGRoRkzZji1Kysr08iRI5WTk6Nly5bpnXfeUYcOHRQfH6/du3d7Zf0BAADqK8DXA8jMzFT79u2dlsXHx6tXr17KyMjQjTfeKElasGCBrFarNm/erDZt2kiSoqOj1bt3by1dulRPPvmkJKmwsFALFy7Uvffeq4yMDElSbGys7Ha7UlNTNXPmTPXt21eStGrVKhUUFOj9999XTEyMJGnEiBGKiorSnDlztGfPHq/UAAAAoD58vgfu4vAmSaGhoerbt68OHjwoSSovL9fmzZt1++23O8KbJHXv3l0jRozQxo0bHcu2bdum0tJSJSYmOvWZmJgowzC0adMmx7KNGzeqT58+jvAmSQEBAZoyZYo++ugjHTp0yF2rCQAA4DY+3wPnyg8//KBPPvnEsfftq6++0tmzZzVgwIBqbQcMGKDs7GyVlpYqKChIBQUFkqT+/fs7tYuIiFB4eLjjeUkqKCjQsGHDXPYpSZ999pk6d+7scoxlZWUqKytzPC4uLpYk2e12l3PtGquyT0/0jQrU2Duos+dRY++gzp7X3Gpcn/X0ywA3Y8YMnTlzRvPmzZNUcVhUkmw2W7W2NptNhmHoxIkTioiIUGFhoaxWq0JCQly2reyrst+a+qz6vq4sXrxY6enp1Zbv2LFDwcHBtaxhw2VnZ3usb1Sgxt5BnT2PGnsHdfa85lLjkpKSOrdtcIB7/PHHlZSUpE6dOlV77rvvvtNLL72kBQsW1Lvf+fPn67XXXtPy5csVHR3t9JzFYqnxdVWfq2u7+ratau7cuZo1a5bjcXFxsbp27aq4uDinw7zuYrfblZ2drVGjRikwMNDt/YMaewt19jxq7B3U2fOaW40rj+bVRYMDXHp6uuLj410GuMOHDys9Pb3eAS49PV0LFy7UokWL9MADDziWh4WFSXK9R6yoqEgWi0Vt27Z1tC0tLVVJSUm1PWFFRUVOoTAsLKzGPiXXe/wqWa1WWa3WassDAwM9upF5un9QY2+hzp5Hjb2DOntec6lxfdaxwScxGIZR43OnT5+ud6HT09OVlpamtLQ0Pfroo07PXXXVVWrVqpXy8/OrvS4/P1+9evVSUFCQpB/nvl3c9siRIzp+/Lj69evnWNa/f/8a+5Tk1BYAAMBf1GsP3D//+U99+umnjsdbtmzR3r17ndqcPXtWr732mq666qo69/vEE08oLS1Nqampeuyxx6oPMiBAY8aM0YYNG/TUU0+pdevWkqRvvvlGubm5evjhhx1t4+PjFRQUpKysLA0ZMsSxPCsrSxaLRePGjXMsGz9+vKZPn649e/Y42paXl2vt2rUaMmSIy72LAAAAvlavALdx40bHxH2LxaLHH3/cZbtWrVpp9erVderzmWee0YIFCxQfH6/bbrtNH374odPzQ4cOlVSxh27QoEEaPXq0UlJSVFpaqgULFig8PFyzZ892tLfZbEpNTdX8+fNls9kUFxenvLw8paWlKSkpyXENOEmaNm2aMjMzNXHiRC1ZskTt27fXihUr9MUXX2jnzp31KQ0AAIDX1CvA3XfffRo9erQMw9DgwYO1evXqaocZrVar45BnXbz77ruSKq7ftm3btmrPVx6qjYyM1K5du/TII49owoQJCggI0I033qilS5eqXbt2Tq+ZN2+eWrdurczMTC1dulQdO3ZUSkqK46zWqmPNycnRnDlz9OCDD6qkpEQDBw7U1q1bNXz48DrXBQAAwJvqFeAiIiIUEREhScrNzVV0dLRCQ0MbNYBdu3bVuW10dHSd94wlJycrOTm51nYdOnTQmjVr6jwGAAAAX2vwWajsoQIAAPCNRl3Id+3atXr99dd14MABnT171uk5i8Wir776qlGDAwAAQHUNDnBPPvmk5s6dq759+yoqKsrlNdEAAADgfg0OcCtXrtSMGTO0fPlyd44HAAAAtWjwhXyPHDmi8ePHu3MsAAAAqIMGB7jo6GjmuAEAAPhAgwPcs88+q2eeeUYff/yxO8cDAACAWjR4DlxiYqIKCws1ePBgdezY0XHD+UoWi0X/+7//2+gBAgAAwFmDA1xYWJjCw8PdORYAAADUQYMDXH3uoAAAAAD3afAcOAAAAPhGg/fA/fWvf621zQ033NDQ7gEAAFCDBge42NhYWSyWS7Y5f/58Q7sHAABADRoc4HJzc6stO378uN555x394x//UGZmZqMGBgAAANcaHOCGDx/ucvntt9+u//7v/9a2bdsUHx/f4IEBAADANY+cxDB+/HitW7fOE10DAAA0ex4JcCdOnFBZWZknugYAAGj2GnwI9Ztvvqm2rKysTP/85z81d+5cDR06tFEDAwAAgGsNDnA9evRweRaqYRjq06ePfv/73zdqYAAAAHCtwQHulVdeqRbggoKC1KNHDw0aNEiXXcY1ggEAADyhwQFu6tSpbhwGAAAA6qrBAa7SqVOn9MEHH6iwsFDh4eEaOnSoWrdu7Y6xAQAAwIVGBbilS5cqPT1dJSUlMgxDkhQSEqL09HTNmjXLLQMEAACAswYHuD/+8Y+aM2eObrnlFk2dOlWdOnXS4cOHtWbNGv32t79Vu3btdNddd7lzrAAAAFAjAtxzzz2nyZMna+3atU7LJ06cqClTpui5554jwAEAAHhAg08V3bt3r6ZMmeLyuSlTpuhf//pXgwcFAACAmjU4wLVq1UpFRUUunysqKlKrVq0aPCgAAADUrMEBbtiwYUpLS9Phw4edlh85ckSPP/64brjhhkYPDgAAANU1eA5cRkaGfvrTn6pXr14aOXKkIiIi9N133+m9995TYGCgNmzY4M5xAgAA4P80eA/cNddco7y8PI0dO1Z5eXlavXq18vLyNG7cOH300Ufq27evO8cJAACA/9Oo68BdffXVeuONN9w1FgAAANRBvffA5efn69tvv63x+W+//Vb5+fmNGhQAAABqVq8A99e//lXR0dH6/vvva2zz/fffKzo6Wtu3b2/04AAAAFBdvQJcZmamJkyYoOjo6BrbREdH64477tDLL7/c6MEBAACgunoFuH/84x8aN25cre1+/vOf68MPP2zomAAAAHAJ9Qpwx44dU+fOnWttFxERoaNHjzZ4UAAAAKhZvQJcSEhIjXdfqOrEiRMKDg5u8KAAAABQs3oFuGuuuUbbtm2rtd3WrVt1zTXXNHhQAAAAqFm9Atwdd9yhVatWaffu3TW2yc3N1erVq3XnnXc2enAAAACorl4X8r3vvvuUlZWluLg4JSUlaezYserZs6ckad++fdq0aZNWrVqlqKgo3XvvvR4ZMAAAQHNXrwDXsmVLbd++XXfddZdeeOEFvfjii07PG4ahW265RX/84x/VsmVLtw4UAAAAFep9K62wsDBt2bJFH3/8sXbs2KGDBw9Kkrp166abb75Z1157rdsHCQAAgB81+F6o0dHRl7ygLwAAADyjXicxDBgwoM7/oqKi6tTnqVOnNGfOHMXFxaldu3ayWCxKS0ur1m7q1KmyWCzV/kVGRrrsd/ny5YqMjJTValXPnj2Vnp4uu91erd3Ro0c1depUhYeHKzg4WDExMcrJyalPWQAAALyqXnvgbDabLBbLJducPn1aH3/8ca3tKhUWFmrlypWKiorSuHHjLnkLrlatWum9996rtuxiixYt0vz585WSkqK4uDjl5eUpNTVVhw4d0sqVKx3tysrKNHLkSJ08eVLLli1T+/btlZmZqfj4eO3cuVPDhw+v0zoAAAB4U70C3K5du2p8rry8XCtXrtTjjz8ui8WiyZMn16nP7t2768SJE7JYLDp+/PglA9xll12moUOHXrK/wsJCLVy4UPfee68yMjIkSbGxsbLb7UpNTdXMmTPVt29fSdKqVatUUFCg999/XzExMZKkESNGKCoqSnPmzNGePXvqtA4AAADeVK9DqDVZv369+vbtqwcffFBRUVH6+OOP9eqrr9bptZWHQt1l27ZtKi0tVWJiotPyxMREGYahTZs2OZZt3LhRffr0cYQ3SQoICNCUKVP00Ucf6dChQ24bFwAAgLs0+CQGqWKP3COPPKK8vDxdd9112rFjh0aOHOmusVVz9uxZdezYUceOHVNERITGjRunxx9/XDabzdGmoKBAktS/f3+n10ZERCg8PNzxfGXbYcOGVXufAQMGSJI+++yzGu/9WlZWprKyMsfj4uJiSZLdbnc5166xKvv0RN+oQI29gzp7HjX2Dursec2txvVZzwYFuPz8fD3yyCPavn27evbsqddff12TJk1qSFd1FhUVpaioKPXr10+StHv3bj333HPKyclRXl6eQkNDJVUcQrVarQoJCanWh81mU2FhoeNxYWGhU/ir2q7y+ZosXrxY6enp1Zbv2LHDo/eBzc7O9ljfqECNvYM6ex419g7q7HnNpcYlJSV1bluvAHfw4EGlpqbq9ddfl81m0/PPP6///u//VmBgYL0HWV8PP/yw0+NRo0bp2muv1YQJE/TSSy85PX+pQ7IXP1eftlXNnTtXs2bNcjwuLi5W165dFRcXpzZt2tT4uoay2+3Kzs7WqFGjvFLv5ogaewd19jxq7B3U2fOaW40rj+bVRb0C3NVXX61z584pPj5ec+bMUevWrZWfn19j++uuu64+3dfb+PHjFRISog8//NCxLCwsTKWlpSopKam2J6yoqMjp2nVhYWEu97IVFRVJksu9c5WsVqusVmu15YGBgR7dyDzdP6ixt1Bnz6PG3kGdPa+51Lg+61ivAFc552vr1q3atm1bje0Mw5DFYtH58+fr032DGIahyy778VyMyrlv+fn5GjJkiGP5kSNHdPz4ccch2Mq2rgJo5bKqbQEAAPxFvQLc6tWrPTWOBnn77bdVUlLidGmR+Ph4BQUFKSsryynAZWVlyWKxaNy4cY5l48eP1/Tp07Vnzx5H2/Lycq1du1ZDhgxRp06dvLYuAAAAdVWvAHfPPfd4ZBBbt27VmTNndOrUKUnS559/rrfffluSdOutt+rYsWOaPHmyJk2apF69eslisWj37t16/vnndc011ygpKcnRl81mU2pqqubPny+bzea4kG9aWpqSkpIc14CTpGnTpikzM1MTJ07UkiVL1L59e61YsUJffPGFdu7c6ZF1BQAAaKxGXUbEXX7961/rwIEDjsfr16/X+vXrJUn79u3T5Zdfrg4dOujZZ5/V999/r/Pnz6t79+5KTk7Wo48+Wu2M03nz5ql169bKzMzU0qVL1bFjR6WkpGjevHlO7axWq3JycjRnzhw9+OCDKikp0cCBA7V161buwgAAAPyWXwS4/fv319pmw4YN9eozOTlZycnJtbbr0KGD1qxZU6++AQAAfMktd2IAAACA9xDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDI+D3CnTp3SnDlzFBcXp3bt2slisSgtLc1l208++UQ33XSTQkND1bZtWyUkJOjrr7922Xb58uWKjIyU1WpVz549lZ6eLrvdXq3d0aNHNXXqVIWHhys4OFgxMTHKyclx5yoCAAC4lc8DXGFhoVauXKmysjKNGzeuxnZ79+5VbGyszp07p7feekuvvPKKvvzySw0bNkzHjh1zarto0SI99NBDSkhI0Pbt2zV9+nRlZGRoxowZTu3Kyso0cuRI5eTkaNmyZXrnnXfUoUMHxcfHa/fu3Z5YXQAAgEYL8PUAunfvrhMnTshisej48eN6+eWXXbZbsGCBrFarNm/erDZt2kiSoqOj1bt3by1dulRPPvmkpIpAuHDhQt17773KyMiQJMXGxsputys1NVUzZ85U3759JUmrVq1SQUGB3n//fcXExEiSRowYoaioKM2ZM0d79uzx9OoDAADUm8/3wFksFlkslku2KS8v1+bNm3X77bc7wptUEf5GjBihjRs3OpZt27ZNpaWlSkxMdOojMTFRhmFo06ZNjmUbN25Unz59HOFNkgICAjRlyhR99NFHOnToUCPXDgAAwP18vgeuLr766iudPXtWAwYMqPbcgAEDlJ2drdLSUgUFBamgoECS1L9/f6d2ERERCg8PdzwvSQUFBRo2bJjLPiXps88+U+fOnV2OqaysTGVlZY7HxcXFkiS73e5yrl1jVfbpib5RgRp7B3X2PGrsHdTZ85pbjeuznqYIcIWFhZIkm81W7TmbzSbDMHTixAlFRESosLBQVqtVISEhLttW9lXZb019Vn1fVxYvXqz09PRqy3fs2KHg4ODaV6qBsrOzPdY3KlBj76DOnkeNvYM6e15zqXFJSUmd25oiwFW61KHWqs/VtV1921Y1d+5czZo1y/G4uLhYXbt2VVxcnNNhXnex2+3Kzs7WqFGjFBgY6Pb+QY29hTp7HjX2Dursec2txpVH8+rCFAEuLCxMkus9YkVFRbJYLGrbtq2jbWlpqUpKSqrtCSsqKlJ0dLRTvzX1Kbne41fJarXKarVWWx4YGOjRjczT/YMaewt19jxq7B3U2fOaS43rs44+P4mhLq666iq1atVK+fn51Z7Lz89Xr169FBQUJOnHuW8Xtz1y5IiOHz+ufv36OZb179+/xj4lObUFAADwF6YIcAEBARozZow2bNigU6dOOZZ/8803ys3NVUJCgmNZfHy8goKClJWV5dRHVlaWLBaL07Xmxo8fr7179zpdLqS8vFxr167VkCFD1KlTJ4+tEwAAQEP5xSHUrVu36syZM45w9vnnn+vtt9+WJN16660KDg5Wenq6Bg0apNGjRyslJUWlpaVasGCBwsPDNXv2bEdfNptNqampmj9/vmw2m+Li4pSXl6e0tDQlJSU5rgEnSdOmTVNmZqYmTpyoJUuWqH379lqxYoW++OIL7dy507tFAAAAqCO/CHC//vWvdeDAAcfj9evXa/369ZKkffv2qUePHoqMjNSuXbv0yCOPaMKECQoICNCNN96opUuXql27dk79zZs3T61bt1ZmZqaWLl2qjh07KiUlRfPmzXNqZ7ValZOTozlz5ujBBx9USUmJBg4cqK1bt2r48OGeX3EAAIAG8IsAt3///jq1i46OrvOeseTkZCUnJ9farkOHDlqzZk2d+gQAAPAHppgDBwAAgB8R4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZAhwAAAAJkOAAwAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAypglwu3btksVicfnvww8/dGr7ySef6KabblJoaKjatm2rhIQEff311y77Xb58uSIjI2W1WtWzZ0+lp6fLbrd7Y5UAAAAaJMDXA6ivjIwMjRgxwmlZv379HP+/d+9excbGauDAgXrrrbdUWlqqBQsWaNiwYfr000/Vrl07R9tFixZp/vz5SklJUVxcnPLy8pSamqpDhw5p5cqVXlsnAACA+jBdgOvdu7eGDh1a4/MLFiyQ1WrV5s2b1aZNG0lSdHS0evfuraVLl+rJJ5+UJBUWFmrhwoW69957lZGRIUmKjY2V3W5XamqqZs6cqb59+3p+hQAAAOrJNIdQ66K8vFybN2/W7bff7ghvktS9e3eNGDFCGzdudCzbtm2bSktLlZiY6NRHYmKiDMPQpk2bvDVsAACAejHdHrgZM2Zo0qRJCg4OVkxMjObPn6/rr79ekvTVV1/p7NmzGjBgQLXXDRgwQNnZ2SotLVVQUJAKCgokSf3793dqFxERofDwcMfzNSkrK1NZWZnjcXFxsSTJbrd7ZA5dZZ/Mz/Mcauwd1NnzqLF3UGfPa241rs96mibAXX755XrooYcUGxursLAw/ec//9HTTz+t2NhY/eUvf9HNN9+swsJCSZLNZqv2epvNJsMwdOLECUVERKiwsFBWq1UhISEu21b2VZPFixcrPT292vIdO3YoODi4gWtZu+zsbI/1jQrU2Duos+dRY++gzp7XXGpcUlJS57amCXDXXnutrr32WsfjYcOGafz48erfv7/mzJmjm2++2fGcxWKpsZ+qz9W1nStz587VrFmzHI+Li4vVtWtXxcXFOR2+dRe73a7s7GyNGjVKgYGBbu8f1NhbqLPnUWPvoM6e19xqXHk0ry5ME+Bcadu2rUaPHq0XX3xRZ8+eVVhYmCS53HtWVFQki8Witm3bSpLCwsJUWlqqkpKSanvMioqKFB0dfcn3tlqtslqt1ZYHBgZ6dCPzdP+gxt5CnT2PGnsHdfa85lLj+qyj6U9iMAxDUsUes6uuukqtWrVSfn5+tXb5+fnq1auXgoKCJP049+3itkeOHNHx48edLk0CAADgT0wd4E6cOKHNmzdr4MCBCgoKUkBAgMaMGaMNGzbo1KlTjnbffPONcnNzlZCQ4FgWHx+voKAgZWVlOfWZlZUli8WicePGeWktAAAA6sc0h1AnT56sbt266Sc/+YnCw8P173//W88884y+//57pxCWnp6uQYMGafTo0UpJSXFcyDc8PFyzZ892tLPZbEpNTdX8+fNls9kcF/JNS0tTUlIS14ADAAB+yzQBbsCAAXrzzTf14osv6vTp07LZbLr++uv16quvatCgQY52kZGR2rVrlx555BFNmDBBAQEBuvHGG7V06VKnuzBI0rx589S6dWtlZmZq6dKl6tixo1JSUjRv3jxvrx4AAECdmSbApaSkKCUlpU5to6OjtXPnzjq1TU5OVnJycmOGBgAA4FWmngMHAADQHBHgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOAAAAJMhwAEAAJgMAQ4AAMBkCHAAAAAmQ4ADAAAwGQIcAACAyRDgAAAATIYABwAAYDIEOEmnT5/WzJkz1alTJwUFBWngwIFat26dr4cFAADgUoCvB+APEhISlJeXpyVLlujqq6/W66+/rjvvvFMXLlzQ5MmTfT08AAAAJ80+wG3ZskXZ2dmO0CZJI0aM0IEDB/Tb3/5Wd9xxh1q0aOHjUQIAAPyo2R9C3bhxo0JDQzVx4kSn5YmJiTp8+LD27Nnjo5EBAAC41uz3wBUUFOi//uu/FBDgXIoBAwY4nv/pT39a7XVlZWUqKytzPP7hhx8kSUVFRbLb7W4fp91uV0lJiQoLCxUYGOj2/kGNvYU6ex419g7q7HnNrcanTp2SJBmGUWvbZh/gCgsLdeWVV1ZbbrPZHM+7snjxYqWnp1db3rNnT/cOEAAANCunTp3S5Zdffsk2zT7ASZLFYqn3c3PnztWsWbMcjy9cuKCioiKFhYVdsr+GKi4uVteuXXXw4EG1adPG7f2DGnsLdfY8auwd1NnzmluNDcPQqVOn1KlTp1rbNvsAFxYW5nIvW1FRkaQf98RdzGq1ymq1Oi1r27at28d3sTZt2jSLjdiXqLF3UGfPo8beQZ09rznVuLY9b5Wa/UkM/fv317/+9S+Vl5c7Lc/Pz5ck9evXzxfDAgAAqFGzD3Djx4/X6dOn9ac//clp+Zo1a9SpUycNGTLERyMDAABwrdkfQr3llls0atQo/frXv1ZxcbF69eqlN954Q9u2bdPatWv95hpwVqtVjz32WLXDtnAfauwd1NnzqLF3UGfPo8Y1sxh1OVe1iTt9+rTmzZunt956S0VFRYqMjNTcuXM1adIkXw8NAACgGgIcAACAyTT7OXAAAABmQ4ADAAAwGQKcB5w+fVozZ85Up06dFBQUpIEDB2rdunW1vm7nzp0aNWqUOnXqJKvVqvbt2+vGG2/Uli1bamwfExOj4OBghYeHa+rUqTp69Gi1dna7Xenp6erRo4esVqsiIyO1fPnyRq+nr/lTnffv3y+LxeLyX13G5K+8UePNmzfr7rvvVv/+/RUYGHjJC2E3xW3Zn2rcVLdjyfN1Li4u1qJFixQbG6uOHTsqNDRU/fv315NPPqnS0tJq/bIt/8gTNW7K27KDAbcbNWqU0bZtW+PFF1803nvvPSMpKcmQZLz22muXfN26deuMhx56yFi3bp2xa9cuY8OGDUZcXJwhyXj11Ved2u7atcsICAgwxo4da+zYscNYu3at0blzZ6Nfv35GaWmpU9ukpCTDarUaTz31lJGbm2ukpKQYFovFWLRokdvX3Zv8qc779u0zJBkPPvig8cEHHzj9O378uEfW3xu8UeNp06YZvXv3Nn7xi18Y0dHRxqU+lprituxPNW6q27FheL7O+fn5Rnh4uPHwww8b77zzjpGTk2OkpaUZQUFBxsiRI40LFy449cu2/CNP1Lgpb8uVCHBu9pe//MWQZLz++utOy0eNGmV06tTJKC8vr1d/586dMzp37mwMGzbMafmgQYOMvn37Gna73bHsH//4hyHJWLFihWNZQUGBYbFYjIyMDKfX33vvvUarVq2MwsLCeo3HX/hbnSs/LJ5++ukGrI1/8laNz58/7/j/GTNm1BgumuK27G81borbsWF4p86nT582Tp8+Xa3t008/bUgy/va3vzmWsS3XrrE1bqrbclUcQnWzjRs3KjQ0VBMnTnRanpiYqMOHD2vPnj316i8wMFBt27ZVQMCPl+w7dOiQ8vLydNdddzkt/+lPf6qrr75aGzdudCzbtGmTDMNQYmJitfGcPXtW27Ztq9d4/IW/1bkp8kaNJemyy+r2MdQUt2V/q3FT5Y06h4SEKCQkpFrbwYMHS5IOHjzoWMa2XLvG1rg5aN6/1R5QUFCg//qv/6r2ATpgwADH87W5cOGCysvLdfjwYT322GP68ssvNXv2bKf3qNrnxe9T9T0KCgrUrl07dezYscHj8Uf+VudKS5YsUcuWLRUcHKzrr79ef/7zn+u1Xv7EGzWu73ia2rbsbzWu1JS2Y8m3dX7vvfckSddcc43TeNiWq3NnjSs1tW25qmZ/JwZ3Kyws1JVXXlltuc1mczxfm1tvvVXbt2+XVHED3zfffFO33Xab03tU7fPi96n6HoWFhS7bhYSEqGXLlnUajz/ytzpbrVbde++9GjVqlCIiIvTNN99o+fLlGjt2rF566SUlJSXVbwX9gDdqXN/xNLVt2d9q3BS3Y8l3df7nP/+pp556SuPHj3f6Isi27Jo7a9xUt+WqCHAecKmz6C71XKXly5fr5MmT+u6777R27VrdcccdWrNmje6888469XXx8saOx1/5U50jIiK0cuVKp+cnTpyoIUOGKCUlRVOnTq32zdQMvFVjb43HH/lTjZvqdix5v8779+/X6NGj1bVrV7388stuH48/8qcaN+VtuRKHUN0sLCzM5TeNoqIiSa735lysd+/eGjRokH7+85/rrbfe0siRIzVjxgxduHDB8R6S6280RUVFTu9R03jOnDmjc+fO1Wk8/sjf6uxKYGCg7rjjDhUWFurf//53rePxN96osTvGY+Zt2d9q7IrZt2PJ+3U+cOCARowYoYCAAOXk5FTrn23ZNXfW2JWmsC1XRYBzs/79++tf//qXysvLnZbn5+dLkvr161fvPgcPHqwTJ07o2LFjTn1U9nnx+1R9j/79++vYsWM6cuSI28bjD/ytzjUx/u9OdWacRO6NGtd3PE1tW/a3GtfEzNux5N06HzhwQLGxsTIMQ7m5uerSpYvL8bAt164xNa6J2bdlJ747AbZp2rJliyHJWLdundPy+Pj4Bp1KfeHCBWP48OFG27ZtnS5lMXjwYKNfv35O/X3wwQeGJOOFF15wLKs8XX3JkiVO/d5///2mPV3dMPyvzq6cO3fOGDhwoBEeHl7v8fgDb9W4qrpcRqQpbcv+VmNXzL4dG4b36nzgwAGjR48eRteuXY2vvvqqxtezLdeusTV2pSlsy1WZ+wCwH7rllls0atQo/frXv1ZxcbF69eqlN954Q9u2bdPatWvVokULSdKvfvUrrVmzRl999ZW6d+8uSRo7dqyioqI0cOBAhYWF6fDhw8rKytLu3buVmZnpdLz+ySef1KhRozRx4kRNnz5dR48eVUpKivr16+d0avo111yjX/3qV3rsscfUokULDRo0SDt27NDKlSu1cOFCU+6ql/yvzrNmzZLdbtfPfvYzdezYUQcPHtTy5cv16aefavXq1Y7xmIm3anzgwAHl5eVJkr766itJ0ttvvy1J6tGjh37yk59Iaprbsr/VuClux5J36nz06FGNGDFC3333nVatWqWjR4863bGlS5cujj1FbMuer3FT3Zad+DpBNkWnTp0ykpOTjY4dOxotW7Y0BgwYYLzxxhtObe655x5DkrFv3z7HsieffNIYNGiQccUVVxgtWrQwwsLCjJtvvtnYvHmzy/fZsWOHMXToUCMoKMiw2WzG3XffbXz//ffV2p07d8547LHHjG7duhktW7Y0rr76auN3v/udW9fZF/ypzqtWrTIGDx5s2Gw2IyAgwLjiiiuMm2++2di+fbvb19ubvFHj1atXG5Jc/rvnnnuc2jbFbdmfatxUt2PD8Hydc3Nza6yxJOOxxx5zas+2vM+xzBM1bsrbciWLYfzfAWEAAACYQhOYxQcAANC8EOAAAABMhgAHAABgMgQ4AAAAkyHAAQAAmAwBDgAAwGQIcAAAACZDgAMAADAZAhwAv7B//35ZLBZlZWW5ve+cnBz95Cc/UUhIiCwWizZt2qSsrCxZLBbt37/f7e9XVY8ePTR16lSPvocZfP7550pLS/N4vYHmgnuhAmjSDMPQL37xC1199dX685//rJCQEPXp00fl5eX64IMPFBER4eshNguff/650tPTFRsbqx49evh6OIDpEeAANGmHDx9WUVGRxo8fr5EjRzo9165dOx+NyrfsdrssFovTDe8rlZSUKDg42AejAlAfHEIF4FH/+c9/lJiYqN69eys4OFidO3fWmDFjlJ+fX+trjx07pvvuu09du3aV1WpVu3bt9LOf/Uw7d+6s03unpaWpS5cukqRHHnlEFovFsffH1SHU2NhY9evXT3l5eRo2bJiCg4N15ZVXasmSJbpw4YKjXWlpqWbPnq2BAwfq8ssvl81mU0xMjN555526F6YWr7/+umJiYhQaGqrQ0FANHDhQq1atcjxf06HZ2NhYxcbGOh7v2rVLFotFr776qmbPnq3OnTvLarXqP//5j6ZOnarQ0FDl5+crLi5OrVu3doTcc+fOaeHChYqMjHTUPjExUceOHXN6vx49emj06NHatm2brrvuOrVq1UqRkZF65ZVXHG2ysrI0ceJESdKIESNksVg8drgcaC7YAwfAow4fPqywsDAtWbJE7dq1U1FRkdasWaMhQ4bo//2//6c+ffrU+Nq77rpLn3zyiRYtWqSrr75aJ0+e1CeffKLCwsI6vXdSUpKioqKUkJCgBx98UJMnT5bVar3ka44cOaJf/vKXmj17th577DFt3LhRc+fOVadOnXT33XdLksrKylRUVKTf/OY36ty5s86dO6edO3cqISFBq1evdrRrqAULFuiJJ55QQkKCZs+ercsvv1wFBQU6cOBAg/ucO3euYmJi9OKLL+qyyy5T+/btJVUEtZ///Oe6//77lZKSovLycl24cEFjx47V3/72N82ZM0c//elPdeDAAT322GOKjY3V//zP/6hVq1aOvv/3f/9Xs2fPVkpKijp06KCXX35Zv/rVr9SrVy/dcMMNuu2225SRkaFHH31UmZmZuu666yRJV111VaPqBDRrBgB4UXl5uXHu3Dmjd+/exsMPP+xYvm/fPkOSsXr1asey0NBQY+bMmY16v8p+n376aaflq1evNiQZ+/btcywbPny4IcnYs2ePU9u+ffsaN9988yXXyW63G7/61a+Ma6+91um57t27G/fcc0+dx/v1118bLVq0MH75y19esl1N/Q4fPtwYPny443Fubq4hybjhhhuqtb3nnnsMScYrr7zitPyNN94wJBl/+tOfnJbn5eUZkowVK1Y4jSMoKMg4cOCAY9nZs2cNm81m3H///Y5l69evNyQZubm5l1wvAHXDIVQAHlVeXq6MjAz17dtXLVu2VEBAgFq2bKl///vf+te//nXJ1w4ePFhZWVlauHChPvzwQ9ntdo+Pt2PHjho8eLDTsgEDBlTb+7V+/Xr97Gc/U2hoqAICAhQYGKhVq1bVuk61yc7O1vnz5zVjxoxG9XOx22+/vc7Pbd68WW3bttWYMWNUXl7u+Ddw4EB17NhRu3btcmo/cOBAdevWzfE4KChIV199daP2GAK4NAIcAI+aNWuW5s+fr3Hjxundd9/Vnj17lJeXp6ioKJ09e/aSr33zzTd1zz336OWXX1ZMTIxsNpvuvvtuHTlyxGPjDQsLq7bMarU6jXXDhg36xS9+oc6dO2vt2rX64IMPlJeXp2nTpqm0tLRR7185x6xy7p671HS2bXBwsNq0aeO07Pvvv9fJkyfVsmVLBQYGOv07cuSIjh8/7tS+LjUD4F7MgQPgUWvXrtXdd9+tjIwMp+XHjx9X27ZtL/na8PBwPf/883r++ef1zTff6M9//rNSUlJ09OhRbdu2zYOjvrS1a9eqZ8+eevPNN2WxWBzLy8rKGt135Zmx3377rbp27Vpju6CgIJfvd/z4cYWHh1dbXnWctS0PDw9XWFhYjTVu3bp1jeMC4B0EOAAeZbFYqp048Je//EWHDh1Sr1696txPt27d9MADDygnJ0f/+Mc/3D3MerFYLGrZsqVT+Dly5IhbzkKNi4tTixYt9MILLygmJqbGdj169NA///lPp2VffvmlvvjiC5cBrj5Gjx6tdevW6fz58xoyZEij+qpUuQ2wVw5wDwIcAI8aPXq0srKyFBkZqQEDBujjjz/W008/Xeshwh9++EEjRozQ5MmTFRkZqdatWysvL0/btm1TQkKCl0bv2ujRo7VhwwZNnz5dEyZM0MGDB/XEE08oIiJC//73vxvVd48ePfToo4/qiSee0NmzZ3XnnXfq8ssv1+eff67jx48rPT1dUsUZulOmTNH06dN1++2368CBA3rqqafccm27SZMm6bXXXtOtt96qhx56SIMHD1ZgYKC+/fZb5ebmauzYsRo/fny9+uzXr58kaeXKlWrdurWCgoLUs2dPl4dfAdSOAAfAo5YtW6bAwEAtXrxYp0+f1nXXXacNGzYoNTX1kq8LCgrSkCFD9Oqrr2r//v2y2+3q1q2bHnnkEc2ZM8dLo3ctMTFRR48e1YsvvqhXXnlFV155pVJSUvTtt986AlZjPP744+rdu7eWL1+uX/7ylwoICFDv3r2VnJzsaDN58mQdPnxYL774olavXq1+/frphRdecMv7t2jRQn/+85+1bNkyvfrqq1q8eLECAgLUpUsXDR8+XP379693nz179tTzzz+vZcuWKTY2VufPn9fq1au5zRjQQBbDMAxfDwIAAAB1x1moAAAAJsMhVACmZBiGzp8/f8k2LVq0qPHsS184f/68LnXQw2KxqEWLFl4cEQCzYg8cAFNas2ZNtWuUXfxv9+7dvh6mk6uuuuqS4628DykA1IY5cABMqbCwUPv27btkmz59+vjVNcvy8/Mvea241q1bX/LesABQiQAHAABgMhxCBQAAMBkCHAAAgMkQ4AAAAEyGAAcAAGAyBDgAAACTIcABAACYDAEOAADAZP4/7n8DLMLXJ1oAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0029\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.325 - 0.350 A" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.325 , 0.3259, 0.3268, 0.3277, 0.3286, 0.3295, 0.3304, 0.3313,\n", " 0.3322, 0.3331, 0.334 , 0.3349, 0.3358, 0.3367, 0.3376, 0.3385,\n", " 0.3394, 0.3403, 0.3412, 0.3421, 0.343 , 0.3439, 0.3448, 0.3457,\n", " 0.3466, 0.3475, 0.3484, 0.3493, 0.3502, 0.3511]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ4UlEQVR4nO3de1yUZf7/8fcIOAhoOuAB8XxkTcViPbDfSKwk1mxT0s1c28TV2tVC011DRZNS1LLSdbHWMnWzo61auZ4Q0dqtjF9924XKastTmqmgeUAQ9P79wZfRcQA5DDNzw+v5ePjIue5rLq75eMe857rvuW+LYRiGAAAAYAoNPD0BAAAAVB7hDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmIjHw9tnn32mO+64Q+3atVOjRo1ks9kUFRWltWvXOvQbO3asLBaL05/w8PAyx122bJnCw8NltVrVsWNHpaSkqKioyKnfsWPHNHbsWIWEhCggIEBRUVHKyMioldcKAABQU76ensCpU6fUtm1b3XvvvQoLC9O5c+f0yiuv6L777tP+/fuVnJxs79uoUSPt3LnT4fmNGjVyGnP+/PmaPXu2kpKSFBsbq6ysLCUnJ+vw4cNasWKFvV9hYaFuvfVWnTp1SkuXLlWLFi2UlpamuLg47dixQwMHDqy9Fw4AAFANFm+9t+mAAQN05MgRHTx4UFLJyttbb72ls2fPVvi83NxctWnTRr/97W/117/+1d6empqq5ORk5eTkqEePHpKk5cuXa9KkSfrggw8UFRUlSSouLlZERISCgoK0Z8+eWnp1AAAA1ePxw6blCQkJka9v1RcGt27dqoKCAiUkJDi0JyQkyDAMbdy40d62YcMGde/e3R7cJMnX11djxozRxx9/rMOHD1d7/gAAALXB44dNS126dEmXLl3SyZMntW7dOm3btk1/+ctfHPqcP39erVq10vHjxxUaGqphw4bp8ccfl81ms/fJycmRJPXq1cvhuaGhoQoJCbFvL+0bHR3tNJfevXtLkj7//HOFhYWVOd/CwkIVFhY6zD8vL0/BwcGyWCxVfPUAAKC+MwxDZ86cUevWrdWgQfnra14T3iZOnGg/zNmwYUP9+c9/1oMPPmjfHhERoYiICPXs2VOStHv3bj377LPKyMhQVlaWgoKCJJUcNrVarQoMDHT6GTabTbm5ufbHubm5DsHvyn6l28uzYMECpaSkVOOVAgAAlO/QoUNq06ZNudu9JrzNnDlT48eP17Fjx/Tuu+/qoYce0rlz5/THP/5RkvTII4849B88eLBuuOEGjRgxQi+88ILD9opWvq7eVpW+V5oxY4amTp1qf/zTTz+pXbt22rdvnxo3blzu86qrqKhImZmZGjRokPz8/Fw+PhxRb/ej5u5Fvd2Pmruf2Wp+5swZdezY8Zo5wmvCW7t27dSuXTtJ0pAhQySVBKT7779fzZs3L/M5w4cPV2BgoD766CN7W3BwsAoKCpSfn6+AgACH/nl5eYqMjHToW9bqWl5eniSVuSpXymq1ymq1OrXbbDY1adKk3OdVV1FRkQICAhQcHGyKHdDsqLf7UXP3ot7uR83dz2w1L53jtU6/8tovLPTr10/FxcX67rvvKuxnGIbDceHSc92ys7Md+h09elQnTpywH3Yt7Xt1vyufe2VfAAAAb+C14S0zM1MNGjRQp06dyu3z1ltvKT8/XwMGDLC3xcXFyd/fX6tXr3bou3r1alksFg0bNszeNnz4cO3du9fhkiDFxcVau3at+vfvr9atW7vs9QAAALiCxw+bPvDAA2rSpIn69eunli1b6sSJE1q3bp3eeOMN/elPf1Lz5s114MABjR49WqNGjVKXLl1ksVi0e/duLVmyRNdff73Gjx9vH89msyk5OVmzZ8+WzWazX6R37ty5Gj9+vP0ab5I0btw4paWlaeTIkVq4cKFatGih5cuX66uvvtKOHTs8UQ4AAIAKeTy8RUVFadWqVVqzZo1OnTqloKAgRURE6OWXX9aYMWMkSU2aNFHLli31zDPP6Mcff9TFixfVvn17JSYmaubMmU7fLJ01a5YaN26stLQ0LV68WK1atVJSUpJmzZrl0M9qtSojI0PTp0/Xww8/rPz8fPXp00dbtmzh7goAAMAreTy8JSQkOF1Q92rNmjXT+vXrqzRuYmKiEhMTr9mvZcuWWrNmTZXGBgAA8BSvPecNAAAAzghvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBGPh7fPPvtMd9xxh9q1a6dGjRrJZrMpKipKa9euder76aef6rbbblNQUJCaNm2q+Ph4fffdd2WOu2zZMoWHh8tqtapjx45KSUlRUVGRU79jx45p7NixCgkJUUBAgKKiopSRkeHy1wkAAOAKHg9vp06dUtu2bZWamqrNmzfrb3/7mzp06KD77rtP8+bNs/fbu3evYmJidOHCBb355pt66aWX9PXXXys6OlrHjx93GHP+/PmaPHmy4uPjtW3bNk2cOFGpqamaNGmSQ7/CwkLdeuutysjI0NKlS/X222+rZcuWiouL0+7du93y+gEAAKrC19MTiImJUUxMjEPb0KFDtW/fPq1YsULJycmSpDlz5shqtWrTpk1q0qSJJCkyMlJdu3bV4sWLtWjRIklSbm6u5s2bpwkTJig1NdX+M4qKipScnKwpU6aoR48ekqSVK1cqJydHH3zwgaKioiRJgwYNUkREhKZPn649e/a4owQAAACV5vGVt/KEhITI17ckWxYXF2vTpk26++677cFNktq3b69BgwZpw4YN9ratW7eqoKBACQkJDuMlJCTIMAxt3LjR3rZhwwZ1797dHtwkydfXV2PGjNHHH3+sw4cP19KrAwAAqB6Pr7yVunTpki5duqSTJ09q3bp12rZtm/7yl79Ikr799ludP39evXv3dnpe7969lZ6eroKCAvn7+ysnJ0eS1KtXL4d+oaGhCgkJsW+XpJycHEVHR5c5piR9/vnnCgsLK3O+hYWFKiwstD8+ffq0JKmoqKjMc+tqqnTM2hgbzqi3+1Fz96Le7kfN3c9sNa/sPL0mvE2cOFF//etfJUkNGzbUn//8Zz344IOSSg6FSpLNZnN6ns1mk2EYOnnypEJDQ5Wbmyur1arAwMAy+5aOVTpueWNe+XPLsmDBAqWkpDi1b9++XQEBARW91BpJT0+vtbHhjHq7HzV3L+rtftTc/cxS8/z8/Er185rwNnPmTI0fP17Hjh3Tu+++q4ceekjnzp3TH//4R3sfi8VS7vOv3FbZflXte6UZM2Zo6tSp9senT59W27ZtFRsb63Bo11WKioqUnp6uwYMHy8/Pz+XjwxH1dj9q7l51ud7nzknNmpW8ppMni1TGZ3mPqMs191Zmq3npUbxr8Zrw1q5dO7Vr106SNGTIEEklAen+++9XcHCwpLJXwvLy8mSxWNS0aVNJUnBwsAoKCpSfn++0ApaXl6fIyEj74+Dg4HLHlMpe6StltVpltVqd2v38/Gp1B6nt8eGIersfNXevuljvK19Oyevz3FzKUhdr7u3MUvPKztFrv7DQr18/FRcX67vvvlPnzp3VqFEjZWdnO/XLzs5Wly5d5O/vL+nyuW5X9z169KhOnDihnj172tt69epV7piSHPoCAAB4A68Nb5mZmWrQoIE6deokX19f3XnnnVq/fr3OnDlj73Pw4EFlZmYqPj7e3hYXFyd/f3+tXr3aYbzVq1fLYrFo2LBh9rbhw4dr7969DpcEKS4u1tq1a9W/f3+1bt261l4fAABAdXj8sOkDDzygJk2aqF+/fmrZsqVOnDihdevW6Y033tCf/vQnNW/eXJKUkpKivn37aujQoUpKSlJBQYHmzJmjkJAQTZs2zT6ezWZTcnKyZs+eLZvNptjYWGVlZWnu3LkaP368/RpvkjRu3DilpaVp5MiRWrhwoVq0aKHly5frq6++0o4dO9xei7ru3DkpKKjk72fPymvOQwEAwEw8Ht6ioqK0atUqrVmzRqdOnVJQUJAiIiL08ssva8yYMfZ+4eHh2rVrlx599FGNGDFCvr6+uuWWW7R48WJ7wCs1a9YsNW7cWGlpaVq8eLFatWqlpKQkzZo1y6Gf1WpVRkaGpk+frocfflj5+fnq06ePtmzZooEDB7rl9QMAUJddvCi9/770ww9SaKgUHS35+Hh6Vubm8fCWkJDgdEHd8kRGRlZ6RSwxMVGJiYnX7NeyZUutWbOmUmMCAIDKW79eSkyUrrzmfZs20tKl0hVnPKGKvPacNwDe7dw5yWIp+XPunKdnA8DbrF8vjRjhGNykkscjRpRsN5PTpy//ztuypWRF0VMIbwCAOuXKN9X33vPsm2x9dfGiNHmyZBjO20rbpkwxz7/N+vXSFafMa8gQqUMHzwVQwhsAoM7wtjfZ+ur996Xvvy9/u2FIhw6V9PN23riCSHgDANQJ3vgmW1/98INr+3mKt64gEt5M4PRpqWFDPw0bdpe2bbN4ZJmZ85twNQ5N1T1m/v/cW99k66vQUNf28xRvXUEkvHm5qw8B3HmnL4cA4HGuOjRl5rAA7+Ktb7L1VXR0ybdKy7tFuMUitW1b0s+beesKIuHNi3EIAN7Ilfvllasg//ynZ1aVUTd465tsfeXjU3I5EMk5wJU+XrLE+6/35q0riIQ3L8UhAHgjV+6XZa0qP/BArDZsKOejOlABb32Trc/i46W33pLCwhzb27QpaXfndd4uXpR27ZJee63kv5V97/TWFUTCm5fiEAC8kav2y/JW73Jz/TVqlA+ryqgyb32Tre/i46X9+6XMTOnVV0v+u2+fe4Pbhx+GqnNnXw0aJI0eLQ0aVPnTPLx1BZHw5qU4BABv5Ir9sqLVO6nktyGryqgqb32TRUnNY2Kke+8t+a87/w02bLBo0aK+OnLEsb0qp3mUriC2bu3Y7okVxFKENy/FIQB4I1fsl9devbOwqoxq8cY3WXjOxYvS1KmlSdEx0Vf1NI/4eOnAAc+uIF7J4/c2RdlKDwEcPlz2CoXFUrKdQwBwJ1fsl6wqozbFx0u33SZdd13J482bpdhYVtzqo/fflw4fLv8c2itP84iJufZ4pSuI3oCVNy/FIYCyVfekU7iGK/ZLVpVR267c/26+uf79nkSJuvxBkfDmxTgE4Gj9+pKTTKtz0ilcp6b75bVPLDeqdGI514pzHS68jLqkLn9QJLx5udLj7OnpxZo69f8pPb3Yo8fZPaX024lXnyvFNe88Iz5e+uKLy483b678+R8Vrd5JJcdiq7KqTOBwDe4JiromOloKCzNU+nvlamb+BjLhzQR8fKSBAw3dfPNhDRxoeOQQgCffILnmXe2o6SHomhyaKm/1LiTkvF5//WKlP5wQOFzDmy4IzqkRcBUfH+mZZ0p2IIvF8Q3E7KcfEd5wTZ5+g+Sad67nDYegr169e/fdYv31r+kaPrzsT8lX86bA4Q2Hbqsberzpw5E37JeoW4YPN/Too1l17vQjwhsqVFu3QqrK6l1dPunUE7zpEHSTJiUBwTCk22+v/KqyNwUOV6nJilNNQs8//2nxig9H3rRfom6JivpB//1vsddc5sMVCG8oV23eCqkqq3d1+aRTd3Plv2lg4OXgFRjo0mleU11bja1J+Kpp6PGGD0d1MYzDu3jyQsG1gfCGctX2rZAq++bCbW9cp66EHm8IHK5Sk/DlitDjDR+OXL1fevKDBeAOhDeUq7ZvhVTZNxeueeesuudY1ZXQ4w2B40rVPSWgpv9/uCL03HST4fEPR3VlvwTchfCGcrnnVkiV+0Rd+u3EsDDHdrOfdOpu3hZ6qsuVq7E1/bJBTU4JqOn/H64IPd7w4aiu7JfeyBu+TAPXI7yhXK54g3TlJ+r4eGn/fu+5t5wZ1ZVD0K4MHDW5DE5NTwmo6f8frgo9nr4guDful6dPXw49W7Zwvh28C+EN5fLGWyHVtZNO3c0bVllcxRWBoyarZt5wvpkrQ09NLrxcU962X3r68kjAtRDeUKHavxWSOVZ6XMnThzHq0iHo0juQVGc1tqarZq44JaCm/3+4OvR48p6g3rJfetP1A4HyEN5wTbV1KySzrfR4k5re8aIuHYKuzmqsK1bNvOV8M28JPa7g6f2SS5bALAhv9URNz9+ojVshmfHNxRu46pBOfT4E7YpVM1efb1aT8OXp0HOlmq4se3K/rCuX0kHdR3irB7zh/A1Pnk/jbTx5gjxKuGLVzNXnm9U0fHlLGPfkfZBrikuWwCwIb3WcN73Ze/J8Gm/h6RPkUcIVq2a1cb6ZN4SvmvCGD4o1wSVLYBaEtzqMN3vv4g0nyKOEq1bNOCXgMm/6oFhdfMEKZkF4q8N4s/ce3nKCPEq4ctWMUwLqzgdFvmAFsyC81WG82XsPbzpBHiVcuWpW308JqEsfFF21X3j6kkCo23w9PQHUHt7svYcrT5A/fLjsFQ6LpWQ7h3QqLz5euu026brrSh5v3izFxta/8FWq9IbuVVXXPijGx0t33VUSNn/4oeR3ZHR0/d0v4H0Ib3UYb/bew5UnyI8YUfJvd+W/KYd0qq9Jk+oFFlxWFz8oln6BBPBGHDatwzh/w3twgjzqMk70B9yL8FbH8WbvHThBvm4rPdxoGCV/r2/4oAi4F+GtHqjJ/R9L1fc3J1fgBHnUZXxQBNyHc97qCc7f8A6cII+6jP0bcA9W3gA3Y9UMdRn7N1D7WHkDALhMdS83AqDyWHkDqqimF9/k/EGg7rvybhLvvef9d5fwdqdPX/69u2UL9SS8ASZEAAS81/r1Uo8elx8PGSJ16CBt2FDOtVRqUU1DpDfcKaK8eprhfrm1hfAGAICLrF9fciHtw4cd2w8flkaN8tGHH7rvSsWuCD2eXkGsqJ4jRtTfAOfx8LZz506NGzdO4eHhCgwMVFhYmO666y598sknDv3Gjh0ri8Xi9Cc8PLzMcZctW6bw8HBZrVZ17NhRKSkpKioqcup37NgxjR07ViEhIQoICFBUVJQyMjJq5bUCAOquixelyZPLPuevtG3lyp5uCUCuCD2eXvGqTD2nTKmfh1A9Ht6ee+457d+/X5MnT9bmzZu1dOlSHTt2TAMGDNDOnTsd+jZq1Egffvihw5833njDacz58+dr8uTJio+P17Zt2zRx4kSlpqZq0qRJDv0KCwt16623KiMjQ0uXLtXbb7+tli1bKi4uTrt3767V1w3z8vQnUQDe6f33pe+/L3+7YVh04kSA/vnP2j186orQ4w0rXteup3ToUEm/+sbj3zZNS0tTixYtHNri4uLUpUsXpaam6pZbbrG3N2jQQAMGDKhwvNzcXM2bN08TJkxQamqqJCkmJkZFRUVKTk7WlClT1OP/PkqsXLlSOTk5+uCDDxQVFSVJGjRokCIiIjR9+nTt2bPHlS8VdcD69VJi4uXHQ4aUXIR06VIuQgrUdz/84Np+1VWV0FPW9T+vFf4slpLwd9ddtXspGG+ppzfy+Mrb1cFNkoKCgtSjRw8dOnSoyuNt3bpVBQUFSkhIcGhPSEiQYRjauHGjvW3Dhg3q3r27PbhJkq+vr8aMGaOPP/5Yh6/+yIF6zRs+iQLwXqGVPJ2tsv2qq6ahx1tWvLylnt7I4ytvZfnpp5/06aefOqy6SdL58+fVqlUrHT9+XKGhoRo2bJgef/xx2Ww2e5+cnBxJUq9evRyeGxoaqpCQEPv20r7RZdwpuXfv3pKkzz//XGFhYWXOsbCwUIWFhfbHp0+fliQVFRWVeW5dTZWOWRtju0vDhtKFC5cfe/NLubreFy9KiYm+//dJ1PGQR8knUUOTJ0tDhhRzUdJqqgv7uJlQb9cbMEAKC/PVkSMlh0ivZrEYCg4+r/79paKi2rsYXvPmFlXm7b158+Iy53HoUOWef+hQ2c93lcrUMyxMGjCguNz3E7Pt55Wdp1eGt0mTJuncuXOaNWuWvS0iIkIRERHq2bOnJGn37t169tlnlZGRoaysLAUFBUkqOWxqtVoVWMb1E2w2m3Jzc+2Pc3NzHYLflf1Kt5dnwYIFSklJcWrfvn27AgICKvlKqy49Pb3Wxoaz0npnZwfr8OGbyu1nGBZ9/720ePEe9epV/n6Da2Mfdy/q7VpjxoRq0aK+kgw5ftAzZBjS736Xo507a/c438WLUnBwrHJz/XX1h83SuYSEnNfp0+navNl564EDwZLK/313ud9H2ry5dn/fXauev/lNlrZtu3Y9zbKf5+fnV6qf14W32bNn65VXXtGyZcsUGRlpb3/kkUcc+g0ePFg33HCDRowYoRdeeMFhu8VS/smgV2+rSt8rzZgxQ1OnTrU/Pn36tNq2bavY2Fg1adKk3OdVV1FRkdLT0zV48GD5+fm5fHw4urrep09X7gTj9u0HaMgQLi9fHezj7kW9a8eQIdKNN17UI4/46MiRy+1t2khPPnlBAQE/uKXmy5dbNGqUVBJyLv/+slhKfj+lpTXUnXcOKfO5t98uPf+8cc0Vrz/+sX+tH2korefUqT4Op6y0aSM9/fRFDR9+g6Qbyn2+2fbz0qN41+JV4S0lJUXz5s3T/Pnz9dBDD12z//DhwxUYGKiPPvrI3hYcHKyCggLl5+c7rYDl5eU5BMLg4OAyV9fy8vIkqcxVuVJWq1VWq9Wp3c/Pr1Z3kNoeH45K6922beX6t23rK/55aoZ93L2ot+v9+tdSXJx03XUljzdvlmJjLbp0qYE2b3ZPzX/9a8nXt+QLVo6hx6IlS6T4+PLf/v38pD//ueRcXovF8YsLJWsaFi1dKvn7u2e/+fWvpbvvLjnH7ocfSs5xi462yMen8hHGLPt5Zefo8S8slEpJSdHcuXM1d+5czZw5s9LPMwxDDRpcfhml57plZ2c79Dt69KhOnDhhP+xa2vfqflc+98q+qN+io0s+6ZW3GGuxSG3blvQDgCtXpG6+uXa/lVme+Hjpiy8uP968Wdq3r3LfjI+Pl956S2rd2rG9TZuSdnd/u97Hp+SbsffeW/Lf+n5usVeEtyeeeEJz585VcnKyHnvssUo/76233lJ+fr7D5UPi4uLk7++v1atXO/RdvXq1LBaLhg0bZm8bPny49u7d63BJkOLiYq1du1b9+/dX66v3WtRbPj4llwORnANc6eMlS/iFAsC71CRE1iT8oXZ5/LDp008/rTlz5iguLk533HGHwyFQSRowYIAOHDig0aNHa9SoUerSpYssFot2796tJUuW6Prrr9f48ePt/W02m5KTkzV79mzZbDbFxsYqKytLc+fO1fjx4+3XeJOkcePGKS0tTSNHjtTChQvVokULLV++XF999ZV27NjhthrAHEo/iTofhtD/HYbw2NQAoFY0aVL29d7gWR4Pb++++66kkuuzbd261Wm7YRhq0qSJWrZsqWeeeUY//vijLl68qPbt2ysxMVEzZ850+mbprFmz1LhxY6WlpWnx4sVq1aqVkpKSHL69KpWct5aRkaHp06fr4YcfVn5+vvr06aMtW7Zo4MCBtfeiYVrx8dJtt119LgsrbgAA9/F4eNu1a9c1+zRr1kzrq3gF1MTERCVeeSn8crRs2VJr1qyp0tio37zhXBYAQP3lFee8AQAAoHIIbwAAACbi8cOmgNkEBnICLwDAc1h5AwAAMBFW3gAAcDFW6FGbWHkDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiXB7LAAA6ihu01U3sfIGAABgIoQ3AAAAE+GwKeqVixel99+XfvhBCg2VoqMlHx9PzwoAgMojvKHeWL9emjxZ+v77y21t2khLl0rx8Z6bFwAAVcFhU9QL69dLI0Y4BjdJOny4pH39es/MCwCAqiK8oc67eLFkxa2sb1yVtk2ZUtIPAABvR3hDnff++84rblcyDOnQoZJ+AAB4O8Ib6rwffnBtPwAAPInwhjovNNS1/QAA8CTCG+q86OiSb5VaLGVvt1iktm1L+gEA4O0Ib6jzfHxKLgciOQe40sdLlnC9NwCAORDeUC/Ex0tvvSWFhTm2t2lT0s513gAAZsFFelFvxMdLd93FHRYAAOZGeEO94uMjxcR4ehYAAFQfh00BAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQ8Ht527typcePGKTw8XIGBgQoLC9Ndd92lTz75xKnvp59+qttuu01BQUFq2rSp4uPj9d1335U57rJlyxQeHi6r1aqOHTsqJSVFRUVFTv2OHTumsWPHKiQkRAEBAYqKilJGRobLXycAAIAreDy8Pffcc9q/f78mT56szZs3a+nSpTp27JgGDBignTt32vvt3btXMTExunDhgt5880299NJL+vrrrxUdHa3jx487jDl//nxNnjxZ8fHx2rZtmyZOnKjU1FRNmjTJoV9hYaFuvfVWZWRkaOnSpXr77bfVsmVLxcXFaffu3W55/QAAAFXh6+kJpKWlqUWLFg5tcXFx6tKli1JTU3XLLbdIkubMmSOr1apNmzapSZMmkqTIyEh17dpVixcv1qJFiyRJubm5mjdvniZMmKDU1FRJUkxMjIqKipScnKwpU6aoR48ekqSVK1cqJydHH3zwgaKioiRJgwYNUkREhKZPn649e/a4pQYAAACV5fGVt6uDmyQFBQWpR48eOnTokCSpuLhYmzZt0t13320PbpLUvn17DRo0SBs2bLC3bd26VQUFBUpISHAYMyEhQYZhaOPGjfa2DRs2qHv37vbgJkm+vr4aM2aMPv74Yx0+fNhVLxMAAMAlPL7yVpaffvpJn376qX3V7dtvv9X58+fVu3dvp769e/dWenq6CgoK5O/vr5ycHElSr169HPqFhoYqJCTEvl2ScnJyFB0dXeaYkvT5558rLCyszDkWFhaqsLDQ/vj06dOSpKKiojLPraup0jFrY2w4o97uR83di3q7HzV3P7PVvLLz9MrwNmnSJJ07d06zZs2SVHIoVJJsNptTX5vNJsMwdPLkSYWGhio3N1dWq1WBgYFl9i0dq3Tc8sa88ueWZcGCBUpJSXFq3759uwICAq7xCqsvPT291saGM+rtftTcvai3+1Fz9zNLzfPz8yvVr9rh7fHHH9f48ePVunVrp20//PCDXnjhBc2ZM6fK486ePVuvvPKKli1bpsjISIdtFoul3Oddua2y/ara90ozZszQ1KlT7Y9Pnz6ttm3bKjY21uHQrqsUFRUpPT1dgwcPlp+fn8vHhyPq7X7U3L2ot/tRc/czW81Lj+JdS7XDW0pKiuLi4soMb0eOHFFKSkqVw1tKSormzZun+fPn66GHHrK3BwcHSyp7JSwvL08Wi0VNmza19y0oKFB+fr7TClheXp5DIAwODi53TKnslb5SVqtVVqvVqd3Pz69Wd5DaHh+OqLf7UXP3ot7uR83dzyw1r+wcq/2FBcMwyt129uzZKhcpJSVFc+fO1dy5czVz5kyHbZ07d1ajRo2UnZ3t9Lzs7Gx16dJF/v7+ki6f63Z136NHj+rEiRPq2bOnva1Xr17ljinJoS8AAIA3qNLK23/+8x999tln9sebN2/W3r17HfqcP39er7zyijp37lzpcZ944gnNnTtXycnJeuyxx5wn6eurO++8U+vXr9eTTz6pxo0bS5IOHjyozMxMPfLII/a+cXFx8vf31+rVq9W/f397++rVq2WxWDRs2DB72/DhwzVx4kTt2bPH3re4uFhr165V//79y1xVBAAA8KQqhbcNGzbYT9K3WCx6/PHHy+zXqFEjrVq1qlJjPv3005ozZ47i4uJ0xx136KOPPnLYPmDAAEklK3N9+/bV0KFDlZSUpIKCAs2ZM0chISGaNm2avb/NZlNycrJmz54tm82m2NhYZWVlae7cuRo/frz9Gm+SNG7cOKWlpWnkyJFauHChWrRooeXLl+urr77Sjh07qlIaAAAAt6hSeHvggQc0dOhQGYahfv36adWqVU6HFq1Wq/0wZ2W8++67kkquz7Z161an7aWHZ8PDw7Vr1y49+uijGjFihHx9fXXLLbdo8eLFat68ucNzZs2apcaNGystLU2LFy9Wq1atlJSUZP/26pVzzcjI0PTp0/Xwww8rPz9fffr00ZYtWzRw4MBK1wUAAMBdqhTeQkNDFRoaKknKzMxUZGSkgoKCajSBXbt2VbpvZGRkpVfEEhMTlZiYeM1+LVu21Jo1ayo9BwAAAE+q9rdNWZkCAABwvxpdpHft2rV69dVXdeDAAZ0/f95hm8Vi0bffflujyQEAAMBRtcPbokWLNGPGDPXo0UMRERFlXvMMAAAArlXt8LZixQpNmjRJy5Ytc+V8AAAAUIFqX6T36NGjGj58uCvnAgAAgGuodniLjIzknDYAAAA3q3Z4e+aZZ/T000/rk08+ceV8AAAAUIFqn/OWkJCg3Nxc9evXT61atbLfPL6UxWLRv//97xpPEAAAAJdVO7wFBwcrJCTElXMBAADANVQ7vFXlzggAAABwjWqf8wYAAAD3q/bK23vvvXfNPjfffHN1hwcAAEAZqh3eYmJiZLFYKuxz8eLF6g4PAACAMlQ7vGVmZjq1nThxQm+//bb+9a9/KS0trUYTAwAAgLNqh7eBAweW2X733Xfr97//vbZu3aq4uLhqTwwAAADOauULC8OHD9frr79eG0MDAADUa7US3k6ePKnCwsLaGBoAAKBeq/Zh04MHDzq1FRYW6j//+Y9mzJihAQMG1GhiAAAAcFbt8NahQ4cyv21qGIa6d++uv/zlLzWaGAAAAJxVO7y99NJLTuHN399fHTp0UN++fdWgAdf/BQCgus6dk4KCSv5+9qwUGOjZ+cB7VDu8jR071oXTAAAAQGVUO7yVOnPmjD788EPl5uYqJCREAwYMUOPGjV0xNwAAAFylRuFt8eLFSklJUX5+vgzDkCQFBgYqJSVFU6dOdckEAQAAcFm1w9vf/vY3TZ8+Xb/85S81duxYtW7dWkeOHNGaNWv0pz/9Sc2bN9d9993nyrkCAADUe9UOb88++6xGjx6ttWvXOrSPHDlSY8aM0bPPPkt4AwAAcLFqfyV07969GjNmTJnbxowZoy+//LLakwIAAEDZqh3eGjVqpLy8vDK35eXlqVGjRtWeFAAAAMpW7fAWHR2tuXPn6siRIw7tR48e1eOPP66bb765xpMDAACAo2qf85aamqpf/OIX6tKli2699VaFhobqhx9+0M6dO+Xn56f169e7cp4AAABQDVberr/+emVlZemuu+5SVlaWVq1apaysLA0bNkwff/yxevTo4cp5AgAAQDW8zlu3bt302muvuWouAAAAuIYqr7xlZ2fr+++/L3f7999/r+zs7BpNCgAAAGWrUnh77733FBkZqR9//LHcPj/++KMiIyO1bdu2Gk8OAAAAjqoU3tLS0jRixAhFRkaW2ycyMlL33HOPXnzxxRpPDgAAAI6qFN7+9a9/adiwYdfs96tf/UofffRRdecEAACAclQpvB0/flxhYWHX7BcaGqpjx45Ve1IAAAAoW5XCW2BgYLl3VbjSyZMnFRAQUO1JAQAAoGxVCm/XX3+9tm7des1+W7Zs0fXXX1/tSQEAAKBsVQpv99xzj1auXKndu3eX2yczM1OrVq3SvffeW+PJAQBQX128ePnv773n+Bj1W5XC2wMPPKCePXsqNjZWkyZN0vbt2/XNN9/om2++0fbt2zVx4kTFxcWpV69emjBhQm3NGQCAOm39eunKGxUNGSJ16FDSDlTpDgsNGzbUtm3bdN999+m5557T888/77DdMAz98pe/1N/+9jc1bNjQpRMFAKA+WL9eGjFCMgzH9sOHS9rfekuKj/fM3OAdqnx7rODgYG3evFmffPKJtm/frkOHDkmS2rVrp9tvv1033HCDyycJAEB9cPGiNHmyc3CTStosFmnKFOmuuyQfH7dPD16i2vc2jYyMrPBivQAAoGref1+q4A6UMgzp0KGSfjExbpsWvEyVznnr3bt3pf9ERERUaswzZ85o+vTpio2NVfPmzWWxWDR37lynfmPHjpXFYnH6Ex4eXua4y5YtU3h4uKxWqzp27KiUlBQVFRU59Tt27JjGjh2rkJAQBQQEKCoqShkZGVUpCwAALvHDD67th7qpSitvNptNFoulwj5nz57VJ598cs1+pXJzc7VixQpFRERo2LBhFd5Wq1GjRtq5c6dT29Xmz5+v2bNnKykpSbGxscrKylJycrIOHz6sFStW2PsVFhbq1ltv1alTp7R06VK1aNFCaWlpiouL044dOzRw4MBKvQYAAFwhNNS1/VA3VSm87dq1q9xtxcXFWrFihR5//HFZLBaNHj26UmO2b99eJ0+elMVi0YkTJyoMbw0aNNCAAQMqHC83N1fz5s3ThAkTlJqaKkmKiYlRUVGRkpOTNWXKFPX4v6/wrFy5Ujk5Ofrggw8UFRUlSRo0aJAiIiI0ffp07dmzp1KvAQAAV4iOltq0KflyQlnnvVksJdujo90/N3iPKh02Lc+6devUo0cPPfzww4qIiNAnn3yil19+uVLPLT386Spbt25VQUGBEhISHNoTEhJkGIY2btxob9uwYYO6d+9uD26S5OvrqzFjxujjjz/W4cOHXTYvAACuxcdHWrq05O9XvzWWPl6yhC8r1HfV/sKCVLIS9+ijjyorK0s33nijtm/frltvvdVVc3Ny/vx5tWrVSsePH1doaKiGDRumxx9/XDabzd4nJydHktSrVy+H54aGhiokJMS+vbRvdBkfX3r37i1J+vzzz8u9l2thYaEKCwvtj0+fPi1JKioqKvPcupoqHbM2xoYz6u1+1Ny9qLf7Vbbmd94pvf66RY884qMjRy4nuLAwQ08/fVF33mmIf7bKMdt+Xtl5Viu8ZWdn69FHH9W2bdvUsWNHvfrqqxo1alR1hqq0iIgIRUREqGfPnpKk3bt369lnn1VGRoaysrIUFBQkqeSwqdVqVWBgoNMYNptNubm59se5ubkOwe/KfqXby7NgwQKlpKQ4tW/fvr1W7+uanp5ea2PDGfV2P2ruXtTb/SpTc6tVWrzYR6NHD5UkzZ79ofr0OSYfH2nz5tqeYd1jlv08Pz+/Uv2qFN4OHTqk5ORkvfrqq7LZbFqyZIl+//vfy8/Pr1qTrIpHHnnE4fHgwYN1ww03aMSIEXrhhRcctld0GPbqbVXpe6UZM2Zo6tSp9senT59W27ZtFRsbqyZNmpT7vOoqKipSenq6Bg8e7JZ613fU2/2ouXtRb/eras3Pnbv896lTf64y1iRwDWbbz0uP4l1LlcJbt27ddOHCBcXFxWn69Olq3LixsrOzy+1/4403VmX4Khs+fLgCAwP10Ucf2duCg4NVUFCg/Px8pxWwvLw8h2vTBQcHl7m6lpeXJ0llrsqVslqtslqtTu1+fn61uoPU9vhwRL3dj5q7F/V2v8rW/MouJc+pxUnVcWbZzys7xyqFt9JzvLZs2aKtW7eW288wDFksFl10w110DcNQgwaXv3dReq5bdna2+vfvb28/evSoTpw4YT/sWtq3rPBZ2nZlXwAAAG9QpfC2atWq2ppHtbz11lvKz893uHxIXFyc/P39tXr1aofwtnr1alksFg0bNszeNnz4cE2cOFF79uyx9y0uLtbatWvVv39/tW7d2m2vBQAAoDKqFN7uv//+WpnEli1bdO7cOZ05c0aS9MUXX+itt96SJA0ZMkTHjx/X6NGjNWrUKHXp0kUWi0W7d+/WkiVLdP3112v8+PH2sWw2m5KTkzV79mzZbDb7RXrnzp2r8ePH26/xJknjxo1TWlqaRo4cqYULF6pFixZavny5vvrqK+3YsaNWXisAAEBN1OhSIa7yhz/8QQcOHLA/XrdundatWydJ2rdvn6677jq1bNlSzzzzjH788UddvHhR7du3V2JiombOnOn0zdJZs2apcePGSktL0+LFi9WqVSslJSVp1qxZDv2sVqsyMjI0ffp0Pfzww8rPz1efPn20ZcsW7q4AAAC8kleEt/3791+zz/r166s0ZmJiohITE6/Zr2XLllqzZk2VxgYAAPAUl9xhAQAAAO5BeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJeMW9TQEAgKPAQMkwPD0LeCNW3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBGPh7czZ85o+vTpio2NVfPmzWWxWDR37twy+3766ae67bbbFBQUpKZNmyo+Pl7fffddmX2XLVum8PBwWa1WdezYUSkpKSoqKnLqd+zYMY0dO1YhISEKCAhQVFSUMjIyXPkSAQAAXMbj4S03N1crVqxQYWGhhg0bVm6/vXv3KiYmRhcuXNCbb76pl156SV9//bWio6N1/Phxh77z58/X5MmTFR8fr23btmnixIlKTU3VpEmTHPoVFhbq1ltvVUZGhpYuXaq3335bLVu2VFxcnHbv3l0bLxcAAKBGfD09gfbt2+vkyZOyWCw6ceKEXnzxxTL7zZkzR1arVZs2bVKTJk0kSZGRkeratasWL16sRYsWSSoJg/PmzdOECROUmpoqSYqJiVFRUZGSk5M1ZcoU9ejRQ5K0cuVK5eTk6IMPPlBUVJQkadCgQYqIiND06dO1Z8+e2n75AAAAVeLxlTeLxSKLxVJhn+LiYm3atEl33323PbhJJcFv0KBB2rBhg71t69atKigoUEJCgsMYCQkJMgxDGzdutLdt2LBB3bt3twc3SfL19dWYMWP08ccf6/DhwzV8dQAAAK7l8ZW3yvj22291/vx59e7d22lb7969lZ6eroKCAvn7+ysnJ0eS1KtXL4d+oaGhCgkJsW+XpJycHEVHR5c5piR9/vnnCgsLK3NOhYWFKiwstD8+ffq0JKmoqKjMc+tqqnTM2hgbzqi3+1Fz96Le7kfN3c9sNa/sPE0R3nJzcyVJNpvNaZvNZpNhGDp58qRCQ0OVm5srq9WqwMDAMvuWjlU6bnljXvlzy7JgwQKlpKQ4tW/fvl0BAQHXflHVlJ6eXmtjwxn1dj9q7l7U2/2oufuZpeb5+fmV6meK8FaqosOrV26rbL+q9r3SjBkzNHXqVPvj06dPq23btoqNjXU4tOsqRUVFSk9P1+DBg+Xn5+fy8eGIersfNXcv6u1+1Nz9zFbz0qN412KK8BYcHCyp7JWwvLw8WSwWNW3a1N63oKBA+fn5TitgeXl5ioyMdBi3vDGlslf6SlmtVlmtVqd2Pz+/Wt1Bant8OKLe7kfN3Yt6ux81dz+z1Lyyc/T4FxYqo3PnzmrUqJGys7OdtmVnZ6tLly7y9/eXdPlct6v7Hj16VCdOnFDPnj3tbb169Sp3TEkOfQEAALyBKcKbr6+v7rzzTq1fv15nzpyxtx88eFCZmZmKj4+3t8XFxcnf31+rV692GGP16tWyWCwO15IbPny49u7d63BJkOLiYq1du1b9+/dX69ata+01AQAAVIdXHDbdsmWLzp07Zw9mX3zxhd566y1J0pAhQxQQEKCUlBT17dtXQ4cOVVJSkgoKCjRnzhyFhIRo2rRp9rFsNpuSk5M1e/Zs2Ww2xcbGKisrS3PnztX48ePt13iTpHHjxiktLU0jR47UwoUL1aJFCy1fvlxfffWVduzY4d4iAAAAVIJXhLc//OEPOnDggP3xunXrtG7dOknSvn371KFDB4WHh2vXrl169NFHNWLECPn6+uqWW27R4sWL1bx5c4fxZs2apcaNGystLU2LFy9Wq1atlJSUpFmzZjn0s1qtysjI0PTp0/Xwww8rPz9fffr00ZYtWzRw4MDaf+EAAABV5BXhbf/+/ZXqFxkZWekVscTERCUmJl6zX8uWLbVmzZpKjQkAAOBppjjnDQAAACUIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADAR04S3Xbt2yWKxlPnno48+cuj76aef6rbbblNQUJCaNm2q+Ph4fffdd2WOu2zZMoWHh8tqtapjx45KSUlRUVGRO14SAABAlfl6egJVlZqaqkGDBjm09ezZ0/73vXv3KiYmRn369NGbb76pgoICzZkzR9HR0frss8/UvHlze9/58+dr9uzZSkpKUmxsrLKyspScnKzDhw9rxYoVbntNAAAAlWW68Na1a1cNGDCg3O1z5syR1WrVpk2b1KRJE0lSZGSkunbtqsWLF2vRokWSpNzcXM2bN08TJkxQamqqJCkmJkZFRUVKTk7WlClT1KNHj9p/QQAAAFVgmsOmlVFcXKxNmzbp7rvvtgc3SWrfvr0GDRqkDRs22Nu2bt2qgoICJSQkOIyRkJAgwzC0ceNGd00bAACg0ky38jZp0iSNGjVKAQEBioqK0uzZs3XTTTdJkr799ludP39evXv3dnpe7969lZ6eroKCAvn7+ysnJ0eS1KtXL4d+oaGhCgkJsW8vT2FhoQoLC+2PT58+LUkqKiqqlXPmSsfkfDz3oN7uR83di3q7HzV3P7PVvLLzNE14u+666zR58mTFxMQoODhY//3vf/XUU08pJiZG//jHP3T77bcrNzdXkmSz2Zyeb7PZZBiGTp48qdDQUOXm5spqtSowMLDMvqVjlWfBggVKSUlxat++fbsCAgKq+SqvLT09vdbGhjPq7X7U3L2ot/tRc/czS83z8/Mr1c804e2GG27QDTfcYH8cHR2t4cOHq1evXpo+fbpuv/12+zaLxVLuOFduq2y/ssyYMUNTp061Pz59+rTatm2r2NhYh0O2rlJUVKT09HQNHjxYfn5+Lh8fjqi3+1Fz96Le7kfN3c9sNS89inctpglvZWnatKmGDh2q559/XufPn1dwcLAklblqlpeXJ4vFoqZNm0qSgoODVVBQoPz8fKeVsry8PEVGRlb4s61Wq6xWq1O7n59fre4gtT0+HFFv96Pm7kW93Y+au59Zal7ZOZr+CwuGYUgqWSnr3LmzGjVqpOzsbKd+2dnZ6tKli/z9/SVdPtft6r5Hjx7ViRMnHC4/AgAA4C1MHd5OnjypTZs2qU+fPvL395evr6/uvPNOrV+/XmfOnLH3O3jwoDIzMxUfH29vi4uLk7+/v1avXu0w5urVq2WxWDRs2DA3vQoAAIDKM81h09GjR6tdu3b6+c9/rpCQEH3zzTd6+umn9eOPPzoEsJSUFPXt21dDhw5VUlKS/SK9ISEhmjZtmr2fzWZTcnKyZs+eLZvNZr9I79y5czV+/Hiu8QYAALySacJb79699cYbb+j555/X2bNnZbPZdNNNN+nll19W37597f3Cw8O1a9cuPfrooxoxYoR8fX11yy23aPHixQ53V5CkWbNmqXHjxkpLS9PixYvVqlUrJSUladasWe5+eQAAAJVimvCWlJSkpKSkSvWNjIzUjh07KtU3MTFRiYmJNZkaAACA25j6nDcAAID6hvAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8STp79qymTJmi1q1by9/fX3369NHrr7/u6WkBAAA48fX0BLxBfHy8srKytHDhQnXr1k2vvvqq7r33Xl26dEmjR4/29PQAAADs6n1427x5s9LT0+2BTZIGDRqkAwcO6E9/+pPuuece+fj4eHiWAAAAJer9YdMNGzYoKChII0eOdGhPSEjQkSNHtGfPHg/NDAAAwFm9X3nLycnRz372M/n6Opaid+/e9u2/+MUvnJ5XWFiowsJC++OffvpJkpSXl6eioiKXz7OoqEj5+fnKzc2Vn5+fy8eHI+rtftTcvai3+1Fz9zNbzc+cOSNJMgyjwn71Przl5uaqU6dOTu02m82+vSwLFixQSkqKU3vHjh1dO0EAAFCvnDlzRtddd1252+t9eJMki8VS5W0zZszQ1KlT7Y8vXbqkvLw8BQcHVzhedZ0+fVpt27bVoUOH1KRJE5ePD0fU2/2ouXtRb/ej5u5ntpobhqEzZ86odevWFfar9+EtODi4zNW1vLw8SZdX4K5mtVpltVod2po2bery+V2tSZMmptgB6wrq7X7U3L2ot/tRc/czU80rWnErVe+/sNCrVy99+eWXKi4udmjPzs6WJPXs2dMT0wIAAChTvQ9vw4cP19mzZ/X3v//doX3NmjVq3bq1+vfv76GZAQAAOKv3h01/+ctfavDgwfrDH/6g06dPq0uXLnrttde0detWrV271muu8Wa1WvXYY485HapF7aDe7kfN3Yt6ux81d7+6WnOLca3vo9YDZ8+e1axZs/Tmm28qLy9P4eHhmjFjhkaNGuXpqQEAADggvAEAAJhIvT/nDQAAwEwIbwAAACZCeKsFZ8+e1ZQpU9S6dWv5+/urT58+ev3116/5vB07dmjw4MFq3bq1rFarWrRooVtuuUWbN2926Hf69GnNnz9fMTExatWqlYKCgtSrVy8tWrRIBQUFDn33798vi8VS5p/KzMksarvmkjRr1izdcMMNstls8vf3V6dOnfTAAw/owIEDTn2LioqUkpKiDh06yGq1Kjw8XMuWLXPJa/UG3lRv9vGKVaXmVzp//ry6desmi8WixYsXO21nHy9bbdSbfbxiVal5TExMmXWMi4tz6uvN+3i9/7ZpbYiPj1dWVpYWLlyobt266dVXX9W9996rS5cuafTo0eU+Lzc3V9dff73Gjx+vVq1aKS8vT88//7zuuOMOvfzyyxozZowk6eDBg1qyZInuu+8+TZ06VUFBQXr//fc1d+5cpaenKz093ekuDw8//LDTz+7atavrX7yH1HbNJenUqVO699579bOf/UyNGzfWF198oXnz5umdd97R559/ruDgYHvfiRMn6uWXX9YTTzyhvn37atu2bZo8ebLOnDmjmTNn1mot3MHb6i2xj5enKjW/0uzZs3Xu3Llyx2UfL1tt1VtiHy9PVWveqVMnvfLKKw5tZV1k36v3cQMu9Y9//MOQZLz66qsO7YMHDzZat25tFBcXV2m8CxcuGGFhYUZ0dLS97ezZs8bZs2ed+j711FOGJOP999+3t+3bt8+QZDz11FNVfCXm4Y6al2fz5s2GJGPlypX2tpycHMNisRipqakOfSdMmGA0atTIyM3NrdJ8vI231Zt93PU137Nnj9GwYUNj3bp1ZdaWfdy99WYfd13NBw4caFx//fXXfL637+McNnWxDRs2KCgoSCNHjnRoT0hI0JEjR7Rnz54qjefn56emTZvK1/fyImlgYKACAwOd+vbr10+SdOjQoWrM3LzcUfPyNG/eXJIc+m7cuFGGYSghIcFpPufPn9fWrVurNB9v4231rg/cWfMLFy5o3LhxmjRpkn7+85+X+Xz2cffWuz7w5O+Vsnj7Pk54c7GcnBz97Gc/c9phevfubd9+LZcuXVJxcbGOHDmixx57TF9//bWmTZt2zeft3LlTknT99dc7bVu4cKEaNmyogIAA3XTTTXrnnXcq83JMwd01Ly4u1vnz5/W///u/mjJlirp166b4+HiH+TRv3lytWrWq9ny8mbfVuxT7eMUqW/PHH39c586d0xNPPFHhfNjHK+bKepdiH69YZWv+7bffymazydfXV507d9asWbN0/vx5p/l48z5evz6+ukFubq46derk1F56g/vc3NxrjjFkyBBt27ZNUsnNdN944w3dcccdFT7nP//5j5588kkNHz7cvnNJJVeXnjBhggYPHqzQ0FAdPHhQy5Yt01133aUXXnhB48ePr8rL80rurPnRo0cVGhpqf9y/f39lZmYqKCjIYT6lP/tKgYGBatiwYaXm4828rd7s466r+WeffaYnn3xS7777rgIDA3X8+PFy58M+XjFX1pt93HU1v+mmm3TPPfcoPDxc58+f15YtW/Tkk0/qn//8pzIzM9WgQQP7z/PmfZzwVguu/rJAZbeVWrZsmU6dOqUffvhBa9eu1T333KM1a9bo3nvvLbP//v37NXToULVt21Yvvviiw7bQ0FCtWLHCoW3kyJHq37+/kpKSNHbs2DpxCMpdNQ8JCVFWVpYKCwv15Zdf6sknn9SgQYO0a9cuh5BR0/l4O2+qN/u4a2peXFyscePG6Z577tHtt99e6/Pxdt5Ub/Zx1/1emTdvnsNzhgwZog4dOuiPf/yj3n77bQ0fPtxl86lVHj3jrg4aMGCA0bdvX6f2nJwcQ5Lx17/+tcpjxsXFGc2aNTMuXrzotG3//v1Ghw4djI4dOxqHDh2q9JgLFy40JBlffPFFlefjbdxd8ysdOnTI8PX1NRITE+1to0aNMpo3b+7U9+zZs4YkY8aMGVWejzfxtnqXh328YlfX/KmnnjKuu+4645tvvjFOnjxpnDx50vj3v/9tSDKeeOIJ4+TJk/aTxtnH3Vvv8rCPV6yyv1eOHj1qSDKmT59ub/P2fZxz3lysV69e+vLLL1VcXOzQnp2dLUnq2bNnlcfs16+fTp486bSkfuDAAcXExMgwDGVmZqpNmzaVHtP4v7uilS4Rm5k7a361Nm3aqHXr1vr6668d5nP8+HEdPXrUZfPxJt5W7/Kwj1fs6prn5OTop59+UteuXdWsWTM1a9ZMERERkkouY9GsWTP7z2Mfd2+9y8M+XrHK/l4pdWUdvX4f92h0rINKL2Xw+uuvO7THxcVV6+vOly5dMgYOHGg0bdrUKCoqsrcfOHDA6NChg9G2bVvj22+/rdKYFy5cMPr06WOEhIRUeT7eyF01L8s333xjNGjQwHjooYfsbaVfMV+4cKFD3wcffNArvmJeU95W77Kwj1esrJp/+eWXRmZmpsOf1157zZBk/P73vzcyMzONM2fOGIbBPu7uepeFfbxiVfm9smjRIkOSsXHjRnubt+/jhLdaMHjwYKNZs2bGihUrjJ07dxoTJkwwJBlr16619xk3bpzh4+Nj7N+/3972q1/9ypg9e7bx97//3di1a5fx6quvGrGxsYYkIy0tzd7vxx9/NDp16mRYrVZj7dq1xocffujw58rDp4888ojx0EMPGa+99pqRmZlp/O1vfzP69u1rSDJWrVrllnq4Q23X/N///rdxyy23GMuXLze2bt1qbN++3Xj66aeNNm3aGM2bN3cY0zAMY/z48YbVajWeeuopY9euXcbMmTMNi8VizJ8/v/aL4QbeVG/2cdfUvCwVXV+Mfdx99WYfd03N33vvPeP22283nn/+eWP79u3GO++8Y/zhD38wfHx8jFtuucXp8Ko37+OEt1pw5swZIzEx0WjVqpXRsGFDo3fv3sZrr73m0Of+++83JBn79u2zty1atMjo27ev0axZM8PHx8cIDg42br/9dmPTpk0Oz83MzDQklfvnscces/dduXKl0a9fP8Nmsxm+vr5Gs2bNjNtvv93Ytm1bbZbA7Wq75kePHjXGjBljdO7c2QgICDAaNmxodOrUyfj9739vHDx40Gk+Fy5cMB577DGjXbt2RsOGDY1u3boZf/7zn2vltXuCN9WbffyymtS8LBWFN/Zx99WbffyymtT8m2++MYYMGWKEhYUZVqvV8Pf3N3r16mXMnz/fKCgocJqPN+/jFsP4v4PmAAAA8HrmP8sRAACgHiG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AF5h//79slgsWr16tcvHzsjI0M9//nMFBgbKYrFo48aNWr16tSwWi/bv3+/yn3elDh06aOzYsbX6M8zgiy++0Ny5c2u93kB94OvpCQBAbTIMQ7/+9a/VrVs3vfPOOwoMDFT37t1VXFysDz/8UKGhoZ6eYr3wxRdfKCUlRTExMerQoYOnpwOYGuENQJ125MgR5eXlafjw4br11lsdtjVv3txDs/KsoqIiWSwW+fo6vwXk5+crICDAA7MCUFkcNgVQq/773/8qISFBXbt2VUBAgMLCwnTnnXcqOzv7ms89fvy4HnjgAbVt21ZWq1XNmzfX//zP/2jHjh2V+tlz585VmzZtJEmPPvqoLBaLfdWnrMOmMTEx6tmzp7KyshQdHa2AgAB16tRJCxcu1KVLl+z9CgoKNG3aNPXp00fXXXedbDaboqKi9Pbbb1e+MNfw6quvKioqSkFBQQoKClKfPn20cuVK+/byDsfGxMQoJibG/njXrl2yWCx6+eWXNW3aNIWFhclqteq///2vxo4dq6CgIGVnZys2NlaNGze2B9wLFy5o3rx5Cg8Pt9c+ISFBx48fd/h5HTp00NChQ7V161bdeOONatSokcLDw/XSSy/Z+6xevVojR46UJA0aNEgWi6XWDpED9QErbwBq1ZEjRxQcHKyFCxeqefPmysvL05o1a9S/f3/97//+r7p3717uc++77z59+umnmj9/vrp166ZTp07p008/VW5ubqV+9vjx4xUREaH4+Hg9/PDDGj16tKxWa4XPOXr0qH7zm99o2rRpeuyxx7RhwwbNmDFDrVu31m9/+1tJUmFhofLy8vTHP/5RYWFhunDhgnbs2KH4+HitWrXK3q+65syZoyeeeELx8fGaNm2arrvuOuXk5OjAgQPVHnPGjBmKiorS888/rwYNGqhFixaSSkLar371Kz344INKSkpScXGxLl26pLvuukvvv/++pk+frl/84hc6cOCAHnvsMcXExOj//b//p0aNGtnH/ve//61p06YpKSlJLVu21Isvvqjf/e536tKli26++WbdcccdSk1N1cyZM5WWlqYbb7xRktS5c+ca1QmotwwAcKPi4mLjwoULRteuXY1HHnnE3r5v3z5DkrFq1Sp7W1BQkDFlypQa/bzScZ966imH9lWrVhmSjH379tnbBg4caEgy9uzZ49C3R48exu23317hayoqKjJ+97vfGTfccIPDtvbt2xv3339/pef73XffGT4+PsZvfvObCvuVN+7AgQONgQMH2h9nZmYakoybb77Zqe/9999vSDJeeuklh/bXXnvNkGT8/e9/d2jPysoyJBnLly93mIe/v79x4MABe9v58+cNm81mPPjgg/a2devWGZKMzMzMCl8XgGvjsCmAWlVcXKzU1FT16NFDDRs2lK+vrxo2bKhvvvlGX375ZYXP7devn1avXq158+bpo48+UlFRUa3Pt1WrVurXr59DW+/evZ1WvdatW6f/+Z//UVBQkHx9feXn56eVK1de8zVdS3p6ui5evKhJkybVaJyr3X333ZXetmnTJjVt2lR33nmniouL7X/69OmjVq1aadeuXQ79+/Tpo3bt2tkf+/v7q1u3bjVaKQRQPsIbgFo1depUzZ49W8OGDdO7776rPXv2KCsrSxERETp//nyFz33jjTd0//3368UXX1RUVJRsNpt++9vf6ujRo7U23+DgYKc2q9XqMNf169fr17/+tcLCwrR27Vp9+OGHysrK0rhx41RQUFCjn196TlnpuXquUt63agMCAtSkSROHth9//FGnTp1Sw4YN5efn5/Dn6NGjOnHihEP/ytQMgOtwzhuAWrV27Vr99re/VWpqqkP7iRMn1LRp0wqfGxISoiVLlmjJkiU6ePCg3nnnHSUlJenYsWPaunVrLc66YmvXrlXHjh31xhtvyGKx2NsLCwtrPHbpN2C///57tW3bttx+/v7+Zf68EydOKCQkxKn9ynleqz0kJETBwcHl1rhx48blzgtA7SO8AahVFovF6UsC//jHP3T48GF16dKl0uO0a9dODz30kDIyMvSvf/3L1dOsEovFooYNGzoEn6NHj7rk26axsbHy8fHRc889p6ioqHL7dejQQf/5z38c2r7++mt99dVXZYa3qhg6dKhef/11Xbx4Uf3796/RWKVK9wFW44CaI7wBqFVDhw7V6tWrFR4ert69e+uTTz7RU089dc3Dgj/99JMGDRqk0aNHKzw8XI0bN1ZWVpa2bt2q+Ph4N82+bEOHDtX69es1ceJEjRgxQocOHdITTzyh0NBQffPNNzUau0OHDpo5c6aeeOIJnT9/Xvfee6+uu+46ffHFFzpx4oRSUlIklXwTd8yYMZo4caLuvvtuHThwQE8++aRLrl03atQovfLKKxoyZIgmT56sfv36yc/PT99//70yMzN11113afjw4VUas2fPnpKkFStWqHHjxvL391fHjh3LPOQKoGKENwC1aunSpfLz89OCBQt09uxZ3XjjjVq/fr2Sk5MrfJ6/v7/69++vl19+Wfv371dRUZHatWunRx99VNOnT3fT7MuWkJCgY8eO6fnnn9dLL72kTp06KSkpSd9//709XNXE448/rq5du2rZsmX6zW9+I19fX3Xt2lWJiYn2PqNHj9aRI0f0/PPPa9WqVerZs6eee+45l/x8Hx8fvfPOO1q6dKlefvllLViwQL6+vmrTpo0GDhyoXr16VXnMjh07asmSJVq6dKliYmJ08eJFrVq1iluHAdVgMQzD8PQkAAAAUDl82xQAAMBEOGwKwJQMw9DFixcr7OPj41Putyw94eLFi6roYIfFYpGPj48bZwTAjFh5A2BKa9ascboG2dV/du/e7elpOujcuXOF8y29rygAVIRz3gCYUm5urvbt21dhn+7du3vVNcmys7MrvBZc48aNK7zXKwBIhDcAAABT4bApAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAm8v8BsmydOXHVAHoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0030\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.350 - 0.375 A" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.35 , 0.3509, 0.3518, 0.3527, 0.3536, 0.3545, 0.3554, 0.3563,\n", " 0.3572, 0.3581, 0.359 , 0.3599, 0.3608, 0.3617, 0.3626, 0.3635,\n", " 0.3644, 0.3653, 0.3662, 0.3671, 0.368 , 0.3689, 0.3698, 0.3707,\n", " 0.3716, 0.3725, 0.3734, 0.3743, 0.3752, 0.3761, 0.377 ]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABO8UlEQVR4nO3de1yUdd7/8fcoOAhoNuABzVNpcpuCxXpgNxN1RdYslXQz10pcrDstNN01VDQpRdtsy3Wp1jKxzA62auV6CAnd3Q7GXb+9F2qtttRK11QwTwgOev3+4GZiZJDTnC54PR8PHzXX9Z3vfK8P1wxvrsN3LIZhGAIAAIApNPP1AAAAAFB7hDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAiPg9v//jHP3TzzTerS5cuatmypWw2m2JjY7V+/XqndlOmTJHFYqnyLzIy0mW/q1atUmRkpKxWq7p376709HTZ7fYq7Y4ePaopU6YoPDxcwcHBio2NVU5Ojke2FQAAoKECfD2AH374QZ07d9Ydd9yhTp066ezZs3r55Zd155136sCBA0pLS3O0bdmypd59912n57ds2bJKn0uXLtXChQuVmpqq+Ph45eXlKS0tTYcOHdLq1asd7UpLSzV8+HD98MMPWrlypdq1a6fMzEwlJCRo165dGjJkiOc2HAAAoB4s/vrdpoMGDdLhw4f1zTffSCo/8vbGG2/ozJkzl31eYWGhrrrqKt11113605/+5FiekZGhtLQ0FRQUqHfv3pKkp59+WjNmzND777+v2NhYSVJZWZmio6MVGhqqvXv3emjrAAAA6sfnp02rEx4eroCAuh8Y3LFjh0pKSpSUlOS0PCkpSYZhaMuWLY5lmzdvVq9evRzBTZICAgI0efJkffTRRzp06FC9xw8AAOAJPj9tWuHixYu6ePGiTpw4oY0bN2rnzp364x//6NTm3Llz6tChg44dO6aIiAiNHTtWjzzyiGw2m6NNQUGBJKlv375Oz42IiFB4eLhjfUXbwYMHVxlLVFSUJOnTTz9Vp06dXI63tLRUpaWlTuMvKipSWFiYLBZLHbceAAA0dYZh6PTp0+rYsaOaNav++JrfhLfp06c7TnO2aNFCf/jDH3Tvvfc61kdHRys6Olp9+vSRJO3Zs0dPPvmkcnJylJeXp9DQUEnlp02tVqtCQkKqvIbNZlNhYaHjcWFhoVPwq9yuYn11li1bpvT09HpsKQAAQPW+/fZbXXXVVdWu95vwNn/+fCUnJ+vo0aN6++23df/99+vs2bP6zW9+I0l68MEHndqPGDFC119/vcaPH6/nnnvOaf3ljnxduq4ubSubN2+eZs+e7Xh88uRJdenSRfv371erVq2qfV592e125ebmaujQoQoMDHR7/6DG3kKdPY8aewd19rymVuPTp0+re/fuNeYIvwlvXbp0UZcuXSRJo0aNklQekO6++261bdvW5XPGjRunkJAQffjhh45lYWFhKikpUXFxsYKDg53aFxUVKSYmxqmtq6NrRUVFkuTyqFwFq9Uqq9VaZbnNZlPr1q2rfV592e12BQcHKywsrEnswL5Ajb2DOnseNfYO6ux5Ta3GFdtY0+VXfnvDwoABA1RWVqavv/76su0Mw3A6L1xxrVt+fr5TuyNHjuj48eOO064VbS9tV/m5ldsCAAD4A78Nb7m5uWrWrJmuvvrqatu88cYbKi4u1qBBgxzLEhISFBQUpKysLKe2WVlZslgsGjt2rGPZuHHjtG/fPqcpQcrKyrR+/XoNHDhQHTt2dNv2AAAAuIPPT5vec889at26tQYMGKD27dvr+PHj2rhxo1577TX99re/Vdu2bXXw4EFNmjRJEydOVI8ePWSxWLRnzx499dRTuu6665ScnOzoz2azKS0tTQsXLpTNZnNM0rt48WIlJyc75niTpKlTpyozM1MTJkzQ8uXL1a5dOz399NP6/PPPtWvXLl+UAwAA4LJ8Ht5iY2O1du1arVu3Tj/88INCQ0MVHR2tl156SZMnT5YktW7dWu3bt9fvf/97ff/997pw4YK6du2qlJQUzZ8/v8qdpQsWLFCrVq2UmZmpFStWqEOHDkpNTdWCBQuc2lmtVuXk5Gju3Ll64IEHVFxcrH79+mn79u18uwIAAPBLPg9vSUlJVSbUvdSVV16pTZs21anflJQUpaSk1Niuffv2WrduXZ36BgAA8BW/veYNAAAAVRHeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCI+D2//+Mc/dPPNN6tLly5q2bKlbDabYmNjtX79+iptP/nkE/385z9XaGio2rRpo8TERH399dcu+121apUiIyNltVrVvXt3paeny263V2l39OhRTZkyReHh4QoODlZsbKxycnLcvp0AAADu4PPw9sMPP6hz587KyMjQtm3b9OKLL6pbt2668847tWTJEke7ffv2KS4uTufPn9frr7+uF154QV988YUGDx6sY8eOOfW5dOlSzZw5U4mJidq5c6emT5+ujIwMzZgxw6ldaWmphg8frpycHK1cuVJvvvmm2rdvr4SEBO3Zs8cr2w8AAFAXAb4eQFxcnOLi4pyWjR49Wvv379fq1auVlpYmSVq0aJGsVqu2bt2q1q1bS5JiYmLUs2dPrVixQo899pgkqbCwUEuWLNG0adOUkZHheA273a60tDTNmjVLvXv3liStWbNGBQUFev/99xUbGytJGjp0qKKjozV37lzt3bvXGyUAAACoNZ8featOeHi4AgLKs2VZWZm2bt2q2267zRHcJKlr164aOnSoNm/e7Fi2Y8cOlZSUKCkpyam/pKQkGYahLVu2OJZt3rxZvXr1cgQ3SQoICNDkyZP10Ucf6dChQx7aOgBNydmzksVS/u/sWV+PBoDZ+fzIW4WLFy/q4sWLOnHihDZu3KidO3fqj3/8oyTpq6++0rlz5xQVFVXleVFRUcrOzlZJSYmCgoJUUFAgSerbt69Tu4iICIWHhzvWS1JBQYEGDx7ssk9J+vTTT9WpUyeX4y0tLVVpaanj8alTpyRJdrvd5bV1DVXRpyf6Rjlq7B1Nsc7lmxr4f/9vl6c3vSnW2Be8WeezZ6Urryzfh06csCskxOMv6Rea2r5c2+30m/A2ffp0/elPf5IktWjRQn/4wx907733Sio/FSpJNputyvNsNpsMw9CJEycUERGhwsJCWa1WhbjYs202m6Ovin6r67Py67qybNkypaenV1n+zjvvKDg4+HKb2iDZ2dke6xvlqLF3NKU6l5Q0lzRakrRz504FBV3wyus2pRr7kjfq7Kt9yF80lX25uLi4Vu38JrzNnz9fycnJOnr0qN5++23df//9Onv2rH7zm9842lgslmqfX3ldbdvVtW1l8+bN0+zZsx2PT506pc6dOys+Pt7p1K672O12ZWdna8SIEQoMDHR7/6DG3tIU61z5VOnIkSM9ftSkKdbYF7xZZ2/vQ/6iqe3LFWfxauI34a1Lly7q0qWLJGnUqFGSygPS3XffrbCwMEmuj4QVFRXJYrGoTZs2kqSwsDCVlJSouLi4yhGwoqIixcTEOB6HhYVV26fk+khfBavVKqvVWmV5YGCgR3cwT/cPauwtTanOzSpdXfzBB4GKj5eaN/f86zalGvuSN+pcufvy1/Poy/mdprIv13Yb/faGhQEDBqisrExff/21rrnmGrVs2VL5+flV2uXn56tHjx4KCgqS9OO1bpe2PXLkiI4fP64+ffo4lvXt27faPiU5tQWA+ti0Sfq/G9wlSaNGSd26lS8HgPrw2/CWm5urZs2a6eqrr1ZAQIBuueUWbdq0SadPn3a0+eabb5Sbm6vExETHsoSEBAUFBSkrK8upv6ysLFksFo0dO9axbNy4cdq3b5/TlCBlZWVav369Bg4cqI4dO3ps+wA0fps2SePHS5feuH7oUPlyAhyA+vD5adN77rlHrVu31oABA9S+fXsdP35cGzdu1Guvvabf/va3atu2rSQpPT1d/fv31+jRo5WamqqSkhItWrRI4eHhmjNnjqM/m82mtLQ0LVy4UDabTfHx8crLy9PixYuVnJzsmONNkqZOnarMzExNmDBBy5cvV7t27fT000/r888/165du7xeCwCNx4UL0syZkmFUXWcY5dOGzJoljRnjnVOoABoPn4e32NhYrV27VuvWrdMPP/yg0NBQRUdH66WXXtLkyZMd7SIjI7V792499NBDGj9+vAICAjRs2DCtWLHCEfAqLFiwQK1atVJmZqZWrFihDh06KDU1VQsWLHBqZ7ValZOTo7lz5+qBBx5QcXGx+vXrp+3bt2vIkCFe2X4AjdPf/iZ991316w1D+vbb8naXzFMOAJfl8/CWlJRUZULd6sTExNT6iFhKSopSUlJqbNe+fXutW7euVn0CQG395z/ubQcAFfz2mjcAMLOICPe2A+Bb/vRNKYQ3APCAwYOlq64q/6B3xWKROncub9cU+NMvPvjGqVM/7gPbt5dfF4r6IbwBgAc0by6tXFn+/5cGuIrHTz3FzQpoGpgyx70IbwDgIYmJ0htvSJfOOnTVVeXLK81yBDRaTJnjfoQ3APCgxETps89+fLxtm7R/P8ENTUNNU+ZI5VPmcAq1bghvAOBhlU+N3nQTp0rRdNRlyhzUHuENAAB4BFPmeAbhDQA8LCSk/AiDYZT/P9BUuHPKHO5Y/pHPJ+kFAAD+7cKF8lOb//lPedAaPLh2p/8rpsw5dMj1dW8WS/n6pjJljrtw5A2Ax/EXM2BemzZJXbtKQ4dKkyaV/7e203w0pilzKt9U8de/+vYmC8Ib4AUXLki7d0uvvFL+36Z2Z1Xl7f373y1NbvsBs3LHNB+NYcocf5unjvAGeFhD/mptDC790LvllgDdc0+8Nm+u5qsHAPgFd07zkZgoHTwo5eZKGzaU/9csU+b44zx1hDfAg/zxTe9N1W1/YWGQJk5s3ui3H41HUzz17+5pPpo3l+LipDvuKP+vWU6V+uM8dYQ3wEP89U3vLZfbfqn8qJtZtr8p/uKGM3+63slbmObDf+epI7w1AU39eitf8dc3vbfUvP0Wr20/7wHz8+XPsLrrnRr7qX93TvPhDg0N0KdO/fhH2PbttXu+vwZYwlsjt2lT+YdMU73eSvLdURN/fdN7i79sf1O/5rAx8OXn2OUufZg4sbk++MA7ycUXR/4qpvm49C7RChaL1Lmzd6b52LzZ0qAbBup7w4G/BdgKhLdGrOJD59KjH03leitf86c3vS8CrD9sf1O/5rAx8OXnWG0ufVizpo/Hg5Sv7nT0l2k+PvggQhMnNq/3+7ghnwP+FGArI7w1Uo3peiuzXm/kr296b6l5+41ab3999oHG9B5wBzOeOvb1z7A2p/6PHw/W3//uudOnvv4DpGKaj06dnJd7a5qPCxek55/vW+99oKH7kL8E2EsR3hqppn69lbvV5xefv77pveVy2y+Vf2p6cvt5D/zIHy6fqM9pP3f+DOvzB4CvT/37OrxWSEyUDhzwzTQff/+7RYWFLVVxk9OlatoH3LEP+eM8dYS3RsrXHzqNSUN+8fn6r1Zfq+5DLzz8nF599YJHt5/3QDl3nXZsyJG7+p728/XP0Nen/v3pDxBfTfPR0H3AXftQYqL02Wc/Pt62zbfz1BHeGilff+g0Fu74xefLv1r9waUfem+/XaY//Slb48a5nEPEbXgPuO/ITUNu+mjIaT9f/wxrc+o/PLxYN97omX3Z1+HVHzR0H3DnPlQ5sN50k2/PmhDeGqmmfr1VZfW9S8udpyzMODmlO7VuXV4zw5BGjjS8sv28B8pPOTX0yE1DwldD30O+/hnW5tKHX/+6wGP7s6/Dqz+48UZDYWHnZLG4Dsg17QO+3oc8hfBmAmfPSi1aBGrs2DG1vlajqV9vVaEhd2n50ykL1J073wNmnaC1oUduGhq+Gvoe8oef4eWud3r11QuKjfXcYa/GGjzqonlzKTk5X1L99oHG+ruQ8NaINZbrrer7odvQu7Q4ZeE/GvqLtyHvAX/7Quq6aOiRm4aGL3e8h/zhZ1jd9U51OfVfnwli3Rk8zHrXviTFxv5Hr756od43DPjjDQcNZsAtTp48aUgyTp486fa+z5ypOOFkGCdOnK/z88vKDCM31zA2bCj/b1mZ24foMX/+s2F06vTj9kuGcdVV5csvp6ysvF3l51X+Z7EYRufOzrU4f/68sWXLFuP8+fIa5+ZW//zK/3JzPbb5blN5HzpzxrdjubTONanvPlBZfd8Df/5z+b7iav+xWOo2Bm+qqPG5c+eNq65yvQ3VvQ8q27Chdu+BDRtcP9+d7yF//BnWdl9u6D7s6vmdO9dt7CdP/vjcbdvM83ugco0bug0Nfb43PkdrmyUIb27iz+HNrBryoVufXxqXfhBXBMD6/uLzJ2YNb74MT/X5A8BfVK5xRQ0vraOn3keV+fo95OmfYW32ZXftww0JHu74A8hXKtfY159j/hTeOG0Kj/PFBKvuOF3TWK+VMAtfz3HVWK55bMhpx4Zec+Xr95Cvf4buvumpQl3udPT1JL/wDMIb/FJDP3TddZdWY7lu0Ix8/Yu3MV3zWN/patwRvnx5vZGvf4a+3od9/QcQPIfwBr/U0A9dd96l5Q/ztNXnYmez8/Uv3sY2TUN9p6txxx8wvprg1Nc/Q1/vw74Oj41NSMiPJ55DQnw7lgDfvjzM4MKF8jf3f/5T/iE3eLDnTxU29EO34ojB+PHlgafyX571OV1T8YvPFzZtklJSfnw8alT5L86VKxv3kT9f/+Kt+APg0CHXRy4slvL1jXmahgqJidKYMQ37HPDFBKe+/hn6eh/2dXiE53DkDZflq+9EdMeRs8Zwe3hTvl7F13Nc+fp6LX9jxommff0z9PU+7OvwCM8hvKFa7vpOxPpw14euv30fXV009etVfP2LV2ocfwA0db78Gfp6H/Z1eITnEN5MoPIv57//3eKVX9buDA6emNm8Lh+6/vR9dHXB9Sr+EZ7M/AcAyvnyZ9iUw6O7+dM1Z75GePNzl84MfsstAV45bemu4OCpmc2bwi9Od16vYtavd5L8Yx8w6x8A+JEvf4aJidLBg7656ckf/gCC+xHe/Jgvr3dyR3Bw1/ib6i9Od12vYuavd6rQVPcBNB6+vGbQH/4AgnsR3vyUr693amhw8PX4GwN3XK/SlG94ACpr6qfcWrf+cft/8Qv+ADI7wpuf8vX1Tg0NDr4ef2PQ0OtVCNAA0DgR3vyUr+fnaWhw8PX4KzPzX9wNuV6FAA0AjRPhzU/5w/w8DZlZ3Z3jN3P4cof6Xq/iTwEaAOA+fMOCn/L1zOAV6juzur+Mv7GouF6lLvzhDwAAgPtx5M1P+dP8PPW5S8qfxt9UNaYJOpv60VcAqIzw5sfMPj+P2cdvdgToxuPCBWn3bumVV8r/y00mQNNGePNzl17v9PbbZaaan4f5hXyLAO0evjzy56vvFwbgv3we3t59911NnTpVkZGRCgkJUadOnTRmzBh9/PHHTu2mTJkii8VS5V9kZKTLfletWqXIyEhZrVZ1795d6enpstvtVdodPXpUU6ZMUXh4uIKDgxUbG6ucnByPbGt9VT4ycuONhumOlDDBqm8RoM3Ll98vDMB/+fyGhWeeeUaFhYWaOXOmevfurWPHjumJJ57QoEGDtHPnTg0bNszRtmXLlnr33Xednt+yZcsqfS5dulQLFy5Uamqq4uPjlZeXp7S0NB06dEirV692tCstLdXw4cP1ww8/aOXKlWrXrp0yMzOVkJCgXbt2aciQIZ7bcMCLCNDmU9M8fRZL+Tx9Y8aY4+dZcfQSQMP5PLxlZmaqXbt2TssSEhLUo0cPZWRkOIW3Zs2aadCgQZftr7CwUEuWLNG0adOUkZEhSYqLi5PdbldaWppmzZql3v/3XUFr1qxRQUGB3n//fcXGxkqShg4dqujoaM2dO1d79+5156YCQK3VZZ6+uDivDQuAH/D5adNLg5skhYaGqnfv3vr222/r3N+OHTtUUlKipKQkp+VJSUkyDENbtmxxLNu8ebN69erlCG6SFBAQoMmTJ+ujjz7SoUu/UwgAvIR5+gBUx+dH3lw5efKkPvnkE6ejbpJ07tw5dejQQceOHVNERITGjh2rRx55RDabzdGmoKBAktS3b1+n50ZERCg8PNyxvqLtYBfzJERFRUmSPv30U3W6dIba/1NaWqrS0lLH41OnTkmS7Ha7y2vrGqK8u8BK/bu1e48zy/grfm7u/vn5A3/6GTTmOrtT27YW1eYjum3bMtntzucjqbF3eLPO/vQe9qamti/Xdjv9MrzNmDFDZ8+e1YIFCxzLoqOjFR0drT59+kiS9uzZoyeffFI5OTnKy8tTaGiopPLTplarVSEubgmz2WwqLCx0PC4sLHQKfpXbVayvzrJly5Senl5l+TvvvKPg4OBabmntlJQ0lzRaUvkNHkFB5psnoOKA5549Ph1GrWRnZ/t6CG5XeR/auXOnX+xDjbHO7nThghQWFq/CwiBJribrMxQefk6nTmVr2zbXfVBj7/BGnf3xPexNTWVfLi4urlU7vwtvCxcu1Msvv6xVq1YpJibGsfzBBx90ajdixAhdf/31Gj9+vJ577jmn9ZbqZiV1sa4ubSubN2+eZs+e7Xh86tQpde7cWfHx8WrdunW1z6uPs2d//P9hw4apTZtAt/aPcna7XdnZ2RoxYoQCAxtXjSvvQyNHjvTpRLeNuc7u9vTTFk2cKEmGDOPHzyOLpfxIW2ZmC91yy6gqz6PG3uHtOp8/X3FUZqTHX8tfNLV9ueIsXk38Krylp6dryZIlWrp0qe6///4a248bN04hISH68MMPHcvCwsJUUlKi4uLiKkfAioqKnAJhWFiYy6NrRUVFkuTyqFwFq9Uqq9VaZXlgYKDbd7DK3XmifzhrjDWuug/5bizO4/CDgfixX/5SCggov+u08s0LV11l0VNPSYmJl/8Ip8beQZ09r6nUuLbb6PMbFiqkp6dr8eLFWrx4sebPn1/r5xmGoWbNftyMimvd8vPzndodOXJEx48fd5x2rWh7abvKz63cFmjKTp0qn5rCYpG2b2eGf29KTJQOHJByc6UNG8r/yzx9QNPmF+Ht0Ucf1eLFi5WWlqaHH3641s974403VFxc7DR9SEJCgoKCgpSVleXUNisrSxaLRWPHjnUsGzdunPbt2+c0JUhZWZnWr1+vgQMHquOl09L7SEhI+eHyLVve5Hsd4XWbNkn/N7uOJGnUKGb497b6fL8wgMbL56dNn3jiCS1atEgJCQm6+eabnU6BStKgQYN08OBBTZo0SRMnTlSPHj1ksVi0Z88ePfXUU7ruuuuUnJzsaG+z2ZSWlqaFCxfKZrM5JuldvHixkpOTHXO8SdLUqVOVmZmpCRMmaPny5WrXrp2efvppff7559q1a5fXagD4q4oZ/i+dXLVihn++YgsAvM/n4e3tt9+WVD4/244dO6qsNwxDrVu3Vvv27fX73/9e33//vS5cuKCuXbsqJSVF8+fPr3Jn6YIFC9SqVStlZmZqxYoV6tChg1JTU53uXpXKr1vLycnR3Llz9cADD6i4uFj9+vXT9u3b+XYFNHmNbYZ/AGgsfB7edu/eXWObK6+8UpvqeI4mJSVFKSkpNbZr37691q1bV6e+gaaAGf4BwD/5xTVvAPwPM/wDgH8ivAFwKSLCve0AAO5BeAPg0uDB0lVXlV/b5orFInXuXN4OAOA9hDegCQgJKb9GzTBU6+lmmjeXVq4s//9LA1zF46ee4mYFAPA2whuAaiUmlk8HcumUh1ddxTQhAOArPr/bFIB/S0wsnw7kb38rvzkhIqL8VClH3ADANwhvAGpUMcM/AMD3OG0KAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwER8Ht7effddTZ06VZGRkQoJCVGnTp00ZswYffzxx1XafvLJJ/r5z3+u0NBQtWnTRomJifr6669d9rtq1SpFRkbKarWqe/fuSk9Pl91ur9Lu6NGjmjJlisLDwxUcHKzY2Fjl5OS4fTsBAADcwefh7ZlnntGBAwc0c+ZMbdu2TStXrtTRo0c1aNAgvfvuu452+/btU1xcnM6fP6/XX39dL7zwgr744gsNHjxYx44dc+pz6dKlmjlzphITE7Vz505Nnz5dGRkZmjFjhlO70tJSDR8+XDk5OVq5cqXefPNNtW/fXgkJCdqzZ49Xth8AAKAuAnw9gMzMTLVr185pWUJCgnr06KGMjAwNGzZMkrRo0SJZrVZt3bpVrVu3liTFxMSoZ8+eWrFihR577DFJUmFhoZYsWaJp06YpIyNDkhQXFye73a60tDTNmjVLvXv3liStWbNGBQUFev/99xUbGytJGjp0qKKjozV37lzt3bvXKzUAAACoLZ8febs0uElSaGioevfurW+//VaSVFZWpq1bt+q2225zBDdJ6tq1q4YOHarNmzc7lu3YsUMlJSVKSkpy6jMpKUmGYWjLli2OZZs3b1avXr0cwU2SAgICNHnyZH300Uc6dOiQuzYTAADALXx+5M2VkydP6pNPPnEcdfvqq6907tw5RUVFVWkbFRWl7OxslZSUKCgoSAUFBZKkvn37OrWLiIhQeHi4Y70kFRQUaPDgwS77lKRPP/1UnTp1cjnG0tJSlZaWOh6fOnVKkmS3211eW9dQFX16om+Uo8beQZ09jxp7B3X2vKZW49pup1+GtxkzZujs2bNasGCBpPJToZJks9mqtLXZbDIMQydOnFBERIQKCwtltVoVEhLism1FXxX9Vtdn5dd1ZdmyZUpPT6+y/J133lFwcHANW1h/2dnZHusb5aixd1Bnz6PG3kGdPa+p1Li4uLhW7eod3h555BElJyerY8eOVdb95z//0XPPPadFixbVud+FCxfq5Zdf1qpVqxQTE+O0zmKxVPu8yutq266ubSubN2+eZs+e7Xh86tQpde7cWfHx8U6ndt3FbrcrOztbI0aMUGBgoNv7BzX2FursedTYO6iz5zW1GlecxatJvcNbenq6EhISXIa3w4cPKz09vc7hLT09XUuWLNHSpUt1//33O5aHhYVJcn0krKioSBaLRW3atHG0LSkpUXFxcZUjYEVFRU6BMCwsrNo+JddH+ipYrVZZrdYqywMDAz26g3m6f1Bjb6HOnkeNvYM6e15TqXFtt7HeNywYhlHtujNnztS5yOnp6Vq8eLEWL16s+fPnO6275ppr1LJlS+Xn51d5Xn5+vnr06KGgoCBJP17rdmnbI0eO6Pjx4+rTp49jWd++favtU5JTWwAAAH9QpyNv//znP/WPf/zD8Xjbtm3at2+fU5tz587p5Zdf1jXXXFPrfh999FEtXrxYaWlpevjhh6sOMiBAt9xyizZt2qTf/e53atWqlSTpm2++UW5urh588EFH24SEBAUFBSkrK0sDBw50LM/KypLFYtHYsWMdy8aNG6fp06dr7969jrZlZWVav369Bg4c6PKoIgAAgC/VKbxt3rzZcZG+xWLRI4884rJdy5YttXbt2lr1+cQTT2jRokVKSEjQzTffrA8//NBp/aBBgySVH5nr37+/Ro8erdTUVJWUlGjRokUKDw/XnDlzHO1tNpvS0tK0cOFC2Ww2xcfHKy8vT4sXL1ZycrJjjjdJmjp1qjIzMzVhwgQtX75c7dq109NPP63PP/9cu3btqktpAAAAvKJO4e2ee+7R6NGjZRiGBgwYoLVr11Y5tWi1Wh2nOWvj7bffllQ+P9uOHTuqrK84PRsZGandu3froYce0vjx4xUQEKBhw4ZpxYoVatu2rdNzFixYoFatWikzM1MrVqxQhw4dlJqa6rh7tfJYc3JyNHfuXD3wwAMqLi5Wv379tH37dg0ZMqTWdQEAAPCWOoW3iIgIRURESJJyc3MVExOj0NDQBg1g9+7dtW4bExNT6yNiKSkpSklJqbFd+/bttW7dulqPAQAAwJfqfbcpR6YAAAC8r0GT9K5fv14bNmzQwYMHde7cOad1FotFX331VYMGBwAAAGf1Dm+PPfaY5s2bp969eys6OtrlnGcAAABwr3qHt9WrV2vGjBlatWqVO8cDAACAy6j3JL1HjhzRuHHj3DkWAAAA1KDe4S0mJoZr2gAAALys3uHt97//vZ544gl9/PHH7hwPAAAALqPe17wlJSWpsLBQAwYMUIcOHRxfHl/BYrHof//3fxs8QAAAAPyo3uEtLCxM4eHh7hwLAAAAalDv8FaXb0YAAACAe9T7mjcAAAB4X72PvP31r3+tsc1NN91U3+4BAADgQr3DW1xcnCwWy2XbXLhwob7dAwAAwIV6h7fc3Nwqy44fP64333xT7733njIzMxs0MAAAAFRV7/A2ZMgQl8tvu+02/fd//7d27NihhISEeg8MAAAAVXnkhoVx48bp1Vdf9UTXAAAATZpHwtuJEydUWlrqia4BAACatHqfNv3mm2+qLCstLdU///lPzZs3T4MGDWrQwAAAAFBVvcNbt27dXN5tahiGevXqpT/+8Y8NGhgAAACqqnd4e+GFF6qEt6CgIHXr1k39+/dXs2bM/wsAAOBu9Q5vU6ZMceMwAAAAUBv1Dm8VTp8+rQ8++ECFhYUKDw/XoEGD1KpVK3eMDQAAAJdoUHhbsWKF0tPTVVxcLMMwJEkhISFKT0/X7Nmz3TJAAAAA/Kje4e3FF1/U3Llz9Ytf/EJTpkxRx44ddfjwYa1bt06//e1v1bZtW915553uHCsAAECTV+/w9uSTT2rSpElav3690/IJEyZo8uTJevLJJwlvAAAAblbvW0L37dunyZMnu1w3efJk/etf/6r3oAAAAOBavcNby5YtVVRU5HJdUVGRWrZsWe9BAQAAwLV6h7fBgwdr8eLFOnz4sNPyI0eO6JFHHtFNN93U4MEBAADAWb2vecvIyNBPf/pT9ejRQ8OHD1dERIT+85//6N1331VgYKA2bdrkznECAABADTjydt111ykvL09jxoxRXl6e1q5dq7y8PI0dO1YfffSRevfu7c5xAgAAQA2c5+3aa6/VK6+84q6xAAAAoAZ1PvKWn5+v7777rtr13333nfLz8xs0KAAAALhWp/D217/+VTExMfr++++rbfP9998rJiZGO3fubPDgAAAA4KxO4S0zM1Pjx49XTExMtW1iYmJ0++236/nnn2/w4AAAAOCsTuHtvffe09ixY2tsd+utt+rDDz+s75gAAABQjTqFt2PHjqlTp041touIiNDRo0frPSgAAAC4VqfwFhISUu23KlR24sQJBQcH13tQAAAAcK1O4e26667Tjh07amy3fft2XXfddfUeFAAAAFyrU3i7/fbbtWbNGu3Zs6faNrm5uVq7dq3uuOOOBg8OAAAAzuo0Se8999yjrKwsxcfHKzk5WWPGjFH37t0lSfv379eWLVu0Zs0aRUdHa9q0aR4ZMAAAQFNWp/DWokUL7dy5U3feeaeeeeYZPfvss07rDcPQL37xC7344otq0aKFWwcKAACAenw9VlhYmLZt26aPP/5Y77zzjr799ltJUpcuXTRy5Ehdf/31bh8kAAAAytX7u01jYmIuO1kvAAAA3K9ONyxERUXV+l90dHSt+jx9+rTmzp2r+Ph4tW3bVhaLRYsXL67SbsqUKbJYLFX+RUZGuux31apVioyMlNVqVffu3ZWeni673V6l3dGjRzVlyhSFh4crODhYsbGxysnJqUtZAAAAvKZOR95sNpssFstl25w5c0Yff/xxje0qFBYWavXq1YqOjtbYsWMv+7VaLVu21Lvvvltl2aWWLl2qhQsXKjU1VfHx8crLy1NaWpoOHTqk1atXO9qVlpZq+PDh+uGHH7Ry5Uq1a9dOmZmZSkhI0K5duzRkyJBabQMAAIC31Cm87d69u9p1ZWVlWr16tR555BFZLBZNmjSpVn127dpVJ06ckMVi0fHjxy8b3po1a6ZBgwZdtr/CwkItWbJE06ZNU0ZGhiQpLi5OdrtdaWlpmjVrlnr37i1JWrNmjQoKCvT+++8rNjZWkjR06FBFR0dr7ty52rt3b622AQAAwFvqdNq0Ohs3blTv3r31wAMPKDo6Wh9//LFeeumlWj234vSnu+zYsUMlJSVKSkpyWp6UlCTDMLRlyxbHss2bN6tXr16O4CZJAQEBmjx5sj766CMdOnTIbeMCAABwh3rfsCCVH4l76KGHlJeXpxtuuEHvvPOOhg8f7q6xVXHu3Dl16NBBx44dU0REhMaOHatHHnlENpvN0aagoECS1LdvX6fnRkREKDw83LG+ou3gwYOrvE5UVJQk6dNPP632u1xLS0tVWlrqeHzq1ClJkt1ud3ltXUNV9OmJvlGOGnsHdfY8auwd1NnzmlqNa7ud9Qpv+fn5euihh7Rz5051795dGzZs0MSJE+vTVa1FR0crOjpaffr0kSTt2bNHTz75pHJycpSXl6fQ0FBJ5adNrVarQkJCqvRhs9lUWFjoeFxYWOgU/Cq3q1hfnWXLlik9Pb3K8nfeecej3+uanZ3tsb5Rjhp7B3X2PGrsHdTZ85pKjYuLi2vVrk7h7dtvv1VaWpo2bNggm82mp556Sv/93/+twMDAeg2yLh588EGnxyNGjND111+v8ePH67nnnnNaf7nTsJeuq0vbyubNm6fZs2c7Hp86dUqdO3dWfHy8WrduXe3z6stutys7O1sjRozwSr2bImrsHdTZ86ixd1Bnz2tqNa44i1eTOoW3a6+9VufPn1dCQoLmzp2rVq1aKT8/v9r2N9xwQ126r7Nx48YpJCREH374oWNZWFiYSkpKVFxcXOUIWFFRkdPcdGFhYS6PrhUVFUmSy6NyFaxWq6xWa5XlgYGBHt3BPN0/qLG3UGfPo8beQZ09r6nUuLbbWKfwVnGN1/bt27Vjx45q2xmGIYvFogsXLtSl+3oxDEPNmv1430XFtW75+fkaOHCgY/mRI0d0/Phxx2nXirauwmfFssptAQAA/EGdwtvatWs9NY56eeONN1RcXOw0fUhCQoKCgoKUlZXlFN6ysrJksVg0duxYx7Jx48Zp+vTp2rt3r6NtWVmZ1q9fr4EDB6pjx45e2xYAAIDaqFN4u/vuuz0yiO3bt+vs2bM6ffq0JOmzzz7TG2+8IUkaNWqUjh07pkmTJmnixInq0aOHLBaL9uzZo6eeekrXXXedkpOTHX3ZbDalpaVp4cKFstlsjkl6Fy9erOTkZMccb5I0depUZWZmasKECVq+fLnatWunp59+Wp9//rl27drlkW0FAABoiAZNFeIu9913nw4ePOh4vHHjRm3cuFGStH//fl1xxRVq3769fv/73+v777/XhQsX1LVrV6WkpGj+/PlV7ixdsGCBWrVqpczMTK1YsUIdOnRQamqqFixY4NTOarUqJydHc+fO1QMPPKDi4mL169dP27dv59sVAACAX/KL8HbgwIEa22zatKlOfaakpCglJaXGdu3bt9e6devq1DcAAICvuOUbFgAAAOAdhDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYiM/D2+nTpzV37lzFx8erbdu2slgsWrx4scu2n3zyiX7+858rNDRUbdq0UWJior7++muXbVetWqXIyEhZrVZ1795d6enpstvtVdodPXpUU6ZMUXh4uIKDgxUbG6ucnBx3biIAAIDb+Dy8FRYWavXq1SotLdXYsWOrbbdv3z7FxcXp/Pnzev311/XCCy/oiy++0ODBg3Xs2DGntkuXLtXMmTOVmJionTt3avr06crIyNCMGTOc2pWWlmr48OHKycnRypUr9eabb6p9+/ZKSEjQnj17PLG5AAAADRLg6wF07dpVJ06ckMVi0fHjx/X888+7bLdo0SJZrVZt3bpVrVu3liTFxMSoZ8+eWrFihR577DFJ5WFwyZIlmjZtmjIyMiRJcXFxstvtSktL06xZs9S7d29J0po1a1RQUKD3339fsbGxkqShQ4cqOjpac+fO1d69ez29+QAAAHXi8yNvFotFFovlsm3Kysq0detW3XbbbY7gJpUHv6FDh2rz5s2OZTt27FBJSYmSkpKc+khKSpJhGNqyZYtj2ebNm9WrVy9HcJOkgIAATZ48WR999JEOHTrUwK0DAABwL58feauNr776SufOnVNUVFSVdVFRUcrOzlZJSYmCgoJUUFAgSerbt69Tu4iICIWHhzvWS1JBQYEGDx7ssk9J+vTTT9WpUyeXYyotLVVpaanj8alTpyRJdrvd5bV1DVXRpyf6Rjlq7B3U2fOosXdQZ89rajWu7XaaIrwVFhZKkmw2W5V1NptNhmHoxIkTioiIUGFhoaxWq0JCQly2reirot/q+qz8uq4sW7ZM6enpVZa/8847Cg4Ornmj6ik7O9tjfaMcNfYO6ux51Ng7qLPnNZUaFxcX16qdKcJbhcudXq28rrbt6tq2snnz5mn27NmOx6dOnVLnzp0VHx/vdGrXXex2u7KzszVixAgFBga6vX9QY2+hzp5Hjb2DOnteU6txxVm8mpgivIWFhUlyfSSsqKhIFotFbdq0cbQtKSlRcXFxlSNgRUVFiomJceq3uj4l10f6KlitVlmt1irLAwMDPbqDebp/UGNvoc6eR429gzp7XlOpcW230ec3LNTGNddco5YtWyo/P7/Kuvz8fPXo0UNBQUGSfrzW7dK2R44c0fHjx9WnTx/Hsr59+1bbpySntgAAAP7AFOEtICBAt9xyizZt2qTTp087ln/zzTfKzc1VYmKiY1lCQoKCgoKUlZXl1EdWVpYsFovTXHLjxo3Tvn37nKYEKSsr0/r16zVw4EB17NjRY9sEAABQH35x2nT79u06e/asI5h99tlneuONNyRJo0aNUnBwsNLT09W/f3+NHj1aqampKikp0aJFixQeHq45c+Y4+rLZbEpLS9PChQtls9kUHx+vvLw8LV68WMnJyY453iRp6tSpyszM1IQJE7R8+XK1a9dOTz/9tD7//HPt2rXLu0UAAACoBb8Ib/fdd58OHjzoeLxx40Zt3LhRkrR//35169ZNkZGR2r17tx566CGNHz9eAQEBGjZsmFasWKG2bds69bdgwQK1atVKmZmZWrFihTp06KDU1FQtWLDAqZ3ValVOTo7mzp2rBx54QMXFxerXr5+2b9+uIUOGeH7DAQAA6sgvwtuBAwdq1S4mJqbWR8RSUlKUkpJSY7v27dtr3bp1teoTAADA10xxzRsAAADKEd4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIqYJb7t375bFYnH578MPP3Rq+8knn+jnP/+5QkND1aZNGyUmJurrr7922e+qVasUGRkpq9Wq7t27Kz09XXa73RubBAAAUGcBvh5AXWVkZGjo0KFOy/r06eP4/3379ikuLk79+vXT66+/rpKSEi1atEiDBw/WP/7xD7Vt29bRdunSpVq4cKFSU1MVHx+vvLw8paWl6dChQ1q9erXXtgkAAKC2TBfeevbsqUGDBlW7ftGiRbJardq6datat24tSYqJiVHPnj21YsUKPfbYY5KkwsJCLVmyRNOmTVNGRoYkKS4uTna7XWlpaZo1a5Z69+7t+Q0CAACoA9OcNq2NsrIybd26VbfddpsjuElS165dNXToUG3evNmxbMeOHSopKVFSUpJTH0lJSTIMQ1u2bPHWsAEAAGrNdEfeZsyYoYkTJyo4OFixsbFauHChbrzxRknSV199pXPnzikqKqrK86KiopSdna2SkhIFBQWpoKBAktS3b1+ndhEREQoPD3esr05paalKS0sdj0+dOiVJstvtHrlmrqJPrsfzHGrsHdTZ86ixd1Bnz2tqNa7tdpomvF1xxRWaOXOm4uLiFBYWpn//+996/PHHFRcXp7/85S8aOXKkCgsLJUk2m63K8202mwzD0IkTJxQREaHCwkJZrVaFhIS4bFvRV3WWLVum9PT0KsvfeecdBQcH13Mra5adne2xvlGOGnsHdfY8auwd1NnzmkqNi4uLa9XONOHt+uuv1/XXX+94PHjwYI0bN059+/bV3LlzNXLkSMc6i8VSbT+V19W2nSvz5s3T7NmzHY9PnTqlzp07Kz4+3umUrbvY7XZlZ2drxIgRCgwMdHv/oMbeQp09jxp7B3X2vKZW44qzeDUxTXhzpU2bNho9erSeffZZnTt3TmFhYZLk8qhZUVGRLBaL2rRpI0kKCwtTSUmJiouLqxwpKyoqUkxMzGVf22q1ymq1VlkeGBjo0R3M0/2DGnsLdfY8auwd1NnzmkqNa7uNpr9hwTAMSeVHyq655hq1bNlS+fn5Vdrl5+erR48eCgoKkvTjtW6Xtj1y5IiOHz/uNP0IAACAvzB1eDtx4oS2bt2qfv36KSgoSAEBAbrlllu0adMmnT592tHum2++UW5urhITEx3LEhISFBQUpKysLKc+s7KyZLFYNHbsWC9tBQAAQO2Z5rTppEmT1KVLF/3kJz9ReHi4vvzySz3xxBP6/vvvnQJYenq6+vfvr9GjRys1NdUxSW94eLjmzJnjaGez2ZSWlqaFCxfKZrM5JuldvHixkpOTmeMNAAD4JdOEt6ioKL322mt69tlndebMGdlsNt1444166aWX1L9/f0e7yMhI7d69Ww899JDGjx+vgIAADRs2TCtWrHD6dgVJWrBggVq1aqXMzEytWLFCHTp0UGpqqhYsWODtzQMAAKgV04S31NRUpaam1qptTEyMdu3aVau2KSkpSklJacjQAAAAvMbU17wBAAA0NYQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhTdKZM2c0a9YsdezYUUFBQerXr59effVVXw8LAACgigBfD8AfJCYmKi8vT8uXL9e1116rDRs26I477tDFixc1adIkXw8PAADAocmHt23btik7O9sR2CRp6NChOnjwoH7729/q9ttvV/PmzX08SgAAgHJN/rTp5s2bFRoaqgkTJjgtT0pK0uHDh7V3714fjQwAAKCqJn/kraCgQP/1X/+lgADnUkRFRTnW//SnP63yvNLSUpWWljoenzx5UpJUVFQku93u9nHa7XYVFxersLBQgYGBbu8f1NhbqLPnUWPvoM6e19RqfPr0aUmSYRiXbdfkw1thYaGuvvrqKsttNptjvSvLli1Tenp6leXdu3d37wABAECTcvr0aV1xxRXVrm/y4U2SLBZLndfNmzdPs2fPdjy+ePGiioqKFBYWdtn+6uvUqVPq3Lmzvv32W7Vu3drt/YMaewt19jxq7B3U2fOaWo0Nw9Dp06fVsWPHy7Zr8uEtLCzM5dG1oqIiST8egbuU1WqV1Wp1WtamTRu3j+9SrVu3bhI7sC9RY++gzp5Hjb2DOnteU6rx5Y64VWjyNyz07dtX//rXv1RWVua0PD8/X5LUp08fXwwLAADApSYf3saNG6czZ87oz3/+s9PydevWqWPHjho4cKCPRgYAAFBVkz9t+otf/EIjRozQfffdp1OnTqlHjx565ZVXtGPHDq1fv95v5nizWq16+OGHq5yqhftQY++gzp5Hjb2DOnseNXbNYtR0P2oTcObMGS1YsECvv/66ioqKFBkZqXnz5mnixIm+HhoAAIATwhsAAICJNPlr3gAAAMyE8AYAAGAihDcPOHPmjGbNmqWOHTsqKChI/fr106uvvlrj83bt2qURI0aoY8eOslqtateunYYNG6Zt27ZVaRsXFyeLxVLlX0JCQpW2drtd6enp6tatm6xWqyIjI7Vq1Sq3bKsv+VOdDxw44LKdxWKp1Zj8lTdqLElnz57VokWLdO2118pqtSosLExDhw7Vl19+6dSuMe7L/lTjxrofS56v8+Vq5+ozg335R56ocWPelyXuNvWIxMRE5eXlafny5br22mu1YcMG3XHHHbp48aImTZpU7fMKCwt13XXXKTk5WR06dFBRUZGeffZZ3XzzzXrppZc0efJkp/ZXX321Xn75ZadlriYKnj59ul566SU9+uij6t+/v3bu3KmZM2fq9OnTmj9/vlu22Rf8rc6S9MADD1R57Z49e9ZvA/2AN2p85swZDR06VIcPH1ZqaqqioqJ08uRJvf/++youLnbqtzHuy/5WY6nx7ceS5+scERGhDz74oMrzt2zZoscee0zjxo1zWs6+/CNP1VhqnPuyJMmAW/3lL38xJBkbNmxwWj5ixAijY8eORllZWZ36O3/+vNGpUydj8ODBTsuHDBliXHfddTU+v6CgwLBYLEZGRobT8mnTphktW7Y0CgsL6zQef+Fvdd6/f78hyXj88cfr9Lr+zFs1njlzphESEmJ89dVXl31+Y9yX/a3GjXE/Ngzv1dmVuLg4Izg42Dh58qRjGftyzRpa48a6L1fgtKmbbd68WaGhoZowYYLT8qSkJB0+fFh79+6tU3+BgYFq06aNAgLqd5B0y5YtMgxDSUlJVcZz7tw57dixo179+pq/1bkx8kaNi4uL9fzzz2vChAm6+uqrL/v8xrgv+1uNGytffV589dVX2rNnj375y186fbUT+3LNGlrjxo7w5mYFBQX6r//6ryo7XFRUlGN9TS5evKiysjIdPnxYDz/8sL744gvNmTOnSruvvvpKNptNAQEBuuaaa7RgwQKdO3euynjatm2rDh061Hs8/sjf6lxh+fLlatGihYKDg3XjjTfqrbfeqsfW+Qdv1Pjjjz/W2bNn1bNnT91333268sor1aJFC/3kJz/RX/7ylyrjaWz7sr/VuEJj2o8l735eVPbCCy/IMAwlJydXGQ/7clXurHGFxrYvV+Awg5sVFha6/Ou24gvuCwsLa+xj1KhR2rlzp6TyL+N97bXXdPPNNzu1ufHGG3X77bcrMjJS586d0/bt2/W73/1Of//735Wbm6tmzZo5Xq/itSsLCQlRixYtajUef+RvdbZarZo2bZpGjBihiIgIffPNN1q1apXGjBmj5557rtoPFn/mjRofOnRIkvTYY4+pb9++evHFF9WsWTM98cQTuuWWW7R9+3aNHDnS8XqNbV/2txo3xv1Y8t7nRWUXLlzQunXrFBkZqZ/97GdVxsO+XJU7a9xY92UHn560bYR69uxpJCQkVFl++PBhQ5KxbNmyGvv44osvjI8++sh48803jQkTJhiBgYFVriNwZcWKFYYkY9OmTY5lI0aMMCIjI122b9GihXHvvffW2K8/8rc6u3L+/Hnj+uuvN8LCwgy73V5jv/7GGzV++eWXDUlGeHi4cerUKcfys2fPGh07djR+9rOfOZY1xn3Z32rsitn3Y8PwzefF1q1bq73min3ZNXfW2JXGsC9X4LSpm4WFhbn8C6OoqEiSXP61damePXuqf//+uvXWW/X6669r+PDhmjFjhi5evHjZ51XckfPhhx/WOJ6zZ8/q/PnztRqPP/K3OrsSGBio22+/XYWFhVWmvDADb9Q4LCxMkvTTn/5UrVq1cjwvODhYQ4YM0SeffFLjeMy8L/tbjV0x+34s+ebzYs2aNQoMDNRdd91V6/GwL7uvxq40hn25AuHNzfr27at//etfKisrc1qen58vSerTp0+d+xwwYIBOnDihY8eO1ap9xam8ivEcO3ZMR44ccdt4/IG/1bk6xv99+1xt2vobb9S44noYVwzDaPT7sr/V+HLtJHPux5L3Py+OHj2qrVu36tZbb1W7du1cjod9uWYNqXF1zL4vO/j0uF8jtG3bNkOS8eqrrzotT0hIqNft0hcvXjSGDBlitGnTpsbDvI899pghydiyZYtjWcUt6cuXL3dqe++995r2lnTD8L86u3L+/HmjX79+Rnh4eJ3H4w+8VePY2FgjLCzM6Tb/s2fPGhEREcbw4cMdyxrjvuxvNXbF7PuxYXj/8+Lxxx83JBnbtm1z+Xz25Zo1tMauNIZ9uQLhzQNGjBhhXHnllcbq1auNd99915g2bZohyVi/fr2jzdSpU43mzZsbBw4ccCy79dZbjYULFxp//vOfjd27dxsbNmww4uPjDUlGZmamo91f//pXY+TIkcazzz5rvPPOO8Zbb71l3HfffUbz5s2NYcOGGRcuXHAaT3JysmG1Wo3HH3/c2L17tzF//nzDYrEYS5cu9XwxPMif6vzggw8a999/v/HKK68Yubm5xosvvmj079/fkGSsXbvWK/XwBE/X2DAM47333jNatGhhDBo0yNi8ebOxZcsWY/DgwUZgYKDx/vvvO7VtjPuyP9W4se7HhuGdOleIjIw0OnfuXOWzuDL2Zc/WuDHvy4ZBePOI06dPGykpKUaHDh2MFi1aGFFRUcYrr7zi1Obuu+82JBn79+93LHvssceM/v37G1deeaXRvHlzIywszBg5cqSxdetWp+d++eWXxqhRo4xOnToZVqvVCAoKMvr27WssXbrUKCkpqTKe8+fPGw8//LDRpUsXo0WLFsa1115r/OEPf/DItnuTP9V5zZo1xoABAwybzWYEBAQYV155pTFy5Ehj586dHtt+b/B0jSv87W9/M4YMGWIEBwcbwcHBxrBhw4z33nuvSrvGuC/7U40b635sGN6r83vvvWdIMhYtWnTZ8bAv73cs80SNG/O+bBiGYTGM/zsBDAAAAL9n8iv2AAAAmhbCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4A+AXDhw4IIvFoqysLLf3nZOTo5/85CcKCQmRxWLRli1blJWVJYvFogMHDrj99Srr1q2bpkyZ4tHXMIPPPvtMixcv9ni9gaYgwNcDAABPMgxDv/zlL3XttdfqrbfeUkhIiHr16qWysjJ98MEHioiI8PUQm4TPPvtM6enpiouLU7du3Xw9HMDUCG8AGrXDhw+rqKhI48aN0/Dhw53WtW3b1kej8i273S6LxaKAgKq/AoqLixUcHOyDUQGoLU6bAvCof//730pKSlLPnj0VHBysTp066ZZbblF+fn6Nzz127Jjuuecede7cWVarVW3bttXPfvYz7dq1q1avvXjxYl111VWSpIceekgWi8Vx1MfVadO4uDj16dNHeXl5Gjx4sIKDg3X11Vdr+fLlunjxoqNdSUmJ5syZo379+umKK66QzWZTbGys3nzzzdoXpgYbNmxQbGysQkNDFRoaqn79+mnNmjWO9dWdjo2Li1NcXJzj8e7du2WxWPTSSy9pzpw56tSpk6xWq/79739rypQpCg0NVX5+vuLj49WqVStHwD1//ryWLFmiyMhIR+2TkpJ07Ngxp9fr1q2bRo8erR07duiGG25Qy5YtFRkZqRdeeMHRJisrSxMmTJAkDR06VBaLxWOnyIGmgCNvADzq8OHDCgsL0/Lly9W2bVsVFRVp3bp1GjhwoP7f//t/6tWrV7XPvfPOO/XJJ59o6dKluvbaa/XDDz/ok08+UWFhYa1eOzk5WdHR0UpMTNQDDzygSZMmyWq1XvY5R44c0a9+9SvNmTNHDz/8sDZv3qx58+apY8eOuuuuuyRJpaWlKioq0m9+8xt16tRJ58+f165du5SYmKi1a9c62tXXokWL9OijjyoxMVFz5szRFVdcoYKCAh08eLDefc6bN0+xsbF69tln1axZM7Vr105SeUi79dZbde+99yo1NVVlZWW6ePGixowZo7/97W+aO3eufvrTn+rgwYN6+OGHFRcXp//5n/9Ry5YtHX3/7//+r+bMmaPU1FS1b99ezz//vH7961+rR48euummm3TzzTcrIyND8+fPV2Zmpm644QZJ0jXXXNOgOgFNlgEAXlRWVmacP3/e6Nmzp/Hggw86lu/fv9+QZKxdu9axLDQ01Jg1a1aDXq+i38cff9xp+dq1aw1Jxv79+x3LhgwZYkgy9u7d69S2d+/exsiRIy+7TXa73fj1r39tXH/99U7runbtatx99921Hu/XX39tNG/e3PjVr3512XbV9TtkyBBjyJAhjse5ubmGJOOmm26q0vbuu+82JBkvvPCC0/JXXnnFkGT8+c9/dlqel5dnSDKefvppp3EEBQUZBw8edCw7d+6cYbPZjHvvvdexbOPGjYYkIzc397LbBaBmnDYF4FFlZWXKyMhQ79691aJFCwUEBKhFixb68ssv9a9//euyzx0wYICysrK0ZMkSffjhh7Lb7R4fb4cOHTRgwACnZVFRUVWOem3cuFE/+9nPFBoaqoCAAAUGBmrNmjU1blNNsrOzdeHCBc2YMaNB/Vzqtttuq/W6rVu3qk2bNrrllltUVlbm+NevXz916NBBu3fvdmrfr18/denSxfE4KChI1157bYOOFAKoHuENgEfNnj1bCxcu1NixY/X2229r7969ysvLU3R0tM6dO3fZ57722mu6++679fzzzys2NlY2m0133XWXjhw54rHxhoWFVVlmtVqdxrpp0yb98pe/VKdOnbR+/Xp98MEHysvL09SpU1VSUtKg16+4pqziWj13qe6u2uDgYLVu3dpp2ffff68ffvhBLVq0UGBgoNO/I0eO6Pjx407ta1MzAO7DNW8APGr9+vW66667lJGR4bT8+PHjatOmzWWfGx4erqeeekpPPfWUvvnmG7311ltKTU3V0aNHtWPHDg+O+vLWr1+v7t2767XXXpPFYnEsLy0tbXDfFXfAfvfdd+rcuXO17YKCgly+3vHjxxUeHl5leeVx1rQ8PDxcYWFh1da4VatW1Y4LgOcR3gB4lMViqXKTwF/+8hcdOnRIPXr0qHU/Xbp00f3336+cnBy999577h5mnVgsFrVo0cIp+Bw5csQtd5vGx8erefPmeuaZZxQbG1ttu27duumf//yn07IvvvhCn3/+ucvwVhejR4/Wq6++qgsXLmjgwIEN6qtCxT7A0Tig4QhvADxq9OjRysrKUmRkpKKiovTxxx/r8ccfr/G04MmTJzV06FBNmjRJkZGRatWqlfLy8rRjxw4lJiZ6afSujR49Wps2bdL06dM1fvx4ffvtt3r00UcVERGhL7/8skF9d+vWTfPnz9ejjz6qc+fO6Y477tAVV1yhzz77TMePH1d6erqk8jtxJ0+erOnTp+u2227TwYMH9bvf/c4tc9dNnDhRL7/8skaNGqWZM2dqwIABCgwM1Hfffafc3FyNGTNG48aNq1Offfr0kSStXr1arVq1UlBQkLp37+7ylCuAyyO8AfColStXKjAwUMuWLdOZM2d0ww03aNOmTUpLS7vs84KCgjRw4EC99NJLOnDggOx2u7p06aKHHnpIc+fO9dLoXUtKStLRo0f17LPP6oUXXtDVV1+t1NRUfffdd45w1RCPPPKIevbsqVWrVulXv/qVAgIC1LNnT6WkpDjaTJo0SYcPH9azzz6rtWvXqk+fPnrmmWfc8vrNmzfXW2+9pZUrV+qll17SsmXLFBAQoKuuukpDhgxR375969xn9+7d9dRTT2nlypWKi4vThQsXtHbtWr46DKgHi2EYhq8HAQAAgNrhblMAAAAT4bQpAFMyDEMXLly4bJvmzZtXe5elL1y4cEGXO9lhsVjUvHlzL44IgBlx5A2AKa1bt67KHGSX/tuzZ4+vh+nkmmuuuex4K75XFAAuh2veAJhSYWGh9u/ff9k2vXr18qs5yfLz8y87F1yrVq0u+12vACAR3gAAAEyF06YAAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJjI/weNxftWCNYiQwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0031\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.375 - 0.400 A" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.375 , 0.3759, 0.3768, 0.3777, 0.3786, 0.3795, 0.3804, 0.3813,\n", " 0.3822, 0.3831, 0.384 , 0.3849, 0.3858, 0.3867, 0.3876, 0.3885,\n", " 0.3894, 0.3903, 0.3912, 0.3921, 0.393 , 0.3939, 0.3948, 0.3957,\n", " 0.3966, 0.3975, 0.3984, 0.3993, 0.4002, 0.4011, 0.402 ]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ5ElEQVR4nO3de1yUZf7/8fcoOAhoNuABzVNZsqZi8fXAbibmSmS2KuluuVbiYn3XCk13FRUNStE2O7gu1tqauJlZltrmKoqIttvB+NV3N8isttRKMwU0DwgC3r8/WCZHBuUwpxtez8eDR811X3PNdX+8Yd5zn8ZiGIYhAAAAmEIzb08AAAAAtUd4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJuL18Pavf/1Lt99+u7p06aKWLVvKZrMpKipKa9asceg3ceJEWSyWaj/h4eFOx122bJnCw8NltVrVvXt3paamqqysrFq/o0ePauLEiQoNDVVgYKCioqKUnZ3tlnUFAABoKD9vT+DEiRPq3Lmz7r77bnXq1ElnzpzRyy+/rHvuuUcHDhxQcnKyvW/Lli21c+dOh+e3bNmy2pgLFy7UvHnzlJSUpJiYGOXm5io5OVmHDh3SihUr7P1KS0s1bNgwnThxQkuXLlW7du2Unp6u2NhY7dixQ0OGDHHfigMAANSDxVe/23TQoEE6fPiwvv76a0mVe95ef/11nT59+pLPKyws1FVXXaV7771Xf/7zn+3taWlpSk5OVn5+vnr16iVJWr58uR588EG9++67ioqKkiSVl5crIiJCwcHB2rNnj5vWDgAAoH68fti0JqGhofLzq/uOwczMTJWUlCg+Pt6hPT4+XoZhaNOmTfa2jRs3qmfPnvbgJkl+fn6aMGGCPvjgAx06dKje8wcAAHAHrx82rXL+/HmdP39ex48f1/r167Vt2zb96U9/cuhz9uxZdejQQceOHVNYWJhGjx6txx57TDabzd4nPz9fktSnTx+H54aFhSk0NNS+vKrv4MGDq82lb9++kqRPPvlEnTp1cjrf0tJSlZaWOsy/qKhIISEhslgsdVx7AADQ1BmGoVOnTqljx45q1qzm/Ws+E96mTJliP8zZokUL/fGPf9QDDzxgXx4REaGIiAj17t1bkrR7924988wzys7OVm5uroKDgyVVHja1Wq0KCgqq9ho2m02FhYX2x4WFhQ7B78J+VctrsmjRIqWmptZjTQEAAGr2zTff6Kqrrqpxuc+Etzlz5ighIUFHjx7VW2+9pYceekhnzpzR7373O0nSI4884tB/+PDhuuGGGzR27Fi98MILDssvtefr4mV16Xuh2bNna/r06fbHP/zwg7p06aL9+/erVatWNT6vvsrKypSTk6OhQ4fK39/f5eODGnsKdXY/auwZ1Nn9mlqNT506pe7du182R/hMeOvSpYu6dOkiSRoxYoSkyoB03333qW3btk6fM2bMGAUFBen999+3t4WEhKikpETFxcUKDAx06F9UVKTIyEiHvs72rhUVFUmS071yVaxWq6xWa7V2m82m1q1b1/i8+iorK1NgYKBCQkKaxAbsDdTYM6iz+1Fjz6DO7tfUaly1jpc7/cpnL1gYMGCAysvL9dVXX12yn2EYDseFq851y8vLc+h35MgRFRQU2A+7VvW9uN+Fz72wLwAAgC/w2fCWk5OjZs2a6eqrr66xz+uvv67i4mINGjTI3hYbG6uAgABlZGQ49M3IyJDFYtHo0aPtbWPGjNG+ffscbglSXl6uNWvWaODAgerYsaPL1gcAAMAVvH7Y9P7771fr1q01YMAAtW/fXgUFBVq/fr1effVV/f73v1fbtm118OBBjR8/XnfddZd69Oghi8Wi3bt369lnn9X111+vhIQE+3g2m03JycmaN2+ebDab/Sa9KSkpSkhIsN/jTZImTZqk9PR0jRs3TosXL1a7du20fPlyffbZZ9qxY4c3ygEAAHBJXg9vUVFRWrVqlVavXq0TJ04oODhYEREReumllzRhwgRJUuvWrdW+fXs9/fTT+v7771VRUaGuXbsqMTFRc+bMqXZl6dy5c9WqVSulp6dryZIl6tChg5KSkjR37lyHflarVdnZ2Zo5c6YefvhhFRcXq1+/ftq6dSvfrgAAAHyS18NbfHx8tRvqXuzKK6/Uhg0b6jRuYmKiEhMTL9uvffv2Wr16dZ3GBgAA8BafPecNAAAA1RHeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCJeD2//+te/dPvtt6tLly5q2bKlbDaboqKitGbNmmp9P/roI/385z9XcHCw2rRpo7i4OH311VdOx122bJnCw8NltVrVvXt3paamqqysrFq/o0ePauLEiQoNDVVgYKCioqKUnZ3t8vUEAABwBa+HtxMnTqhz585KS0vTli1b9Ne//lXdunXTPffcowULFtj77du3T9HR0Tp37pxee+01vfjii/r88881ePBgHTt2zGHMhQsXaurUqYqLi9O2bds0ZcoUpaWl6cEHH3ToV1paqmHDhik7O1tLly7Vm2++qfbt2ys2Nla7d+/2yPoDAADUhZ+3JxAdHa3o6GiHtpEjR2r//v1asWKFkpOTJUnz58+X1WrV5s2b1bp1a0lSZGSkrr32Wi1ZskRPPPGEJKmwsFALFizQ5MmTlZaWZn+NsrIyJScna9q0aerVq5ckaeXKlcrPz9e7776rqKgoSdLQoUMVERGhmTNnas+ePZ4oAQAAQK15fc9bTUJDQ+XnV5kty8vLtXnzZt1555324CZJXbt21dChQ7Vx40Z7W2ZmpkpKShQfH+8wXnx8vAzD0KZNm+xtGzduVM+ePe3BTZL8/Pw0YcIEffDBBzp06JCb1g4AAKB+vL7nrcr58+d1/vx5HT9+XOvXr9e2bdv0pz/9SZL05Zdf6uzZs+rbt2+15/Xt21dZWVkqKSlRQECA8vPzJUl9+vRx6BcWFqbQ0FD7cknKz8/X4MGDnY4pSZ988ok6derkdL6lpaUqLS21Pz558qQkqayszOm5dQ1VNaY7xkYlauwZ1Nn9qLFnUGf3a2o1ru16+kx4mzJliv785z9Lklq0aKE//vGPeuCBByRVHgqVJJvNVu15NptNhmHo+PHjCgsLU2FhoaxWq4KCgpz2rRqratyaxrzwdZ1ZtGiRUlNTq7Vv375dgYGBl1rVBsnKynLb2KhEjT2DOrsfNfYM6ux+TaXGxcXFternM+Ftzpw5SkhI0NGjR/XWW2/poYce0pkzZ/S73/3O3sdisdT4/AuX1bZfXfteaPbs2Zo+fbr98cmTJ9W5c2fFxMQ4HNp1lbKyMmVlZWn48OHy9/d3+figxp5Cnd2PGnsGdXa/plbjqqN4l+Mz4a1Lly7q0qWLJGnEiBGSKgPSfffdp5CQEEnO94QVFRXJYrGoTZs2kqSQkBCVlJSouLi42h6woqIiRUZG2h+HhITUOKbkfE9fFavVKqvVWq3d39/frRuYu8cHNfYU6ux+1NgzqLP7NZUa13YdffaChQEDBqi8vFxfffWVrrnmGrVs2VJ5eXnV+uXl5alHjx4KCAiQ9OO5bhf3PXLkiAoKCtS7d297W58+fWocU5JDXwAA0HSdOSNZLJU/Z854dy4+G95ycnLUrFkzXX311fLz89Mdd9yhDRs26NSpU/Y+X3/9tXJychQXF2dvi42NVUBAgDIyMhzGy8jIkMVi0ejRo+1tY8aM0b59+xxuCVJeXq41a9Zo4MCB6tixo9vWDwAAoD68ftj0/vvvV+vWrTVgwAC1b99eBQUFWr9+vV599VX9/ve/V9u2bSVJqamp6t+/v0aOHKmkpCSVlJRo/vz5Cg0N1YwZM+zj2Ww2JScna968ebLZbIqJiVFubq5SUlKUkJBgv8ebJE2aNEnp6ekaN26cFi9erHbt2mn58uX67LPPtGPHDo/XAgAA4HK8Ht6ioqK0atUqrV69WidOnFBwcLAiIiL00ksvacKECfZ+4eHh2rVrl2bNmqWxY8fKz89Pt9xyi5YsWWIPeFXmzp2rVq1aKT09XUuWLFGHDh2UlJSkuXPnOvSzWq3Kzs7WzJkz9fDDD6u4uFj9+vXT1q1bNWTIEI+sPwAAQF14PbzFx8dXu6FuTSIjI2u9RywxMVGJiYmX7de+fXutXr26VmPCO86ckYKDK///9GnJyV1gAABoMrwe3gDA3SoqpH/8Q/ruOyksTBo8WGre3NuzAoD6IbyZQOWeJ39Jo3T8eJn+e1cUALWwYYOUmChd+G13V10lLV0qXXCtEwCYhs9ebQo0Jg29xNyXLlE3kw0bpLFjHYObVPl47NjK5QCahsb0d5TwBqBRqqiQpk6VDKP6sqq2adMq+wGAmRDeADRK//iH9O23NS83DOmbbyr7AYCZcM4bUAuc8G4+333n2n4A4CvY8wafd+Fhrbff9vxhrg0bpG7dpKFDpfHjK//brRvnS/m6sDDX9gO8qTGdr4WGI7yZwIVh5Z//tDSpc3Q2bJAu+FIMjRjh2eBUdcL7xYffOOHds+rzxjV4cOVVpRaL8+UWi9S5c2U/AI2ft3cEuBLhzcddHF7uuMOvyez18faVgpzwbm7Nm1feDkSqHuCqHj/7rDkOf1dUSLt2Sa+8UvlftrmmpzEFD2/w9o4AVyO8+TBvhxdv8oXgxAnv5hcXJ73+utSxo2P7VVdVtpvhPm8ctkdjCx6e1hjfSwlvPsoXwos3+UJwcuUJ73xq9p64OOngQSknR1q7tvK/+/ebJ7hx2L5pa4zBw5Ma63sp4c1H+UJ48SZfuFLQVSe8u+JTM+GvYZo3l6KjpbvvrvyvWQ6VNsY3naaqPoe+2QYarrG+lxLefJQvhBdvcuWVgvW9SssVJ7y74lMzh0yaJle/6XC1ovfU99B3Yw0entRY30sJbz6qqd/mwBeuFGzoCe+u+NTMIZOmq7G+6TQ1DTn0zTbQcI31vZTw5qN8Ibx4k69cKVh1wnunTo7ttTnhvaGfmn3pkAl7bTyvsb7peMvJkz9uw1u3eub3pqG/w2wDDddY30sJbz7KV8KLN/nKlYJxcdKBA3U/4b2hn5o5ZNK0NdY3HW/w1qkHDf0dZhtouMb6Xkp482G+El68KS5O2rv3x8dbttT9SkFXnOxfnxPeG/qp2ZcOmTS0hhfu9di2zXw3mvbGnkdXv+k01YtevHnqQUN/hxtr8Kiv+t7v0FXvpb70O0R483EXh5e33iqvV3gx8w0+L/zDdPPNdftD5c2T/Rv6qdkXLtqQGl5DZzeavv/+GG3cWENhYNeQw/YXaqoXvXj71ANX/A7zIb7Sxo2WBt3vsKE7Anzud8iAS/zwww+GJOOHH35w+dinTxtG5Z8awzh+/FydnvvGG4Zx1VU/Pl+qfPzGGy6fpttcuP6nT9f+eW+8YRgWi+O6S5VtFkv1Gpw7d87YtGmTce5c3WpcmzlcPI+a5nCh8vLKfytn61A1RufOlf0ux1M1rO3zpfOGxXK+1tthfefvKt5+/fJyw8jJMYy1ayv/e7l/8wu35Yb+G5pZTo7z352Lf3Jy6jf+5f5muPJ3+Icffnzeli21e87Fc6nLNuQrzp07Z8yatcewWM43eBv21t/BuqhtliC8uYgvhrfG8ke7Pr9wVX80a/pj7eyPpjvCm2FU1rlTJ8fX79y5dvVvSPi7kKdqWLfnn3d7+HSVhr5xelrVtnz27LkG/Rua3dq1tQtva9fWb/za/M3w5u/whXMw64f4s2fPGSEhxYZUPbx54kNsQ/8O1lVtswSHTRspVx4uMONhV1862b8hu+u9ecikoTW8/PMtprjgwucOl9TBP/9p8ZnfA2/whas1XXXoOyjox8gQFFT71zf7t3T8858WFRa2lOT8NAt3b8O+9F5yIcJbI+WqDc6s36voSyf7Sw07b88VF23UR0Nr6Gv/BvVh9vvsNYZ/g4bwlas163vFekN5+5w/V/D2Nuzt168J4a2RcsUGZ+ZPbL7widuVGhL+6quhNXTlv4E3rvJqDG98je33oK586WpNb3xFm6/uNaoLb2/D3n79mhDeGqmGbnC+9MZVn8MFvvKJ21fUJ/w0tIaXf75Rq38Ds96jyxfcdJPR5H8PXHXY0ox8da9RXdx0k6GQkLOyWJy8Galu23Bjei8hvJlAUJB07lyZNm1602MbnNnfuHzpE7e31Tf8NLSGl3q+ZFz2+VVzN+s9unwBvweVvHXY0tt8da9RXTRvLiUk5Enyzjbsq79DhLdGqqEbXGN44+L+SA0PPw2tYU3PDw09q3XrKi75fG/v/W0Mb3wSvwdVvHHY0tt8da9RXUVFfad16yq8tvfUF3+HCG+NWEMOF/jKDWIbylsn+/sCV4WfhtbQ2Y2m//znLI0Z4/wwSBVv7/1tLG98UuP4PeD7devO1/YaNeTOBWPGGF7de+prv0OEt0auvocLGtMblzdO9vcFrgw/Da1h69Y/nmty661GrZ7v7b2/vvbG11BN9fegqfOVc/5ccecCb+899aXfIT/vvTQ8pWqDr+tzli6tPLRmsTjuvTHjG5e3VZ0o60muDD/emL8vHLaseuNLTHQ89HzVVZXbv5n2XKHpiouTRo2q/KD23XeVvzODB3vu73fV6RsX/w2pOn2jKR2+dxX2vKFGvvKJDfW7SsoXwk9D+MreX187XFJf9b3JKxoHb+218va5q40V4Q2X1Biu0mqqb1q+En7qy5cOW/rS4RLATLx97mpjRXjDZTX0E5s3brAK3wo/9eWLV3mhaeKCifrx9rmrjRXhDW5l5u+FbAwaQ/jxhcOWTXXvrS/hQ6A5mf30DV9FeIPbmP17IRsLXwg/DcVhy6aND4HmZfbTN3wV4Q1uwUmqvoXwA7PylQ+B7Pmrn8Zw+oYvIrzBLThJFfgR50vVj698CKxpz9/GjTXsToID7lzgeoQ3uAUnqQJoKF/4EHipPX933dVc773HyVq10RjuXOBLuEkv3IKTVAE0lLc/BF5uz5/FIq1c2VspKZK/v3vm0JjU54bxcI49b3ALTlIF0FDe/hB4+T1/FhUUBOqf/+TwKTyL8Aa34CRV38KtLmBG3v4Q6O09f0BNCG9wm8ZwjzEA3uPtD4He3vMH1ITwBrdqDPcYAxqK20zUnzc/BF5+z5+h0NBi3XSTk5PiADcivMHtuMcYmjJuMNtw3voQWJs9f7/5TT5/0+BxXg9vO3fu1KRJkxQeHq6goCB16tRJo0aN0ocffujQb+LEibJYLNV+wsPDnY67bNkyhYeHy2q1qnv37kpNTVVZWVm1fkePHtXEiRMVGhqqwMBARUVFKTs72y3rCqBp8ZUbzDYG3voQeKk9f+vWVSgqihPe4Hlev1XIc889p8LCQk2dOlW9evXSsWPH9NRTT2nQoEHatm2bbrnlFnvfli1baufOnQ7Pb9myZbUxFy5cqHnz5ikpKUkxMTHKzc1VcnKyDh06pBUrVtj7lZaWatiwYTpx4oSWLl2qdu3aKT09XbGxsdqxY4eGDBnivhUH0KjV5jYT06ZJo0axN9rXxcVJP/+5dMUVlY+3bJFiYqTz5w1t2eLduaFp8np4S09PV7t27RzaYmNj1aNHD6WlpTmEt2bNmmnQoEGXHK+wsFALFizQ5MmTlZaWJkmKjo5WWVmZkpOTNW3aNPX67zGMlStXKj8/X++++66ioqIkSUOHDlVERIRmzpypPXv2uHJVATQhdbnBLPe+8n3O9vydP++9+aBp8/ph04uDmyQFBwerV69e+uabb+o8XmZmpkpKShQfH+/QHh8fL8MwtGnTJnvbxo0b1bNnT3twkyQ/Pz9NmDBBH3zwgQ5dfKwD9cJtKtAUcZsJAO7i9T1vzvzwww/66KOPHPa6SdLZs2fVoUMHHTt2TGFhYRo9erQee+wx2Ww2e5/8/HxJUp8+fRyeGxYWptDQUPvyqr6DndwgqG/fvpKkTz75RJ0u/jK2/yotLVVpaan98cmTJyVJZWVlTs+ta6iqMd0xNipRY8+oT50ru/rbn2eGf6K2bS2qzZ/Ytm3LVVbm2qsVG+O27O1toEUL6dw5x/k0xjr7Gl+qsbNtwNVqu54+Gd4efPBBnTlzRnPnzrW3RUREKCIiQr1795Yk7d69W88884yys7OVm5ur4OBgSZWHTa1Wq4Kc7OKx2WwqLCy0Py4sLHQIfhf2q1pek0WLFik1NbVa+/bt2xUYGFjLNa27rKwst42NStTYM+pa56qd5rt3u34u7lBRIYWExKiwMECSs3tNGAoNPauTJ7Pcdt5UY9qWS0qaSxopSdq2bZsCAnznfiuNqc6+qqnUuLi4uFb9fC68zZs3Ty+//LKWLVumyMhIe/sjjzzi0G/48OG64YYbNHbsWL3wwgsOyy013ZTHybK69L3Q7NmzNX36dPvjkydPqnPnzoqJiVHr1q1rfF59lZWVKSsrS8OHD5c/X6LnFtTYM5pSnZcvt+iuuyTJkGH8+PfEYqnc05ae3kJ33DHC5a/bWGt87lzVXolbvTqPKo21zr6kqdW46ije5fhUeEtNTdWCBQu0cOFCPfTQQ5ftP2bMGAUFBen999+3t4WEhKikpETFxcXV9oAVFRU5BMKQkBCne9eKiookyeleuSpWq1VWq7Vau7+/v1s3MHePD2rsKU2hzr/8peTnJyUmOt4u5KqrLHr2WSkuzr1/gptCjX0BdXa/plLj2q6j1y9YqJKamqqUlBSlpKRozpw5tX6eYRhq1uzH1ag61y0vL8+h35EjR1RQUGA/7FrV9+J+Fz73wr4AUB98ywgAV/OJ8Pb4448rJSVFycnJevTRR2v9vNdff13FxcUOtw+JjY1VQECAMjIyHPpmZGTIYrFo9OjR9rYxY8Zo3759DrcEKS8v15o1azRw4EB1vPiujABQD3zLCABX8vph06eeekrz589XbGysbr/9dodDoJI0aNAgHTx4UOPHj9ddd92lHj16yGKxaPfu3Xr22Wd1/fXXKyEhwd7fZrMpOTlZ8+bNk81ms9+kNyUlRQkJCfZ7vEnSpEmTlJ6ernHjxmnx4sVq166dli9frs8++0w7duzwWA0AAABqy+vh7a233pJUeX+2zMzMassNw1Dr1q3Vvn17Pf300/r+++9VUVGhrl27KjExUXPmzKl2ZencuXPVqlUrpaena8mSJerQoYOSkpIcrl6VKs9by87O1syZM/Xwww+ruLhY/fr109atW/l2BQAA4JO8Ht527dp12T5XXnmlNtTxSwATExOVmJh42X7t27fX6tWr6zQ2AACAt/jEOW8AAACoHa/veQOAxq7qK+IAwBXY8wYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAABc0pkzksVS+XPmjLdnA8IbAACAiRDeAAAATITwBgAAYCKENwAAcEkVFT/+/9tvOz6G5xHeAABAjTZskHr1+vHxiBFSt26V7fAOwhsAAHBqwwZp7Fjp0CHH9kOHKtsJcN5BeAMAANVUVEhTp0qGUX1ZVdu0aRxC9QbCGwAAqOYf/5C+/bbm5YYhffNNZT94FuENAABU8913ru0H1/Hz9gQAAI1fRUXlHprvvpPCwqTBg6Xmzb09K1xKWJhr+8F12PMGAHCrDRsqr04cOlQaP77yv1yt6PsGD5auuqryK7GcsVikzp0r+8GzCG8AALepulrx4nOnuFrR9zVvLi1dWvn/Fwe4qsfPPsseVG8gvAEA3IKrFc0vLk56/XWpY0fH9quuqmyPi/POvJo6whsAwC24WrFxiIuT9u798fGWLdL+/QQ3byK8AQDcgqsVG48LD43efDOHSr2N8AYAcAuuVgTcg/AGAHALrlZsPIKCKg9zG0bl/8O7CG8AgMs6c6YybFkslf9fG1ytCLgH4Q0A4DZVVyt26uTYztWKQP3xDQsAgMu68HYeb78txcTUfo9ZXJw0ahTfsAC4CnveAACXtGGD1KvXj49HjKj7NyQ0by5FR0t33135X4IbUH+ENwBAjaq+IeHQIcd2viEB8B7CGwDAKb4hAfBNhDcAgFN8QwLgmwhvAACn+IYEwDcR3gAATvENCYBvIrwBAJziGxIA30R4AwA4xTckAL6J8AYAqFHVNyR07OjYzjckAN7j9fC2c+dOTZo0SeHh4QoKClKnTp00atQoffjhh9X6fvTRR/r5z3+u4OBgtWnTRnFxcfrqq6+cjrts2TKFh4fLarWqe/fuSk1NVVlZWbV+R48e1cSJExUaGqrAwEBFRUUpOzvb5esJAGYVFyft3fvj4y1bpP37CW6At3g9vD333HM6cOCApk6dqi1btmjp0qU6evSoBg0apJ07d9r77du3T9HR0Tp37pxee+01vfjii/r88881ePBgHTt2zGHMhQsXaurUqYqLi9O2bds0ZcoUpaWl6cEHH3ToV1paqmHDhik7O1tLly7Vm2++qfbt2ys2Nla7d+/2yPoDgBlceGj05ps5VAp4k9e/2zQ9PV3t2rVzaIuNjVWPHj2UlpamW265RZI0f/58Wa1Wbd68Wa1bt5YkRUZG6tprr9WSJUv0xBNPSJIKCwu1YMECTZ48WWlpaZKk6OholZWVKTk5WdOmTVOv/37Py8qVK5Wfn693331XUVFRkqShQ4cqIiJCM2fO1J49ezxSAwAAgNry+p63i4ObJAUHB6tXr1765ptvJEnl5eXavHmz7rzzTntwk6SuXbtq6NCh2rhxo70tMzNTJSUlio+PdxgzPj5ehmFo06ZN9raNGzeqZ8+e9uAmSX5+fpowYYI++OADHbr4+2AAoIkKCqq8Ka9hVP4/AO/x+p43Z3744Qd99NFH9r1uX375pc6ePau+fftW69u3b19lZWWppKREAQEBys/PlyT16dPHoV9YWJhCQ0PtyyUpPz9fg51c4171Op988ok6derkdI6lpaUqLS21Pz558qQkqayszOm5dQ1VNaY7xkYlauwZ1Nn9qLFnUGf3a2o1ru16+mR4e/DBB3XmzBnNnTtXUuWhUEmy2WzV+tpsNhmGoePHjyssLEyFhYWyWq0KcvLR0Gaz2ceqGremMS98XWcWLVqk1NTUau3bt29XYGDgZdaw/rKystw2NipRY8+gzu5HjT2DOrtfU6lxcXFxrfrVO7w99thjSkhIUMeLrx+X9N133+mFF17Q/Pnz6zzuvHnz9PLLL2vZsmWKjIx0WGap6U6RFy2rbb+69r3Q7NmzNX36dPvjkydPqnPnzoqJiXE4tOsqZWVlysrK0vDhw+Xv7+/y8UGNPYU6ux819gzq7H5NrcZVR/Eup97hLTU1VbGxsU7D2+HDh5Wamlrn8JaamqoFCxZo4cKFeuihh+ztISEhkpzvCSsqKpLFYlGbNm3sfUtKSlRcXFxtD1hRUZFDIAwJCalxTMn5nr4qVqtVVqu1Wru/v79bNzB3jw9q7CnU2f2osWdQZ/drKjWu7TrW+4IFwzBqXHb69Ok6Fzk1NVUpKSlKSUnRnDlzHJZdc801atmypfLy8qo9Ly8vTz169FBAQICkH891u7jvkSNHVFBQoN69e9vb+vTpU+OYkhz6AgAA+II67Xn7+OOP9a9//cv+eMuWLdq3b59Dn7Nnz+rll1/WNddcU+txH3/8caWkpCg5OVmPPvpo9Un6+emOO+7Qhg0b9Ic//EGtWrWSJH399dfKycnRI488Yu8bGxurgIAAZWRkaODAgfb2jIwMWSwWjR492t42ZswYTZkyRXv27LH3LS8v15o1azRw4ECnexUBAAC8qU7hbePGjfaT9C0Wix577DGn/Vq2bKlVq1bVasynnnpK8+fPV2xsrG6//Xa9//77DssHDRokqXLPXP/+/TVy5EglJSWppKRE8+fPV2hoqGbMmGHvb7PZlJycrHnz5slmsykmJka5ublKSUlRQkKC/R5vkjRp0iSlp6dr3LhxWrx4sdq1a6fly5frs88+044dO+pSGgAAAI+oU3i7//77NXLkSBmGoQEDBmjVqlXVDi1arVb7Yc7aeOuttyRV3p8tMzOz2vKqw7Ph4eHatWuXZs2apbFjx8rPz0+33HKLlixZorZt2zo8Z+7cuWrVqpXS09O1ZMkSdejQQUlJSfarVy+ca3Z2tmbOnKmHH35YxcXF6tevn7Zu3aohQ4bUui4AAACeUqfwFhYWprCwMElSTk6OIiMjFRwc3KAJ7Nq1q9Z9IyMja71HLDExUYmJiZft1759e61evbrWcwAAAPCmel9typ4pAAAAz2vQTXrXrFmjtWvX6uDBgzp79qzDMovFoi+//LJBkwMAAICjeoe3J554QrNnz1avXr0UERHh9J5nAAAAcK16h7cVK1bowQcf1LJly1w5HwAAAFxCvW/Se+TIEY0ZM8aVcwEAAMBl1Du8RUZGck4bAACAh9U7vD399NN66qmn9OGHH7pyPgAAALiEep/zFh8fr8LCQg0YMEAdOnSwf3l8FYvFon//+98NniAAAAB+VO/wFhISotDQUFfOBQAAAJdR7/BWl29GAAAAgGvU+5w3AAAAeF6997y9/fbbl+1z880313d4AAAAOFHv8BYdHS2LxXLJPhUVFfUdHgAAAE7UO7zl5ORUaysoKNCbb76pd955R+np6Q2aGAAAAKqrd3gbMmSI0/Y777xT//u//6vMzEzFxsbWe2IAAACozi0XLIwZM0br1q1zx9AAAABNmlvC2/Hjx1VaWuqOoQEAAJq0eh82/frrr6u1lZaW6uOPP9bs2bM1aNCgBk0MAAAA1dU7vHXr1s3p1aaGYahnz57605/+1KCJAQAAoLp6h7cXX3yxWngLCAhQt27d1L9/fzVrxv1/AQAAXK3e4W3ixIkunAYAAABqo97hrcqpU6f03nvvqbCwUKGhoRo0aJBatWrlirkBAADgIg0Kb0uWLFFqaqqKi4tlGIYkKSgoSKmpqZo+fbpLJggAAIAf1Tu8/fWvf9XMmTN12223aeLEierYsaMOHz6s1atX6/e//73atm2re+65x5VzBQAAaPLqHd6eeeYZjR8/XmvWrHFoHzdunCZMmKBnnnmG8AYAAOBi9b4kdN++fZowYYLTZRMmTNCnn35a70kBAADAuXqHt5YtW6qoqMjpsqKiIrVs2bLekwIAAIBz9Q5vgwcPVkpKig4fPuzQfuTIET322GO6+eabGzw5AAAAOKr3OW9paWn66U9/qh49emjYsGEKCwvTd999p507d8rf318bNmxw5TwBAACgBux5u/7665Wbm6tRo0YpNzdXq1atUm5urkaPHq0PPvhAvXr1cuU8AQAAoAbe5+26667TK6+84qq5AAAA4DLqvOctLy9P3377bY3Lv/32W+Xl5TVoUgAAAHCuTuHt7bffVmRkpL7//vsa+3z//feKjIzUtm3bGjw5AAAAOKpTeEtPT9fYsWMVGRlZY5/IyEj96le/0l/+8pcGTw4AAACO6hTe3nnnHY0ePfqy/X7xi1/o/fffr++cAAAAUIM6hbdjx46pU6dOl+0XFhamo0eP1ntSAAAAcK5O4S0oKKjGb1W40PHjxxUYGFjvSQEAAMC5OoW366+/XpmZmZftt3XrVl1//fX1nhQAAACcq1N4+9WvfqWVK1dq9+7dNfbJycnRqlWrdPfddzd4cgAAAHBUp5v03n///crIyFBMTIwSEhI0atQode/eXZK0f/9+bdq0SStXrlRERIQmT57slgkDAAA0ZXUKby1atNC2bdt0zz336LnnntPzzz/vsNwwDN12223661//qhYtWrh0ogAAAKjH12OFhIRoy5Yt+vDDD7V9+3Z98803kqQuXbro1ltv1Q033ODySQIAAKBSvb/bNDIy8pI36wUAAIDr1emChb59+9b6JyIiolZjnjp1SjNnzlRMTIzatm0ri8WilJSUav0mTpwoi8VS7Sc8PNzpuMuWLVN4eLisVqu6d++u1NRUlZWVVet39OhRTZw4UaGhoQoMDFRUVJSys7PrUhYAAACPqdOeN5vNJovFcsk+p0+f1ocffnjZflUKCwu1YsUKRUREaPTo0Zf8Wq2WLVtq586d1doutnDhQs2bN09JSUmKiYlRbm6ukpOTdejQIa1YscLer7S0VMOGDdOJEye0dOlStWvXTunp6YqNjdWOHTs0ZMiQWq0DAACAp9QpvO3atavGZeXl5VqxYoUee+wxWSwWjR8/vlZjdu3aVcePH5fFYlFBQcElw1uzZs00aNCgS45XWFioBQsWaPLkyUpLS5MkRUdHq6ysTMnJyZo2bZp69eolSVq5cqXy8/P17rvvKioqSpI0dOhQRUREaObMmdqzZ0+t1gEAAMBT6nTYtCbr169Xr1699PDDDysiIkIffvihXnrppVo9t+rwp6tkZmaqpKRE8fHxDu3x8fEyDEObNm2yt23cuFE9e/a0BzdJ8vPz04QJE/TBBx/o0KFDLpsXAACAK9T7ggWpck/crFmzlJubqxtvvFHbt2/XsGHDXDW3as6ePasOHTro2LFjCgsL0+jRo/XYY4/JZrPZ++Tn50uS+vTp4/DcsLAwhYaG2pdX9R08eHC11+nbt68k6ZNPPqnxu1xLS0tVWlpqf3zy5ElJUllZmdNz6xqqakx3jI1K1NgzqLP7UWPPoM7u19RqXNv1rFd4y8vL06xZs7Rt2zZ1795da9eu1V133VWfoWotIiJCERER6t27tyRp9+7deuaZZ5Sdna3c3FwFBwdLqjxsarVaFRQUVG0Mm82mwsJC++PCwkKH4Hdhv6rlNVm0aJFSU1OrtW/fvt2t3+ualZXltrFRiRp7BnV2P2rsGdTZ/ZpKjYuLi2vVr07h7ZtvvlFycrLWrl0rm82mZ599Vv/7v/8rf3//ek2yLh555BGHx8OHD9cNN9ygsWPH6oUXXnBYfqnDsBcvq0vfC82ePVvTp0+3Pz558qQ6d+6smJgYtW7dusbn1VdZWZmysrI0fPhwj9S7KaLGnkGd3Y8aewZ1dr+mVuOqo3iXU6fwdt111+ncuXOKjY3VzJkz1apVK+Xl5dXY/8Ybb6zL8HU2ZswYBQUF6f3337e3hYSEqKSkRMXFxdX2gBUVFTncmy4kJMTp3rWioiJJcrpXrorVapXVaq3W7u/v79YNzN3jgxp7CnV2P2rsGdTZ/ZpKjWu7jnUKb1XneG3dulWZmZk19jMMQxaLRRUVFXUZvl4Mw1CzZj9ed1F1rlteXp4GDhxobz9y5IgKCgrsh12r+joLn1VtF/YFAADwBXUKb6tWrXLXPOrl9ddfV3FxscPtQ2JjYxUQEKCMjAyH8JaRkSGLxaLRo0fb28aMGaMpU6Zoz5499r7l5eVas2aNBg4cqI4dO3psXQAAAGqjTuHtvvvuc8sktm7dqjNnzujUqVOSpL179+r111+XJI0YMULHjh3T+PHjddddd6lHjx6yWCzavXu3nn32WV1//fVKSEiwj2Wz2ZScnKx58+bJZrPZb9KbkpKihIQE+z3eJGnSpElKT0/XuHHjtHjxYrVr107Lly/XZ599ph07drhlXQEAABqiQbcKcZXf/va3OnjwoP3x+vXrtX79eknS/v37dcUVV6h9+/Z6+umn9f3336uiokJdu3ZVYmKi5syZU+3K0rlz56pVq1ZKT0/XkiVL1KFDByUlJWnu3LkO/axWq7KzszVz5kw9/PDDKi4uVr9+/bR161a+XQEAAPgknwhvBw4cuGyfDRs21GnMxMREJSYmXrZf+/bttXr16jqNDQAA4C0u+YYFAAAAeAbhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACbi9fB26tQpzZw5UzExMWrbtq0sFotSUlKc9v3oo4/085//XMHBwWrTpo3i4uL01VdfOe27bNkyhYeHy2q1qnv37kpNTVVZWVm1fkePHtXEiRMVGhqqwMBARUVFKTs725WrCAAA4DJeD2+FhYVasWKFSktLNXr06Br77du3T9HR0Tp37pxee+01vfjii/r88881ePBgHTt2zKHvwoULNXXqVMXFxWnbtm2aMmWK0tLS9OCDDzr0Ky0t1bBhw5Sdna2lS5fqzTffVPv27RUbG6vdu3e7Y3UBAAAaxM/bE+jatauOHz8ui8WigoIC/eUvf3Hab/78+bJardq8ebNat24tSYqMjNS1116rJUuW6IknnpBUGQYXLFigyZMnKy0tTZIUHR2tsrIyJScna9q0aerVq5ckaeXKlcrPz9e7776rqKgoSdLQoUMVERGhmTNnas+ePe5efQAAgDrx+p43i8Uii8VyyT7l5eXavHmz7rzzTntwkyqD39ChQ7Vx40Z7W2ZmpkpKShQfH+8wRnx8vAzD0KZNm+xtGzduVM+ePe3BTZL8/Pw0YcIEffDBBzp06FAD1w4AAMC1vL7nrTa+/PJLnT17Vn379q22rG/fvsrKylJJSYkCAgKUn58vSerTp49Dv7CwMIWGhtqXS1J+fr4GDx7sdExJ+uSTT9SpUyencyotLVVpaan98cmTJyVJZWVlTs+ta6iqMd0xNipRY8+gzu5HjT2DOrtfU6txbdfTFOGtsLBQkmSz2aots9lsMgxDx48fV1hYmAoLC2W1WhUUFOS0b9VYVePWNOaFr+vMokWLlJqaWq19+/btCgwMvPxK1VNWVpbbxkYlauwZ1Nn9qLFnUGf3ayo1Li4urlU/U4S3Kpc6vHrhstr2q2vfC82ePVvTp0+3Pz558qQ6d+6smJgYh0O7rlJWVqasrCwNHz5c/v7+Lh8f1NhTqLP7UWPPoM7u19RqXHUU73JMEd5CQkIkOd8TVlRUJIvFojZt2tj7lpSUqLi4uNoesKKiIkVGRjqMW9OYkvM9fVWsVqusVmu1dn9/f7duYO4eH9TYU6iz+1Fjz6DO7tdUalzbdfT6BQu1cc0116hly5bKy8urtiwvL089evRQQECApB/Pdbu475EjR1RQUKDevXvb2/r06VPjmJIc+gIAAPgCU4Q3Pz8/3XHHHdqwYYNOnTplb//666+Vk5OjuLg4e1tsbKwCAgKUkZHhMEZGRoYsFovDveTGjBmjffv2OdwSpLy8XGvWrNHAgQPVsWNHt60TAABAffjEYdOtW7fqzJkz9mC2d+9evf7665KkESNGKDAwUKmpqerfv79GjhyppKQklZSUaP78+QoNDdWMGTPsY9lsNiUnJ2vevHmy2WyKiYlRbm6uUlJSlJCQYL/HmyRNmjRJ6enpGjdunBYvXqx27dpp+fLl+uyzz7Rjxw7PFgEAAKAWfCK8/fa3v9XBgwftj9evX6/169dLkvbv369u3bopPDxcu3bt0qxZszR27Fj5+fnplltu0ZIlS9S2bVuH8ebOnatWrVopPT1dS5YsUYcOHZSUlKS5c+c69LNarcrOztbMmTP18MMPq7i4WP369dPWrVs1ZMgQ9684AABAHflEeDtw4ECt+kVGRtZ6j1hiYqISExMv2699+/ZavXp1rcYEAADwNlOc8wYAAIBKhDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYiGnC265du2SxWJz+vP/++w59P/roI/385z9XcHCw2rRpo7i4OH311VdOx122bJnCw8NltVrVvXt3paamqqyszBOrBAAAUGd+3p5AXaWlpWno0KEObb1797b//759+xQdHa1+/frptddeU0lJiebPn6/BgwfrX//6l9q2bWvvu3DhQs2bN09JSUmKiYlRbm6ukpOTdejQIa1YscJj6wQAAFBbpgtv1157rQYNGlTj8vnz58tqtWrz5s1q3bq1JCkyMlLXXnutlixZoieeeEKSVFhYqAULFmjy5MlKS0uTJEVHR6usrEzJycmaNm2aevXq5f4VAgAAqAPTHDatjfLycm3evFl33nmnPbhJUteuXTV06FBt3LjR3paZmamSkhLFx8c7jBEfHy/DMLRp0yZPTRsAAKDWTLfn7cEHH9Rdd92lwMBARUVFad68ebrpppskSV9++aXOnj2rvn37Vnte3759lZWVpZKSEgUEBCg/P1+S1KdPH4d+YWFhCg0NtS+vSWlpqUpLS+2PT548KUkqKytzyzlzVWNyPp77UGPPoM7uR409gzq7X1OrcW3X0zTh7YorrtDUqVMVHR2tkJAQ/ec//9GTTz6p6Oho/f3vf9ett96qwsJCSZLNZqv2fJvNJsMwdPz4cYWFhamwsFBWq1VBQUFO+1aNVZNFixYpNTW1Wvv27dsVGBhYz7W8vKysLLeNjUrU2DOos/tRY8+gzu7XVGpcXFxcq36mCW833HCDbrjhBvvjwYMHa8yYMerTp49mzpypW2+91b7MYrHUOM6Fy2rbz5nZs2dr+vTp9scnT55U586dFRMT43DI1lXKysqUlZWl4cOHy9/f3+Xjgxp7CnV2P2rsGdTZ/ZpajauO4l2OacKbM23atNHIkSP1/PPP6+zZswoJCZEkp3vNioqKZLFY1KZNG0lSSEiISkpKVFxcXG1PWVFRkSIjIy/52larVVartVq7v7+/Wzcwd48Pauwp1Nn9qLFnUGf3ayo1ru06mv6CBcMwJFXuKbvmmmvUsmVL5eXlVeuXl5enHj16KCAgQNKP57pd3PfIkSMqKChwuP0IAACArzB1eDt+/Lg2b96sfv36KSAgQH5+frrjjju0YcMGnTp1yt7v66+/Vk5OjuLi4uxtsbGxCggIUEZGhsOYGRkZslgsGj16tIfWAgAAoPZMc9h0/Pjx6tKli/7nf/5HoaGh+uKLL/TUU0/p+++/dwhgqamp6t+/v0aOHKmkpCT7TXpDQ0M1Y8YMez+bzabk5GTNmzdPNpvNfpPelJQUJSQkcI83AADgk0wT3vr27atXX31Vzz//vE6fPi2bzaabbrpJL730kvr372/vFx4erl27dmnWrFkaO3as/Pz8dMstt2jJkiUO364gSXPnzlWrVq2Unp6uJUuWqEOHDkpKStLcuXM9vXoAAAC1YprwlpSUpKSkpFr1jYyM1I4dO2rVNzExUYmJiQ2ZGgAAgMeY+pw3AACApobwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvEk6ffq0pk2bpo4dOyogIED9+vXTunXrvD0tAACAavy8PQFfEBcXp9zcXC1evFjXXXed1q5dq7vvvlvnz5/X+PHjvT09AAAAuyYf3rZs2aKsrCx7YJOkoUOH6uDBg/r973+vX/3qV2revLmXZwkAAFCpyR823bhxo4KDgzVu3DiH9vj4eB0+fFh79uzx0swAAACqa/J73vLz8/WTn/xEfn6Opejbt699+U9/+tNqzystLVVpaan98Q8//CBJKioqUllZmcvnWVZWpuLiYhUWFsrf39/l44Maewp1dj9q7BnU2f2aWo1PnTolSTIM45L9mnx4Kyws1NVXX12t3Waz2Zc7s2jRIqWmplZr7969u2snCAAAmpRTp07piiuuqHF5kw9vkmSxWOq8bPbs2Zo+fbr98fnz51VUVKSQkJBLjldfJ0+eVOfOnfXNN9+odevWLh8f1NhTqLP7UWPPoM7u19RqbBiGTp06pY4dO16yX5MPbyEhIU73rhUVFUn6cQ/cxaxWq6xWq0NbmzZtXD6/i7Vu3bpJbMDeRI09gzq7HzX2DOrsfk2pxpfa41alyV+w0KdPH3366acqLy93aM/Ly5Mk9e7d2xvTAgAAcKrJh7cxY8bo9OnTeuONNxzaV69erY4dO2rgwIFemhkAAEB1Tf6w6W233abhw4frt7/9rU6ePKkePXrolVdeUWZmptasWeMz93izWq169NFHqx2qhetQY8+gzu5HjT2DOrsfNXbOYlzuetQm4PTp05o7d65ee+01FRUVKTw8XLNnz9Zdd93l7akBAAA4ILwBAACYSJM/5w0AAMBMCG8AAAAmQnhzg9OnT2vatGnq2LGjAgIC1K9fP61bt+6yz9uxY4eGDx+ujh07ymq1ql27drrlllu0ZcsWh34HDhyQxWKp8Sc2NrZWfWszJ1/m7jpLlV+D9uSTT6p3794KCgpS+/btddttt+ndd9+t1resrEypqanq1q2brFarwsPDtWzZMpesq7f4Uo0b67bsiRqfO3dO8+fPV/fu3dWiRQt17dpVs2fP1tmzZ6v1bYzbseRbdWZbvrTk5GRZLJYab9W1Y8cORUVFKTAwUKGhoZo4caKOHj1arV9j3ZYlSQZcbvjw4UabNm2M559/3ti5c6eRkJBgSDJefvnlSz5v3bp1xtSpU41169YZu3btMjZs2GDExMQYkoyXXnrJ3q+kpMR47733qv3MmjXLkGQ8//zz9r779+83JBkPP/xwtf4FBQVuq4EnuLvOhmEY99xzj9GsWTNj7ty5RnZ2trF+/XojMjLS8PPzM/bs2ePQNyEhwbBarcYf/vAHIycnx0hKSjIsFouxcOFCl6+7p/hSjRvrtuyJGsfFxRkBAQFGWlqakZWVZTz22GNGixYtjDvuuKPauI1xOzYM36oz23LN/u///s+wWq1G+/btjeuvv77a8l27dhl+fn7GqFGjjO3btxtr1qwxOnXqZPTu3dsoKSlx6NtYt2XDMAzCm4v9/e9/NyQZa9eudWgfPny40bFjR6O8vLxO4507d87o1KmTMXjw4Mv2jY6ONgIDA40ffvjB3lb1R+LJJ5+s0+v6Ok/UuaSkxGjevLkxYcIEh76HDx82JBmJiYn2tvz8fMNisRhpaWkOfSdPnmy0bNnSKCwsrNN8fIGv1bgxbsueqPF7771nSDKeeuoph75paWmGJGP79u32tsa4HRuG79WZbdm5srIyo1+/fkZiYqIxZMgQp+Gtf//+Rq9evYyysjJ72zvvvGNIMpYvX25va6zbchUOm7rYxo0bFRwcrHHjxjm0x8fH6/Dhw9qzZ0+dxvP391ebNm3k53fpW/J9+eWX2r17t375y182ia8Q8USdmzVrpmbNmlX7qpLWrVurWbNmCggIsLdt2rRJhmEoPj6+2nzOnj2rzMzMOs3HF/hajRsjT9T4nXfekSSNGDHCoe/IkSMlyeEG5Y1xO5Z8r86NkStqvHjxYhUVFWnhwoVOlx86dEi5ubm65557HGr/05/+VNddd502btxob2us23IVwpuL5efn6yc/+Um1sNW3b1/78ss5f/68ysvLdfjwYT366KP6/PPPNWPGjEs+58UXX5RhGEpISHC6fPHixWrRooUCAwN100036W9/+1st18g3eaLO/v7+mjJlilavXq1Nmzbp5MmTOnDggCZPnqwrrrhCkydPdphP27Zt1aFDh3rPx9f4Wo2rNKZt2RM1PnfunCRVu8lp1eOPP/7YYT6NbTuWfK/OVdiWf7R3714tWLBAzz33nIKDg2t8jQvHvPh1LnyNxrotV2ny37DgaoWFhbr66qurtVd9wX1hYeFlxxgxYoS2bdsmqXIPxKuvvqrbb7+9xv4VFRVavXq1wsPD9bOf/cxhmdVq1eTJkzV8+HCFhYXp66+/1rJlyzRq1Ci98MILNYY9X+epOj/zzDO64oordOedd+r8+fOSpC5dumjnzp3q0aOHw3yqXvtCQUFBatGiRa3m42t8rcaNcVv2RI179eolqXLPUPfu3e3t//znP6u9RmPcjiXfqzPbsqPz589r0qRJiouLq7bn8uLXuHDMi1+nKWzLVQhvbmCxWOq1rMqyZct04sQJfffdd1qzZo1+9atfafXq1br77rud9s/MzNShQ4f05JNPVlsWFhamFStWOLSNGzdOAwcOVFJSkiZOnHjZQ7K+yhN1XrhwoZYsWaKUlBQNHjxYJ0+e1J/+9CcNHz5c27dv1w033OCy+fgiX6pxY92W3V3j2267TT169NCsWbPUvn179e/fX++//77mzJmj5s2bq1kzxwMwjXE7lnyrzmzLjp5++ml98cUXtd7zWNNYF7c31m1ZElebutqgQYOM/v37V2vPz883JBl//vOf6zxmbGysceWVVxoVFRVOl48ZM8bw9/c3vv/++1qPuXjxYkOSsXfv3jrPxxd4os579+41LBZLtZOKz507Z/To0cOIjo62t911111G27Ztq415+vRpQ5Ixe/bsOs/H23ytxjUx87bsqb8XX3zxhTFo0CBDkiHJCAoKMpYuXWqEhoYaw4YNs/drjNuxYfhenWvSFLflgwcPGi1btjSWLl1qHD9+3P7zs5/9zPjJT35iHD9+3CguLjYMwzAyMzMNScbf//73auOMHTvWCAsLsz9urNtyFc55c7E+ffro008/VXl5uUN7Xl6eJNV435pLGTBggI4fP65jx45VW3b06FFt3rxZv/jFL9SuXbtaj2n891vRLv7UbRaeqPO///1vGYah/v37O/Tz9/dXRESEwzkTffr00bFjx3TkyBGXzcfbfK3GNTHztuypvxc9evTQe++9p2+//VYff/yxjh49qnHjxqmgoEA333yzw3wa23Ys+V6da9IUt+WvvvpKZ8+e1dSpU3XllVfaf9555x19+umnuvLKKzV79myHMarGvPh1LnyNxrot23k1OjZCW7ZsMSQZ69atc2iPjY2t1yXp58+fN4YMGWK0adPG4dLoKk8++aQhydiyZUutxzx37pzRr18/IzQ0tM7z8RWeqPPu3bsNScbixYsd+paUlBjdu3c3+vXrZ2+ruiz94r4PPPCAaS9L97UaO2P2bdnTfy8u9MgjjxhBQUHGt99+a29rjNuxYfhenZ1pqtvy8ePHjZycnGo/ERERRrdu3YycnBzjiy++sPcfMGCA0bt3b4fxqm7T8txzz9nbGuu2XIXw5gbDhw83rrzySmPFihXGzp07jcmTJxuSjDVr1tj7TJo0yWjevLlx4MABe9svfvELY968ecYbb7xh7Nq1y1i7dq39ZpDp6elOXys8PNzo3LlzjYdUH3nkEeOhhx4yXnnlFSMnJ8f461//avTv39+QZKxatcql6+1p7q5zRUWF0b9/fyMgIMCYP3++sWPHDuONN94woqOjnd6gs+qGkE8++aSxa9cuY86cOaa/IaQv1bixbsue+HvxxBNPGKtXrzZycnKMdevWGXFxcUazZs2c3jy1MW7HhuFbdWZbdqyxMzXd5y0nJ8fw8/MzxowZY2RlZRkvv/yy0blz50vepLexbcuGQXhzi1OnThmJiYlGhw4djBYtWhh9+/Y1XnnlFYc+9913nyHJ2L9/v73tiSeeMPr3729ceeWVRvPmzY2QkBDj1ltvNTZv3uz0dapuTDh//vwa57Jy5UpjwIABhs1mM/z8/Iwrr7zSuPXWW41t27a5ZF29yRN1PnHihDF37lzjJz/5iREYGGi0a9fOiI6Odrqn89y5c8ajjz5qdOnSxWjRooVx3XXXGX/84x9dvt6e5Es1bqzbsidqnJqaalxzzTWG1Wo12rRpY8TGxhpvv/220/k0xu3YMHyrzmzLjjV2pqbwZhiGsX37dmPQoEFGQECAYbPZjHvvvdfpOd+NdVs2DMOwGMZ/D7IDAADA55nvrEgAAIAmjPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4A+IQDBw7IYrEoIyPD5WNnZ2frf/7nfxQUFCSLxaJNmzYpIyNDFotFBw4ccPnrXahbt26aOHGiW1/DDPbu3auUlBS31xtoCvy8PQEAcCfDMPTLX/5S1113nf72t78pKChIPXv2VHl5ud577z2FhYV5e4pNwt69e5Wamqro6Gh169bN29MBTI3wBqBRO3z4sIqKijRmzBgNGzbMYVnbtm29NCvvKisrk8VikZ9f9beA4uJiBQYGemFWAGqLw6YA3Oo///mP4uPjde211yowMFCdOnXSHXfcoby8vMs+99ixY7r//vvVuXNnWa1WtW3bVj/72c+0Y8eOWr12SkqKrrrqKknSrFmzZLFY7Ht9nB02jY6OVu/evZWbm6vBgwcrMDBQV199tRYvXqzz58/b+5WUlGjGjBnq16+frrjiCtlsNkVFRenNN9+sfWEuY+3atYqKilJwcLCCg4PVr18/rVy50r68psOx0dHRio6Otj/etWuXLBaLXnrpJc2YMUOdOnWS1WrVf/7zH02cOFHBwcHKy8tTTEyMWrVqZQ+4586d04IFCxQeHm6vfXx8vI4dO+bwet26ddPIkSOVmZmpG2+8US1btlR4eLhefPFFe5+MjAyNGzdOkjR06FBZLBa3HSIHmgL2vAFwq8OHDyskJESLFy9W27ZtVVRUpNWrV2vgwIH6v//7P/Xs2bPG595zzz366KOPtHDhQl133XU6ceKEPvroIxUWFtbqtRMSEhQREaG4uDg9/PDDGj9+vKxW6yWfc+TIEf3617/WjBkz9Oijj2rjxo2aPXu2OnbsqHvvvVeSVFpaqqKiIv3ud79Tp06ddO7cOe3YsUNxcXFatWqVvV99zZ8/X48//rji4uI0Y8YMXXHFFcrPz9fBgwfrPebs2bMVFRWl559/Xs2aNVO7du0kVYa0X/ziF3rggQeUlJSk8vJynT9/XqNGjdI//vEPzZw5Uz/96U918OBBPfroo4qOjtb/+3//Ty1btrSP/e9//1szZsxQUlKS2rdvr7/85S/6zW9+ox49eujmm2/W7bffrrS0NM2ZM0fp6em68cYbJUnXXHNNg+oENFkGAHhQeXm5ce7cOePaa681HnnkEXv7/v37DUnGqlWr7G3BwcHGtGnTGvR6VeM++eSTDu2rVq0yJBn79++3tw0ZMsSQZOzZs8ehb69evYxbb731kutUVlZm/OY3vzFuuOEGh2Vdu3Y17rvvvlrP96uvvjKaN29u/PrXv75kv5rGHTJkiDFkyBD745ycHEOScfPNN1fre9999xmSjBdffNGh/ZVXXjEkGW+88YZDe25uriHJWL58ucM8AgICjIMHD9rbzp49a9hsNuOBBx6wt61fv96QZOTk5FxyvQBcHodNAbhVeXm50tLS1KtXL7Vo0UJ+fn5q0aKFvvjiC3366aeXfO6AAQOUkZGhBQsW6P3331dZWZnb59uhQwcNGDDAoa1v377V9nqtX79eP/vZzxQcHCw/Pz/5+/tr5cqVl12ny8nKylJFRYUefPDBBo1zsTvvvLPWyzZv3qw2bdrojjvuUHl5uf2nX79+6tChg3bt2uXQv1+/furSpYv9cUBAgK677roG7SkEUDPCGwC3mj59uubNm6fRo0frrbfe0p49e5Sbm6uIiAidPXv2ks999dVXdd999+kvf/mLoqKiZLPZdO+99+rIkSNum29ISEi1NqvV6jDXDRs26Je//KU6deqkNWvW6L333lNubq4mTZqkkpKSBr1+1TllVefquUpNV9UGBgaqdevWDm3ff/+9Tpw4oRYtWsjf39/h58iRIyooKHDoX5uaAXAdznkD4FZr1qzRvffeq7S0NIf2goICtWnT5pLPDQ0N1bPPPqtnn31WX3/9tf72t78pKSlJR48eVWZmphtnfWlr1qxR9+7d9eqrr8pisdjbS0tLGzx21RWw3377rTp37lxjv4CAAKevV1BQoNDQ0GrtF87zcu2hoaEKCQmpscatWrWqcV4A3I/wBsCtLBZLtYsE/v73v+vQoUPq0aNHrcfp0qWLHnroIWVnZ+udd95x9TTrxGKxqEWLFg7B58iRIy652jQmJkbNmzfXc889p6ioqBr7devWTR9//LFD2+eff67PPvvMaXiri5EjR2rdunWqqKjQwIEDGzRWlaptgL1xQMMR3gC41ciRI5WRkaHw8HD17dtXH374oZ588snLHhb84YcfNHToUI0fP17h4eFq1aqVcnNzlZmZqbi4OA/N3rmRI0dqw4YNmjJlisaOHatvvvlGjz/+uMLCwvTFF180aOxu3bppzpw5evzxx3X27FndfffduuKKK7R3714VFBQoNTVVUuWVuBMmTNCUKVN055136uDBg/rDH/7gknvX3XXXXXr55Zc1YsQITZ06VQMGDJC/v7++/fZb5eTkaNSoURozZkydxuzdu7ckacWKFWrVqpUCAgLUvXt3p4dcAVwa4Q2AWy1dulT+/v5atGiRTp8+rRtvvFEbNmxQcnLyJZ8XEBCggQMH6qWXXtKBAwdUVlamLl26aNasWZo5c6aHZu9cfHy8jh49queff14vvviirr76aiUlJenbb7+1h6uGeOyxx3Tttddq2bJl+vWvfy0/Pz9de+21SkxMtPcZP368Dh8+rOeff16rVq1S79699dxzz7nk9Zs3b66//e1vWrp0qV566SUtWrRIfn5+uuqqqzRkyBD16dOnzmN2795dzz77rJYuXaro6GhVVFRo1apVfHUYUA8WwzAMb08CAAAAtcPVpgAAACbCYVMApmQYhioqKi7Zp3nz5jVeZekNFRUVutTBDovFoubNm3twRgDMiD1vAExp9erV1e5BdvHP7t27vT1NB9dcc80l51v1vaIAcCmc8wbAlAoLC7V///5L9unZs6dP3ZMsLy/vkveCa9Wq1SW/6xUAJMIbAACAqXDYFAAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAE/n/rUVLALo8RUcAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0032\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.400 - 0.425 A" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.4 , 0.4009, 0.4018, 0.4027, 0.4036, 0.4045, 0.4054, 0.4063,\n", " 0.4072, 0.4081, 0.409 , 0.4099, 0.4108, 0.4117, 0.4126, 0.4135,\n", " 0.4144, 0.4153, 0.4162, 0.4171, 0.418 , 0.4189, 0.4198, 0.4207,\n", " 0.4216, 0.4225, 0.4234, 0.4243, 0.4252, 0.4261]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABMqklEQVR4nO3de1zUdaL/8fckOAhoBnhB1LS8cEzRYlNpUzGTPK4dhXQzt01xrf1tllaeNcwblLc2t9X1mJ1OJW12tdA21xsiWqfM2Dq7i5XVlpqXvADeERzw+/tjdkbGGWCAYZgvvJ6PBw+cz3zmM5/vh6/wns/3+/18LYZhGAIAAIApXNXQHQAAAID3CG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBEGjy8/e1vf9PPfvYzde7cWS1atFBERIQSEhK0Zs0at7qff/65br/9doWHh6t169ZKSUnR999/77HdFStWKDY2VlarVV27dlVGRoZsNptbvePHj2vSpEmKiopSaGioEhISlJOT4/PtBAAA8IUGD2+nTp1Sp06dtGjRIm3cuFF/+tOf1KVLF/3yl7/UggULnPX27t2rxMREXbx4UW+//bZefvllffPNNxo0aJBOnDjh0ubChQs1ffp0paSkaMuWLXrwwQe1aNEiTZ061aVeaWmphg0bppycHC1fvlzvvfee2rVrpxEjRmjnzp1+2X4AAICasATqvU0HDhyoI0eO6IcffpAk/fznP1dubq6+++47tWrVSpJ04MABde/eXY8++qiefvppSVJhYaE6duyo++67T//93//tbG/RokWaM2eO9uzZo169ekmSnnvuOU2dOlUff/yxEhISJEllZWXq27evwsPDtXv3bn9uMgAAQLUafOatMlFRUQoKCpJkD1QbNmzQXXfd5QxuknTttddq6NChWrdunbNs8+bNKikpUWpqqkt7qampMgxD69evd5atW7dOPXv2dAY3SQoKCtK9996rTz/9VIcPH66nrQMAAKidoIbugMOlS5d06dIlnTx5UmvXrtWWLVv0X//1X5Kk7777ThcuXFBcXJzb6+Li4pSdna2SkhKFhIRoz549kqQ+ffq41IuOjlZUVJTzeUnas2ePBg0a5LFNSfriiy8UExPjsb+lpaUqLS116X9RUZEiIyNlsVhquPUAAKCpMwxDZ8+eVYcOHXTVVZXPrwVMeHvwwQedhzmbN2+uP/7xj/r1r38tyX4oVJIiIiLcXhcRESHDMHTy5ElFR0ersLBQVqtVYWFhHus62nK0W1mbFd/Xk8WLFysjI6MGWwgAAFC9gwcPqmPHjpU+HzDh7YknntCUKVN0/Phxvf/++3rooYd0/vx5/ed//qezTlUzWhWf87ZeTetWNGvWLD322GPOx6dPn1bnzp21b98+tWzZstLX1ZbNZlNubq6GDh2q4OBgn7cPV4y3/zHm/sV4+x9j7n9mG/OzZ8+qa9eu1eaIgAlvnTt3VufOnSVJI0eOlGQPSBMnTlRkZKQkzzNhRUVFslgsat26tSQpMjJSJSUlKi4uVmhoqFvd+Ph45+PIyMhK25Q8z/Q5WK1WWa1Wt/KIiAiX8/J8xWazKTQ0VJGRkabYAc2O8fY/xty/GG//Y8z9z2xj7uhjdadfBewFC/3791dZWZm+//57XX/99WrRooXy8/Pd6uXn56tbt24KCQmRdPlctyvrHj16VAUFBerdu7ezrE+fPpW2KcmlLgAAQCAI2PCWm5urq666Stddd52CgoJ05513KisrS2fPnnXW+eGHH5Sbm6uUlBRn2YgRIxQSEqLMzEyX9jIzM2WxWDRmzBhnWXJysvbu3euyJEhZWZnWrFmjAQMGqEOHDvW2fQAAALXR4IdNH3jgAbVq1Ur9+/dXu3btVFBQoLVr1+qtt97Sb3/7W7Vp00aSlJGRoZtvvlmjRo1SWlqaSkpKNG/ePEVFRWnGjBnO9iIiIjRnzhzNnTtXERERSkpKUl5entLT0zVlyhTnGm+SNHnyZK1cuVLjxo3TkiVL1LZtWz333HP6+uuvtW3bNr+PBQAAQHUaPLwlJCRo9erVeuWVV3Tq1CmFh4erb9++evXVV3Xvvfc668XGxmrHjh16/PHHNXbsWAUFBem2227T0qVLnQHPYfbs2WrZsqVWrlyppUuXqn379kpLS9Ps2bNd6lmtVuXk5GjmzJl6+OGHVVxcrH79+mnTpk0aMmSIX7YfAACgJho8vKWmprotqFuZ+Ph4r2fEpk2bpmnTplVbr127dnrllVe8ahMAAKChBew5bwAAAHBHeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN6AJur8eclisX+dP9/QvQEAeKvBb0yP6p0/L4WHB0sarZMnbWrduqF7BAAAGgozbyZQXn753//7vxaXxwAAoGkhvAW4rCypV6/Lj++8M0hdutjLgbqo+CHggw/Eh4IGxmFsAN4ivAWwrCxp7Fjp8GHX8sOH7eUEONTWlR8KRo4UHwoAwCQIbwGqvFyaPl0yDPfnHGWPPMJsCWqODwUAYG6EtwD14YfSoUOVP28Y0sGD9nqAt/hQAADmR3gLUD/+6Nt6gMSHAgBoDAhvASo62rf1AIkPBQDQGBDeAtSgQVLHjvYrzzyxWKROnez1AG/xoQAAzI/wFqCaNZOWL7f/+8oA53i8bJm9HuAtPhQAgPkR3gJYSor0zjtShw6u5R072stTUhqmXzAvPhQAgPkR3gJcSor05ZeXH7//fpn27SO4ofb4UAAA5kZ4M4FWraSLF21av/493XGHwawI6uzKDwUbN4oPBQBgEoQ3oImq+CFg8GAOlQKAWQQ1dAcANIywMM+L9QIAAhvhDUCtlJfbF/P98Uf70iKDBjF7BwD+QHgDUGNZWfbbbFW8W0PHjvYrWTlvDgDqF+e8AagRx43tr7zNFje2BwD/ILwB8Bo3tq8/Fcfsgw8YQwCVI7zBK+Xl0o4d0htv2L/zh6Vp4sb29SMrS+rV6/LjkSOlLl2YxQTgGeEN1crKsv8hGTpUmjDB/p0/LE0TN7b3Pcdh6MOHXcs5DA2gMoQ3VMmX5zedP2+/BZPFYv83zIcb2/sWh6EB1AbhDZXiDwuuxI3tfYvD0ABqg/CGSvn6DwsnZJsfN7b3LQ5DA6gNwhsq5cs/LJyQ3Xg4bmwfE+Nazo3ta47D0ABqg0V6USlf/WFxnDd35eFXx3lz/ME3n5QUafRo7rBQV47D0IcPez49wWKxP89haAAVMfOGSvni/CbOm2u8mjWTEhOle+6xfye41RyHoQHUBuGtiajNlZ6++MPCCdlA1RyHoTt0cC3nMDSAyhDeUKW6nt/ECdlA9VJSpC+/vPx440Zp3z6CGwDPOOcN1arL+U2ckA14p+L/p8GDOVQKoHKEN3jFcX5TTXFCNgAAvsVhU9QrTsgG4G/czQWNHeEN9Y4TsgEA8B3CG/yCE7KBpoFZL6D+Ed6aiEC4NRUnZAMAUHeEtyYgUG5NFRZmv2jBMOz/BgAANUd4a+Qct6Y6fNi13HFrKu4tak4cmgKApovw1og1xltTEVoaF36eAFBzhLdGjFtTAQDQ+BDeGjFuTdV4BcIFKLisvFzasUN64w37d34eAOpTg4e37du3a/LkyYqNjVVYWJhiYmI0evRoffbZZy71Jk2aJIvF4vYVGxvrsd0VK1YoNjZWVqtVXbt2VUZGhmw2m1u948ePa9KkSYqKilJoaKgSEhKUk5NTL9vqb9yaqnEKlAtQYJeVZR//oUOlCRPs35vyz4MPFkD9a/DwtmrVKu3fv1/Tp0/Xxo0btXz5ch0/flwDBw7U9u3bXeq2aNFCu3btcvl666233NpcuHChpk+frpSUFG3ZskUPPvigFi1apKlTp7rUKy0t1bBhw5STk6Ply5frvffeU7t27TRixAjt3LmzXrfbHxy3prryzgYOFovUqRO3pjITLkAJLI6fx5WnJzTVnwcfLAA/MRrYsWPH3MrOnj1rtGvXzhg2bJizbOLEiUZYWFi17RUUFBghISHGAw884FK+cOFCw2KxGF988YWzbOXKlYYk4+OPP3aW2Ww2o1evXkb//v1rtB2nT582JBmnT5+u0eu8dfHiRWP9+vXGxYsXa/S6d981DIvF/nV5oY7LZe++Wy/drTfnzl3ehnPn6u99ajve9amszDA6dnT9OV75M+3UyV7PLCr+PE+erN2Y+2ufuJKvfx7+3g5f7+OO3zWexsHfv2saap+oTiD+XmnszDbm3maJBp95a9u2rVtZeHi4evXqpYMHD9a4vc2bN6ukpESpqaku5ampqTIMQ+vXr3eWrVu3Tj179lRCQoKzLCgoSPfee68+/fRTHb5yesOEuDVV48EFKPWjtuerBdrPoyHPu/Plle1cgQxUL6ihO+DJ6dOn9fnnn+u2225zKb9w4YLat2+vEydOKDo6WmPGjNGTTz6piIgIZ509e/ZIkvr06ePy2ujoaEVFRTmfd9Qd5OGYYVxcnCTpiy++UExMjMc+lpaWqrS01Pn4zJkzkiSbzebx3Lq6crRZm7bvvFMaMkSKigqWJL3/fpluv91Qs2ZSPXS1Xtn7G/yvf9vqrf91Ge/6cvCgRd78lz14sEw2m4e/ogHoyp9nxe+1baMmL1+3zqLHHmumw4cvn1sQE2Po2WfLlZxc9Rj6+ufRvLl08eLlxzXdjkcfbaYjR7zfDl/u4zt3WnToUOVj4QiyubllGjKk6rHwxf9xf/2eqKlA/L3S2JltzL3tZ0CGt6lTp+r8+fOaPXu2s6xv377q27evevfuLUnauXOn/vCHPygnJ0d5eXkKDw+XJBUWFspqtSrMwxL+ERERKiwsdD4uLCx0CX4V6zmer8zixYuVkZHhVr5161aFhoZ6uaU1l52dXavXlZQ0kzRKknT+/GZt2WLOs4iLiy9vx7PP/lX9+h2v19ts1Xa868OBA5GSbvWi3ifauLHyfTeQVNwvt2/frpCQmo95xTa2bNmikBDv9u1du6L19NM3u5UfPizdfXczPf54nhISKr8UO1B+HnXdDl/s4x98ECPpJ9XW27Tpbzp/vuojGrX9efq6jboqKWmm8ePtfXjzzQ0ufQik3ytNhVnGvLi42Kt6FsPwNNHdcObOnasFCxZoxYoVeuihh6qs++6772rs2LF69tln9eijj0qSHnjgAb366qu6cOGCW/2ePXuqa9eu2rx5sySpefPm+tWvfqVVq1a51Nu1a5duueUWvfHGGxo/frzH9/Y089apUycVFBSoVatWNdpmb9hsNmVnZ2v48OEKDg6u8evPn5euucb+upMnbaa8PVVtZhdqq67jXR/Ky6Vu3YJ05IhkGO5XoVgshmJipG+/LTPNfWMr7pfHjxfr449rPuZnznieVa6KYyztZ0bUbiwD4edRl+3wtI/X9vfEzp0WDR9e/VxAdnb1M2+++F0VCL/vPPUhEH+vNHZmG/MzZ84oKipKp0+frjJLBNTMW0ZGhhYsWKCFCxdWG9wkKTk5WWFhYfrkk0+cZZGRkSopKVFxcbHbDFhRUZHi4+Nd6nqaXSsqKpIkj7NyDlarVVar1a08ODi4XneQ2rZf8SX2NnzYKT/IypLGj3c/p+bIEYvGjw+qt/P36uPnef689K+JYp075/19XoODpT/+0X4Vo8XiOhb2K4otWr5cCgkxzw/3yv3S8d3bMc/KkqZNu/z4zjuD1LGjtHx51fvDRx+5X7FbkWFYdOiQ9MknwUpMrLzvDf3z8M12BFcY+yvLvevH0KH282gPH/Z83pvFYn9+6NCgaoOsL35XBcLvu6r6UN9/J+DOLGPubR8b/IIFh4yMDKWnpys9PV1PPPGE168zDENXXXV5MxznuuXn57vUO3r0qAoKCpyHXR11r6xX8bUV66LhNMbbfNUWF6BcVpdlU3y1gLXj53HlqbH++nn4eiHu2q7R1qyZPTBL7ksTOR4vWya/zQj7Yq05LpxAIAuI8PbUU08pPT1dc+bM0fz5871+3TvvvKPi4mINHDjQWTZixAiFhIQoMzPTpW5mZqYsFovGjBnjLEtOTtbevXu1e/duZ1lZWZnWrFmjAQMGqMOVfyHRIALtqr6GlpIiffnl5ccbN0r79jWt4FbXQO/LBaxTUqT9+6XcXOn11+3f/fXz8OV21HWNtkD5YMFac2gKGvyw6e9//3vNmzdPI0aM0M9+9jOXQ6CSNHDgQB04cEATJkzQ+PHj1a1bN1ksFu3cuVPLli3TDTfcoClTpjjrR0REaM6cOZo7d64iIiKUlJSkvLw8paena8qUKepV4X/15MmTtXLlSo0bN05LlixR27Zt9dxzz+nrr7/Wtm3b/DYGqBq3+XJXcQZj8GD/zWj4WsVw9b//a6mXZTo8HS50LGBd3WE+bxewbtbM8/vUN19th2MW88o2HLOY3oavlBTp9tulq6+2P964UUpK8t/+6avtAAKeH9acq9IQ+9mrlX4ZhmEUFRUZycnJRpcuXYwWLVoYzZs3N7p3727MnDnTOHXqlMd2ly9fbvTo0cNo3ry50blzZ2P+/PkeF+k7evSocd999xkRERFGSEiIMXDgQCM7O7vG2xGoi/Q6BOqild7Iza18IdSKX7m5vnvP+lzY8fTpy33euLF2i+qa+efp8O67hhET4/ozjIwsNt56y1bta19/3bt94vXXq37/xrCAdW23w7GPX7hwMaAWG67t6wNt0WRPrzfbgrGNgdnG3Nss0eDhrbEI9PBmZo5fyp5Wb6+vOwvU13h7CiwdO5onKPhKZavxS5cMi+VStePhq0D/7rvuf/A7dTLfz8PTflXddjj28exsm08/HDVUePP1hzzCW+NgtjE3zR0WgOoE2snQtcV9Se2qOl/NsdxFdReg+Oq+vQ15vpovpaRIBw7UbjsC7bSE2l5sEGjbAdQnwhtMIVBOhq4trpi9rPrz1SzVXoDiy0DvOF/tnnvs3wP9Q0Blarsdvrzooa7qcrFBIG0HXDXkrdsaK8IbTMPMV1lyxexlvl6mw6yBPlDceqvhk1nMuqrrzLSvZmPhW1lZ9gA+dKg0YYL9O1f/1h3hDaZi1qssOaRzma+X6TBroA8Uvj4tISzs8hlm3i5A7YuZ6cZyekVj4gjkV35wbWqnitQHwhvgBxzSuaz6GRKjRjMkZg30gaShZzF9NTPd0NtRkS8WCjYzThWpX4Q3wA84pHNZVTMk9hWCmCFpCA05i+nLmelAmI2t7Ny9desq+QXQCHGqSP0ivAF+wCEdV5XNkERFXdCbb5Zz2LOBNNQspq9nphtyNraqc/fGj2+mXbuawPS6OFWkvhHeAD8JpEM6geDKGZL33y/Tf/93tpKTPa4hUqnanGOFwNJYZqa9OVT40ku9m8ShQk4VqV+EN8CPAuGQTiCpOCNy661Gk5l5DFQNFYQby8y0N8vgFBSE6n//t/EfPm0sgTxQEd5gKo1hloUT7AF3gTYzXZsLDnx9qNDM66M1lkAeqAhvAICAECgz07VdLNiXhwobw/pojkAeE+Na3lRPFfElwhsAIGA09Mx0XRYL9mYZnKioYt16a9XndTam9dEayy3oAg3hDQAA1X1tMm8OFf7qV3uqDKSNcX20xnILukBCeAP8rDGctwc0Rr5Ym6yqc/fefLNcCQlVn/DG+mjwBuENAAD59r67ns7d82YZnEBbH+3MGfusocUibdpkrhm/xozwBgCAfHvBQW3P3Quk9dFqe+EG6h/hDQAABcbaZIHQB6luF26g/hHeAABQYKxNFgh9aIwXTTQ2hDcAAP4lEBYLbuj10bhoIvAFNXQHAABwcFyN3ZBSUqTbb5euvtr+eONGKSnJv0tcpKRIo0fbA9KPP9rPcRs0yD99CLSLJuCO8AagwVT8Q22zNWxfgIoaerFgRx8SE/3/voF00QQ847ApAABwCpSLJlA5whsAAHAKhIsmUDXCGwCgUeEuJnUXCBduVHT+/OXFgs+f9+97ByLOeQMAAG4C4cINeEZ4AwAAHrVq1fBX/8Id4Q0AAB8LhCVP0HhxzhsAAAhoFe/m8MEH3N2B8AYAAAJWVpbUq9flxyNHSl26NO37qxLeAABopMrLpR07pDfesH8324xVVpY0dqx0+LBr+eHD9vKmGuAIbwAANEJZWfYZqqFDpQkT7N/NNGNVXi5Nn+753EFH2SOPmC+Q+gLhDQCARsYxY3XlDebNNGP14Yfu/a/IMKSDB+31mhrCGwAAjUhjmbHy9sb33tZrTAhvAABcwcx3aWgsM1be3vje23qNCeENAIBGpLHMWA0aZL8d15X3V3WwWKROnez1mhrCGwAAjUhjmbFq1kxavtz+7ysDnOPxsmVN83ZdhDcAABqRxjRjlZIivfOO1KGDa3nHjvbylJSG6VdDI7wBANCINLYZq5QU6csvLz/euFHat6/pBjeJ8AYAQKPjmLGKiXEtN+uMVcWgOXiweYJnfeHG9AAANEIpKdLo0farSn/80X6O26BBBJ/GgPAGAEAj1ayZlJjY0L2ArxHeAABAQHOsuwc7znkDAAAwEcIbAACAiRDeAABAo3bmjH2ZFItF2rQp8O/rWh3CGwAAaLR27YpWXNzlU/xHjpS6dJGyshquT3VFeAMAAI3SunUWPf30zTpyxLX88GFp7NiaBbjz5y/P3p0/79t+1hThDQAANDrl5dJjjzkWtXO91YTjytVHHvH+EGrFeh980LCHXglvAACg0fnwQ+nwYYuuDG4OhiEdPGivV52sLKlXr8uPG/rQK+ENAAA0Oj/+6Jt6WVn2Q6yHD7uW1+bQq68Q3oAaCqTzHgAAnkVH171eebk0fbrnBYJrc+jVVwhvAACg0Rk0SIqJMSR5vjWDxSJ16mSvV5kPP5QOHar8+ZocevUlwhsAAGh0mjWTnn3WPiVmsbgGOMu/ToNbtsxerzK+OvTqaw0e3rZv367JkycrNjZWYWFhiomJ0ejRo/XZZ5+51f388891++23Kzw8XK1bt1ZKSoq+//57j+2uWLFCsbGxslqt6tq1qzIyMmSz2dzqHT9+XJMmTVJUVJRCQ0OVkJCgnJwcn28nAADwr+RkQ48/nud2aLRjR+mdd6SUlKpf74tDr/WhwcPbqlWrtH//fk2fPl0bN27U8uXLdfz4cQ0cOFDbt2931tu7d68SExN18eJFvf3223r55Zf1zTffaNCgQTpx4oRLmwsXLtT06dOVkpKiLVu26MEHH9SiRYs0depUl3qlpaUaNmyYcnJytHz5cr333ntq166dRowYoZ07d/pl+wEAQP1JSPhR331Xptxc6fXXpdxcad++6oObZD+k2rHj5Zm6K3lz6LVeGA3s2LFjbmVnz5412rVrZwwbNsxZNm7cOCMqKso4ffq0s2z//v1GcHCwMXPmTGdZQUGBERISYjzwwAMubS5cuNCwWCzGF1984SxbuXKlIcn4+OOPnWU2m83o1auX0b9//xptx+nTpw1JLv3zpYsXLxrr1683Ll68WC/tw1VV4336tGHYz3QwjI0bDaOsrAE62Aixj/sX4+1/jLn/+WLM333XMCwW+5fjd790uezdd33XX2+zRIPPvLVt29atLDw8XL169dLBgwclSWVlZdqwYYPuuusutWrVylnv2muv1dChQ7Vu3Tpn2ebNm1VSUqLU1FSXNlNTU2UYhtavX+8sW7dunXr27KmEhARnWVBQkO699159+umnOnzldcFo8gJtrR8AQP1KSbEfYu3QwbXc20Ov9SGo+ir+d/r0aX3++ee67bbbJEnfffedLly4oLi4OLe6cXFxys7OVklJiUJCQrRnzx5JUp8+fVzqRUdHKyoqyvm8JO3Zs0eDPMx1Ot7niy++UExMjMc+lpaWqrS01Pn4zJkzkiSbzebx3Lq6crRZH23DnafxXrfOovHjm/3r8vDLc+iHDxsaO1Z6881yJSd7vqoJ1WMf9y/G2/8Yc//z1Zjfeac0ZIgUFRUsSXr//TLdfruhZs0kX/44ve1nQIa3qVOn6vz585o9e7YkqbCwUJIUERHhVjciIkKGYejkyZOKjo5WYWGhrFarwsLCPNZ1tOVot7I2K76vJ4sXL1ZGRoZb+datWxUaGlrNFtZednZ2vbUNd47xLi+XHnwwSYbRTO63WbFIMjR16kUFBWVXeeUSqsc+7l+Mt/8x5v7nqzF3HLwrL5e2bPFJky6Ki4u9qhdw4W3u3Ll67bXXtGLFCsXHx7s8Z6nsjMErnvO2Xk3rVjRr1iw99thjzsdnzpxRp06dlJSU5HJo11dsNpuys7M1fPhwBQcH+7x9uLpyvHfutKiwsKr/LhYVFISqVaufacgQZt9qg33cvxhv/2PM/c9sY+44iledgApvGRkZWrBggRYuXKiHHnrIWR4ZGSnJ80xYUVGRLBaLWrdu7axbUlKi4uJitxmwoqIil0AYGRlZaZuS55k+B6vVKqvV6lYeHBxcrztIfbcPV47xvuKC5kqdOBEkfjx1wz7uX4y3/zHm/meWMfe2jw1+wYJDRkaG0tPTlZ6erieeeMLlueuvv14tWrRQfn6+2+vy8/PVrVs3hYSESLp8rtuVdY8ePaqCggL17t3bWdanT59K25TkUhdNW6Cu9QMAaHoCIrw99dRTSk9P15w5czR//ny354OCgnTnnXcqKytLZ8+edZb/8MMPys3NVUqFSz1GjBihkJAQZWZmurSRmZkpi8WiMWPGOMuSk5O1d+9e7d6921lWVlamNWvWaMCAAepw5aUlaLICdq0fAECT0+CHTX//+99r3rx5GjFihH72s5/pk08+cXl+4MCBkuwzczfffLNGjRqltLQ0lZSUaN68eYqKitKMGTOc9SMiIjRnzhzNnTtXERERSkpKUl5entLT0zVlyhT1qrDOw+TJk7Vy5UqNGzdOS5YsUdu2bfXcc8/p66+/1rZt2/wzADCFZs2k5culsWPtQa3iTYq9vc0KAAC+0ODh7f3335dkX59t8+bNbs8b//orGRsbqx07dujxxx/X2LFjFRQUpNtuu01Lly5VmzZtXF4ze/ZstWzZUitXrtTSpUvVvn17paWlOa9edbBarcrJydHMmTP18MMPq7i4WP369dOmTZs0ZMiQetpimJVjrZ9p06SKSwB27GgPbg2x1g8AoOlp8PC2Y8cOr+vGx8d7PSM2bdo0TZs2rdp67dq10yuvvOJ1H9C0paRIt98uXX21/fHGjVJSEjNuAAD/CYhz3gAzqRjUBg8muAEA/IvwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBEGvxqU8BswsJc13kDAMCfmHkDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmUuvw9uSTT+rIkSMen/vxxx/15JNP1rpTAAAA8KzW4S0jI0OHDh3y+NyRI0eUkZFR604BAADAs1qHN8MwKn3u3LlzCg4Orm3TAAAAqERQTSr/4x//0N/+9jfn440bN2rv3r0udS5cuKDXXntN119/vU86CAAAgMtqFN7WrVvnPBxqsVgqPa+tRYsWWr16dd17BwAAABc1Cm8PPPCARo0aJcMw1L9/f61evVq9e/d2qWO1WnX99derRYsWPu0oAAAAahjeoqOjFR0dLUnKzc1VfHy8wsPD66VjAAAAcFej8FbRkCFDfNkPAAAAeKHW4U2S1qxZo9dff10HDhzQhQsXXJ6zWCz67rvv6tQ5AAAAuKp1eHv66ac1a9Ys9erVS3379pXVavVlvwAAAOBBrcPbCy+8oKlTp2rFihW+7A8AAACqUOtFeo8ePark5GRf9gUAAADVqHV4i4+P55w2AAAAP6t1eHv22Wf1+9//Xp999pkv+wMAAIAq1Pqct9TUVBUWFqp///5q3769IiMjXZ63WCz6+9//XucOAgAA4LJah7fIyEhFRUX5si8AAACoRq3D244dO3zYDQAAAHij1ue8AQAAwP9qPfP2wQcfVFtn8ODBtW0eAAAAHtQ6vCUmJspisVRZp7y8vLbNAwAAwINah7fc3Fy3soKCAr333nv66KOPtHLlyjp1DAAAAO5qHd6GDBnisfyuu+7S//t//0+bN2/WiBEjat0xAAAAuKuXCxaSk5P15ptvelX37NmzmjlzppKSktSmTRtZLBalp6e71Zs0aZIsFovbV2xsrMd2V6xYodjYWFmtVnXt2lUZGRmy2Wxu9Y4fP65JkyYpKipKoaGhSkhIUE5OTo22FwAAwF9qPfNWlZMnT6q0tNSruoWFhXrhhRfUt29fjRkzRi+++GKldVu0aKHt27e7lV1p4cKFmjt3rtLS0pSUlKS8vDzNmTNHhw8f1gsvvOCsV1paqmHDhunUqVNavny52rZtq5UrV2rEiBHatm1bpbOLAAAADaXW4e2HH35wKystLdU//vEPzZo1SwMHDvSqnWuvvVYnT56UxWJRQUFBleHtqquuqrbdwsJCLViwQPfff78WLVokyX5xhc1m05w5c/TII4+oV69ekqSXXnpJe/bs0ccff6yEhARJ0tChQ9W3b1/NnDlTu3fv9mobAAAA/KXWh027dOmirl27unzFxsZq3LhxCgkJ0X/913951Y7j8KevbN68WSUlJUpNTXUpT01NlWEYWr9+vbNs3bp16tmzpzO4SVJQUJDuvfdeffrppzp8+LDP+gUAAOALtZ55e/nll91CV0hIiLp06aKbb75ZV13l+9PpLly4oPbt2+vEiROKjo7WmDFj9OSTTyoiIsJZZ8+ePZKkPn36uLw2OjpaUVFRzucddQcNGuT2PnFxcZKkL774QjExMR77Ulpa6nJo+MyZM5Ikm83m8dy6unK0WR9twx3j7X+MuX8x3v7HmPuf2cbc237WOrxNmjSpti+tlb59+6pv377q3bu3JGnnzp36wx/+oJycHOXl5Sk8PFyS/bCp1WpVWFiYWxsREREqLCx0Pi4sLHQJfhXrOZ6vzOLFi5WRkeFWvnXrVoWGhtZs42ogOzu73tqGO8bb/xhz/2K8/Y8x9z+zjHlxcbFX9ep8wcLZs2e1a9cuFRYWKioqSgMHDlTLli3r2qybRx991OXx8OHDdeONN2rs2LH6n//5H5fnqzoMe+VzNalb0axZs/TYY485H585c0adOnVSUlKSWrVqVenrastmsyk7O1vDhw9XcHCwz9uHK8bb/xhz/2K8/Y8x9z+zjbnjKF516hTeli5dqoyMDBUXF8swDElSWFiYMjIyXIJNfUlOTlZYWJg++eQTZ1lkZKRKSkpUXFzsNgNWVFSk+Ph4l7qeZteKiookyeOsnIPVapXVanUrDw4OrtcdpL7bhyvG2/8Yc/9ivP2PMfc/s4y5t32s9Ylpf/rTnzRz5kwNHjxYb775pj788EO99dZbGjJkiH7729/q1VdfrW3TNWIYhsv5dY5z3fLz813qHT16VAUFBc7Dro66V9ar+NqKdQEAAAJBrcPbH/7wB02YMEF/+ctfNG7cOP30pz/VuHHjtGHDBt1zzz36wx/+4Mt+evTOO++ouLjYZfmQESNGKCQkRJmZmS51MzMzZbFYNGbMGGdZcnKy9u7d67IkSFlZmdasWaMBAwaoQ4cO9b0JAAAANVLrw6Z79+7V4sWLPT537733Kjk52eu2Nm3apPPnz+vs2bOSpC+//FLvvPOOJGnkyJE6ceKEJkyYoPHjx6tbt26yWCzauXOnli1bphtuuEFTpkxxthUREaE5c+Zo7ty5ioiIcC7Sm56erilTpjjXeJOkyZMna+XKlRo3bpyWLFmitm3b6rnnntPXX3+tbdu21WZYAAAA6lWtw1uLFi2c54ZdqaioyOOdDyrzm9/8RgcOHHA+Xrt2rdauXStJ2rdvn66++mq1a9dOzz77rI4dO6by8nJde+21mjZtmp544gm3K0tnz56tli1bauXKlVq6dKnat2+vtLQ0zZ4926We1WpVTk6OZs6cqYcffljFxcXq16+fNm3axN0VAABAQKp1eBs0aJDS09OVmJjocnjx6NGjevLJJzV48GCv29q/f3+1dbKysmrUv2nTpmnatGnV1mvXrp1eeeWVGrUNAADQUGod3hYtWqRbbrlF3bp107BhwxQdHa0ff/xR27dvV3BwcI3DFgAAAKpX6wsWbrjhBuXl5Wn06NHKy8vT6tWrlZeXpzFjxujTTz91ObcMAAAAvlGndd569OihN954w1d9AQAAQDVqPPOWn5+vQ4cOVfr8oUOHPK6dBgAAgLqrUXj74IMPFB8fr2PHjlVa59ixY4qPj9eWLVvq3DkAAAC4qlF4W7lypcaOHetyi6krxcfH6+6779aLL75Y584BAADAVY3C20cffeRyh4LK/Md//IfL/UYBAADgGzUKbydOnFBMTEy19aKjo3X8+PFadwoAAACe1Si8hYWFVXpXhYpOnjyp0NDQWncKAAAAntUovN1www3avHlztfU2bdqkG264odadAgAAgGc1Cm933323XnrpJe3cubPSOrm5uVq9erXuueeeOncOAAAArmq0SO8DDzygzMxMJSUlacqUKRo9erS6du0qyX4D+fXr1+ull15S3759df/999dLhwEAAJqyGoW35s2ba8uWLfrlL3+pVatW6fnnn3d53jAM/fu//7v+9Kc/qXnz5j7tKAAAAGpxe6zIyEht3LhRn332mbZu3aqDBw9Kkjp37qw77rhDN954o887CQAAALta39s0Pj6+ysV6AQAA4Hs1Cm9xcXFe17VYLPr73/9e4w4BAACgcjUKbxEREbJYLFXWOXfunD777LNq6wEAAKDmahTeduzYUelzZWVleuGFF/Tkk0/KYrFowoQJde0bAAAArlCjdd4qs3btWvXq1UsPP/yw+vbtq88++0yvvvqqL5oGAABABXUKbzt27NCAAQN09913q1WrVtq6dau2bNmifv36+ah7AAAAqKhW4S0/P18jR47UsGHDVFhYqNdff11//etfNWzYMF/3DwAAABXUKLwdPHhQEydO1E033aTPPvtMy5Yt01dffaXx48fXV/8AAABQQY0uWOjRo4cuXryoESNGaObMmWrZsqXy8/MrrX/TTTfVuYMAAAC4rEbhrbS0VJK0adMmbd68udJ6hmHIYrGovLy8br0DAACAixqFt9WrV9dXPwAAAOCFGoW3iRMn1lc/AAAA4AWfrPMGAAAA/yC8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmEiDh7ezZ89q5syZSkpKUps2bWSxWJSenu6x7ueff67bb79d4eHhat26tVJSUvT99997rLtixQrFxsbKarWqa9euysjIkM1mc6t3/PhxTZo0SVFRUQoNDVVCQoJycnJ8uYkAAAA+0+DhrbCwUC+88IJKS0s1ZsyYSuvt3btXiYmJunjxot5++229/PLL+uabbzRo0CCdOHHCpe7ChQs1ffp0paSkaMuWLXrwwQe1aNEiTZ061aVeaWmphg0bppycHC1fvlzvvfee2rVrpxEjRmjnzp31sbkAAAB1EtTQHbj22mt18uRJWSwWFRQU6MUXX/RYb968ebJardqwYYNatWolSYqPj1f37t21dOlSPf3005LsYXDBggW6//77tWjRIklSYmKibDab5syZo0ceeUS9evWSJL300kvas2ePPv74YyUkJEiShg4dqr59+2rmzJnavXt3fW8+AABAjTT4zJvFYpHFYqmyTllZmTZs2KC77rrLGdwke/AbOnSo1q1b5yzbvHmzSkpKlJqa6tJGamqqDMPQ+vXrnWXr1q1Tz549ncFNkoKCgnTvvffq008/1eHDh+u4dQAAAL7V4DNv3vjuu+904cIFxcXFuT0XFxen7OxslZSUKCQkRHv27JEk9enTx6VedHS0oqKinM9L0p49ezRo0CCPbUrSF198oZiYGI99Ki0tVWlpqfPxmTNnJEk2m83juXV15WizPtqGO8bb/xhz/2K8/Y8x9z+zjbm3/TRFeCssLJQkRUREuD0XEREhwzB08uRJRUdHq7CwUFarVWFhYR7rOtpytFtZmxXf15PFixcrIyPDrXzr1q0KDQ2tfqNqKTs7u97ahjvG2/8Yc/9ivP2PMfc/s4x5cXGxV/VMEd4cqjq8WvE5b+vVtG5Fs2bN0mOPPeZ8fObMGXXq1ElJSUkuh3Z9xWazKTs7W8OHD1dwcLDP24crxtv/GHP/Yrz9jzH3P7ONueMoXnVMEd4iIyMleZ4JKyoqksViUevWrZ11S0pKVFxc7DYDVlRUpPj4eJd2K2tT8jzT52C1WmW1Wt3Kg4OD63UHqe/24Yrx9j/G3L8Yb/9jzP3PLGPubR8b/IIFb1x//fVq0aKF8vPz3Z7Lz89Xt27dFBISIunyuW5X1j169KgKCgrUu3dvZ1mfPn0qbVOSS10AAIBAYIrwFhQUpDvvvFNZWVk6e/ass/yHH35Qbm6uUlJSnGUjRoxQSEiIMjMzXdrIzMyUxWJxWUsuOTlZe/fudVkSpKysTGvWrNGAAQPUoUOHetsmAACA2giIw6abNm3S+fPnncHsyy+/1DvvvCNJGjlypEJDQ5WRkaGbb75Zo0aNUlpamkpKSjRv3jxFRUVpxowZzrYiIiI0Z84czZ07VxEREUpKSlJeXp7S09M1ZcoU5xpvkjR58mStXLlS48aN05IlS9S2bVs999xz+vrrr7Vt2zb/DgIAAIAXAiK8/eY3v9GBAwecj9euXau1a9dKkvbt26cuXbooNjZWO3bs0OOPP66xY8cqKChIt912m5YuXao2bdq4tDd79my1bNlSK1eu1NKlS9W+fXulpaVp9uzZLvWsVqtycnI0c+ZMPfzwwyouLla/fv20adMmDRkypP43HAAAoIYCIrzt37/fq3rx8fFez4hNmzZN06ZNq7Zeu3bt9Morr3jVJgAAQEMzxTlvAAAAsCO8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3NCnnz0sWi/3r/PmG7g0AADVHeAMAADARwhsAAICJEN4AAABMhPCGJqW8/PK/P/jA9TEAAGZAeEOTkZUl9ep1+fHIkVKXLvZyAADMgvCGJiErSxo7Vjp82LX88GF7OQEOAGAWhDc0euXl0vTpkmG4P+coe+QRDqECAMyB8IZG78MPpUOHKn/eMKSDB+31AAAIdIQ3NHo//ujbegAANCTCGxq96Gjf1gMAoCER3tDoDRokdexovyWWJxaL1KmTvR4AAIHONOFtx44dslgsHr8++eQTl7qff/65br/9doWHh6t169ZKSUnR999/77HdFStWKDY2VlarVV27dlVGRoZsNps/Ngl+0qyZtHy5/d9XBjjH42XL7PUAAAh0pglvDosWLdKuXbtcvnr37u18fu/evUpMTNTFixf19ttv6+WXX9Y333yjQYMG6cSJEy5tLVy4UNOnT1dKSoq2bNmiBx98UIsWLdLUqVP9vVmoZykp0jvvSB06uJZ37GgvT0lpmH4BAFBTQQ3dgZrq3r27Bg4cWOnz8+bNk9Vq1YYNG9SqVStJUnx8vLp3766lS5fq6aefliQVFhZqwYIFuv/++7Vo0SJJUmJiomw2m+bMmaNHHnlEvSqu6ArTS0mRbr9duvpq++ONG6WkJGbcAADmYrqZt6qUlZVpw4YNuuuuu5zBTZKuvfZaDR06VOvWrXOWbd68WSUlJUpNTXVpIzU1VYZhaP369f7qNvyoYlAbPJjgBgAwH9PNvE2dOlXjx49XaGioEhISNHfuXN16662SpO+++04XLlxQXFyc2+vi4uKUnZ2tkpIShYSEaM+ePZKkPn36uNSLjo5WVFSU8/nKlJaWqrS01Pn4zJkzkiSbzVYv58w52uR8vLqxD1/wv/5tU2XDyXj7H2PuX4y3/zHm/me2Mfe2n6YJb1dffbWmT5+uxMRERUZG6p///KeeeeYZJSYm6i9/+YvuuOMOFRYWSpIiIiLcXh8RESHDMHTy5ElFR0ersLBQVqtVYWFhHus62qrM4sWLlZGR4Va+detWhYaG1nIrq5ednV1vbTcVjknVnTurr8t4+x9j7l+Mt/8x5v5nljEvLi72qp5pwtuNN96oG2+80fl40KBBSk5OVp8+fTRz5kzdcccdzucsla0JccVz3tbzZNasWXrsscecj8+cOaNOnTopKSnJ5ZCtr9hsNmVnZ2v48OEKDg72eftwxXj7H2PuX4y3/zHm/me2MXccxauOacKbJ61bt9aoUaP0/PPP68KFC4qMjJQkj7NmRUVFslgsat26tSQpMjJSJSUlKi4udpspKyoqUnx8fJXvbbVaZbVa3cqDg4PrdQep7/bhivH2P8bcvxhv/2PM/c8sY+5tH01/wYLxrzuLWywWXX/99WrRooXy8/Pd6uXn56tbt24KCQmRdPlctyvrHj16VAUFBS7LjwAAAAQKU4e3kydPasOGDerXr59CQkIUFBSkO++8U1lZWTp79qyz3g8//KDc3FylVFjMa8SIEQoJCVFmZqZLm5mZmbJYLBozZoyftgIAAMB7pjlsOmHCBHXu3Fk/+clPFBUVpW+//Va///3vdezYMZcAlpGRoZtvvlmjRo1SWlqaSkpKNG/ePEVFRWnGjBnOehEREZozZ47mzp2riIgIJSUlKS8vT+np6ZoyZQprvAEAgIBkmvAWFxent956S88//7zOnTuniIgI3XrrrXr11Vd18803O+vFxsZqx44devzxxzV27FgFBQXptttu09KlS9WmTRuXNmfPnq2WLVtq5cqVWrp0qdq3b6+0tDTNnj3b35sHAADgFdOEt7S0NKWlpXlVNz4+Xtu2bfOq7rRp0zRt2rS6dA0AAMBvTH3OGwAAQFNDeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3SefOndMjjzyiDh06KCQkRP369dObb77Z0N0CAABwE9TQHQgEKSkpysvL05IlS9SjRw+9/vrruueee3Tp0iVNmDChobsHAADg1OTD28aNG5Wdne0MbJI0dOhQHThwQL/97W919913q1mzZg3cSwAAALsmf9h03bp1Cg8P17hx41zKU1NTdeTIEe3evbuBegYAAOCuyc+87dmzR//2b/+moCDXoYiLi3M+f8stt7i9rrS0VKWlpc7Hp0+fliQVFRXJZrP5vJ82m03FxcUqLCxUcHCwz9uHK8bb/xhz/2K8/Y8x9z+zjfnZs2clSYZhVFmvyYe3wsJCXXfddW7lERERzuc9Wbx4sTIyMtzKu3bt6tsOAgCAJuXs2bO6+uqrK32+yYc3SbJYLDV+btasWXrsscecjy9duqSioiJFRkZW2V5tnTlzRp06ddLBgwfVqlUrn7cPV4y3/zHm/sV4+x9j7n9mG3PDMHT27Fl16NChynpNPrxFRkZ6nF0rKiqSdHkG7kpWq1VWq9WlrHXr1j7v35VatWplih2wsWC8/Y8x9y/G2/8Yc/8z05hXNePm0OQvWOjTp4+++uorlZWVuZTn5+dLknr37t0Q3QIAAPCoyYe35ORknTt3Tu+++65L+SuvvKIOHTpowIABDdQzAAAAd03+sOm///u/a/jw4frNb36jM2fOqFu3bnrjjTe0efNmrVmzJmDWeLNarZo/f77boVrUD8bb/xhz/2K8/Y8x97/GOuYWo7rrUZuAc+fOafbs2Xr77bdVVFSk2NhYzZo1S+PHj2/orgEAALggvAEAAJhIkz/nDQAAwEwIbwAAACZCeKsH586d0yOPPKIOHTooJCRE/fr105tvvlnjdubMmSOLxVLpciXbtm1TQkKCQkNDFRUVpUmTJun48eNu9Ww2mzIyMtSlSxdZrVbFxsZqxYoVNe5PIAukMd+/f78sFovHr9r0KRD5Y7w3bNig++67T3369FFwcHCVi1+zj3vPF2POPu69ysb7zJkzWrhwoRITE9W+fXuFh4erT58+evrpp1VSUuLWDvu493wx5gG/jxvwueHDhxutW7c2nn/+eWP79u3GlClTDEnGa6+95nUb//d//2dYrVajXbt2xg033OD2/I4dO4ygoCBj9OjRxtatW401a9YYMTExRu/evY2SkhKXulOmTDGsVqvxu9/9zsjNzTXS0tIMi8ViLFy4sM7bGigCacz37dtnSDIefvhhY9euXS5fBQUFPtnehuaP8Z48ebLRvXt34+c//7kRHx9vVPXrin3cO74ac/Zx71Q13vn5+UZUVJTx6KOPGu+9956Rk5NjpKenGyEhIcawYcOMS5cuudRnH/eOr8Y80PdxwpuP/eUvfzEkGa+//rpL+fDhw40OHToYZWVl1bZhs9mMfv36GdOmTTOGDBni8ZfszTffbPTq1cuw2WzOso8++siQZDz33HPOsj179hgWi8VYtGiRy+vvv/9+o0WLFkZhYWFNNzHgBNqYO/7TP/PMM3XYqsDlr/EuLy93/nvq1KmVBgn2cf+POft43cf73Llzxrlz59xe98wzzxiSjA8//NBZxj7u/zEP9H2cw6Y+tm7dOoWHh2vcuHEu5ampqTpy5Ih2795dbRtLlixRUVGRFi5c6PH5w4cPKy8vT7/85S8VFHR5qb5bbrlFPXr00Lp165xl69evl2EYSk1NdevPhQsXtHnz5ppsXkAKtDFv7Pwx3pJ01VXe/XpiH/f/mDd2/hjvsLAwhYWFuZX3799fknTw4EFnGfu4/8c80PE/1cf27Nmjf/u3f3P5Ay9JcXFxzuer8uWXX2rBggVatWqVwsPDK32Pim1e+T4V32PPnj1q06aN2rdvX6v+mEGgjbnDkiVL1Lx5c4WGhurWW2/Vn//8Z6+2J9D5Y7xr2h/2cf+OuQP7uGd1Ge/t27dLkm644QaX/rCP+3fMHQJ1Hye8+VhhYaHHm9k7ygoLCyt97aVLlzR58mSlpKRo5MiRVb5HxTavfJ+K71FZf8LCwtS8efMq+2MWgTbmVqtV999/v1atWqXt27frxRdfVHl5uUaPHq0XX3zR6+0KVP4Yb1/0h33crj7GnH28fsb7H//4h373u98pOTnZ5YMi+7j/xzzQ9/Emf3us+lDVVXFVPffss8/q22+/9TrZV9bWleW17Y+ZBNKYR0dH64UXXnB5fty4cRowYIDS0tI0adIkt0+XZuOv8a7v/phJII05+7jvx3v//v0aNWqUOnXq5DEcsI/7d8wDfR9n5s3HIiMjPX5CKCoqkuR55kaSfvjhB82bN0/z589X8+bNderUKZ06dUplZWW6dOmSTp06pQsXLjjfQ/L8SaSoqMjlPSrrz/nz53Xx4sVK+2MmgTbmngQHB+vuu+9WYWGhvv322xptX6Dxx3j7oj/s4/U35p6wj9d+vA8cOKChQ4cqKChIOTk5bu2zj/t/zD0JpH2c8OZjffr00VdffaWysjKX8vz8fEmqdP2w77//XhcuXND06dN1zTXXOL8++ugjffXVV7rmmms0a9YslzYcbV75PhXfo0+fPjpx4oSOHj1ao/6YSaCNeWWMf92JzuwnhftjvGvaH/Zx/455ZdjHaz7eBw4cUGJiogzDUG5urjp27OixP+zj/h3zygTMPt5wF7o2Ths3bjQkGW+++aZL+YgRI6q83PnkyZNGbm6u21ffvn2NLl26GLm5uca3337rrN+/f3+jd+/eLu3t2rXLkGSsWrXKWea4xHzJkiUu7/frX/+60VxiHmhj7snFixeNfv36GVFRUV5d8h7I/DXeFXmzVAj7uLv6GnNP2MdrPt4HDhwwunTpYnTq1Mn47rvvKu0P+7j/x9yTQNrHCW/1YPjw4cY111xjvPDCC8b27duN+++/35BkrFmzxlln8uTJRrNmzYz9+/dX2VZl6zHl5uYaQUFBRnJyspGdnW289tprRqdOnapcpPeZZ54xduzYYTzxxBONcnHHQBnzRx991HjooYeMN954w8jNzTX+9Kc/GTfffLMhyVi9erXPtrkh+WO89+/fb6xdu9ZYu3atMWLECEOS83FeXp5LXfZxO3+NOfu4XV3G+9ixY8Z1111nWK1WY82aNW4LwR48eNClPvu4nb/GPND3ccJbPTh79qwxbdo0o3379kbz5s2NuLg444033nCpM3HiREOSsW/fvirbquyXrGEYxtatW42BAwcaISEhRkREhHHfffcZx44dc6t38eJFY/78+Ubnzp2N5s2bGz169DD++Mc/1nr7AlEgjflLL71k9O/f34iIiDCCgoKMa665xrjjjjuMLVu21GkbA4k/xnv16tWGJI9fEydOdKnLPm7nrzFnH7ery3jn5uZWOtaSjPnz57vUZx+389eYB/o+bjGMfx3ABQAAQMAz91mlAAAATQzhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQgI+/fvl8ViUWZmps/bzsnJ0U9+8hOFhYXJYrFo/fr1yszMlMVi0f79+33+fhV16dJFkyZNqtf3MIMvv/xS6enp9T7eQFMQ1NAdAID6ZBiGfv7zn6tHjx7685//rLCwMPXs2VNlZWXatWuXoqOjG7qLTcKXX36pjIwMJSYmqkuXLg3dHcDUCG8AGrUjR46oqKhIycnJGjZsmMtzbdq0aaBeNSybzSaLxaKgIPc/AcXFxQoNDW2AXgHwFodNAdSrf/7zn0pNTVX37t0VGhqqmJgY3XnnncrPz6/2tSdOnNADDzygTp06yWq1qk2bNvrpT3+qbdu2efXe6enp6tixoyTp8ccfl8Vicc76eDpsmpiYqN69eysvL0+DBg1SaGiorrvuOi1ZskSXLl1y1ispKdGMGTPUr18/XX311YqIiFBCQoLee+897wemGq+//roSEhIUHh6u8PBw9evXTy+99JLz+coOxyYmJioxMdH5eMeOHbJYLHr11Vc1Y8YMxcTEyGq16p///KcmTZqk8PBw5efnKykpSS1btnQG3IsXL2rBggWKjY11jn1qaqpOnDjh8n5dunTRqFGjtHnzZt10001q0aKFYmNj9fLLLzvrZGZmaty4cZKkoUOHymKx1NshcqApYOYNQL06cuSIIiMjtWTJErVp00ZFRUV65ZVXNGDAAP3f//2fevbsWelrf/nLX+rzzz/XwoUL1aNHD506dUqff/65CgsLvXrvKVOmqG/fvkpJSdHDDz+sCRMmyGq1Vvmao0eP6he/+IVmzJih+fPna926dZo1a5Y6dOig++67T5JUWlqqoqIi/ed//qdiYmJ08eJFbdu2TSkpKVq9erWzXm3NmzdPTz31lFJSUjRjxgxdffXV2rNnjw4cOFDrNmfNmqWEhAQ9//zzuuqqq9S2bVtJ9pD2H//xH/r1r3+ttLQ0lZWV6dKlSxo9erQ+/PBDzZw5U7fccosOHDig+fPnKzExUX/961/VokULZ9t///vfNWPGDKWlpaldu3Z68cUX9atf/UrdunXT4MGD9bOf/UyLFi3SE088oZUrV+qmm26SJF1//fV1GiegyTIAwI/KysqMixcvGt27dzceffRRZ/m+ffsMScbq1audZeHh4cYjjzxSp/dztPvMM8+4lK9evdqQZOzbt89ZNmTIEEOSsXv3bpe6vXr1Mu64444qt8lmsxm/+tWvjBtvvNHluWuvvdaYOHGi1/39/vvvjWbNmhm/+MUvqqxXWbtDhgwxhgwZ4nycm5trSDIGDx7sVnfixImGJOPll192KX/jjTcMSca7777rUp6Xl2dIMp577jmXfoSEhBgHDhxwll24cMGIiIgwfv3rXzvL1q5da0gycnNzq9wuANXjsCmAelVWVqZFixapV69eat68uYKCgtS8eXN9++23+uqrr6p8bf/+/ZWZmakFCxbok08+kc1mq/f+tm/fXv3793cpi4uLc5v1Wrt2rX76058qPDxcQUFBCg4O1ksvvVTtNlUnOztb5eXlmjp1ap3audJdd93l9XMbNmxQ69atdeedd6qsrMz51a9fP7Vv3147duxwqd+vXz917tzZ+TgkJEQ9evSo00whgMoR3gDUq8cee0xz587VmDFj9P7772v37t3Ky8tT3759deHChSpf+9Zbb2nixIl68cUXlZCQoIiICN133306evRovfU3MjLSrcxqtbr0NSsrSz//+c8VExOjNWvWaNeuXcrLy9PkyZNVUlJSp/d3nFPmOFfPVyq7qjY0NFStWrVyKTt27JhOnTql5s2bKzg42OXr6NGjKigocKnvzZgB8B3OeQNQr9asWaP77rtPixYtcikvKChQ69atq3xtVFSUli1bpmXLlumHH37Qn//8Z6Wlpen48ePavHlzPfa6amvWrFHXrl311ltvyWKxOMtLS0vr3LbjCthDhw6pU6dOldYLCQnx+H4FBQWKiopyK6/Yz+rKo6KiFBkZWekYt2zZstJ+Aah/hDcA9cpisbhdJPCXv/xFhw8fVrdu3bxup3PnznrooYeUk5Ojjz76yNfdrBGLxaLmzZu7BJ+jR4/65GrTpKQkNWvWTKtWrVJCQkKl9bp06aJ//OMfLmXffPONvv76a4/hrSZGjRqlN998U+Xl5RowYECd2nJw7APMxgF1R3gDUK9GjRqlzMxMxcbGKi4uTp999pmeeeaZag8Lnj59WkOHDtWECRMUGxurli1bKi8vT5s3b1ZKSoqfeu/ZqFGjlJWVpQcffFBjx47VwYMH9dRTTyk6Olrffvttndru0qWLnnjiCT311FO6cOGC7rnnHl199dX68ssvVVBQoIyMDEn2K3HvvfdePfjgg7rrrrt04MAB/e53v/PJ2nXjx4/Xa6+9ppEjR2r69Onq37+/goODdejQIeXm5mr06NFKTk6uUZu9e/eWJL3wwgtq2bKlQkJC1LVrV4+HXAFUjfAGoF4tX75cwcHBWrx4sc6dO6ebbrpJWVlZmjNnTpWvCwkJ0YABA/Tqq69q//79stls6ty5sx5//HHNnDnTT733LDU1VcePH9fzzz+vl19+Wdddd53S0tJ06NAhZ7iqiyeffFLdu3fXihUr9Itf/EJBQUHq3r27pk2b5qwzYcIEHTlyRM8//7xWr16t3r17a9WqVT55/2bNmunPf/6zli9frldffVWLFy9WUFCQOnbsqCFDhqhPnz41brNr165atmyZli9frsTERJWXl2v16tXcOgyoBYthGEZDdwIAAADe4WpTAAAAE+GwKQBTMgxD5eXlVdZp1qxZpVdZNoTy8nJVdbDDYrGoWbNmfuwRADNi5g2AKb3yyitua5Bd+bVz586G7qaL66+/vsr+Ou4rCgBV4Zw3AKZUWFioffv2VVmnZ8+eAbUmWX5+fpVrwbVs2bLKe70CgER4AwAAMBUOmwIAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCL/H0mQCe6Wp2r4AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0033\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3000])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.425 - 0.450 A" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.425 , 0.4259, 0.4268, 0.4277, 0.4286, 0.4295, 0.4304, 0.4313,\n", " 0.4322, 0.4331, 0.434 , 0.4349, 0.4358, 0.4367, 0.4376, 0.4385,\n", " 0.4394, 0.4403, 0.4412, 0.4421, 0.443 , 0.4439, 0.4448, 0.4457,\n", " 0.4466, 0.4475, 0.4484, 0.4493, 0.4502, 0.4511, 0.452 ]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHPCAYAAADTZ+eeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABLeElEQVR4nO3de3wU1cH/8e+YhA1JuJgEIRA0yMUUuSlVoDUQBGJK8YGsoSqllVC0rSgg9EGQaxQQFS38+KH+qApWvLTSgJdyFQLSVjGPPm1BxFIFhAACCXLJjSTM749tlizZ3HezO7uf9+vFy50zZ2fPHifhy5mZcwzTNE0BAADAMq7ydQMAAABQPwQ4AAAAiyHAAQAAWAwBDgAAwGIIcAAAABZDgAMAALAYAhwAAIDFEOAAAAAshgAHAABgMT4PcNu3b9f48eOVmJioyMhIdejQQSNHjtSnn37qUm/cuHEyDKPKn8TERLfHXb58uRITE2Wz2dSpUydlZmaqtLS0Sr2TJ09q3Lhxio2NVUREhAYMGKBt27Z55bsCAAB4QqivG/DCCy8oLy9PkydPVvfu3XXq1Ck9++yz6t+/vzZv3qzbb7/dWbd58+bavn27y/ubN29e5ZgLFy7UnDlzNGPGDKWkpCgnJ0ezZ89Wbm6uVq5c6axXUlKiIUOG6LvvvtOyZct0zTXXaMWKFUpNTdUHH3ygQYMGee+LAwAANJDh67VQT548qWuuucal7MKFC+rSpYt69OihDz74QJJjBG7t2rW6cOFCjcfLy8tTfHy8fv7zn+v//b//5yxftGiRZs+erb1796p79+6SpOeff14TJ07U3/72Nw0YMECSVFZWpt69eysqKkq7d+/25FcFAADwCJ9fQr0yvElSVFSUunfvriNHjtT7eJs2bVJxcbEyMjJcyjMyMmSaptavX+8sW7dunW644QZneJOk0NBQjR07Vp988olyc3Pr/fkAAADe5vNLqO6cPXtWn332mcvlU0kqKipSu3btdOrUKcXFxWnUqFF6/PHHFR0d7ayzd+9eSVLPnj1d3hsXF6fY2Fjn/oq6SUlJVT6/V69ekqTPP/9cHTp0cNvGkpISlZSUOLcvXbqk/Px8xcTEyDCMen5jAAAQ7EzT1Pnz59W+fXtddVXNY2x+GeAmTpyogoICzZo1y1nWu3dv9e7dWz169JAk7dy5U7/97W+1bds25eTkKCoqSpLjEqrNZlNkZGSV40ZHRysvL8+5nZeX5xL+Kter2F+dJ598UpmZmQ37ggAAANU4cuSI4uPja6zjdwFuzpw5ev3117V8+XL17dvXWf7II4+41Bs2bJhuuukmpaen63e/+53L/ppGwK7cV5+6lc2cOVNTp051bp89e1bXXnutDh48qBYtWlT7voYqLS1Vdna2Bg8erLCwMI8fH/RxU6GfvY8+bhr0s/cFWx+fP39enTp1qlOO8KsAl5mZqQULFmjhwoV66KGHaq2flpamyMhIffzxx86ymJgYFRcXq7CwUBERES718/PzXUJhTEyM21G2/Px8SXI7OlfBZrPJZrNVKY+OjlbLli1rbXt9lZaWKiIiQjExMUFxEvsCfdw06Gfvo4+bBv3sfcHWxxXfsS63Yvn8IYYKmZmZmj9/vubPn6/HHnuszu8zTdPlOnHFvW979uxxqXfixAmdPn3aeQm2ou6V9Sq/t3JdAAAAf+EXAe6JJ57Q/PnzNXv2bM2bN6/O71u7dq0KCwvVv39/Z1lqaqrCw8O1evVql7qrV6+WYRgaNWqUsywtLU379+93mS6krKxMa9asUb9+/dS+ffsGfycAAABv8fkl1GeffVZz585VamqqfvzjH7tcDpWk/v376/DhwxozZozuuecedenSRYZhaOfOnVq6dKluvPFGTZgwwVk/Ojpas2fP1pw5cxQdHe2cyHf+/PmaMGGCcw44SRo/frxWrFih0aNHa/Hixbrmmmv0/PPP68svv3TOPwcAAOBvfB7g3nvvPUmO+ds2bdpUZb9pmmrZsqXatm2r5557Tt9++63Ky8t13XXXadKkSXrssceqPHE6a9YstWjRQitWrNCSJUvUrl07zZgxw+WpVslxH9u2bds0ffp0PfzwwyosLFSfPn20ceNGVmEAAAB+y+cBbseOHbXWufrqq5WVlVWv406aNEmTJk2qtV7btm316quv1uvYAAAAvuQX98ABAACg7ghwAAAAFkOAAwAAsBgCHAAAgMUQ4AAAACyGAAcAAGAxBDgAAACLIcABAABYDAEOAADAYghwAAAAFkOAAwAAsBgCHAAAgMUQ4AAAACyGAAcAAGAxBDgAAACLIcABAABYDAEOAADAYghwAAAAFkOAAwAAsBgCHAAAgMUQ4AAAACyGAAcAAGAxBDgAAACLIcABAABYDAEOAADAYghwAAAAFkOAAwAAsBgCHAAAgMUQ4AAAACyGAAcAAGAxBDgAAACLIcABAABYDAEOAADAYghwAAAAFkOAAwAAsBgCHAAAgMUQ4AAAACyGAAcAAGAxBDgAAACLIcABAABYTKivG4DaFRRIUVFhkkbqzJlStW7t6xYBAABfYgQOAADAYghwAAAAFkOAAwAAsBgCHAAAgMUQ4IJAQYFkGI4/BQW+bg0AAGgsAhwAAIDFEOAAAAAshgAHAABgMQQ4AAAAiyHAAQAAWAwBDgAAwGIIcEGgvPzy6w8/dN0GAADWQ4ALcFlZUvful7eHD5cSEhzlAADAmghwASwrS0pPl3JzXctzcx3lhDgAAKyJABegysulyZMl06y6r6JsyhQupwIAYEUEuAC1a5d09Gj1+01TOnLEUQ8AAFgLAc4CKo+S/eUvRp1GzY4fr9ux61oPAAD4DwKcn7vyIYQ77wyt00MIcXF1O35d6wEAAP9BgPNjjXkIISlJio+XDMP9fsOQOnZ01AMAANZCgPNTjX0IISREWrbM8frKEFexvXSpox4AALAWApyf8sRDCHa7tHat1L69a3l8vKPcbvdMWwEAQNMK9XUD4J6nHkKw26WhQ6VWrRzbGzZIKSmMvAEAYGWMwPkpTz6EUDmsDRxIeAMAwOoIcH6KhxAAAEB1fB7gtm/frvHjxysxMVGRkZHq0KGDRo4cqU8//bRK3c8++0xDhw5VVFSUWrduLbvdrq+//trtcZcvX67ExETZbDZ16tRJmZmZKi0trVLv5MmTGjdunGJjYxUREaEBAwZo27ZtHv+e9cVDCAAAoDo+D3AvvPCCDh06pMmTJ2vDhg1atmyZTp48qf79+2v79u3Oevv371dycrIuXryoP/7xj3rllVf0r3/9S0lJSTp16pTLMRcuXKjJkyfLbrdr8+bNevDBB7Vo0SJNnDjRpV5JSYmGDBmibdu2admyZXrnnXfUtm1bpaamaufOnU3y/WvCQwgAAMAt08e+/fbbKmXnz58327Ztaw4ZMsRZNnr0aDM2NtY8e/ass+zQoUNmWFiYOX36dGfZ6dOnzfDwcPOBBx5wOebChQtNwzDMzz//3Fm2YsUKU5L5t7/9zVlWWlpqdu/e3bz11lvr9T3Onj1rSnJpn6ecPWuajudOTfO990rNsrL6vf/Chcvvv3DB480LGBcvXjTXr19vXrx40ddNCWj0s/fRx02Dfva+YOvj+mQJn4/AXXPNNVXKoqKi1L17dx05ckSSVFZWpvfff1933XWXWrZs6ax33XXXafDgwVq3bp2zbNOmTSouLlZGRobLMTMyMmSaptavX+8sW7dunW644QYNGDDAWRYaGqqxY8fqk08+Ue6VM+j6SOXLpLfdZnLZFACAIOeX04icPXtWn332mW6//XZJ0ldffaWioiL16tWrSt1evXpp69atKi4uVnh4uPbu3StJ6tmzp0u9uLg4xcbGOvdL0t69e5Xk5imAis/5/PPP1aFDB7dtLCkpUUlJiXP73LlzkqTS0lK399o1huNwYZWOX7/3N2smXbx45fFwpYr/b57+/wdX9LP30cdNg372vmDr4/p8T78McBMnTlRBQYFmzZolScrLy5MkRUdHV6kbHR0t0zR15swZxcXFKS8vTzabTZGRkW7rVhyr4rjVHbPy57rz5JNPKjMzs0r5li1bFBERUcs3rJ/i4hBJIyQ5HvoID6/DavZosK1bt/q6CUGBfvY++rhp0M/eFyx9XFhYWOe6fhfg5syZo9dff13Lly9X3759XfYZ1c2pccW+utarb93KZs6cqalTpzq3z507p44dOyolJcXlMq8nFBRcfn377berdeswjx4fDqWlpdq6dauGDRumsDD62FvoZ++jj5sG/ex9wdbHFVfz6sKvAlxmZqYWLFighQsX6qGHHnKWx8TESHI/Ipafny/DMNS6dWtn3eLiYhUWFlYZCcvPz3cJhTExMdUeU3I/4lfBZrPJZrNVKQ8LC/P4SVb5cN44PlzRx02DfvY++rhp0M/eFyx9XJ/v6POHGCpkZmZq/vz5mj9/vh577DGXfZ07d1bz5s21Z8+eKu/bs2ePunTpovDwcEmX7327su6JEyd0+vRp9ejRw1nWs2fPao8pyaUuAACAv/CLAPfEE09o/vz5mj17tubNm1dlf2hoqO68805lZWXp/PnzzvJvvvlG2dnZsleaEC01NVXh4eFavXq1yzFWr14twzA0atQoZ1laWpr279+v3bt3O8vKysq0Zs0a9evXT+2vnIANAADAD/j8Euqzzz6ruXPnKjU1VT/+8Y/18ccfu+zv37+/JMcI3S233KIRI0ZoxowZKi4u1ty5cxUbG6tp06Y560dHR2v27NmaM2eOoqOjlZKSopycHM2fP18TJkxQ9+7dnXXHjx+vFStWaPTo0Vq8eLGuueYaPf/88/ryyy/1wQcfNE0HAAAA1JPPA9x7770nyTF/26ZNm6rsN01TkpSYmKgdO3bo0UcfVXp6ukJDQ3X77bdryZIlatOmjct7Zs2apRYtWmjFihVasmSJ2rVrpxkzZjifaq1gs9m0bds2TZ8+XQ8//LAKCwvVp08fbdy4UYMGDfLSNwYAAGgcnwe4HTt21Llu37596zwyNmnSJE2aNKnWem3bttWrr75a5zYAAAD4ml/cAwcAAIC6I8ABAABYDAEOtTp3TjIMx5+NG6VyFoIAAMCnCHCoUVaWVOnBXQ0fLiUkOMoBAIBvEOBQrawsKT1dys11Lc/NdZTXNcQxggcAgGcR4CwgMlK6eLFU69e/o8jIpvnM8nJp8mTpP7O4uKgomzKl9jDGCB4AAJ5HgINbu3ZJR49Wv980pSNHHPWq46kRPAAA4IoAB7eOH29cPU+N4AEAgKoIcHArLq5x9TwxggcAANwjwMGtpCQpPt7x4IE7hiF17Oio505jR/AAAED1CHBwKyREWrbM8frKEFexvXSpo547jR3BAwAA1SPAoVp2u7R2rdShg2t5fLyj3G6v/r2NHcHzNwUFl6dCKSjwdWsAAMHO54vZw7/Z7dLIkY571Y4fd4yYJSVVP/JWoWIELz3dEXoqP8xQlxE8AABQPQIcahUSIiUn1/99FSN4kye7PtAQH+8IbzWN4AEAgOoR4OBVDR3BAwAA1SPAwesaOoIHAADc4yEGAAAAiyHAAQAAWAwBDgAAwGIIcAAAABZDgAPqoLz88usPP3TdBgCgqRHggFpkZUndu1/eHj5cSkhwlAMA4AsEOKAGWVmO1SRyc13Lc3Md5YQ4AIAvEOCAapSXO1aRqLwMWIWKsilTuJwKAGh6BDigGrt2uS4BdiXTlI4ccdQDAKApEeCAahw/7tl6AAB4CgEOqEZcnGfrAQDgKQQ4oBpJSVJ8vGQY7vcbhtSxo6MeAABNiQAHVCMkRFq2zPH6yhBXsb10qaMeAABNiQAH1MBul9auldq3dy2Pj3eU2+2+aRcAILiF+roBgL+z26WhQ6VWrRzbGzZIKSmMvAEAfIcROKAOKoe1gQMJbwAA3yLAAQAAWAwBDgAAwGIIcAAAABZDgAMAALAYAhwAAIDFEOAAAAAshgAHAABgMQQ4AAAAi2ElBqAOIiMl0/R1KwAAcGAEDgAAwGIIcAAAABZDgAMAALAYAhwAAIDFEOAAAAAshgAHAABQi4ICyTAcfwoKfN0aAhwAAIDlEOCAJtDYf7n527/8AAC+RYADLKC8/PLrDz903QYAeJ+//R4mwAFNoDE/+FlZUvful7eHD5cSEhzlTYURQADBzB9+D1+JAAd4WWN+8LOypPR0KTfXtTw311Huy18eABAM/PX3MAEO8KLG/OCXl0uTJ7tfg7WibMoU3w/jA0Cg8uffwwQ4wEsa+4O/a5d09Gj1xzdN6cgRRz0AgOf58+9hAhzgJY39wT9+vG6fU9d6AID68effwwQ4wEsa+4MfF1e399e1HgCgfvz59zABDvCSxv7gJyVJ8fGOJz/dMQypY0dHPQCA5/nz72ECHOAljf3BDwmRli27XPfK90rS0qWOegAAz/Pn38MEOMBLPPGDb7dLa9dK7du7lsfHO8rtdo81FwDghr/+HibAAV7kiR98u106fFjKzpbeeMPx34MHCW8A0FTsdmnfvsvbGzb4/vdwqO8+GggOdrs0dKjUqpVje8MGKSWlfkPuISFScrJXmgcAqIPKv7MHDvT97SsEOKAJ+NsPPgCgfiIj3c/r6StcQgUAALAYAhzQBCr+5WaajtdWU3m1iA8/ZPkuAPA1AhyAGmVlSd27X94ePlxKSPDdAs4AAAIcgBpkZUnp6VJurmt5bq6jnBAHAL7h8wB3/vx5TZ8+XSkpKWrTpo0Mw9D8+fOr1Bs3bpwMw6jyJzEx0e1xly9frsTERNlsNnXq1EmZmZkqLS2tUu/kyZMaN26cYmNjFRERoQEDBmjbtm2e/pqA5ZSXS5Mnu79pt6JsyhQupwKAL/g8wOXl5WnlypUqKSnRqFGjaqzbvHlzffTRRy5//vCHP1Spt3DhQk2ePFl2u12bN2/Wgw8+qEWLFmnixIku9UpKSjRkyBBt27ZNy5Yt0zvvvKO2bdsqNTVVO3fu9OTXBCxn1y7p6NHq95umdOSIox4AoGn5fBqR6667TmfOnJFhGDp9+rReeumlauteddVV6t+/f43Hy8vL04IFC3T//fdr0aJFkqTk5GSVlpZq9uzZmjJlirr/54ael19+WXv37tXf/vY3DRgwQJI0ePBg9e7dW9OnT9fu3bs99C0B6zl+3LP1AACe4/MRuIpLoZ6yadMmFRcXKyMjw6U8IyNDpmlq/fr1zrJ169bphhtucIY3SQoNDdXYsWP1ySefKPfKG38AiyoocCzfZRiO13URF+fZegAAz/H5CFx9FBUVqV27djp16pTi4uI0atQoPf7444qOjnbW2bt3rySpZ8+eLu+Ni4tTbGysc39F3SQ3K4n36tVLkvT555+rQ4cObttSUlKikpIS5/a5c+ckSaWlpW7vtWusimN649hwCOQ+Li6WpDBJUnZ2mYYONWudTLh/f6lDh1AdOyaZZtV/ZBmGqQ4dpP79y1SfLgvkfvYX9HHToJ+9L9j6uD7f0zIBrnfv3urdu7d69OghSdq5c6d++9vfatu2bcrJyVFUVJQkxyVUm82mSDeTbUVHRysvL8+5nZeX5xL+Kter2F+dJ598UpmZmVXKt2zZooiIiPp9uXrYunWr144Nh0Dr448+itPvftdTFQHuzjtDFRNTpAkT9mjAgJqvf44dG6ennrpFkimpcogzZZrST3+ao82bG3YNNdD62R/Rx02Dfva+YOnjwsLCOte1TIB75JFHXLaHDRumm266Senp6frd737nsr+mS7JX7qtP3cpmzpypqVOnOrfPnTunjh07KiUlRS1btqz2fQ1VWlqqrVu3atiwYQoLC/P48RGYfbxunaGnnw6p8iRpfn64nn76Fr31VrnS0qpfG2b4cOnmm8v1yCMhOnbscnl8vPTss+VKS7tJ0k31alMg9rO/oY+bBv3sfcHWxxVX8+rCMgHOnbS0NEVGRurjjz92lsXExKi4uFiFhYVVRsLy8/PVt29fl7ruRtny8/Mlye3oXAWbzSabzValPCwszKsnmbePj8Dp4/Jyadq06qYBMWQY0m9+E6q77qp5bdaf/ERKTZVatXJsb9ggpaQYCglp3K+PQOlnf0YfNw362fuCpY/r8x19/hBDY5mmqauuuvw1Ku5927Nnj0u9EydO6PTp085LsBV1r6xX+b2V6wJW48lpQCoHvIEDaw58AADvs3SAW7t2rQoLC12mFklNTVV4eLhWr17tUnf16tUyDMNlrrm0tDTt37/fZbqQsrIyrVmzRv369VP79u29/RUAr2EaEAAIXH5xCXXjxo0qKCjQ+fPnJUn79u3T2rVrJUnDhw/XqVOnNGbMGN1zzz3q0qWLDMPQzp07tXTpUt14442aMGGC81jR0dGaPXu25syZo+joaKWkpCgnJ0fz58/XhAkTnHPASdL48eO1YsUKjR49WosXL9Y111yj559/Xl9++aU++OCDpu0EwMOYBgQAApdfBLhf//rXOnz4sHP77bff1ttvvy1JOnjwoFq1aqW2bdvqueee07fffqvy8nJdd911mjRpkh577LEqT5zOmjVLLVq00IoVK7RkyRK1a9dOM2bM0KxZs1zq2Ww2bdu2TdOnT9fDDz+swsJC9enTRxs3btSgQYO8/8UBL0pKcjxskJvr/j44w3DsdzOTDgDAz/lFgDt06FCtdbLquWr2pEmTNGnSpFrrtW3bVq+++mq9jg1YQUiItGyZY9F5w3ANcRUPWC9dyv1sAGBFlr4HDkDN7HZp7Vrpyts54+Md5Xa7b9oFAGgcvxiBA+A9drs0dOiV04Aw8gYAVkaAA4JAy5bu74MDAFgTl1ABAAAspsEB7vHHH9exymvrVHL8+HE9/vjjDW4UAAAAqtfgAJeZmamj1UzzfuzYMbcLvQMAAKDxGhzgzBpuqLlw4UJQrFkGAADgC/V6iOGf//yn/v73vzu3N2zYoP3797vUKSoq0uuvv67OnTt7pIEAfC8ykocgAMCf1CvArVu3znlp1DCMau9za968uVatWtX41gEAAKCKegW4Bx54QCNGjJBpmrr11lu1atUq9ejRw6WOzWZT586d1bx5c482FAAAAA71CnBxcXGK+8/K19nZ2erbt6+ioqK80jAAAAC41+CJfFnsHQAAwDcatRLDmjVr9MYbb+jw4cMqKipy2WcYhr766qtGNQ4AAABVNTjAPfXUU5o5c6a6d++u3r17y2azebJdAAAAHlNQIFXc9XXhguPpeitrcIBbuXKlJk6cqOXLl3uyPQAAAKhFgyfyPXHihNLS0jzZFgAAANRBgwNc3759uccNAADABxoc4J577jk9++yz+vTTTz3ZHgAAAI8rL7/8+sMPXbetqMH3wGVkZCgvL0+33nqr2rVrp5iYGJf9hmHoH//4R6MbCAAA0BhZWdKkSZe3hw+X4uOlZcsku9137WqMBge4mJgYxcbGerItAAAAHpWVJaWnV13POTfXUb52rTVDXIMD3I4dOzzYDAAAAM8qL5cmT64a3iRHmWFIU6ZII0dKISFN3rxGafA9cIBVFBQ4fkgNw/EaABAcdu2Sjh6tfr9pSkeOOOpZTYNH4D788MNa6wwcOLChhwcAAGiU48c9W8+fNDjAJScnyzCMGuuUW/0RDwAAYFlxcZ6t508aHOCys7OrlJ0+fVrvvPOO/vrXv2rFihWNahgAAEBjJCU5njbNzXV/H5xhOPYnJTV92xqrwQFu0KBBbsvvuusu/epXv9KmTZuUmpra4IYBAAA0RkiIY6qQ9HRHWKsc4iouIi5dar0HGCQvPcSQlpamt956yxuHBgAAqDO73TFVSPv2ruXx8dadQkRqxAhcTc6cOaOSkhJvHBoAAKBe7HZp6FCpVSvH9oYNUkqKNUfeKjQ4wH3zzTdVykpKSvTPf/5TM2fOVP/+/RvVMMBTrlw+xeo/tACA+qv8e3/gQOv/PdDgAJeQkOD2KVTTNHXDDTfo//7f/9uohgGeEIjLpwAA0OAA98orr1QJcOHh4UpISNAtt9yiq65ijmD4VqAunwIAQIMD3Lhx4zzYDMCzAnn5FABA/UVGuv87waoa/RDD+fPn9dFHHykvL0+xsbHq37+/WrRo4Ym2AQ1Wn+VTkpObrFkAAHhEowLckiVLlJmZqcLCQpn/ibWRkZHKzMzU1KlTPdJAoCECefkUAAAaHOB+//vfa/r06frRj36kcePGqX379jp27JheffVV/fd//7fatGmjn/3sZ55sK1Bngbx8CgAADQ5wv/3tbzVmzBitWbPGpXz06NEaO3asfvvb3xLg4DOBvHwKAAANflR0//79Gjt2rNt9Y8eO1RdffNHgRgGNVbF8inR5uZQKVl8+BQCABge45s2bKz8/3+2+/Px8NW/evMGNAjwhUJdPAQCgwQEuKSlJ8+fP17Fjx1zKT5w4occff1wDBw5sdOOAxrLbpX37Lm9v2CAdPEh4AwBYW4PvgVu0aJF+8IMfqEuXLhoyZIji4uJ0/Phxbd++XWFhYcrKyvJkO4EGC7TlUwAAaPAI3I033qicnByNHDlSOTk5WrVqlXJycjRq1Ch98skn6t69uyfbCcDCCgoc9x4ahuM1AKBxGjUPXLdu3fTmm296qi0AAACog3qPwO3Zs0dHa5ji/ujRo9qzZ0+jGgUgsJSXX379l78YLtsAgPqrV4D78MMP1bdvX3377bfV1vn222/Vt29fbd68udGNA2B9WVlS5Tsq7rwzVA88kKJ164zq3wQAqFG9AtyKFSuUnp6uvn37Vlunb9++uvvuu/XSSy81unEArC0rS0pPd0yoXFleXrjuuSdEPOsEAA1TrwD317/+VaNGjaq13n/913/p448/bmibAI+KjHSsxmCajtdoGuXl0uTJ7lfCkByjb1OmiMupANAA9Qpwp06dUocOHWqtFxcXp5MnTza4UQCsb9cuqYbbZWWaho4ccdQDANRPvQJcZGRktasvVHbmzBlFREQ0uFEArO/4cc/WAwBcVq8Ad+ONN2rTpk211tu4caNuvPHGBjcKgPXFxXm2HgDgsnoFuLvvvlsvv/yydu7cWW2d7OxsrVq1Svfee2+jGwfAupKSHOvOGtU8bGoYpjp2dNSrTXm5tGOH9Oabjv9y3xyAYFevAPfAAw+oR48eSklJ0cSJE7VlyxYdOHBABw4c0JYtW/Tggw8qNTVVPXv21P333++tNgOwgJAQadkyx+uqIc7xZMPSpbUvbZaVJSUkSIMHS2PGOP6bkCCeYAUQ1Oq1EkOzZs20efNm/exnP9MLL7ygF1980WW/aZr60Y9+pN///vdq1qyZRxsKwHrsdmntWmnSJNepRGJji7RiRTPZ7TX/CqqYhuTKJ1lzcx3la9c6PgMAgk29l9KKiYnRhg0b9Omnn2rLli06cuSIJOnaa6/VHXfcoZtuusnjjQRgXXa7NHSo1KqVY/u998p08eJW3Xnn8BrfV9M0JKbpGNWbMkUaObL2UTwACDQNXgu1b9++NU7oCwAVKges224zVcNttE61T0Mi5zQkycmNbiIAWEq9AlyvXr3qXNcwDP3jH/+od4MAQGIaEiDQFBRIUVGO1xcuMLF6Y9UrwEVHR8uo7pGy/7hw4YI+/fTTWusBCB4Vq2FIUmlp3d7DNCQAUL16BbgdO3ZUu6+srEwrV67U448/LsMwNGbMmMa2DUAQq5iGJDfX/X1whuHYX5dpSAAg0NRrGpHqvP322+revbsefvhh9e7dW59++qlee+01TxwaQJCqaRqSiu26TEMCIDAwH6SrRgW4HTt2qF+/frr77rvVsmVLbdmyRZs3b1afPn081DwAwaxiGpIrl2COj2cKESCYrFtn6LrrmA+ysgYFuD179mj48OEaMmSI8vLy9MYbb+h//ud/NGTIEE+3D0CQs9ulQ4ek7GzpjTcc/z14kPAGBIuPPorTPfeEuMwlKV2eDzJYQ1y97oE7cuSIZs+erTfeeEPR0dFaunSpfvWrXyksLMxb7QMAhYQwVQgQjMrLpZde6sl8kG7UK8B169ZNFy9eVGpqqqZPn64WLVpoz5491da/+eabG91AAAAQnP7yF0N5ec2r3R/M80HWK8CVlJRIkjZu3KhNmzZVW880TRmGofJgv8MQAAA0GPNBVq9eAW7VqlXeagcAAIAL5oOsXr0C3H333eetdgAAALi47TZTMTFFys8Pl2lWXSAgmOeD9Mg8cI1x/vx5TZ8+XSkpKWrTpo0Mw9D8+fPd1v3ss880dOhQRUVFqXXr1rLb7fr666/d1l2+fLkSExNls9nUqVMnZWZmqtTNFPAnT57UuHHjFBsbq4iICA0YMEDbtm3z5FcEAAANEBIiTZjguNee+SBd+TzA5eXlaeXKlSopKdGoUaOqrbd//34lJyfr4sWL+uMf/6hXXnlF//rXv5SUlKRTp0651F24cKEmT54su92uzZs368EHH9SiRYs0ceJEl3olJSUaMmSItm3bpmXLlumdd95R27ZtlZqaqp11WW0bAAB41YABx/XWW+XMB3mFel1C9YbrrrtOZ86ckWEYOn36tF566SW39ebOnSubzab3339fLVu2lCT17dtXXbt21ZIlS/TUU09JcgTCBQsW6P7779eiRYskScnJySotLdXs2bM1ZcoUde/eXZL08ssva+/evfrb3/6mAQMGSJIGDx6s3r17a/r06dq9e7e3vz4AAKhFWpqpu+5yPG16/LjjnrekpOAceavg8xE4wzBqXfi+rKxM77//vu666y5neJMc4W/w4MFat26ds2zTpk0qLi5WRkaGyzEyMjJkmqbWr1/vLFu3bp1uuOEGZ3iTpNDQUI0dO1affPKJcq+cNRAAAPhExXyQ997r+G8whzfJD0bg6uKrr75SUVGRevXqVWVfr169tHXrVhUXFys8PFx79+6VJPXs2dOlXlxcnGJjY537JWnv3r1KcnPnY8XnfP755+pw5Zjtf5SUlDinVZGkc+fOSZJKS0vd3mvXWBXH9Max4UAfNw362fvo46ZBP9dPcbEkOSb+z84u09ChZq0hLNj6uD7f0xIBLi8vT5IUHR1dZV90dLRM09SZM2cUFxenvLw82Ww2RUZGuq1bcayK41Z3zMqf686TTz6pzMzMKuVbtmxRRERE7V+qgbZu3eq1Y8OBPm4a9LP30cdNg36u3Ucfxel3v+upigB3552hiokp0oQJezRgQO2TuAVLHxcWFta5riUCXIWaLrVW3lfXevWtW9nMmTM1depU5/a5c+fUsWNHpaSkuFzm9ZTS0lJt3bpVw4YNY+kyL6GPmwb97H30cdOgn+tm3TpDTz8dUmU5rPz8cD399C16661ypaW5WStLwdfHFVfz6sISAS4mJkaS+xGx/Px8GYah1q1bO+sWFxersLCwykhYfn6++vbt63Lc6o4puR/xq2Cz2WSz2aqUh4WFefUk8/bxQR83labs54ICKSrK8frCBcnNAH1A4lxuGvRz9crLpWnTVM1apoYMQ/rNb0J1110139MWLH1cn+/o84cY6qJz585q3ry523VX9+zZoy5duig8PFzS5Xvfrqx74sQJnT59Wj169HCW9ezZs9pjSnKpCwAA6mfXLuno0er3V17LFPVjiQAXGhqqO++8U1lZWTp//ryz/JtvvlF2drbslSaBSU1NVXh4uFavXu1yjNWrV8swDJe55tLS0rR//36X6ULKysq0Zs0a9evXT+3bt/fadwLQdCovy/zhh67bALyHtUy9xy8uoW7cuFEFBQXOcLZv3z6tXbtWkjR8+HBFREQoMzNTt9xyi0aMGKEZM2aouLhYc+fOVWxsrKZNm+Y8VnR0tGbPnq05c+YoOjpaKSkpysnJ0fz58zVhwgTnHHCSNH78eK1YsUKjR4/W4sWLdc011+j555/Xl19+qQ8++KBpOwGAV2RlSZMmXd4ePtwxAeiyZcE7ASjQVFjL1Hv8IsD9+te/1uHDh53bb7/9tt5++21J0sGDB5WQkKDExETt2LFDjz76qNLT0xUaGqrbb79dS5YsUZs2bVyON2vWLLVo0UIrVqzQkiVL1K5dO82YMUOzZs1yqWez2bRt2zZNnz5dDz/8sAoLC9WnTx9t3LhRgwYN8v4XB+BVWVlSenrV+29ycx3lwTyLO9AUkpIc/2DKzXV/H1wwr2XaWH4R4A4dOlSnen379q3zyNikSZM0qfI/u6vRtm1bvfrqq3U6JgDrKC+XJk+u7uZpx18cU6ZII0cyISjgLSEhjtHu9HTHz1zln8dgX8u0sSxxDxwA1Jcnb54uKHD8ZWMYjtcA6s5ud4x2X3lbebCvZdpYfjECBwCexs3TgP+w26WhQ6VWrRzbGzZIKSmMvDUGI3AAAhI3TwP+pXJYGziQ8NZYBDgAAani5unqFlQxDKljR26eBmBNBDgAAani5mmpaojj5mkAVkeAAxCwuHkaQKDiIQYAAY2bpwEEIkbgAAQ8bp4GEGgIcABQC9ZSBeBvCHAAAl5kpGPiXtN0vK6PrCyp0hLKGj5cSkhwlAPBgsms/Q8BDgCqUbGWam6ua3nFWqqEOAC+QoADADdqW0tVcqylyuVUAL5AgAMANzy5lioAeBoBDgDcYC1VAP6MAAcAbrCWKgB/RoADADdYSxW4jKl0/A8BDgDcYC1VwMFTU+k0ZjofVEWAg99j/iH4CmupItgxlY7/IsABQA3sdmnfvsvbGzZIBw8S3hD4mErHvxHgAKAWrKWKYMRUOv6NAAcAAKpgKh3/RoADAABVMJWOfyPAAQCAKphKx78R4AAAQBVMpePfCHAAAMAtptLxX6G+bgAAAPBfdrs0dKjUqpVje8MGKSWFkTdfYwQOAADUiKl0/A8jcABQi4olgADAXzACBwAAYDEEOAAAAIshwAEAAFgM98ABAIAacR+o/2EEDgAAwGIIcAAAABbDJVQAAPxcebm0a5d0/Lhj8fikJOZiC3YEOAAA/FhWljRpkpSbe7ksPt6xTilLWQUvLqECAOCnsrKk9HTX8CY5ttPTHfsRnAhwAAD4ofJyafJk909/VpRNmeKoh+BDgAMAwA/t2iUdPVr9ftOUjhxx1EPwIcABAOCHjh/3bD0EFgIcAAB+KC7Os/UQWAhwAAD4oaQkx9OmhuF+v2FIHTs66iH4EODg9yrfoPvhh9ywCyA4hIQ4pgqRqoa4iu2lS5kPLlgR4ODXsrKk7t0vbw8fLiUk8Og8rKWgwPEXrmE4XgN1ZbdLa9dKHTq4lsfHO8qZBy54MZEv/FbF/EdXPkJfMf8Rv7wABAO7XRo5kpUY4IoAB79U2/xHhuGY/2jkSH6JAQh8ISFScrKvWwF/wiVU+CXmPwIAoHoEOPgl5j8CAKB6BDj4JeY/AgCgegQ4+CXmPwIAoHoEOPgl5j8CAKB6BDj4rYr5j9q3dy1n/iNYDZNRA/A0Ahz8mt0u7dt3eXvDBungQcIbrIPJqAF4AwEOfq/yZdKBA7lsCuuomIw6N9e1vGIyakIcgIYiwAGAF9Q2GbXkmIyay6loCiznFngIcADgBUxGDcCbCHAA4AVMRg1/woM0gYcABwBewGTU8Bc8SBOYCHAA4AVMRg1/wIM0gYsABwBewGTU8DUepAlsBDgA8BImo4Yv8SBNYAv1dQMAIJDZ7dLQoVKrVo7tDRuklBRG3uB9PEgT2BiBAwAvYzJq+AIP0gQ2AhwAAAGIB2kCGwEOAIAAxIM0gc0yAW7Hjh0yDMPtn48//til7meffaahQ4cqKipKrVu3lt1u19dff+32uMuXL1diYqJsNps6deqkzMxMlZaWNsVXAgDAq3iQJnBZ7iGGRYsWafDgwS5lPXr0cL7ev3+/kpOT1adPH/3xj39UcXGx5s6dq6SkJP39739XmzZtnHUXLlyoOXPmaMaMGUpJSVFOTo5mz56t3NxcrVy5ssm+EwAA3sKDNIHJcgGua9eu6t+/f7X7586dK5vNpvfff18tW7aUJPXt21ddu3bVkiVL9NRTT0mS8vLytGDBAt1///1atGiRJCk5OVmlpaWaPXu2pkyZou6Vp64GAMCieJAm8FjmEmpdlJWV6f3339ddd93lDG+SdN1112nw4MFat26ds2zTpk0qLi5WRkaGyzEyMjJkmqbWr1/fVM0GAMCrIiMd876ZpuM1rM9yI3ATJ07UPffco4iICA0YMEBz5szRbbfdJkn66quvVFRUpF69elV5X69evbR161YVFxcrPDxce/fulST17NnTpV5cXJxiY2Od+6tTUlKikpIS5/a5c+ckSaWlpV65h67imMF4f57jK4f953WpvNUFwdzHTSkY+7mpzuHLnxd8fewL9LP3BVsf1+d7WibAtWrVSpMnT1ZycrJiYmL073//W88884ySk5P15z//WXfccYfy8vIkSdHR0VXeHx0dLdM0debMGcXFxSkvL082m02Rbv4pEh0d7TxWdZ588kllZmZWKd+yZYsiIiIa+C1rt3XrVq8d218VF4dIGiFJ2rx5s8LDvbvuSzD2sS8EWz9XDOrv3Nl0nxlsfewr9LP3BUsfFxYW1rmuZQLcTTfdpJtuusm5nZSUpLS0NPXs2VPTp0/XHXfc4dxnVDfpzRX76lrPnZkzZ2rq1KnO7XPnzqljx45KSUlxuXzrKaWlpdq6dauGDRumsLAwjx/fnxUUXH59xx13eG34P5j7uCnRz95HHzcN+tn7gq2PK67m1YVlApw7rVu31ogRI/Tiiy+qqKhIMTExkuR29Cw/P1+GYah169aSpJiYGBUXF6uwsLDKiFl+fr769u1b42fbbDbZbLYq5WFhYV49ybx9fH9U+es6vr+3Py/4+tgX6Gfvo4+bBv3sfcHSx/X5jpZ/iME0TUmOEbPOnTurefPm2rNnT5V6e/bsUZcuXRQeHi7p8r1vV9Y9ceKETp8+7TI1CQAAgD+xdIA7c+aM3n//ffXp00fh4eEKDQ3VnXfeqaysLJ0/f95Z75tvvlF2drbslWYsTE1NVXh4uFavXu1yzNWrV8swDI0aNaqJvgUAAED9WOYS6pgxY3Tttdfq+9//vmJjY3XgwAE9++yz+vbbb11CWGZmpm655RaNGDFCM2bMcE7kGxsbq2nTpjnrRUdHa/bs2ZozZ46io6OdE/nOnz9fEyZMYA44AH6joECKinK8vnCBaSAAWCjA9erVS3/4wx/04osv6sKFC4qOjtZtt92m1157TbfccouzXmJionbs2KFHH31U6enpCg0N1e23364lS5a4rMIgSbNmzVKLFi20YsUKLVmyRO3atdOMGTM0a9aspv56AAAAdWaZADdjxgzNmDGjTnX79u2rDz74oE51J02apEmTJjWmafCyigkoAcBXGAWFv7FMgAMAwKrKy6Vdu6Tjx6W4OCkpieWs0DiWfogBABAcCgokw3D8qTw3pBVkZUkJCdLgwdKYMY7/JiQ4yoGGIsABgJ8rr7T4yIcfum7Dv2VlSenp0tGjruW5uY5yQhwaigAHAH4sK0uq/FD88OGM3lhFebk0ebL7e3gryqZMIZCjYQhwAOCnKkZvcnNdyxm9sYZdu6qOvFVmmtKRI456QH0R4ADADzF6Y33Hj3u2HlAZAQ4A/BCjN9YXF+fZekBlBDgA8EOM3lhfUpIUH+94ctYdw5A6dnTUA+qLAAcAfojRG+sLCZGWLXO8vjLEVWwvXcp8cGgYAhwA+CF/G72x8jxsku/ab7dLa9dKHTq4lsfHO8rt9qZrCwILKzEAgB+qGL1JT3eEjsoPMzB6Yy12uzRyJCsxwLMYgQMAP1UxetO+vWs5ozdNr7GTKYeESMnJ0r33Ov5LeENjEeAAwI/Z7dK+fZe3N2yQDh4kvDWl6iZTXreumuvbQBMgwAGAn6s8WjNwIKM3TammyZTvuSdEH33EUyTwDQIcAABu1GUy5Zdf7sFkyvAJAhwAAG7UPpmyodOnI/SXv3ApFU2Pp1ABwM9FRrofBYJ3MZky/BkjcAAAuMFkyvBnBDgAQMBryDQgtU+mbCo2tlC33cbwKJoeAQ4AENCqmwYkK6vm99VlKaxf/GIvTwXDJwhwAICAVdM0IOnptYe4miZTfuutcg0YwA1w8A0CHADA7zXkEmhdpgGZMqX2Y1U3mXJaGpdO4TsEOACAX2voJdDapwGRjhxx1KsNkynD3xDgACAInDvnuG/LMKSNG+u/lqevNOYSKNOAIJAR4AAgwDV0BMvXGnsJlGlAEMgIcAAQwBp7E78vNfYSaO3TgEgdOzrqAVZDgAOAAOWpm/h9pbGXQOsyDcjSpdzPBmsiwAFAgPrLXwyP3cTvC564BFrTNCBr1zr2A1ZEgAOAAOXJm/gbMo1HY3nqEmh104AQ3mBlBDgACFCeuonfVw9BePISKNOAINAQ4AAgQN12m9noESxfPwTBJVDAPQIcAASoxo5g+ctDEFwCBaoiwAFAAGvMCJYnVzJoLC6BAq5Cfd0AAIB32e3S0KFSq1aO7Q0bpJSU2kOQpx+C2LXLUTcuznHZlhAGNBwBDgCCQMuW7i+F1sSTD0FMnuw6mhcf77i8a5XLoJGR9e8/wJu4hAoAcMsT03hUPARx5aVYK6wEAfgzAhwAwK1AeQgCCEQEOABAtQLlIYiKS6Cm6XgNWB33wAEAauQPD0EAcMUIHACgVg2ZxsNTD0EAqIoABwDwCk+tZQqgKgIcAMArPLmWKQBXBDgAgNdUPATRoYNrOWuZAo3DQwwAAK+y26WRI1mJAfAkAhwAwOtCQqTkZF+3AggcXEIFAACwGAIcAACAxRDgAAAALIYABwAAYDEEOAAAAIshwAEAAFgMAQ4AAMBimAcOAOD3IiMl0/R1KwD/wQgcAACAxRDgAAAALIYABwAAYDHcAwcAqBX3oAH+hRE4AAAAiyHAAQAAWAwBDgAAwGIIcAAAABZDgAMAALAYAhwAAIDFEOAAAAAshgAHAABgMQQ4AAAAiyHASbpw4YKmTJmi9u3bKzw8XH369NFbb73l62YBAAC4xVJakux2u3JycrR48WJ169ZNb7zxhu69915dunRJY8aM8XXzAAAAXAR9gNuwYYO2bt3qDG2SNHjwYB0+fFj//d//rbvvvlshISE+biUAAMBlQX8Jdd26dYqKitLo0aNdyjMyMnTs2DHt3r3bRy0DAABwL+hH4Pbu3avvfe97Cg117YpevXo59//gBz+o8r6SkhKVlJQ4t8+ePStJys/PV2lpqcfbWVpaqsLCQuXl5SksLMzjxwd93FToZ++jj5sG/ex9wdbH58+flySZpllr3aAPcHl5ebr++uurlEdHRzv3u/Pkk08qMzOzSnmnTp0820AAABBUzp8/r1atWtVYJ+gDnCQZhlHvfTNnztTUqVOd25cuXVJ+fr5iYmJqPF5DnTt3Th07dtSRI0fUsmVLjx8f9HFToZ+9jz5uGvSz9wVbH5umqfPnz6t9+/a11g36ABcTE+N2lC0/P1/S5ZG4K9lsNtlsNpey1q1be7x9V2rZsmVQnMS+RB83DfrZ++jjpkE/e18w9XFtI28Vgv4hhp49e+qLL75QWVmZS/mePXskST169PBFswAAAKoV9AEuLS1NFy5c0J/+9CeX8ldffVXt27dXv379fNQyAAAA94L+EuqPfvQjDRs2TL/+9a917tw5denSRW+++aY2bdqkNWvW+M0ccDabTfPmzaty2RaeQx83DfrZ++jjpkE/ex99XD3DrMuzqgHuwoULmjVrlv74xz8qPz9fiYmJmjlzpu655x5fNw0AAKAKAhwAAIDFBP09cAAAAFZDgAMAALAYApwXXLhwQVOmTFH79u0VHh6uPn366K233qr3cWbPni3DMKpMZXLu3DktXLhQycnJateunaKiotSzZ0899dRTKi4udql76NAhGYbh9k9D2uRPvN3PkjRr1izddNNNio6OVnh4uK6//no98MADOnz4cJW6paWlyszMVEJCgmw2mxITE7V8+fIGfTd/4U99HKjnclP0cWVFRUXq1q2bDMPQkiVLquwPxPNY8q9+5lyuWU19nJyc7LbfUlNTq9QN1HO5QtA/heoNdrtdOTk5Wrx4sbp166Y33nhD9957ry5duqQxY8bU6Rh///vftWTJErVt27bKvm+++UZLly7Vz372M02dOlVRUVHatWuX5s+fr61bt2rr1q1VVoN4+OGHq3x2165dG/4l/YC3+1mSvvvuO91777363ve+pxYtWmjfvn1asGCB3n33XX3++eeKiYlx1n3wwQf12muv6YknntAtt9yizZs3a/LkyTp//rwee+wxj3znpuZvfSwF3rncFH1c2Zw5c1RQUFDt/kA8jyX/62eJc9mduvTx9ddfr9dff92lzN1E+oF6LjuZ8Kg///nPpiTzjTfecCkfNmyY2b59e7OsrKzWY5SWlpp9+vQxJ02aZA4aNMi88cYbXfZfuHDBvHDhQpX3PfPMM6Ykc9euXc6ygwcPmpLMZ555poHfyD81RT9XZ8OGDaYk8+WXX3aW7d271zQMw1y0aJFL3fvvv99s3ry5mZeXV6dj+xN/6+NAPJebuo93795tNmvWzHz77bfd9mUgnsem6X/9zLnsXl36uK6/RwL1XK6MS6getm7dOkVFRWn06NEu5RkZGTp27Jh2795d6zEWL16s/Px8LVy40O3+yMhIRUZGVim/9dZbJUlHjhxpQMutpSn6uTpt2rSRJIWGXh7AXr9+vUzTVEZGRpX2FBUVadOmTfX6DH/gb30ciJqyjy9evKjx48dr4sSJ+v73v++2TiCex5L/9XMg8uXvC3cC9VyujADnYXv37tX3vve9Kn/x9OrVy7m/JhWXj1544QVFRUXV67O3b98uSbrxxhur7Fu8eLGaNWumiIgI3XbbbXr33XfrdWx/09T9XFZWpqKiIv3v//6vpkyZom7duslut7u0p02bNmrXrl2D2uOP/K2PKwTSudyUffz444+roKBATzzxRI3tCbTzWPK/fq7AuXxZffr4q6++UnR0tEJDQ9W5c2fNmjVLRUVFVdoTiOdyZQQ4D8vLy1N0dHSV8oqyvLy8at976dIljR8/Xna7XcOHD6/X5/7zn//U008/rbS0NOcJKjlmsb7//vv1wgsvaPv27XrppZdUXl6ukSNH6qWXXqrXZ/iTpuznEydOKCwsTBEREbr55ptVVlam7Oxsl18y1bUnMjJSzZo1q7E9/srf+jgQz+Wm6uO///3vevrpp/Xiiy+6Hb2vrT1WPo8l/+tnzmVX9enj2267Tc8995z+9Kc/6d1339Xw4cP19NNPKzU1VZcuXaq1PVY/lysL7OsTPnLlAwR13ffcc8/pwIED9f5X2KFDhzRixAh17Nixyg9/XFycVq5c6VI2evRo9evXTzNmzNC4ceMse5mqqfo5NjZWOTk5Kikp0RdffKGnn35agwcP1o4dOxQXF9fo9vgzf+rjQD2Xvd3HZWVlGj9+vO6++27dcccdXmuPv/OnfuZcdlWf3xcLFixw2R4+fLgSEhL0m9/8Ru+8847S0tIa3R6rYATOw2JiYtwm+/z8fEly+y8CyfFk6dy5czVv3jw1a9ZM3333nb777juVlZXp0qVL+u6776oMEUvS4cOHNXjwYIWGhmrbtm3VHr+ysLAw3X333crLy9OBAwfq+Q39Q1P2c2hoqL7//e/rhz/8oSZMmKDt27fr66+/1uLFi2ttT0FBgS5evFin/y/+xt/62B2rn8tN0cdLly7V119/rXnz5jnrnTt3TpJUXFys7777TuXl5TW2x8rnseR//ewO53L9/u6rbOzYsZKkjz/+uNb2WP1crowA52E9e/bUF198obKyMpfyPXv2SFK1cwd9/fXXKioq0uTJk3X11Vc7//z1r3/VF198oauvvlozZ850ec/hw4eVnJws0zSVnZ2t+Pj4OrfT/M8KalddZc1ToCn7+Urx8fFq3769/vWvf7m059SpUzpx4kS92uPP/K2Pq2Plc7kp+njv3r06e/asunbt6qzXu3dvSY6pLq6++mrn5wXieSz5Xz9Xh3O5Yb8vKlTut0A9l1348AnYgFQx/cFbb73lUp6amlrjo9Rnzpwxs7Ozq/zp3bu3mZCQYGZnZ5sHDhxw1j98+LCZkJBgduzY0fzqq6/q1caLFy+affr0MWNjY+v0aLc/aqp+dufAgQPmVVddZT700EPOsopH1hcvXuxS95e//KVlH1n3tz52x+rnclP08RdffFGl3ptvvmlKMn/1q1+Z2dnZ5vnz503TDMzz2DT9r5/d4Vxu+O+Lp556ypRkrl+/3lkWqOdyZQQ4Lxg2bJh59dVXmytXrjS3b99u3n///aYkc82aNc4648ePN0NCQsxDhw7VeCx3c958++235vXXX2/abDZzzZo15kcffeTy58iRI866jzzyiPnQQw+Zb775ppmdnW3+/ve/N2+55RZTkrlq1SqPfu+m5u1+/sc//mHefvvt5vPPP29u2rTJ3LJli/nss8+a8fHxZps2baocc8KECabNZjOfeeYZc8eOHeZjjz1mGoZhLly40HNfuon5Ux8H6rns7T52p6Z5yALxPDZN/+pnzuWG9fGHH35o3nHHHeaLL75obtmyxXz33XfNX//612ZISIh5++23m+Xl5S71A/VcrkCA84Lz58+bkyZNMtu1a2c2a9bM7NWrl/nmm2+61LnvvvtMSebBgwdrPJa7kzg7O9uUVO2fefPmOeu+/PLL5q233mpGR0eboaGh5tVXX23ecccd5ubNmz31dX3G2/184sQJc+zYsWbnzp3NiIgIs1mzZub1119v/upXvzK/+eabKse4ePGiOW/ePPPaa681mzVrZnbr1s38P//n/zT6e/qSP/VxoJ7L3u5jd2oKcIF4Hpumf/Uz53LD+vjAgQPm8OHDzQ4dOpg2m80MDw83e/bsaS5cuNAsLi6ucoxAPZcrGKb5n4vuAAAAsATr3SkJAAAQ5AhwAAAAFkOAAwAAsBgCHAAAgMUQ4AAAACyGAAcAAGAxBDgAAACLIcABAABYDAEOgF84dOiQDMPQ6tWrPX7sbdu26fvf/74iIyNlGIbWr1+v1atXyzAMHTp0yOOfV1lCQoLGjRvn1c+wgn379mn+/Ple728gWIT6ugEA4E2maeonP/mJunXrpnfffVeRkZG64YYbVFZWpo8++khxcXG+bmJQ2LdvnzIzM5WcnKyEhARfNwewPAIcgIB27Ngx5efnKy0tTUOGDHHZ16ZNGx+1yrdKS0tlGIZCQ6v+FVBYWKiIiAgftApAfXAJFYBX/fvf/1ZGRoa6du2qiIgIdejQQXfeeaf27NlT63tPnTqlBx54QB07dpTNZlObNm30wx/+UB988EGdPnv+/PmKj4+XJD366KMyDMM5+uPuEmpycrJ69OihnJwcJSUlKSIiQtdff70WL16sS5cuOesVFxdr2rRp6tOnj1q1aqXo6GgNGDBA77zzTt07phZvvPGGBgwYoKioKEVFRalPnz56+eWXnfuruzSbnJys5ORk5/aOHTtkGIZee+01TZs2TR06dJDNZtO///1vjRs3TlFRUdqzZ49SUlLUokULZ8i9ePGiFixYoMTERGffZ2Rk6NSpUy6fl5CQoBEjRmjTpk26+eab1bx5cyUmJuqVV15x1lm9erVGjx4tSRo8eLAMw/Da5XIgWDACB8Crjh07ppiYGC1evFht2rRRfn6+Xn31VfXr10//+7//qxtuuKHa9/7sZz/TZ599poULF6pbt2767rvv9NlnnykvL69Onz1hwgT17t1bdrtdDz/8sMaMGSObzVbje06cOKGf/vSnmjZtmubNm6d169Zp5syZat++vX7+859LkkpKSpSfn6/f/OY36tChgy5evKgPPvhAdrtdq1atctZrqLlz5+qJJ56Q3W7XtGnT1KpVK+3du1eHDx9u8DFnzpypAQMG6MUXX9RVV12la665RpIjqP3Xf/2XfvnLX2rGjBkqKyvTpUuXNHLkSO3atUvTp0/XD37wAx0+fFjz5s1TcnKy/ud//kfNmzd3Hvsf//iHpk2bphkzZqht27Z66aWX9Itf/EJdunTRwIED9eMf/1iLFi3SY489phUrVujmm2+WJHXu3LlR/QQENRMAmlBZWZl58eJFs2vXruYjjzziLD948KApyVy1apWzLCoqypwyZUqjPq/iuM8884xL+apVq0xJ5sGDB51lgwYNMiWZu3fvdqnbvXt384477qjxO5WWlpq/+MUvzJtuusll33XXXWfed999dW7v119/bYaEhJg//elPa6xX3XEHDRpkDho0yLmdnZ1tSjIHDhxYpe59991nSjJfeeUVl/I333zTlGT+6U9/cinPyckxJZnPP/+8SzvCw8PNw4cPO8uKiorM6Oho85e//KWz7O233zYlmdnZ2TV+LwB1wyVUAF5VVlamRYsWqXv37mrWrJlCQ0PVrFkzHThwQF988UWN77311lu1evVqLViwQB9//LFKS0u93t527drp1ltvdSnr1atXldGvt99+Wz/84Q8VFRWl0NBQhYWF6eWXX671O9Vm69atKi8v18SJExt1nCvddddddd73/vvvq3Xr1rrzzjtVVlbm/NOnTx+1a9dOO3bscKnfp08fXXvttc7t8PBwdevWrVEjhgBqRoAD4FVTp07VnDlzNGrUKL333nvavXu3cnJy1Lt3bxUVFdX43j/84Q+677779NJLL2nAgAGKjo7Wz3/+c504ccJr7Y2JialSZrPZXNqalZWln/zkJ+rQoYPWrFmjjz76SDk5ORo/fryKi4sb9fkV95hV3LvnKdU9bRsREaGWLVu6lH377bf67rvv1KxZM4WFhbn8OXHihE6fPu1Svy59BsCzuAcOgFetWbNGP//5z7Vo0SKX8tOnT6t169Y1vjc2NlZLly7V0qVL9c033+jdd9/VjBkzdPLkSW3atMmLra7ZmjVr1KlTJ/3hD3+QYRjO8pKSkkYfu+LJ2KNHj6pjx47V1gsPD3f7eadPn1ZsbGyV8srtrK08NjZWMTEx1fZxixYtqm0XgKZBgAPgVYZhVHlw4M9//rNyc3PVpUuXOh/n2muv1UMPPaRt27bpr3/9q6ebWS+GYahZs2Yu4efEiRMeeQo1JSVFISEheuGFFzRgwIBq6yUkJOif//ynS9m//vUvffnll24DXH2MGDFCb731lsrLy9WvX79GHatCxTnAqBzgGQQ4AF41YsQIrV69WomJierVq5c+/fRTPfPMM7VeIjx79qwGDx6sMWPGKDExUS1atFBOTo42bdoku93eRK13b8SIEcrKytKDDz6o9PR0HTlyRE888YTi4uJ04MCBRh07ISFBjz32mJ544gkVFRXp3nvvVatWrbRv3z6dPn1amZmZkhxP6I4dO1YPPvig7rrrLh0+fFhPP/20R+a2u+eee/T6669r+PDhmjx5sm699VaFhYXp6NGjys7O1siRI5WWllavY/bo0UOStHLlSrVo0ULh4eHq1KmT28uvAGpHgAPgVcuWLVNYWJiefPJJXbhwQTfffLOysrI0e/bsGt8XHh6ufv366bXXXtOhQ4dUWlqqa6+9Vo8++qimT5/eRK13LyMjQydPntSLL76oV155Rddff71mzJiho0ePOgNWYzz++OPq2rWrli9frp/+9KcKDQ1V165dNWnSJGedMWPG6NixY3rxxRe1atUq9ejRQy+88IJHPj8kJETvvvuuli1bptdee01PPvmkQkNDFR8fr0GDBqlnz571PmanTp20dOlSLVu2TMnJySovL9eqVatYZgxoIMM0TdPXjQAAAEDd8RQqAACAxXAJFYAlmaap8vLyGuuEhIRU+/SlL5SXl6umix6GYSgkJKQJWwTAqhiBA2BJr776apU5yq78s3PnTl8300Xnzp1rbG/FOqQAUBvugQNgSXl5eTp48GCNdW644Qa/mrNsz549Nc4V16JFixrXhgWACgQ4AAAAi+ESKgAAgMUQ4AAAACyGAAcAAGAxBDgAAACLIcABAABYDAEOAADAYghwAAAAFvP/AZqdEfvvYqGdAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0034\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 2500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.450 - 0.475 A" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.45 , 0.4509, 0.4518, 0.4527, 0.4536, 0.4545, 0.4554, 0.4563,\n", " 0.4572, 0.4581, 0.459 , 0.4599, 0.4608, 0.4617, 0.4626, 0.4635,\n", " 0.4644, 0.4653, 0.4662, 0.4671, 0.468 , 0.4689, 0.4698, 0.4707,\n", " 0.4716, 0.4725, 0.4734, 0.4743, 0.4752, 0.4761]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOdUlEQVR4nO3de1xVVcL/8e8O8CDgJcAL3k0tHlO0mFRmIiEVGUdHJe3iOCWONb+y0HLG8JqUt56s0fGxeppMLbvaoJV5yQytp4vx5NMMVjZNqXnJVDAvIAi4f3+cOHLkAAc4nHM2fN6vFy/Za6+zWGexhS9r7722YZqmKQAAAFjCZb7uAAAAANxHeAMAALAQwhsAAICFEN4AAAAshPAGAABgIYQ3AAAACyG8AQAAWAjhDQAAwEIIbwAAABbi8/D2+eef6ze/+Y06deqkpk2bKjw8XHFxcVq7dm2Furt379bgwYMVFhamli1bKiUlRd99953LdpcvX67o6GjZbDZ17dpVGRkZKi4urlDv2LFjmjBhgiIjIxUSEqK4uDht377d4+8TAADAE3we3n766Sd17NhRCxcu1KZNm/T888+rS5cu+v3vf6/58+c76u3du1cJCQk6f/68XnvtNT333HP617/+pfj4eB0/ftypzQULFmjKlClKSUnR1q1bdc8992jhwoWaPHmyU72ioiINGjRI27dv17Jly/TGG2+oTZs2Sk5O1s6dO73y/gEAAGrC8Ndnmw4YMEBHjhzR999/L0m6+eablZWVpW+//VbNmzeXJB04cEA9evTQ/fffr0cffVSSlJubqw4dOuj222/Xf//3fzvaW7hwoWbPnq09e/aoZ8+ekqQnn3xSkydP1kcffaS4uDhJUklJifr06aOwsDDt2rXLm28ZAACgWj6featMZGSkAgMDJdkD1caNG3XTTTc5gpskde7cWYmJiVq/fr2jbMuWLSosLFRqaqpTe6mpqTJNUxs2bHCUrV+/XldddZUjuElSYGCgxo8fr08//VSHDx+up3cHAABQO4G+7kCZCxcu6MKFCzp58qTWrVunrVu36r/+678kSd9++63OnTunmJiYCq+LiYnRtm3bVFhYqODgYO3Zs0eS1Lt3b6d6UVFRioyMdOyXpD179ig+Pt5lm5L0xRdfqH379i77W1RUpKKiIqf+5+XlKSIiQoZh1PDdAwCAxs40TZ05c0bt2rXTZZdVPr/mN+HtnnvucZzmbNKkif7617/qj3/8oyT7qVBJCg8Pr/C68PBwmaapkydPKioqSrm5ubLZbAoNDXVZt6ytsnYra7P813Vl0aJFysjIqME7BAAAqN7BgwfVoUOHSvf7TXibOXOmJk2apGPHjumtt97Svffeq/z8fP3pT39y1KlqRqv8Pnfr1bRueTNmzNADDzzg2D516pQ6deqkffv2qVmzZpW+rraKi4uVlZWlxMREBQUFebx9OGO8vY8x9y7G2/sYc++z2pifOXNGXbt2rTZH+E1469Spkzp16iRJGjZsmCR7QLrjjjsUEREhyfVMWF5engzDUMuWLSVJERERKiwsVEFBgUJCQirUjY2NdWxHRERU2qbkeqavjM1mk81mq1AeHh7udF2epxQXFyskJEQRERGWOACtjvH2Psbcuxhv72PMvc9qY17Wx+ouv/LbGxb69eunkpISfffdd+rWrZuaNm2qnJycCvVycnLUvXt3BQcHS7p4rduldY8ePaoTJ06oV69ejrLevXtX2qYkp7oAAAD+wG/DW1ZWli677DJdccUVCgwM1IgRI5SZmakzZ8446nz//ffKyspSSkqKoyw5OVnBwcFavXq1U3urV6+WYRgaNWqUo2z06NHau3ev05IgJSUlWrt2rfr376927drV2/sDAACoDZ+fNr3rrrvUvHlz9evXT23atNGJEye0bt06vfrqq/rzn/+sVq1aSZIyMjJ03XXXafjw4UpPT1dhYaHmzp2ryMhITZs2zdFeeHi4Zs+erTlz5ig8PFxJSUnKzs7WvHnzNGnSJMcab5I0ceJErVixQmPHjtXixYvVunVrPfnkk/r666/17rvven0sAAAAquPz8BYXF6dVq1ZpzZo1+umnnxQWFqY+ffrohRde0Pjx4x31oqOjtWPHDj344IMaM2aMAgMDdeONN2rJkiWOgFdm1qxZatasmVasWKElS5aobdu2Sk9P16xZs5zq2Ww2bd++XdOnT9d9992ngoIC9e3bV5s3b9bAgQO98v4BAABqwufhLTU1tcKCupWJjY11e0YsLS1NaWlp1dZr06aN1qxZ41abAAAAvua317wBAACgIsIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAAqpGfLxmG/SM/37d9IbwBAABYCOENAADUG3+asWooCG8AAAAWQngDAACwEMIbAABANUpLL37+/vvO295GeAMAAKhCZqbUs+fF7WHDpC5d7OW+QHgDAACoRGamNGaMdPiwc/nhw/ZyXwQ4whsAAJfgDklI9lOjU6ZIpllxX1nZ1KneP4VKeAMA4BL+cH2TJwIkIbRuPvhAOnSo8v2mKR08aK/nTYQ3AADK8Zfrm/whQDZ2P/zg2XqeQngDAOBn/nJ9k78EyMYuKsqz9TyF8AYADQCnx+rOX65v8pcA6U9KS6UdO6SXX7b/661ZyPh4qUMH+/8rVwxD6tjRXs+bCG8AAMiz1zfVNkz7S4D0J5mZ9lnHxERp3Dj7v96ahQwIkJYts39+aYAr21661F7PmwhvAADIP65v8tcL5H2lbBby0jHx5ixkSor0+utSu3bO5R062MtTUuq/D5civAEAIP+4vskfAqS/8KdZyJQU6csvL25v2iTt2+eb4CYR3gAAkOTZ65tqe6eoPwRIf+Fvs5DlT43ecIP3T5WWR3gDgAaAZSUuOn364vVmmze7Pxaeur6psjtF16+vJBWW468XyPsCs5CV83l4e++99zRx4kRFR0crNDRU7du318iRI/XZZ5851ZswYYIMw6jwER0d7bLd5cuXKzo6WjabTV27dlVGRoaKi4sr1Dt27JgmTJigyMhIhYSEKC4uTtu3b6+X9wrA/zSEuzQb0rISdf1+1HUs6np9U1V3it56a4A+/rjqKTN/vUDeF5iFrJzPw9tTTz2l/fv3a8qUKdq0aZOWLVumY8eOacCAAXrvvfec6jZt2lQff/yx08err75aoc0FCxZoypQpSklJ0datW3XPPfdo4cKFmjx5slO9oqIiDRo0SNu3b9eyZcv0xhtvqE2bNkpOTtbOnTvr9X0DgCewrMRFnhqL2l7f5M41WitX9qp2JtAfL5Cvi9rOCvvbLGRoqP37aJr2z33K9LEff/yxQtmZM2fMNm3amIMGDXKU3XHHHWZoaGi17Z04ccIMDg4277rrLqfyBQsWmIZhmF988YWjbMWKFaYk86OPPnKUFRcXmz179jT79etXo/dx6tQpU5J56tSpGr3OXefPnzc3bNhgnj9/vl7ahzPG2/t8NeZnz5b9OLZ/biUlJabZocPF/l/6YRim2bGjvd6l/PUYr+33oy5j4SlZWZV//fIf27YVu9XeqVMXX7NpU+367uvj++9/N8327Z3ff4cO9nJ3X28Y9o9Lv5+GUX07/nqcV8bdLOHzmbfWrVtXKAsLC1PPnj118ODBGre3ZcsWFRYWKjU11ak8NTVVpmlqw4YNjrL169frqquuUlxcnKMsMDBQ48eP16effqrDl/75BgB+xNMXdFv5FLI/XNzu6Wu0mje/GFd+/WvrnSr1xExo2Sxk+/bO5VadhfSUQF93wJVTp05p9+7duvHGG53Kz507p7Zt2+r48eOKiorSqFGj9PDDDys8PNxRZ8+ePZKk3r17O702KipKkZGRjv1ldeNdzLfGxMRIkr744gu1v/SI+VlRUZGKiooc26dPn5YkFRcXu7y2rq7K2qyPtlER4+19vhpz+5cLcnxtK33LDx405M6P8YMHS1Rc7Hwuz9V4+8NY1LYPdRkLT2nVyr0+tGpVf324VF2/p/n50uWX219/8mSx26cLS0ultLTAn08XO5/3NE3JMExNmSING1ZSbSgdMcJ+7eL//I+hH36wX+N2/fWmAgJU7fux2s9yd/vpl+Ft8uTJys/P16xZsxxlffr0UZ8+fdSrVy9J0s6dO/WXv/xF27dvV3Z2tsLCwiRJubm5stlsCnVxhIWHhys3N9exnZub6xT8ytcr21+ZRYsWKSMjo0L5O++8o5CQEDffac1t27at3tpGRYy393l7zAsLAyQNlyRt3bpVwcHWuU3zwIEISde7Ue8Tbdrk+udZ+fH2h7GobR88MRZ1VVoqRUQkKTc3WJcGFjtTkZHnVFCwTZs21UsXKqjr97S2r8/JidDhw5V/P0zT0KFD0pIlu9S7t/vfj+bN7YFy61a3XyLJOj/LCwoK3Krnd+Ftzpw5evHFF7V8+XLFxsY6yu+//36nekOGDNE111yjMWPG6G9/+5vTfqOyqxtd7KtJ3fJmzJihBx54wLF9+vRpdezYUUlJSWrevHmlr6ut4uJibdu2TUOGDFFQUJDH24czxtv7fDXm5U8PDh061PcXItfA0KHS00+bOnLE/svwUoZhqn176U9/6l9hdsPVePvDWPx8EkOSFBqarMGDTbdOF9ZlLDzpyScN3XqrJJlO/TAM+0zbH/6wR8nJ3jvG6/o9re3rT5+uflkUSerceYCGDau/WUir/Sw/Xf4/QBX8KrxlZGRo/vz5WrBgge69995q648ePVqhoaH65JNPHGUREREqLCxUQUFBhRmwvLw8p0AYERHhcnYtLy9PklzOypWx2Wyy2WwVyoOCgur1AKnv9uGM8fY+b495+S9l/9pe+9J1FhQk/fWv9uuHDMP5Lkf7356Gli2TgoMrf1Plx9vXY5GZKaWlXdweMSJQHTrYl86o7tomT4yFJ9x8sxQYaH8f5a/16tDB0JIlJbLZflBQ0DVeO8br+j2t7es7dnS3XqBXjjOr/Cx3t48+v2GhTEZGhubNm6d58+Zp5syZbr/ONE1ddtnFt1F2rVtOTo5TvaNHj+rEiROO065ldS+tV/615esCgD9qKMtKNKSL2ytbamT0aO9c5+YP/G2ZDyvfjOOKX4S3Rx55RPPmzdPs2bP10EMPuf26119/XQUFBRowYICjLDk5WcHBwVq9erVT3dWrV8swDI0aNcpRNnr0aO3du1e7du1ylJWUlGjt2rXq37+/2l360xAA/JC/PXexpjz5DMuUFGn/fikrS3rpJfu/vhgLf3qUUl3Udo02FhuuXz4/bfr4449r7ty5Sk5O1m9+8xunU6CSNGDAAB04cEDjxo3Trbfequ7du8swDO3cuVNLly7V1VdfrUmTJjnqh4eHa/bs2ZozZ47Cw8OVlJSk7OxszZs3T5MmTVLPcktvT5w4UStWrNDYsWO1ePFitW7dWk8++aS+/vprvfvuu14bAwCoK0+EhUt/UScleeeXa02W+UhIqL69gAD36tWnsgVdrezS09jDhsnt09jSxZnQiqeQ7cHNKn9c+COfh7e33npLkn19ti1btlTYb5qmmjdvrjZt2uiJJ57Qjz/+qNLSUnXu3FlpaWmaOXNmhTtLZ82apWbNmmnFihVasmSJ2rZtq/T0dKe7VyX7dWvbt2/X9OnTdd9996mgoEB9+/bV5s2bNXDgwPp70wAalPx86ecb3nX2rB+svl4Ldf1FXRc8w9L/lJ3GvjSAlp3Gdvc0dEqKNHiw1KKFfXvTJu/9UdCQ+Ty87dixo9o6l19+uTJr+IyXtLQ0pZX/SVSJNm3aaM2aNTVqGwAaEk/9oq4tnmHpX6o7jW0Y9tPYI0e6F8L84RSyr2aV64tfXPMGAPANT15vVlv+dnF7Y+cPT6vwpI8/jlJMzMW5qmHDpC5drP3cX8IbADQAtX1o9v/8j+HzX9Rc3O5fGtJp7PXrDT366HU6csS5vCZ3MfsjwhuARq22d9M1FP7yi7qhLHnSEDSU09ilpdIDD5Ql/oqP6JLqf1a5vhDeADRamZlSuRvQG8TplJryp1/UVl/ypKFoKKexP/hAOnzYkOtHlVnv9G95hDcAjZInFoVtCK6/3vSrX9T+cHF7Y9dQTmP7y6xyfSC8AWh0/OEifX/RUH5Rw7XaXhbQEE5j+9OssqcR3gA0Og3tbrq6agi/qFFRXS8LsPpp7Ph4qX17U5Lr1ZKtcvrXFcIbgEanIZ9OqS2r/6KGM09dFmDl09gBAdITT9inGg3DOcBZfVaZ8Aag0WnIp1Pqwh9+Udd2yRNcxGUBF40eberBB7Mr/F+2+qwy4Q1Ao9NQ7qYDXOGyAGdxcT/on/8scWw3hFllwhuARoeL9NGQcVlARf4wq+xJhDcAjZInL9Jv7Av9wr948rIATmP7J8IbgEbLExfps9Av/A2XBTR8hDcAjVpdTqew0C/8EZcFVNTQZhAJbwBQCw3xjr6G9guuMfOntfs4rjyP8AYAtcAdffB3rN3XcBHeAKAWuKMPVtDQ7rKEHeENAGqBhX4B+EqgrzsAAFZUdkff4cOur3szDPt+d+/oKy21n2L94Qd74IuPZ5YEgGvMvAFALXjyjr7MTPvyIomJ0rhx9n9ZbgRAZQhvAHwmP98edAzD/nltlJZKO3ZIL79s/9ebd3d64o6+suVGLr35geVGAFSG8AbAsvxhxqoud/Q1xOVGANQ/whsAS/KnGava3tHHciMAaoPwBsByGsqMFcuNAKgNwhsAy2koM1YsNwKgNghvACynocxY8QBxALVBeAPgM+VPa/7P/xhun+b05IyVL5+7yAPEAdQG4Q2AT2RmSj17XtweMSJQd92VpPXrK5mGKqchzViVLTfSvr1zuS8eIA7AGnjCAgCvK7tT9NIbDnJzg3XrrVJgYNWhpWzGaswYe1Ar344VZ6xSUqSRI3nCAgD3MPMGwKuqulNUsicvd+4UbWgzVgEBUkKCdNtt9n8JbgAqw8wbAK+q/k5Rw3GnaEJC1W0xYwWgMSK8AfAqT98pWjZjBQCNBadNAXgVa5sBQN0Q3gB4VfV3ipqWuVMUAHyB8AbAq6pa20yy38VgpTtFAcDbCG8AvK7sTtF27ZzLIyPP6ZVXSi13p6gvF/oF0PhwwwIAn0hJkQYPllq0sG+/9VaJzp/fphEjhvm2YwDg55h5A+Az5U+NXn+9yalSAHAD4Q0AAMBCCG8AAAAWQngDGqn8fPvdnoZh/xwAYA2ENwAAAAvhblMAPlO2xIYkFRf7ti9AQ1T+/xgaDmbeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDGqnS0oufv/++8zYAwH8R3oBGKDNT6tnz4vawYVKXLvZyAIB/I7wBjUxmpjRmjHT4sHP54cP2cgIcAPg3whvQiJSWSlOmuF5xvaxs6lROoQKAP/N5eHvvvfc0ceJERUdHKzQ0VO3bt9fIkSP12WefVai7e/duDR48WGFhYWrZsqVSUlL03XffuWx3+fLlio6Ols1mU9euXZWRkaFiF8/fOXbsmCZMmKDIyEiFhIQoLi5O27dv9/j7BPzBBx9Ihw5Vvt80pYMH7fUAAP7J5+Htqaee0v79+zVlyhRt2rRJy5Yt07FjxzRgwAC99957jnp79+5VQkKCzp8/r9dee03PPfec/vWvfyk+Pl7Hjx93anPBggWaMmWKUlJStHXrVt1zzz1auHChJk+e7FSvqKhIgwYN0vbt27Vs2TK98cYbatOmjZKTk7Vz506vvH/Am374wbP1AADe5/MH069YsUKtW7d2KktOTlb37t21cOFC3XjjjZKkuXPnymazaePGjWrevLkkKTY2Vj169NCSJUv06KOPSpJyc3M1f/583XnnnVq4cKEkKSEhQcXFxZo9e7amTp2qnj9fqb1y5Urt2bNHH330keLi4iRJiYmJ6tOnj6ZPn65du3Z5ZQwAb4mK8mw9AID3+Xzm7dLgJklhYWHq2bOnDh48KEkqKSnRxo0bddNNNzmCmyR17txZiYmJWr9+vaNsy5YtKiwsVGpqqlObqampMk1TGzZscJStX79eV111lSO4SVJgYKDGjx+vTz/9VIcvvaIbsLj4eKlDB8kwXO83DKljR3s9oDby8+3HkWHYPwfgeT6feXPl1KlT2r17t2PW7dtvv9W5c+cUExNToW5MTIy2bdumwsJCBQcHa8+ePZKk3r17O9WLiopSZGSkY78k7dmzR/EufkuVfZ0vvvhC7du3d9nHoqIiFRUVObZPnz4tSSouLnZ5bV1dlbVZH22jIn8f7/x86fLLgyRJJ08WKzTU/dc+/rihW28NkGFIpnkxxRmG/Y6FJUtKdeGCqQsX6q8Prvj7mDc09TXe9uaCHG3z7byIY9z7rDbm7vbTL8Pb5MmTlZ+fr1mzZkmynwqVpPDw8Ap1w8PDZZqmTp48qaioKOXm5spmsynUxW+S8PBwR1tl7VbWZvmv68qiRYuUkZFRofydd95RSEhINe+w9rZt21ZvbaMifx3vwsIAScMlSVu3blVwsPu3h9ps0vTpUfrb33orL6+pozwi4pz+8Ic9stl+0KZN9duHqvjrmDdUnh7v+jouGhKOce+zypgXFBS4Vc/vwtucOXP04osvavny5YqNjXXaZ1R2rueSfe7Wq2nd8mbMmKEHHnjAsX369Gl17NhRSUlJTqd2PaW4uFjbtm3TkCFDFBQU5PH24czfx/vniV5JUmhosgYPNhUQ4P7rhw2T/vxnKTLSvv3WWyUaPDhIAQHXSLrGrTbKnxIbOnSoR2be/HnMG5r6Gm9PHxcNCce491ltzE+X/+FeBb8KbxkZGZo/f74WLFige++911EeEREhyfVMWF5engzDUMuWLR11CwsLVVBQUGEGLC8vzykQRkREVNqm5Hqmr4zNZpPNZqtQHhQUVK8HSH23D2f+ON6ZmVJa2sXtESMC1aGDtGyZlJLifjvBwRc/T0wMdNp2R/lhsY9TzV5febv+N+YNmafHu76Oi4aEY9z7rDLm7vbR5zcslMnIyNC8efM0b948zZw502lft27d1LRpU+Xk5FR4XU5Ojrp3767gn3/zlF3rdmndo0eP6sSJE+rVq5ejrHfv3pW2KcmpLuAP/OnpCDwbFQB8wy/C2yOPPKJ58+Zp9uzZeuihhyrsDwwM1IgRI5SZmakzZ844yr///ntlZWUppdx0Q3JysoKDg7V69WqnNlavXi3DMDRq1ChH2ejRo7V3716nJUFKSkq0du1a9e/fX+3atfPcmwTqyJ+ejsCzUQHAd3x+2vTxxx/X3LlzlZycrN/85jf65JNPnPYPGDBAkn1m7rrrrtPw4cOVnp6uwsJCzZ07V5GRkZo2bZqjfnh4uGbPnq05c+YoPDxcSUlJys7O1rx58zRp0iTHGm+SNHHiRK1YsUJjx47V4sWL1bp1az355JP6+uuv9e6773pnAAA31eTpCAkJ9dePstm/S0Nk2ezf66/X7PQtAKBmfB7e3nrrLUn29dm2bNlSYb/582+I6Oho7dixQw8++KDGjBmjwMBA3XjjjVqyZIlatWrl9JpZs2apWbNmWrFihZYsWaK2bdsqPT3dcfdqGZvNpu3bt2v69Om67777VFBQoL59+2rz5s0aOHBgPb1joHb84ekI1c3+GYZ99m/kSNXoBgoAgPt8Ht527Njhdt3Y2Fi3Z8TS0tKUVv6q7kq0adNGa9ascbsPgK/4w9MR/GX2DwAaM7+45g1A9fzh6Qj+MPsHAI0d4Q2wiIAA+3IgUsUAV7a9dGn9nq70h9k/AGjsCG+AhaSk2G8IuPRG6A4dvHOjgD/M/gFAY0d4AywmJUX68suL25s2Sfv21Ty4hYbar1EzTbm9Cr4/zP4BQGNHeANqqLRU2rFDevll+7++WJy2fDi64QbvhiVfz/4BQGPn87tNASvJzLQvlVH+jsvaPJrK6lJSpMGDpRYt7NubNklJScy4AYA3MPMGuKlscdpLl8rwxaOpanPK09N8OfsHAI0Z4Q1wgz89mgoA0LgR3gA31GRxWgAA6hPXvAFuYHHaispO3QIAvIuZN8ANLE4LAPAXhDfADSxOCwDwF4Q3wA0sTgsA8BeEN8BNZYvTtm/vXM7itAAAb+KGBaAGUlKkkSPtd5X+8IP9Grf4eGbcAADeQ3gDaiggQEpI8HUvAACNFadNAQAALITwBgAAYCGcNkWjUlrK9WoAAGtj5g2NRmam1KWLlJgojRtn/7dLF+8+UB5o6Mo/3/f993neL1AfCG9oFDIzpTFjKj6f9PBhezkBDqi7zEypZ8+L28OG8QcSUB8Ib2jwSkulKVNcP4ezrGzqVGYIgLoo+wPp8GHncv5AAjyP8IYG74MPKs64lWea0sGD9noAao4/kADvIryhwfvhB8/Wq6v8fPsjtQzD/jlgdfyBBHgX4Q0NXlSUZ+sBcOZvfyABDR3hDQ1efLz9+aOXPlC+jGFIHTva63kDd+OhoeEPJMC7CG9o8AICpGXL7J9fGuDKtpcu9c56b9yNh4bI3/5AAho6whsahZQU6fXXpfbtncs7dLCXp6TUfx+4Gw8NlT/9gQQ0BoQ3NBopKdL+/VJWlvTSS/Z/9+3zTnDjbjw0dGV/ILVr51zuzT+QgMaCx2PBa/LzpbAw++dnz0qhod7vQ0CAlJDg/a9bk7vxfNE/wBNSUqTBg6UWLezbmzZJSUnMuAGeVuuZt4cfflhHjhxxue+HH37Qww8/XOtOAQ0Nd+OhsSgf1G64geAG1Idah7eMjAwdqmQq4ciRI8rIyKh1p4CGhrvxAACeUuvwZrq6eOdnZ8+eVVBQUG2bBhoc7sYDAHhKja55++c//6nPP//csb1p0ybt3bvXqc65c+f04osvqlu3bh7pINAQlN2NN2aMPaiV/9uHu/EAADVRo/C2fv16x+lQwzAqva6tadOmWrVqVd17BzQgZXfjpaU5LxfSoYM9uHE3HgDAHTUKb3fddZeGDx8u0zTVr18/rVq1Sr169XKqY7PZ1K1bNzVt2tSjHQUaAu7GAwDUVY3CW1RUlKJ+vqI6KytLsbGxCitb+wGAW7gbDwBQF7Ve523gwIGe7AfQaISGul6sFwAAd9Rpkd61a9fqpZde0oEDB3Tu3DmnfYZh6Ntvv61T54BL+cNCvwAA+FKtw9ujjz6qGTNmqGfPnurTp49sNpsn+wUAAAAXah3ennnmGU2ePFnLly/3ZH/QgJV/buf779fuQn1PtAEAgJXVepHeo0ePavTo0Z7sCxqwzEypZ8+L28OGSV262Mu92QYAAFZX6/AWGxvLNW1wS2amfXHa8mubSfbtMWPcC1+eaAMAgIag1uHtiSee0OOPP67PPvvMk/1BA1NaKk2Z4vruyrKyqVOdT4fWRxsAADQUtb7mLTU1Vbm5uerXr5/atm2riIgIp/2GYegf//hHnTsIa/vgA+nQocr3m6Z08KC9XkJC/bUBAEBDUevwFhERocjISE/2BQ3QDz/UvZ4n2gAAoKGodXjbsWOHB7uBhurnB3LUqZ4n2gAAoKGo9TVvgDvi4+0PXjcM1/sNQ+rY0V6vPtsAAKChqPXM2/vvv19tnRtuuKG2zaOBCAiQli2z3xFqGM43HZSFsaVLq16rzRNtAADQUNQ6vCUkJMiobCrkZ6Xc/gdJKSnS669LaWnOS3106GAPXSkp3mkDAICGoNbhLSsrq0LZiRMn9MYbb+jDDz/UihUr6tQxNCwpKdLgwVKLFvbtTZtq/nQET7QBAIDV1Tq8DRw40GX5TTfdpP/3//6ftmzZouTk5Fp3DA1P+ZB1ww21C12eaAMAACurlxsWRo8erVdeecWtumfOnNH06dOVlJSkVq1ayTAMzZs3r0K9CRMmyDCMCh/R0dEu212+fLmio6Nls9nUtWtXZWRkqLi4uEK9Y8eOacKECYqMjFRISIji4uK0ffv2Gr1feE9oqP2aN9O0fw4AQGNT65m3qpw8eVJFRUVu1c3NzdUzzzyjPn36aNSoUXr22Wcrrdu0aVO99957FcoutWDBAs2ZM0fp6elKSkpSdna2Zs+ercOHD+uZZ55x1CsqKtKgQYP0008/admyZWrdurVWrFih5ORkvfvuu5XOLgIAAPhKrcPb999/X6GsqKhI//znPzVjxgwNGDDArXY6d+6skydPyjAMnThxosrwdtlll1Xbbm5urubPn68777xTCxculGS/uaK4uFizZ8/W1KlT1fPnp5uvXLlSe/bs0UcffaS4uDhJUmJiovr06aPp06dr165dbr0HAAAAb6n1adMuXbqoa9euTh/R0dEaO3asgoOD9V//9V9utVN2+tNTtmzZosLCQqWmpjqVp6amyjRNbdiwwVG2fv16XXXVVY7gJkmBgYEaP368Pv30Ux2+9CnoAAAAPlbrmbfnnnuuQugKDg5Wly5ddN111+myyzx/Od25c+fUtm1bHT9+XFFRURo1apQefvhhhYeHO+rs2bNHktS7d2+n10ZFRSkyMtKxv6xuvIuVXWNiYiRJX3zxhdq3b++yL0VFRU6nhk+fPi1JKi4udnltXV2VtVkfbXuLvetBP39eLH9+Kw1hvK2GMfeu+hpvK/0/9zaOce+z2pi7289ah7cJEybU9qW10qdPH/Xp00e9evWSJO3cuVN/+ctftH37dmVnZyssLEyS/bSpzWZTqIur2cPDw5Wbm+vYzs3NdQp+5euV7a/MokWLlJGRUaH8nXfeUUhISM3eXA1s27at3tqub4WFAZKGS5K2bt2q4GD/XwfQyuNtVYy5d9XHeJed4Ni50+NNNwgc495nlTEvKChwq16db1g4c+aMPv74Y+Xm5ioyMlIDBgxQs2bN6tpsBffff7/T9pAhQ3TNNddozJgx+tvf/ua0v6rTsJfuq0nd8mbMmKEHHnjAsX369Gl17NhRSUlJat68eaWvq63i4mJt27ZNQ4YMUVBQkMfb94b8/IufDx061K/vFm0I4201jLl3Md7ex5h7n9XGvOwsXnXqFN6WLFmijIwMFRQUyPz5mUWhoaHKyMhwCjb1ZfTo0QoNDdUnn3ziKIuIiFBhYaEKCgoqzIDl5eUpNjbWqa6r2bW8vDxJcjkrV8Zms8lms1UoDwoKqtcDpL7br0/lu21/H77ri7usPN5WxZh7F+PtfYy591llzN3tY60vTHv++ec1ffp03XDDDXrllVf0wQcf6NVXX9XAgQP15z//WS+88EJtm64R0zSdrq8ru9YtJyfHqd7Ro0d14sQJx2nXsrqX1iv/2vJ1AQAA/EGtw9tf/vIXjRs3Tm+//bbGjh2rX/3qVxo7dqw2btyo2267TX/5y1882U+XXn/9dRUUFDgtH5KcnKzg4GCtXr3aqe7q1atlGIZGjRrlKBs9erT27t3rtCRISUmJ1q5dq/79+6tdu3b1/RYaFRbYBQCg7mp92nTv3r1atGiRy33jx4/X6NGj3W5r8+bNys/P15kzZyRJX375pV5//XVJ0rBhw3T8+HGNGzdOt956q7p37y7DMLRz504tXbpUV199tSZNmuRoKzw8XLNnz9acOXMUHh7uWKR33rx5mjRpkmONN0maOHGiVqxYobFjx2rx4sVq3bq1nnzySX399dd69913azMsAAAA9arW4a1p06aOa8MulZeX5/LJB5W5++67deDAAcf2unXrtG7dOknSvn371KJFC7Vp00ZPPPGEfvzxR5WWlqpz585KS0vTzJkzK9xZOmvWLDVr1kwrVqzQkiVL1LZtW6Wnp2vWrFlO9Ww2m7Zv367p06frvvvuU0FBgfr27avNmzfzdAUAAOCXah3e4uPjNW/ePCUkJDidXjx69Kgefvhh3XDDDW63tX///mrrZGZm1qh/aWlpSktLq7ZemzZttGbNmhq1DQAA4Cu1Dm8LFy7UL3/5S3Xv3l2DBg1SVFSUfvjhB7333nsKCgqqcdgCAABA9Wp9w8LVV1+t7OxsjRw5UtnZ2Vq1apWys7M1atQoffrpp07XlgEAAMAz6rTO25VXXqmXX37ZU30BAABANWo885aTk6NDhw5Vuv/QoUMu104DAABA3dUovL3//vuKjY3Vjz/+WGmdH3/8UbGxsdq6dWudOwcAAABnNQpvK1as0JgxY5weMXWp2NhY3XLLLXr22Wfr3DkAAAA4q1F4+/DDD52eUFCZ3/72t07PGwUAAIBn1Ci8HT9+XO3bt6+2XlRUlI4dO1brTgEAAMC1GoW30NDQSp+qUN7JkycVEhJS604BAADAtRqFt6uvvlpbtmyptt7mzZt19dVX17pTAAAAcK1G4e2WW27RypUrtXPnzkrrZGVladWqVbrtttvq3DkAAAA4q9EivXfddZdWr16tpKQkTZo0SSNHjlTXrl0l2R8gv2HDBq1cuVJ9+vTRnXfeWS8dhm/k50thYfbPz56VQkN92x8AABqrGoW3Jk2aaOvWrfr973+vp556Sk8//bTTftM09etf/1rPP/+8mjRp4tGOAgAAoBaPx4qIiNCmTZv02Wef6Z133tHBgwclSZ06ddLQoUN1zTXXeLyTAAAAsKv1s01jY2OrXKwXAAAAnlej8BYTE+N2XcMw9I9//KPGHYJ/Ki29+Pn770tJSVJAgO/6AwBAY1Wj8BYeHi7DMKqsc/bsWX322WfV1oN1ZGZKaWkXt4cNkzp0kJYtk1JSfNcvAAAaoxqFtx07dlS6r6SkRM8884wefvhhGYahcePG1bVv8AOZmdKYMZJpOpcfPmwvf/11AhwAAN5Uo3XeKrNu3Tr17NlT9913n/r06aPPPvtML7zwgieahg+VlkpTplQMbtLFsqlTnU+pAgCA+lWn8LZjxw71799ft9xyi5o3b6533nlHW7duVd++fT3UPfjSBx9Ihw5Vvt80pYMH7fUAAIB31Cq85eTkaNiwYRo0aJByc3P10ksv6X//9381aNAgT/cPPvTDD56tBwAA6q5G4e3gwYO64447dO211+qzzz7T0qVL9dVXX+nWW2+tr/7Bh6KiPFsPAADUXY1uWLjyyit1/vx5JScna/r06WrWrJlycnIqrX/ttdfWuYPwnfh4+12lhw+7vu7NMOz74+O93zcAABqrGoW3oqIiSdLmzZu1ZcuWSuuZpinDMFTKleyWFhBgXw5kzBh7UCsf4MpWglm6lPXeAADwphqFt1WrVtVXP+CnUlLsy4Gkpdln4Mp06GAPbiwTAgCAd9UovN1xxx311Q/Us/x8KSzM/vnZs1JoqPuvTUmRBg+WWrSwb2/axBMWAADwFY+s84aGr3xQu+EGghsAAL5CeAMAALAQwhsAAICF1OiaNzReoaGulwsBAADexcwbAACAhRDeGonyS+69/z4PkwcAwKoIb41AZqbUs+fF7WHDpC5d7OUAAMBaCG8NXGam/QkJ5RfYlezbY8YQ4AAAsBrCWwNWWipNmeL6RoOysqlTOYUKAICVEN4asA8+kA4dqny/aUoHD9rrAQAAayC8NWA//ODZegAAwPcIbw1YVJRn6wEAAN8jvDVg8fFShw6SYbjebxhSx472egAAwBoIbw1YQIC0bJn980sDXNn20qU8ZB4AACshvDVwKSnS669L7do5l3foYC9PSfFNvwAAQO3wbNNGICVFGjxYatHCvr1pk5SUxIwbAABWxMxbI1E+qN1wA8ENAACrIrwBAABYCOENAADAQghvAAAAFsINC41EaKjrZ5wCAABrYeYNAADAQghvAAAAFkJ4AwAAsBDCGwAAgIUQ3gAAACzE5+HtzJkzmj59upKSktSqVSsZhqF58+a5rLt7924NHjxYYWFhatmypVJSUvTdd9+5rLt8+XJFR0fLZrOpa9euysjIUHFxcYV6x44d04QJExQZGamQkBDFxcVp+/btnnyLAAAAHuPz8Jabm6tnnnlGRUVFGjVqVKX19u7dq4SEBJ0/f16vvfaannvuOf3rX/9SfHy8jh8/7lR3wYIFmjJlilJSUrR161bdc889WrhwoSZPnuxUr6ioSIMGDdL27du1bNkyvfHGG2rTpo2Sk5O1c+fO+ni7tVJaKu3caej999tr505DpaW+7hEAAPAVn6/z1rlzZ508eVKGYejEiRN69tlnXdabO3eubDabNm7cqObNm0uSYmNj1aNHDy1ZskSPPvqoJHsYnD9/vu68804tXLhQkpSQkKDi4mLNnj1bU6dOVc+ePSVJK1eu1J49e/TRRx8pLi5OkpSYmKg+ffpo+vTp2rVrV32//WplZkpTpkiHDgVK+oWeeELq0EFatsz+wHkAANC4+HzmzTAMGYZRZZ2SkhJt3LhRN910kyO4Sfbgl5iYqPXr1zvKtmzZosLCQqWmpjq1kZqaKtM0tWHDBkfZ+vXrddVVVzmCmyQFBgZq/Pjx+vTTT3X48OE6vru6ycyUxoyRDh1yLj982F6emembfgEAAN/x+cybO7799ludO3dOMTExFfbFxMRo27ZtKiwsVHBwsPbs2SNJ6t27t1O9qKgoRUZGOvZL0p49exQfH++yTUn64osv1L59e5d9KioqUlFRkWP79OnTkqTi4mKX19bVVGmplJYW+PNTEZzDrWlKhmFqyhRp2LASBQTU+cvhEmXfQ098L+Eexty7GG/vY8y9z2pj7m4/LRHecnNzJUnh4eEV9oWHh8s0TZ08eVJRUVHKzc2VzWZTaGioy7plbZW1W1mb5b+uK4sWLVJGRkaF8nfeeUchISHVv6lq5ORE6PDh6yvdb5qGDh2SlizZpd69K+8n6mbbtm2+7kKjw5h7F+PtfYy591llzAsKCtyqZ4nwVqaq06vl97lbr6Z1y5sxY4YeeOABx/bp06fVsWNHJSUlOZ3ara3Tp6s+lVymc+cBGjaMh5Z6WnFxsbZt26YhQ4YoKCjI191pFBhz72K8vY8x9z6rjXnZWbzqWCK8RURESHI9E5aXlyfDMNSyZUtH3cLCQhUUFFSYAcvLy1NsbKxTu5W1Kbme6Stjs9lks9kqlAcFBXnkAOnY0d16gbLA8WhZnvp+wn2MuXcx3t7HmHufVcbc3T76/IYFd3Tr1k1NmzZVTk5OhX05OTnq3r27goODJV281u3SukePHtWJEyfUq1cvR1nv3r0rbVOSU11vi4+331Va2eSfYdgDnotL9gAAQANmifAWGBioESNGKDMzU2fOnHGUf//998rKylJKuTUzkpOTFRwcrNWrVzu1sXr1ahmG4bSW3OjRo7V3716nJUFKSkq0du1a9e/fX+3atau391SdgAD7ciBSxQBXtr10qbhZAQCARsYvTptu3rxZ+fn5jmD25Zdf6vXXX5ckDRs2TCEhIcrIyNB1112n4cOHKz09XYWFhZo7d64iIyM1bdo0R1vh4eGaPXu25syZo/DwcCUlJSk7O1vz5s3TpEmTHGu8SdLEiRO1YsUKjR07VosXL1br1q315JNP6uuvv9a7777r3UFwISVFev31snXeLpZ36GAPbqzzBgBA4+MX4e3uu+/WgQMHHNvr1q3TunXrJEn79u1Tly5dFB0drR07dujBBx/UmDFjFBgYqBtvvFFLlixRq1atnNqbNWuWmjVrphUrVmjJkiVq27at0tPTNWvWLKd6NptN27dv1/Tp03XfffepoKBAffv21ebNmzVw4MD6f+NuSEmRRo6UsrJKtHnz5/r1r/sqMTGQGTcAABopvwhv+/fvd6tebGys2zNiaWlpSktLq7ZemzZttGbNGrfa9JWAAGngQFP5+Yc1cGAfghsAAI2YJa55AwAAgB3hDQAAwEIIbwAAABZCeAMAALAQwhsAAICFEN4AAAAshPAGAABgIYQ3AAAACyG8AQAAWAjhDQAAwEIIbwAAABZCeAMAALAQwhsAAICFEN4AAAAshPAGAABgIYQ3AAAACyG8AQAAWAjhDQAAwEIIbwAAABZCeAMAALAQwhsAAICFEN4AAAAshPAGAABgIYQ3AAAACyG8AQAAWAjhDQAAwEIIbwAAABZCeAMAALAQwhsAAICFEN4AAAAshPAGAABgIYQ3AAAACyG8AQAAWAjhDQAAwEIIbwAAABZCeAMAALAQwhsAAICFEN4AAAAshPAGAABgIYQ3AAAACyG8AQAAWAjhDQAAwEIIbwAAABZCeAMAALAQwhsAAICFEN4AAAAshPAGAABgIYQ3AAAACyG8AQAAWAjhDQAAwEIIbwAAABZCeAMAALAQy4S3HTt2yDAMlx+ffPKJU93du3dr8ODBCgsLU8uWLZWSkqLvvvvOZbvLly9XdHS0bDabunbtqoyMDBUXF3vjLQEAANRYoK87UFMLFy5UYmKiU1mvXr0cn+/du1cJCQnq27evXnvtNRUWFmru3LmKj4/X559/rlatWjnqLliwQHPmzFF6erqSkpKUnZ2t2bNn6/Dhw3rmmWe89p4AAADcZbnw1qNHDw0YMKDS/XPnzpXNZtPGjRvVvHlzSVJsbKx69OihJUuW6NFHH5Uk5ebmav78+brzzju1cOFCSVJCQoKKi4s1e/ZsTZ06VT179qz/NwQAAFADljlt6o6SkhJt3LhRN910kyO4SVLnzp2VmJio9evXO8q2bNmiwsJCpaamOrWRmpoq0zS1YcMGb3UbAADAbZabeZs8ebJuvfVWhYSEKC4uTnPmzNH1118vSfr222917tw5xcTEVHhdTEyMtm3bpsLCQgUHB2vPnj2SpN69ezvVi4qKUmRkpGN/ZYqKilRUVOTYPn36tCSpuLi4Xq6ZK2uT6/G8g/H2Psbcuxhv72PMvc9qY+5uPy0T3lq0aKEpU6YoISFBERER+ve//63HHntMCQkJevvttzV06FDl5uZKksLDwyu8Pjw8XKZp6uTJk4qKilJubq5sNptCQ0Nd1i1rqzKLFi1SRkZGhfJ33nlHISEhtXyX1du2bVu9tY2KGG/vY8y9i/H2Psbc+6wy5gUFBW7Vs0x4u+aaa3TNNdc4tuPj4zV69Gj17t1b06dP19ChQx37DMOotJ3y+9yt58qMGTP0wAMPOLZPnz6tjh07KikpyemUracUFxdr27ZtGjJkiIKCgjzePpwx3t7HmHsX4+19jLn3WW3My87iVccy4c2Vli1bavjw4Xr66ad17tw5RURESJLLWbO8vDwZhqGWLVtKkiIiIlRYWKiCgoIKM2V5eXmKjY2t8mvbbDbZbLYK5UFBQfV6gNR3+3DGeHsfY+5djLf3MebeZ5Uxd7ePlr9hwTRNSfaZsm7duqlp06bKycmpUC8nJ0fdu3dXcHCwpIvXul1a9+jRozpx4oTT8iMAAAD+wtLh7eTJk9q4caP69u2r4OBgBQYGasSIEcrMzNSZM2cc9b7//ntlZWUpJSXFUZacnKzg4GCtXr3aqc3Vq1fLMAyNGjXKS+8CAADAfZY5bTpu3Dh16tRJv/jFLxQZGalvvvlGjz/+uH788UenAJaRkaHrrrtOw4cPV3p6umOR3sjISE2bNs1RLzw8XLNnz9acOXMUHh7uWKR33rx5mjRpEmu8AQAAv2SZ8BYTE6NXX31VTz/9tM6ePavw8HBdf/31euGFF3Tdddc56kVHR2vHjh168MEHNWbMGAUGBurGG2/UkiVLnJ6uIEmzZs1Ss2bNtGLFCi1ZskRt27ZVenq6Zs2a5e23BwAA4BbLhLf09HSlp6e7VTc2NlbvvvuuW3XT0tKUlpZWl64BAAB4jaWveQMAAGhsCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAAAALITwJuns2bOaOnWq2rVrp+DgYPXt21evvPKKr7sFAABQQaCvO+APUlJSlJ2drcWLF+vKK6/USy+9pNtuu00XLlzQuHHjfN09AAAAh0Yf3jZt2qRt27Y5ApskJSYm6sCBA/rzn/+sW265RQEBAT7uJQAAgF2jP226fv16hYWFaezYsU7lqampOnLkiHbt2uWjngEAAFTU6Gfe9uzZo//4j/9QYKDzUMTExDj2//KXv6zwuqKiIhUVFTm2T506JUnKy8tTcXGxx/tZXFysgoIC5ebmKigoyOPtwxnj7X2MuXcx3t7HmHuf1cb8zJkzkiTTNKus1+jDW25urq644ooK5eHh4Y79rixatEgZGRkVyrt27erZDgIAgEblzJkzatGiRaX7G314kyTDMGq8b8aMGXrggQcc2xcuXFBeXp4iIiKqbK+2Tp8+rY4dO+rgwYNq3ry5x9uHM8bb+xhz72K8vY8x9z6rjblpmjpz5ozatWtXZb1GH94iIiJczq7l5eVJujgDdymbzSabzeZU1rJlS4/371LNmze3xAHYUDDe3seYexfj7X2MufdZacyrmnEr0+hvWOjdu7e++uorlZSUOJXn5ORIknr16uWLbgEAALjU6MPb6NGjdfbsWf397393Kl+zZo3atWun/v37+6hnAAAAFTX606a//vWvNWTIEN199906ffq0unfvrpdffllbtmzR2rVr/WaNN5vNpoceeqjCqVrUD8bb+xhz72K8vY8x976GOuaGWd39qI3A2bNnNWvWLL322mvKy8tTdHS0ZsyYoVtvvdXXXQMAAHBCeAMAALCQRn/NGwAAgJUQ3gAAACyE8FYPzp49q6lTp6pdu3YKDg5W37599corr9S4ndmzZ8swDJfLlSQkJMgwjAofycnJFeoWFxcrIyNDXbp0kc1mU3R0tJYvX16r9+av/GnM9+/f77KeYRi16pM/8sZ4S1J+fr7mzp2rK6+8UjabTREREUpMTNQ333zjVI9j3H2eGHOOcfdVNt5VjaGrnysc4+7zxJj7+zHe6O82rQ8pKSnKzs7W4sWLdeWVV+qll17SbbfdpgsXLmjcuHFutfH5559ryZIlatOmTaV1rrjiCr344otOZa4WCr7nnnv0wgsv6JFHHtF1112nrVu3asqUKTpz5oxmzpxZo/fmr/xtzCXpvvvuq/C1e/To4VZf/J03xvvs2bNKTEzUkSNHlJ6erpiYGJ06dUofffSRCgoKnOpyjHt/zCWO8epUNd5RUVH6+OOPK5Rv2LBBjz76qEaPHu1UzjHu/TGX/PgYN+FRb7/9tinJfOmll5zKhwwZYrZr184sKSmpto3i4mKzb9++Zlpamjlw4EDz6quvrlCnsvJL7dmzxzQMw1y4cKFT+Z133mk2bdrUzM3NrbYNf+dvY75v3z5TkvnYY4+5/yYsxFvjPWXKFDM0NNT89ttvq2yLY9z7Y84x7pnxdiUhIcEMCQkxT5065SjjGPf+mPv7Mc5pUw9bv369wsLCNHbsWKfy1NRUHTlyRLt27aq2jcWLFysvL08LFiyoc382bNgg0zSVmppaoT/nzp3Tli1b6vw1fM3fxryh88Z4FxQU6Nlnn9XYsWN1xRVXVNkWx7j3x7yh89XPlG+//VY7d+7UzTff7PQoJ45x74+5vyO8ediePXv0H//xHwoMdD4jHRMT49hflS+//FLz58/XU089pbCwsCrrfvvttwoPD1dgYKC6deumWbNm6dy5cxX606pVK7Vt27ZW/bECfxvzMosXL1aTJk0UEhKi66+/Xm+++WYN3pX/8sZ4f/bZZ8rPz1ePHj1099136/LLL1eTJk30i1/8Qm+//XaF/nCMe3fMy3CMu1aTnynlPffcczJNU5MmTarQH45x7455GX89xglvHpabm+vyYfZlZbm5uZW+9sKFC5o4caJSUlI0bNiwKr/O9ddfryeeeEJ///vf9eabb2rYsGH6z//8TyUnJ+vChQvV9ic0NFRNmjSpsj9W4W9jbrPZdOedd+qpp57Se++9p2effValpaUaOXKknn322Vq+S//hjfE+fPiwJOnRRx9VTk6Onn/+ea1fv17NmzfXiBEjtHXr1mr7wzFuVx9jzjHumZ8p5ZWWlmrNmjWKjo7Wr371K7f6wzFuVx9j7u/HODcs1APDMGq174knntA333zjVrKfP3++0/awYcPUpUsX/elPf9Ibb7zhdOFlbftjJf405lFRUXrmmWec6o4dO1b9+/dXenq6JkyYUOGvS6up7/EuC8NNmjTR5s2b1axZM0lSYmKievTooUceeURDhw6tc3+sxJ/GnGPcMz9TytuyZYsOHz6sxx57zKP9sRJ/GnN/P8aZefOwiIgIl38h5OXlSZLLvywk6fvvv9fcuXP10EMPqUmTJvrpp5/0008/qaSkRBcuXNBPP/1U6em5MuPHj5ckffLJJ9X2Jz8/X+fPn6+0P1bib2PuSlBQkG655Rbl5uZWWObCarwx3hEREZKkX/7yl44QIUkhISEaOHCgdu/eXW1/OMbrb8xd4Riv28+UlStXKigoSLfffrvb/eEYr78xd8WfjnHCm4f17t1bX331lUpKSpzKc3JyJKnStZW+++47nTt3TlOmTNHll1/u+Pjwww/11Vdf6fLLL9eMGTPc6sNll138tvbu3VvHjx/X0aNHa9QfK/G3Ma+M+fOT6Nyp68+8Md5l17m4Ypomx/jPfDXmVdWTOMZr+jPl2LFj2rhxo37729+qdevWLvvDMe7dMa+M3xzjvrrNtaHatGmTKcl85ZVXnMqTk5OrvN355MmTZlZWVoWPPn36mF26dDGzsrLMb775psqv/eijj5qSzA0bNjjKym4xX7x4sVPdP/7xjw3mFnN/G3NXzp8/b/bt29eMjIx065Z3f+at8Y6LizMjIiKcbt/Pz883o6KizEGDBjnKOMa9P+aucIzX/mfKY489ZkoyN23a5LJdjnHvj7kr/nSME97qwZAhQ8zLL7/cfOaZZ8z33nvPvPPOO01J5tq1ax11Jk6caAYEBJj79++vsi1Xa9W8//775tChQ82nn37afOedd8w333zTvPvuu82AgADzxhtvNEtLS53qT5o0ybTZbOZjjz1m7tixw5w5c6ZpGIa5YMECz71pH/OnMb///vvNe++913z55ZfNrKws8/nnnzevu+46U5K5atUqj75vX6nv8TZN0/zwww/NJk2amAMGDDDXr19vbtiwwYyPjzeDgoLMjz76yKkux7idt8acY9yuruNdJjo62uzYsWOFn93lcYzbeWvM/f0YJ7zVgzNnzphpaWlm27ZtzSZNmpgxMTHmyy+/7FTnjjvuMCWZ+/btq7ItVwfgN998Yw4bNsxs3769abPZzODgYLN3797mggULzMLCwgptnD9/3nzooYfMTp06mU2aNDGvvPJK869//Wud36c/8acxX7lypdmvXz8zPDzcDAwMNC+//HJz6NCh5tatWz3yXv1BfY93mQ8++MAcOHCgGRISYoaEhJg33nij+eGHH1aoxzFu560x5xi388R4f/jhh6Ykc+7cuVW2wTFu560x9/dj3DDNn0/gAgAAwO9Z+6pSAACARobwBgAAYCGENwAAAAshvAEAAFgI4Q0AAMBCCG8AAAAWQngDAACwEMIbAACAhRDeAPiF/fv3yzAMrV692uNtb9++Xb/4xS8UGhoqwzC0YcMGrV69WoZhaP/+/R7/euV16dJFEyZMqNevYQVffvml5s2bV+/jDTQGgb7uAADUJ9M0dfPNN+vKK6/Um2++qdDQUF111VUqKSnRxx9/rKioKF93sVH48ssvlZGRoYSEBHXp0sXX3QEsjfAGoEE7cuSI8vLyNHr0aA0aNMhpX6tWrXzUK98qLi6WYRgKDKz4K6CgoEAhISE+6BUAd3HaFEC9+ve//63U1FT16NFDISEhat++vUaMGKGcnJxqX3v8+HHddddd6tixo2w2m1q1aqVf/epXevfdd9362vPmzVOHDh0kSQ8++KAMw3DM+rg6bZqQkKBevXopOztb8fHxCgkJ0RVXXKHFixfrwoULjnqFhYWaNm2a+vbtqxYtWig8PFxxcXF644033B+Yarz00kuKi4tTWFiYwsLC1LdvX61cudKxv7LTsQkJCUpISHBs79ixQ4Zh6IUXXtC0adPUvn172Ww2/fvf/9aECRMUFhamnJwcJSUlqVmzZo6Ae/78ec2fP1/R0dGOsU9NTdXx48edvl6XLl00fPhwbdmyRddee62aNm2q6OhoPffcc446q1ev1tixYyVJiYmJMgyj3k6RA40BM28A6tWRI0cUERGhxYsXq1WrVsrLy9OaNWvUv39//d///Z+uuuqqSl/7+9//Xrt379aCBQt05ZVX6qefftLu3buVm5vr1teeNGmS+vTpo5SUFN13330aN26cbDZbla85evSofve732natGl66KGHtH79es2YMUPt2rXT7bffLkkqKipSXl6e/vSnP6l9+/Y6f/683n33XaWkpGjVqlWOerU1d+5cPfLII0pJSdG0adPUokUL7dmzRwcOHKh1mzNmzFBcXJyefvppXXbZZWrdurUke0j77W9/qz/+8Y9KT09XSUmJLly4oJEjR+qDDz7Q9OnT9ctf/lIHDhzQQw89pISEBP3v//6vmjZt6mj7H//4h6ZNm6b09HS1adNGzz77rP7whz+oe/fuuuGGG/Sb3/xGCxcu1MyZM7VixQpde+21kqRu3brVaZyARssEAC8qKSkxz58/b/bo0cO8//77HeX79u0zJZmrVq1ylIWFhZlTp06t09cra/exxx5zKl+1apUpydy3b5+jbODAgaYkc9euXU51e/bsaQ4dOrTK91RcXGz+4Q9/MK+55hqnfZ07dzbvuOMOt/v73XffmQEBAebvfve7KutV1u7AgQPNgQMHOrazsrJMSeYNN9xQoe4dd9xhSjKfe+45p/KXX37ZlGT+/e9/dyrPzs42JZlPPvmkUz+Cg4PNAwcOOMrOnTtnhoeHm3/84x8dZevWrTMlmVlZWVW+LwDV47QpgHpVUlKihQsXqmfPnmrSpIkCAwPVpEkTffPNN/rqq6+qfG2/fv20evVqzZ8/X5988omKi4vrvb9t27ZVv379nMpiYmIqzHqtW7dOv/rVrxQWFqbAwEAFBQVp5cqV1b6n6mzbtk2lpaWaPHlyndq51E033eT2vo0bN6ply5YaMWKESkpKHB99+/ZV27ZttWPHDqf6ffv2VadOnRzbwcHBuvLKK+s0UwigcoQ3APXqgQce0Jw5czRq1Ci99dZb2rVrl7Kzs9WnTx+dO3euyte++uqruuOOO/Tss88qLi5O4eHhuv3223X06NF6629ERESFMpvN5tTXzMxM3XzzzWrfvr3Wrl2rjz/+WNnZ2Zo4caIKCwvr9PXLrikru1bPUyq7qzYkJETNmzd3Kvvxxx/1008/qUmTJgoKCnL6OHr0qE6cOOFU350xA+A5XPMGoF6tXbtWt99+uxYuXOhUfuLECbVs2bLK10ZGRmrp0qVaunSpvv/+e7355ptKT0/XsWPHtGXLlnrsddXWrl2rrl276tVXX5VhGI7yoqKiOrdddgfsoUOH1LFjx0rrBQcHu/x6J06cUGRkZIXy8v2srjwyMlIRERGVjnGzZs0q7ReA+kd4A1CvDMOocJPA22+/rcOHD6t79+5ut9OpUyfde++92r59uz788ENPd7NGDMNQkyZNnILP0aNHPXK3aVJSkgICAvTUU08pLi6u0npdunTRP//5T6eyf/3rX/r6669dhreaGD58uF555RWVlpaqf//+dWqrTNkxwGwcUHeENwD1avjw4Vq9erWio6MVExOjzz77TI899li1pwVPnTqlxMREjRs3TtHR0WrWrJmys7O1ZcsWpaSkeKn3rg0fPlyZmZm65557NGbMGB08eFCPPPKIoqKi9M0339Sp7S5dumjmzJl65JFHdO7cOd12221q0aKFvvzyS504cUIZGRmS7Hfijh8/Xvfcc49uuukmHThwQP/5n//pkbXrbr31Vr344osaNmyYpkyZon79+ikoKEiHDh1SVlaWRo4cqdGjR9eozV69ekmSnnnmGTVr1kzBwcHq2rWry1OuAKpGeANQr5YtW6agoCAtWrRIZ8+e1bXXXqvMzEzNnj27ytcFBwerf//+euGFF7R//34VFxerU6dOevDBBzV9+nQv9d611NRUHTt2TE8//bSee+45XXHFFUpPT9ehQ4cc4aouHn74YfXo0UPLly/X7373OwUGBqpHjx5KS0tz1Bk3bpyOHDmip59+WqtWrVKvXr301FNPeeTrBwQE6M0339SyZcv0wgsvaNGiRQoMDFSHDh00cOBA9e7du8Ztdu3aVUuXLtWyZcuUkJCg0tJSrVq1ikeHAbVgmKZp+roTAAAAcA93mwIAAFgIp00BWJJpmiotLa2yTkBAQKV3WfpCaWmpqjrZYRiGAgICvNgjAFbEzBsAS1qzZk2FNcgu/di5c6evu+mkW7duVfa37LmiAFAVrnkDYEm5ubnat29flXWuuuoqv1qTLCcnp8q14Jo1a1bls14BQCK8AQAAWAqnTQEAACyE8AYAAGAhhDcAAAALIbwBAABYCOENAADAQghvAAAAFkJ4AwAAsJD/D4iyzzR5UyzcAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0035\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3000])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.475 - 0.500 A" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.475 , 0.4759, 0.4768, 0.4777, 0.4786, 0.4795, 0.4804, 0.4813,\n", " 0.4822, 0.4831, 0.484 , 0.4849, 0.4858, 0.4867, 0.4876, 0.4885,\n", " 0.4894, 0.4903, 0.4912, 0.4921, 0.493 , 0.4939, 0.4948, 0.4957,\n", " 0.4966, 0.4975, 0.4984, 0.4993, 0.5002, 0.5011, 0.502 ]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABMMElEQVR4nO3de1xVZaL/8e9WcCPgpQ1e0LylJmMqFscLTSZmEpWOSlrmWImjzW+y0PKM4TUoRZvs4nGsjicT08qyxCbzhojOTJkxdWbCyqYpL6ljCnhHEHT9/uCwY8vmvm8LPu/Xi5futZ/97Gc9LNb+rmc9a22LYRiGAAAAYAqNvN0AAAAAVB/hDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmIjXw9vf//533X333erYsaOaNm0qm82mqKgorV27tlzZL774QrfffruCg4PVsmVLxcXF6YcffnBa77JlyxQeHi6r1aouXbooOTlZRUVF5cqdOHFCEydOVGhoqAIDAxUVFaWMjAyXrycAAIAreD28nT59Wh06dFBKSoo2b96sN954Q507d9YDDzygBQsW2Mvt379f0dHRunTpkt599129/vrr+uc//6lBgwbp5MmTDnUuXLhQ06ZNU1xcnLZt26ZHHnlEKSkpmjp1qkO5wsJCDR06VBkZGVq6dKk++OADtWnTRrGxsdq9e7dH1h8AAKAmLL763aYDBw7UsWPHdPjwYUnSvffeq8zMTH3//fdq3ry5JOnQoUPq3r27Hn/8cT377LOSpNzcXF177bV68MEH9d///d/2+lJSUjR37lzt27dPPXv2lCS9/PLLmjp1qj755BNFRUVJkoqLixUREaHg4GDt3bvXk6sMAABQJa+PvFUkNDRUfn5+kkoC1aZNm3TPPffYg5skderUSUOGDFFaWpp92datW1VQUKD4+HiH+uLj42UYhjZu3GhflpaWph49etiDmyT5+flpwoQJ+uyzz3T06FE3rR0AAEDt+Hm7AaWuXLmiK1eu6NSpU1q/fr22bdumP/7xj5Kk77//XhcvXlSfPn3Kva5Pnz5KT09XQUGBAgICtG/fPklS7969HcqFhYUpNDTU/rwk7du3T4MGDXJapyR99dVXat++vdP2FhYWqrCw0KH9eXl5CgkJkcViqeHaAwCAhs4wDJ07d07t2rVTo0YVj6/5THh75JFH7Kc5mzRpov/6r//Sb3/7W0klp0IlyWazlXudzWaTYRg6deqUwsLClJubK6vVqqCgIKdlS+sqrbeiOsu+rzOLFi1ScnJyDdYQAACgaj/++KOuvfbaCp/3mfA2e/ZsTZ48WSdOnNCHH36oRx99VBcuXNB//ud/2stUNqJV9rnqlqtp2bJmzZqlJ554wv74zJkz6tixow4cOKBmzZpV+LraKioqUmZmpoYMGSJ/f3+X1w/62FPoZ/ejjz2Dfna/htbH586dU5cuXarMET4T3jp27KiOHTtKku666y5JJQHpoYceUkhIiCTnI2F5eXmyWCxq2bKlJCkkJEQFBQXKz89XYGBgubKRkZH2xyEhIRXWKTkf6StltVpltVrLLbfZbA7z8lylqKhIgYGBCgkJaRAbsDfQx55BP7sffewZ9LP7NbQ+Ll3HqqZf+ewFC/3791dxcbF++OEHde3aVU2bNlV2dna5ctnZ2erWrZsCAgIk/TzX7eqyx48fV05Ojnr16mVf1rt37wrrlORQFgAAwBf4bHjLzMxUo0aNdN1118nPz08jRozQhg0bdO7cOXuZw4cPKzMzU3FxcfZlsbGxCggIUGpqqkN9qampslgsGjVqlH3Z6NGjtX//fodbghQXF2vt2rUaMGCA2rVr57b1AwAAqA2vnzZ9+OGH1bx5c/Xv319t2rRRTk6O1q9fr3feeUe///3v1apVK0lScnKy+vXrp+HDhysxMVEFBQWaP3++QkNDNWPGDHt9NptNc+fO1bx582Sz2RQTE6OsrCwlJSVp8uTJ9nu8SdKkSZO0fPlyjR07VosXL1br1q318ssv69tvv9WOHTs83hcAAABV8Xp4i4qK0qpVq7R69WqdPn1awcHBioiI0Jo1azRhwgR7ufDwcO3atUtPPvmkxowZIz8/P912221asmSJPeCVmjNnjpo1a6bly5dryZIlatu2rRITEzVnzhyHclarVRkZGZo5c6Yee+wx5efnq2/fvtqyZYsGDx7skfUHAACoCa+Ht/j4+HI31K1IZGRktUfEEhISlJCQUGW5Nm3aaPXq1dWqEwAAwNt8ds4bAAAAyiO8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAEAVLlyQLJaSnwsXvNsWwhsAAICJEN4AAABMhPAGAADczpdOO9bG5cs////Pf3Z87GmENwAAgEps2CCV+Wp03XWX1LlzyXJvILwBAABUYMMGacwY6ehRx+VHj5Ys90aAI7wBAAA4cfmyNG2aZBjlnytdNn2650+hEt4AAIDb+dKcser6y1+kI0cqft4wpB9/LCnnSYQ3oBrMPtEWYBuGN/nanLHq+ve/XVvOVQhvAAD4ODOHb1+cM1ZdYWGuLecqhDcAAOAWvjpnrLoGDZKuvbYkNDtjsUgdOpSU8yTCGwAAcAtfnTNWXY0bS0uXlvz/6gBX+vill0rKeRLhDQAAuIWvzhmribg46b33pHbtHJdfe23J8rg4z7fJz/NvCQAAGgJfnTNWU3Fx0u23Sy1alDzevFmKifH8iFspRt4AAIBb+OqcsdooG9RuvdV7wU0ivAEAADfx1TljZkd4M4ELF6QmTfw1atRI010iDgBo2HxxzlhtBAWVXGBhGCX/9ybmvAEAALfytTljZsfIG9zOzDeXdBX6AEBD50tzxsyO8AZUgxm/kw+uQ/gG4EsIb0AVzPqdfADgS3xpzpjZEd6ASpj5O/kAAPUT4Q2ogNm/kw8AXIWpA76F8AZUwOzfyQeUxbxNoP4gvKHeq+0RY334Tr5Sly9Lu3ZJb79d8i8f3A0L8zaB+oXwBlSgvnwn34YNJR/UQ4ZI48eX/MsHd8PBvE2g/iG8ARWoD9/JV/rBffXpXz64a8aspxyZtwnUT4Q3oAJm/04+Prhdw8ynHP/6VwvzNusJsx5AuBIXTfyM8AZUwszfyccFF3Vn9lOO9WneZkNm5gMIuAfhDahCXJz09dc/P968WTpwoGbBzRtHzXxw1019GLn0pXmbjJrUjtkPIOAehLcGgJ1m3dXlO/m8ddTsyg/uhni1an0YubzlFsP08zYbsvpwAOFKnDr+GeENcCNvHjW76oKLDRukTp0a3tWq9WHk0pfmbfLBW3P14QDCVdLSLJw6LoPwBriJt4+aXfHBXV9O2dRm5NCXTjnWhS/M22TOVu3UhwMIV9izJ0zjxjU2/X7IlQhvqPe8dcTvC0fNpR/c7ds7Lq/OB7crw2fZ8LR7t8Wjoy61vc9dfbhVTClXzNusrfpyAOAN9eUAoi4uX5Zee603p46vQngzgbIb5V//6tkPPrPz5hG/rxw1x8VJBw9KmZnSW2+V/FudD25Xhc+rw9OwYX56+OEYpaVVkIpcqC73ufOlU46uUJd5m7Xl7dHnsrw997c271+fDiBq669/tSg3t6kk553QkE4dl0V483FXh48RI/w43VBN3j7i96Wj5saNpeho6f77S/6tzge3K8JnReEpNzdA48Y1duvvwBXBwRdOOZqZL4w+m1l9O4CoDV85CPY1hDcf5qrw0RAnCvvCEb/Zj5rrGj4r+x2UHkW783fgquDgzVOOZudLH7xm3Q829AMIXzoI9iWENx/lqvDhCxOF67rTrM3pBl844jf7UXNdw2fVvwOLW38HrgwO3jjlWB/4ygevL+wH66IhH0DccouhkJCLslicHgX6/EGwuxDefJQrwoe3TxuWtsEbO01fOeI381FzXcOnt38HvhIcGjJfGH32hf2gKzTUA4jGjaXJk7MlmfMg2F0Ibz6qrh98vnDa0Js7TVd/cAcFlfSbYZT8vybMfNRcl6tVvR2efCE4NHTeHn125X7Q2xc81FVd2+/N085RUf/WunWXTXkQ7C6ENx9V1w8+b5829HZ49LUPbjMfNdf2atWqfweGW38H3g4OKOHN0Wdv7wfrC1847Tx6tFHng2CzB/CyCG8+qq7hw9unrLy90+SD27Vqc7VqZb8DqSTBu/t3UJeRQziqy1ekeWv02dv7wbLMesGEL512NvNBsKsR3nxUXcOHt09Z+cJO08zzzeqLisJTaOhFrVt32SO/g9qOHOJntb3RcVnNm/889eDOOz3zwevt/WApXxi5qg1vn0FBxQhvPqwu4cPbpw19Zadp5vlm9cXV4Sk9vVj//d/pGj3a+dVj7lCbkcOy6jLn0ezqcqNjb/P2flDyrZGrmvL2GZSrNeS/w6sR3nzc1eHjww+LqxU+vH3a0Bd2mqUYave+suFp8GCD34FJmH3kxdv7QbP3ny+cQYFzhDcTKLtjueWW6n/wefO0obd3mgDqztdGXmrDVfvB2sxZM3v/+coZFJRHeKvnvHnakDlngLnVl5GXuu4HK5qzVtX385q9/3zpDAoceT287dy5U5MmTVJ4eLiCgoLUvn17jRw5Up9//rlDuYkTJ8pisZT7CQ8Pd1rvsmXLFB4eLqvVqi5duig5OVlFRUXlyp04cUITJ05UaGioAgMDFRUVpYyMDLesq7d487Qhc84A86pPIy+13Q9WNmdt3LjG2rOn4pU3e/9xBsV3eT28vfLKKzp48KCmTZumzZs3a+nSpTpx4oQGDhyonTt3OpRt2rSp9uzZ4/DzzjvvlKtz4cKFmjZtmuLi4rRt2zY98sgjSklJ0dSpUx3KFRYWaujQocrIyNDSpUv1wQcfqE2bNoqNjdXu3bvdut4NCXPOUFd1uU0Faq8+jbzUZrJ7deasrVzZq8LtsT70H2dQfJThZT/99FO5ZefOnTPatGljDB061L7soYceMoKCgqqsLycnxwgICDAefvhhh+ULFy40LBaL8dVXX9mXLV++3JBkfPLJJ/ZlRUVFRs+ePY3+/fvXaD3OnDljSDLOnDlTo9dVx/nzpbscwzh16lKdXn/+vMub5/b399TrL126ZGzcuNG4dKnmfeyqNjQENe3n9983jGuv/bn/pJLH77/v5oaamCu35fffNwyLpeSn7O+gdFl9/j1kZjquc0U/6elFFdbhqv7z9n70zJmfX795s2EUF9e8jtpw5bZshv1wdbOE10feWrduXW5ZcHCwevbsqR9//LHG9W3dulUFBQWKj493WB4fHy/DMLRx40b7srS0NPXo0UNRUVH2ZX5+fpowYYI+++wzHb16nBzwkvp0Z/CaMPNtKsqq68ihN3//DflGx66Ys1ZfRq44g+Jb/LzdAGfOnDmjL774QrfddpvD8osXL6pt27Y6efKkwsLCNGrUKD399NOy2Wz2Mvv27ZMk9e7d2+G1YWFhCg0NtT9fWnaQk/HqPn36SJK++uortb96j/V/CgsLVVhYaH989uxZSVJRUZHTuXV1UVKdf5n6Pfv6Cxeka64pef2pU0U1vr+Ot9vfpIl06dLV9Tl7nyKHf12pum2oSF37wJdUt58vX5YSEvz+7/SU43knwyj5eq1p06S77ir26Q+StDSLnniisY4e/Xkd2rc39MILl6t9r7ua/v5dvS2PGFEySf+vf7Xo3/8umaNVeuW7p7bFuu6HaqNVK4uq8zHZqlWxiooq/l2OGCENHiyFhpa0/8MPi3X77TXrP2/vR721D3LltmyG/Wh119Mnw9vUqVN14cIFzZkzx74sIiJCERER6tWrlyRp9+7devHFF5WRkaGsrCwFBwdLknJzc2W1WhXk5C/bZrMpNzfX/jg3N9ch+JUtV/p8RRYtWqTk5ORyy7dv367AwMBqrmn1FBQ0ljRcUskFHgEBNTtsL/v6bdu2me71+fk/v/6FF/6mvn1PuPXDOj093X2V11Jd+9AXVdXP2dkhOnr0lgqfNwyLjhyRlizZq969K/5b9aY9e8L07LP9yi0/elS6777GevLJLEVFVT28U9u/AXdsy82blwSpbdtcXnWlvPE3cPmyFBISo9zcAF19AFHCUGjoReXnp2vz5srrKtv+Cxe2ats2c+2Hvb0PcsW27O11qI78/PxqlbMYhrOpmN4zb948LViwQMuWLdOjjz5aadn3339fY8aM0QsvvKDHH39ckvTwww9rzZo1unjxYrnyPXr0UJcuXbR161ZJUpMmTfSb3/xGr7zyikO5PXv26Oabb9bbb7+tcePGOX1vZyNvHTp0UE5Ojpo3b16jda5K2SPOEyfy1bKlv0vrr8n71+aIty6vT0uz6PHHG+vYsdqPWlRXUVGR0tPTNWzYMPn7e7aPq+KNUQd3qW4/r1tn0YMPVn18+cYbxRo3zqd2Y5JKPvi7dfP7v6sUy3/wWyyG2reXvvuu8pHD2vwN+PK2XFve+htIS7No3LiSX5Bh/Pw7sFhK+n7mzCzNn9+ryn725n7UF15fW67cls2wHz179qxCQ0N15syZSrOET428JScna8GCBVq4cGGVwU2SRo8eraCgIH366af2ZSEhISooKFB+fn65EbC8vDxFRkY6lHU2upaXlydJTkflSlmtVlmt1nLL/f39Xb6zLFudO+qv+ft75vUbNkjjxpW/0uvYMYvGjfNz23wRb/RxVer6O/BFVfVzhw7Vq6dDBz+f7I+PPy5/e4mySkcOP/3UX9HRzsvU9W/AF7fl2vLW38C990p+flJCguPv89prLVqypFhW67/l739jlf1c1/a3bFl2O6j5yntrP+4qrtiWG5WZ5b9nj79iYnxv7l5119HrFyyUSk5OVlJSkpKSkjR79uxqv84wDDUq8xspneuWnZ3tUO748ePKycmxn3YtLXt1ubKvLVsWnmX2r5Vxtdrc3d3szH6bhbpOdudvwHdUdL9KT34/L+qmohstm+Wip6v5RHh75plnlJSUpLlz5+qpp56q9uvee+895efna+DAgfZlsbGxCggIUGpqqkPZ1NRUWSwWjRo1yr5s9OjR2r9/v/bu3WtfVlxcrLVr12rAgAFqd/XlQfAYs3+tjCvVt51OdZn9BqF1vUErfwO+xexXWzbEA8BSld1o2UxXrZfl9dOmzz//vObPn6/Y2FjdfffdDqdAJWngwIE6dOiQxo8fr3Hjxqlbt26yWCzavXu3XnrpJd1www2aPHmyvbzNZtPcuXM1b9482Ww2xcTEKCsrS0lJSZo8ebJ6lvkUnDRpkpYvX66xY8dq8eLFat26tV5++WV9++232rFjh8f6AOWZ/WtlXKV0p3P16EvpTsdMtxqojdLbLEyb5hhkrr22JLj58rqXjhwePep89MxiKXm+opFD/gbgKhs2lJz2LXXXXSXb3tKlvv035ApVjWBbLCUj2CNHmiuQez28ffjhh5JK7s9WeiFBWYZhqHnz5mrTpo1eeOEF/fTTT7p8+bI6deqkhIQEzZ49u9yVpXPmzFGzZs20fPlyLVmyRG3btlViYqLD1atSyby1jIwMzZw5U4899pjy8/PVt29fbdmyRYMHD3bfSqNKZv9aGVeorzudmoqLK1nHv/xF9ttUDBrk++tcOnI4ZkzJ76rs77E6I4f8DdQvpd/w4GkN/QCwJiPYFc099UVeD2+7du2qssw111yjDTUc10xISFBC2UONCrRp00arV6+uUd1wv7qOWtQH9XWnUxuNG5tzHesycsjfAOqKA8D6O4LtE3PegKuZfb6TK9TXnU5DExcnHTwoZWZKb71V8u+BA1WPdvA3gLpi3mT9HcEmvJlAUJB06VKRNm78wCfvS+Mu9eVrZWqrvu50GqLSkcP77y/5t7qBq6H/DZTl7Qn3tflie2/jAND8V61XhPAGn1bRJfoN4UOrvu50UDMN+W+gVEO94rquOACsvyPYhDf4PLNfol9b9XWng5prqH8DUv28zYOncABYoj6OYBPeAB9WH3c6QHVxo+K64QDwZ/VtBJvwhip5e65JQ1ffdjqoOTPOt3IFJtzXHQeAP6tPI9iEN1TKFXNNGuoHjyvVp50OUF1MuHcNVxwAsh/3LYQ3VIi5JgC8iQn3rsMBYP1CeINTzDUB4G1MuAecI7zBKeaa+BZOWaAhYsI94BzhDU4x1wSAL2DCPVCe17/bFL6JuSYAfEVcnHT77VKLFiWPN2+WYmIYcUPDxcgbnGKuCQBfwoR74GeENzjFXBMAAHwT4Q0VYq4JAAC+hzlvqBRzTQAA8C2MvKFKzDUBAMB3MPIGn1d6jzMAAEB4AwAADUB9GgjgtCkAAICJEN4AAABMhNOmAACfV59OeQF1xcgbAACAiTDyBgBAPcfIZf3CyBsAAICJEN4AAABMhPAGAABgIoQ3AAAAE+GCBVSJia4AAPgORt4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJeD287dy5U5MmTVJ4eLiCgoLUvn17jRw5Up9//nm5sl988YVuv/12BQcHq2XLloqLi9MPP/zgtN5ly5YpPDxcVqtVXbp0UXJysoqKisqVO3HihCZOnKjQ0FAFBgYqKipKGRkZLl9PAAAAV/B6eHvllVd08OBBTZs2TZs3b9bSpUt14sQJDRw4UDt37rSX279/v6Kjo3Xp0iW9++67ev311/XPf/5TgwYN0smTJx3qXLhwoaZNm6a4uDht27ZNjzzyiFJSUjR16lSHcoWFhRo6dKgyMjK0dOlSffDBB2rTpo1iY2O1e/duj6w/AABATfh5uwHLly9X69atHZbFxsaqW7duSklJ0W233SZJmj9/vqxWqzZt2qTmzZtLkiIjI9W9e3ctWbJEzz77rCQpNzdXCxYs0JQpU5SSkiJJio6OVlFRkebOnavp06erZ8+ekqSVK1dq3759+uSTTxQVFSVJGjJkiCIiIjRz5kzt3bvXI30AAABQXV4febs6uElScHCwevbsqR9//FGSVFxcrE2bNumee+6xBzdJ6tSpk4YMGaK0tDT7sq1bt6qgoEDx8fEOdcbHx8swDG3cuNG+LC0tTT169LAHN0ny8/PThAkT9Nlnn+no0aOuWk0AAACX8PrImzNnzpzRF198YR91+/7773Xx4kX16dOnXNk+ffooPT1dBQUFCggI0L59+yRJvXv3digXFham0NBQ+/OStG/fPg0aNMhpnZL01VdfqX379k7bWFhYqMLCQvvjs2fPSpKKioqczq2rq9I63VE3StDHnkE/ux997Bn0s/s1tD6u7nr6ZHibOnWqLly4oDlz5kgqORUqSTabrVxZm80mwzB06tQphYWFKTc3V1arVUFBQU7LltZVWm9FdZZ9X2cWLVqk5OTkcsu3b9+uwMDAKtaw9tLT091WN0rQx55BP7sffewZ9LP7NZQ+zs/Pr1Y5nwtv8+bN05tvvqlly5YpMjLS4TmLxVLh68o+V91yNS1b1qxZs/TEE0/YH589e1YdOnRQTEyMw6ldVykqKlJ6erqGDRsmf39/l9cP+thT6Gf3o489g352v4bWx6Vn8ariU+EtOTlZCxYs0MKFC/Xoo4/al4eEhEhyPhKWl5cni8Wili1b2ssWFBQoPz+/3AhYXl6eQyAMCQmpsE7J+UhfKavVKqvVWm65v7+/Wzcwd9cP+thT6Gf3o489g352v4bSx9VdR69fsFAqOTlZSUlJSkpK0uzZsx2e69q1q5o2bars7Oxyr8vOzla3bt0UEBAg6ee5bleXPX78uHJyctSrVy/7st69e1dYpySHsgAAAL7AJ8LbM888o6SkJM2dO1dPPfVUuef9/Pw0YsQIbdiwQefOnbMvP3z4sDIzMxUXF2dfFhsbq4CAAKWmpjrUkZqaKovFolGjRtmXjR49Wvv373e4JUhxcbHWrl2rAQMGqF27dq5bSQAAABfw+mnT559/XvPnz1dsbKzuvvtuffrppw7PDxw4UFLJyFy/fv00fPhwJSYmqqCgQPPnz1doaKhmzJhhL2+z2TR37lzNmzdPNptNMTExysrKUlJSkiZPnmy/x5skTZo0ScuXL9fYsWO1ePFitW7dWi+//LK+/fZb7dixwzMdAAAAUANeD28ffvihpJL7s23durXc84ZhSJLCw8O1a9cuPfnkkxozZoz8/Px02223acmSJWrVqpXDa+bMmaNmzZpp+fLlWrJkidq2bavExET71aulrFarMjIyNHPmTD322GPKz89X3759tWXLFg0ePNhNawwAAFB7Xg9vu3btqnbZyMjIao+IJSQkKCEhocpybdq00erVq6vdBgAAAG/yiTlvAAAAqB7CGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYSK3D29NPP61jx445fe7f//63nn766Vo3CgAAAM7VOrwlJyfryJEjTp87duyYkpOTa90oAAAAOFfr8GYYRoXPnT9/Xv7+/rWtGgAAABXwq0nhL7/8Un//+9/tjzdv3qz9+/c7lLl48aLefPNNde3a1SUNBAAAwM9qFN7S0tLsp0MtFkuF89qaNm2qVatW1b11AAAAcFCj8Pbwww9r+PDhMgxD/fv316pVq9SrVy+HMlarVV27dlXTpk1d2lAAAADUMLyFhYUpLCxMkpSZmanIyEgFBwe7pWEAAAAor0bhrazBgwe7sh0AAACohlqHN0lau3at3nrrLR06dEgXL150eM5isej777+vU+MAAADgqNbh7dlnn9WsWbPUs2dPRUREyGq1urJdAAAAcKLW4W3FihWaOnWqli1b5sr2AAAAoBK1vknv8ePHNXr0aFe2BQAAAFWodXiLjIxkThsAAICH1Tq8vfDCC3r++ef1+eefu7I9AAAAqESt57zFx8crNzdX/fv3V9u2bRUSEuLwvMVi0T/+8Y86NxAAAAA/q3V4CwkJUWhoqCvbAgAAgCrUOrzt2rXLhc0AAABAddR6zhsAAAA8r9Yjb3/+85+rLHPrrbfWtnoAAAA4UevwFh0dLYvFUmmZy5cv17Z6AAAAOFHr8JaZmVluWU5Ojj744AN9/PHHWr58eZ0aBgAAgPJqHd4GDx7sdPk999yj//f//p+2bt2q2NjYWjcMAAAA5bnlgoXRo0dr3bp11Sp77tw5zZw5UzExMWrVqpUsFouSkpLKlZs4caIsFku5n/DwcKf1Llu2TOHh4bJarerSpYuSk5NVVFRUrtyJEyc0ceJEhYaGKjAwUFFRUcrIyKjR+gIAAHhKrUfeKnPq1CkVFhZWq2xubq5WrFihiIgIjRo1Sq+99lqFZZs2baqdO3eWW3a1hQsXat68eUpMTFRMTIyysrI0d+5cHT16VCtWrLCXKyws1NChQ3X69GktXbpUrVu31vLlyxUbG6sdO3ZUOLoIAADgLbUOb4cPHy63rLCwUF9++aVmzZqlgQMHVqueTp066dSpU7JYLMrJyak0vDVq1KjKenNzc7VgwQJNmTJFKSkpkkourigqKtLcuXM1ffp09ezZU5K0cuVK7du3T5988omioqIkSUOGDFFERIRmzpypvXv3VmsdAAAAPKXWp007d+6sLl26OPyEh4dr7NixCggI0B//+Mdq1VN6+tNVtm7dqoKCAsXHxzssj4+Pl2EY2rhxo31ZWlqaevToYQ9ukuTn56cJEybos88+09GjR13WLgAAAFeo9cjb66+/Xi50BQQEqHPnzurXr58aNXL9dLqLFy+qbdu2OnnypMLCwjRq1Cg9/fTTstls9jL79u2TJPXu3dvhtWFhYQoNDbU/X1p20KBB5d6nT58+kqSvvvpK7du3d9qWwsJCh1PDZ8+elSQVFRU5nVtXV6V1uqNulKCPPYN+dj/62DPoZ/draH1c3fWsdXibOHFibV9aKxEREYqIiFCvXr0kSbt379aLL76ojIwMZWVlKTg4WFLJaVOr1aqgoKByddhsNuXm5tof5+bmOgS/suVKn6/IokWLlJycXG759u3bFRgYWLOVq4H09HS31Y0S9LFn0M/uRx97Bv3sfg2lj/Pz86tVrs4XLJw7d0579uxRbm6uQkNDNXDgQDVr1qyu1Zbz+OOPOzweNmyYbrzxRo0ZM0b/8z//4/B8Zadhr36uJmXLmjVrlp544gn747Nnz6pDhw6KiYlR8+bNK3xdbRUVFSk9PV3Dhg2Tv7+/y+sHfewp9LP70ceeQT+7X0Pr49KzeFWpU3hbsmSJkpOTlZ+fL8MwJElBQUFKTk52CDbuMnr0aAUFBenTTz+1LwsJCVFBQYHy8/PLjYDl5eUpMjLSoayz0bW8vDxJcjoqV8pqtcpqtZZb7u/v79YNzN31gz72FPrZ/ehjz6Cf3a+h9HF117HWE9PeeOMNzZw5U7feeqvWrVunv/zlL3rnnXc0ePBg/f73v9eaNWtqW3WNGIbhML+udK5bdna2Q7njx48rJyfHftq1tOzV5cq+tmxZAAAAX1Dr8Pbiiy9q/Pjx+uijjzR27Fj98pe/1NixY7Vp0ybdf//9evHFF13ZTqfee+895efnO9w+JDY2VgEBAUpNTXUom5qaKovFolGjRtmXjR49Wvv373e4JUhxcbHWrl2rAQMGqF27du5eBQAAgBqp9WnT/fv3a9GiRU6fmzBhgkaPHl3turZs2aILFy7o3LlzkqSvv/5a7733niTprrvu0smTJzV+/HiNGzdO3bp1k8Vi0e7du/XSSy/phhtu0OTJk+112Ww2zZ07V/PmzZPNZrPfpDcpKUmTJ0+23+NNkiZNmqTly5dr7NixWrx4sVq3bq2XX35Z3377rXbs2FGbbgEAAHCrWoe3pk2b2ueGXS0vL8/pNx9U5He/+50OHTpkf7x+/XqtX79eknTgwAG1aNFCbdq00QsvvKCffvpJly9fVqdOnZSQkKDZs2eXu7J0zpw5atasmZYvX64lS5aobdu2SkxM1Jw5cxzKWa1WZWRkaObMmXrssceUn5+vvn37asuWLXy7AgAA8Em1Dm+DBg1SUlKSoqOjHU4vHj9+XE8//bRuvfXWatd18ODBKsts2LChRu1LSEhQQkJCleXatGmj1atX16huAAAAb6l1eEtJSdHNN9+sbt26aejQoQoLC9O///1v7dy5U/7+/jUOWwAAAKharS9YuOGGG5SVlaWRI0cqKytLq1atUlZWlkaNGqXPPvvMYW4ZAAAAXKNO93m7/vrr9fbbb7uqLQAAAKhCjUfesrOzdeTIkQqfP3LkiNN7pwEAAKDuahTe/vznPysyMlI//fRThWV++uknRUZGatu2bXVuHAAAABzVKLwtX75cY8aMcfiKqatFRkbqvvvu02uvvVbnxgEAAMBRjcLbxx9/7PANBRX51a9+5fB9owAAAHCNGoW3kydPqn379lWWCwsL04kTJ2rdKAAAADhXo/AWFBRU4bcqlHXq1CkFBgbWulEAAABwrkbh7YYbbtDWrVurLLdlyxbdcMMNtW4UAAAAnKtReLvvvvu0cuVK7d69u8IymZmZWrVqle6///46Nw4AAACOanST3ocfflipqamKiYnR5MmTNXLkSHXp0kVSyRfIb9y4UStXrlRERISmTJnilgYDAAA0ZDUKb02aNNG2bdv0wAMP6JVXXtGrr77q8LxhGLrzzjv1xhtvqEmTJi5tKAAAAGrx9VghISHavHmzPv/8c23fvl0//vijJKljx4664447dOONN7q8kQAAAChR6+82jYyMrPRmvQAAAHC9GoW3Pn36VLusxWLRP/7xjxo3CAAAABWrUXiz2WyyWCyVljl//rw+//zzKssBAACg5moU3nbt2lXhc8XFxVqxYoWefvppWSwWjR8/vq5tAwAAwFVqdJ+3iqxfv149e/bUY489poiICH3++edas2aNK6oGAABAGXUKb7t27dKAAQN03333qXnz5tq+fbu2bdumvn37uqh5AAAAKKtW4S07O1t33XWXhg4dqtzcXL311lv629/+pqFDh7q6fQAAACijRuHtxx9/1EMPPaSbbrpJn3/+uV566SV98803GjdunLvaBwAAgDJqdMHC9ddfr0uXLik2NlYzZ85Us2bNlJ2dXWH5m266qc4NBAAAwM9qFN4KCwslSVu2bNHWrVsrLGcYhiwWiy5fvly31gEAAMBBjcLbqlWr3NUOAAAAVEONwttDDz3krnYAAACgGlxynzcAAAB4BuENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARLwe3s6dO6eZM2cqJiZGrVq1ksViUVJSktOyX3zxhW6//XYFBwerZcuWiouL0w8//OC07LJlyxQeHi6r1aouXbooOTlZRUVF5cqdOHFCEydOVGhoqAIDAxUVFaWMjAxXriIAAIDLeD285ebmasWKFSosLNSoUaMqLLd//35FR0fr0qVLevfdd/X666/rn//8pwYNGqSTJ086lF24cKGmTZumuLg4bdu2TY888ohSUlI0depUh3KFhYUaOnSoMjIytHTpUn3wwQdq06aNYmNjtXv3bnesLgAAQJ34ebsBnTp10qlTp2SxWJSTk6PXXnvNabn58+fLarVq06ZNat68uSQpMjJS3bt315IlS/Tss89KKgmDCxYs0JQpU5SSkiJJio6OVlFRkebOnavp06erZ8+ekqSVK1dq3759+uSTTxQVFSVJGjJkiCIiIjRz5kzt3bvX3asPAABQI14febNYLLJYLJWWKS4u1qZNm3TPPffYg5tUEvyGDBmitLQ0+7KtW7eqoKBA8fHxDnXEx8fLMAxt3LjRviwtLU09evSwBzdJ8vPz04QJE/TZZ5/p6NGjdVw7AAAA1/L6yFt1fP/997p48aL69OlT7rk+ffooPT1dBQUFCggI0L59+yRJvXv3digXFham0NBQ+/OStG/fPg0aNMhpnZL01VdfqX379k7bVFhYqMLCQvvjs2fPSpKKioqczq2rq9I63VE3StDHnkE/ux997Bn0s/s1tD6u7nqaIrzl5uZKkmw2W7nnbDabDMPQqVOnFBYWptzcXFmtVgUFBTktW1pXab0V1Vn2fZ1ZtGiRkpOTyy3fvn27AgMDq16pWkpPT3db3ShBH3sG/ex+9LFn0M/u11D6OD8/v1rlTBHeSlV2erXsc9UtV9OyZc2aNUtPPPGE/fHZs2fVoUMHxcTEOJzadZWioiKlp6dr2LBh8vf3d3n9oI89hX52P/rYM+hn92tofVx6Fq8qpghvISEhkpyPhOXl5clisahly5b2sgUFBcrPzy83ApaXl6fIyEiHeiuqU3I+0lfKarXKarWWW+7v7+/WDczd9YM+9hT62f3oY8+gn92vofRxddfR6xcsVEfXrl3VtGlTZWdnl3suOztb3bp1U0BAgKSf57pdXfb48ePKyclRr1697Mt69+5dYZ2SHMoCAAD4AlOENz8/P40YMUIbNmzQuXPn7MsPHz6szMxMxcXF2ZfFxsYqICBAqampDnWkpqbKYrE43Etu9OjR2r9/v8MtQYqLi7V27VoNGDBA7dq1c9s6AQAA1IZPnDbdsmWLLly4YA9mX3/9td577z1J0l133aXAwEAlJyerX79+Gj58uBITE1VQUKD58+crNDRUM2bMsNdls9k0d+5czZs3TzabTTExMcrKylJSUpImT55sv8ebJE2aNEnLly/X2LFjtXjxYrVu3Vovv/yyvv32W+3YscOznQAAAFANPhHefve73+nQoUP2x+vXr9f69eslSQcOHFDnzp0VHh6uXbt26cknn9SYMWPk5+en2267TUuWLFGrVq0c6pszZ46aNWum5cuXa8mSJWrbtq0SExM1Z84ch3JWq1UZGRmaOXOmHnvsMeXn56tv377asmWLBg8e7P4VBwAAqCGfCG8HDx6sVrnIyMhqj4glJCQoISGhynJt2rTR6tWrq1UnAACAt5lizhsAAABKEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEzFNeNu1a5csFovTn08//dSh7BdffKHbb79dwcHBatmypeLi4vTDDz84rXfZsmUKDw+X1WpVly5dlJycrKKiIk+sEgAAQI35ebsBNZWSkqIhQ4Y4LOvVq5f9//v371d0dLT69u2rd999VwUFBZo/f74GDRqkv//972rVqpW97MKFCzVv3jwlJiYqJiZGWVlZmjt3ro4ePaoVK1Z4bJ0AAACqy3ThrXv37ho4cGCFz8+fP19Wq1WbNm1S8+bNJUmRkZHq3r27lixZomeffVaSlJubqwULFmjKlClKSUmRJEVHR6uoqEhz587V9OnT1bNnT/evEAAAQA2Y5rRpdRQXF2vTpk2655577MFNkjp16qQhQ4YoLS3Nvmzr1q0qKChQfHy8Qx3x8fEyDEMbN270VLMBAACqzXQjb1OnTtW4ceMUGBioqKgozZs3T7fccosk6fvvv9fFixfVp0+fcq/r06eP0tPTVVBQoICAAO3bt0+S1Lt3b4dyYWFhCg0NtT9fkcLCQhUWFtofnz17VpJUVFTkljlzpXUyH8996GPPoJ/djz72DPrZ/RpaH1d3PU0T3lq0aKFp06YpOjpaISEh+te//qXnnntO0dHR+uijj3THHXcoNzdXkmSz2cq93mazyTAMnTp1SmFhYcrNzZXValVQUJDTsqV1VWTRokVKTk4ut3z79u0KDAys5VpWLT093W11owR97Bn0s/vRx55BP7tfQ+nj/Pz8apUzTXi78cYbdeONN9ofDxo0SKNHj1bv3r01c+ZM3XHHHfbnLBZLhfWUfa665ZyZNWuWnnjiCfvjs2fPqkOHDoqJiXE4ZesqRUVFSk9P17Bhw+Tv7+/y+kEfewr97H70sWfQz+7X0Pq49CxeVUwT3pxp2bKlhg8frldffVUXL15USEiIJDkdNcvLy5PFYlHLli0lSSEhISooKFB+fn65kbK8vDxFRkZW+t5Wq1VWq7Xccn9/f7duYO6uH/Sxp9DP7kcfewb97H4NpY+ru46mv2DBMAxJJSNlXbt2VdOmTZWdnV2uXHZ2trp166aAgABJP891u7rs8ePHlZOT43D7EQAAAF9h6vB26tQpbdq0SX379lVAQID8/Pw0YsQIbdiwQefOnbOXO3z4sDIzMxUXF2dfFhsbq4CAAKWmpjrUmZqaKovFolGjRnloLQAAAKrPNKdNx48fr44dO+o//uM/FBoaqu+++07PP/+8fvrpJ4cAlpycrH79+mn48OFKTEy036Q3NDRUM2bMsJez2WyaO3eu5s2bJ5vNZr9Jb1JSkiZPnsw93gAAgE8yTXjr06eP3nnnHb366qs6f/68bDabbrnlFq1Zs0b9+vWzlwsPD9euXbv05JNPasyYMfLz89Ntt92mJUuWOHy7giTNmTNHzZo10/Lly7VkyRK1bdtWiYmJmjNnjqdXDwAAoFpME94SExOVmJhYrbKRkZHasWNHtcomJCQoISGhLk0DAADwGFPPeQMAAGhoCG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwJun8+fOaPn262rVrp4CAAPXt21fr1q3zdrMAAADK8fN2A3xBXFycsrKytHjxYl1//fV66623dP/99+vKlSsaP368t5sHAABg1+DD2+bNm5Wenm4PbJI0ZMgQHTp0SL///e913333qXHjxl5uJQAAQIkGf9o0LS1NwcHBGjt2rMPy+Ph4HTt2THv37vVSywAAAMpr8CNv+/bt0y9+8Qv5+Tl2RZ8+fezP33zzzeVeV1hYqMLCQvvjM2fOSJLy8vJUVFTk8nYWFRUpPz9fubm58vf3d3n9oI89hX52P/rYM+hn92tofXzu3DlJkmEYlZZr8OEtNzdX1113XbnlNpvN/rwzixYtUnJycrnlXbp0cW0DAQBAg3Lu3Dm1aNGiwucbfHiTJIvFUuPnZs2apSeeeML++MqVK8rLy1NISEil9dXW2bNn1aFDB/34449q3ry5y+sHfewp9LP70ceeQT+7X0PrY8MwdO7cObVr167Scg0+vIWEhDgdXcvLy5P08wjc1axWq6xWq8Oyli1burx9V2vevHmD2IC9iT72DPrZ/ehjz6Cf3a8h9XFlI26lGvwFC71799Y333yj4uJih+XZ2dmSpF69enmjWQAAAE41+PA2evRonT9/Xu+//77D8tWrV6tdu3YaMGCAl1oGAABQXoM/bXrnnXdq2LBh+t3vfqezZ8+qW7duevvtt7V161atXbvWZ+7xZrVa9dRTT5U7VQvXoY89g352P/rYM+hn96OPnbMYVV2P2gCcP39ec+bM0bvvvqu8vDyFh4dr1qxZGjdunLebBgAA4IDwBgAAYCINfs4bAACAmRDeAAAATITw5gbnz5/X9OnT1a5dOwUEBKhv375at25djeuZO3euLBZLuduVHDx4UBaLpcKf2NjYapWtTZt8ibv7WSr5GrTnnntOvXr1UlBQkNq0aaM777xTn3zySbmyRUVFSk5OVufOnWW1WhUeHq5ly5bVat18hS/1cX3dlj3Rx5cuXdL8+fPVpUsXNWnSRJ06ddKsWbN08eLFcmXr43Ys+VY/sy07Sk1NrbA/jh8/Xq78jh07FBUVpcDAQIWGhmrixIk6ceJEuXL1dVuWJBlwuWHDhhktW7Y0Xn31VWPnzp3G5MmTDUnGm2++We06/vd//9ewWq1GmzZtjBtuuMHhuYKCAmPPnj3lfp588klDkvHqq6/ayx44cMCQZDz22GPlyufk5Lhsnb3B3f1sGIbxwAMPGI0aNTLmzJljZGRkGOvXrzciIyMNPz8/Y+/evQ5lJ0+ebFitVuMPf/iDkZmZaSQmJhoWi8VYuHBhndfVW3ypj+vrtuyJPo6LizMCAgKMlJQUIz093Xj66aeNJk2aGCNGjChXtj5ux4bhW/3Mtuxo1apVhiRj1apV5frj0qVLDmV37dpl+Pn5GSNHjjS2b99urF271mjfvr3Rq1cvo6CgwKFsfd2WDcMwCG8u9tFHHxmSjLfeesth+bBhw4x27doZxcXFVdZRVFRk9O3b10hISDAGDx7sdCfhTHR0tBEYGGicOXPGvqx0J/Hcc8/VbEV8nCf6uaCgwGjcuLExYcIEh+XHjh0zJBkJCQn2Zfv27TMsFouRkpLiUHbKlClG06ZNjdzc3Jquotf5Wh/Xx23ZE328Z88eQ5Lx/PPPOyxPSUkxJBnbt2+3L6uP27Fh+F4/sy07Kg1vWVlZVb5Pv379jJ49expFRUX2ZR9//LEhyXj55Zfty+rrtlyK06YulpaWpuDgYI0dO9ZheXx8vI4dO6a9e/dWWcfixYuVl5enhQsXVvt9v//+e+3evVv33ntvg/gKEU/0c6NGjdSoUaNyX1XSvHlzNWrUSAEBAfZlGzdulGEYio+PL9eeixcvauvWrdVdNZ/ha31cH3mijz/++GNJ0l133eWwfPjw4ZLkcIPy+rgdS77Xz/WRK/q4KkePHlVWVpYeeOAB+fn9fJvam2++Wddff73S0tLsy+rrtlyK8OZi+/bt0y9+8QuHDUuS+vTpY3++Ml9//bUWLFigV155RcHBwdV+39dff12GYWjy5MlOn1+8eLGaNGmiwMBA3XLLLfrTn/5U7bp9kSf62d/fX4888ohWr16tjRs36uzZszp48KCmTJmiFi1aaMqUKQ7tadWqldq2bVur9vgiX+vjUvVpW/ZEH1+6dEmSyt3ktPTxl19+6dCe+rYdS77Xz6XYlh0NHz5cjRs3ls1mU1xcXLnXlD4urfPq9ylbvr5uy6Ua/DcsuFpubq6uu+66cstLv+A+Nze3wtdeuXJFkyZNUlxcXLmjt8pcvnxZq1evVnh4uH75y186PGe1WjVlyhQNGzZMYWFhOnz4sJYtW6aRI0fqf/7nfyoMe77OU/384osvqkWLFrrnnnt05coVSVLHjh21c+dOdevWzaE9pe9dVlBQkJo0aVJpe3yVr/VxfdyWPdHHPXv2lFQyMtSlSxf78r/+9a/l3qM+bseS7/Uz27Kjtm3bas6cORo4cKCaN2+u7OxsLV68WAMHDtTHH3+siIgIhzqcbaM2m61BbMulCG9uYLFYavXcCy+8oO+++67GR19bt27V0aNH9dxzz5V7LiwsTCtWrHBYNnbsWA0YMECJiYmaOHFiuSMls/BEPy9cuFBLlixRUlKSBg0apLNnz+qPf/yjhg0bpu3bt+vGG2+sc3t8mS/1cX3dlt3dx3feeae6deumJ598Um3atFG/fv306aefavbs2WrcuLEaNXI8AVMft2PJt/qZbdlRbGysw10Sbr31Vt19993q3bu35s+frw8++KBadV29vL5uyxKnTV0uJCTEaaLPy8uT5PyIQZIOHz6s+fPn66mnnlKTJk10+vRpnT59WsXFxbpy5YpOnz7t9LJ+SVq5cqX8/f314IMPVquN/v7+uu+++5Sbm6vvvvuummvmWzzRz998843mz5+v5ORkzZs3T9HR0frVr36ljz76SC1bttQTTzxRZXsuXLigS5cuVdgeX+ZrfeyM2bdlT/RxkyZNtGXLFnXs2FExMTG65pprNGbMGM2ePVvXXHON2rdvX2V7zLwdS77Xz8401G25Ip07d9Ytt9yiTz/91OE9JOejeHl5eQ7vUV+35VKENxfr3bu3vvnmGxUXFzssz87OliSn9waSpB9++EEXL17UtGnTdM0119h/Pv74Y33zzTe65pprNGvWrHKvO3HihDZt2qRf/epXat26dbXbafzft6JdfdRtFp7o53/84x8yDEP9+vVzqMPf318REREOcyZ69+6tkydPlrsnUVXt8WW+1scVMfO27Kn9Rbdu3bRnzx4dOXJEX375pU6cOKGxY8cqJydHt956q0N76tt2LPleP1ekIW7LlTEMw6EvSusorfPq9yn7HvV1W7bz1mWu9dXmzZsNSca6desclsfGxlZ6ufSpU6eMzMzMcj8RERFG586djczMTOO7774r97rnnnvOkGRs3ry52m28dOmS0bdvXyM0NLRal8j7Ik/08+7duw1JxuLFix3qKCgoMLp06WL07dvXvqz0svSry/72t7817WXpvtbHzph9W/b0/qKsxx9/3AgKCjKOHDliX1Yft2PD8L1+dqahbssV+eGHH4zg4GBj1KhRDsv79+9v9OrVy6G+0tu0vPLKK/Zl9XVbLkV4c4Nhw4YZ11xzjbFixQpj586dxpQpUwxJxtq1a+1lJk2aZDRu3Ng4ePBgpXVVdZ+38PBwo0OHDsbly5edPv/4448bjz76qPH2228bmZmZxhtvvGH069fPfkNEM3N3P1++fNno16+fERAQYMyfP9/YsWOH8f777xvR0dGGJGPNmjUO5UtvCPncc88Zu3btMmbPnm36G0L6Uh/X123ZE/uLZ5991li9erWRmZlprFu3zoiLizMaNWrk9Oap9XE7Ngzf6me2Zcc+Hjp0qJGcnGykpaUZGRkZxksvvWS0a9fOaNasmZGdne3wHpmZmYafn58xevRoIz093XjzzTeNDh06VHqT3vq2LRsG4c0tzp07ZyQkJBht27Y1mjRpYvTp08d4++23Hco89NBDhiTjwIEDldZVWXgrvTHh/PnzK3z9ypUrjf79+xs2m83w8/MzrrnmGuOOO+4wtm3bVuP18jWe6OfTp08bc+bMMX7xi18YgYGBRuvWrY3o6GinI52XLl0ynnrqKaNjx45GkyZNjOuvv974r//6rzqto7f5Uh/X123ZE32cnJxsdO3a1bBarUbLli2N2NhY489//rPTOurjdmwYvtXPbMuOfTx9+nSjZ8+eRrNmzQw/Pz+jXbt2xoQJE4xvv/3W6fts377dGDhwoBEQEGDYbDbjwQcfNH766ady5errtmwYhmExjP87yQ4AAACfZ75ZkQAAAA0Y4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAHwCQcPHpTFYlFqaqrL687IyNB//Md/KCgoSBaLRRs3blRqaqosFosOHjzo8vcrq3Pnzpo4caJb38MMvv76ayUlJbm9v4GGwM/bDQAAdzIMQ/fee6+uv/56/elPf1JQUJB69Oih4uJi7dmzR2FhYd5uYoPw9ddfKzk5WdHR0ercubO3mwOYGuENQL127Ngx5eXlafTo0Ro6dKjDc61atfJSq7yrqKhIFotFfn7lPwLy8/MVGBjohVYBqC5OmwJwq3/961+Kj49X9+7dFRgYqPbt22vEiBHKzs6u8rUnT57Uww8/rA4dOshqtapVq1b65S9/qR07dlTrvZOSknTttddKkp588klZLBb7qI+z06bR0dHq1auXsrKyNGjQIAUGBuq6667T4sWLdeXKFXu5goICzZgxQ3379lWLFi1ks9kUFRWlDz74oPodU4W33npLUVFRCg4OVnBwsPr27auVK1fan6/odGx0dLSio6Ptj3ft2iWLxaI1a9ZoxowZat++vaxWq/71r39p4sSJCg4OVnZ2tmJiYtSsWTN7wL106ZIWLFig8PBwe9/Hx8fr5MmTDu/XuXNnDR8+XFu3btVNN92kpk2bKjw8XK+//rq9TGpqqsaOHStJGjJkiCwWi9tOkQMNASNvANzq2LFjCgkJ0eLFi9WqVSvl5eVp9erVGjBggP73f/9XPXr0qPC1DzzwgL744gstXLhQ119/vU6fPq0vvvhCubm51XrvyZMnKyIiQnFxcXrsscc0fvx4Wa3WSl9z/Phx/frXv9aMGTP01FNPKS0tTbNmzVK7du304IMPSpIKCwuVl5en//zP/1T79u116dIl7dixQ3FxcVq1apW9XG3Nnz9fzzzzjOLi4jRjxgy1aNFC+/bt06FDh2pd56xZsxQVFaVXX31VjRo1UuvWrSWVhLRf/epX+u1vf6vExEQVFxfrypUrGjlypP7yl79o5syZuvnmm3Xo0CE99dRTio6O1t/+9jc1bdrUXvc//vEPzZgxQ4mJiWrTpo1ee+01/eY3v1G3bt1066236u6771ZKSopmz56t5cuX66abbpIkde3atU79BDRYBgB4UHFxsXHp0iWje/fuxuOPP25ffuDAAUOSsWrVKvuy4OBgY/r06XV6v9J6n3vuOYflq1atMiQZBw4csC8bPHiwIcnYu3evQ9mePXsad9xxR6XrVFRUZPzmN78xbrzxRofnOnXqZDz00EPVbu8PP/xgNG7c2Pj1r39dabmK6h08eLAxePBg++PMzExDknHrrbeWK/vQQw8ZkozXX3/dYfnbb79tSDLef/99h+VZWVmGJOPll192aEdAQIBx6NAh+7KLFy8aNpvN+O1vf2tftn79ekOSkZmZWel6Aagap00BuFVxcbFSUlLUs2dPNWnSRH5+fmrSpIm+++47ffPNN5W+tn///kpNTdWCBQv06aefqqioyO3tbdu2rfr37++wrE+fPuVGvdavX69f/vKXCg4Olp+fn/z9/bVy5coq16kq6enpunz5sqZOnVqneq52zz33VPu5TZs2qWXLlhoxYoSKi4vtP3379lXbtm21a9cuh/J9+/ZVx44d7Y8DAgJ0/fXX12mkEEDFCG8A3OqJJ57QvHnzNGrUKH344Yfau3evsrKyFBERoYsXL1b62nfeeUcPPfSQXnvtNUVFRclms+nBBx/U8ePH3dbekJCQcsusVqtDWzds2KB7771X7du319q1a7Vnzx5lZWVp0qRJKigoqNP7l84pK52r5yoVXVUbGBio5s2bOyz76aefdPr0aTVp0kT+/v4OP8ePH1dOTo5D+er0GQDXYc4bALdau3atHnzwQaWkpDgsz8nJUcuWLSt9bWhoqF566SW99NJLOnz4sP70pz8pMTFRJ06c0NatW93Y6sqtXbtWXbp00TvvvCOLxWJfXlhYWOe6S6+APXLkiDp06FBhuYCAAKfvl5OTo9DQ0HLLy7azquWhoaEKCQmpsI+bNWtWYbsAuB/hDYBbWSyWchcJfPTRRzp69Ki6detW7Xo6duyoRx99VBkZGfr4449d3cwasVgsatKkiUPwOX78uEuuNo2JiVHjxo31yiuvKCoqqsJynTt31pdffumw7J///Ke+/fZbp+GtJoYPH65169bp8uXLGjBgQJ3qKlW6DTAaB9Qd4Q2AWw0fPlypqakKDw9Xnz599Pnnn+u5556r8rTgmTNnNGTIEI0fP17h4eFq1qyZsrKytHXrVsXFxXmo9c4NHz5cGzZs0COPPKIxY8boxx9/1DPPPKOwsDB99913daq7c+fOmj17tp555hldvHhR999/v1q0aKGvv/5aOTk5Sk5OllRyJe6ECRP0yCOP6J577tGhQ4f0hz/8wSX3rhs3bpzefPNN3XXXXZo2bZr69+8vf39/HTlyRJmZmRo5cqRGjx5dozp79eolSVqxYoWaNWumgIAAdenSxekpVwCVI7wBcKulS5fK399fixYt0vnz53XTTTdpw4YNmjt3bqWvCwgI0IABA7RmzRodPHhQRUVF6tixo5588knNnDnTQ613Lj4+XidOnNCrr76q119/Xdddd50SExN15MgRe7iqi6efflrdu3fXsmXL9Otf/1p+fn7q3r27EhIS7GXGjx+vY8eO6dVXX9WqVavUq1cvvfLKKy55/8aNG+tPf/qTli5dqjVr1mjRokXy8/PTtddeq8GDB6t37941rrNLly566aWXtHTpUkVHR+vy5ctatWoVXx0G1ILFMAzD240AAABA9XC1KQAAgIlw2hSAKRmGocuXL1dapnHjxhVeZekNly9fVmUnOywWixo3buzBFgEwI0beAJjS6tWry92D7Oqf3bt3e7uZDrp27Vppe0u/VxQAKsOcNwCmlJubqwMHDlRapkePHj51T7Ls7OxK7wXXrFmzSr/rFQAkwhsAAICpcNoUAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAAT+f/EUjApMfxkoQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0036\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3000])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.500 - 0.525 A" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.5 , 0.5009, 0.5018, 0.5027, 0.5036, 0.5045, 0.5054, 0.5063,\n", " 0.5072, 0.5081, 0.509 , 0.5099, 0.5108, 0.5117, 0.5126, 0.5135,\n", " 0.5144, 0.5153, 0.5162, 0.5171, 0.518 , 0.5189, 0.5198, 0.5207,\n", " 0.5216, 0.5225, 0.5234, 0.5243, 0.5252, 0.5261, 0.527 ]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJVElEQVR4nO3de1xVVcL/8e9J8CCgOQe84N1S4yEBjfHCTCZmElM2CulkjqU4Vr/JUtNnDBUNyluTlT4+VI+TiZNdbcQmx0tIaD1djLFnZqDGZqa8mzewvCAIun9/MBw5cpDbuW34vF8vXnnWXmedtddrt/my1t77WAzDMAQAAABTuMbbHQAAAEDdEd4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJeD28/eUvf9Gdd96pbt26qVWrVrLZbIqNjdW6deuq1f3iiy902223KTg4WG3btlVSUpK+/fZbp+2uXLlS4eHhslqt6tmzp9LT01VWVlat3vHjxzVp0iSFhoYqMDBQsbGxysnJcfl+AgAAuILXw9v333+vrl27avHixdq8ebN+//vfq0ePHrrvvvu0cOFCe709e/YoLi5OFy5c0Ntvv61XXnlF//jHPzRkyBCdOHHCoc1FixZp+vTpSkpK0rZt2/Twww9r8eLFmjp1qkO90tJSDR8+XDk5OVqxYoXeffdddejQQQkJCdq5c6dH9h8AAKA+LL763aaDBw/WkSNHdODAAUnSL37xC+Xm5uqbb75RmzZtJEn79+9X79699dhjj+npp5+WJBUWFqpLly66//779T//8z/29hYvXqzU1FQVFBQoIiJCkvTCCy9o6tSp+uSTTxQbGytJKi8vV3R0tIKDg7Vr1y5P7jIAAECtvD7zVpPQ0FD5+flJqghUmzZt0t13320PbpLUvXt3DRs2TFlZWfayrVu3qqSkRMnJyQ7tJScnyzAMbdy40V6WlZWlG264wR7cJMnPz08TJkzQ559/rsOHD7tp7wAAABrGz9sdqHTp0iVdunRJp06d0vr167Vt2zb993//tyTpm2++0fnz5xUVFVXtfVFRUcrOzlZJSYkCAgJUUFAgSYqMjHSoFxYWptDQUPt2SSooKNCQIUOctilJX375pTp37uy0v6WlpSotLXXof1FRkUJCQmSxWOq59wAAoLkzDENnzpxRp06ddM01Nc+v+Ux4e/jhh+3LnC1bttR//dd/6aGHHpJUsRQqSTabrdr7bDabDMPQqVOnFBYWpsLCQlmtVgUFBTmtW9lWZbs1tVn1c51ZsmSJ0tPT67GHAAAAtTt48KC6dOlS43afCW9z587VlClTdPz4cb333nt65JFHdO7cOf3nf/6nvc7VZrSqbqtrvfrWrWrOnDmaOXOm/fUPP/ygbt26ae/evWrdunWN72uosrIy5ebmatiwYfL393d5+2CMPYVxdj/G2DMYZ/drbmN85swZ9ezZs9Yc4TPhrVu3burWrZsk6Y477pBUEZAmTpyokJAQSc5nwoqKimSxWNS2bVtJUkhIiEpKSlRcXKzAwMBqdWNiYuyvQ0JCamxTcj7TV8lqtcpqtVYrt9lsDtfluUpZWZkCAwMVEhLSLA5gb2CMPYNxdj/G2DMYZ/drbmNcuY+1XX7lszcsDBw4UOXl5fr22291/fXXq1WrVsrPz69WLz8/X7169VJAQICky9e6XVn36NGjOnnypPr27Wsvi4yMrLFNSQ51AQAAfIHPhrfc3Fxdc801uu666+Tn56e77rpLGzZs0JkzZ+x1Dhw4oNzcXCUlJdnLEhISFBAQoMzMTIf2MjMzZbFYNHr0aHtZYmKi9uzZ4/BIkPLycq1bt06DBg1Sp06d3LZ/AAAADeH1ZdMHH3xQbdq00cCBA9WhQwedPHlS69ev11tvvaXf/OY3ateunSQpPT1dAwYM0MiRI5WSkqKSkhItWLBAoaGhmjVrlr09m82m1NRUzZ8/XzabTfHx8crLy1NaWpqmTJlif8abJE2ePFkZGRkaO3asli5dqvbt2+uFF17Q119/re3bt3t8LAAAAGrj9fAWGxurNWvWaO3atfr+++8VHBys6Ohovfrqq5owYYK9Xnh4uHbs2KHHH39cY8aMkZ+fn2699VYtW7bMHvAqzZs3T61bt1ZGRoaWLVumjh07KiUlRfPmzXOoZ7ValZOTo9mzZ+vRRx9VcXGx+vXrpy1btmjo0KEe2X8AAID68Hp4S05OrvZA3ZrExMTUeUZs2rRpmjZtWq31OnTooLVr19apTQAAAG/z2WveAAAAUB3hDQAAwEQIb3C7c+cki6Xi59w5b/cGAABzI7wBAACYCOENAADARAhv8HksuwIAcBnhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AoBbcNAN4H/8fXkZ4AwAAMBHCGwAAPo5ZJ1RFeAMANHmEHzQlhDcAAAAT8fN2B4Dm4OJF6aOPpO++k8LCpCFDpBYtvN0rAIAZMfMGuNmGDVKPHtKwYdL48RX/7dGjohwAPIFl46aF8NYM8D+t92zYII0ZIx065Fh++HBFOQEOAFBfhDcTuHhR2rnTog8/7KydOy26eNHbPfKsqvv74Ycyzf5fvChNny4ZRvVtlWUzZphnf5ozsx6DAJomwpuPq1xyGzHCT88992ONGOHXrJbcNmyQIiIuv77jDvMsOX70UfUZt6oMQzp4sKIefJeZj0HAVVjB8S2ENx/W3JfcKvf/8GHHcrPs/3ffubYePM9XjsGLF6UdO6Q33qj4LzN/QPNGePNRTWnJrSFLTk1h/8PCXFsPnuUrx6Cv3PDS2ADJzA3gOoQ3H+XKJbfGXq/TmJNuQ5ecmsKS45AhUpcuFePmjMUide1aUQ++xxeOQV+ZffeVAAmgAuHNR7lqyc2b1+s0ZsmpKSw5tmghrVhR8e8rA1zl6+XL6/a8N2YtPM/bx6Avzfz5QoCEd/nCTTu+0AdfQXjzUa5YcvPm9TqN/cXTVJYck5Kkd96ROnd2LO/SpaI8Kck7/ULtvH0M+sLMn68ESHg3uPjCTTtZWRav98GXEN58VGOX3Lx90m3sL56mtOSYlCTt2yfl5kqvv17x3717zRXcmuMF894+Br098yf5RoCEeVdQrtTQFYRPPw3TuHEtvH7jkC8hvPmoxi65efuk29hfPK5ccvQFLVpIcXHSvfdW/Ncs/Zaa7/VO3j4GvT3zJ/lGgGwqGhpczLyC4qo+vPxyJLO/VyC8+bDGLLm58qTbkOl6V/ziqdz/Tp0cy1ly9BxXXe9UdebOTA+adtUx2JBf3N6e+ZN8I0C6ihmvl/J2ePL2JIAk/e//WlRY2EqS8/8RmuvsL+HNx1UuuWVnl2vmzD8rO7u8TkturjrpNnS63lW/eJKSpK++uvx682bzLTmalat+cWzYIHXvfnnmbsQIPz34YLyysmo4OHyMt45Bb8/8Sb4RIF3BF67Zakh49HZ48oWZV1/ogy8ivJlAixbS0KGGbrnlsIYONep0snbFSbcx0/Wu/MVTtc4tt9T/l1VzvF7LFVzxi6OmY6iwMEDjxrUwzdJrY4/BhvL2DS++ECAbyxcetNzQ8Ojt4OILM6++0AdfRHhrohp70nXFrIsvLHteOevT0Ou1vP2oDm8s+TT2F8fVjqHKJZDmeK1KfXn7hhdvB8jG8Payo9S48Ojt4OILM68332woJOS8LBanJxLTzP66GuGtCWtMeHLVdL03lz194S9uV/DWkk9jf3HUfgxZmuW1Kg3h7RtevB0gG8rby46NDY/eDk++MPPaooU0ZUq+V/vgiwhvTVxDw5Mrp+u9seTkC39xu4I3A2hjf3F4e8kHruXtANkQ3j4GGxsefSE8+cIKSmzsd3rzzYvcvFYF4a0ZaEh48vZ0fWN5+y9uV3BlAG3IdX+N/cVh9mMI5uftY9AV4dEXwpMv3DiWmGh4vQ++hPAGp7w9Xd9Yrv6L2xvXnLkqgDbmOW2Nud6p9mPIqPMx5O1rDmFO3j6PuSo8uiI8NfYc5q2bdnytD76C8AanfGG6vjFc+Re3t645c0UAdcVz2hp6vdPVjiGpYurQl4+hqoKCKsKyYVT8G+bg7fOYK8NjY4KLLzwqBa5FeEONfGG6vqFcddL05jVnjQ2grlx2bej1TjXN3IWGntebb1706WMITYM3z2PeDo+Sb924ZcYHJfsqwhuuyheudWgIV5w0vX3TQ2MDqK9c93flzF12drn+53+ylZjo/NZ/ZzjpozG8eR7zZnh05TmssbPPzP65FuGtGWjs/3Rmvc6gsc+n8nb4aWwA9faddlVVnbmr64OmK3HSh9T46x69eR7zVnj09jmski/N/jUVhDc0aY15PpUvhJ/G/NXu7TvtXIGTPnyFGcOjL5zDvL2C0VT5ebsDQG0qZw4bqnLWp758JfwkJUm33SZde23F682bpfj42k/+lcuuhw87Hz+LpWK7r94xXNtJ32KpOOmPGmWe2WA0X409jzWEL5zD6jP715DzdHPFzBtQA28/ZqCqhvzV7gsXSzeGryz5AGblC+cwX5j9a4oIb6hVc31MgtnDj2Tu76VsSid9briAN/jCOcwXZv+aIsIbcBVmflxKJbN+L2VTOelzwwW8ydvnMF+Y/XOVhnxTjbsQ3oBamPVxKVWZ8Xspm8JJnxsu4Au8eQ7zhdk/V2jMN9W4A+ENqAOzPi7FzMx+0ucuO0dmXzo2e/+9/agUV8z+eesSHld8U42rEd4A+CxvL/k0BjdcXGb2peOa+p+VVcO0MKox6wqGr/4RRngD6sDbN214+/O9yawn/aZ0w0VjmH3p+Gr9HzeuhT791DMXXTaFc4AZVzB89Y8wwhsAn2fGk35TueGiMVw5a+GNZcu69H/16r6mW0JF3fnqH2GENwBwg6Zww0VjuWrWwlvLrrX336KTJwP1v//L8mlT5at/hBHe4HZNYbof3mXGY8jsN1y4gitmLby57Oqrsy7wHF/9I4zwBgBuYuYbLlyhsbMWrlx2bcgfAL466wLP8dU/wrwe3j744ANNnjxZ4eHhCgoKUufOnTVq1Cjt3r3bod6kSZNksViq/YSHhzttd+XKlQoPD5fValXPnj2Vnp6usrKyavWOHz+uSZMmKTQ0VIGBgYqNjVVOTo5b9hVA8+MrN1x44wGjjZ218PbF4rX331BoaLFuvtnDX1oKj/LFb6rx+hfTv/jiiyosLNT06dMVERGhEydO6Nlnn9XgwYO1bds23Xrrrfa6rVq10gcffODw/latWlVrc9GiRZo/f75SUlIUHx+vvLw8paam6vDhw1q1apW9XmlpqYYPH67vv/9eK1asUPv27ZWRkaGEhARt375dQ4cOdd+OA2g2vH3DxYYNFTNYVYNQly4VMwru/MVTOWsxZkxFAKo6g1aXWQtvL1vWpf+/+lWBWrTo754OwGckJUmjRlX8ofDddxWzrUOGePGyB8PLjh07Vq3szJkzRocOHYzhw4fbyyZOnGgEBQXV2t7JkyeNgIAA48EHH3QoX7RokWGxWIwvv/zSXpaRkWFIMj755BN7WVlZmREREWEMHDiwXvvxww8/GJKMH374oV7vq6sLFy4YGzduNC5cuOCW9sEYe0pzHOezZysX7Cr+7W5Vx/gPfzAMi+Xy51f+WCwVP3/4g/v784c/GEbnzo6f37Vr7Z+dm1u9385+cnO90/+33iozzbHs6WPQVX1obueLumYJry+btm/fvlpZcHCwIiIidPDgwXq3t3XrVpWUlCg5OdmhPDk5WYZhaOPGjfayrKws3XDDDYqNjbWX+fn5acKECfr88891+MorZAHARHzlAaMNXTr2lYvFa+p/YiLLpfAOry+bOvPDDz/oiy++cFgylaTz58+rY8eOOnHihMLCwjR69Gg9+eSTstls9joFBQWSpMjISIf3hoWFKTQ01L69su4QJ//XR0VFSZK+/PJLdb5ykfvfSktLVVpaan99+vRpSVJZWZnTa+saq7JNd7SNCoyxZzTHca7YVf9//7tM7t71yrHdseOiDh3yr7Fe5TVjubnlGjrUvUHk0iWpcgxiY8t06VJl2dU9+6xF48a1+Pey5eUUZ7FU9HfZsou6dMmoU1uN4az/ZjqWPX0MuqoPZhpjV6jrfvpkeJs6darOnTunefPm2cuio6MVHR2tvn37SpJ27typ559/Xjk5OcrLy1NwcLAkqbCwUFarVUFObiey2WwqLCy0vy4sLHQIflXrVW6vyZIlS5Senl6t/P3331dgYGAd97T+srOz3dY2KjDGntGcxrmkpIWkkZKkbdu2KSDAM091zc4ukPTjWutt2fIXnTvn3pWGho6B1SrNnh2m3/0uUkVFl69xDgk5r1/9qkBW63favNkdPXZ0tf6b4Vj21jF4pcrFr5076/c+M4yxKxQXF9epns+Ft/nz5+u1117TypUrFRMTYy9/7LHHHOqNGDFC/fv315gxY/S73/3OYbulpjl2J9vqU7eqOXPmaObMmfbXp0+fVteuXRUfH682bdrU+L6GKisrU3Z2tkaMGCF//5r/kkbDMcae0RzH+dy5y/++/fbb3f6sustj3FfPPVd7/Z/9rJ+GDo12a58aMwZ33CH95jdSaGjF6/feK9dtt/n/+0YBz9ws4Kz/ZjqWPX0MuoqZxtgVKlfxauNT4S09PV0LFy7UokWL9Mgjj9RaPzExUUFBQfrss8/sZSEhISopKVFxcXG1GbCioiKHQBgSEuJ0dq2oqEiSnM7KVbJarbJardXK/f393XqAubt9MMae0pzGuepuVuy3Zz43Lq6FunSpeKCts+veLJaKa8qGDfNz+11zjR2DgIDL/x42zM/htSdcrf9mOJa9dQy6ihnG2BXquo9ev2GhUnp6utLS0pSWlqa5c+fW+X2GYeiaay7vRuW1bvn5+Q71jh49qpMnT9qXXSvrXlmv6nur1gUAs/HVB4wCaByfCG9PPfWU0tLSlJqaqieeeKLO73vnnXdUXFyswYMH28sSEhIUEBCgzMxMh7qZmZmyWCwaPXq0vSwxMVF79uzRrl277GXl5eVat26dBg0apE5XPhYdAEzGFx8wakZm/Io2NF1eXzZ99tlntWDBAiUkJOjOO+90WAKVpMGDB2v//v0aP368xo0bp169eslisWjnzp1avny5brzxRk2ZMsVe32azKTU1VfPnz5fNZrM/pDctLU1TpkxRRJVvN548ebIyMjI0duxYLV26VO3bt9cLL7ygr7/+Wtu3b/fYGACAO/ncA0bhcZXhE02D18Pbe++9J6ni+Wxbt26ttt0wDLVp00YdOnTQc889p2PHjunixYvq3r27pk2bprlz51a7s3TevHlq3bq1MjIytGzZMnXs2FEpKSkOd69KFdet5eTkaPbs2Xr00UdVXFysfv36acuWLXy7AtCEnDsn/fuGdJ092zxnTlq0kOLivN0LAK7g9fC2Y8eOWuv86Ec/0oYNG+rV7rRp0zRt2rRa63Xo0EFr166tV9sAAADe4hPXvAGAO1X9BoEPP/TMl7IDgLsQ3gA0aRs2SFUuddUdd0g9elSUewoXuwNwJcIbgCZrwwZpzJiK55xVdfhwRbknAxwahwAMXEZ4A9Ak+cqXsgOAqxHeADRJH30kHTpU8/bKL2X/6CPP9QkAXIHwBqBJ+u4719YDAF9BeAPQJIWFubYeAHM7d67ia+Eslop/mxnhDUCTNGRIxVdAXfmdnpUsFqlr14p6AGAmhDcATRJfyg6gqSK8AWiyKr+UvVMnx3K+lB2AmXn967EAwJ2SkqTbbpOuvbbi9ebNUnw8M24AzIuZNwBNXtWgdsstBDcA5sbMG4Amr/Lp/ADQFBDeAABuR4AGXIdlUwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAA0ORdvHj53x9+6PjabAhvAACgSduwQYqIuPz6jjukHj0qys2I8AYAAJqsDRukMWOkw4cdyw8frig3Y4AjvAEAgCbp4kVp+nTn36tbWTZjhvmWUAlvAACgSfroI+nQoZq3G4Z08GBFPTMhvAEAgCbpu+9cW89XEN4AAECTFBbm2nq+gvAGAACapCFDpC5dJIvF+XaLRerataKemRDeAABAk9SihbRiRcW/rwxwla+XL6+oZyaENwAA0GQlJUnvvCN16uRY3qVLRXlSknf61Rh+3u4AAACAOyUlSbfdJl17bcXrzZul+HjzzbhVYuYNAAA0eVWD2i23mDe4SYQ3AAAAUyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMxM/bHQAAAHC3oCDJMLzdC9dg5g0AAMBECG8AAAAmQngDAAAwEa+Htw8++ECTJ09WeHi4goKC1LlzZ40aNUq7d++uVveLL77QbbfdpuDgYLVt21ZJSUn69ttvnba7cuVKhYeHy2q1qmfPnkpPT1dZWVm1esePH9ekSZMUGhqqwMBAxcbGKicnx+X7CQAA4ApeD28vvvii9u3bp+nTp2vz5s1asWKFjh8/rsGDB+uDDz6w19uzZ4/i4uJ04cIFvf3223rllVf0j3/8Q0OGDNGJEycc2ly0aJGmT5+upKQkbdu2TQ8//LAWL16sqVOnOtQrLS3V8OHDlZOToxUrVujdd99Vhw4dlJCQoJ07d3pk/wEAAOrD63ebZmRkqH379g5lCQkJ6tWrlxYvXqxbb71VkrRgwQJZrVZt2rRJbdq0kSTFxMSod+/eWrZsmZ5++mlJUmFhoRYuXKgHHnhAixcvliTFxcWprKxMqampmjFjhiIiIiRJq1evVkFBgT755BPFxsZKkoYNG6bo6GjNnj1bu3bt8sgYAAAA1JXXZ96uDG6SFBwcrIiICB08eFCSVF5erk2bNunuu++2BzdJ6t69u4YNG6asrCx72datW1VSUqLk5GSHNpOTk2UYhjZu3Ggvy8rK0g033GAPbpLk5+enCRMm6PPPP9fhw4ddtZsAAAAu4fWZN2d++OEHffHFF/ZZt2+++Ubnz59XVFRUtbpRUVHKzs5WSUmJAgICVFBQIEmKjIx0qBcWFqbQ0FD7dkkqKCjQkCFDnLYpSV9++aU6d+7stI+lpaUqLS21vz59+rQkqayszOm1dY1V2aY72kYFxtgzGGf3Y4w9g3F2v+Y2xnXdT58Mb1OnTtW5c+c0b948SRVLoZJks9mq1bXZbDIMQ6dOnVJYWJgKCwtltVoVFBTktG5lW5Xt1tRm1c91ZsmSJUpPT69W/v777yswMLCWPWy47Oxst7WNCoyxZzDO7scYewbj7H7NZYyLi4vrVM/nwtv8+fP12muvaeXKlYqJiXHYZrFYanxf1W11rVffulXNmTNHM2fOtL8+ffq0unbtqvj4eIelXVcpKytTdna2RowYIX9/f5e3D8bYUxhn92OMPYNxdr/mNsaVq3i18anwlp6eroULF2rRokV65JFH7OUhISGSnM+EFRUVyWKxqG3btva6JSUlKi4urjYDVlRU5BAIQ0JCamxTcj7TV8lqtcpqtVYr9/f3d+sB5u72wRh7CuPsfoyxZzDO7tdcxriu++j1GxYqpaenKy0tTWlpaZo7d67Dtuuvv16tWrVSfn5+tffl5+erV69eCggIkHT5Wrcr6x49elQnT55U37597WWRkZE1tinJoS4AAIAv8Inw9tRTTyktLU2pqal64oknqm338/PTXXfdpQ0bNujMmTP28gMHDig3N1dJSUn2soSEBAUEBCgzM9OhjczMTFksFo0ePdpelpiYqD179jg8EqS8vFzr1q3ToEGD1KlTJ9ftJAAAgAt4fdn02Wef1YIFC5SQkKA777xTn332mcP2wYMHS6qYmRswYIBGjhyplJQUlZSUaMGCBQoNDdWsWbPs9W02m1JTUzV//nzZbDbFx8crLy9PaWlpmjJliv0Zb5I0efJkZWRkaOzYsVq6dKnat2+vF154QV9//bW2b9/umQEAAACoB6+Ht/fee09SxfPZtm7dWm27YRiSpPDwcO3YsUOPP/64xowZIz8/P916661atmyZ2rVr5/CeefPmqXXr1srIyNCyZcvUsWNHpaSk2O9erWS1WpWTk6PZs2fr0UcfVXFxsfr166ctW7Zo6NChbtpjAACAhvN6eNuxY0ed68bExNR5RmzatGmaNm1arfU6dOigtWvX1rkPAAAA3uQT17wBAACgbghvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAiDQ5vTz75pI4cOeJ023fffacnn3yywZ0CAACAcw0Ob+np6Tp06JDTbUeOHFF6enqDOwUAAADnGhzeDMOocdvZs2fl7+/f0KYBAABQA7/6VP7b3/6mv/zlL/bXmzdv1p49exzqnD9/Xq+99pquv/56l3QQAAAAl9UrvGVlZdmXQy0WS43XtbVq1Upr1qxpfO8AAADgoF7h7cEHH9TIkSNlGIYGDhyoNWvWqG/fvg51rFarrr/+erVq1cqlHQUAAEA9w1tYWJjCwsIkSbm5uYqJiVFwcLBbOgYAAIDq6hXeqho6dKgr+wEAAIA6aHB4k6R169bp9ddf1/79+3X+/HmHbRaLRd98802jOgcAAABHDQ5vTz/9tObMmaOIiAhFR0fLarW6sl8AAABwosHhbdWqVZo6dapWrlzpyv4AAADgKhr8kN6jR48qMTHRlX0BAABALRoc3mJiYrimDQAAwMMaHN6ee+45Pfvss9q9e7cr+wMAAICraPA1b8nJySosLNTAgQPVsWNHhYSEOGy3WCz661//2ugOAgAA4LIGh7eQkBCFhoa6si8AAACoRYPD244dO1zYDQAAANRFg695AwAAgOc1eObtww8/rLXOLbfc0tDmAQAA4ESDw1tcXJwsFstV61y8eLGhzQMAAMCJBoe33NzcamUnT57Uu+++q48//lgZGRmN6hgAAACqa3B4Gzp0qNPyu+++W//v//0/bd26VQkJCQ3uGAAAAKpzyw0LiYmJevPNN+tU98yZM5o9e7bi4+PVrl07WSwWpaWlVas3adIkWSyWaj/h4eFO2125cqXCw8NltVrVs2dPpaenq6ysrFq948ePa9KkSQoNDVVgYKBiY2OVk5NTr/0FAADwlAbPvF3NqVOnVFpaWqe6hYWFWrVqlaKjozV69Gi9/PLLNdZt1aqVPvjgg2plV1q0aJHmz5+vlJQUxcfHKy8vT6mpqTp8+LBWrVplr1daWqrhw4fr+++/14oVK9S+fXtlZGQoISFB27dvr3F2EQAAwFsaHN4OHDhQray0tFR/+9vfNGfOHA0ePLhO7XTv3l2nTp2SxWLRyZMnrxrerrnmmlrbLSws1MKFC/XAAw9o8eLFkipurigrK1NqaqpmzJihiIgISdLq1atVUFCgTz75RLGxsZKkYcOGKTo6WrNnz9auXbvqtA8AAACe0uBl0x49eqhnz54OP+Hh4Ro7dqwCAgL03//933Vqp3L501W2bt2qkpISJScnO5QnJyfLMAxt3LjRXpaVlaUbbrjBHtwkyc/PTxMmTNDnn3+uw4cPu6xfAAAArtDgmbdXXnmlWugKCAhQjx49NGDAAF1zjesvpzt//rw6duyoEydOKCwsTKNHj9aTTz4pm81mr1NQUCBJioyMdHhvWFiYQkND7dsr6w4ZMqTa50RFRUmSvvzyS3Xu3NlpX0pLSx2Whk+fPi1JKisrc3ptXWNVtumOtlGBMfYMxtn9GGPPYJzdr7mNcV33s8HhbdKkSQ19a4NER0crOjpaffv2lSTt3LlTzz//vHJycpSXl6fg4GBJFcumVqtVQUFB1dqw2WwqLCy0vy4sLHQIflXrVW6vyZIlS5Senl6t/P3331dgYGD9dq4esrOz3dY2KjDGnsE4ux9j7BmMs/s1lzEuLi6uU71G37Bw5swZffrppyosLFRoaKgGDx6s1q1bN7bZah577DGH1yNGjFD//v01ZswY/e53v3PYfrVl2Cu31aduVXPmzNHMmTPtr0+fPq2uXbsqPj5ebdq0qfF9DVVWVqbs7GyNGDFC/v7+Lm8fjLGnMM7uxxh7BuPsfs1tjCtX8WrTqPC2bNkypaenq7i4WIZhSJKCgoKUnp7uEGzcJTExUUFBQfrss8/sZSEhISopKVFxcXG1GbCioiLFxMQ41HU2u1ZUVCRJTmflKlmtVlmt1mrl/v7+bj3A3N0+GGNPYZzdjzH2DMbZ/ZrLGNd1Hxt8Ydrvf/97zZ49W7fccovefPNNffTRR3rrrbc0dOhQ/eY3v9Grr77a0KbrxTAMh+vrKq91y8/Pd6h39OhRnTx50r7sWln3ynpV31u1LgAAgC9ocHh7/vnnNX78eP3pT3/S2LFj9dOf/lRjx47Vpk2bdO+99+r55593ZT+deuedd1RcXOzw+JCEhAQFBAQoMzPToW5mZqYsFotGjx5tL0tMTNSePXscHglSXl6udevWadCgQerUqZO7dwEAAKBeGrxsumfPHi1ZssTptgkTJigxMbHObW3ZskXnzp3TmTNnJElfffWV3nnnHUnSHXfcoRMnTmj8+PEaN26cevXqJYvFop07d2r58uW68cYbNWXKFHtbNptNqampmj9/vmw2m/0hvWlpaZoyZYr9GW+SNHnyZGVkZGjs2LFaunSp2rdvrxdeeEFff/21tm/f3pBhAQAAcKsGh7dWrVrZrw27UlFRkdNvPqjJr3/9a+3fv9/+ev369Vq/fr0kae/evbr22mvVoUMHPffcczp27JguXryo7t27a9q0aZo7d261O0vnzZun1q1bKyMjQ8uWLVPHjh2VkpKiefPmOdSzWq3KycnR7Nmz9eijj6q4uFj9+vXTli1b+HYFAADgkxoc3oYMGaK0tDTFxcU5LC8ePXpUTz75pG655ZY6t7Vv375a62zYsKFe/Zs2bZqmTZtWa70OHTpo7dq19WobAADAWxoc3hYvXqyf/OQn6tWrl4YPH66wsDB99913+uCDD+Tv71/vsAUAAIDaNfiGhRtvvFF5eXkaNWqU8vLytGbNGuXl5Wn06NH6/PPPHa4tAwAAgGs06jlvffr00RtvvOGqvgAAAKAW9Z55y8/P16FDh2rcfujQIafPTgMAAEDj1Su8ffjhh4qJidGxY8dqrHPs2DHFxMRo27Ztje4cAAAAHNUrvGVkZGjMmDEOXzF1pZiYGN1zzz16+eWXG905AAAAOKpXePv4448dvqGgJj//+c8dvm8UAAAArlGv8HbixAl17ty51nphYWE6fvx4gzsFAAAA5+oV3oKCgmr8VoWqTp06pcDAwAZ3CgAAAM7VK7zdeOON2rp1a631tmzZohtvvLHBnQIAAIBz9Qpv99xzj1avXq2dO3fWWCc3N1dr1qzRvffe2+jOAQAAwFG9HtL74IMPKjMzU/Hx8ZoyZYpGjRqlnj17Sqr4AvmNGzdq9erVio6O1gMPPOCWDgMAADRn9QpvLVu21LZt23TffffpxRdf1EsvveSw3TAM/exnP9Pvf/97tWzZ0qUdBQAAQAO+HiskJESbN2/W7t279f777+vgwYOSpG7duun2229X//79Xd5JAAAAVGjwd5vGxMRc9WG9AAAAcL16hbeoqKg617VYLPrrX/9a7w4BAACgZvUKbzabTRaL5ap1zp49q927d9daDwAAAPVXr/C2Y8eOGreVl5dr1apVevLJJ2WxWDR+/PjG9g0AAABXqNdz3mqyfv16RURE6NFHH1V0dLR2796tV1991RVNAwAAoIpGhbcdO3Zo0KBBuueee9SmTRu9//772rZtm/r16+ei7gEAAKCqBoW3/Px83XHHHRo+fLgKCwv1+uuv689//rOGDx/u6v4BAACginqFt4MHD2rixIm66aabtHv3bi1fvlx///vfNW7cOHf1DwAAAFXU64aFPn366MKFC0pISNDs2bPVunVr5efn11j/pptuanQHAQAAcFm9wltpaakkacuWLdq6dWuN9QzDkMVi0cWLFxvXOwAAADioV3hbs2aNu/oBAACAOqhXeJs4caK7+gEAAIA6cMlz3gAAAOAZhDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAAT8Xp4O3PmjGbPnq34+Hi1a9dOFotFaWlpTut+8cUXuu222xQcHKy2bdsqKSlJ3377rdO6K1euVHh4uKxWq3r27Kn09HSVlZVVq3f8+HFNmjRJoaGhCgwMVGxsrHJycly5iwAAAC7j9fBWWFioVatWqbS0VKNHj66x3p49exQXF6cLFy7o7bff1iuvvKJ//OMfGjJkiE6cOOFQd9GiRZo+fbqSkpK0bds2Pfzww1q8eLGmTp3qUK+0tFTDhw9XTk6OVqxYoXfffVcdOnRQQkKCdu7c6Y7dBQAAaBQ/b3ege/fuOnXqlCwWi06ePKmXX37Zab0FCxbIarVq06ZNatOmjSQpJiZGvXv31rJly/T0009LqgiDCxcu1AMPPKDFixdLkuLi4lRWVqbU1FTNmDFDERERkqTVq1eroKBAn3zyiWJjYyVJw4YNU3R0tGbPnq1du3a5e/cBAADqxeszbxaLRRaL5ap1ysvLtWnTJt1999324CZVBL9hw4YpKyvLXrZ161aVlJQoOTnZoY3k5GQZhqGNGzfay7KysnTDDTfYg5sk+fn5acKECfr88891+PDhRu4dAACAa3l95q0uvvnmG50/f15RUVHVtkVFRSk7O1slJSUKCAhQQUGBJCkyMtKhXlhYmEJDQ+3bJamgoEBDhgxx2qYkffnll+rcubPTPpWWlqq0tNT++vTp05KksrIyp9fWNVZlm+5oGxUYY89gnN2PMfYMxtn9mtsY13U/TRHeCgsLJUk2m63aNpvNJsMwdOrUKYWFhamwsFBWq1VBQUFO61a2VdluTW1W/VxnlixZovT09Grl77//vgIDA2vfqQbKzs52W9uowBh7BuPsfoyxZzDO7tdcxri4uLhO9UwR3ipdbXm16ra61qtv3armzJmjmTNn2l+fPn1aXbt2VXx8vMPSrquUlZUpOztbI0aMkL+/v8vbB2PsKYyz+zHGnsE4u19zG+PKVbzamCK8hYSESHI+E1ZUVCSLxaK2bdva65aUlKi4uLjaDFhRUZFiYmIc2q2pTcn5TF8lq9Uqq9Vardzf39+tB5i72wdj7CmMs/sxxp7BOLtfcxnjuu6j129YqIvrr79erVq1Un5+frVt+fn56tWrlwICAiRdvtbtyrpHjx7VyZMn1bdvX3tZZGRkjW1KcqgLAADgC0wR3vz8/HTXXXdpw4YNOnPmjL38wIEDys3NVVJSkr0sISFBAQEByszMdGgjMzNTFovF4VlyiYmJ2rNnj8MjQcrLy7Vu3ToNGjRInTp1cts+AQAANIRPLJtu2bJF586dswezr776Su+8844k6Y477lBgYKDS09M1YMAAjRw5UikpKSopKdGCBQsUGhqqWbNm2duy2WxKTU3V/PnzZbPZFB8fr7y8PKWlpWnKlCn2Z7xJ0uTJk5WRkaGxY8dq6dKlat++vV544QV9/fXX2r59u2cHAQAAoA58Irz9+te/1v79++2v169fr/Xr10uS9u7dqx49eig8PFw7duzQ448/rjFjxsjPz0+33nqrli1bpnbt2jm0N2/ePLVu3VoZGRlatmyZOnbsqJSUFM2bN8+hntVqVU5OjmbPnq1HH31UxcXF6tevn7Zs2aKhQ4e6f8cBAADqySfC2759++pULyYmps4zYtOmTdO0adNqrdehQwetXbu2Tm0CAAB4mymueQMAAEAFwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIqYJbzt27JDFYnH689lnnznU/eKLL3TbbbcpODhYbdu2VVJSkr799lun7a5cuVLh4eGyWq3q2bOn0tPTVVZW5oldAgAAqDc/b3egvhYvXqxhw4Y5lPXt29f+7z179iguLk79+vXT22+/rZKSEi1YsEBDhgzRX/7yF7Vr185ed9GiRZo/f75SUlIUHx+vvLw8paam6vDhw1q1apXH9gkAAKCuTBfeevfurcGDB9e4fcGCBbJardq0aZPatGkjSYqJiVHv3r21bNkyPf3005KkwsJCLVy4UA888IAWL14sSYqLi1NZWZlSU1M1Y8YMRUREuH+HAAAA6sE0y6Z1UV5erk2bNunuu++2BzdJ6t69u4YNG6asrCx72datW1VSUqLk5GSHNpKTk2UYhjZu3OipbgMAANSZ6Wbepk6dqnHjxikwMFCxsbGaP3++br75ZknSN998o/PnzysqKqra+6KiopSdna2SkhIFBASooKBAkhQZGelQLywsTKGhofbtNSktLVVpaan99enTpyVJZWVlbrlmrrJNrsdzH8bYMxhn92OMPYNxdr/mNsZ13U/ThLdrr71W06dPV1xcnEJCQvSvf/1LzzzzjOLi4vSnP/1Jt99+uwoLCyVJNput2vttNpsMw9CpU6cUFhamwsJCWa1WBQUFOa1b2VZNlixZovT09Grl77//vgIDAxu4l7XLzs52W9uowBh7BuPsfoyxZzDO7tdcxri4uLhO9UwT3vr376/+/fvbXw8ZMkSJiYmKjIzU7Nmzdfvtt9u3WSyWGtupuq2u9ZyZM2eOZs6caX99+vRpde3aVfHx8Q5Ltq5SVlam7OxsjRgxQv7+/i5vH4yxpzDO7scYewbj7H7NbYwrV/FqY5rw5kzbtm01cuRIvfTSSzp//rxCQkIkyemsWVFRkSwWi9q2bStJCgkJUUlJiYqLi6vNlBUVFSkmJuaqn221WmW1WquV+/v7u/UAc3f7YIw9hXF2P8bYMxhn92suY1zXfTT9DQuGYUiqmCm7/vrr1apVK+Xn51erl5+fr169eikgIEDS5Wvdrqx79OhRnTx50uHxIwAAAL7C1OHt1KlT2rRpk/r166eAgAD5+fnprrvu0oYNG3TmzBl7vQMHDig3N1dJSUn2soSEBAUEBCgzM9OhzczMTFksFo0ePdpDewEAAFB3plk2HT9+vLp166Yf//jHCg0N1T//+U89++yzOnbsmEMAS09P14ABAzRy5EilpKTYH9IbGhqqWbNm2evZbDalpqZq/vz5stls9of0pqWlacqUKTzjDQAA+CTThLeoqCi99dZbeumll3T27FnZbDbdfPPNevXVVzVgwAB7vfDwcO3YsUOPP/64xowZIz8/P916661atmyZw7crSNK8efPUunVrZWRkaNmyZerYsaNSUlI0b948T+8eAABAnZgmvKWkpCglJaVOdWNiYrR9+/Y61Z02bZqmTZvWmK4BAAB4jKmveQMAAGhuCG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwJuns2bOaMWOGOnXqpICAAPXr109vvvmmt7sFAABQjZ+3O+ALkpKSlJeXp6VLl6pPnz56/fXXde+99+rSpUsaP368t7sHAABg1+zD2+bNm5WdnW0PbJI0bNgw7d+/X7/5zW90zz33qEWLFl7uJQAAQIVmv2yalZWl4OBgjR071qE8OTlZR44c0a5du7zUMwAAgOqa/cxbQUGB/uM//kN+fo5DERUVZd/+k5/8pNr7SktLVVpaan/9ww8/SJKKiopUVlbm8n6WlZWpuLhYhYWF8vf3d3n7YIw9hXF2P8bYMxhn92tuY3zmzBlJkmEYV63X7MNbYWGhrrvuumrlNpvNvt2ZJUuWKD09vVp5z549XdtBAADQrJw5c0bXXnttjdubfXiTJIvFUu9tc+bM0cyZM+2vL126pKKiIoWEhFy1vYY6ffq0unbtqoMHD6pNmzYubx+Msacwzu7HGHsG4+x+zW2MDcPQmTNn1KlTp6vWa/bhLSQkxOnsWlFRkaTLM3BXslqtslqtDmVt27Z1ef+u1KZNm2ZxAHsTY+wZjLP7McaewTi7X3Ma46vNuFVq9jcsREZG6u9//7vKy8sdyvPz8yVJffv29Ua3AAAAnGr24S0xMVFnz57VH/7wB4fytWvXqlOnTho0aJCXegYAAFBds182/dnPfqYRI0bo17/+tU6fPq1evXrpjTfe0NatW7Vu3Tqfecab1WrVE088UW2pFq7DGHsG4+x+jLFnMM7uxxg7ZzFqux+1GTh79qzmzZunt99+W0VFRQoPD9ecOXM0btw4b3cNAADAAeENAADARJr9NW8AAABmQngDAAAwEcKbG5w9e1YzZsxQp06dFBAQoH79+unNN9+s9X2ZmZmyWCxOf44ePVqt/vbt2xUbG6vAwECFhoZq0qRJOn78eLV6ZWVlSk9PV48ePWS1WhUeHq6VK1e6ZF+9yZfGed++fTW2WZc++SpPjPGmTZt0//33KzIyUv7+/ld9yHVTPJZ9aYyb6nEsuX+cT58+rUWLFikuLk4dO3ZUcHCwIiMj9fTTT6ukpKRauxzLl7ljjJvysSxxt6lbJCUlKS8vT0uXLlWfPn30+uuv695779WlS5c0fvz4Wt+/Zs0ahYeHO5SFhIQ4vN65c6d+9rOf6c4779S7776r48eP6/HHH9fw4cP15z//2eHOnIcfflivvvqqnnrqKQ0YMEDbtm3T9OnTdebMGc2dO9c1O+0FvjbOkvToo49W++zevXs3cA+9zxNjnJWVpc8++0z9+/eX1WrV7t27a2yvKR7LvjbGUtM7jiX3j/OBAwe0fPly3XfffZo5c6aCg4P10UcfKS0tTdnZ2crOznYIzRzL1bl6jKWmeSxLkgy41J/+9CdDkvH66687lI8YMcLo1KmTUV5eXuN716xZY0gy8vLyav2cAQMGGBEREUZZWZm97OOPPzYkGS+88IK9rKCgwLBYLMbixYsd3v/AAw8YrVq1MgoLC+u6az7F18Z57969hiTjmWeeacDe+CZPjfHFixft/546dapR02mpKR7LvjbGTfE4NgzPjPPZs2eNs2fPVit/5plnDEnGRx99ZC/jWHbkjjFuqsdyJZZNXSwrK0vBwcEaO3asQ3lycrKOHDmiXbt2NfozDh8+rLy8PN13333y87s8efqTn/xEffr0UVZWlr1s48aNMgxDycnJ1fpz/vx5bd26tdH98QZfG+emyBNjLEnXXFO301BTPJZ9bYybKk+Mc1BQkIKCgqqVDxw4UJJ08OBBexnHcsPUZ4ybuub9f7QbFBQU6D/+4z8cftlLUlRUlH17bUaOHKkWLVrIZrMpKSmp2nsqX1e2eeXnVK1fUFCgdu3aqWPHjg3ujy/ytXGutHTpUrVs2VKBgYG6+eab9cc//rHO++RrPDHG9e1PUzuWfW2MKzWl41jy7jh/8MEHkqQbb7zRoT8cy9W5cowrNbVjuRLXvLlYYWGhrrvuumrllV9wX1hYWON7O3bsqHnz5mnw4MFq06aN8vPztXTpUg0ePFgff/yxoqOjHdqobPPKz6n6GYWFhU7rBQUFqWXLllftjy/ztXG2Wq164IEHNGLECIWFhenAgQNauXKlRo0apd/97neaMmVKo/bXGzwxxvXtT1M7ln1tjJvicSx5b5z/9re/6be//a0SExMd/gjkWHbkjjFuqseynZeXbZuc3r17GwkJCdXKjxw5YkgylixZUq/29u7dawQHBxs///nP7WWvvfaaIcn47LPPqtV/8MEHDavVan89YsQIIzw83GnbLVu2NB566KF69cdX+No4O3PhwgWjf//+RkhIiMM1c2bhiTG+0tWux2qKx7KvjbEzZj+ODcM747x3716ja9euRp8+fapdw8axXLvGjrEzTeFYrsSyqYuFhIQ4/QujqKhIkvNZnKvp0aOHbr75Zn322WcOnyE5/0umqKjI4TNq6s+5c+d04cKFevfHV/jaODvj7++ve+65R4WFhfrnP/9Zr/74Ak+MsSv6Y+Zj2dfG2BmzH8eS58d5//79GjZsmPz8/JSTk1OtfY7l2jV2jJ1pCsdyJcKbi0VGRurvf/+7ysvLHcrz8/MlSX379q13m4ZhOFxwXNlGZZtXfk7Vz4iMjNSJEyeqPfepMf3xBb42zldrUzLnBeOeGOP69qepHcu+NsZXa1My53EseXac9+/fr7i4OBmGodzcXHXp0sVpfziWa9eYMb5am5J5j2U7L834NVmbN282JBlvvvmmQ3lCQkKtt0s78+233xrBwcHG6NGjHcoHDhxo9O3b16G9Tz/91JBkvPjii/ayylvSly5d6vD+hx56yLS3pBuG742zMxcuXDD69etnhIaG1rs/vsBTY1xVXR4V0pSOZV8bY2fMfhwbhufGef/+/UaPHj2Mrl27Gt98802N7+dYrl1jx9iZpnAsVyK8ucGIESOMH/3oR8aqVauMDz74wHjggQcMSca6devsdSZPnmy0aNHC2Ldvn71s+PDhRnp6upGVlWXk5OQYy5cvNzp16mS0bt3ayM/Pd/iM3Nxcw8/Pz0hMTDSys7ON1157zejatavRt29fo6SkxKHulClTDKvVajzzzDPGjh07jLlz5xoWi8VYtGiRewfCzXxpnB977DHjkUceMd544w0jNzfX+P3vf28MGDDAkGSsWbPG7WPhLp4Y43379hnr16831q9fbyQkJBiS7K+vfO5TUzyWfWmMm+pxbBjuH+djx44Z1113nWG1Wo1169YZn376qcPPwYMHHfrDsezeMW7Kx7JhEN7c4syZM8a0adOMjh07Gi1btjSioqKMN954w6HOxIkTDUnG3r177WUzZswwIiIijNatWxt+fn5Gp06djAkTJhhff/210895//33jcGDBxsBAQGGzWYz7r//fuPYsWPV6l24cMF44oknjG7duhktW7Y0+vTpY/zXf/2XS/fZG3xpnFevXm0MHDjQsNlshp+fn/GjH/3IuP32241t27a5fL89yRNjXPmATmc/EydOdKjbFI9lXxrjpnocG4b7xzk3N7fGMZZkPPHEEw71OZb32svcMcZN+Vg2DMOwGMa/F4ABAADg80x+xR4AAEDzQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AfMK+fftksViUmZnp8rZzcnL04x//WEFBQbJYLNq4caMyMzNlsVi0b98+l39eVT169NCkSZPc+hlm8NVXXyktLc3t4w00B37e7gAAuJNhGPrFL36hPn366I9//KOCgoJ0ww03qLy8XJ9++qnCwsK83cVm4auvvlJ6erri4uLUo0cPb3cHMDXCG4Am7ciRIyoqKlJiYqKGDx/usK1du3Ze6pV3lZWVyWKxyM+v+q+A4uJiBQYGeqFXAOqKZVMAbvWvf/1LycnJ6t27twIDA9W5c2fdddddys/Pr/W9J06c0IMPPqiuXbvKarWqXbt2+ulPf6rt27fX6bPT0tLUpUsXSdLjjz8ui8Vin/VxtmwaFxenvn37Ki8vT0OGDFFgYKCuu+46LV26VJcuXbLXKykp0axZs9SvXz9de+21stlsio2N1bvvvlv3ganF66+/rtjYWAUHBys4OFj9+vXT6tWr7dtrWo6Ni4tTXFyc/fWOHTtksVj06quvatasWercubOsVqv+9a9/adKkSQoODlZ+fr7i4+PVunVre8C9cOGCFi5cqPDwcPvYJycn68SJEw6f16NHD40cOVJbt27VTTfdpFatWik8PFyvvPKKvU5mZqbGjh0rSRo2bJgsFovblsiB5oCZNwBudeTIEYWEhGjp0qVq166dioqKtHbtWg0aNEj/93//pxtuuKHG995333364osvtGjRIvXp00fff/+9vvjiCxUWFtbps6dMmaLo6GglJSXp0Ucf1fjx42W1Wq/6nqNHj+qXv/ylZs2apSeeeEJZWVmaM2eOOnXqpPvvv1+SVFpaqqKiIv3nf/6nOnfurAsXLmj79u1KSkrSmjVr7PUaasGCBXrqqaeUlJSkWbNm6dprr1VBQYH279/f4DbnzJmj2NhYvfTSS7rmmmvUvn17SRUh7ec//7keeughpaSkqLy8XJcuXdKoUaP00Ucfafbs2frJT36i/fv364knnlBcXJz+/Oc/q1WrVva2//rXv2rWrFlKSUlRhw4d9PLLL+tXv/qVevXqpVtuuUV33nmnFi9erLlz5yojI0M33XSTJOn6669v1DgBzZYBAB5UXl5uXLhwwejdu7fx2GOP2cv37t1rSDLWrFljLwsODjZmzJjRqM+rbPeZZ55xKF+zZo0hydi7d6+9bOjQoYYkY9euXQ51IyIijNtvv/2q+1RWVmb86le/Mvr37++wrXv37sbEiRPr3N9vv/3WaNGihfHLX/7yqvVqanfo0KHG0KFD7a9zc3MNScYtt9xSre7EiRMNScYrr7ziUP7GG28Ykow//OEPDuV5eXmGJOOFF15w6EdAQICxf/9+e9n58+cNm81mPPTQQ/ay9evXG5KM3Nzcq+4XgNqxbArArcrLy7V48WJFRESoZcuW8vPzU8uWLfXPf/5Tf//736/63oEDByozM1MLFy7UZ599prKyMrf3t2PHjho4cKBDWVRUVLVZr/Xr1+unP/2pgoOD5efnJ39/f61evbrWfapNdna2Ll68qKlTpzaqnSvdfffddd62adMmtW3bVnfddZfKy8vtP/369VPHjh21Y8cOh/r9+vVTt27d7K8DAgLUp0+fRs0UAqgZ4Q2AW82cOVPz58/X6NGj9d5772nXrl3Ky8tTdHS0zp8/f9X3vvXWW5o4caJefvllxcbGymaz6f7779fRo0fd1t+QkJBqZVar1aGvGzZs0C9+8Qt17txZ69at06effqq8vDxNnjxZJSUljfr8ymvKKq/Vc5Wa7qoNDAxUmzZtHMqOHTum77//Xi1btpS/v7/Dz9GjR3Xy5EmH+nUZMwCuwzVvANxq3bp1uv/++7V48WKH8pMnT6pt27ZXfW9oaKiWL1+u5cuX68CBA/rjH/+olJQUHT9+XFu3bnVjr69u3bp16tmzp9566y1ZLBZ7eWlpaaPbrrwD9tChQ+ratWuN9QICApx+3smTJxUaGlqtvGo/aysPDQ1VSEhIjWPcunXrGvsFwP0IbwDcymKxVLtJ4E9/+pMOHz6sXr161bmdbt266ZFHHlFOTo4+/vhjV3ezXiwWi1q2bOkQfI4ePeqSu03j4+PVokULvfjii4qNja2xXo8ePfS3v/3Noewf//iHvv76a6fhrT5GjhypN998UxcvXtSgQYMa1ValymOA2Tig8QhvANxq5MiRyszMVHh4uKKiorR7924988wztS4L/vDDDxo2bJjGjx+v8PBwtW7dWnl5edq6dauSkpI81HvnRo4cqQ0bNujhhx/WmDFjdPDgQT311FMKCwvTP//5z0a13aNHD82dO1dPPfWUzp8/r3vvvVfXXnutvvrqK508eVLp6emSKu7EnTBhgh5++GHdfffd2r9/v37729+65Nl148aN02uvvaY77rhD06dP18CBA+Xv769Dhw4pNzdXo0aNUmJiYr3a7Nu3ryRp1apVat26tQICAtSzZ0+nS64Aro7wBsCtVqxYIX9/fy1ZskRnz57VTTfdpA0bNig1NfWq7wsICNCgQYP06quvat++fSorK1O3bt30+OOPa/bs2R7qvXPJyck6fvy4XnrpJb3yyiu67rrrlJKSokOHDtnDVWM8+eST6t27t1auXKlf/vKX8vPzU+/evTVt2jR7nfHjx+vIkSN66aWXtGbNGvXt21cvvviiSz6/RYsW+uMf/6gVK1bo1Vdf1ZIlS+Tn56cuXbpo6NChioyMrHebPXv21PLly7VixQrFxcXp4sWLWrNmDV8dBjSAxTAMw9udAAAAQN1wtykAAICJsGwKwJQMw9DFixevWqdFixY13mXpDRcvXtTVFjssFotatGjhwR4BMCNm3gCY0tq1a6s9g+zKn507d3q7mw6uv/76q/a38ntFAeBquOYNgCkVFhZq7969V61zww03+NQzyfLz86/6LLjWrVtf9bteAUAivAEAAJgKy6YAAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJjI/wfSZz7DpNh9lQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0037\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3000])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 0.525 - 0.550 A" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The detected scaning axes and values are: \n", "\n", "{'als_final_current': array([0.525 , 0.5259, 0.5268, 0.5277, 0.5286, 0.5295, 0.5304, 0.5313,\n", " 0.5322, 0.5331, 0.534 , 0.5349, 0.5358, 0.5367, 0.5376, 0.5385,\n", " 0.5394, 0.5403, 0.5412, 0.5421, 0.543 , 0.5439, 0.5448, 0.5457,\n", " 0.5466, 0.5475, 0.5484, 0.5493, 0.5502, 0.5511, 0.552 ]), 'runs': array([0., 1.])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABKVElEQVR4nO3deXxU1cH/8e9IwoQsiJOwBGTfUmTTVCCtSBDBPBYLiVCR0koQtBUFlBYDBEwUAlZs4eGJ+rMioVBFsYBKIRBCoFoR8+jTNlFRK6sgAgnIkoUE7++PNCNDJttktpt83q8XL5lzz5w593iZfHPOXSyGYRgCAACAKVzj6w4AAACg7ghvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARHwe3v7xj3/oJz/5iTp16qQWLVrIZrMpJiZG69atq1L3o48+0u23367Q0FC1atVKCQkJOnDggNN2V65cqaioKFmtVnXt2lWpqakqKyurUu/kyZOaPHmyIiIiFBwcrJiYGGVnZ7t9PwEAANzB5+Ht7Nmz6tixo9LS0rR161b96U9/UpcuXfSLX/xCixYtstfbv3+/YmNjdenSJb3++ut6+eWX9fnnn2vo0KE6deqUQ5uLFy/WzJkzlZCQoO3bt+uhhx5SWlqapk+f7lCvtLRUI0aMUHZ2tlasWKE333xTbdu2VVxcnPbs2eOV/QcAAKgPi78+23TIkCE6fvy4jhw5Ikn62c9+ppycHH355Zdq2bKlJOnw4cPq2bOnHn30UT399NOSpIKCAl1//fX65S9/qf/3//6fvb20tDQlJycrPz9fffr0kSQ999xzmj59ut577z3FxMRIksrLyzVgwACFhoZq37593txlAACAWvl85q06ERERCggIkFQRqLZs2aK7777bHtwkqXPnzho+fLg2bdpkL8vMzFRJSYkSExMd2ktMTJRhGNq8ebO9bNOmTerdu7c9uElSQECAJk2apA8++EDHjh3z0N4BAAC4JsDXHaj03Xff6bvvvtOZM2e0YcMGbd++Xf/zP/8jSfryyy9VXFys/v37V3lf//79lZWVpZKSEgUFBSk/P1+S1K9fP4d6kZGRioiIsG+XpPz8fA0dOtRpm5L08ccfq0OHDk77W1paqtLSUof+FxYWKjw8XBaLpZ57DwAAmjrDMHT+/Hm1b99e11xT/fya34S3hx56yL7M2bx5c/33f/+3HnzwQUkVS6GSZLPZqrzPZrPJMAydOXNGkZGRKigokNVqVUhIiNO6lW1Vtltdm1d+rjNLlixRampqPfYQAACgdkePHtX1119f7Xa/CW/z5s3T1KlTdfLkSb399tt6+OGHdfHiRf3mN7+x16lpRuvKbXWtV9+6V5o7d64ee+wx++tvv/1WnTp10sGDBxUWFlbt+1xVVlamnJwcDR8+XIGBgW5vH4yxt7gyzhcvSp07V9Q9fLhMTn43wxU4lr2Dcfa8pjbG58+fV9euXWvNEX4T3jp16qROnTpJku68805JFQHpvvvuU3h4uCTnM2GFhYWyWCxq1aqVJCk8PFwlJSUqKipScHBwlbrR0dH21+Hh4dW2KTmf6atktVpltVqrlNtsNofz8tylrKxMwcHBCg8PbxIHsC8wxt7hyjgHBX3/9/BwEd5qwbHsHYyz5zW1Ma7cx9pOv/LbCxYGDRqk8vJyHThwQN27d1eLFi2Ul5dXpV5eXp569OihoP98u1ee63Z13RMnTuj06dPq27evvaxfv37VtinJoS4AAIA/8NvwlpOTo2uuuUbdunVTQECA7rrrLm3cuFHnz5+31zly5IhycnKUkJBgL4uLi1NQUJAyMjIc2svIyJDFYtHYsWPtZfHx8dq/f7/DLUHKy8u1bt06DR48WO3bt/fY/gEAALjC58umDzzwgFq2bKlBgwapbdu2On36tDZs2KDXXntNv/3tb9W6dWtJUmpqqm6++WaNHj1aSUlJKikp0cKFCxUREaHZs2fb27PZbEpOTtaCBQtks9k0atQo5ebmKiUlRVOnTrXf402SpkyZovT0dI0fP15Lly5VmzZt9Nxzz+mzzz7Tzp07vT4WAAAAtfF5eIuJidHq1au1Zs0anT17VqGhoRowYIDWrl2rSZMm2etFRUVp9+7devzxxzVu3DgFBATotttu07Jly+wBr9L8+fMVFham9PR0LVu2TO3atVNSUpLmz5/vUM9qtSo7O1tz5szRI488oqKiIg0cOFDbtm3TsGHDvLL/AAAA9eHz8JaYmFjlhrrViY6OrvOM2IwZMzRjxoxa67Vt21Zr1qypU5sAAAC+5rfnvAEAAKAqwhsAj7t4UbJYKv5cvOjr3jRN/D8AGg/CG4Ba8YMfAPyHz895A8zg8mXpnXekr7+WIiOloUOlZs183SsAQFNEeANqsXGjNHOm9NVX35ddf720YoV0xS0GAQDwCpZNgRps3CiNG+cY3CTp2LGK8o0bfdMvAEDTRXgDqnH5csWMm2FU3VZZNmtWRT0AALyF8AZU4513qs64XckwpKNHK+oBABo3f7pwi/AGVOPrr91bDwAAdyC8AdWIjHRvPQAA3IHwBlRj6NCKq0otFufbLRapY8eKegAAeAvhDahGs2YVtwORqga4ytfLlzeN+71deVHG3/7GRRoA4EuEN6AGCQnSG29IHTo4ll9/fUV5U7jP28aNUp8+37++806pSxdukwIAvsJNeoFaJCRIY8aY+wkLrj4hovI+d1ffLqXyPndNJcACgD8hvAF10KyZFBvr6164xtUnRNR2nzuLpeI+d2PGmCvIAoDZsWwKNGINeUKEP93njnPuAOB7hDegkWroEyL85T53nHMHAI4Ib0Aj1dCZM3+4z13lzOGxY47lPFsWQFNGeDOBixel5s0DNXbsGJ8/kgPm0dCZM3fe5+7K2b1337XUadmzMT1b1h8eq8PSM9B4EN4AL/DFD++Gzpy56z53Vy973nVXgB54YJQ2baomFf6HP51zZ3YsPQONC+ENaKTcMXNWeZ+79u0dy+t6n7vqlj0LCoI0YUKzGsODv5xzZ3YsPQOND+HNBFxZcgLcNXOWkCB98sn3r7dulQ4erD241bTsKVV0oKZlT384585dfLVk2ZiWngF8j/Dm55wtObHcgbpy1xMirgx4t95at/u61b7saalx2bOxPFvWl0uW775rYekZaIQIb36M5Q64Q0KCdOiQlJMjvfJKxX/rMnPWUA1d9mwMz5Z117/hy5el3bulV1+t+G9dZ8pYegYaJ8Kbn2K5o3Hx9ZV+lU+IuPfeiv96I/C4Y9mzoefc+ZK7/g1v3FgxUzd8uDRxYsV/6zpz15iWngF8j/Dmp7jSrvFoqlf61b7sadRp2dPVc+6u5Iurfd3xb7ghT8iQpFtuMRrF0jMAR4Q3P8VyR+PQlJe+a1r2lCqmnuq67OnKOXfu5MqyZUP/Dbtj5q4xLD0D/sLXKyhXIrz5KZY7zI+l7+qXPSMiirV+/WW/Xvas5OqyZUP/Dbtr9t3MS8+Av/C3FRTCm59qLFfauYOrJ2v7GkvfFa5e9nz77XL9v/+Xpfh4p/cQ8SsNWbZs6L9hd86+u2PpGWiq/HEFhfDmp1juqNCQk7V9jaXv7115nN5yi2GK47ahM6cN/Tfs7tl3Xy89A2bkrysohDc/1tSXOxp6sravufOHr6+fjRkSUvFFZRgVf28K3DFz2pB/w8y+A77nrysohDc/52zJyWzLHa4ED3/9bac++OFrbu6aOXV1yZLZd1zJ17/ANVX+uoJCeDMBMy45NZS//rZTH/zwNTd3zpy6umTpridk+APCB8zIXy8eJLzBL/nrbzv11dSXvs3MX2ZOffWEDHfzp9ssAHXlL98DVyO8mUBIiHTpUpk2b36zyZxv5K+/7biCK/3MyZ0zpw09Z9AXT8i4WkOu+vaH2yycO/f9zN+2bU0vPPrD/ptx9tVfV1AIb/BL7vxtxx++MLjSz5wa07JlQzTkqm9/uM2CP4RHX2rq+99Q/riCQnhrAvwhvNSXv/62g6ansSxbuqohV337w4VH/hAefamp7/+VGjJ77G8rKIQ3+C1mPb7H+UK+5Q/Llr7Q0PDl6wuP/CE8+pK/7b8vv8c2bpQ6d27YPUP9aQWF8Aa/1lhmPRpyzhNLHg1H+HVNQ8OXry88cmd4NOOTXty5/w1dwfHl91hjnH0kvMHvNdVZD6lxful4G+HXdQ0NX76+8Mhd4bG6c/42barmpFw/4evwXMmX32P+NvvoLoQ3wE811i8dbyL8NkxDw5evb7PgjvBY0zl/EyY00969dfsQX5x77OvwLPn+e8zXS/eeQngD/FRj/dLxFl//0GgMGhq+fH3hUUP7X5djaNWqvl45hlxZ+vd1eJZ8/z3mL7OP7kZ4A/xUY/3S8RZf/9BoDNwRvnx5m4WG9r/2Y8ii06eD9e67nl0+dXXp353h2dXzRt35PebK7KU/zD56AuEN8FON9UvHWwi/7uGOq74TEqTDh31z4VFD+u8Px1BDl/7dEZ4bct6or7/H/GH20RMCfN0BeN7VvzGNGtW0Tvo3q8ovnWPHnC/bWCwV2832peMtvv6h0ZgkJEhjxlTMRH39dcWYDR1av++RyguPfMHV/vv6GKpt2dZiqVj6HzOm9tlPV///VYbHq/tQGR5rC4Du/B5z5WdZ5ezjuHEVn3VlH8x8z1Bm3ho5rrQzL1+fL2R2jfU3blc1hkd0NYQr/a/9GDIUEVGkW25xkkrcwJ1L/67svzvOG3XX99imTRaXf5Y1xnuGEt4aMa60Mz9/fCyLKxoaHFxB+EVD1eUYuv/+fI8dQ75etnVXeGzo99jevZGaMKFZg36WNZZ7hlYivDVSXGnXePjbY1l8wdXw11jCL3ynplmb9esvKybGcye8+XrZ1p3h0dXvscuXpZde6ueWn2Vmnz2+EuGtkfKnK+18fXd7X3++O/jTY1nMhvCLhqpu1iY+3jPLpZV8vfTv7vDoyvfYu+9aVFDQQpLzQWiqV40T3hopX0+3V/L1OXe+/nz4B8IvGsoXsza+Xvr3dXiU/Odnmb8hvDVSvp5ul3x/zp2vPx8AGsrM98m7miunP/jDzzJ/RHhrpHz9G5Ovz7nz9ecDgLv4cunf1+eN3nKLofDwYlkszpeom9pV45V8Ht527dqlKVOmKCoqSiEhIerQoYPGjBmjDz/80KHe5MmTZbFYqvyJiopy2u7KlSsVFRUlq9Wqrl27KjU1VWVlZVXqnTx5UpMnT1ZERISCg4MVExOj7Oxsj+yrN/l6ut3X59z5+vMBwJ18ufTvy/DYrJk0dWqeJK4av5LPw9vzzz+vQ4cOaebMmdq6datWrFihkydPasiQIdq1a5dD3RYtWmjv3r0Of1577bUqbS5evFgzZ85UQkKCtm/froceekhpaWmaPn26Q73S0lKNGDFC2dnZWrFihd588021bdtWcXFx2rNnj0f32xt8+RuTr89T8PXnA0Bj4svwGBPztdavv8xV41fw+RMW0tPT1aZNG4eyuLg49ejRQ2lpabrtttvs5ddcc42GDBlSY3sFBQVatGiRpk2bprS0NElSbGysysrKlJycrFmzZqnPf85gX7VqlfLz8/Xee+8pJiZGkjR8+HANGDBAc+bM0b59+9y5qz6RkCDdfrt07bUVr7durf8TFi5elEJDK/5+4ULdzlXw9XkKvv58AID7xMcbiotr2M+yxsTnM29XBzdJCg0NVZ8+fXT06NF6t5eZmamSkhIlJiY6lCcmJsowDG3evNletmnTJvXu3dse3CQpICBAkyZN0gcffKBjV5/pblK++I3J1+fc+frz3c0XN7kFAH/CVePf8/nMmzPffvutPvroI4dZN0kqLi5Wu3btdOrUKUVGRmrs2LF68sknZbPZ7HXy8/MlSf369XN4b2RkpCIiIuzbK+sOdfLTu3///pKkjz/+WB2uvjPjf5SWlqq0tNT++ty5c5KksrIyp+fWNVRlm660XfGWQPv769uEq+9/9lmLJkxo9p/nyX2foipPPF227LK++87Qd9/Vrz91Vd/Pb8gYo+58Mc4N/TdgNo3xWL58ueKeX5XP5rzlFsPnP7zrM84lJVLlMZiTU67bb69f/319DDdvLl26dHV/PO/KMW4KY1DXf7N+Gd6mT5+uixcvav78+fayAQMGaMCAAerbt68kac+ePfrDH/6g7Oxs5ebmKvQ/63oFBQWyWq0KcTI9YbPZVFBQYH9dUFDgEPyurFe5vTpLlixRampqlfIdO3YoODi4jntaf1lZWfV+T0lJM0mjJUnbt29XUFD9LrF09f1WqzRnTqT++Md+KixsYS8PDy/W/ffny2r9Wlu31qsr9eLq57syxqg/b45zQ/8NmFVjOZb37o3USy/1+8/NWiuEhxdr6tQ8jz7hoK5qG+e9eyu+hyqDx113BdS7/031GK5UOcaVi2eN4LR0p4qKiupUz2IYzm6m4DsLFizQokWLtHLlSj388MM11v3LX/6icePG6fe//70effRRSdIDDzygtWvXqri4uEr93r17q2vXrsrMzJQkNW/eXPfff7+ef/55h3p79+7Vj370I7366quaMGGC0892NvPWsWNHnT59Wi1btqzXPtdFWVmZsrKyNHLkSAUGBtbrvRcvStddV/GeM2fK6r3s1tD3nzsnRURUvP/tt+v/G2dD1fXzGzLGqDtfjHNDj2GzaUzH8qZNFTPoFT+pqs6gr19/2eNPOqhOXcbZXf1vasdwpcZ0LNfFuXPnFBERoW+//bbGLOFXM2+pqalatGiRFi9eXGtwk6T4+HiFhITo/ffft5eFh4erpKRERUVFVWbACgsLFR0d7VDX2exaYWGhJDmdlatktVpltVqrlAcGBnr0AHOl/SurV7y/vp/ZsPcHBX3/9+HDAxxee0N9P9/T/w9RwZvj3NBj2KzMfixfvizNnl3d/Rotslik3/wmQHff7dvzn6obZ3f2v6kew5XMfizXVV330ecXLFRKTU1VSkqKUlJSNG/evDq/zzAMXXPN97tRea5bXl6eQ70TJ07o9OnT9mXXyrpX17vyvVfWbcoaw7NB0bRxwYc5mf1+je7sP8cwruQX4e2pp55SSkqKkpOT9cQTT9T5fW+88YaKioocbh8SFxenoKAgZWRkONTNyMiQxWLR2LFj7WXx8fHav3+/wy1BysvLtW7dOg0ePFjtr76pTBPEs0EB+IrZ79do9v7Df/l82fTZZ5/VwoULFRcXp5/85CcOS6CSNGTIEB0+fFgTJ07UhAkT1KNHD1ksFu3Zs0fLly/XDTfcoKlTp9rr22w2JScna8GCBbLZbBo1apRyc3OVkpKiqVOn2u/xJklTpkxRenq6xo8fr6VLl6pNmzZ67rnn9Nlnn2nnzp1eGwN/Vfls0Kun/CufDdpUb44IwDvMfr9Gs/cf/svn4e3tt9+WVHF/tsoLCa5kGIZatmyptm3b6ve//72++eYbXb58WZ07d9aMGTM0b968KleWzp8/X2FhYUpPT9eyZcvUrl07JSUlOVy9KlWct5adna05c+bokUceUVFRkQYOHKht27Zp2LBhnttpL6ucbq+P2p4NarFUPBt0zJimfa8dAJ5Teb/GY8ecfxdZLBXb/fV+jWbvP/yXz8Pb7t27a61z3XXXaWM91+lmzJihGTNm1Fqvbdu2WrNmTb3abgrqc65GbKzXugWgCal8RvO4cfrP/Rq/32aG51qavf/wX35xzhv8D+dqAPAHlc9ovvp+6WZ5rqUvnzGNxsvnM2/wT5yrAcBfJCRUnKLxzjuyP2Fh6FDzzFi54xnTwJUIb3CKczUA+JNmzcx9igbP5YQ7sWwKpyrP1ZCqPtydczUAAPAdwhuqxbkaAAD4H5ZNUSPO1QAAwL8Q3lArs5+r4cp97gAA8FcsmwIAAJgI4Q0AAMBECG8AAAAmwjlv8DjOOQMAwH0Ib6gV4QsAAP/BsikAAICJEN4AAABMhPAGAABgIoQ3AAAAE+GCBQAAPIwLv+BOzLwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBGfh7ddu3ZpypQpioqKUkhIiDp06KAxY8boww8/rFL3o48+0u23367Q0FC1atVKCQkJOnDggNN2V65cqaioKFmtVnXt2lWpqakqKyurUu/kyZOaPHmyIiIiFBwcrJiYGGVnZ7t9PwEAANzB5+Ht+eef16FDhzRz5kxt3bpVK1as0MmTJzVkyBDt2rXLXm///v2KjY3VpUuX9Prrr+vll1/W559/rqFDh+rUqVMObS5evFgzZ85UQkKCtm/froceekhpaWmaPn26Q73S0lKNGDFC2dnZWrFihd588021bdtWcXFx2rNnj1f2HwAAoD4CfN2B9PR0tWnTxqEsLi5OPXr0UFpamm677TZJ0sKFC2W1WrVlyxa1bNlSkhQdHa2ePXtq2bJlevrppyVJBQUFWrRokaZNm6a0tDRJUmxsrMrKypScnKxZs2apT58+kqRVq1YpPz9f7733nmJiYiRJw4cP14ABAzRnzhzt27fPK2MAAABQVz6febs6uElSaGio+vTpo6NHj0qSysvLtWXLFt1999324CZJnTt31vDhw7Vp0yZ7WWZmpkpKSpSYmOjQZmJiogzD0ObNm+1lmzZtUu/eve3BTZICAgI0adIkffDBBzp27Ji7dhMAAMAtfD7z5sy3336rjz76yD7r9uWXX6q4uFj9+/evUrd///7KyspSSUmJgoKClJ+fL0nq16+fQ73IyEhFRETYt0tSfn6+hg4d6rRNSfr444/VoUMHp30sLS1VaWmp/fW5c+ckSWVlZU7PrWuoyjY90TYqMMbewTh7HmPsHYyz5zW1Ma7rfvpleJs+fbouXryo+fPnS6pYCpUkm81Wpa7NZpNhGDpz5owiIyNVUFAgq9WqkJAQp3Ur26pst7o2r/xcZ5YsWaLU1NQq5Tt27FBwcHAte+i6rKwsj7WNCoyxdzDOnscYewfj7HlNZYyLiorqVM/vwtuCBQv05z//WStXrlR0dLTDNovFUu37rtxW13r1rXuluXPn6rHHHrO/PnfunDp27KhRo0Y5LO26S1lZmbKysjRy5EgFBga6vX0wxt7COHseY+wdjLPnNbUxrlzFq41fhbfU1FQtWrRIixcv1sMPP2wvDw8Pl+R8JqywsFAWi0WtWrWy1y0pKVFRUVGVGbDCwkKHQBgeHl5tm5Lzmb5KVqtVVqu1SnlgYKBHDzBPtw/G2FsYZ89jjL2Dcfa8pjLGdd1Hn1+wUCk1NVUpKSlKSUnRvHnzHLZ1795dLVq0UF5eXpX35eXlqUePHgoKCpL0/bluV9c9ceKETp8+rb59+9rL+vXrV22bkhzqAgAA+AO/CG9PPfWUUlJSlJycrCeeeKLK9oCAAN11113auHGjzp8/by8/cuSIcnJylJCQYC+Li4tTUFCQMjIyHNrIyMiQxWLR2LFj7WXx8fHav3+/wy1BysvLtW7dOg0ePFjt27d3304CAAC4gc+XTZ999lktXLhQcXFx+slPfqL333/fYfuQIUMkVczM3XzzzRo9erSSkpJUUlKihQsXKiIiQrNnz7bXt9lsSk5O1oIFC2Sz2TRq1Cjl5uYqJSVFU6dOtd/jTZKmTJmi9PR0jR8/XkuXLlWbNm303HPP6bPPPtPOnTu9MwAAAAD14PPw9vbbb0uquD9bZmZmle2GYUiSoqKitHv3bj3++OMaN26cAgICdNttt2nZsmVq3bq1w3vmz5+vsLAwpaena9myZWrXrp2SkpLsV69Wslqtys7O1pw5c/TII4+oqKhIAwcO1LZt2zRs2DAP7TEAAIDrfB7edu/eXee60dHRdZ4RmzFjhmbMmFFrvbZt22rNmjV17gMAAIAv+cU5bwAAAKgbwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmIjL4e3JJ5/U8ePHnW77+uuv9eSTT7rcKQAAADjncnhLTU3VV1995XTb8ePHlZqa6nKnAAAA4JzL4c0wjGq3XbhwQYGBga42DQAAgGoE1Kfyv/71L/3jH/+wv966dav279/vUKe4uFh//vOf1b17d7d0EAAAAN+rV3jbtGmTfTnUYrFUe15bixYttHr16ob3DgAAAA7qFd4eeOABjR49WoZhaNCgQVq9erX69u3rUMdqtap79+5q0aKFWzsKAACAeoa3yMhIRUZGSpJycnIUHR2t0NBQj3QMAAAAVdUrvF1p2LBh7uwHAAAA6sDl8CZJ69at0yuvvKLDhw+ruLjYYZvFYtGXX37ZoM4BAADAkcvh7emnn9bcuXPVp08fDRgwQFar1Z39AgAAgBMuh7cXX3xR06dP18qVK93ZHwAAANTA5Zv0njhxQvHx8e7sCwAAAGrhcniLjo7mnDYAAAAvczm8/f73v9ezzz6rDz/80J39AQAAQA1cPuctMTFRBQUFGjRokNq1a6fw8HCH7RaLRf/85z8b3EEAAAB8z+XwFh4eroiICHf2BQAAALVwObzt3r3bjd0AAABAXbh8zhsAAAC8z+WZt7/97W+11rn11ltdbR4AAABOuBzeYmNjZbFYaqxz+fJlV5sHAACAEy6Ht5ycnCplp0+f1ptvvqm///3vSk9Pb1DHAAAAUJXL4W3YsGFOy++++2796le/UmZmpuLi4lzuGAAAAKryyAUL8fHxWr9+fZ3qnj9/XnPmzNGoUaPUunVrWSwWpaSkVKk3efJkWSyWKn+ioqKctrty5UpFRUXJarWqa9euSk1NVVlZWZV6J0+e1OTJkxUREaHg4GDFxMQoOzu7XvsLAADgLS7PvNXkzJkzKi0trVPdgoICvfjiixowYIDGjh2rl156qdq6LVq00K5du6qUXW3x4sVasGCBkpKSNGrUKOXm5io5OVnHjh3Tiy++aK9XWlqqESNG6OzZs1qxYoXatGmj9PR0xcXFaefOndXOLgIAAPiKy+HtyJEjVcpKS0v1r3/9S3PnztWQIUPq1E7nzp115swZWSwWnT59usbwds0119TabkFBgRYtWqRp06YpLS1NUsXFFWVlZUpOTtasWbPUp08fSdKqVauUn5+v9957TzExMZKk4cOHa8CAAZozZ4727dtXp30AAADwFpeXTbt06aKuXbs6/ImKitL48eMVFBSk//mf/6lTO5XLn+6SmZmpkpISJSYmOpQnJibKMAxt3rzZXrZp0yb17t3bHtwkKSAgQJMmTdIHH3ygY8eOua1fAAAA7uDyzNvLL79cJXQFBQWpS5cuuvnmm3XNNe4/na64uFjt2rXTqVOnFBkZqbFjx+rJJ5+UzWaz18nPz5ck9evXz+G9kZGRioiIsG+vrDt06NAqn9O/f39J0scff6wOHTo47UtpaanD0vC5c+ckSWVlZU7PrWuoyjY90TYqMMbewTh7HmPsHYyz5zW1Ma7rfroc3iZPnuzqW10yYMAADRgwQH379pUk7dmzR3/4wx+UnZ2t3NxchYaGSqpYNrVarQoJCanShs1mU0FBgf11QUGBQ/C7sl7l9uosWbJEqampVcp37Nih4ODg+u1cPWRlZXmsbVRgjL2DcfY8xtg7GGfPaypjXFRUVKd6Db5g4fz589q7d68KCgoUERGhIUOGKCwsrKHNVvHoo486vB45cqRuvPFGjRs3Tn/84x8dtte0DHv1tvrUvdLcuXP12GOP2V+fO3dOHTt21KhRo9SyZctq3+eqsrIyZWVlaeTIkQoMDHR7+2CMvYVx9jzG2DsYZ89ramNcuYpXmwaFt2XLlik1NVVFRUUyDEOSFBISotTUVIdg4ynx8fEKCQnR+++/by8LDw9XSUmJioqKqsyAFRYWKjo62qGus9m1wsJCSXI6K1fJarXKarVWKQ8MDPToAebp9sEYewvj7HmMsXcwzp7XVMa4rvvo8olpf/rTnzRnzhzdeuutWr9+vd555x299tprGjZsmH77299q7dq1rjZdL4ZhOJxfV3muW15enkO9EydO6PTp0/Zl18q6V9e78r1X1gUAAPAHLoe3P/zhD5o4caL++te/avz48frxj3+s8ePHa8uWLbr33nv1hz/8wZ39dOqNN95QUVGRw+1D4uLiFBQUpIyMDIe6GRkZslgsGjt2rL0sPj5e+/fvd7glSHl5udatW6fBgwerffv2nt4FAACAenF52XT//v1asmSJ022TJk1SfHx8ndvatm2bLl68qPPnz0uSPvnkE73xxhuSpDvvvFOnTp3SxIkTNWHCBPXo0UMWi0V79uzR8uXLdcMNN2jq1Kn2tmw2m5KTk7VgwQLZbDb7TXpTUlI0depU+z3eJGnKlClKT0/X+PHjtXTpUrVp00bPPfecPvvsM+3cudOVYQEAAPAol8NbixYt7OeGXa2wsNDpkw+q8+tf/1qHDx+2v96wYYM2bNggSTp48KCuvfZatW3bVr///e/1zTff6PLly+rcubNmzJihefPmVbmydP78+QoLC1N6erqWLVumdu3aKSkpSfPnz3eoZ7ValZ2drTlz5uiRRx5RUVGRBg4cqG3btvF0BQAA4JdcDm9Dhw5VSkqKYmNjHZYXT5w4oSeffFK33nprnds6dOhQrXU2btxYr/7NmDFDM2bMqLVe27ZttWbNmnq1DQAA4Csuh7e0tDT96Ec/Uo8ePTRixAhFRkbq66+/1q5duxQYGFjvsAUAAIDauXzBwg033KDc3FyNGTNGubm5Wr16tXJzczV27Fh98MEHDueWAQAAwD0adJ+3Xr166dVXX3VXXwAAAFCLes+85eXl6auvvqp2+1dffeX03mkAAABouHqFt7/97W+Kjo7WN998U22db775RtHR0dq+fXuDOwcAAABH9Qpv6enpGjdunMMjpq4WHR2te+65Ry+99FKDOwcAAABH9Qpvf//73x2eUFCdn/70pw7PGwUAAIB71Cu8nTp1Sh06dKi1XmRkpE6ePOlypwAAAOBcvcJbSEhItU9VuNKZM2cUHBzscqcAAADgXL3C2w033KDMzMxa623btk033HCDy50CAACAc/UKb/fcc49WrVqlPXv2VFsnJydHq1ev1r333tvgzgEAAMBRvW7S+8ADDygjI0OjRo3S1KlTNWbMGHXt2lVSxQPkN2/erFWrVmnAgAGaNm2aRzoMAADQlNUrvDVv3lzbt2/XL37xCz3//PN64YUXHLYbhqH/+q//0p/+9Cc1b97crR0FAACAC4/HCg8P19atW/Xhhx9qx44dOnr0qCSpU6dOuuOOO3TjjTe6vZMAAACo4PKzTaOjo2u8WS8AAADcr17hrX///nWua7FY9M9//rPeHQIAAED16hXebDabLBZLjXUuXLigDz/8sNZ6AAAAqL96hbfdu3dXu628vFwvvviinnzySVksFk2cOLGhfQMAAMBV6nWft+ps2LBBffr00SOPPKIBAwboww8/1Nq1a93RNAAAAK7QoPC2e/duDR48WPfcc49atmypHTt2aPv27Ro4cKCbugcAAIAruRTe8vLydOedd2rEiBEqKCjQK6+8ov/93//ViBEj3N0/AAAAXKFe4e3o0aO67777dNNNN+nDDz/U8uXL9emnn2rChAme6h8AAACuUK8LFnr16qVLly4pLi5Oc+bMUVhYmPLy8qqtf9NNNzW4gwAAAPhevcJbaWmpJGnbtm3KzMystp5hGLJYLLp8+XLDegcAAAAH9Qpvq1ev9lQ/AAAAUAf1Cm/33Xefp/oBAACAOnDLfd4AAADgHYQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIoQ3AAAAE/F5eDt//rzmzJmjUaNGqXXr1rJYLEpJSXFa96OPPtLtt9+u0NBQtWrVSgkJCTpw4IDTuitXrlRUVJSsVqu6du2q1NRUlZWVVal38uRJTZ48WREREQoODlZMTIyys7PduYsAAABu4/PwVlBQoBdffFGlpaUaO3ZstfX279+v2NhYXbp0Sa+//rpefvllff755xo6dKhOnTrlUHfx4sWaOXOmEhIStH37dj300ENKS0vT9OnTHeqVlpZqxIgRys7O1ooVK/Tmm2+qbdu2iouL0549ezyxuwAAAA0S4OsOdO7cWWfOnJHFYtHp06f10ksvOa23cOFCWa1WbdmyRS1btpQkRUdHq2fPnlq2bJmefvppSRVhcNGiRZo2bZrS0tIkSbGxsSorK1NycrJmzZqlPn36SJJWrVql/Px8vffee4qJiZEkDR8+XAMGDNCcOXO0b98+T+8+AABAvfh85s1ischisdRYp7y8XFu2bNHdd99tD25SRfAbPny4Nm3aZC/LzMxUSUmJEhMTHdpITEyUYRjavHmzvWzTpk3q3bu3PbhJUkBAgCZNmqQPPvhAx44da+DeAQAAuJfPZ97q4ssvv1RxcbH69+9fZVv//v2VlZWlkpISBQUFKT8/X5LUr18/h3qRkZGKiIiwb5ek/Px8DR061GmbkvTxxx+rQ4cOTvtUWlqq0tJS++tz585JksrKypyeW9dQlW16om1UYIy9g3H2PMbYOxhnz2tqY1zX/TRFeCsoKJAk2Wy2KttsNpsMw9CZM2cUGRmpgoICWa1WhYSEOK1b2VZlu9W1eeXnOrNkyRKlpqZWKd+xY4eCg4Nr3ykXZWVleaxtVGCMvYNx9jzG2DsYZ89rKmNcVFRUp3qmCG+ValpevXJbXevVt+6V5s6dq8cee8z++ty5c+rYsaNGjRrlsLTrLmVlZcrKytLIkSMVGBjo9vbBGHsL4+x5jLF3MM6e19TGuHIVrzamCG/h4eGSnM+EFRYWymKxqFWrVva6JSUlKioqqjIDVlhYqOjoaId2q2tTcj7TV8lqtcpqtVYpDwwM9OgB5un2wRh7C+PseYyxdzDOntdUxriu++jzCxbqonv37mrRooXy8vKqbMvLy1OPHj0UFBQk6ftz3a6ue+LECZ0+fVp9+/a1l/Xr16/aNiU51AUAAPAHpghvAQEBuuuuu7Rx40adP3/eXn7kyBHl5OQoISHBXhYXF6egoCBlZGQ4tJGRkSGLxeJwL7n4+Hjt37/f4ZYg5eXlWrdunQYPHqz27dt7bJ8AAABc4RfLptu2bdPFixftweyTTz7RG2+8IUm68847FRwcrNTUVN18880aPXq0kpKSVFJSooULFyoiIkKzZ8+2t2Wz2ZScnKwFCxbIZrNp1KhRys3NVUpKiqZOnWq/x5skTZkyRenp6Ro/fryWLl2qNm3a6LnnntNnn32mnTt3encQAAAA6sAvwtuvf/1rHT582P56w4YN2rBhgyTp4MGD6tKli6KiorR79249/vjjGjdunAICAnTbbbdp2bJlat26tUN78+fPV1hYmNLT07Vs2TK1a9dOSUlJmj9/vkM9q9Wq7OxszZkzR4888oiKioo0cOBAbdu2TcOGDfP8jgMAANSTX4S3Q4cO1aledHR0nWfEZsyYoRkzZtRar23btlqzZk2d2gQAAPA1U5zzBgAAgAqENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBECG8AAAAmQngDAAAwEcIbAACAiRDeAAAATITwBgAAYCKENwAAABMhvAEAAJgI4Q0AAMBETBPedu/eLYvF4vTP+++/71D3o48+0u23367Q0FC1atVKCQkJOnDggNN2V65cqaioKFmtVnXt2lWpqakqKyvzxi4BAADUW4CvO1BfaWlpGj58uENZ37597X/fv3+/YmNjNXDgQL3++usqKSnRwoULNXToUP3jH/9Q69at7XUXL16sBQsWKCkpSaNGjVJubq6Sk5N17Ngxvfjii17bJwAAgLoyXXjr2bOnhgwZUu32hQsXymq1asuWLWrZsqUkKTo6Wj179tSyZcv09NNPS5IKCgq0aNEiTZs2TWlpaZKk2NhYlZWVKTk5WbNmzVKfPn08v0MAAAD1YJpl07ooLy/Xli1bdPfdd9uDmyR17txZw4cP16ZNm+xlmZmZKikpUWJiokMbiYmJMgxDmzdv9la3AQAA6sx0M2/Tp0/XhAkTFBwcrJiYGC1YsEC33HKLJOnLL79UcXGx+vfvX+V9/fv3V1ZWlkpKShQUFKT8/HxJUr9+/RzqRUZGKiIiwr69OqWlpSotLbW/PnfunCSprKzMI+fMVbbJ+Xiewxh7B+PseYyxdzDOntfUxriu+2ma8Hbttddq5syZio2NVXh4uP7973/rmWeeUWxsrP7617/qjjvuUEFBgSTJZrNVeb/NZpNhGDpz5owiIyNVUFAgq9WqkJAQp3Ur26rOkiVLlJqaWqV8x44dCg4OdnEva5eVleWxtlGBMfYOxtnzGGPvYJw9r6mMcVFRUZ3qmSa83Xjjjbrxxhvtr4cOHar4+Hj169dPc+bM0R133GHfZrFYqm3nym11refM3Llz9dhjj9lfnzt3Th07dtSoUaMclmzdpaysTFlZWRo5cqQCAwPd3j4YY29hnD2PMfYOxtnzmtoYV67i1cY04c2ZVq1aafTo0XrhhRdUXFys8PBwSXI6a1ZYWCiLxaJWrVpJksLDw1VSUqKioqIqM2WFhYWKjo6u8bOtVqusVmuV8sDAQI8eYJ5uH4yxtzDOnscYewfj7HlNZYzruo+mv2DBMAxJFTNl3bt3V4sWLZSXl1elXl5ennr06KGgoCBJ35/rdnXdEydO6PTp0w63HwEAAPAXpg5vZ86c0ZYtWzRw4EAFBQUpICBAd911lzZu3Kjz58/b6x05ckQ5OTlKSEiwl8XFxSkoKEgZGRkObWZkZMhisWjs2LFe2gsAAIC6M82y6cSJE9WpUyf98Ic/VEREhL744gs9++yz+uabbxwCWGpqqm6++WaNHj1aSUlJ9pv0RkREaPbs2fZ6NptNycnJWrBggWw2m/0mvSkpKZo6dSr3eAMAAH7JNOGtf//+eu211/TCCy/owoULstlsuuWWW7R27VrdfPPN9npRUVHavXu3Hn/8cY0bN04BAQG67bbbtGzZMoenK0jS/PnzFRYWpvT0dC1btkzt2rVTUlKS5s+f7+3dAwAAqBPThLekpCQlJSXVqW50dLR27txZp7ozZszQjBkzGtI1AAAArzH1OW8AAABNDeENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3gAAAEyE8AYAAGAihDcAAAATIbwBAACYCOENAADARAhvAAAAJkJ4AwAAMBHCGwAAgIkQ3iRduHBBs2bNUvv27RUUFKSBAwdq/fr1vu4WAABAFQG+7oA/SEhIUG5urpYuXapevXrplVde0b333qvvvvtOEydO9HX3AAAA7Jp8eNu6dauysrLsgU2Shg8frsOHD+u3v/2t7rnnHjVr1szHvQQAAKjQ5JdNN23apNDQUI0fP96hPDExUcePH9e+fft81DMAAICqmvzMW35+vn7wgx8oIMBxKPr372/f/qMf/ajK+0pLS1VaWmp//e2330qSCgsLVVZW5vZ+lpWVqaioSAUFBQoMDHR7+2CMvYVx9jzG2DsYZ89ramN8/vx5SZJhGDXWa/LhraCgQN26datSbrPZ7NudWbJkiVJTU6uUd+3a1b0dBAAATcr58+d17bXXVru9yYc3SbJYLPXeNnfuXD322GP21999950KCwsVHh5eY3uuOnfunDp27KijR4+qZcuWbm8fjLG3MM6exxh7B+PseU1tjA3D0Pnz59W+ffsa6zX58BYeHu50dq2wsFDS9zNwV7NarbJarQ5lrVq1cnv/rtayZcsmcQD7EmPsHYyz5zHG3sE4e15TGuOaZtwqNfkLFvr166dPP/1U5eXlDuV5eXmSpL59+/qiWwAAAE41+fAWHx+vCxcu6C9/+YtD+Zo1a9S+fXsNHjzYRz0DAACoqskvm/7Xf/2XRo4cqV//+tc6d+6cevTooVdffVWZmZlat26d39zjzWq16oknnqiyVAv3YYy9g3H2PMbYOxhnz2OMnbMYtV2P2gRcuHBB8+fP1+uvv67CwkJFRUVp7ty5mjBhgq+7BgAA4IDwBgAAYCJN/pw3AAAAMyG8AQAAmAjhzQMuXLigWbNmqX379goKCtLAgQO1fv36Wt+XkZEhi8Xi9M+JEyfs9c6dO6fFixcrNjZW7dq1U2hoqPr166enn35aJSUlDm0eOnSo2jbr0id/5ulxlqT58+frxhtvlM1mU1BQkLp166YHHnhAhw8frtJuWVmZUlNT1aVLF1mtVkVFRWnlypVu219f8KcxbqzHsjfG+ErFxcXq1auXLBaLli1bVmV7YzyOJf8aZ45lR/UZ49jYWKf14uLiqrTbWI9liatNPSIhIUG5ublaunSpevXqpVdeeUX33nuvvvvuO02cOLHW969evVpRUVEOZeHh4fa/HzlyRMuXL9cvfvELPfbYYwoNDdU777yjlJQUZWVlKSsrq8pTHh555JEqn92zZ88G7KXveXqcJens2bO699579YMf/EBhYWH65JNPtGjRIr311lv6+OOPHeo/9NBDWrt2rZ566indfPPN2r59u2bOnKnz589r3rx57tlpL/O3MZYa37HsjTG+0oIFC3Tx4sVqtzfG41jyv3GWOJavVtcx7tatm/785z87lDm7SX5jPZYlSQbc6q9//ashyXjllVccykeOHGm0b9/eKC8vr/a9q1evNiQZubm5NX7GhQsXjAsXLlQpf+aZZwxJxjvvvGMvO3jwoCHJeOaZZ+q5J/7NG+Ncna1btxqSjFWrVtnL8vPzDYvFYqSlpTnUnTZtmtGiRQujoKDApc/yJX8b48Z4LHt7jPft22c0b97c2LBhg9OxbIzHsWH43zhzLDuqzxgPGzbMuOGGG2qt11iP5Uosm7rZpk2bFBoaqvHjxzuUJyYm6vjx49q3b1+DPyMkJEQhISFVygcNGiRJOnr0aIM/w995Y5yr07p1a0lSQMD3E9ebN2+WYRhKTEys0p/i4mJlZmZ6rD+e4m9j3Bh5c4wvXbqkKVOmaPr06frhD3/otE5jPI4l/xvnxsiX3xfONNZjuRLhzc3y8/P1gx/8oMoPnf79+9u312b06NFq1qyZbDabEhIS6vQeSdq1a5ck6YYbbqiybenSpWrevLmCg4N1yy236K233qpTm/7K2+NcXl6u4uJi/d///Z9mzZqlXr16KSEhwaE/rVu3Vrt27Vzuj7/xtzGu1JiOZW+O8ZNPPqmLFy/qqaeeqrE/je04lvxvnCtxLDuq6xh/+eWXstlsCggIUPfu3TV//nwVFxdX6U9jPJYrNe5fa32goKBA3bp1q1Je+YD7goKCat/brl07zZ8/X0OGDFHLli2Vl5enpUuXasiQIfr73/+uAQMGVPvef/3rX/rd736n+Ph4+8EpVdydetq0aRo5cqQiIyN15MgRrVy5UmPGjNEf//hHTZ06tQF76zveHOcTJ04oMjLS/nrw4MHKyclRaGioQ38qP/tKISEhat68eY398Vf+NsaN8Vj21hj/4x//0O9+9zu9/fbbCgkJ0alTp6rtT2M7jiX/G2eOZUf1GeNbbrlF99xzj6KiolRcXKxt27bpd7/7nd59913l5OTommuusX9eYzyW7Xy8bNvo9OzZ04iLi6tSfvz4cUOSsWTJknq1d/DgQSM0NNT46U9/WmOdjh07Gr169arTOv6lS5eMG2+80QgPDzfKysrq1R9/4c1xLisrM3Jzc413333X+OMf/2j07NnT6NWrl3H8+HF7nZEjRxpRUVFO227evLnx4IMP1qs//sDfxtgZsx/L3hjjsrIy48YbbzQmTZrkUE9OzrlqjMexYfjfODvDseyoLj/7Ki1btsyQZGzcuNFe1liP5Uosm7pZeHi400RfWFgoSU5/E6hJly5ddMstt+j99993uv3w4cMaPny4AgIClJ2dXaf2AwMDdc8996igoEBffPFFvfrjL7w5zgEBAfrhD3+oH//4x5o6dap27dqlAwcOaOnSpbX25+LFi7p06VK9++MP/G2MnTH7seyNMV6+fLkOHDigJ554QmfPntXZs2d17tw5SVJJSYnOnj2ry5cv19gfMx/Hkv+NszMcy45q+9l3pUmTJkmSQ93GeixXIry5Wb9+/fTpp5+qvLzcoTwvL0+S1Ldv33q3aRiGfSr4SocPH1ZsbKwMw1BOTo6uv/76erUpyWm7ZuDNcb7a9ddfr/bt2+vzzz936M+pU6eq3JOoIf3xNX8b45ralMx5LHtjjPPz8/Xtt9+qZ8+euu6663TdddfZl6EWLFig6667zv55jfE4lvxvnGtqU+JYrlTX74tKV9ZtrMeyna+m/BqrylscrF+/3qE8Li6u1sulnTlw4IARGhpqjB071qH88OHDRpcuXYyOHTsaX375Zb3avHTpkjFw4EAjIiKi3v3xF94aZ2e++OIL45prrjEefvhhe1nlZelLly51qPvggw+a9rJ0fxtjZ8x+LHtjjD/99FMjJyfH4c+rr75qSDJ+9atfGTk5Ocb58+cNw2icx7Fh+N84O8Ox7Kg+3xdPP/20IcnYvHmzvayxHsuVCG8eMHLkSOO6664zXnzxRWPXrl3GtGnTDEnGunXr7HWmTJliNGvWzDh06JC9bMSIEUZqaqqxadMmIzs721i+fLnRvn17IywszMjLy7PX++abb4xu3boZVqvVWLdunbF3716HP0ePHrXXffTRR42HH37YePXVV42cnBzjT3/6k3HzzTcbkozVq1d7ZTw8xdPj/M9//tO47bbbjOeee87IzMw0duzYYTz77LPG9ddfb7Ru3dqhTcMwjKlTpxpWq9V45plnjN27dxvz5s0zLBaLsXjxYs8Phof40xg31mPZ02PsTE3nYjXG49gw/GucOZZdG+O//e1vxh133GG88MILxo4dO4y33nrL+PWvf200a9bMuO2224zLly879KexHsuGQXjziPPnzxszZsww2rVrZzRv3tzo37+/8eqrrzrUue+++wxJxsGDB+1ls2bNMvr06WOEhYUZAQEBRvv27Y1JkyYZn332mcN7c3JyDEnV/nniiSfsdVetWmUMGjTIsNlsRkBAgHHdddcZd9xxh7F9+3ZPDoFXeHqcT5w4YUyaNMno3r27ERwcbDRv3tzo1q2b8atf/co4cuRIlf5cunTJeOKJJ4xOnToZzZs3N3r16mX893//t0f23Vv8aYwb67Hs6TF2pqbw1hiPY8Pwr3HmWHZtjL/44gvjzjvvNDp06GBYrVYjKCjI6Nevn7F48WKjpKSkSn8a67FsGIZhMYz/LLIDAADA75nvrEgAAIAmjPAGAABgIoQ3AAAAEyG8AQAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4A+IVDhw7JYrEoIyPD7W1nZ2frhz/8oUJCQmSxWLR582ZlZGTIYrHo0KFDbv+8K3Xp0kWTJ0/26GeYwSeffKKUlBSPjzfQFAT4ugMA4EmGYehnP/uZevXqpbfeekshISHq3bu3ysvLtXfvXkVGRvq6i03CJ598otTUVMXGxqpLly6+7g5gaoQ3AI3a8ePHVVhYqPj4eI0YMcJhW+vWrX3UK98qKyuTxWJRQEDVHwFFRUUKDg72Qa8A1BXLpgA86t///rcSExPVs2dPBQcHq0OHDrrrrruUl5dX63tPnTqlBx54QB07dpTValXr1q314x//WDt37qzTZ6ekpOj666+XJD3++OOyWCz2WR9ny6axsbHq27evcnNzNXToUAUHB6tbt25aunSpvvvuO3u9kpISzZ49WwMHDtS1114rm82mmJgYvfnmm3UfmFq88soriomJUWhoqEJDQzVw4ECtWrXKvr265djY2FjFxsbaX+/evVsWi0Vr167V7Nmz1aFDB1mtVv373//W5MmTFRoaqry8PI0aNUphYWH2gHvp0iUtWrRIUVFR9rFPTEzUqVOnHD6vS5cuGj16tDIzM3XTTTepRYsWioqK0ssvv2yvk5GRofHjx0uShg8fLovF4rElcqApYOYNgEcdP35c4eHhWrp0qVq3bq3CwkKtWbNGgwcP1v/93/+pd+/e1b73F7/4hT766CMtXrxYvXr10tmzZ/XRRx+poKCgTp89depUDRgwQAkJCXrkkUc0ceJEWa3WGt9z4sQJ/fznP9fs2bP1xBNPaNOmTZo7d67at2+vX/7yl5Kk0tJSFRYW6je/+Y06dOigS5cuaefOnUpISNDq1avt9Vy1cOFCPfXUU0pISNDs2bN17bXXKj8/X4cPH3a5zblz5yomJkYvvPCCrrnmGrVp00ZSRUj76U9/qgcffFBJSUkqLy/Xd999pzFjxuidd97RnDlz9KMf/UiHDx/WE088odjYWP3v//6vWrRoYW/7n//8p2bPnq2kpCS1bdtWL730ku6//3716NFDt956q37yk58oLS1N8+bNU3p6um666SZJUvfu3Rs0TkCTZQCAF5WXlxuXLl0yevbsaTz66KP28oMHDxqSjNWrV9vLQkNDjVmzZjXo8yrbfeaZZxzKV69ebUgyDh48aC8bNmyYIcnYt2+fQ90+ffoYd9xxR437VFZWZtx///3GjTfe6LCtc+fOxn333Vfn/h44cMBo1qyZ8fOf/7zGetW1O2zYMGPYsGH21zk5OYYk49Zbb61S97777jMkGS+//LJD+auvvmpIMv7yl784lOfm5hqSjOeee86hH0FBQcbhw4ftZcXFxYbNZjMefPBBe9mGDRsMSUZOTk6N+wWgdiybAvCo8vJypaWlqU+fPmrevLkCAgLUvHlzffHFF/r0009rfO+gQYOUkZGhRYsW6f3331dZWZnH+9uuXTsNGjTIoax///5VZr02bNigH//4xwoNDVVAQIACAwO1atWqWvepNllZWbp8+bKmT5/eoHaudvfdd9d525YtW9SqVSvdddddKi8vt/8ZOHCg2rVrp927dzvUHzhwoDp16mR/HRQUpF69ejVophBA9QhvADzqscce04IFCzR27Fi9/fbb2rdvn3JzczVgwAAVFxfX+N7XXntN9913n1566SXFxMTIZrPpl7/8pU6cOOGx/oaHh1cps1qtDn3duHGjfvazn6lDhw5at26d9u7dq9zcXE2ZMkUlJSUN+vzKc8oqz9Vzl+quqg0ODlbLli0dyr755hudPXtWzZs3V2BgoMOfEydO6PTp0w716zJmANyHc94AeNS6dev0y1/+UmlpaQ7lp0+fVqtWrWp8b0REhJYvX67ly5fryJEjeuutt5SUlKSTJ08qMzPTg72u2bp169S1a1e99tprslgs9vLS0tIGt115BexXX32ljh07VlsvKCjI6eedPn1aERERVcqv7Gdt5REREQoPD692jMPCwqrtFwDPI7wB8CiLxVLlIoG//vWvOnbsmHr06FHndjp16qSHH35Y2dnZ+vvf/+7ubtaLxWJR8+bNHYLPiRMn3HK16ahRo9SsWTM9//zziomJqbZely5d9K9//cuh7PPPP9dnn33mNLzVx+jRo7V+/XpdvnxZgwcPblBblSqPAWbjgIYjvAHwqNGjRysjI0NRUVHq37+/PvzwQz3zzDO1Lgt+++23Gj58uCZOnKioqCiFhYUpNzdXmZmZSkhI8FLvnRs9erQ2btyohx56SOPGjdPRo0f11FNPKTIyUl988UWD2u7SpYvmzZunp556SsXFxbr33nt17bXX6pNPPtHp06eVmpoqqeJK3EmTJumhhx7S3XffrcOHD+t3v/udW+5dN2HCBP35z3/WnXfeqZkzZ2rQoEEKDAzUV199pZycHI0ZM0bx8fH1arNv376SpBdffFFhYWEKCgpS165dnS65AqgZ4Q2AR61YsUKBgYFasmSJLly4oJtuukkbN25UcnJyje8LCgrS4MGDtXbtWh06dEhlZWXq1KmTHn/8cc2ZM8dLvXcuMTFRJ0+e1AsvvKCXX35Z3bp1U1JSkr766it7uGqIJ598Uj179tTKlSv185//XAEBAerZs6dmzJhhrzNx4kQdP35cL7zwglavXq2+ffvq+eefd8vnN2vWTG+99ZZWrFihtWvXasmSJQoICND111+vYcOGqV+/fvVus2vXrlq+fLlWrFih2NhYXb58WatXr+bRYYALLIZhGL7uBAAAAOqGq00BAABMhGVTAKZkGIYuX75cY51mzZpVe5WlL1y+fFk1LXZYLBY1a9bMiz0CYEbMvAEwpTVr1lS5B9nVf/bs2ePrbjro3r17jf2tfK4oANSEc94AmFJBQYEOHjxYY53evXv71T3J8vLyarwXXFhYWI3PegUAifAGAABgKiybAgAAmAjhDQAAwEQIbwAAACZCeAMAADARwhsAAICJEN4AAABMhPAGAABgIv8fhPXQobvSY88AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shotNum = \"0038\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (535, 995)\n", "imageAnalyser.span = (350, 350)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "plt.ylim([0, 3000])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = xr.concat((Ncount_mean_total, Ncount_mean), dim='als_final_current')\n", "Ncount_std_total = xr.concat((Ncount_std_total, Ncount_std), dim='als_final_current')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Summary" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACVAAAAJICAYAAACNRl33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZwU9b3v/3c7bAohMjPINrhEEz0kaHK5UYiCcIPEoPzQAT1oSCI5xJxoVEgUSCSJnOMCRiPEh2bRk4MJ4gaDXHNGEcmwuMboOTcux+SYKGEAWQYEHQVmhv79UdZ0dU0t36qu3mZez8djHtNdXV397epavlX1qc8nlU6n0wIAAAAAAAAAAAAAAACALuiIYjcAAAAAAAAAAAAAAAAAAIqFACoAAAAAAAAAAAAAAAAAXRYBVAAAAAAAAAAAAAAAAAC6LAKoAAAAAAAAAAAAAAAAAHRZBFABAAAAAAAAAAAAAAAA6LIIoAIAAAAAAAAAAAAAAADQZRFABQAAAAAAAAAAAAAAAKDLIoAKAAAAAAAAAAAAAAAAQJdFABUAAAAAAAAAAAAAAACALqvkAqjuvfdepVIp9enTJ2v4ZZddplQq1eHvlFNO8ZzOnXfeqVNOOUU9e/bUCSecoAULFqilpaXDeDt37tRll12m6upqHXXUURo1apTWrVuXl+8GAAAAAAAAAAAAAAAAoLR0K3YDnLZu3aprr71WgwcP1r59+zq8fuSRR+r3v/99h2FuN910k374wx9q3rx5mjBhgl588UXNnz9fW7du1a9+9av28Q4ePKgvfvGLevfdd7VkyRIdc8wxuuuuu3Tuuefqqaee0tlnn538lwQAAAAAAAAAAAAAAABQMlLpdDpd7EbYJk2apFQqpcrKSq1YsULvv/9++2uXXXZZh2FempqaVFNTo6997Wv65S9/2T785ptv1vz58/Xqq69q2LBhkqS7775bV155pZ599lmNGjVKktTa2qrTTjtNffr00QsvvJCHbwkAAAAAAAAAAAAAAACgVJRMCb9ly5Zpw4YNuvvuu3OazhNPPKEDBw5oxowZWcNnzJihdDqtRx99tH3YqlWrdPLJJ7cHT0lSt27dNH36dP3hD3/Q1q1bc2oLAAAAAAAAAAAAAAAAgNJWEgFUO3fu1KxZs7Rw4ULV1NT4jvfhhx9q4MCBqqioUE1Njb7zne9oz549WeO8+uqrkqThw4dnDR80aJCqq6vbX7fHPfXUUzt8jj3stddei/2dAAAAAAAAAAAAAAAAAJS+bsVugCRdccUVOvnkk/Xtb3/bd5zTTjtNp512mj7zmc9IkjZs2KA77rhD69at04svvqg+ffpIskr49ezZU7179+4wjcrKSjU1NbU/b2pqUmVlped49ut+Dh48qIMHD7Y/P3z4sPbs2aOqqiqlUqmQbwwAAAAAAAAAAAAAAAAgX9LptN577z0NHjxYRxwRnGOq6AFUK1eu1GOPPab//M//DAw8mj17dtbzc845R5/73Oc0depU3XPPPVmvB03H/VqUcZ1uueUWLViwwPd1AAAAAAAAAAAAAAAAAMW1ZcuWwIp4UpEDqN5//31deeWVuuqqqzR48GC9++67kqRDhw5Jkt599111797dM5uUJF144YXq3bu3nn/++fZhVVVVOnDggD744AMdddRRWePv2bNHI0aMyBrXK8uUXRbQKzuV7fvf/76++93vtj/ft2+fjj32WL311lv62Mc+FvLNUWgtLS1qaGjQuHHj1L1792I3BwCQILbxANC5sZ0HgM6LbTwAdF5s4wGgc2M7D6BcvPfeezrhhBOM4niKGkC1e/du7dixQ7fffrtuv/32Dq/369dPkydP1qOPPuo7jXQ6nZVma/jw4ZKkV155RWeccUb78HfeeUe7d+9uLwFoj/vKK690mKY9zDmuW8+ePdWzZ88OwysrK9W3b1/f96E4WlpadNRRR6mqqoqdOAB0MmzjAaBzYzsPAJ0X23gA6LzYxgNA58Z2HkC5sLdRQRXobEUNoBo4cKAaGho6DF+4cKE2bNigxx9/XNXV1b7vX7FihT744AONHDmyfdi5556rXr16aenSpVkBVEuXLlUqldIFF1zQPuzCCy/UFVdcoRdeeKF93NbWVi1btkxnnHGGBg8enMC3BAAAAAAAAAAAAAAAAFCqihpA1atXL40dO7bD8KVLl6qioqL9tc2bN+vSSy/VtGnTdNJJJymVSmnDhg1avHixPv3pT2vmzJnt762srNT8+fP1wx/+UJWVlZowYYJefPFF3XDDDZo5c6aGDRvWPu43vvEN3XXXXbrooou0cOFCHXPMMbr77rv15z//WU899VS+vz4AAAAAAAAAAAAAAACAIitqAJWpvn37asCAAfrpT3+qHTt2qK2tTccdd5yuvvpq/eAHP1Dv3r2zxr/++uv1sY99THfddZduu+02DRw4UPPmzdP111+fNV7Pnj21bt06zZkzR1dddZU++OADffazn9Xjjz+us88+u5BfEQAAAAAAAAAAAAAAAEARlGQA1dKlS7V06dL25/369VNdXV2kaVx99dW6+uqrQ8cbMGCA7rvvvqhNBAAAAAAAAAAAAAAAANAJHFHsBgAAAAAAAAAAAAAAAABAsRBABQAAAAAAAAAAAAAAAKDLIoAKAAAAAAAAAAAAAAAAQJdFABUAAAAAAAAAAAAAAACALosAKgAAAAAAAAAAAAAAAABdFgFUAAAAAAAAAAAAAAAAALosAqgAAAAAAAAAAAAAAAAAdFkEUAEAAAAAAAAAAAAAAADosgigAgAAAAAAAAAAAAAAANBlEUAFAAAAAAAAAAAAAAAAoMsigAoAAAAAAAAAAAAAAABAl0UAFQAAAAAAAAAAAAAAAIAuiwAqAAAAAAAAAAAAAAAAAF0WAVQAAAAAAAAAAAAAAAAAuiwCqAAAAAAAAAAAAAAAAAB0WQRQAQAAAAAAAAAAAAAAAOiyCKACAAAAAAAAAAAAAAAA0GURQAUAAAAAAAAAAAAAAACgyyKACgAAAAAAAAAAAAAAAECXRQAVAAAAAAAAAAAAAAAAgC6LACoAAAAAAAAAAAAAAAAAXRYBVAAAAAAAAAAAAAAAAAC6LAKoAAAAAAAAAAAAAAAAAHRZBFABAAAAAAAAAAAAAAAA6LIIoAIAAAAAAAAAAAAAAADQZRFABQAA0AU0N0uplPXX3Fzs1gAAAAAAAAAAAAClgwAqAAAAAAAAAAAAAAAAAF0WAVQAAAAAAAAAAAAAAAAAuiwCqAAAAAAAAAAAAAAAAAB0WQRQAQAAAAAAAAAAAAAAAOiyCKACAAAAAAAAAAAAAAAA0GURQAUAAAAAAAAAAAAAAACgyyKACgAAAAAAAAAAAAAAAECXRQAVAAAAAAAAAAAAAAAAgC6LACoAAAAAAAAAAAAAAAAAXRYBVAAAAEARNDdLqZT119xc7NYAAAAAAAAAAAB0XQRQAQAAAOiyCGQDAAAAAAAAAAAEUAEAAAAAAAAAAAAAAADosgigAgAAAAAAAAAAAAAAANBlEUAFAAAAAAAAAAAAAAAAoMsigAoAAAAAkIjmZimVsv6am4vdGgAAAAAAAAAAzBBABQAAgLJFsAbQObAuAwAAAAAAAACKiQAqAAAAAAAAAAAAAAAAAF0WAVQAAKAkdMXsI13xOwPlKB/rKus/AAAAAAAAAAClo+QCqO69916lUin16dOnw2svv/yyxo8frz59+ujoo49WbW2t/va3v3lO584779Qpp5yinj176oQTTtCCBQvU0tLSYbydO3fqsssuU3V1tY466iiNGjVK69atS/x7AQCA4iFQQWpryzzeuDH7OcoXyzYAAAAAAAAAAEDuSiqAauvWrbr22ms1ePDgDq+98cYbGjt2rA4dOqSHH35Yv/71r/WXv/xFo0eP1q5du7LGvemmm3TNNdeotrZWa9as0RVXXKGbb75ZV155ZdZ4Bw8e1Be/+EWtW7dOS5Ys0erVqzVgwACde+652rBhQ16/KwAAQKHU1UnDhmWeT5woHX+8NbwUFTooiCAkAAAAAAAAAACArq1bsRvg9M///M8aM2aMKisrtWLFiqzXfvSjH6lnz5763e9+p759+0qSRowYoU9+8pO67bbbtGjRIklSU1OTbrzxRn3zm9/UzTffLEkaO3asWlpaNH/+fM2aNUvDPrqC+G//9m969dVX9eyzz2rUqFGSpHHjxum0007TnDlz9MILLxTqqwMAAORFXZ00daqUTmcP37rVGr5ihVRbW5y2AQAAAAAAAAAAAKWgZDJQLVu2TBs2bNDdd9/d4bXW1lb97ne/05QpU9qDpyTpuOOO07hx47Rq1ar2YU888YQOHDigGTNmZE1jxowZSqfTevTRR9uHrVq1SieffHJ78JQkdevWTdOnT9cf/vAHbd26NcFvCAAAuqJiZjdqa5OuuaZj8JRkDUunrdcp54dyEWV9IrNYcVAuFAAAAAAAAABQjkoigGrnzp2aNWuWFi5cqJqamg6v//Wvf9WHH36oU089tcNrp556qt58800dOHBAkvTqq69KkoYPH5413qBBg1RdXd3+uj2u3zQl6bXXXov/pQAAQNkrZgBGEp+9aZPU2Bg8TmOjNV4hENACP5112eis38tPuZULBQAAAAAAAADAVhIl/K644gqdfPLJ+va3v+35elNTkySpsrKyw2uVlZVKp9Pau3evBg0apKamJvXs2VO9e/f2HNeelj1dv2k6P9fLwYMHdfDgwfbn+/fvlyS1tLSopaXF930oDvs34bcBgNJlbaK7f/S4RaabbJNtfPxpx3uf6TTivmZqy5aUTLp7W7a0qqXFI01Vwky/U5Tvnu/fKJ/Kue1Ozc1Sv35WG/bubZFHNzxUMZcNk/HysQ0phd8uSatWpTRtWsVHGe9S7cO3bk1r6lTpwQfbdOGF/tuZ4HlFXx4AOiu28QDQebGNB4DOje08gHIRZTtV9ACqlStX6rHHHtN//ud/KpVKBY4b9LrzNdPxoo7rdMstt2jBggUdhj/55JM66qijfN+H4lq7dm2xmwAA8HHgQIWk8yVJa9asUa9e0eo+BW3jg6Z94ECFpk2zXnvwwd91eC2XNpl8dpzXTG3eXCXpLIPxnld9vX/geFJMv1OU757v3yifSr3tQetG0m0o5rJhMp5znH79ugfOD9NpF2u5y4e2NumKKyYona6QM3hKktLplKS0rrzykLp1W6uKCu9pmMwP+vIA0HmxjQeAzottPAB0bmznAZS6Dz74wHjcogZQvf/++7ryyit11VVXafDgwXr33XclSYcOHZIkvfvuu+revbuqqqokeWeE2rNnj1KplI4++mhJUlVVlQ4cOKAPPvigQyDTnj17NGLEiPbnVVVVvtOUvDNe2b7//e/ru9/9bvvz/fv3a+jQoZowYYL69u1r8O1RSC0tLVq7dq3OOeccde/evdjNAQB4cJa3+tKXvmScxcZkGx80bdPXRo36ko47zpr+Y4+1avz4tG8gQNKf7XytrU16+umUtm+XBg2SzjrLvx1f+pL0i1+ktW2bHcTQ0ZAhaV177RlG3yVXpr9xlGUh7nLj9FEiUUlS797nGv+27nZEzcJUKm33k4/fq5CflcQ0nb+rk+n3jLv+51MSGcPcNmxIqakp6NAypd27j1Lfvufp7LO9s1AFLcv05QGg82IbDwCdF9t4AOjc2M4DKBf7nSefQxQ1gGr37t3asWOHbr/9dt1+++0dXu/Xr58mT56sFStW6Mgjj9Qrr7zSYZxXXnlFJ510knr16iVJGj58ePvwM844o328d955R7t379ZnPvOZ9mHDhw/3naakrHHdevbsqZ49e3YY3r17d3YSJYzfBwBKl3PzbG2vo77ffxsfNG3T10aOzDyZNKmbamqkJUuk2trgdh1xRObxc89114QJag8KcE7/0KHu6tfPevz++97tqquTrr5a2ro181pQO7p3l372M2nqVCmV0keltbLdemtKvXqZzezmZqlPn0wbowZemP7GUZaFXJcbe57aovy2ubajVNoep33OZWHbtsxw9zKexGc5Ba1Pcadpug3Ifk/uv3Guv39ccT83aP3ftctsGrt2dfP8PNNlmb48AHRebOMBoPNiGw8AnRvbeQClLso26ojwUfJn4MCBamho6PD3pS99Sb169VJDQ4NuvPFGdevWTZMmTVJdXZ3ee++99vf//e9/V0NDg2odZ9XPPfdc9erVS0uXLs36rKVLlyqVSumCCy5oH3bhhRfqjTfe0AsvvNA+rLW1VcuWLdMZZ5yhwYMH5+27AwCA8rJ9e/bzrVutwKS6Ov/31NVJw4Zlnk+cKB1/fPB7vDQ3WwFQU6ZkB0+ZtKO2VlqxQvLr1kyeHK0tnUldnTXvos7TpLQ5KpRt3Jj9PEyx2+7kSPAaexk3kdT65JbL79DZ2NuaVCo7Q1aYQYPij1dKyzIAAAAAAAAAoOsqagBVr169NHbs2A5/AwcOVEVFhcaOHdueBWrBggX64IMPdP755+vxxx/XqlWrdN5556m6ulrf+9732qdZWVmp+fPn65e//KWuv/56bdiwQbfddptuuOEGzZw5U8McV12+8Y1v6NOf/rQuuugiLV++XE899ZQuvvhi/fnPf9aiRYsKPj8AAEBy4gYCOAUFUtjZnGbN8h4vyaCAXNohWUFUr7+e3baurq1NuuYa76xcJvM0V7kEA+Xa9iTWDac4wYVR5SvIJl9BWZ1RUKDZ6NFWNryUd6VQpVLS0KHWeO5pFnM9BAAAAAAAAADAVtQAqihOOeUUrV+/Xt27d9fUqVN12WWX6aSTTtLGjRvVv3//rHGvv/56LV68WCtWrNCECRN05513at68ebrrrruyxuvZs6fWrVuncePG6aqrrtKkSZO0fft2Pf744zr77LML+fUAAEAJeuaZ4NfTaWnLFunJJ7MDUpIOCnj+ebN2bNrkP46zzNmZZ5p9rltnytSzaZPU2Oj/usk8jSOXbGK2XNse93d0Bl4FlQxPOvAlX0E2uQRltbVJ69dLDzxg/bc/2z380KHMe8p5nQkLNKuosMrtSd5BVOm0tHBhx3KLpsvy00/7RGYBAAAAAAAAAJCQkgygWrp0qd5///0Ow0eMGKGnnnpKzc3N2rdvn1atWqUTTzzRcxpXX321/vznP+vgwYPavHmzbrjhBs/ahgMGDNB9992npqYmffjhh3ruuec0fvz4xL8TAAAoP++8E28806CAsAAt244dZuO99ZbZeHGUe6Yed9Yld9YkP37jxc3ilGs2saA2BY3nbO8pp2SGx/0dkwjqcwoK6spHsFuuQVmnnCKNGyddeqn1//jjpTlzrP/O4dXVmfeU2zpjMw00CysX2q9fx/mZ63oIAAAAAAAAAEBSSjKACgAAoBQMHBhvPNOL/aYBWgMGxGuHnygZiJLImFSKBg1KdjxTplnNgoKBcm17EiX3TIP6TNaFsOC8fATZ5Brk6P6sxkbpJz/pOM3Dh7Ofl9s6EzXQzF0utKoq89grgKxY6yEAAAAAAAAAAG4EUAEAgC4tKJgorNRdKiUNHdpxPNOL/aYBTyNHmo1nWppvxIjM47CsOElkTCpFo0dLNTXe5cZsNTXWeEkyDZoLCgYKa7u9XDrbnvTvaBrUF7YumGQ3ykeQTdJBjqZKYZ2JEkAZJ/uXs0xfU1P2+O4AMpP1sLpaGjXKI4ILAAAAAAAAAIAEEUAFAABKQpSL+kkJy3zjDARwX+C3ny9enD2eZB7gYhrwFNQOp2eeMZtvUTIQ5Zoxaf/+TOm4J58Mb5tUmGWhokJassR67DdPFy3q+NvmyjRoLigYKKjtfstlEpmvnMKC+ryCuNxMsxt94QvRA8bCJB3kGEXUEp5JilKKs7nZKkNowrlNiRKsZ7Ie7t4tnXxyNz33HGmoAAAAAAAAAAD5QwAVAAAouigX9U05L+J7BSqYZL5xcgdS1NRIK1ZYJavcwoIC0mlp4cLsABfToKHBgzt+lm3iRKlbN+szm5uzx4ubgSiXjEnu39VrXoW9J4llwU9trfUbuuepbfLkeNNta5PWr5ceeMD675ynSQQeSf5t91suk8h85RQ3uNDJNLvRunXWeOl0/M9ySzrIMY6ks1uFibrNi8IZkGYarGcHVIath5K0bZu0aNHntWpVQAQpAAAAAAAAAAA5IIAKAAAUVT4u6ocF7phmvnEGvrzxhtTQIC1fbv1/663ggKCwoIB+/bKn7y6r52y/0+uvW58/a1bmu3hZvTr7edSgBlvcjEl+v6tf+4Lek0SAh5/aWmueOtuQq2HDrMw9l15q/bcDwOrqpOHD/d8XNRjI3fb6ev/lMonMV36iBBc6mQZrbduWeVxZGe+z3OJk8Upa//6Zx/nOuhdnm+cUJfuXaWCYM7iwtlZ65RX/cdNpqwHf+15F2ZULBQAAAAAAAACUBwKoAABA0eR6Ud9LWODOLbdYF+5NMt84g44qKqSxY6VLLrH+xwlwqarKPHYHSbmDSZxBI04VFVawwooVwZ89d272fDMNanCPF5aBxyuAIuh39Wtf2LKQTktTplglAZPm/C2TyDjkFQA2ZYr157dcSvGCgZxtHzPGf7mM8zu6+WV1e+mlzOOgIC4302CtefMyj5ua4n2Wl6hZvJJUVSV961uZ5/nMtCaZZ/sKCrQ0DTQzDda79dbs7/z882HvSKmxMWVcZhIAAAAAAAAAgCgIoAIAAEVjelHf9IK5SeDOTTdJF19sNr0kSmw5AwucwR9ScDCN8zu4v3/YfJOs153vMw1qcI8Xp1RbnPaZvEcKz6RVLCYlEoNUV0tvvmkWtOMsEbhxo1n7ci25t3q1f1Y30yAut7Ayerbdu72H792be4aoKFm8nMLaHKapqWOQZD4zrZlm+/Lb5i1bZh5oNmGC2e8qZX9n0+3tunXe5TEBAAAAAAAAAMgFAVQAAKBoTC/qv/WWdTE+lZKam/3HMw3C2bPH7HNNg46CJHGBf+rU7Oem8805nmlmpaDxTEu1xWlfrgEexZZrYNfu3dKzz4aPV1dnZe2xSwROnGg2fedyGKcM3vTp/gF///EfZm1wCyqjZ8KdxSyuOAFgzmxykpW967rrrHnpN+0wJln3mpvNtoVuptm+/LZ5kyebB5pF+V2d3/mYY8zaeOONHctjAgAAAAAAAACQKwKoAABA0eR6UV+yggguuGCyevTorrfeSqZddjmzJMq5JZ0xafVq8/nmHM8kA5F7PDfTUm1x2pfEslBMSQR2hQWR2eUp/YIEV6/2f58ze1ScMnhBWbTmzw9+bxC/Mnr9+4e/153FrJB277ayhs2aJTU0WPPw1lult9+2ni9fbv3ftSvzHpNAn6hZ90yFZfsy2eb17Zspp/nlLwdvK/x+Vy/2dw7P1Jb+6C/DLo8ZNaAMAAAAAAAAAAA3AqgAAEDRJHFR3+noo3Nvk0k5M8k8E0zSGZPmzpW+8IXwElk1Ndb89eIOQhoyxOyzTTP1mJRmc7fPtJxbEkFtbr17ZwJDevXKDN+40TzDURKBXUFBZCblKb0yMtlBV+7sUfay++GH/r+j6Xffts0KFkqnrXkZlVcZvTvuMHuvaeayfGhqsjIt7dmTmYcVFdLYsdIll1j/e/TIjD9ypPm0k/5eQVmhTLd5Ubl/1zA7dnRsU4a94Ge/4FwfKOcHAAAAAAAAAMgFAVQAAKBokr6oHyVAwdavX/Zzk3JmUZxwQjLTsdlZd8JKZC1a5D/f3JmkXnst2TaalPByt89kWbDHM+EOcHMGV/gFRrkzNU2caF4iLNfArqCAN8msPKUzI5P9/adM8Q66soddc420bp30wAPS+vWZ+eKeF2FyDfhxB+eZBvWZZi6LKygox6TkntOIEeaf6/e9TJZjP35ZoZLe5jlFCciaNy/zuGNAYkru4Cm3pLP9AQAAAAAAAAC6FgKoAABAUeVyUb+5WerXr3v78zjZU37zm8xjdzmzXIIVbKaZlcJed7r4Yut/UImsyZP932+aSUrK/s4vvSS1tpplGgor4eXVPr/3mAbT+Fm9Ojwwyi9T09at1vCwICrTEolxAt4k8wClKIFM6bQVdDV+vHTppdK4cdZ8mTPHe14EOeYY83FNmGanCwo687N/fya47vHHg9frsKCcKCX3TH8bv2C6XAL8bF7Zvvy2eUkEJPXubW0zTLaBztKSziDPOXPMPivpbH8AAAAAAAAAgK6FACoAAFB0Xhf1X33Vyp7jVSLPzq7Tp4//NMNKqtkBGGPGZIbZj9evl2bPlk48MfNanGAFyTyzUpQScHv2WAEuUvZ8i9q2MLkGbNTWSps3W+Xdli+3flc/bW3WfD94UPrFLzLD6+ulP/0p8zxOINv06cGBUUHl8aJmGZK8gwFXrrT+4gS8SeaZlnbssLJJbdxoNr5bY6P0k58Elwr0ctll4cuFadlLKX8l57yW6aBMW6ZBOX7BUXGCLr2C6XIN8HPyC6B0z5ukMlI5f8sgzmXOWVbzy182+5wkymgCAAAAAAAAALouAqgAAEBJiJIVycTLL/u/5heAsXq1FSA0bpz12u7d2e+LE6wgmWVWcmZcMTVrVvbzXMvIOSUVsFFRIY0dK11ySXawmvuz7Pl+6aXSpEmZ1/bulYYPzzyPE8jmFxiVTluBU+vXB5fHi5JlSLKC2uygsYaGTIYfd6BglO9gksmsosIK/Lv0Ums+FVKcdSMsoCrpknN+y/S2bf7v+etfzabtF+AWJ4uTO5hu//7wUoxRAvy8+M0b2+rV8actZX7L6mqz8Z3zbfRoaciQtKTgqL4kt38AAAAAAAAAgK6HACoAANBpOLPuPP985rE7uMEvAGP69PBAGilesII7G1NDg/Taa5nXg0rA+bVlyxYrUMwOBgorq+fHXarw0KFkMzIFsQM3/Ob7V76STNYdP42NVgCVibfeMsug5AwaGzs2+7d1Po4S8BGUkcmWxO8RV9LLhS2s5Jwpkyxj9njOx//+7+HT9iu5J5lnsJo92/+1sMC9qAF+bkHzxjZ3bu6/a22tFZhqwjnfKiqkn/7U+vBUKruRznUh16BbAAAAAAAAAEDXRgAVAADoNC66KPPYGWDhzO4UVB7QpGyZHawQJ7NMUGCN07JlUr9+ZtP0Kx3m5iyJ5Qy0Wr26Y0mzIUOSzcjkxyRww+/zJStY59ChzPA45f2i6N8/f9OWzDMyOTOXSWaBIyZBeblKarlw69s3u5xbnECZZ54JXqad49k2bQrOTmX75jf922RaVs4vAKuuTvrqV82mYbotcNu0KXzeNDYm87u6l10/J5yQ/fzCC9OaO/fFwCx+AAAAAAAAAADkggAqAABQ8twZkqIGyTzxROZxEuUBJfPMMnFMniz99rdm4/qVDjM1fXrHDE/u0oV+ogZsuH/HsNJ5QexgnU99KjMsTnk/yQpmCyuPJ0nf+lbUViavtlZ6++1MJrM77jBbH6qq8t60dnEDeZzCgsmijme6vm7enJneW2+ZveeTn/R/bcIEs2Vr5MiOw+zsbHv3mrUj7rbA9PdK4ncNK0WZSklDh3oHlI0atV1vvtmqp56S5s+3/n7+89zbBAAAAAAAAACAJHUrdgMAAADCjBiReTxxojpkIQkzf36y7ZGCM8u0tVnZWrZvt4IaRo+OHrTll5HGlkoFlw4zFTX7k9OOHdIDD0jHHGM937nT//vW1UlXX515PnGiVFkZ/7Nt7mAvu7zfsmWZYamU//esqbECqJYssd4XNG4SASRJsDOZSdb8N7FwoTRzpvX4scekb3/bmldBv3/QvAhiGsjjDPyKk9EtCtNMUNXVmcc7d5q9J+j72qUXvZYt53P3+hIlO1vUbYGdjc6k/U65BmtK4fNDssr8+W0v/+//Tel734sfeAkAAAAAAAAAgB8yUAEAgJLnDlwxKauVy/hB7AwpZ56ZGeYMBLnlFisL0rhx0qWXWv/jZEVyBhC4s7WYBBrkW0WFNHu29R3Hj7f+/L6vnUnHnelqz57k22UHZMydmz3cL+PNokXWd7HL4wUFiTiDPfJZKjAK06AWZ9DhuHFWEIvkv2xJHYOOwsqlBWUPkjquJ//wD5nntbVWENDKldklJsOYZqc780yzTFDOIL9584LHDfu+NnvZMi0/19wsdesWLUgol21BWFYoKZlgTZvf/KipsYY7y686PffcIE2bVuE7X1avTqZ9AAAAAAAAAICuiQAqAABQkooRoBIWXOEXuOTMkHXTTR0DH+ysSFGDqGzuQJawQANbW5tVJu+BB6z/9jzt3dsq/5aLoN/H+X2jZNJJSjqd/RssW+aftWzy5Mzj2lrpV78y+4znn4/XNjv7TzodLVDIS3OzFQwlhQe/OAP+pEwQizuIx/n8pZcyj+vrpddfzzyPGtRXVycNG5Z5ftNNHQMbo64n7mkGlXC0Mx8FtV2KnmXMNHCptjZ7/tXXS6+9Fu2zvFRVeW8LTEsb2uM2Ngavo3agYVK85sdbb/lv09rapHvvHR7YxrlzSyewEQAAAAAAAABQfgigAgAAJSnfJb1sdkDLypXW87BAFK9ghbCgC/ui/6xZ8S7wuwNZ/AIN3Bl+jj3WPxOWaeYiZ0kzySyIwvl916/PvdxWWGBbmMmTs4M1ggJ0TMu27dhhNp5fEFs+hGXZcqutld5+W2posALqGhqyg3qc7xkzJvt5lKA+vwxkblHWE79puoP3bBs3WsuBV+ajqCVBJWtePPxweBCj+z029/yM66GHorXBzR2E5qdfv+SX3b59M8GEX/5y8Px4+umUmpqOlOS/MWhstEqnAgAAAAAAAAAQBwFUAACgJL3zTjLTSaWs4I4wfhl5bO7ApajBBOm0tGWL/wX+oMxEJoEXUTP8hJXtssuT/eUvmWELF5p/b/v7rl9vNv7HPuY9/P774wW4uDnnmTsbk5M7MMjPgAHh49TVJVPO0cSyZf7LblDwS0WFNHasdMkl1n/ToB7ToL69e6UpU8wzkNnLTVAAZVBWM3vY5Zdnlwi0s1NJ0ubN2UFjv/ylWdvcbXAHF+bC+fs4v3tYQOfYsfE/MyywzblOBmX3KgTTzGBhQXoAAAAAAAAAAPghgAoAAJQk00CWMOm0lYHHhDsjT3195jV34FLcDFlRS4SZiJPhRwovabZ4sdSjR2b4Mcfk2lJ/771nBaTMmpU9393Zox55JHxapkFzXoKCq5xGjgx+3f5Nki7n6Gfy5MyyO2tWdnDPxIlmWYbCOIP8+vbNDA8K6vvUp+J9VlAA5aZNwVnN0mmpqck/gHD16uygMdOsY25JrsvOMqDOQLR02nv9TKUy62+cDGcmpTXfey/7eb6WXROmGfNmzy5ekBcAAAAAAAAAoLwRQAUAAEqSaSBL0pwZecaM8R8vboYs00AAUyaBEE7OTFh21i13hie/cmxxgtrGjg3OdOXU1GQFhezdmz3cGZxz9dXB07A/xzRozs35WX6BZe7x3EwyJHmVqXOXnIua5ayiQtqzx5qHu3dnv+YOJvLjlwkpKjuAzN0OU0HLWtzAJb95f8IJ8aaX5Loc9J3cy6G9fkrxM5yFBaF5cc6//fszgVzNzdGmE8dZZ6VVVfWhUqngDd3u3dZyt3x5YdsHAAAAAAAAACh/BFABAICSFBTIEkUqJc2dm3t73KIGE9kl8UaPTrYdcQIhpEzARm1tdoanoHJsZ55pHgwlSVVVVgCVX6YrNztAI+j3CguesYNLzj8/MyxOMJLU8Tf2K5Hn9swz4RmStmyRXn45k9FpzZrsLFFxSqaZBG7Z43lxl4H0WgZybUcYez0JCqDMJXDJq5RmWDlLLzU1ua/Lpsvk4cOZx/b6KQVnOFu9OniauQShbdlirVO2uOtXFBUV0syZr4SOZ69P112X3/YAAAAAAAAAADofAqgAAEDJy6WcXzodL8AoTJQMWc6SeEGZi+KIGwjhDEJxtsmvHJs9nmkwlGRllFq92j/TlRev38s0OON3v8sEl7iDkZzPTTM9vfRS5nF9vfTaa2btMM1OZv92fiUYo5ZMMw2me/nljsPCykCGBeTEaYeb6XoSJ+DJzbneRF2uJSvDWdR12VkCsXfveBm+7O1OWKBcWNBortmzvva1zOM4wX5xjBq1XQ8+2JZVntKPacY1AAAAAAAAAABsBFABAICS5wxkKUd+JfGSEDUQItdMWFGCoVKpTLk0d6arMMuXRw80OeIIK9DHKxDIGVAxYkTmcVDwR1BgWVAQlmnA36BB8cv9eTENpnOPZ5Ixau5c80C2uEF9putJnIAnN/d647dc+wVJTZ4c73Od4pQBffnl8AA1k6DRXIPQ3GU2owb7RdHcLPXo0V0XXDBZEyaktXhxtPcHBUk2N1PqDwAAAAAAAABgIYAKAACUvKSzNuXKXerMraZGWrDACgJqaPAviZeEKIEQSWXCMg2GcpdLi/KZzgAX00CTbdvMSti5A3z8gj/cGYOcQRjDh2ceuzNchZU6dAaxmQTDOOdhUMCHaTCdezyTjFGNjdll76JM309VVeZxUOlIL2GBfCbz3muamzdb66y97u7aZdaeOOJk1tu+PX6AmlMSQWhOUYP9onBO7+mnU5HnW6EyZAEAAAAAAAAAyhsBVAAAoCQEBavEKXVlS6WsYBYn0xJuXsJKnV1/vfT229KPfiRdcok0dmx+A8CiBEKYZPjJR0YWr4CPKAEupgETu3fHKx3nDP7o1St7ObS5g+aamrKn4cxwFfSbuIPY4maN8hIWTOcXPJRkG0zaIUnV1dL//E/meZQMXzZ3IJ87QCZs3nupqLDWWXvd7dHD/zvkKkoZUNugQbmX37PFDULz4w72S0JdnXTKKZnnkyZ109e/bgXfRWlfPjNkAQAAAAAAAAA6BwKoAABAyXEHq8TN3mRfYF+0KDNs9ersaUfJTmJS6uy++2I1NSd+gRD5yoQVloHLzS/gwzTAxTTQpH9/8za5BQV/hAXN2e+32SULV6yQhgzJHs8dxBY3a5SXKIFbUacdZTyToL4lS/yDk9zLl2mZRedysmyZ9/qQr1KacUQJrHQGv5kEyjmXu6Ag0aAgNHfgYmWlWVuTyJBlt2Xq1I7T27bNCmAM2g675TNDFgAAAAAAAACgcyCACgAAlBSTYBVTdsDE5MmZYdOnd5y2aXaSpEudBXFn5ArjDoSor89PJqwov09QubQoAS59+0orV2YyY7k/w5ZEZh53sIZJ0Jzbz3+eCaJ6++3sknDuILa4WaP8BAXT+QUPmWSMqqkxb0NQO2zOddLJb/kyLbPonL57fUgqgPD9963/9vK4c2fuWduCll138FtYoFw6LX34YWZYWJBo376ZeThhQmb4Sy9lHtfXSw8/bPZdduzIPUgpaL1Lp63v6SwBacIrSDKXbIQAAAAAAAAAgM6FACoAAFAy4gSr+Fm40Dtgwu+CvBSenSTpUmdJcwZIuUuiJSHO7+NXLm3yZGnz5uDgIie/gBxnpp0zzwwPBArjDmQxCZpzmzcvE7DiLgnnnhdxs0ZJ/sEfXsF0QfPWJGPUokXRl6ewEnteZTuDgmakaBmE8r0+JMkZrOQODPIKfvPLcGZnidqzJ3t4nBJ27vk3dqzZ+jV7tnlWPz9h61063bGMpil7+xwl0xkAAAAAAAAAoPMjgAoAAJQM02CVIwx6MN/+drSAiaASbrakS52VQ/YTZ5DLyy9HCyZatiw4409YcJGbV2DQa69lTy8sEMiPX6anuMFwUQJW4mSNkqQRIzKP3cEfUYOH4maMCuOX3ciLSdBM2DpaKM519Zln4k3DuW717ZsZ/sormcdBwW/uDGdPPSUdeaT3ZyVRwi7K+hUnYMspn0GoRx8dPdMZAAAAAAAAAKDzI4AKAACUDNOL5t/6lvdw50V9Z8BI795WgEGubUiy1FkpZT8xLRcYNaghbtBNkLDAIL9AoKFDpeuuCy4D6JXpKW5ZwKgBK1GzRkkdf49cgz/CMkblKmw5K/UMb7bVq7PX3STKAjpFCX5zBiFWVOQ/AC0s0M75WVL8gK0kynH6aWlJNtMZAAAAAAAAAKBzIIAKAACUDNOL5pMmeQ+vqZFWrvQO0Egie1RSpc6iZj8xDXDKt3wGNSTJLxjp1lujZ3oyCZrzEzVgxSRwJiioI6ksQ7YJEwq73CWd4S1fpk/vuO7aVq8ubFucChWAVltrld+8447g8XIJ2Bo9umMpQ7ew1/1Mnlw+mc4AAAAAAAAAAIVDABUAACia5uZMRqDm5vBgFbvM2plndnztscdaAzP2mE47LHtUrqXO2trKN/uJyTysqSlsm/z4BSNFzfSUS1lAW5IZk8LKxdnBH3HLyhVTrutooUpieq27trlzi7fuFjIAraJCGjDAbNx8ZQwL+h2SUOxMZwAAAAAAAACAwiKACgAAlIygYJWgMmuSdNZZ6dBSV3Gn7ZZLqbNNm8o3+4nJPLzllsywfAax5CJKiTTJvGyZnyQzJr3zTrLjlZJc1lGvkpjO54XS2Jj7uhs341xSQaKm8hmwtWmT1NQUPM6ePdGnG0WxM50BAAAAAAAAAAqLACoAAFBS/IJVgsqsFWPaziAOr4xYfgpVZitfgubhtddK8+Zlhk2cKB1/fLQAszDFKmcYFDRXqIAVSRo4MNnxSk2cddSvJOa2bflrZ5BirbtJBIlGWb/yGbAVZx7GzRDnNZ2k11sAAAAAAAAAQOkjgAoAAJScqGXWSmXaJgpZZitfvObhT38q3XZbxyCWrVut4JYkg6iKJShoLtesZqbCgvWCylwmKZ+BbFHWUZOSmPZ4hVLMdTefAahuSWb1c4szD91Bg5WV0aeRr/UWAAAAAAAAAFD6CKACAABF4wxqcJd7i1pmLYp8TjtMocts5Ys7mGj27OAgllmzSrOcXxKWLStMwIqUPd8LFbQVVXOz1ZZUynoch+k6GlYS0/bMM/Ha4SUo01FNTfHXXa8AtDfftAKKHnhAWr8+uXXRDtgaMiR7eK7Lv8l2sqYme9hLL2Ue19dLDz8c/XPztd4CAAAAAAAAAEofAVQAAKAo6uqkYcMyz/NR7q0U5TNrS7E880xwEEs6LW3ZkmwQSymZPDmZrGZRszq5M+50xeAP01Jv77yT7Of6BfYsWlQa666zDXv3SieeKI0bJ116qfU/yW1tba309ttSQ4O0fLn1P9esfibbyUWLOr7HNmaMNHZseBCWM/Cr0NkIAQAAAAAAAAClhQAqAABQcHV1Vlm3Ui/3lq8yZYUss1UIpsEpSQexlJJ8ZjVra7OyBj3wgBWcYvvZzzKPSyn4IyizXNJMS725g81y4ZVxzDZ5crxp5rMk4vTpHQMck97WVlRYAUuXXGL9T2L5D9tOhs3roCAsyZrX//qvmeeFzkYIAAAAAAAAACgtBFABAICCamuTrrmm65Z7s3mV2SqVAJioTINTkgxi6Srq6qxsQXb2oEmTMq9ddFHmsTv4I58BOUEKnVkurNSb7cwzk/tMd8axUgn49FPO21r3dvKxx1rbt5Pudnt9D78gLNt55yXXVgAAAAAAAABAeSOACgAAFNSTT3btcm9O+cxaVEhnnhleKmvo0GSDWLoCO1Nb0PpiW706/+0JU4zMcial3uzxkv5c28iRmcf5zriVJHtbu2lTsVsSzDmvzzorrYqKjoF6knT66dLKlR2DBmtrpc2bMyUG6+szrwUFGjozv61fXz6/KwAAAAAAAAAgnqIHUP3Xf/2XzjvvPB177LE68sgjVVlZqVGjRmnZsmVZ41122WVKpVId/k455RTP6d5555065ZRT1LNnT51wwglasGCBWlpaOoy3c+dOXXbZZaqurtZRRx2lUaNGad26dXn5rgAAgHJvnZFJEMvixeUbIFYMQZnavMydm0yAR9zMVcXMLOeXZWjIkOQ/y2bPp5Urpc9/PjM83xm38mH79mK3IJo4gXrOEoPOQE6/gDd35rdx48rvdwUAAAAAAAAARFP0AKp3331XQ4cO1c0336z6+nr95je/0fHHH6+vfvWruvHGG7PGPfLII/Xcc89l/T300EMdpnnTTTfpmmuuUW1trdasWaMrrrhCN998s6688sqs8Q4ePKgvfvGLWrdunZYsWaLVq1drwIABOvfcc7Vhw4a8fm8AALqqJMq92cEL77+fTJuQO78glpoaa3ghShM6M8Zs3Jj/z8unTZvMMk/ZGhuLm0korL35znbkVRLztdeS/Yz3388OLCtGxq18GDSo2C0I1ru3dOhQix59dLV69cotUM+kxKRf5rdy+10BAAAAAAAAANF0K3YDxo4dq7Fjx2YNO//88/XWW2/pV7/6lebPn98+/IgjjtBIZ40MD01NTbrxxhv1zW9+UzfffHP7Z7S0tGj+/PmaNWuWhn101vzf/u3f9Oqrr+rZZ5/VqFGjJEnjxo3Taaedpjlz5uiFF15I8JsCAAApvIxbKmUF3VDurfzU1krjx0sf/7j1vL5emjChcJmnhg3rGMxSruJkBSpmJiHTz85nG90lMfMpLONWKmUF8kyeXPzMa6mUdzvtbe3o0YVvU1xPP50yDtRzHWK2B0a554UdGLVihfV7lcvvCgAAAAAAAABIVtEzUPmprq5Wt27R47ueeOIJHThwQDNmzMgaPmPGDKXTaT366KPtw1atWqWTTz65PXhKkrp166bp06frD3/4g7Z2litwAACUEOdFZ8q9JStu+bUkP8sdxFLI39Gv67Z6dfbzQs6nuOJkBSpmJiHTzy71bEemip1xK6rOsq2NG6hnWmJy/fry+l0BAAAAAAAAAMkpmQCqw4cPq7W1Vbt27dLdd9+tNWvWaO7cuVnjfPjhhxo4cKAqKipUU1Oj73znO9qzZ0/WOK+++qokafjw4VnDBw0apOrq6vbX7XFPPfXUDm2xh72WdN0PAACQxV2mL2q5N2dpp2IGwpRDQE5n5Veqy2nuXLPxSsno0db64A588VPsTEJh7U2lpKFDyyvbUZBSyLhlatkyaciQ7GEm29pS3K7FDdQzDXhbv95s+qXwuwIAAAAAAAAAklX0En62K664Qr/85S8lST169NDPfvYzfetb32p//bTTTtNpp52mz3zmM5KkDRs26I477tC6dev04osvqk+fPpKsEn49e/ZUb4+z/JWVlWpqamp/3tTUpMrKSs/x7Nf9HDx4UAcPHmx/vn//fklSS0uLWlpajL83CsP+TfhtAKD4rE1xd0nS88+36LjjrMePPdaq8ePTqqiwxnGOZ+1f/aYXfRtvOu1ymEbScm1T0Pvz8X03bkwprEvb2Cg1NLTq7LM90s9E0KOHdOiQ9bi5WXJ+F0uy3+3221OaNq3ioxJswZFUN9/cqsOH0zp8OPfPjcuvvamUNd9vu63NuI3OeS3JaH66ly9LftbR/v3DlztrvFa1tOS23MXhnn+1tVb5u+3breCis87KbGvLgf17nnHGIQ0ZUqFt27zXiVQqrSFDpJEjW7O+25YtZr9XW1ubpPCUXMX6XQGgM+J8DQB0XmzjAaBzYzsPoFxE2U6VTADVD37wA82cOVM7d+7UY489pu985ztqbm7WtddeK0maPXt21vjnnHOOPve5z2nq1Km65557sl5PBdyq734tyrhOt9xyixYsWNBh+JNPPqmjjjrK930orrVr1xa7CQDQ5Rw4UKFp086XJD344O8+Gmo9b2h4StKXJUnNzU9ozZq2rPfZ461Zs0a9egWnEIqyjY867VKeRtJybVPQ+/PxfdetGyrpf4WO9/jj/6Xm5uTKM7u/iyXZ79azpzRnziDde+9wNTUdGThujx5PqL6+uMuP3d577hmuPXsy7a2q+lD/9E+vqmfP7aqvz9/n5+s3sSuAb9iQGdbWJlVVTVBTUy9JXscMaVVXf6j9+9fm9TtH1bevFfzXPnvKzO9/v1bTpw/SokWfl5RW9rxPK52WvvKVF7VmTXaKqM2bqySdFTr9Hj2eU9++n9f+/T1UTr8rAHQGnK8BgM6LbTwAdG5s5wGUug8++MB43FQ6nS7JW2e//e1v695779W2bdvUv39/z3EOHz6svn376rzzztNDDz0kSfr+97+vhQsXqrm5uUMgU//+/XXOOedo+fLlkqyyfqNHj9bDDz+cNd5//Md/6Pzzz9eaNWs0YcIEz8/2ykA1dOhQ7d69W3379o39vZEfLS0tWrt2rc455xx179692M0BgC6luVnq18/a9u7d26K2Nqm62nr+8MOtuvjibu2vORNIut/nV0KqWNt40/blexpJ278/8/s4s4KZCvpO+fi+a9akNGlS+D0Ba9fmnoHKyf1dpPz9lm1tmexBfftKF1xgfd+g9aeYcl2G4irkbyJJq1ZZGbck74xbDz7YpgsvLMlDrbLj3s6vWpXS7NkV2rYtM99ratK6/Xbved7WJp10UrfAzFWVlVYQoHOa7nEkflcASBrnawCg82IbDwCdG9t5AOVi//79qq6u1r59+0JjeUomA5Xb6aefrl/84hf629/+5htAJUnpdFpHHHFE+/Phw4dLkl555RWdccYZ7cPfeecd7d69u70EoD3uK6+80mGa9jDnuG49e/ZUz549Owzv3r07O4kSxu8DAIXn3OzW13fXnDmZ53bwhzVe96xxsx9nv+b9OYXdxkdtX76mkaS6OunqqzPPJ03qppoaackSqwSYiaDvdPTRUiZ0P5kvO2ZM8OuplFRTI40b1y3RIB7398x+Ldnfsnt3afx467FVOtBy9tn+608x9eqVeTxuXLes5/lUyN9Eki6+WOrWzVpntjqSm9XUpLR4sVRbW7KHWmXL3s5ffLF07rnSxz9uDa+vlyZMSKmiwnued+8u/exn0tSp+qjEZOY1u+RkQPV2SfyuAJBvnK8BgM6LbTwAdG5s5wGUuijbqCPCRymOhoYGHXHEEfrEJz7hO86KFSv0wQcfaOTIke3Dzj33XPXq1UtLly7NGnfp0qVKpVK64IIL2oddeOGFeuONN/TCCy+0D2ttbdWyZct0xhlnaPDgwYl9HwAAIE2fnh1oIFkXr1Op8isp1bu3dRE+nVbJZP7JRV2dFVzg/n22brWG19UVp11hnEFR7urL9vPFi1WQDEiFVqrLYLHaVYzPra2VXn8987y+XnrrLfOAQ8TnXKfHjAlfx2trpRUrJPch3pAhUlVV8Hv795fefJPfFQAAAAAAAAA6s6LfPnv55Zerb9++Ov300zVgwADt3r1bjzzyiB566CFdd9116t+/vzZv3qxLL71U06ZN00knnaRUKqUNGzZo8eLF+vSnP62ZM2e2T6+yslLz58/XD3/4Q1VWVmrChAl68cUXdcMNN2jmzJkaNmxY+7jf+MY3dNddd+miiy7SwoULdcwxx+juu+/Wn//8Zz311FPFmB0AAHRqXoWD02kr0GXWLGny5M4Z6FLq2tqka64p/99n8GB3JiB9lDGmaE1CFxA1kAfFU1trZXNzZq7q0SOT4c3Prl3Ss89KY8fmvYkAAAAAAAAAgCIpegDVqFGj9O///u+677779O6776pPnz467bTT9Nvf/lbTp0+XJPXt21cDBgzQT3/6U+3YsUNtbW067rjjdPXVV+sHP/iBertuMb/++uv1sY99THfddZduu+02DRw4UPPmzdP111+fNV7Pnj21bt06zZkzR1dddZU++OADffazn9Xjjz+us88+u2DzAACAri6dlrZskTZtylygtrPJIP82bZIaG/1f9/p9StHrr0svvyxt3y4NGiSNHk0wC4Bs7oC3//t/zd63fXv0z2prs7abbJMAAAAAAAAAoPQVPYBqxowZmjFjRuA4/fr1U13EujFXX321rr766tDxBgwYoPvuuy/StAEAQH7EuUCN3JnO91L/fSoqSjvAC0DpGTQo2fFsdXVWZj9ncGpNjbRkCVnxAAAAAAAAAKAUHVHsBgAAgM6trc183KgXqJGMJAMI7Mxh6bT1ON8K/XkAypt7mzF6tBXYlEp5j59KSUOHWuOZqquTpk7tmNlv61ZreMR7gwAAAAAAAAAABUAAFQAAyJu6OmnYsPDx4lygRnLyEUAAAOWgosLKCiV13AbazxcvNi+919ZmZZ7yKkFrD5s1K1pwMQAAAAAAAAAg/wigAgAAeWFn4Ni6NXi8OBeokaykAwiAUkB2MpiqrZVWrJAGD84eXlNjDY9Scm/Tpo6Zp5zSaWnLFms8W1ubtH699MAD1n+CqwAAAAAAAACg8AigAgAAiQvKwOEW5wI1kpdkAAEAlJvaWmnzZqmhQVq+3Pr/1lvRt33bt0cbr65OOu44adw46dJLrf/HH0+ZPwAAAAAAAAAotG7FbgAAAOh8wjJw2BYulK69lsxGpaK2Vho/Xvr4x63n9fXShAn8PgC6hooKaezY3KYxaJD5eHamRnew8dat1nCCVwEAAAAAAACgcMhABQAAEmeageOYYwjOKTXO32PMGH4fP5SHA+Bl9Ggrc5+7HKotlZKGDpW+8AX/TI32sFmzKOcHAAAAAAAAAIVCABUAAEicaQaOgQPz2w4AAAqpokJassR67A6iSqWs4KgtW6R164IzNdrjbdqUv7YCAAAAAAAAADIIoAIAAIkLy8BhO/PMwrQHAIBCqa21yu8NGZI93Pn8nXfMpmWa0REAAAAAAAAAkBsCqAAAQOLCMnA4xwNgjtKBQHmorZXefltqaJCWL7f+/+lPmdd37jSbjmlGRwAAAAAAAABAbgigAgAAeWFn4Bg8OHu4OyMHAJQzgtrgp6JCGjtWuuQSac8eafjwzGvz5gUHEadS0tChVkZHAAAAAAAAAED+EUAFAADyprZWev31zPP6eum114rXHgAACq2uTpo6Vdq6NXt4W5v3+HamxsWLydQIAAAAAAAAAIVCABUAAMgr58XfMWO4GAwA6Dra2qRrrrEylPlx7xdraqwMjrW1+W0bAAAAAAAAACCjW7EbAAAAAABAZ7Rpk9TYGDxOW5t0xx3SgAHSoEFW2T6CjQEAAAAAAACgsAigAgAABdW7d3AmDgAAOovt283GGzBAuuSS/LYFAAAAAAAAAOCPACoAAAAAQFkpl2DcQYOSHQ8AAAAAAAAAkB9HFLsBAAAAAAB0RqNHSzU1Uirl/XoqJQ0dao0HAAAAAAAAACgeAqgAAEBe2VlC0mnrMQAAXUVFhbRkifXYHURlP1+82BrP1txsvZZKWY8BAAAAAAAAAPlHABUAAAAAAHlSWyutWCENHpw9vKbGGl5bW5x2AQAAAAAAAAAyuhW7AQAAAEC5szOtAYCX2lpp/Hjp4x+3ntfXSxMmZGeeAgAAAAAAAAAUDxmoAABA4ig/BABANmew1JgxBE8BAAAAAAAAQCkhAxUAAAAAAHlGpjoAAAAAAAAAKF1koAIAAAAAoES0tWUeb9yY/RwAAAAAAAAAkB8EUAEAAAAAUALq6qRhwzLPJ06Ujj/eGg4AAAAAAAAAyB8CqAAAAAAAKLK6OmnqVGnr1uzhW7dawwmiAgAAAAAAAID8IYAKAAAAAIAiamuTrrlGSqc7vmYPmzWLcn4AAAAAAAAAkC8EUAEAAAAAUESbNkmNjf6vp9PSli3WeAAAAAAAAACA5HUrdgMAAABQOnr39s6AAgDIn+3bkx0PAAAAAAAAABANGagAAAAAACiiQYOSHQ8AAAAAAAAAEA0BVAAAAAAAFNHo0VJNjZRKeb+eSklDh1rjAQAAAAAAAACSRwAVAAAAAAAJaG62gp1SKeuxqYoKackS67E7iMp+vnixNR4AAAAAAAAAIHkEUAEAAAAAUGS1tdKKFdLgwdnDa2qs4bW1xWkXAAAAAAAAAHQF3YrdAAAAgK6qd28pnS52KwAApaK2Vho/Xvr4x63n9fXShAlkngIAAAAAAACAfCMDFQAAAAAAJcIZLDVmDMFTAAAAAAAAAFAIBFABAIDEtbVlHm/cmP0cAICurrlZSqWsv+bmYrcGAAAAAAAAAEAAFQAASFRdnTRsWOb5xInS8cdbwwEAAAAAAAAAAACg1BBABQAAElNXJ02dKm3dmj1861ZrOEFUAAAAAAAAAAAAAEoNAVQAACARbW3SNddI6XTH1+xhs2ZRzg8AAAAAAAAAAABAaSGACgAAJGLTJqmx0f/1dFrassUaD0Cw5mYplbL+mpuL3RoAhdS7t7XPTKetx3GwDQEAAAAAAACAaAigAgAAidi+PdnxAAAoN84sixs3+mddNB0PAAAAAAAAAFAYBFABAIBEDBqU7HgAAJSTujpp2LDM84kTpeOPt4bHGS+KtjZp/XrpgQes/wRkAQAAAAAAAEA0BFABAIBEjB4t1dRY5YK8pFLS0KHWeAAAdCZ1ddLUqdLWrdnDt261htvBUabjRf3s446Txo2TLr3U+u8M0AIAAAAAAAAAhCOACgAAJKKiQlqyxHrsDqKyny9ebI0HIBjlvYDy0dYmXXONlE53fM0eNmuWdOiQ2XhR1ne/gKxt28ynAQAAAAAAAAAggAoAACSotlZasUIaPDh7eE2NNby2tjjtAspJPsp7AcifTZukxkb/19NpacsW6e67zcbbtMnsc00Ct+zxAAAAAAAAAADBCKACAACJqq2VXn8987y+XnrrLYKnABP5KO8FIL+2bzcb769/TXZ6YYFbtmeeMZseAAAAAAAAAHRlRQ+g+q//+i+dd955OvbYY3XkkUeqsrJSo0aN0rJlyzqM+/LLL2v8+PHq06ePjj76aNXW1upvf/ub53TvvPNOnXLKKerZs6dOOOEELViwQC0tLR3G27lzpy677DJVV1frqKOO0qhRo7Ru3brEvycAAF2Js0zfmDGU7QNMmJYBI5sMUFoGDTIb78QTo0+vudkqg5tKWY+dTAOt3nnHbDwAAAAAAAAA6MqKHkD17rvvaujQobr55ptVX1+v3/zmNzr++OP11a9+VTfeeGP7eG+88YbGjh2rQ4cO6eGHH9avf/1r/eUvf9Ho0aO1a9eurGnedNNNuuaaa1RbW6s1a9boiiuu0M0336wrr7wya7yDBw/qi1/8otatW6clS5Zo9erVGjBggM4991xt2LChIN8fAAAAkMzLgJmW9wJQGKNHW6VqUynv11MpaehQ6YorzMYbPdrsc00DtwYONBsPAAAAAAAAALqybsVuwNixYzV27NisYeeff77eeust/epXv9L8+fMlST/60Y/Us2dP/e53v1Pfvn0lSSNGjNAnP/lJ3XbbbVq0aJEkqampSTfeeKO++c1v6uabb27/jJaWFs2fP1+zZs3SsGHDJEn/9m//pldffVXPPvusRo0aJUkaN26cTjvtNM2ZM0cvvPBCIWYBAAAAYJxNxnQ8AIVRUSEtWWKV2UylsrPI2cFSixdLPXqYjWeatdEO3Nq61Ttzne3MM6N8GwBAqWtulvr0sR6//77Uu3dx2wMAAAAAQGdR9AxUfqqrq9WtmxXf1draqt/97neaMmVKe/CUJB133HEaN26cVq1a1T7siSee0IEDBzRjxoys6c2YMUPpdFqPPvpo+7BVq1bp5JNPbg+ekqRu3bpp+vTp+sMf/qCtW7fm6dsBAAAA2UyzyZiOByA5bW3S+vXSAw9Y/92lNGtrpRUrpMGDs4fX1FjDa2ujjWfCDtySOma1cj6njC4AAAAAAAAAhCuZAKrDhw+rtbVVu3bt0t133601a9Zo7ty5kqS//vWv+vDDD3Xqqad2eN+pp56qN998UwcOHJAkvfrqq5Kk4cOHZ403aNAgVVdXt79uj+s3TUl67bXXkvlyAAAAQAjTMmCm5b0AJKOuTjr+eGncOOnSS63/xx9vDXeqrZVefz3zvL5eeuutjkFRpuOZ8AvIGjIk+rQAAABMNTdbxyeplPUYAAAAADqDopfws11xxRX65S9/KUnq0aOHfvazn+lb3/qWJKssnyRVVlZ2eF9lZaXS6bT27t2rQYMGqampST179lRvj/zVlZWV7dOyp+s3Tefnejl48KAOHjzY/nz//v2SpJaWFrW0tIR+XxSW/Zvw2wBAYVib2+4fPW5RPje/bOPRmdx+e0rTplV8VN4rE0mVSln1uW67rU2HD6d1+HCxWggUXjG386tWWeukVSIvs05u3ZrW1KnSgw+26cILM/XzrHXT2v+NGtWiw4flub6ajufen777rtSvn/V8794W9e4tTZokTZwoPf10Stu3W1nqPve5tKqrC7MfBoBc0JePzrqH1NrGNzS0avz4tFG2webmjvsQIK5CHvM7sRyXF7bxANC5sZ0HUC6ibKdKJoDqBz/4gWbOnKmdO3fqscce03e+8x01Nzfr2muvbR8n5Xc7vus10/Gijut0yy23aMGCBR2GP/nkkzrqqKN834fiWrt2bbGbAABdwoEDFZLOlyStWbNGvXq1Bb8hAWzj0Rn07CnNmTNI99wzXHv2HNk+vKrqQ/3TP72qnj23q76+iA0EiqjQ2/m2NumKKyYona6QM3hKsgMc07ryykPq1m1t+4Vr0/1f3PEs/u/r29e6sPjUU4XfD6NrOHCgQtOmWcvWgw/+jmULiaEvb+a556x+oh24MmlSN1VVfaiZM1/RqFHbA99bjGM0dF7FWp5YjssT23gA6NzYzsOJ8wYoRR988IHxuCUTQHXsscfq2GOPlSRNnDhRkvT9739fX//611VVVSXJOyPUnj17lEqldPTRR0uSqqqqdODAAX3wwQcdApn27NmjESNGtD+vqqrynabknfHK9v3vf1/f/e5325/v379fQ4cO1YQJE9S3b1+Tr4wCamlp0dq1a3XOOeeoe/fuxW4OAHR6zhT+X/rSl/J6VyjbeHQ2EydK110nVVdbzx97rFXjx3dXRcXnJH2uqG0DiqFY2/kNG1Jqago6ZE5p9+6j1LfveTr7bCsLlen+L+54TuPHf0n/+Z+ZrFNnnZXJQFLI/TC6FpYtJI2+vLlVq1K69VY7K2LGnj29dOutn++QFdGN9dcbGY3i+agYgySpd+9zjTOh5YrluLywjQeAzo3tPLzQX0Mp2u88gAlRMgFUbqeffrp+8Ytf6G9/+5tGjBihI488Uq+88kqH8V555RWddNJJ6tWrlyRp+PDh7cPPOOOM9vHeeecd7d69W5/5zGfahw0fPtx3mpKyxnXr2bOnevbs2WF49+7d2UmUMH4fACgM56bW2vYW4jPZxqPz+KhrK0kaN65b1nOgqyr0dn7XLtPxurXv50z3f0cfLccFcP/v5J6e02mnddfWrZnnNTXSkiVSba106FBm+KFD3fXR/UaAr+ZmqU8f6/H778v3BGcx+njoGujLB2trk773PXUInpKsrIiplHTttd00ZYp8g1hYf70xX6Krq5OuvjrzfNKkbln9kHzi9ypPbOMBoHNjOw8n+msoRVG2UUfksR05aWho0BFHHKFPfOIT6tatmyZNmqS6ujq999577eP8/e9/V0NDg2odR2bnnnuuevXqpaVLl2ZNb+nSpUqlUrrgggvah1144YV644039MILL7QPa21t1bJly3TGGWdo8ODBeft+AAAAAIDSNWhQsuMlzRk8ZT+fOtW6qAkA6Fw2bZIaG/1fT6elLVus8YB8qquz+hv0Q5Cr5mYplbL+nJkqAAAAgGIqegaqyy+/XH379tXpp5+uAQMGaPfu3XrkkUf00EMP6brrrlP//v0lSQsWLNDnP/95nX/++Zo3b54OHDigH/3oR6qurtb3vve99ulVVlZq/vz5+uEPf6jKykpNmDBBL774om644QbNnDlTw4YNax/3G9/4hu666y5ddNFFWrhwoY455hjdfffd+vOf/6ynnnqq4PMCAAAAAFAaRo+2sjpt3eqd8SOVsl4fPTp/bWhryzzeuFH6/Of9x02nrTbNmiU57hEC2plmmQJQerZvT3Y8E2wz4NbWJl1zjV8mtEw/ZPJk/0xoAAAAAFDKip6BatSoUfrDH/6gK6+8UuPHj9fMmTP1zjvv6Le//a1uvfXW9vFOOeUUrV+/Xt27d9fUqVN12WWX6aSTTtLGjRvbg6xs119/vRYvXqwVK1ZowoQJuvPOOzVv3jzdddddWeP17NlT69at07hx43TVVVdp0qRJ2r59ux5//HGdffbZBfn+AAAAAIDSU1FhlaKRrAuCTvbzxYvzd4Gwrk5y3P+jiROlY44Jfo+dgeT55/PTJnQNZIQASk+pZ0VEtrY2af166YEHrP/OgOhyRiY0AAAAAJ1d0TNQzZgxQzNmzDAad8SIEcaZoa6++mpd7SzG7mPAgAG67777jKYJAAAAFELv3t53dgMorNpaacUKK9uC84JhTY0VPOWoJp8ouzyOeztgul3YsSP5NgEAiqcUsiLCTF2ddPXV2SXuamqsoOx89RsKpRiZ0AAAAACgkIqegQoAAHQ+dvBHOk2pBwBAeautld5+W2pokJYvt/6/9Zb3RdAk9n9B5XFMVVdnHj/zTOfJfAEAXVWxsyLCjB0A7QyekqznU6dar5ezzpoJzS/zIhkZAQAAwuWjz0Q/DMVEABUAAAAAAAEqKqSxY6VLLrH+5/MCdVh5nCCplFRVZWW+sNXWSscfX/4XbQGgq7OzIg4enD28psYaXm7ZjTrbRZGgAGh72KxZ2UHN+/dn5sHjj5d+wLOdCc0dxGdLpaShQ0svE1q5LWvltlwAABCk3PbDXU3c0tP8rujMCKACAAAAAKBE5FL2Jp2Wmpo6TqOzZL4AgK6utlZ6/fXM8/p6/6yIMOO8SLRxY/xglbAA6HRa2rLFGk+y9snDhmVenzix9AOec82EVsgLbc4gpCefzO9nJakclwsAAFCe6uqsfsa4cdKll1r/6XcABFABAAAAAFAy4pa9qaryf80v8wVgcy4XzzxTvHYACOcMThkzJvesiHHvOu8MkgxWMQ2A3r69vEv9lUMmNPfvmu82OQPDdu6MHyRWzsuFCTJVAABQOux+h/sGgM7S7wByQQAVAAAAAAAlIqw8jpf+/aV77w0ex535ArAV+kIzIGUupPfo0V0HDuSxLmoJSDpAqXdva5ueTluP4+jTx5r/8+dLxx3XNe86TzpYxTQA+phjopf6KzWlnAnN73e1rV5d2PaYilMCEgCAUuUXNEswbWmg3wEEI4AKAAAAAIASEVQex80+8XjZZdI3vmE2/VxKBCJ/inUiuVwvNAPlotTLYtx0U8f1v7FRmjJFevjh/H52UqXz/ARtV/Nx0SgsADqVkoYOtR5HKfVXqpLOhJaEoN/VNnduaV4MjFoCEgAAIC76HUAwAqgAAAAAACghfuVx3Bcna2qka6+VbrtN2rvXbNpxSwSi84lzoTnfAQ9AZ1JqZTGiBkTOn5+fdkjepfOOO65wgaT5uGgUFABtP1+82CrxZoKA5+jCflfJej3Xi4H5KHsZpQQkAADFYnrjDyXiSxv9juSRXa1zIYAKAAAAAIAS41UeZ9eu7OdvvmldvAsKgLHZmS9Gj06+rShPUS80ewU8lFImHaCUlFpZjLY2ac6caO/Zti0/bQkqnWfLd4Bmvi4a2QHQQ4ZkD6+psYbX1poHMhPwHF3Sv6tX0LBXVjnnvjGuo482G69YywUXBQEApigRX/rojwLBCKACAAAAAKAEucvj9OiR/fzZZ8MDYJwWLy6NEjsoDaYXkLduDQ54KEYmHaDUlVpZjE2b/Et1FpJJ5jsp/wGa+bxoVFsrvf221NAgLV9u/X/rLWv4/v1WwE2Qcgl47t3b+h3TaetxKTD9vT72sfBxvIKGBwywylu61+0kgg3PPDP49XJZLoKQxRIAOr+wEvH/8R+FbU9nlWtgs2np6XLudwC5IIAKAAAAAIAyZBoA069fJvMFYDO90DxrlnT55aWTSQcoB8Uqi+F3MaVUym+YZL6z5TNAM98XjSoqpLFjpUsusf5XVHQMyPH7XImA57i+8AWpf//w8b71reDlyu/ib1OT9/jO/WPcfaHz9w4qAekcLx+lBP3kGvy0alWqQ0BaEpm7/JAxCwDyI2h/YBIon88S0VF09f2EaenpoP4oZRrRmRFABQAAAABAGTINgOEiLLyEBRDYdu/2v2gsFT6TDpBPphdTwsYrVlkMv4ta//M/0ac1eHAybXKKEsiVzwDNJC4aRRGWjcHmLPVXKJ3lAmJdnfSJT2SXO/azfXt2cJ5z+WpoMMuS5uf55+O9z2ngwOznXsuFVynBfGVti1vCd/9+qUeP7rrggsn6x3+s6LD856tMKAAgP7z2Byed1E3PPWd1aE0C5dn2ZytmP8yk9LSbHbw9e7Z04onZ0wI6EwKoAAAAAAAoA+5yOaYBME1NlFlDR84AgiSUSoYbwEshM7VIxSmL4RfkMGeO9OMfR5/ejTcm1rR2UQPG8hmgaV80cgeKJR3EZJKNobJSeuqpTKm/uJ8TZxnvDGXVTAPUbM7gvEceyV5vJk2KVh7ZLYll9Y03vEtA2uzv625nPrK2xS3h2zHjWseNYRKZu/wkvVx3lkBDAGZKcZ0vdpv89gfbtkmLFn1eq1alOB50KPbvZSqo9LSbM3h78WLrRisvq1fnscFAgRBABQAAAABAGTINgKHMGvzYAQTV1blPK+lMOkBSCpmpxVYqGY4aG6Wf/CTeNM87L/d2uZkG/rrl64Jcba30+uuZ5/X1uQUxeTHJxrBnj7UsxF0e6uqk446LvozHzSxUSkwC1LzYwXkXX2weeGXijjsyj+MG7niVgLQFfd+k+3uHDkn//M/RPytqQJuUbOmfzrBcA0ChBQX8BO97rE7d975XoWOOSa49hb75oSsL6nfY/IK3vcyda/UhbOUaoI+ujQAqAAAAAADKlGkADGXWyksh71itrZUWLYr//nxk0gGSUshMLW5xymLEETeAxGnGDOuu8/r64M/J9UJWUGBZkHwGaDovEo0Zk3zZW9Pgr7hBYrlkCIrzvkKIsg80CVArlnwE7oR9X7u/9+STuX1OXZ217QoqiejVt4y7PXrnnXjtdCvl5RoAylX4vjalxkarYxcWKG9SIroYNz/AX9R9e2Oj9KlPZZ4TyIxyRAAVAAAAAABlLEoADGn14SVucEI+MukASSlkphY/UcpiBAkKKEkigOScc6y7zseM8X599erkLmT5lc7zU1MTL0CzVErTmW5f42yH4y7jcd5XyMDeKL9dqfdrkg7cMf2+uQQk2UFIfqV5gtoUd3s0cGD097iVwjYfADoj033P+PGZfYBfENW//Evmsdc+vlA3P5RKP9GtFEv/xdm3u/sQcX6/Uv2N0DUQQAWgZJViZwEAAAAoRfm8QIvSlsRx05lnBr+eSklVVR0DHpLOpAMkyTRTizt7ii2pE/UmZTFykUQASdi+Yfr0ZC9kuUvnSf4X2r7+9ejTL6USXiZlC/v3l77whejTjrOMR3nf+vWZrGMbN0ZvXxivrGZRf7ti9GsqK83HdQbu7N+f+/7a9PuaBiQ52/T441bJnagZpJxtirs9CuuHmIi7PgAAgkXd1y5b5h8o/8MfZh679/GFCoQtpX5iHM3NUp8+hfu8JI41ogbol/tvhPJHABUAAAAAAGXO5MJT3CweyL9i313pDOhwX+S3n//qV9J//3dmeH19vEw6QKFELZ2W1In6JErdeU3T5t5G5BJA4i7B6ZzuwoWZx0ldyHLOm2eeyQy//37/C2033RTtdzAp4eVsRz4Cg5xMyhbu2iWdeKLZd3ReaHrrLbM2uNcF03XjoosyWccmTjR7jymvrGYDBkhTpoT/draNG63As7AAtaS99ZY0f775+HbgjnOZj8skIE8y6xd6bfOGDDHPMuFVwjfK9sj5HZIILM13uUwA6KpM9z22yZOzA+Wd/Rv3Nti5jy9EIGzUfmJSffk4ipVgwv25SQWrm/5+lONFKSCACgAAAACAMte3r7RyZeZEl5dFiyizVoq8LmD+wz9knruDJaKcSHWOu3+//zSd3FkrnFmmnMvPmDEsT8ifJC5cRMnMl9SJ+rq65ErdOacZFNhlelHLLzjSLsFZVyedcELm9TvuCG9blAtZ7nnjDMhxX2hzc/4OQdvAQ4ekf/7n4ICvyy/3b0e+2GULhwzxHyfORSHTLENHHx3vQtjevd7DV682e38Qr6xmTU3e4zp/O+f+ceJEK/Dskkus537LeBypVPbv9cgjmcfPPGNlk4tq27bM48cfz878FLSNcy7zBw6EB+TZbQyapt82z7Rsn81dwjfKRXZn0GQSweNkYwWA/DAJBndavTp73/D5z/uP6wzId++T/MQNhDXJcOXuJybRl0+aV2nmfIoaQBfG+fu5A+ODMmFSjheFRAAVAAAAAAAlqHdv6yRROm09DmNfoPW7oNqvHyea4ooStBQl8MPvAqbzIuvEidZvOnt2bnfAjhiRPU2/E8EvvZR5TJYpFENdnXTccblfuAg72W9nT/nCF5I5UW+vz0mWujMJ7Aq6qGVvt667LrgEZ12dlflnz57obZTCL2T5zRvb6tXWfq6mxvt1v9/Bub39l3+xAl527fJvRzptBekEtSNfamulv/7VKtfn1zbJvLSJZGUZMlnG3dmIcr0QNneu//pgug+MUiLOHr+pKXv/KFnrwm23Sdde2zFAbcgQq/xsVPZ8ufXWzLCrr848njjRKi1ZVRVtHs6dm3l80UXZ03MGSYbxC8hzXqwO2s8HXUA21b+/dwlf5/YoyPXXZ39+EqV5TLf5ZGMFOpdiZenpaux9j0kQ6jXXSN27W9v5lSulz30ueHw7ID+oD+cUNxDWJMOVVz/RLzuVMxi6UMue+8YKyXqezwCvqAF0YezfL04mTMrxolAIoAIAAAAAoJOorc0OgOnXL/M4iYtTCBYl+0yUC5i7d1tZHsaNC85OFSSoXIITWaZQDM6LX0mVbAgLLJKs9erZZ6OfqC/E3dImd8lfc431XaZMkZYt8w+SuvXW7AxPzuBI+3NyEXQhK2xbl0pJ8+ZZF6NMfgdnGbRhwzLb2x//OHr2HLegwKAkPPtseIBX1ItC3/ym97x1ZxhzyvVCWGOjdxvD9oH5mLf2d3/wQStAraFBWr7c+r90qX9WqyD2ejN5cmaYex+6bZs17ShBSEFtcQeGhamtld5+2/qes2ZZw9zz12+7GXYBOUx1tbR5s1RZ6R0oV1trBbQFuekm72C4XErzmG7z6dcACOPcpj35JAFattpaq6x7mN27pZ49M/160/5Z//75DYSNm7nKmZ3q2GMLl8XUfbyxYkVhStt5lQ43yaYaxvn75ZoJk3K8yDcCqAAAAAAA6EScF4bc5XeSPrnWVXidRHSLmn0m7gVMd3aqoKwVQRerSYGPUpVkEJLfyX5n9iXTE/D2eIW6W9rkLnnn6+4yeO4Mcs59w4gRUrdu1oWMJ5+MH0xhciHL5Hts2WIFYZh4553MY9NSL6b8AoOSEnVZCzNsmBU45sW5jHux1w130J0pdxv99oGNjVaA36RJVrm9fLCXoWeftUrrXXKJ9X/nzujTmjMnO7gw6DNTKSsLVdx56J6eLag0j7MPUlFhrXsrVgRP073dzPWi4/Tp0qc+FRwo98AD0aebRL/Eb7kOWx8AdH6mmarc/bx8bzfKLYNW1H1rlEDjIUOCA2Ht/f2BA9mvmWa/zKWEq18mTFvcLKZB5xncGaSnTfOfn+m0FeCV63F9UOlwZ/D28uVWn8mUM5BZyj0TJuV4kW8EUAEAAAAA0IkQNJOsoJOINpNMMUlfwLQFZa1wZmrxYp+EfvnlaOUioyq3CwMorMOHpaefDk+DE7dkg/tkf0NDdmCR6Qn4QYMKe7d0nG1E376ZdfnLXzbLtOIMSIrCJKNLc7MVXJGkyspkp+eWzzvaoyxrJvwCyBYsMCu/WlubHXQXJbja2UaTjIq/+13uGcLCuH+7OBfXRo/OLM8m+9CmJumXv8wMc5cMrK6O3gbn54b1QUwDFJ3bTdP54i43OXSoVQ50yZLgYPFcMlwlUZrHvVxTjhiAKb9+ni2fpX7LxcCByU/TGZDvd/ODX+ajKBmgcy1hHCROFlOvfbzzubtfEzb9piYrw2NcpqXDncHqpuzjky99KTzrbBDK8aJQCKACAAAAAKATef754NeTuDjVVZicRJTyewEzTFDWCtPAiHynwDfJ4IWu68orv6hJk7oZjx9neXWf7HcG/JhcTKmsDC7TZ8oddOK8W37//uxAw1y3EaZ348e9EJZ0RpexY8N/h6oq6Z/+KZnP82M63+MEhoYtayYXhQ4dCv6MVEq6916z9kjZQXcTJmRPx09NTXYbcy0JlxT3b2fP7yi+9a3Mvt10H+osy/jKK5nH9fXSokXRPt/5uSZ9kDhZzUyXw8bG7MDTN9+0tidhweJJZIbLtV/i3Mafeaa1jIZtCwF0bSbBwPku9VsOJkzITxCSMyDf6+aH117r+J6oGaBzLWEcJEoWU7sPOWWK9z4+F0uWxFtG49wQduaZZtN2ZspcvVq6+OLo7ZNKvxwv5zw6FwKoAAAAAADoRHbsMBsv30Ez5S7KScR8XMCMw50twzQwIp8p8E0yeKFr27u3V6Tx/ZbXuJnOTC6m7Nlj3TGd1N3SdXXSccdl3y3vLsdpEuTgFxzidTe+X7nPM8+MHmQyf370jC5hwRpjx4b/Dk1N1l8c1dVWAFZYO047LbMcPf54shc/DhywliG7/Jv786Xgi0KrV1ul04IkGSTtN68WLcpuY9L9iY99LPt5TY3Zb+cOPHOu26a2b89cdDXdhzrHc86XMWPi7V937gwO2HT2QY45xmyaznYEbfOcy2GPHtmBp88+axYs7gwoiyvXfknv3lZ7Vq6UPv1ps8wkALo2k2DgfJf6LVXOPvaBA9H3rUH69/cOyA+6+UEKP1ZPp6V//ueOged+pV79MlxF4ewPBQXThAXD52LPHv9lNOjmijg3hDl/E7/+hJTdP5s+3WpjHKVcjpdzHp0PAVRAgVCyIH+YtwAAAEDGgAFm4x19dF6bUfainESMU5YpH3fAurNlhN0Vmu8U+KYZvND1rFrlfGa2AuRzefW7mJIEd2CM33rhLsdpEuTgld3G7258v3KfcYJMvvjFeHd+hwUN5et3qK625vevfhXcjmnTpOHDM8PzefHD/R39Lgo5L2595Sv5KRfpZdky/4uJ/fpltyvpINz33ss8rq+X/vQnK3DO6yJpKpXZHx840PH12lrp+uvNP9sZnDRyZPC49jYpaF8bNg0v8+ZZ896kDyLFy2rmVyIp6OKk6TLVv3/8APEkt/NRM5MA6Nri3BBjmu0zCaWU3cbeh8QpU+tUXS1t3mxleo06D00C3nbtsvZH7u29V6lX5/O4x+Z2fygomKauLjwYPldey3JYqcM4y7+TO+jcrw8ZN5PvnDmlW46Xcx6dEwFUANBFFLJDDwAAgOIxvVhnmnK9q4pyEjFuWaakgwXcJy5N7grNVwr8OGUA0DXU1Ulf/Wq095gsr7leWHJfTImrf//s586ABJP1Qsq03W8bYU/z/PMzwzZuNMta45y+rbbWytTSr1/wdzMJbvC7yc0rIMcrWCOp38FpyRIrm05Q0Mi110q33Va4ix+vv55dmsbropD7AlwUcYKanMtFv37SX/9qtW3WrOyLpO7AsnxkVLSXoYaG7KA2N+e64bfeL1gQbT9rByf9v/9nrRd2W9ztk8IzhgW1PYhpoNzOnWbZpLza6FUiKejipOkyNWSIs03ZGyNnG/PZL0m6D1JKgQsAktfcbAWVmHAGyQQFpCSpFLPb1NZafaTq6rSkeFEx06dbwUQm89C9HTYtdbdrl385P9uYMdnPvfrdQZkw7XFGjw4Oppkyxfoz3cfH5d5fmwQUx7khzOmllzKP6+u9Sy7mwisLWSngnEcnlkYi9u3bl5aU3rdvX7GbAg+HDh1KP/roo+lDhw4VrQ3vv28njrQeI5zpPGPehlu5Mp2uqcnMJ8l6vnJlsVsG5K4UtvEAgPxhOx/djh2ZPl8qld0HdD6n7xysoSF73vn9NTRY469cac1fr3meSgX3vffty4x//fXp9ODBZp/t/nOfknAeKw0alD3u0KHebXIfXzmfO5etsOUn6vxD59baav3Wy5al0337Rl+2ncur1zmAlSvT6SFDcj/mdU477t+ePdZ3Xb7c+t/ampm+6XpRX5/dLuc2or7emqbXd66uNpv+I490nJ77c9x/Jtsy9zx0bzPs5cBr3ji1tnY8h5HLn3t75W7HwYPBn5dKWcugs71xzkVFeY+9T4n6XeO21W8duu4673a4lwe/fWA+/6ZM6bi/9Fvv778/+vSXL/efN37bpKA+WD7+nH2QoDYmwV4v/b6Xe9mz2nTYs00PP9xxe5Vke5PsgyS1fwGQH0lcQ3K+FrTtrqnJ9MFM9o0mvPp4Tkl+Vtx2BM27hx5qSUuHP/qLtg8Lmtf33589D+L2eb32T17fyfl8376O/dWwfs799yfff40zP53f0+S4xn6P3Rc2Wf69mJ5DiPtXqqEXnPMoL1FiechABZSAYpWgo/Rd10DKagAAgK7LXc7PL5U6OoqaVSqsHM748Znjr8cfz74L0Xk35fe/L/33f5u309m+oLsy3XeF5jsFfq5lANB5OO/Qnz5d2r/f/L3z54dnRSmFsgnO9bBHD+su6Usu6Xi3tOny7i7H6b5LfvVq7+9sekf7N7+ZeTxxotStm/Ud1q3LDHffYR5U2suPO1uA5D9vnEzKsniprrayDS1fbm3nbO7zXxUV2e149lnzkq2FsH+/laEgnY73/qgZfPzWocZG6Sc/8W6HPcy+q95vH5hPK1d2LE3pt95Pnhx9+vY64FXqx2QfGvT7VVZGb4+TVx/EtI1xzweblBV1Lnu1tdKbb7bqX//1af3mN63t23JJ+u53s7dX1dXST3+aXL8kqT5IKexfABSe3/GfXTo5qYwzYZmlCpXdJpcMVxdemNbcuS+qqsrss/7lXzKPg/aTc+da38tvOxwli1PUfpy7n+gsM+3Xz5k8OX7/1U+UzJ5xszja8+bZZ/338bZFiwqbBcr0PEccSV0b55xH50UAFYAuqyuUtCOFJAAAQNfmPElYXy/96U+Z55QgCRb1QqHkXw5H6nhS+rjjrBPIDzyQCSxwfrYp07JEQWUKnHr3ztwr2bt39jLyzDPm7cq1DAA6B78bekxUVUk33BAcaFMqx7zO5Tho22q6vLvLcToFfWdT777rPdwZvBA36NL53Z3ly6JcjItzkaF/f+vi2o9+ZF3wGjPGu01ev0+pXfyIsq116t8/XpBb3OXJfUHSuQ+cNcsaFnTxL9cgIr82ScHr/WOPhX+2XYrHZroPNbVnjxUgGodfHyTpNnoJCxa3S5Xa51uffjqlYcOaNG1aWmPHZoI/3fuE3buliy6y+k5JSKIPUir7FwCFtWyZ//GVSZCMabCOSYBmUp+Vazv8NDdLPXp016JFp+vHPzbbGLpLXftpbLQC+3Pt8zrl2o9zH+s7g/WTmL6b3/HAr3/dcVicGx2ctm/3Lx1uixOM7hbUL3T3W/yC1fbv978xLe4137jv45xH50UAFdAJlVNmqWK1tZA1qoupEJ1sAAAAlC7nSai9e+NfzO6q/E4iBp2gdN+x6pcpZutW6cc/to5HJk6M38Zf/CL+e8O470aurbW++8qVVnBVkKgZvMJ0hRtgOptcA32amqz1J8gzzyR7zNu7t9TaGrzsejl4MPM4aNsatl7YDh/OXsadgY0vv5zs3e1+nngi89g0GMO9zWhqyn7dNGtLlIsM9jmlX/zCyv7lZcSIzGOv36fULn64M5CZ6N/fWi6iXjhLIluC84KhvQ+84w5rX+F38au+Xnr44dw+10/Yej9unHTPPZllx0uULAvuwOOkVVdnP8/1Immu/ILFa2s7nm8955xuuvzyCVq1KmW0T7AzjuQqiT4I51SBrmny5OyMfo88knm8cWPHYzo/QeOZBmiaftZbb8W7xpZkoGhQ8L+TO0N2ENObMEz77En045zH+s5g/aSm78zk9bOfZR47+60XXyzt25d5nkR2ab+sm/k4V+R1c1oqZR3nO/sWr72WGcc+FzB7tnTiiZnhzn59XZ11k1rUa76rVwe/L+gadtLnPFA6CKAC0OV0pZJ2pXYXJQAAAPLPefHO+Xj6dEqQxBG3dI8UL4Bk9WrrdzPNwrBjR+ZxklnFwu5GXrbM/85PKV4Gr6C2dIUbYDoD5wnmJ5/MLTAjlQq/aGMaaBLlmNe57JoyDRQKWi+czj/fuhA1e3bHgMFCHb9HzY7jt81wMr0YZxpoJpkFk7jnmfv3KfbFD3eA6DHHmL/XL4DMeXf+k0/6vz+J5cnvgmFQpoYxY6wLkFGDFaMI+m4mpXji6N3b+r4mwr6/vdz95S+ZYUF9kHwHcjl5lTfyO9/a1NRL06ZV6KabwvcJjY3WOpBE+3Ltg3BOFShPO3dm9n87d8abhnPbcPXVmccTJ2YyLIaZPdv/WMU0QHPXLrPPcmZ1inI8aNoOv8yYzs85fNjsM0eONBtPkt57z2w8k2Ntd2bJfOwzo/RfvXzsY1LPnpnnF12Ueeycb+7s1XY57qDguaA2BWXdPPPM4DZHtWyZfxbLiy7yL/U9bJh1DmDx4o7lG7dutUpfT5kS73xX3PNkbW3WOjR1qrUc5XrOA6WFACoAXUpXS79candRAgAAoLCc2VS6Sh84H+KWxYmT2cPOvmDaR583L/M4qaxiYcdN6bR02WXhnxsng5dbV7oBprOJk0XHyS+7h3NbZXphLOoxr73sujO/mAratoaVx7Dt3m2dcHcHDJp+F3eJlKjl0rZtMx83SrCoSdYW00CzoGCSoH2a+/dJMuAzKq8A0csvN3+/1/bUK3ugn1zOB5kElgVlajD9neMK+25hpXjiMg3IGzvWbLlzBsblqzRfroK3AdaXMQ1MvfjiZPbtJuUGg3BOFSgtxapk4g6SdAdv+Nm92/tYpa3NKk1non//8P1JVZX0rW9lhuWjZLJXn97d15g2rVtWu9zttDn3YfnY9/tN8+tfT/6z3Ez6k16v2d57r2P/2x73M5/JDJs4MXvem4qTdTOsDHZUkyf7Z7EMYnKDRtBrQee7ws6THTqUGW7PA2f/ffFi6zX3/C12xlDkhgAqoBNKeqfmNf2kSifku61uXS39crHvouxqyql8JgAA6DrWr+9afeBc+PXn4t6hGicrQWOj9VuY3sHqdQemfbLeeXzld+ewF5PAL/exm19AU74yePmdDKVPXjpMS3mEcZYlWb48+4LBvHnBwQS5HPPW1lrLtTsQyVTQtrW2Vtq8WXrqKbPAJuf6ZXqc39iYfXHiN7+J9z1MxAkWDds+BgVg2oKCScK2ee7fx+/z7G3/l74UPL04/AJEnfMmagBZWCYwd1lM031NvgLL/Ob70KHSddcFl9nzE2W9dwZ4ObMsuM9RRukHRAnISyLQOElx96Hh51tT2rPHbFp79iQXIB1UbjAM51SBrsN9jcoZMBGXvc/45jetgCln0MWNN5pNY8iQ4P1JOm1lQXUH3SRdMtndp/fra9ht7Ncve7hftsd88Lv54aabCpPBOGi/vnKl9Rd2E4WTfczr3odGudFB8s78ZAvKuhlWBtuEe/2S/DNN+b0vF3af/847o03Tft+nPpUZNnGiVYZyypSO/R5nFrYkyiqiuAigAjoZd+R3UncgO6cfp45sMdrqpZzTL8c5iVHMuygBAABQfKtXW3fymyjFPnChJX2DR9ysBNu3x8/MYZ9kvfxy6R/+ITM8ysm7OMtC0N2d+crgZZ/U7NYtc5xU6Jt04O+zn01mOs6LNl4lFvx+4ySOeXv0sEqjxQnisPmtTxUV1p9JUIFz/ZLMs9Y4L07k8yJ/nG2GyfbRKwDztdfMpv/uu2bjOdvu/rykz085l9WGhvAAUaljgF1QAJlJJjA7y6Et7LxRKmUFMuUzwMcv0PbWW4OztXmtl37rfVgAVNLnKKMERoUFGheyNF9c+ehDJpUd1avcoOn7OKcKlL6g4Kdnngnfjnht/50BE0E+/vHwcfbskcaP9w+68OIM0PTbnwwZYmWf8pJUyWS7Hc4A47AbXFIp6cgjM8OC+m7LlkXPkBrmjjukBQu8X8t3BmP7+t2UKdKLL2aGO/frSfU1TbK+OrkzPwVl3ezd2wr0SqXCy2CbiBuEFeUGMBOzZ8fr27lvWHOXbvdy5pn0D8odAVRAJ+IX+Z1UxyDJ6ee7rX66Wvrl5marw5ZOl87dbAAAAMgv+0LbypVWsIHpHf+dpQ8cVz5u8DDN7OFm/xZ+5WfCMuL43Y1sc2cg8fv8qPwy7hQqg9fq1YW/SacrMs1KnWuJDvuizciRmWFBFwvcJ6mTOub1Ww9NBa1PUZZx5/oVJ2tN1JP4Ue6Oj7LNiJq1pW/fzPbjy182/x5xz/84P2/CBLNpmHDvYyZNMruI6rxIExZAZpIJrLHRWm+dwpanW2+Nn0nQlF+grZ2tzeuC37JlyZzrytc5yigZGOMGGseRj0DjpPuQpZIdtdQyhAHI5nX8dtxxmee1tcHHAn7bf9MyfV/5inlbTYIuJO8ATa/9ydKlwdO0t6NPPul9U35zs3UTit1vMA0UfeaZ8BtcnPPTvU9zHhdeeqn08MP+03Lq29dsvIEDpXvu8W+blFyAbhDndx4xIvuGn3z1NU3a5FdW2SlOFuggcYOwci0H76Wx0bpe+uCDyU/bKengLxQeAVRAJ5H0Ti2f0893W4N05fTLr78eL2U1AAAAyo9JFgpbZ+4Dm8rXxdM4WaRqarJ/C6/yM3fcEa89NncGEre4gV+2pDJRRL0g65WdKN836XQ1cbNSe901n5FWKpW9sbKXvWnTpOHDzdrmXKaTDvBwr4fOII5czi/ECTqw16+o5TGdwbUmwWCm5WWk6GXgCpG1pZTO/4SV1TO1d2/wfDPd9l58cfRyq4UM8HHzu+A3eXLugV35PkdZzPnmJSxYPG5wVfj6ls7KnuYu7+SnFLKj5lKKGED++O1bnWW0JCtgYurUjjeQRDle9vPJT8Z/rx+/AE33/mTnTrPpOW+o8duuRwlITjqoZexYs/7aX/8aPB17PMksg7E7QJcsxhmmWaCDgpyD5p9p/yqpcvBeLr88f9OW8hP8hcIigApdmuldk4Vohy3uzjmJnVqhpm86rXxE6Xbl9MtxU1YDAACg/JhkoXDqrH1gE2EXT9Np6/W4x4tRs9csWtTxt3D35eNmwrE1NgYfu8UtH2hLKhOFSQCE84JsMW7S6UpyCTR039DjvBj93e++1GGZqamRrr1Wuu22eEEn+QhUCLprO+75hTjBis55FSc4wx0M4Ff+5bzzzNtkus1IImuLaUa7Ujn/k8QFWltY8KvptnfPHu91ttSCfUzk2uZ8n08tJWHb8Dlz4mdxDN4GWAv/okWZIb/9rVmbSyU7ajmuG0Ap2b8/kwXp8cdz75NH3bem09Y2zrZxo/TEE9GOl53sYJ0rrsjtphO3OXPMAzRNt4/z5mUe+23XowQkmwa1NDSYZR827a85ywIGjWcaWOYM0M1HJuo4klqOcmUavBw0Xti1XZP+lbN0ZBDnfDOdh+5Ay6TlM/gLhUEAFTq95mapR4/uuuCCyVkpKuvqrJ1g1Lsm7Tq27pSXcXntnJ3pHE0lsVMr1PRNp5WvKF2/CxilmH456eUNyBeWVQAASotpn7uysvT6wIUWt+RRFO7sNQsWZAf+OE2eHD69XDNESeHLiF/ZmqCLhklndDE5oe68IOunM10AL4a2NmndOumb34wfpBZ0Q8/pp7+jP/2ptf15fb305pvWzW5xg07CylTmyhnEk0t5J+cyHibJ9cs5///2t+zgttbW6OU2Jf9thq0YWVtKofxW1IDmII2NwRekou4bSimwNG6p17jvs+X7fGrS4p57MQkW/8lPcsvi6He+tbr6Qz34YFtW/2b06OBg8M6YHZXzZuiqwoJTnMFVq1aZrSdhZeS8OLdvEydKX/1qtPfbnME6PXrkdtOJW5Sb3k33+e5yhPZ23d1XDgoUdfYV2tqSz/AZtb8WNF7UEs75ykQdVxLLkZ04xLQ8olvcMthOptd2g/pXpuXga2qsDLumWXYLwTT4C6WLACp0SfZO0d3JKvROMSyFd5QTfkns1Py0tUk7diQ3fdM29O+feZx02kyvMhikXwYAAEBnYdrnfvhh+sC5lDyKwhlA8qMfdTweiRK0kGuGKMlsGfEqW/Pgg5kLG075yugSdgOMScCZrVQugJcTu2Tf+PFW1ho/dpDaxo2ZYVGySrsv2jz7bG5ZAebNK1xgSJTyTl6Z0E2y1OUzY1KS2ard88K5zSxW1pZil99Kervz7rv+AUNRAvIILLXk83xqKYkbyBc1i6P7fOvata365S/X6sILsyO3KiqkW2/1nkZnrxAAdCVRM9+Z7puTuPF+716z8aqrs5+7g3qiZhsOEiXoIu7xoN2HuO46/3GcAZ/Ll2f/RpMmSR9+aE3D63jQ7l8cOGDeJilaf82d2dY5XpQSzrmW8TWtLGQ6nlcpRTtTrN+xt9PGjdIjj2QSh3zjG5nXolxrTqIMtmkGpqD+VVD58f79rd/G+fvbfZA77jD77KQ55xf9l/JHABW6nHzXtk+iHbaw1NxOSezUvNgnS2fPDh4vyvRN2lpVJX3rW5lh+UibSUk7IDnUCQcAoLSY3JFaU2P1g7uy5mYrI7EJv5JHceV6PBKW7SVITY35saE7sGXq1MJn9A26ASZKv7PcL4AXWthNX16+9rXM41yWhVyCTooRGGJS3ikoE7r7olHYxbpS5vzupXL3dTHLbyW93Qmbnr1v6NfPbHpdPbA0X+dTS00ht6nO/s3ZZ6fb1zf3eaPzz/d+fzlt79zIMgVkxM18ZwsK+ChEeSx7+/+Xv2SG+QX12McqTz1lZXiO+jk20/6JHZB/8KB0ww0d+wbOxAR+tm3LPA46lz99esffyL6pwt3XyDWIzLS/FnQcHaWEcy5lfL0yqzmfO40YkT2e33VOr1KKO3ZYAUReWbeuuy57nk+caN305fWdpk83P48Rpwy2OyNo2DFAlP6V17mA7dutQCmv3/+qq5ItrWmqVLJfIRkEUKHTc+74n346pfXro+8U83Hwk3SZiDg7tTCmJ0ud0z9wwHteOVOxPvlkJgrYL0q9qSm7EycVL21mviVdAxwotFKpEw4AADJM7khdtIibCJzyUfLIK9tMkmprpVdeif6+KL+9V3mkYmT0dZ8ol6R/+Rer3xmms1wALySTm768+N3Nf8sthQ92K6XAEJNM6M518q9/JWN2knIt85YLkwCdmhppzZrgi65RLzQ98ohZ+7p6YGk+zqc6FXPZcyr2NnXVqpTRheZilPoEECzutbFcS9gGJRdoasrvcay7TJ8tLKjni1+U7rknOFuvnVHIFifoYtiwTED+j3+c/Vp9ffQMPEHBP34BcKmUdOSRmWGPPdaq116L9rluQfvMKPtT05KAccv4BmVWszkz8brf7+z/u7+XVxCZV3aun/5Uuu22aDe6RDmPkWsZ7KDye3H6V1FuPksiW3dU/ftLf/pTYT4LhUEAFTo190X9SZO66eKLzd7rt/NMKstKnDIRYSffc92pOUU5WWrv4L/0Je/XvYIrZs+Wrr22Y1uHDOnYiXR+jhS+oy+nu326SuBJvi8coXhKrU44AADICCsnEKX0GSxRsjAEZZtJ0vPPR39PEr99MTP61tVJAwZYFwzCym9QCiieXC96ud10U7Tl3ySLXhjTgIEkziEEXdSJkwk93+tXPoM6SiVgpJR885vev7+9fC9ZIk2YEH7RNcp2bOzY6JmVuupvl+T51FJVyG2q23PPDdK0aRUdzhs5b5x9/31rufvyl+Nt78rpXDDQVeQayN7Y6H/M9bWvJXt94eijs5/nsv0PKj++cqWVUcgZJB8n6Mi9Pd2+3dr+rVxpbUfjBGW5kxmESaez23HWWemSOtYyKQkYp4yv6XXToGUnTiUkd4bX2bOj3ejiPo9hcp07lzLYzvJ7xehfJVla08SuXfHOy6B0EUCFTsvvor6dXjKM384zKN1ilCAR052zXSZizhyzk++57NScTE+WLlwY/HpQcMVtt2W/v75eWrrUuoPAj8kFi6CdfykdUEcNPCnXEmmFunCEwiuVkqgAAMCfV6ag1taudXHU9Dht2bLkSh6ZZJtJyjvvmI0XVpY9SUkcd/ll6rXnbdBxo1NnugBeSPnI3tTYaL7853LnsEmmHvfyZcvHsbZpeRDnneqmSiXgxW+dL5X2xZXreZi6Oum44zpmh7C5t09JBvLkO7NSZ5PU+dR8i7tM5nub6qetTbr33uGB543s8Wz5PndbSueGgc4sn5nvomZIDXPPPZnHSWz/g7L1uoPk+/Y16ysFbe/d5+HjBM36bZPD/OY3rXr00dUl2c8LKwkYp4xvUjeZ5FJy/Jln4rdh9epoSR1yLYNdzP6Vez2sr8+8lo/MVKbnZVAeih5A9fvf/17f+MY3dMopp6h3794aMmSIJk+erJdeeilrvMsuu0ypVKrD3ymnnOI53TvvvFOnnHKKevbsqRNOOEELFixQS0tLh/F27typyy67TNXV1TrqqKM0atQorVu3Li/fFYUTN9W8rabG/6DQ3WlrbJSmTJEmTbI6haZBIlE6MXY9aNOT77nu1CTzk6XHHOP/mklwxfe/nxk2Zoy0c2du7Vu9ujwyOsUJPIkTvFfsoKtCXjhC4eVSJxwAABROMTMFFZt98drkOG3yZOm3vzWbbtAFgUIHmQ8caDae8xi3VDPE2u2aPVs68cTMcPv455FHoh3rL1xYmhfAy0GUi15BZce8mC7/QcEktjiBIe6LBhddlHmcj3MIpudXOOleWsIuLjmX4Sef7BiQ4XfTnO366723T0leaEoyICssy1op7lOiSuJ8aj7lmsXeb3kYOlS67rrksp85Pf10Sk1NR0oKPgEeJ4DUKR/nP53L9caNuU8PKFdx168vfMEqa5WLQpWZPfPMzOOktv9JH4OHbSed5+FzLWEWJZOOyW9UrID6sM+NE2ye9E0mcaaXyzHD4sXW9exCVhMpZv/KuR6OGZMZ7j6HUlNjVUbKJbDK9LwMykPRA6h+/vOf6+2339Y111yj+vp6LVmyRDt37tTIkSP1+9//PmvcI488Us8991zW30MPPdRhmjfddJOuueYa1dbWas2aNbriiit0880368orr8wa7+DBg/riF7+odevWacmSJVq9erUGDBigc889Vxs2bMjr90Z+5RoFvGhR9kbcpFP4u99ZafqcgjIJbdpkvZZLtHw+M7yYdk6DdgphkdDptPV6Q0OmExMnbabT9OnlUUoszh2ofrWS/bKTzZmTfDBZlJNiZCdKVineIRe3TjgAAEAhxCk1fO650e9CdSt0kLnzhH+QkSMzj4cNy2+G2DgXWpyZaxcvlnbvzn5961arxH2UY/1jjy29C+DlwuSmr8pK6amnpIcfNp9u1GxLXsEkzlInUQNDwoJapOTPISRxfgWFFbb/cJ9vcS5vGzdKhw6FB3ved5//a0leaMr3nf9kHS+MOH0aL37Lw6235qeMYSECSHMNLPObpnO5njjR7H3FvpEVSFrc9auuTvrEJzpeL4siKMlBFFVV1n+/ABmpPI4XTLeT9nbXL2jWxI4dmcdhx8VnnZVwOrACCws2nzw5+3pYUEKJOOIECebjmKGrXa9z5vCpr7cyVf3qV9bzuJk6Tc/LoEyki2zHjh0dhr333nvpAQMGpL/4xS+2D/v617+e7t27d+j0du/ene7Vq1f68ssvzxp+0003pVOpVPq1115rH3bXXXelJaWfffbZ9mEtLS3pYcOGpU8//fRI32Pfvn1pSel9+/ZFeh/yY/lyO644+K+y0nv4++9nT6++3mx6Xn+pVDo9dGg6vW9fZtigQR3HiTt9+6+hIfp8ev/97O/sfL5vXzpdU+PfNvt77dmTGVZfn/09f/1rs7YvX55pU2ur2ee2tnp/jyi/g/t3zqfWVus3Wr7c+r9smdm8uffe3JcN93xIpdLplSujf4eVK63fxjm9mhr/aTU05G/ZLVXudapcph1XqfzGhw4dSj/66KPpQ4cO5feDAABFwXYecdjHFXGOD1auzPSb4/SlTY9HncdBft/BeQzhPAZycvYTvdpsP96xIz/HCW4rV6bTQ4aYHzfY70niuLgzH2sUg8m6ELT8Bf05zxc8+OBjgdv4oGMh0/XEHjdou+C1jQianinT8xzFOl/hJ8oxaCker8YVZTnx+6uuzm0blfT8zNfv47ftTnKf4tZZz7uEbedM+jSm26ugz3Juh+rrc98Grl3bYrQu1Nebtc8tzjIYNv2wPsn99/u3Jaj/05m2k+gc4q4LfutX3D6h6brm3D6Z/tXVWdsxv/XTfuw8TnLPiyTW3Sj9VT+m1yjdfQvn9bso8839e/stA87zNeW8nfPa/3ldDxsyJJ2uqsp9Gffbd/vNwyjXbnP9cy5DSfympbJcONvht857bSuGDk2nr7su2nFxuS3/XUWUWJ6iZ6A6xiNcs0+fPho2bJi2bNkSeXpPPPGEDhw4oBkzZmQNnzFjhtLptB599NH2YatWrdLJJ5+sUaNGtQ/r1q2bpk+frj/84Q/aGnQ7GkqaadTuww971z91y+UumHQ6PJNQOh1/+rakF1eT9JXTpknDh2eGT5yYfUeCaTk+5+8VJ22mCa/foVC87sabNcvsve67rnNlL2tRI8njlOIjO1HnF6dOOAAAQCHEyfhqy7XkUa5ZdaVopQed3G0eMiTzOKj/H/c4wc0kQ4Y7s2pQ5tpc0A/Nnb0uOJcjKfeMJFK0O6eDym9EKY8SJVu5vY1IIlNcvs5zlJLOlHUl16z2kvm5nHI+H0LW8cIpZGbLpMvsnHVWWlVVHyqVCt7Jx8nakMQyGKdPMndux2kmlSEMKBW5rl9J9OsnT848dmfC8pNKZZd6njDB2o6FZTTNp6QyNU6YEO88/P/7f9Hb7MxcvGxZ8tkJS5F7/7d6tff1sG3bpKYmaxmPW+4t1/5/riUaw5Rz/zRXhc7UidJV9AAqL/v27dPLL7+sT3/601nDP/zwQw0cOFAVFRWqqanRd77zHe3ZsydrnFdffVWSNNwZ1SFp0KBBqq6ubn/dHvfUU0/t8Pn2sNcKtQdF4kwv6o8d613/1C2JlIi5nnwJM3t29E5X2AmuoJOl114r3XZbxwPDbdsyj+fNC/58v05drhcsguQSDBeHX+BR2Mk0e97kWifcS9QTK3EPmEwvHB19dOmVpsunUizFF1dXuBAAAEBn05n6IkFyLRmTS8mjXIPMc7kI9/rrmZuEGhqyLww8/3xwu3O9ABv3uCGJYAUvXv3QKCXJYamttUoaOJcrv3XB6wKLWzFLHMS5GJDUBQSTYLSgQLFSlo/yWcVUyItGccq2lIpCl6vtysr5BsWKCmnmzFckJV8+K+llsK1NuvPO8D5JY6PVh7D7E+vWBfd/0mlpyhRp/36zdgCloJS28Sbll50WLfIenkSAaNRj6ag3pbuPVfbvz3zegQPxzsPH2Tc4pzF5cn5LAZeisOPaVMoqDWnaj3P/Jklc5/S7hlpdHX+aNuf3KtfjEy/OY/+gRBt+24p8l8VGaelW7AZ4ufLKK9Xc3Kzrr7++fdhpp52m0047TZ/5zGckSRs2bNAdd9yhdevW6cUXX1SfPn0kSU1NTerZs6d6e6zJlZWVampqan/e1NSkyspKz/Hs1/0cPHhQBw8ebH++/6MecEtLi1paWqJ8XeTJ7benNG1ahVIpKZ3O9CjsO15uu61Nhw+ndfiwNfzAAUnqLklqaGjVqFFpVVdbzzdvbml/La5rr01LMgkHdo/n3Ev7v3/37rSmTpUefLBNF16YeU9bm/T00ylt327t+M46K62KCmnVqpRmz65on+bEidLgwZnPPnCgRc89l1Jzs3TvvVanYMcOaxqjRqV18sndPupAZLfJ/+6C7O/l9zvYJk2Szj5b7b/BY4+1avx4q+3uVcx6bvb79O/fKnvTZ62vRm+Lpa1Nuvpq7/lkseZB0DJ61FFSvjbVW7a0qqUl3d5Wr+VEkjZsSKmx0b8N9gFTQ0Orzj47swCMHCkNGdJN27Zlfz9bKpXWkCHS6ae3yv798v2b5JtzWfT7LibjxJ12MUyaJD34oLU92bYt8zsPGZLW7be3adKkdN7bau932f8CQOfEdj5Z7uMeu4/d2fTvn5JJPzro+ODII6VDhzLPDx9Wh+MWP1GPR21BxxDWydq0rrlGmjixtf13c/YTDx9uyQpMsU7sW681NWW+axDncUIUpscNGzdmz/MtW8x+K9fU5Hd8XFWV1t13d+yH2sfA7j7rT3+afQwNb87lyrkuOLcpffu26j//M60BA+zj8+DzAM7j+Hxs45ubpX79rM/Yu7fFeLvg1L9/vPXBy6RJ1rkXr2PvUtzFmRyDrlplbevc26ytW73PUZWDOMtJHEOGpDVyZGui5w385ON8gum2O+4+xU8+z4306JG93y/kehn0vaL0aUzmddBnJb/stWjUqO26//5DuvbaHln74MGD09q6NdXhs0z7qnGXQfd3tB//wz+ks9oX5KKL0tq7N1raj6efLtw5acBE0Ppuun69+Warzjwz3WF6ybSvRU1N0pQp5tO8775WTZyY6WO++26L+vSxHjc2Ztb3TL+z47bAPS+c+wbnsVXYehz1uG7VqpS++92K9u2ilH29rqWlpf08vHs853n4d9+N1/+trk5r9+7MZ/nNq1GjWrKOBZzna0r1+oUJZ9s3bmwNPa5tapIefbRVF1xgj5f2Pfb/t39r02WXWeMFXed0t8M5D72Ge11DPf1057GYZ+vt1nV4xb5e59c/jSvfy0XQtU2b+3q4M+gpSl/IWu6914Vi9iNhJso5h5ILoPrhD3+o+++/X3feeadGjBjRPnz27NlZ451zzjn63Oc+p6lTp+qee+7Jej0VkLPO/VqUcZ1uueUWLViwoMPwJ598UkdZEQ8osp49pTlzBumee4Zrz54j24dXVX2of/qnV9Wz5/b2sn3PPWeNZ2/4Jk3qpsrKD5U5WHtK0pc/moJpIJTN2iGZ3mXSu3eLmpt7tD/v2/egPvWpvfrjHwcGfra1Y07ryisPqVu3taqosL7XvfcOV1NT9vcfPbpRjz56UodpOLNHfepTrR3m28yZr6hv3+26444qbd16ltkXapfdbq/fwe3AgQpJ50uSmpuf0Jo1bVmvTZtmvbZ06eMK/33Sqq7+UO+99/v2aa5Zs0a9euXvluNXXgmbT1Y7P/axg9q/v2f7UOe8ee+9zDxI2ubNz6u+vsl3OZk58xWNGrVdGzcOkfS/Q6f3+OP/pebm7FtBpk8fpEWLPi+vwMB0WvrKV17UU0/tVKF+EyfnMvTgg79L5HOdy6zfdzEZJ+60i6VnT+m22yp06aVW+374w+f02c/uVEVFcHnUpK1du7ZwHwYAKDi287nzOu5x9vs6k7Y2qapqgpqaeino+G3XrrWyjyWi9s2C+pL28ahXPzvoOCjsGCKdTqmxUbrtthc0fHhTe1v8+onO1/7+9xcljQr9bvZxQlSmxw1PPvknSf+rvb2bNx8tyfT40v+EryQdeWSLfv7zevXokd0Pfe45+7gk29at0j/+Y4Xmzn2x060DhRB2LqVfvwPau9d7+V+zJvtYNx/bePe60b17m9F2wWKdQ9i/f21ejmn69rUuwq1Zk/y0k/Too9b/DRs6vtbWJl1xxQSl05mLETavc1TlwnT/Yc77PNU//uNLWrPGO51G0sf/+TifsHlzlUy23XH3KX5K+dxIrvzWt/BlMtr2KmweBq33cR111BO+542cnxWlrxp3GXR+/yefzJzzd54XD7N3r/m4tt///lVJn5XU+ZZdlKegbYHp+vX3v7+o+vqdkqQPPsj1OkZaVVUH2o+d1qxZo9deq5LJ8YutR48nPupbWe146qnMOu58vGbNmo+CHqzxfvnLP2rlSmubFLTti7IPinJc9/77PTyPVZzbpZ/+9I/67Gd3qmdP6Wc/k15/vUp79/ZSv34HNGxYU/t5+Dj93759D2rx4rWaPr3jfFvT3lkN/t5r164t63109r4hc7waZN26zHjf/e5LWrr0057Xonv1ylz/cl/nDGqHex567Z/d11AbGqTMehiUrMP/et2aNckeF+dzuQi7tmmP47V+2f71X/+fxozJ7pMH9YXy0U9CYXzwwQfG46bS6XjVaP/lX/5FM2fO1GCP3Nzbt2/XPffcox/96EeRprlgwQLdcMMNuummm/SDH/wgdPzDhw+rb9++Ou+88/TQQw9Jkr7//e9r4cKFam5u7hDI1L9/f51zzjlavny5JKus3+jRo/Xwww9njfcf//EfOv/887VmzRpNmDDB87O9MlANHTpUu3fvVt++fSN9b+TX/v2ZCNxVqw7o3HMrsk7c+N0t59yBPPxwqy6+2Io3HDQore3bTU+gmGWPcnrwwVZNm2Z9VlVVWk1N2RHLXpl83NaubdWePQr4XiZt8r5T9MEH23TwoPS1r8WPv7zttjZdeeXh0BNo7rtFnYnlnK81NraopqZ7Vju9Ir0ffLBNEyakfaeZtAcfTBnNp6VLWzVkiDwjpJ3fs+PvH/Zbep+ksyPJ/+d/WvV//6/38u+cZ0cdZZ2wCLN2bXYGKpvX3RM1NdZdERdemA78nfMpH59rMs24n1us+WSqmO1raWnR2rVrdc4556h79+TudAIAlAa288nwO+5x9vvKLUtIGPs7Sx2PD+znzmOJfPTNTO6GdDI9hvjNb1o1bVo6tC3O13bvbtFpp4VniP2f/2mNFeywYUNK55wT3vbHHmttP77Yu7dFvXpJJ53k364Ms5uZnMclbW1Wuy69tEJ79sjz/bl+73KWSx8+aJti/46bN7fouOM6ZpV2f/aDD/5Okyb9n8S38V7fz2+74NSZt4tJMl3n/c4VlDL/5ST6eT73uT1buZ//aGsL3nbna9ta6udG8iWoTyOV7vbK2Y8/dKh74G8Xta8adxl0LkMDB6b1zjvRb5SOE1zpvL4Q1F/rSss1iitouQtbv2y7d7eob1/vTK/egity3HdfW/ux0N69LVqxIqVvftP8OpTpNaTf/KZV8+ZFz0wbZV2Ncm3o+usrPipRGDz/4rYxrP/7m9+0atKktOe82rvXytji972d2/kPP+zuWVGmHDjnm/N4NYj7uLatzbuiTpTlJur+wD2+lHnuvpZtX5OT1GF9dV6vS1q+9nEm/Yb/7/9L66STugWuX0OGpPXmm13vXEBXtH//flVXV2vfvn3hsTzpmI444oj0Cy+84PnaH//4x/QRRxwRaXo33HBDWlL6hhtuMH5PW1tb+qijjkpPmzatfdj999+flpR+/vnns8bdvn17WlL6pptuah92zjnnpE855ZQO073lllvSktJbt241bsu+ffvSktL79u0zfg8K4/337Qqt6fTevYeyXmttTadrajKvm/xt25b9PJXyH7d//2jT9pp+nL9ly6J/L5O/VCqdHjo0nX7qqdyms3x59N/u/ff9X9uxI/P4/vvT6SFDsj9v6NB0euXK8Gm6l42GBqutDQ3W86gaGszmR0OD/zT27cuMV1XV8Xtdd531uwQth+7fMJWy5odz2kG/9549ZuMFzaOg+Wn6myQtH59rMs24n1us+VQODh06lH700UfThw4dCh8ZAFB22M7nLuy4x6Q/V65Wruz43Z3Pncdf9fXm8yBffbM4xxCmx03vv2/ND6/jB+dxQlymxxfO8ez2+rXL+VdZGe140+u3j3tc1lm5lw/T42DTcynO9Sto2Xzwwcfyso13LmvO9Xvlyo7nDdzH2rmsC13F8uXR1sly47WcOM/DhH1ve5t38GBmvaqv7zznP9Lp/O5T0JHfMlnK89nZjw9aDuP0VZ3Ti7IMOt9XyL8tW7z3Se42cc4PhRK23AVt453vs8cz2S+mUtZ+1G9b5m6Tc79p+uf8Ln7XkLzaa7Lv8utbejE9rrvjDvPvZtJGv981qP8bdgwZtKzY2/mHHmrpMP2amtLeRzk5v+O+fVbb/ZZrv+Nav/kUZRsfdX/gHt/Zpkce8V9eoyzLucrHPs6032B6LbsrngvoiqLE8hwRN0ornU77vvb+++9HumvsX//1X3XDDTdo/vz5+vGPf2z8vhUrVuiDDz7QyJEj24ede+656tWrl5YuXZo17tKlS5VKpXTBBRe0D7vwwgv1xhtv6IUXXmgf1traqmXLlumMM87wzK6FzmXTJqmxMdp7Fi/OPL7/fmnIkOzX+/eXZs2SGhqkO+7ItYXx7NoV/XuZSKelLVusxzU11p0CcQwalFyb3CZPljZvtub/8uXW/7feyq5pG6auTjr+eGncOOnSS63/xx9vDY9i9Ojg+ZRKSUOHWuP5tWPYsMzzJkfG8/p66dVXpZ/8xPpdTDdXNTXSihXW/HjmmeBx7d/7+eez2+z+DpK1XgRFaFdUSGPHSpdcYv33G7etTVq/XnrgAet/W/lkeQUAAChZYcc9dr9v06bCtalQamult9/OPj547bXM6yNGZB5PnBiv35+kXI8hwtTWWscD7uNY53FCXM4+ftTjBr92OY+vXcnDfR19tPUbTp0a7bh4exep4Oc85tq4MTN89WrpuOPMjoNNz6U4jyULzX087Vy/a2ul11/PvPbII5nH9fXRzyF0VabndvJ5Diif3MuJvWzceqv39srJuc3r0SNzPmTMmHy2uPDyuU9BR37LZGeYz7n2VQcOzH4etAzGPddYWRn9Pc7+0OmnZx5PnGjtc1Mp66+5OV6bgHyyt/Hu6w7ObX5bm3TNNdY6GsZeL2+91Xxb5rj06ymVsqYblVd77WGzZnlvJ4L6ll5Mj+v694/ebr82BnHvQ4KOeZ3T3rgx/LOee26Qpk2zs2hlbN1qHZMV8/g6jooKackS63Hc62FOvXtnQnXymWFw9ersZfSiizKPx4zJbq/zsfu1pOXj+5v2G9avN5teVzkXAHORanD96U9/0n/913+1P6+vr9cbb7yRNc6HH36o+++/XyeeeKLRNG+//Xb96Ec/0rnnnqvzzjtPz7vOrowcOVKbN2/WpZdeqmnTpumkk05SKpXShg0btHjxYn3605/WzJkz28evrKzU/Pnz9cMf/lCVlZWaMGGCXnzxRd1www2aOXOmhjm2Ht/4xjd011136aKLLtLChQt1zDHH6O6779af//znj2q8ojPo3Vs6dKhF9fX16t17YtZrcTaKt96aeTx5svSP/2htrO2SDKNHWzubtjbpzjvNplldLe3ebT3O5QSj3WGM0umKY+dOqwMxdaqdbjVa+/7X/8p0NN5/P/lOgx2sE4d9ot39nRobpSlTrKC5Sy81b4fffArraPm1w7Z3b/b7Xn/dmlZQDOr110sLFmTe9847Zt/DOd7gwcrqCNfUWJ+by8kaZwf8xBMz64I9/SVLOsfJIAAAgGIxPe7prCeN3McHzotU7u9sn+Qt1oXfXI4hTNXWWseyXsexSRk4MHveOo8b9u/PDN+4UZowwfrssHa1tVnT2bo1+Bh05Ejp1FPNj1Nt5RrkEUVdnXWRy+tk8/TpHeeZ3/pguq3YsSN+W3Phdzzt/j7O16MuL8hcGPRbJ+1zQHEDPkuB38Wl2lpp/Hjp4x+3nldVZd/0lsS5knzavz/T9vr6zHY4jkLsU5BRyAuehZRrX/WllzJBHmHLdJwbBu64Qxo+3FrvoxgyJLPPdbd927bo7QAKzb2/q6+3+tp2QOHPf24WVH/HHdJVV2XWS5Nt2erV0pw5/tO0j40WLZK+8pXwNphwBms6jx9N+5ZOpsd1UYMz/dpowjmfzzzTe5y6OunqqzPPJ04MDhpva5PuvXe4b1BaKmUFfE2eXF77LDuA0H3s5OzjlVrwq9fxnG31avPrmuUg6XNXXeFcACKKktrqhhtuSKdSqXQqlUofccQR7Y/df0cddVT6oYceMprm2WefnZbk+5dOp9N79uxJX3jhhenjjz8+feSRR6Z79OiR/uQnP5meM2dO+t133/Wc7pIlS9Kf+tSn0j169Egfe+yx6R//+Mee6cDfeeed9Ne+9rV0ZWVlulevXumRI0em165dG2W2pNNpSviVOr+yH6ZpNP3+7r/f+/OilAro3z+7RNqvfx2vLc70nbl+L9N0hl5pP91l5rzaF5Qe0lkyICi1uXMadXXmKSBzSRctWa9HTWfptTwEpdg2bYdzHthpRaO03TQFrnO8fftyL23onjdBpRPymfadEn6dB6WdAKBzYzufuyRKS3cmpqXmgvq6+U55n1SZnkL2IZ2f5Vca0et7RSntYFLqL2qpj85YwtLrdzctr2Iyf0y3KUHH6vkq4deVS5YWQ2cv4WZaIjVuOdhCcbb1/vtz2w6juMrt3JBpCb84fdU454ZXrkyn+/WLtw+09y+m+9Lq6nR61y6zcYNK3gL5Yro9CduHmPyZlvMNKs3p/vMq++feD/uV8IvS3lz7lmHXhqJuW8LmaZTy7l5t9Stv6Pe+tWtbIm+/iyXOvAkqcR6l1GG+mJaldV8bLLf+hJtpv+Gpp8zKMZZa3x35ESWWR1EmvG3btvQf//jH9IsvvphOpVLppUuXpv/4xz9m/b3yyivpDz74IHbjyxUBVKXN76JL3M5J0IY1as1n9wkK0w1///7Jd7rifGf3hQO/ixF2+4JOmAcFnr3/fqazMmuWdRDqN16QpA/WTQV1tNxM2+G8MGB6kcDvREPQ7+2u5ZyUKOtKPjoxBFB1HlxYB4DOrZS38+Wyfw47PuhqJ43i9J2dcg0CMhXlGMJPsQKonBcowgJ4ogZahN2wFOWmpM4S5OHm/t1NbtIJ+3vqqcz0Tc85mFwQTnobT8Bo4SUV8FmKcrkIWUrCLkh31m1hZ1ROy106bb6Nj9pXjdMXixNI7F4vok7j5pvNxotyczCQFNPgjyhBTbn2u0yDQaqr0+mDB6333H9/x9ft7UHcACpne5PoW4Yd15ncJGL6eXH7LqbHC+5L4L/5jVkAlWkQXT4F3QQVZ/9aCgFU6XS8ZbTc+hNuUfoNnf2GD5iLEstzRJRsVYMGDdKIESP0v//3/1ZDQ4OmTJmiESNGZP195jOf0ZFHHploliwgKc3N2bXFg2rZhkmnO9Zej1Pz2Z3a07Q2cmOj1NAgLV9u/XfWic7le4Vxl4sISrdaX5/dPslKWepVC3nKFOvPL+Xr/PlWTelx46w2OMu8Od1yS/xa9vksbWKXDbnkEut/ULpS0+k7S+uZluNzTtvZhiRqOUcRZV3xWteSaoPNpJY3AACAW7n0J4KOD/Ld7ytFufT77fINXsc0U6daryclyjFEqendO3Nqsnfv4P6/PWzWLLN1qLZWevvt7OPhffsyrw8caN5Ov+PycufeNq1fb1ZeJcjFF2eW77BtSiolrVwp9e2b22fG0dVLlhZDba30+uuZ5/X12eeoUFqS2A4DSYvSV43TF4tyHtLm1UewSzqZlty66Saz8YpV8haIKso6JGWuZSVdznf3bunZZ631ffr0jq/b24PVq/3b5Tfc3d4k+pZhx3X2tiWoVF5QG53inqPYtMnseOGZZ7Kfm5Y+K3aJtLo6adiwzPOJE63rjUkevxdLVzz+idJvsNcvu9SvrbOeC0AyIgVQOZ199tnq06dPkm0B8s6r8+C38TTl3OmYdjIWLvQ/mWS64e/RI7lOl4k4O5MxYzLtk8JPmAdZvNhs3t50U/yOT6l09kyn77wwYHqRwG/aSXQe3AGKQeN16xb9BH6SHbzO3GEGAACFUW79CU4aWerqpLlzzcZ1952TDAIqFHcgU7GEHStHvWki6CLEmWcG35Rku/lm6c03O9+y77Vtuvji3Ke7Z0/2hWmTbUoxlr9SOa7vaoJurkN5yNfNa4Apk/1K3L6Y6Tl724IFVrC2Vx+htlZ6+GGz6QSdH3UaMMC4aVna2qwg6QcesP6XUh8Upc800KZ3b+uGhajyfaPO1q3h24Og4z7TG4sK1bd03iQya1a0NtrCzlEE9c3j3NQvSWedlVZV1YdKpbwv8uUriC4Kk8DbUjlujqOrHv/4XQP3C4Dmhg9EETuASpKWLVumiRMn6tOf/rQ+8YlPZP2deOKJSbURSMRzzw3Sqad2a3/u7Dy4N55ROHc6pp2MY44J7jRG2fAHsTtdTz1ldmeM3wnmoINGU1EPVHPR2Bjv7u+w7F+S9bqzs2caNJSPdpx5Zua5yUUCd9udXn/dP6NZ0pkV4r4/qQ5eIbMGAACAzqlc+xOd7aRR1L64/bv5ZbO1+Z3kTToIqCsp5F2xphmZf/AD6cQTS3d9jcNv27RnT3Kf4bwwXYrbFNOs3sW8iAOUss6UnaAzKucLvCbC9itx+2Kmy3VVlZVB8Uc/Cj53P3asWbC2qZEjo7+nri5TreHSS63/pXwzB0qLV6CN87lbnH1Dvm/U2bUrfHvg9/qyZeY3FhWyb2nfJHLHHda2KMrNT7meo4hzU7/d5pkzX5FUmtmuC3kTVLH20XGua3YWXtmpg5KX2LjhA2FiB1AtWrRIX/va1/T3v/9dp512ms4+++ysvzFjxiTZTiAnq1altGjR57VtW/ZwZ+fBubG8//7wjFReHaO4nQwvUTb8QSoqrD+TE6ZVVdnPhw4NP2g07RQU4wRM1I6PyYn2RYvyv2ON045c2+53B3fSmRXc0zOR5EFIOWYNsJVLiSAAADq7cu5PSF33pJFp6Zagk7xdMTV+FEH91ULfFWuakbnUgx6jiFOeKCqvC9Oltk2hZGlxdPagjq6ks2UnQPkJ2q/E7YuZLtcPPWR27t00WDsOk3N+dqCEOzikM/VrkD9+gTbua2dOUfcNSQTVhwWD9O8fbXrO0nOTJ5vfBFCsvmWUGxWSOEdhEoQjZd/Ubxs1arsefLCtJLNdd4WboErlumaxhJXIBOKIHUD1q1/9SldeeaVeffVVLV++XP/+7//e4Q8oBW1t0ne/a28xs/cefp2HyZOl//5v/2n6dYxy6WR4ibLhD0rZa3pwuXBh5nHSd44W+gRM3I5P2In2yZNzb1uUdvgF8nm1I857gpjctRDlrn+/6QVJ+iAk3x3mfAU5lVuJIAAAOrNyPwHXVS5yu/upphlxq6v9T/LmOwho//5Mmx9/vHSD8LyE9VeLkRXIvinpscf8xymHoEdThcz6XOpBgpQsBfyRnQ3lLG5fzDQ7x9ix5m3x29eYVIFwjzdiROZx2Dm/cr+ZA8VlsvzY4zmZ9OVrajLP4wbVOz83nQ4OBgm7UcLN3f+LchNAsfqWpm1M4hyFSaCYu01OF16YLrnMtFLXuQkq6WuDQFcXO4DqnXfe0YUXXphkW4C82LRJ2ro1JXfwlM3uPDgj0KXgOsd+HaNcOxlxhaXsNT24dO5ck75z1DS4LGlxOj7u7F/19Yk3y7gd7k5na2vwxa4o7wkK9kn6YDzu3dB+61pQwGCQfHaYTYOcogZZlWuJIAAAOqvOfAIubh+rHJj+Hnfc4X+SN59BQOUcMG/SXy3Wndt2RuYgpR70aMp0Gf/Yx3L/LOc5hlINyizF8oIoP6W6fEdlf4+VK63nZGdDuYrbF8tXdg6vfc3DD5u99777Mo/d+/Cgc37lfjMHiss04N7rWllYX37Rotza5lW5wm99nTw5t+tNq1dHf08x+pZJV38JG88vCMc0WK3UMtNKhc+EXAz2zWNTpkgvvpgZXg7nEoBSFTuAasSIEfrrX/+aZFuAvDDtPLzzTvZzZ+fkjTcyw8M6Rn4ZjKJGxJsySdlrepeNaWasIH7BIabBZUkHWMXt+DizfznnS6FLp8XpdPbtm1l2v/xl7/eEXaAxPRjfuDEzzH1g5RTlbuj+/a3gLL+ylXV10nHH+QcMBslXh9k0yCnqhTHuKgMAoPR01hNwufSxyoHp7xF03JavIKByDpiP0l8t1p3bnTno0cl0Gb/qqvifUW4ZakrxIg5QTH7nLMnOhnKRS1/Mrx8ydKgVXHjppfHbZBszxjqfnOt5+KBzfl2lX4P8iHutTArvy+eS4cbveOjw4exxnOKW0kylpHnz4p1PL9W+ZZLnKLwCxd5+u3wDyouRCbmYnMtk0H6ms9wkAORL7ACqn/70p7r99tv10ksvJdkeIHGmnYeBA/1fi9oxcmcwamiQXnvNrB1RmJ6slgpTAzcsOCSok71ypfXnd8HCLmVhKqmOTynfCR63XJzJBRrTg6mvfS3zOOhEm+n05syxxr3jDu+ylbleXMpHh9l0PVyxInrbuasMAIDS0xlPwJVzAI8p05tKwn63pIOAyj1gPmp/tdB3btfVSXPnmo1bbkGPbqbbpv/zf+JNvxwz1HBhAOjI65wl2dlQTnLpi+WjH+Le15hmu3r22eDp+p3z66w3c6Awcr1WFrQOxe13mVauGDnSuz1BZcu8+FWkKWdJn6Mo1UCxOIqVCRlAeYsdQDVjxgw1NTXp9NNP15AhQ3Tqqadm/Z122mlJthOIbfRoaciQtCTvHpjdeZgwIdkTa84MRl6BIEmIcrLa7y4zW641cE0vugR1soNK5y1bZp7Fy9nxsdNXplLS449Hu/CQzwtJznY1N0d/f9zALtMLNMccY9aOvXu9h7vT4JoenAWtK2FtT6etNKX79/tPPx8dZtP18Iororedu8oAACg9nekEnDPVezkG8ES5oSDJ0i3uY5q6Oqu/N2VK9L59uQfMx+mv5uOEvNeyYB/P7d4d/N5yDHr0YrptCsuMkUpJVVWFzxQGoHAKcc4SiMskCCOXQKhCBAaYBHV89atm03Kfl+6MN3OgcEzL3gVlrkl6HTKtXPH8897D3duDOXPMPtcry1aYUg3O70znKPKhWJmQAZSv2AFUVVVV+sxnPqMxY8boU5/6lKqqqrL+Kisrk2wnEFtFhfTTn1pnU1Op7KsC5d55iHqyOihAKRdR75oO6mQ7T+KMGZMZPnmyf9vdwTl2x0fqGGTkrqPt/A7r10sPPGD9P3SodO8EzyWwy/QCjRS/hrhk3eXtnDdJHJyZHkz9/OfBv0vUDnNYsJvperhrV/g47jtfuKsMAIDS1JVOwJVqAE+cGwrCLmZFuanENDV+mHIPmC+F/qrXsnDccdLll4ffyS5Z48ycmb/2FZLJtsnkAsuvfiX9939nhuc7UxgAAFGVeoYUr4B72/Tp/jelus2enf1eAiWQC9Oyd888U7jrHqbHOe++6/+ac3kfO9ZsekEVacpRVzpHEUehMyEXizPI75hjSjPgDygHsQOo1q9fr4aGhsA/oFRceGFac///9u49Pqrq3v//ezPBAEGgCSC5oPHOQbkotcDXJiQVI0Y46BirIm3Fas+3Wkmq5wAWRGgVtaWV/Dy0HusFKwWtOEjrCahQkByqltZvzwGprbaAJASVBA8SBMMwvz92J3PJzGTPZC57Zl7PxyOP7L32msmaJLNm770+a33mbg8baJOuH5Kx3KwOF6AkxR5BH+2s6Vh/Tri2+2cS9Z74SKGDjPbv7/q8Lpc52FJZaea7r6w0V7uy8pqSvdRrT1N8WL0g+eij2HKIezU1BQ6yWbm499bz5x/YtmmTtZ89b561wbPgE+b335fy882ftX699RXC4jkYFDzzhVllAADYl9Mp7d2bPSlw7BTA05MJBZEGs1LBDgFIPZHq89VI/wutrdaf57777JOqvaesDA5YGWAZMMB33X7llQzEAgAQrXAB91YCvL0OHux6fhsu00S6j3UgOcKdB/r/v1rNdhEPPU0rGOzSS61dn/RkEoxdZUuQUKy4vgFgVcwBVEC6mTixRf/zPyc69zPh5CHVN6u9Uj1rOnjGkdR9kJEUmNYhOFiquzQPXrEs9doTPU3xYfWCZNAgXyqX4IsTqwsMBg9ihLs4C5eaMTiw7f77rf1c78/ubvDM///m0CHp7LN9P6u62vrPsvI+HDLE2nMF/66ZVQYAgL1lUwocuwTwWEnrfNttZhB+OPFaPSoe7HJNF6tUnq9G+l+IRTxStduF/+BAebmUk9N1cggDLACAdGbXVFrxFm7CbHCmiUyfzIH4Cj4PlLpOyE7WubHV66FI123+/cGAAdl9P93uq/Nlkmz5HAKyUcwBVFu3bu32C7CbTIswtktwhd1mTVtN9bZ1a89vuCd7qdeeBqvFckESvMLXr35lrQ3BS0xLoW/Sv/NO18eGC2yzKto0izNnhv9ZP/5x5MdaeR8uXx57CkOW3wUAAMmQLgE8Vs7129qkqVN9+1u3pib1thV2uabriVSdr1q97rMq1anaU4EBFgAA7M87YdZ/xfz1681j2TKZA/HX3f9LuHPjeAeNJOJ6iPvpAICeiDmAqqKiQpWVlRG/ACSeHZbsTcWs6Ugn6laDjH75y9hvuKdqqdeeBqvFckESfFO9osJaMFCoJaalroGM/vt5efGbSR5qNa729tCp+SL9rB/+sPuf5XRKK1d2fR7v+/C662JLYej//MwOBwAAiZYOATyxrGqbiBQU/tcjffr4ymMJ1sqEG/ypOF9NxArH3a3oCwAAkCpf/7pvO5kp1pC9knVubOV6KNrALe6nAwBiFXMA1ebNm/Xb3/424OtXv/qVbrrpJpWWluo///M/49lOABGkesneRM2ajnU2g9Ugo+eei649XqkcSIpHsFpPB2j8/96RxDqDO94zyeM5sLJuXfhj06cH7gdflEWbwjAYs8MBAEAirVyZ2kkZVg0aFNvjEpWCwuWSRo707cc6mOV0Snv3pncaFqvnq/GatZ7IFY4TlX4+Ffyvxey8GhsAANmiu0mp4Rw6FLifSemHYW/JODdORMAT99MBeJFyEdGIOYBq0qRJXb6uvfZa/eIXv9Dll1+uDRs2xLOdALrhcKR2yV47zZruLsgoWoMHB+4XF5sfstdeG7iKUTLEK1itpxck3r938O8mWCyzVKxekPXta63e0KHSli3S6tXmgEFPzJ0bOODgdod/7lAXZVZTGAIAACTb9OmpnZRhVawrwCYiPZs37XRzc2B5rINZqb6mSzfxvu7zl6z084kWrwA/AADCCbfaOyKLx/lLNqYfRmoMHZqcn5PMgCeCKeKP3ymATBFzAFUk11xzjZ6LdWkXAGnLLsuiRgoyioZ3Nae//tVXFk3Ai39wzZYtXQNvvKKdBRyvYLWeXpA4ndLDD1urG80sFauDFZ99Fvm4YUgFBdLNN0uVldKMGeaAQU80NfmCwVwu6Ywzwj93//6hbx4F/979MSMcAACkUjoE8Pi3KdpzfW9w/9tv9/zGbqS00wxmJUcs133f+545ISaZ6edTJd4BfgAAID5Wrux6X9cr1vNb0g+jJ7r7v7v5Zs4dAQDZIyEBVIcOHdLx48cT8dRAShA5bZ1dlkUNF2Rklf9qTqec4iu3+ppcLnNmrze4prLSN9M3HrOA7RKsZjXYKZoZ3LHMJA9V1+ORWlvDpwPcuFE6cSL6n9XSEn4wIpxws/HWrWNGOAAAQKyGDYvtcf7B/bFe63WXdprBrOSI9rrvF7+QHnnE3I5n+nm7sRrg16cP9zqAWHGvEEB3wvUT06cH3tf1vw8YfE6Tn2/tZ2VS+mHET/A96UjZFCLdHycAHwCQTWIOoPrggw+6fL333nt68cUXdc8992jChAnxbCcARM3plPbulRYsiP6xVldzCrWSlDe4JnhApbnZTPt37bXxmQVsh2C1qqrIAUixzOD2n0luVUFBdPUlc0DB7Y7+Zw0dGn4wIlozZzIjHAAQH6TOQDb64x9je1w80rNZHaRiMCvxgieXRNLUJA0ZYl7rFRcHHktF+vlEIcAPAIDQ7BL86H8f1z9F9a5dgSm1f/Ura8+XKemHkTjr1gVO+PbPprByZeT/IVbYBQBkk5gDqEpLS3XmmWcGfI0YMULXXXed+vTpo3//93+PZzsBICYOh3TZZdbqPvKI7+LU6mpO48b5tqurzZRu3/pW5Jm+oYS7CEnVRb1/G7ZtC18vUtoMw/DdmD92LLqf751JbnWW1bJl5t+trk4aPNjaYw4eNAdJpNADKKEMHiydPBl5MCJYpLR8pHwBAACIXbTp/OKZni0RK7EidtFMJmlpMa839uwJHKBMxYq+iUKAHwAgWUJNLkXsglNqV1TEf/IqstPMmZHvaT/+eOTHE4CfHuwSJIrk4XMYiL+YA6ieeuqpLl+rVq3SG2+8oXfeeUdnn312PNsJIAGy5WSqu5Rw3gvNO+/0XZxavQEffMO5udlMGxcLu1yEBKcYdDrN39+LL4b+PwmXNsNKQFIkTqf1WVbFxVJbmxnMdfCg9Z/x8cfmak+SuVrZ4sWR6x88KN1wg/Xnl8zAOv/fpxV2+V8AgEzB6kxA9/zTOWzZkn433Vau9AXHhxLv9GxWrzEYzLIfb1Bb8ABluqft80eAHxIt3T8zAMRH8D3E6mpzhRtWVe8q1vvw3U1elczz22PHuOZFZJEmd8+dK334obXnIQA/82XLuGEm4HMYSIyYA6huvvlmfeMb3wj4uv766zV+/Hj16hXz0wJA3Fm90LR6w/zzz+PWtJBSeRHiTT8YbVq54LQZDQ3S//yPbz/WyHers6z+z//pWVq9ujrz+8KFZqBYpOCvtrbon3///piaxQUpAABImhEjfOkcKivT76bb9Om+FYVCrUoa7/Rs8b7GQPxEWo2spCRzgtoiBQcT4IdEcrkCUwCl42cGgJ6L9R4iohdu8mompR9GajU1mRONrSAAH7AHPoeBxOlxpNOnn36qV199VatXr9Zrr72mTz/9NB7tAoC4iteF5rp10nnnxb99/lJ1EeJ2hw9CspJWzn9w6NAhadQo336ske9WB6Z+97vo0ur5C17tyemUduyI7bki/QyvaFaV4oIUAAAkS6iVVe140y1SqmnvikKPPCL97W++8oaGxKRnYzArkJ1mKocLHHr44ewIaiPAD4niHagJvv6262cGgMTo6T1ERM/pNFfPz9T0w0iMaN6DwRNQghGAD9gHn8NAYvUogGrp0qUqKirSlVdeqZtuuklXXHGFioqK9JOf/CRe7QMyhp1uJmerUKskRXuhOXNmdCniopHqi5DGxshBSNGklZs5M36R71YGpuKxUpP/c7z5Zs+fLxxvykCJGeEAACC1Iq2sasebbqFSTYfjHxhSXp64QJF4XGMgvlau7Hrt4DV9enLbkkzBK1IR4Id4Y6AGgJfVe4j/9V8RloVEJ6vjBpHSD/v3vbFmAkBmCb526o7/OSMB+IC9xXMsD0BXMQdQ/eIXv9CcOXNUXl6u5557To2NjXr++ec1adIk/du//ZueffbZeLYTAOKipwMpsaaIkwIvPOxwERJ8cW41CMlKvXjfUO1ullU8Vmryf45PPrH2mPz8nv1Mj8ce/wsAACD7uFzdr6xqp5tu4Zan91q3Lrnt8ZesYC1YM316YFBbpq6IY2WglAA/xBMDNQC84nkPET0XHCgTayYAZI7urp38eSfyXnqpr4wAfMDe+BwGEisn1gc+8sgjmjFjhlauXBlQft1112nmzJl65JFH9LWvfa3HDQSAVMvLMwN2KiutP6agQOrbN/DmYkmJGRQjSbNnB17AeI+l8iLEahBST4KV/G+oVlRE91jvLKtQysrM32Fzc/RBboZhPtZ/tSerr3H1anO1Las54oMVFEi5udL+/b4yO/wvAACAzOa9oW71vCnVN90irXoimedz8+ZJ119P8BJM/v8H/oNBwdrbpf79ze0jR9JntWiXy7ym9KquloqLQ9clwA/xwkANkJ7cbvM+XEuLeb+rrKznnwXR3ENsb+/Zz8p23f39wp3XezMBEPSSfbq7dvIXbiLvrl3S22/Ht99IBe8EciDTJGMsD8hmMa9A9e6772rmzJkhj82cOVN//vOfY24UANhNtDcA/7//T9qzJ/SKSXadBewNQkpGWrl431B1OKT6enM73IpOkY4FXyRa/V04HLEHT0lSa6v0H//h27fL/wIAAMhc0dxQ90r1TTdWPUFPREqLk47pbsKtKOA/KQNIBAZqgPTjcpkrEVVWSjNmmN/jsTKR1ftmX/4ykQs90d3fj9SqCKW7ayd/4VaWipQuEkDqJXMsD8hGMQdQ9e3bV21tbSGPtbW1qW/fvjE3CgDsJtobgNOnR77QsOMsYCtBSPFKK5eIG6pOp3nBF2qJ4RdfNL+sLj9s9Xfx0Uc9b7d/AJb//0J7u/mzDIPZegAAIH6iuaFul5turHqCaEUKmvJKx3Q3VgZKJWnLFgZLEX8M1ADpxRtwG3ze512ZqCefd8m8h5itrPz9mGSAUKxeEy1YwEReIF3xOQwkVswBVGVlZVq0aJH2B01xO3DggL7//e+rvLy8x40DALvo7kahZKZjSyYrgwLRihSEFM2Sz6m6oRppda9oV/6y8ruIRyDYsGHW6iXi7w0AALJPtEFGqb7p1t5uzri3IlWrnnCeln7CreIUj0HlRLIaADl1qi8YjP9PxAsDNUD6SMbKRPG6h4iurP79gs9jwmGSQXaxek102WV8ZgPpjM9hIHFiDqBasmSJPvzwQ51zzjmaNm2avvWtb2natGk6++yzdeDAAS1ZsiSe7QSAlIp0o9DrRz9KXnsSKV4pBlN1QzXS6l7RrvzV3e/CSmBdON5gsksvjf6xAAAAsbJ6Q33IEPvddIsmSJ+gkewSzd87ndPdRDMAavdgMKQn70BNcXFgOQM1gL0ka2WieN1DzEaRzl2s/v38V7WPhNSq2YUVI4HswecwkBgxB1BdcMEF2r59u6ZPn67t27fr6aef1vbt23X11Vfr97//vUb6r4MOABkgXES315Qpvu2tW+15w92qnqYYXLkydZHv8R4s6y4gq7vAulDHmJ0LAABSxUoA+JAh5qCNHW+6cV6FnrI6KJmTY7902tEMgNo9GAzpy+mU9uyRNm+WVq0yvzNQA9hLMtMf9/QeIrqy+ncZMqT78/qSEgJlsk2sK0YyAQVIT3wOA/EXcwCVJJ133nlavXq1Dhw4oI6ODh04cEC//OUvdd5558WrfQBgK8ER3f6zeceN821XV/tSJmQL/4usGTMyN/Ld7Za2bJFWrza/T58eOrDOfz8/P/AYs3MBAECqdHdD3TCkxx6TTjkl+W0LxT/w43vf6xpAwnkVopXOaWyiXQE3XiuMAMEcDqmiQrrxRvM7AzWAvVgNuGVlInuy+ncpLu5+YufDD9NHZyNSewEAELuoA6h27NihpghT9ZqamrRjx44eNQoA7Mz/otM//VrwjfhsT5kwYIAvoOrKKzPjYn3dOumMM6TKSjNIrLLSDJSTAgPGJOnkSd92a6tvO1IwmX9w1tat8W49AACAKV1uqLtckv/i1g88EHg8k4L0kTzpPFhsdQXcYOkcNAYAiB4pvNJbNH+/7jImTJ7smyRhp1U1kXik9gIAIDZRBVBt3bpV48aN04cffhi2zocffqhx48bplVde6XHjAMDuIqVCIGVC5pk50wyM8+cNlHv55cDyAwdCP8ehQ+GDyUaO9AVnVVf3vL0AAADh2P2GustlnmMFn3v5B4KwPD1iYWVQsqQkuW2KRncDpaGkc9AYACB6x46Z6Wo9nsSnPybtV/xFm4ItUsYEZDdSewEAEL2oAqiWL1+umpoajfPPUxVk3Lhxuv766/XEE0/0uHEAYHdvvhn5eLiUCdxcSI2e/t69QXGhyubOtfYcc+cGBtTl5UkvvmjeAAkeIPRaty66dgIAAFhh1xvqbrdUWxv53MtbD4iWlVWcHn44ee2JRfBAaTisMAIAsPuKowjNGzBdXBxYHu7vFy5jAgAAAKITVQDVtm3bdPXVV3db75//+Z/1ZndRBQCQASIsyBeAlAmZzeMxZ/ZZ0dQUGFAXaYDQq7ZW+vzznrURAAAgGv6phbdsSW6wUmOjtXOrbdsS3xZkpkirOK1cKU2fnvw2Rct/oNSbmsdfvFcYAQCkp127pM2bpVWrzO92WnEUkTmd0p491v5+TNbNbu3tpGoEACBeogqg+vjjj1UcHPIeQmFhoT766KOYGwUAduZ/QXrGGdYek24pE7joTiz/gDorA4QHD5ozzFiCGwAAJIPLJZWW+lILV1aa+8k6F7E6+SBcymTAinCrOKVD8JQUeM0WKhiMFUYAIHv5B75v22auRHjjjVJFBUG16cbhMP9usf79/P8Xtm5lBddswz1+AACiF1UAVV5entra2rqtd+jQIfXr1y/mRgFAuuhuSWRSJiAU/4A6qwOEH38s1dQQRAUAABLL5TLPOYIDvJubk3cuYnXywbBhiW0HMl+4Qch0G2wMDgZraGCFEQDIVi6XNHKkb7+6OrmB8LCXceN82/wvwO4I+AIA2EFUAVQXXHCBNmzY0G299evX64ILLoi5UQCQLoLTJvgjZULmCf4b+5eXlFh7fHBAXbSrk9XV2X8ABwAApKdIqYW9Zck4FykrM8+twp17eXU3mQHojneQ5sgRX9ncudLZZ/v202Ww0f+as7yca1AAyEbeQPjm5sDyZAbCI/X8z9WDJ27yvwAAABBZVAFU119/vZ588km9/vrrYets3rxZTz/9tG688cYeNw5A+snmWQLBM+BJmZCZwgXKPfywtXrBAXVWBwgl8321b5+Z9g8AACDeukstnKxzEYdDqq83t8OdU3nrAfGwdq1ve/lyM4W2PwYbAQB2Z5dAeKSWyyWdd1744/wvAAAARBZVANW3vvUtXXjhhaqqqtIdd9yhV199Ve+9957ee+89vfrqq7r99ts1ZcoUjRo1Srfddlui2gwAtvTHP/q2SZmQOfyDAteskYqLA497A+VmzAicuW41oM5/gNAqq2n/AAAAomH1HCMZ5yJOp3nuVFQUWF5SIr34YnZO2EBizJkjfe1rkesw2AgAsDu7BMIjdVwu6dprpQ8/jFyP/wUAAIDwcqKpfMopp+iVV17R1772Nf3sZz/TY489FnDc4/Hoyiuv1C9+8QudcsopcW0oANgdKRMyn9MpTZ9u3mBoaTHT75WVhf5b//GPvgG/hgapqir8/4R3gPBf/qXrbPdQok37BwAAYIXVc4xknYs4ndLkydLAgeZ+d+dUQLReeEH60Y+s1fUfbKyoSGizYuKd+AEAyE52CoRH8rnd0re+Fd1j+F8AAADoKqoAKkkqKChQQ0OD/vjHP+rVV1/Vvn37JEmnn366rrjiCl100UVxbyQAAHbhcIQfMPEftGhv95VbCahzOqWpU81VFT7+OHQdwzCPl5VF3WwAAIBueVMLNzeHDsRIxbkIkxSQKG63dPvt0T+OwUYAgB3ZLRAeybVli9TaGt1j3nsvIU0BAABIa1EHUHmNGzdO48aNi2dbACAmzLRFpjjlFOmxx6SaGnPf///aMMzvy5YxcAgAABLDm1q4psY897DDuQjn+kiUxkZrq78GY+AZAGBHdgyEj7f2dql/f3P7yBHSOfvbsiX6x/z859L8+dxnzAT+Kaa3bmXVXiCbcM8EiL9e0VQePXq05a8xY8ZYes7f/va3uuWWWzRixAjl5eWpuLhY06dP1x//+Mcudd9++21NnjxZ/fv316BBg+R0OvX3v/895PM++uijGjFihHJzc3XmmWdq8eLF6ujo6FLvo48+0s0336zBgwerX79+mjhxojZt2hTNrwVAFvOenHg8XLQjPrzp/Lzp/7xKSsxypzM17QIAANnBey5SXBxYzrkIMk20K0kZhjR8eHoPPAMAMpc3EF7yBb57MSkPoTQ1mQHlSG8ulzRypG+/uloqLTXLAQBA9KIKoMrPz1dBQUHEr9zcXO3cuVM7d+609Jw/+9nPtGfPHtXW1qqhoUH19fX66KOPNGHCBP32t7/trPfuu++qoqJCn3/+uX71q1/pqaee0l//+leVlZXp46BcRw888IBqa2vldDr1yiuv6Pbbb9eSJUt0xx13BNQ7fvy4LrvsMm3atEn19fVat26dTjvtNE2ZMkWvv/56NL8aAAAC9CS4zumUdu3y7Tc0SLt3M2AJAACSw+mU9uyRNm+WVq0yv3MugkwTy0pSDDwDAOyMSXnZq6IitseRmji9uVzm6sHNzYHlzc1mOUFUAABEL6oUflsirAN64sQJPf744/r+978vwzA0Y8YMS8+5fPlyDR06NKBsypQpOuecc7RkyRJ95StfkSQtXLhQubm5evnllzVgwABJZhrBc889V0uXLtXDDz8sSWptbdX999+v2267TUuWLJEkVVRUqKOjQwsWLFBdXZ1G/iMc+8knn9TOnTv1u9/9ThMnTpQkVVZWasyYMZozZ47eeust678cAADiyH9gprycgRoAAJBcx45JlZXm9pEjnIsg83hTHTU1dV93+HAzeIqBZwCA3Tmd0uTJ0sCB5n5DA+m8skFFhVRQILW2Rvc4UhOnL7dbqq0NnbrL4zFXnqurk6ZP5/0PAEA0olqBKpwXXnhBI0eO1J133qkxY8boj3/8o5599llLjw0OnpKk/v37a+TIkdq3b58kMzjr5Zdf1rXXXtsZPCVJZ5xxhiorK7V27drOsg0bNujYsWOaNWtWwHPOmjVLHo9HL730UmfZ2rVrdf7553cGT0lSTk6OZs6cqd///vdqDg7bBoAISOcHAABSxe32bW/dGrgPAOjKm+ooOM1RMFaDBQCkGyblZR+HQ3r8cev1SU2c/hobI08E8HikfftI0wgAQLR6FEC1ZcsWjR8/Xtdff70GDBigV199Va+88orGjh3bo0b97//+r95++21dcMEFkqS//e1v+uyzzzR69OgudUePHq33339fx44dk6TO1IGjRo0KqFdYWKjBgwcHpBbcuXNn2OeUpHfeeadHrwMAAAAAEs3lkv6xyK4kqbpaKi1luX50jwkAyHbeVEfFxYHlgwf7thl4BgCkm0w9x2PSSGROp/Tii11TOAbzBo+Tmji9WU2/SJpGAACiE1UKP68dO3Zo7ty5euWVV3TmmWdq1apVuuGGG+LWqDvuuEPt7e2aP3++JDMtnyTl5+d3qZufny+Px6NDhw6psLBQra2tys3NVV6IK4P8/PzO5/I+b7jn9P+5oRw/flzHjx/v3D98+LAkqaOjQx0dHVZeJpLI+zfhb4NTTpE+/9y3z78E7Mr83+z9j+0O/lcjoI8H0J1M7lPXrjV0ww2Ofyzb71tGpbnZo5oa6bnn3LrmmhBr+qcR+vnUMOcome+bzZtPaPJkDwMsyEjTpkmTJkmDB5v/77/5zQlNnOjp3F+9+oRKS6Uvf5n3QCLQxwNA5opnH792raHvftch7zVPdbVUXOzRT36S/tc78RR8XnPPPW6tWNFLLS2+a8XiYo9+/GO3pk3zZNS1cbYZMsSQlSHeIUNOqKMjMe+R9nbpC18w/9cOHerIqIBNWMO5PIB0EU0/FVUA1b59+7RgwQKtWrVK+fn5WrZsmf7v//2/6t27d9SNDOfee+/VL3/5Sz366KMaN25cwDEjwrrq/ses1ou2rr8HH3xQixcv7lL+6quvql+/fmEfh9R67bXXUt0EALDk2DGHpKmSpFdeeUV9+jCtrjv08QDCydQ+1e2Wbr+9Sh6PbyDBy+MxJHl0xx2fKyfntYwY9KefT5433ijUz38+St4AqmnTclRQ8JluvXWHJk5kCjMyj//nRHv7Bi1ZMkzSFyVJt91m3jrjPZBY9PEAkLl62se/8UahHn74ki7lzc3S9dc7NHfudj6f/fif14wZs17//u9u7dpVoEOH+ugLXzimkSNb5XCYaYqRno4dc+iGG6b+Y8+j4PsBXgUFn+nw4VcT9rfO1HstiB7n8gDs7ujRo5brRhVAdd555+nzzz/XlClTNGfOHJ166qnasWNH2PoXX3xxNE+vxYsX6/7779cDDzyg73znO53lBQUFkkKvCNXW1ibDMDRo0KDOuseOHdPRo0e7BDK1tbUFBGUVFBSEfU4p9IpXXvfcc4/uuuuuzv3Dhw9r+PDhqqqq0oABAyy8WiRTR0eHXnvtNV1++eVxDfgDgERpb/dtX3HFFczgiYA+HkB3MrVPff11Q62tkS7pDB082E8DBlylSZPSd1Y2/XxyrV1r6Ic/9K5q5tPW1kc//OElGbGqGRDM/3Pi88+n6JFHukad8h5IDPp4AMhc8ejj3W7pjju81zzBQSKGDMOjX/7yEi1adCIjJo3EQ6jr32nTUtcexN8/EuJ0MgzPPyZRBXrkkd6aNq06Ye3I1HstsI5zeQDp4nDwh2cEUQVQeVPWrV+/Xhs2bAhbz+PxyDAMuaNIQr148WItWrRIixYt0ve+972AY2effbb69u0bMlhrx44dOuecc9SnTx9J0qhRozrLx48f31nvwIEDOnjwoC688MLOslGjRoV9TkkBdYPl5uYqNze3S3nv3r35kLAx/j4A0oV/V2X2Xb59t1tqbDRz2BcWSmVl4iaR6OMBhBepT01nH39stV5ORrxm+vnEc7ulu+9Wl+ApyVzVzDCkf/3XHF17LeceyCz+Xcs99+TwHkgB+ngAyFw96eO3bTNXmgrH4zHU1CS9+WZvVVTE1r5Mk6nXvzC5XNLs2f4l5jlqqPNXpzOx9wL4X4MX5/IA7C6aPiqqAKqnn3466sZY8YMf/ECLFi3SggULdN9993U5npOTo2nTpsnlcumHP/yhTj31VEnSBx98oM2bN+u73/1uZ90pU6aoT58+WrFiRUAA1YoVK2QYhq6++urOsmuuuUa333673nrrrc66J06c0MqVKzV+/HgVFRUl5PUCANCdvLzQF77ei2T/m0clJVJ9veR0Jq99AIDUKyyMbz2gsVFqagp/3OOR9u0z6zFAhUwVeZCW9wAAAMnUYjEzn9V6QDpzuaSamq73jE+e9G2/8IJ03XXm9tatUlUVgf8AAEQjqgCqb3zjG3FvwI9//GMtXLhQU6ZM0VVXXaU333wz4PiECRMkmStUXXLJJZo6darmzZunY8eOaeHChRo8eLDuvvvuzvr5+flasGCB7r33XuXn56uqqkrbt2/XokWLdOutt2rkyJGddW+55RYtX75c1113nR566CENHTpUP/3pT/WXv/xFGzdujPtrBQCgJ8JdJDc3m+Vr1hBEBQDZpKzMDKJtbg4ddGsY5vGysuS3DenJLgNU7e1S//7m9pEjIhUEEs47eWH1amnGjO7rp2qQlvcGACDbMGkEMLndUm1t6Gt/f/6rU1VXM/EWAIBoRRVAlQi/+c1vJEkbNmwImRbQ84+zgREjRmjLli2aO3euampqlJOTo6985StaunSphgwZEvCY+fPn69RTT9Xy5cu1dOlSDRs2TPPmzdP8+fMD6uXm5mrTpk2aM2eO7rzzTh09elRjx47V+vXrNWnSpAS9YgAAohfpItnjMQfJ6+qk6dOZVQQA2cLhMG+E1tSoy5L9hmF+X7aMzwVYxwAVsh3vAQAA7IVJI4Cpu9WCvYID/Zl4CwBAdFIeQLVlyxbLdceNG2d5ZajZs2drdmAi4JBOO+00PfPMM5bbAABAKpBSBwBi53b7tjNtCXun07wRGiq967Jl3CBFdBigQraz+3sgkz/PAAAIhUkj8eN2m/cNW1rMYPCyMn5v6STWFVCZeAsAQHR6pboBAACge3ZJqQMA6cblkvyyeKu6WiotNcszhdMp7drl229okHbvJngK0fMOUEm+ASkvBqiQDez8HsiGzzMAAELxThopKgosLylhVR2rXC7pjDOkykozXXFlpbn//e+bKYy3bAkM1Ib99GQFVP+JtwAAIDICqAAASAOkEwGA6Llc5kxl/5WZJN8S9pk06Ow/mF9eToALYscAFbKd9z1QXBxYnsr3QDZ9ngEAEAqTRmIX6Tzivvt8AVUEZtubd6XU4CD/aDDxFgCA7hFABQBAGujuItkwpOHDSakDAF5ut1RbGzoFk7esro5ZtkAoDFAh2zmd0p490ubN0qpV5vdUvQf4PAMAwMSkkehFOo8IRmC2vUVaKdUqJt4CANA9AqgAAEgDdk4nAgB21NgoNTWFP84S9kBkDFAh2zkcUkWFdOON5vdUvQf4PAMAANHIyzPPDzwe6e23I59H+CMw2/7CrRYcvHJqMCbeAgBgHQFUAACkCVLqAIB1VpemZwl7IDT/gZe8vFS3BshefJ4BAIBYRXt+QGC2fbjd0pYt0urV5ndvUFuo1YL37pVefNEMlGLiLQAAPUMAFQAAacTpNC+K7ZBOBADszOrS9CxhD3Svvd13M769PfE/z3/G+9atzIBHduPzDAAAEwH+0Yv1/IDA7NRyuaTSUqmyUpoxw/xeWupLrxhqtWAm3gIAEB8EUAEAkGbskk4EAOysrMy8URg8+9KLJewB65IZ0ORySSNH+varqwMHC4Bsw+cZAACIVXfnEeEQmJ06LpdUU9M19WJzs1nucoUPJgy1OhUTbwEAiA4BVAAAAAAyjsMh1deb2yxhD8QumQFN3sGC5ubAcv/BAiDZkr0CWzA+zwAAQKwinUeEEiowO9XnQtnE7ZZqa83AqGDesrq6yBNaQq1OBQAArCOACgAAAEBGYgl7oGeSGdAUj8ECIBHskFKSzzMAABAr73lEcXHkegRmp15jY9eVp/x5PNK+fWY9AACQGARQAQAAAMhYLGEPxCbZAU0MFsCO7JRSks8zAAAQK6dT2rNH2rxZWrVKWrzYDMT2R2B26rW09LxeuPR+AADAmpxUNwAAAAAAEokl7IHoRRPQVFHR858Xj8ECIJ68K7AFBxF6V2BLxQDjgAGhgxoBAAC643AEnrfPn2+ey7e0SIWFZto+rpVTq7AwvvUAAED0CKACAAAAAAABkh3QxGAB7KS7FdgMw1yBbfp0BhoBAEB6Cg6oQuqVlZkrgTU3hz4PNQzzeFlZ8tsGAEC2IIUfAABp7PBh8+LZMKT16+OXRgcAAGS3ZAc0eQcLDCP0ccOQhg9nsADJQUpJAAAAk/+9xq1bufeYSA6HVF9vbgdfF3n3ly0jgB8AgEQigAoAgDTlckkjR/r2q6ul0lKzHAAAoCeSHdDEYAHshJSSAAAA3HtMBafTTBVdXBxYXlKSmhTSAABkGwKoAABIQy6XVFNjLunsr7nZLOdGBgAA6IlUBDR5BwuKigLLGSxAspFSEgAAZDvuPaaO0ynt2SNt3iytWmV+372b6yEAAJKBACoAANKM2y3V1pqpQ4J5y+rqWFIbAAD0TDIDmtxuacsW6fhx6bHHfOUNDQwWIPm8K7B15+DBxLcFAAAg2bj3mHoOh1RRId14o/mdlXgBAEgOAqgAAEgzjY1SU1P44x6PtG+f9OqryWsTAADITE6ntGuXbz8RAU0ul5kKpLJSmjFDmjbNd6y8nMECJJ/DIf3kJ93Xu+suBg4BAEDmsXrvsbExeW3KBt5JJatXm9/tfp7p376tW+3fXgAArCCACgCANNPSYq3egQOJbQcAAMgOAwaYgyQej3TllfENaPKmBgk3QLNuXfx+FhCNIUO6r8PAIQAAyERW7z1arYfuBU8qqaw09+2aKtHlkkaO9O1XV9u7vQAAWEUAFQAAaaaw0Fq9YcMS2450mxUFAADsJVJqEK+5cznHQGowcAgAALKV1XuPVushsnCTSpqbzXK7BSV529vcHFhu1/YCABANAqgAAEgzZWVSSYlkGJHrnTyZuAHHdJsVBQAA7Ke71CCSeZwVfpAKDBwCAIBs1d29R8OQhg8366FnIk0q8ZbV1dlnUkm6tRcAgGgRQAUANtLebl6AGoa5DYTicEj19eZ2pCCqqVMTE9SUbrOiAACAPbHCD+yMgUMAAJCtIt179O4vWxbf1N7ZqrtJJR6PmTb61VftMW5gtb1MggEApCsCqAAASENOp7RmjVRUFLlevIOamGUEAADihRV+YGcMHALwx4Q3ANkm3L3HkhKz3OlMTbsyjdXJIgcOJLYdVjEJBgCQ6QigAgAgTTmd0t690saNUn5+6DrxDmpilhEAANnJ7Za2bJFWrza/x+O8wkpa4pISVvhB6ngHDouLA8sZOAQAANnA6ZR27fLtNzRIu3dzDhRPVieLDBni2966NXWTV5kEAwDIdARQAQCQxhwO86utLXydeAY1McsIAIDs43JJZ5whVVZKM2aY3+ORJri7FX4MwzzOCj9IJadT2rNH2rxZWrXK/M7AIQAAyBb+5+Ll5Zybx5uVtNEFBdK//IuvrLo6PtdjsSDNNQAg0xFABQBAmktmUBOzjAAAyC4ul5kOuLk5sDxeaYJZ4QfpwOGQKiqkG280vydr4DARK78BAADAPrqbVOLxSK2t0v79gcfidT0WLdJcAwAyHQFUAACkuWQGNTHLCACA7OF2S7W1vpTA/uKZJpgVfoCuXC5zZYF4r/wGAAAAewk3qaS42Fx9KpR4Xo9Fy9veoqLAcibBAAAyAQFUAACkuWQGNTHLCACA7NHYKDU1hT8ezzTBqVrhB7Aj78pvwe+/VK00AAAAgPhob/elK29v95WHmlSyYoW5+lQ48bwei5bTKe3a5dtvaGASDAAgMxBABQBAmkt2UBOpdgAAyA7JTBMMwJSsld8AAABgL8GTSj76yNrjUnU95n+vubycSTAAgMxAABUAABkg2Usnk2oHAOwlL88cWPd4zG0gHpKZJhiAKZkrvwEAAHSHa83U4XoMAIDky0l1AwAAPv6ziLdulaqqmLkB65xOafJkaeBAc7+hIbH/Q95ZUQAAIDN50wQ3N4deDccwzOPxSBOM7NTeLvXvb24fOcKgnMTKbwAAADBxPQYAQPKxAhUA2ITLJY0c6duvrpZKS81ywCqWTgYAAPGS7DTBAFhpAAAAACauxwAASD4CqADABlwuqabGnE3ir7nZLCeICgAAAKmQ7DTBQLbzrjQQPEjmZRjS8OGsNAAAAJANuB4DACC5CKACgBRzu6Xa2tDL8HrL6uoC0/sB4eTlmf833v8dwzC/2ttT2y4AAJC+nE5p715p82Zp1Srz++7d3KwHEoGVBgAAADJPe7t5LudNXx0Np1Patcu339DA9RgAAImSk+oGAEC2a2yUmprCH/d4pH37zHoVFUlrFgAAANDJ4eBcFEgW70oDtbWB14olJWbwFINlAAAgFdrbfQFAR45IffqY96xbWsz0wmVlBHmHE25ydPDvNC8vdL0BA0JPwAYAAPHFClQAkGItLfGtB4TjnenEilQAAACAvTmd0p49rPwGAADswz8I6MEHpdNPlyorpRkzzO+lpZLLlbLm2ZbLJY0c2bV83brktwUAAERGABUApFhhYXzrAeH43+TYupW0kAAAAICdeVd+u/FG8zsrOgAAgFQJDgJ64AFp//7AOs3NUk2NWZeJnCaXy/ydNDd3PXbTTdKLL/r2uV8LAEDqEUAFAClWVmamYjCM0McNQxo+3KwHxGrdusCbHNXVzAoDAAAAAAAAEFmkICB/3hRzdXUEAknm76C2NnLqvW98w7fN/VoAAFKPACoASDGHQ6qvN7eDg6i8+8uWMdsYPTNzZtebHP6zwgAAAAAAAADAn5UgIH8ej7Rvn7RtW2LblQ4aG6Wmpugew/1aAABSiwAqALABp1Nas0YqKgosLykxy53O1LQLmSPUTQ5mhQEAAAAAAAAIJ5YgIEk6cCD+bUk3LS3RP4b7tQAApBYBVABgE06ntGuXb7+hQdq9m+ApJJZ3VlhjY6pbAgAAAAAAAMBOYgkCkqRhw+LbjnRUWBjb47hfCwBA6hBABQA24p+mr7yctH1InlhvhgAAAAAAkOn8VwHZupVVQQBkj2iDgAxDGj5cuvTSxLQnnZSVmRkmYsX9WgAAko8AKgAAMlQ0N3RjnREFAAAAAEAmc7mkkSN9+9XVUmmpWQ4Amc4bBGQY3df11lm2jInBkvk7qK+P/fHcrwUAIPkIoAIAIAMF3+ANxzsrrKws8W0CAAAAACCduFxSTY3U3BxY3txslhNEBSDT+QcBdRdEVVIirVkjOZ2Jb1e6cDqlX/1K6hXFaCz3awEASB0CqAAAyDDhbvAGY1YYAAAAAAChud1Sba3k8XQ95i2rqyOdH4DM53SagVFFRYHlJSXS4sXSqlXS5s3S7t2+4ClSn/pcd530/PPW6nK/FgCA1Ep5ANWnn36qOXPmqKqqSkOGDJFhGFq0aFGXejfffLMMw+jyNWLEiJDP++ijj2rEiBHKzc3VmWeeqcWLF6ujo6NLvY8++kg333yzBg8erH79+mnixInatGlTvF8mAABJEekGbzDvrLDp06UtW6TVq83v2XxDAwAAAAAASWpslJqawh/3eKR9+8x6AJDpnE5p714zUMobMLVnj7RwoXTjjVJFhS/gh9SnXdXUSC++KBUXB5YHB0mxihcAAKmVk+oGtLa26vHHH9eYMWN09dVX64knnghbt2/fvvrtb3/bpSzYAw88oHvvvVfz5s1TVVWVtm/frgULFqi5uVmPP/54Z73jx4/rsssu0yeffKL6+noNHTpUy5cv15QpU7Rx40ZNmjQpfi8UAIAk6O4Gr9f3v2/e4Lj2WqmwUGpp8R0rKTGX5uZCHUCmyMuzFlgKAAAAePlfJ8ejHgCkO4fDDJSKxLsyfvA1uDf1aTYHBzmd0uTJ0sCB5n5DgzRhgpSf79uvqmLlKQAAUinlAVRnnHGGDh06JMMwdPDgwYgBVL169dKECRMiPl9ra6vuv/9+3XbbbVqyZIkkqaKiQh0dHVqwYIHq6uo08h+h708++aR27typ3/3ud5o4caIkqbKyUmPGjNGcOXP01ltvxelVAgCQHFZv3A4ZEv4x3NAAAAAAUqO9Xerf39w+csQMAgaQGoWF8a0HAJmuu9SnhmGmPp0+PXuDhPxfd3k5E74AALCblKfw86bii5cNGzbo2LFjmjVrVkD5rFmz5PF49NJLL3WWrV27Vueff35n8JQk5eTkaObMmfr973+v5ubmuLULAIBksHrjtqQk/DHvRXtdHen8AAAAAADZqazMvHYOd+vaMKThw816AABSnwIAgPSX8gCqaHz22WcaNmyYHA6HSkpK9J3vfEdtbW0BdXbu3ClJGjVqVEB5YWGhBg8e3HncW3f06NFdfo637J133on3SwCAiLwzTjweZhojNlZv8HYXu8wNDQAAAABANnM4zPT2UtdraO/+smXZu4oKAPhzu6VNm6zVJfUpAACwq5Sn8LNqzJgxGjNmjC688EJJ0uuvv65HHnlEmzZt0vbt29X/H+ubt7a2Kjc3V3khIg/y8/PV2traud/a2qp8b3LhoHre4+EcP35cx48f79w/fPiwJKmjo0MdHR0xvEIkkvdvwt8GQDb48Y8N3XCDQ4YheTy+u7yGYS4ttXSp+x83Kro/Ddi374Q6Ouy9jjR9PABkNvp5IHOZb+ve/9juEG/z7Pud0MfD7qZNk557ztB3v+vQ/v2+6+viYo9+/GO3pk3zZPz7FIgVfXz2WLu2az8ZyZAh9r/fmCiZdK6XSa8FsaGfB5Auoumn0iaA6rvf/W7A/uWXX66LLrpINTU1+vnPfx5wPFJKwOBj0dT19+CDD2rx4sVdyl999VX169cv7OOQWq+99lqqmwAACZebK82ZU6if/3yU2tr6dpYXFHymb35zp3JzW/TBB0MlTQz/JP+wd++bamgIH1BsJ/TxAJDZ6OeBzHPsmEPSVEnSK6+8oj59yB+drb8T+njYWW6utHSpQzNmmO/Ne+99Q2PHfiSHQ2poSHHjgDRAH5/Z3nijUA8/fInF2h4NHvyZDh9+LWv7z0w713vpJfP766+ntBlIMfp5AHZ39OhRy3XTJoAqlGuuuUZ5eXl68803O8sKCgp07NgxHT16tEsgU1tbm8aNGxdQN9QqU960gKFWp/K65557dNddd3XuHz58WMOHD1dVVZUGDBgQ82tCYnR0dOi1117T5Zdfrt69e6e6OQCQcNXV0r/9mzR4sLn/m9+c0OTJveVwXCTpIn35y9IPfhD+8YbhUXGx9K//Ot726Qjo4wEgs9HP2097u/SFL5h/i0OHOkg9jZi1t/u2r7jiCv6XlH2/E/p4pAv/9+Zdd30x49+bQDzQx2c+t1u64w7vMGPk1ae8K+MvX36Kpk2rTnDL7CvbzvWQ2ejnAaQLbzY5K9I6gEqSPB6PevXq1bk/atQoSdKOHTs0fvz4zvIDBw7o4MGDnSkAvXV37NjR5Tm9Zf51g+Xm5io3N7dLee/evfmQsDH+PgCySZ8+vu3KypyAff9tM9Vf4L5kqL5e6tMnffpM+ngAyGz08/bh/2cw/y6pawvSm9/tHL3xRm9VVcn2wfvt7VL//ub2kSOK+6BXtr6/6ONhd9n63gTigT4+c23bJjU3W6tbUmJo2TLJ6Uz7Ycke4fMEmYh+HoDdRdNH9eq+in2tWbNGR48e1YQJEzrLpkyZoj59+mjFihUBdVesWCHDMHT11Vd3ll1zzTV699139dZbb3WWnThxQitXrtT48eNVVFSU6JcAAEDKDRsWuF9SIq1ZIzmdqWkPAAAAMp/LJY0c6duvrpZKS81yO3P7ZVnZujVwHwAAIJu0tFirN2eOtHs39xolM/je4zG/WH0KAAD7sUWo9/r169Xe3q5PP/1UkrRr1y6tWbNGklRdXa2PP/5YM2bM0A033KBzzjlHhmHo9ddf17Jly3TBBRfo1ltv7Xyu/Px8LViwQPfee6/y8/NVVVWl7du3a9GiRbr11ls10u/u3C233KLly5fruuuu00MPPaShQ4fqpz/9qf7yl79o48aNyf0lAACQRP4DPY8/LvXtK330kVRYKJWV2X/mPwAASJ3gAJJ0WDUI9uJySTU1gaugSuYKBjU19g3md7mk2bN9+9XV5uSD+vr4tZf3FwAASBeFhdbqVVRwPgMAANKDLQKovv3tb2vv3r2d+y+88IJeeOEFSdLu3bs1cOBAnXbaafrJT36iDz/8UG63W2eccYZmz56t733ve8oLCtOeP3++Tj31VC1fvlxLly7VsGHDNG/ePM2fPz+gXm5urjZt2qQ5c+bozjvv1NGjRzV27FitX79ekyZNSvwLBwAgBYIHfqZN8w38VFSkrFkAACANJCOABJnN7ZZqa7sGT0lmmWFIdXXS9On2GmhLRtAX7y8AAJBOysrMc5Xm5tDndl6XXpq8NgEAAPSELQKo9uzZ020dV5RruM+ePVuz/e86hXHaaafpmWeeieq5AQBIV+k62x8AAKQe5xGIh8ZGqakp/HGPR9q3z6xnl+D+ZAR98f4CAADpxuEwA71raszzIf/zGP99OwXFAwAARNIr1Q0AAADJ0d3Aj2QO/PinDQEAAJA4j0D8tLTEt14yRBP0FQveXwAAIF05nWagd1FRYHlxcWraAwAA0BO2WIEKAAAkntWBny1bzJlhLS1SYaG5HDczxQAAyG7puGoQ7KmwML71kiHRQV+8vwAAQDpzOs2VOBsbffcTL75YGjgw1S0DAACIDgFUAABkCasDOl/9qtTW5tsvKTGX4yZlCAAA2SsdVw2CPZWVmeeXzc2hV1wyDPN4WVny2xZOooO+eH8BAIB053AEBnq3t6esKQAAADEjhR8AAFnC6oCOf/CUZA5u1dRILlf82wQAANJDOq4aBHtyOMzgfMkMlvLn3V+2zF4roHqDvoLb62UY0vDhsQd98f4CAAAAAABIPQKoAADIUHl55qx+j8fc7m7gJxzvygB1dZLbHfdmAgCANJDoABJkF6dTWrNGKioKLC8pMcvttvJpooO+eH8BAIBME3xfEgAAIB0QQAUAQJaINPDTHY9H2rdPamyMf7sAAID9peOqQbA3p1Patcu339Ag7d5tv+Apr0QGffH+AgAAAAAASD0CqAAAyCLhBn7y8609vqUl/m0CAADpId1WDYL9+QcElZfbP0DI6ZT27pU2b5ZWrTK/xyvoi/cXAAAAAABAauWkugEAACC5nE5p8mRp4EBzv6FBOuUUs6w7hYWJbRsAALC3UOcRVVX2D3wB4sXhkCoqEvPcvL8AAAAAAABShwAqAACyUPBs/z59zNntzc1mur5ghmEeLytLXhsBAIA9pduqQUA64f0FAAAAAACQGqTwAwAAcjik+npz2zACj3n3ly1jAAcAAEh5eWbAtcdjbgMAAAAAfNrbzXuqhmFuAwCA9EAAFQAAkGSmDFmzRiouDiwvKTHLnc7UtAsAAAAAAAAA0oXb7dt+9VWCqQAASBek8AMAAJ2cTmn6dKmxUWppkQoLzbR9rDwFAAAAAAAAAJG5XNLs2b59JqUCAJA+CKACAAABHA6poiLVrQAAAAAAAACA9OFySTU1ZrrzUB58UFq8mMmqAADYFSn8AAAAAAAAAAAIIy/PHAz3eMxtAACCud1SbW344ClJeuABqbTUDLQCAAD2QwAVAAAAAAAAAAAAALW3S4ZhfrW3p7o16aOxUWpq6r5eU5O5ShVBVAAA2A8BVAAAAAAAAEAMGGAEAACAJLW0RFe/rs5ctQoAANgHAVQAAGQh0g8AAIBUIugECI3zdAAAgPRUWGi9rscj7dtnrloFAADsgwAqAAAAAACQVP4zrbduZeY1AAAAgPRWViaVlJiTRKyKdtUqAACQWARQAQAAAACApHG5pJEjffvV1VJpqVkOAAAAILWY7BAbh0Oqr4/uMdGsWgUAABKPACoAAAAAAJAULpdUUyM1NweWNzeb5QRRAQAAAKnDZIeecTqlNWukoqLI9QxDGj7cXLUKAADYBwFUAAAAAAAg4dxuqbZW8ni6HvOW1dUxwx0AAABIBSY7xIfTKf35z+GPe1P8LVtmrloFAADsgwAqAAAAAACQcI2NUlNT+OMej7Rvn1kPAAAAQPIw2SG+Bgwwf28vvigVFwceKykxV6lyOlPTNgAAEB4BVAAAAAAAIOFaWuJbD7AD/0HErVsZVAQAAOmJyQ7x095urjJlGNIVV0i7dvmONTRIu3cTPAUAgF0RQAUAAAAAABKusDC+9YBUc7mkkSN9+9XVUmkp6W0AAED6YbJD4vin6SsvJ20fAAB2RgAVAAAAAABIuLIyM12FYYQ+bhjS8OFmPcDuXC6ppkZqbg4sb242ywmiAgAA6YTJDgAAAARQAQAAAACAJHA4pPp6czs4iMq7v2wZM7Jhf263VFtrprIJ5i2rqyOdHwAASB9MdkicvDzzHNHjMbcBAIB9EUAFAAAAAACSwumU1qyRiooCy0tKzHKnMzXtAqLR2Cg1NYU/7vFI+/aZ9QAAANIBkx3ixz+IfutWguoBAEgnBFABAICw2tvNmySGYW4DAAD0lNMp7drl229okHbvJngK6aOlJb71AAAA7IDJDj3nckkjR/r2q6ul0lLSOwMAkC4IoAIAAAAAAEnlP3O9vJyZ7EgvhYXxrQcAAGAXiZjscPiwb4Lm+vWZuyKTyyXV1EjNzYHlzc1mOUFUAADYHwFUAAAAAAAgqfLyzDRnHo+5jeyUrv8HZWXmSgzB6W28DEMaPtysZ4XbLW3ZIq1ebX7P1EFFAACQHuI52SFbVmRyu6XaWvO8Npi3rK6O8zwAAOyOACoAAAAAAADAIodDqq83t4ODqLz7y5ZZG2x0ucxBxMpKacYM83smDioCAIDsk00rMjU2Sk1N4Y97PNK+fWY9AABgXwRQAQAAAAAAAFFwOqU1a6SiosDykhKz3EqaG++gYvBgWyYOKgIAgOySbSsytbTEtx4AAEgNAqgAAEBY/jcxtm7NnJsaAAAAQE85ndKuXb79hgZp925rwVPZNqgIAADSRzzSLGfbikyFhfGtBwAAUoMAKgAAEJLLJY0c6duvriadCAAAAODPP01febm1tH1S9g0qAgCA7GJ1paXg9H7pqqzMXIk0OL2zl2FIw4eb9QAAgH0RQAUAALrwphMJvolBOhEAABCsvd0cEDAMcxtA90jzAgAAMpnVlZa++93MuM/ocEj19eZ2cBCVd3/ZMuvB9gAAIDUIoAIAAAFIJwIAAAAkFmleAABAJutuRSavgwczZ7Km0ymtWSMVFQWWl5SY5VbSPAMAgNQigAoAAAQgnQgAAACQWKR5AQAAmcx/RaZIMm2yptMp7drl229okHbvJngKAIB0QQAVAAAIQDoRAAAAILFI8wIAADKdd0WmwYMj18u0yZr+52/l5ZzPAQCQTgigAgAAAUgnAgAAACSed1CxuDiwnDQvAAAgUzid0sMPW6ubbpM129vNwHfDMLcBAED6y0l1AwAAgL1404k0N/uW0fZnGOZx0okAAAAAPeN0StOnmysutLSYkxTKylipAAAAZI6zzrJWL90na7rd5jnd7t2pbgkAAIgVAVQAACCAN51ITY0ZLOUfREU6EQAAAMAnLy/0pINoOBxSRUVcmgMAAGA72TBZc906ae5cqampa/mMGalpEwAAiB4p/AAAQBfedCJFRYHlpBMBAAAAAAAAYJV3sqbkm5zplSmTNWfO7Bo8ZRhmucuVmjYBAIDoEUAFAABCcjqlXbt8+w0N5hLUBE8BAAB/brdve+vWwH0AAAAA8E7WLC4OLM+UyZqhVtbyltXVcY0EAEC6IIAKAACE5T/zq7w8vWeCAQCA+HO5pJEjffvV1VJpKbOsAQAAAARyOqU9e6TNm6VVq8zvmT5Z0+OR9u2TGhtT3RIAAGBFygOoPv30U82ZM0dVVVUaMmSIDMPQokWLQtZ9++23NXnyZPXv31+DBg2S0+nU3//+95B1H330UY0YMUK5ubk688wztXjxYnV0dHSp99FHH+nmm2/W4MGD1a9fP02cOFGbNm2K50sEAAAAACDjuFxSTY3U3BxY3txslhNEBQAAAMCfwyFVVEg33mh+z5bJmi0tqW4BAACwIuUBVK2trXr88cd1/PhxXX311WHrvfvuu6qoqNDnn3+uX/3qV3rqqaf017/+VWVlZfr4448D6j7wwAOqra2V0+nUK6+8ottvv11LlizRHXfcEVDv+PHjuuyyy7Rp0ybV19dr3bp1Ou200zRlyhS9/vrriXi5AAAAAACkPbdbqq0lVQUAAAAAdKewMNUtAAAAVuSkugFnnHGGDh06JMMwdPDgQT3xxBMh6y1cuFC5ubl6+eWXNWDAAEnSuHHjdO6552rp0qV6+OGHJZkBWffff79uu+02LVmyRJJUUVGhjo4OLViwQHV1dRr5j/wCTz75pHbu3Knf/e53mjhxoiSpsrJSY8aM0Zw5c/TWW28l+uUDAAAAAJB2Ghulpqbwx/1TVVRUJK1ZAAAAAGAbhiGVlEhlZaluCQAAsCLlK1AZhiHDMCLWOXHihF5++WVde+21ncFTkhl8VVlZqbVr13aWbdiwQceOHdOsWbMCnmPWrFnyeDx66aWXOsvWrl2r888/vzN4SpJycnI0c+ZM/f73v1dzcB4CAAAAAABgOQUFqSoAAAAAZCuPR1q2LHtSFQIAkO5SHkBlxd/+9jd99tlnGj16dJdjo0eP1vvvv69jx45Jknbu3ClJGjVqVEC9wsJCDR48uPO4t26455Skd955J26vAQCAdJSXZ17oezzmNgAAgGQ9BQWpKgAAAABkos8/775OQYE0fXri2wIAAOIj5Sn8rGhtbZUk5efndzmWn58vj8ejQ4cOqbCwUK2trcrNzVVeiFHe/Pz8zufyPm+45/T/uaEcP35cx48f79w/fPiwJKmjo0MdHR0WXxmSxfs34W8DAJmHPh4AMhv9vD1NmCAVF+do/37J4+m6qrRheFRcLE2YcEL86QCEQx8PAJmLPh6ZbO1aQ7ff7pAUOcNOa6u0efMJTZrkSU7DgCSinweQLqLpp9IigMorUqo//2NW60Vb19+DDz6oxYsXdyl/9dVX1a9fv7CPQ2q99tprqW4CACBB6OMBILPRz9vPzJmFevjhSyR5FDhw4JHHI91003a98go5/AB0jz4eADIXfTwyzRtveK+DrFm//k9qb29OYIuA1KKfB2B3R48etVw3LQKoCgoKJIVeEaqtrU2GYWjQoEGddY8dO6ajR492CWRqa2vTuHHjAp433HNKoVe88rrnnnt01113de4fPnxYw4cPV1VVlQYMGGD9xSEpOjo69Nprr+nyyy9X7969U90cAEAc0ccDQGajn7ev6mrp4ovd+u53Hdq/31deUiL9+MduXXPNRZIuSln7ANgffTwAZC76eFjR3i594Qvm/8ehQx0KkVzGVtxu6Y47vEOrkVef8rryyrGaNGlM4hoFpAj9PIB04c0mZ0VaBFCdffbZ6tu3r3bs2NHl2I4dO3TOOeeoT58+kqRRo0Z1lo8fP76z3oEDB3Tw4EFdeOGFnWWjRo0K+5ySAuoGy83NVW5ubpfy3r178yFhY/x9ACBz0ccDQGajn7enr35VmjJFGjjQ3G9okKqqDDkcaXG7AYBN0McDQOaij0ckvXr5tt94o7eqqiSHI3Xt6c62bVKzxcWkDMOcXFJZmWPr1wT0FP08ALuLpo/q1X2V1MvJydG0adPkcrn06aefdpZ/8MEH2rx5s5xOZ2fZlClT1KdPH61YsSLgOVasWCHDMHT11Vd3ll1zzTV699139dZbb3WWnThxQitXrtT48eNVVFSUsNcEAAAAAEAm8B8MKC+394AHAAAAAHtwuaSRI3371dVSaalZblctUWYoX7aM6yMAANKJLaaErl+/Xu3t7Z3BUbt27dKaNWskSdXV1erXr58WL16sSy65RFOnTtW8efN07NgxLVy4UIMHD9bdd9/d+Vz5+flasGCB7r33XuXn56uqqkrbt2/XokWLdOutt2qk39nYLbfcouXLl+u6667TQw89pKFDh+qnP/2p/vKXv2jjxo3J/SUAAAAAAAAAAAAAGc7lkmpqJI8nsLy52Sxfs0byWzvBNgoLrdUbMkR67DF7vgYAABCeLQKovv3tb2vv3r2d+y+88IJeeOEFSdLu3btVWlqqESNGaMuWLZo7d65qamqUk5Ojr3zlK1q6dKmGDBkS8Hzz58/XqaeequXLl2vp0qUaNmyY5s2bp/nz5wfUy83N1aZNmzRnzhzdeeedOnr0qMaOHav169dr0qRJiX/hAAAAAAAAAAAAQJZwu6Xa2q7BU5KvrLZWmj7dfqs3lZWZafmam0O3XzKDp5qapFNOSW7bAABAz9kigGrPnj2W6o0bN87yylCzZ8/W7Nmzu6132mmn6ZlnnrH0nAAAAAAAAAAAAABi09hoBhhF0tRk1quoSEqTLHM4pPp6c5UswwgMojIM8/tjjxE8BQBAuuqV6gYAAAAAAIDM195uDioYhrkNAAAAIPu0tMS3XrI5nWaKwaKiwPKSEvumHgQAANbYYgUqAAAAAAAAAAAAAJmtsDC+9VLB6ZQmT5YGDjT3Gxqkqir7pRwEAADRYQUqAAAAAAAQs7w8M3WFx2NuAwAAAEA4ZWXmak3elHehlJSY9ezMP1iqvJzgKQAAMgEBVAAAAAAAAAAAAAASzuGQ6uvN7XBBVN/4RvLaAwAA4EUAFQAAAAAAAAAAAICkcDqlNWukoqLQxx94QCotlVyupDYLAABkOQKoAAAAAAAAAAAAACSN0ynt3SstXhz6eHOzVFNjryCq9nZz1SzDMLcBAEBmIYAKAAAAAAAAAAAAQNL9/Oehyz0e83tdneR2J605AAAgixFABQAAAAAAAAAAACCpGhulpqbwxz0ead8+sx4AAECiEUAFAAAAAAASzn/W+NatzCIHAAAAsl1LS3zrJZr/Ncy2balrBwAASAwCqAAAAAAAQEK5XNLIkb796mqptNQsBwAAAJCdCgvjWy+Rgq9pnM7UtQUAACQGAVQAAAAAACBhXC6ppkZqbg4sb242ywmiAgAAALJTWZlUUiIZRujjhiENH27WS6Vw1zSGYX698kpq2gUAAOKLACoAAAAAAJAQbrdUWyt5PF2Pecvq6kjnBwAAAKRKe7svEKi9Pbk/2+GQ6uvN7eAgKu/+smVmvVThmgYAgOxBABUAAAAAAEiIxkapqSn8cY9H2rfPrAcAAAAg+zid0po1UlFRYHlJiVme6lR5XNMAAJA9clLdAAAAAAAAkJlaWuJbDwAAAEDmcTqlyZOlgQPN/YYGqaoqtStPeXFNAwBA9mAFKgAAAAAAkBCFhfGtBwAAACAz+QdLlZfbI3hK4poGAIBsQgAVAAAAAABIiLIyM/WGYYQ+bhjS8OFmPQAAAACwG65pAADIHgRQAQAAAACAhHA4pPp6czt4wMG7v2yZfWaXAwAAAIA/rmkAAMgeBFABAAAAAICEcTqlNWukoqLA8pISs9zpTE27AAAAAMAKrmkAAMgOOaluAAAAAAAAyGxOpzR5sjRwoLnf0CBVVTFLGwAAAIApL0/yeFLdivC4pgEAIPOxAhUAAAAAAEg4/4GF8nIGGpB52tvNNC6GYW4DAAAgs3BNAwBAZiOACgAAAAAAAAAAAAAAAEDWIoUfAAAAAAAAAAAAAERg9zSDAACgZwigAgAAAAAAAAAAAJD13G6psVFqaZEKC6WyMlL1AQCQLQigAgAAAAAAAAAAAJDVXC6ptlZqavKVlZRI9fWS05m6dgEAgOToleoGAAAAAAAAAAAAAECquFxSTU1g8JQkNTeb5S5XatoFAACShwAqAAAAAACQcHl5ksdjfuXlpbo1AAAAAGByu82Vpzyerse8ZXV1Zj0AAJC5CKACAAAAAAAAAAAAkJUaG7uuPOXP45H27TPrAQCAzEUAFQAAAAAAFrW3S4ZhfrW3p7o1AOzEf0WCrVtZoQAAACBdtLTEtx4AAEhPBFABAAAAAAAAPeBySSNH+varq6XSUrMcAADAzggClwoL41sPAACkJwKoAAAAAAAAgBi5XFJNjdTcHFje3GyWE0QFAADsiiBwU1mZVFJirjQcimFIw4eb9QAAQOYigAoAAAAAAACIgdst1dZKHk/XY96yurrsXMkBAADYm92DwJOZPt3hkOrrze3gICrv/rJlZj0AAJC5CKACAAAAAAAAYtDYKDU1hT/u8Uj79pn1AAAA7IIg8K6cTmnNGqm4OLC8pMQsdzpT0y4AAJA8OaluAAAAAAAAAJCOWlriWw8AACAZogkCr6hIWrNSzumUpk83X3dLi1RYaKbtY+UpAACyAwFUAAAAAAAAQAwKC+NbDwAAIBkIAg/P4ciuoDEAAOBDABUAAAAAAFnK7WZ2NdATZWVmWpfm5tApcAzDPF5W5ivjfQcAAFKNIHAAAICueqW6AQAAAAAApAu327e9dWvgfrpxuaTSUqmyUpoxw/xeWmqWA7DG4ZDq681twwg85t1ftswXIMX7DgAAa9rbzc9SwzC3EV/eIPDg8xcvw5CGDw8MAk+2TLr2AgAA6YEAKgAAAAAALHC5pJEjffvV1ekb+OBySTU1UlNTYHlzs1mejq8JSBWnU1qzRioqCiwvKTHLnU5zn/cdAACwi2iDwJMtk669AABA+iCACgAAAACAbngDH5qbA8vTMfDB7ZZqa0OnG/OW1dUxwxuIhtMp7drl229okHbv9gVP8b4DACA6rD6UeFaDwJMtk669AABAeiGACgAAAACACDIt8KGxsesKOP48HmnfPrMeAOv8V2goLw/c530HAIB1rD6UPN0FgSebHa+9Dh/2pZNcvz59rvsAAED0CKACAAAAACCCTAt8aGmJbz0A3eN9BwCANaw+lHyRgsCTzW7XXgTzAQCQXQigAgAAAAAggkwLfCgsjG89AN3jfQcAQPfsuPoQkstO114E8wEAkH0IoAIAAAAAIIJMC3woK5NKSswUFKEYhjR8uFkPQHzwvgMAoHt2W30IyWeXay+C+QAAyE4EUAEAAAAAEEGmBT44HFJ9vbkd/Jq8+8uWxZa6o73dfA7DMLcBmBL5vgMAIFPYafUhpIZdrr0I5gMAIDsRQAUAAAAAQASZGPjgdEpr1kjFxYHlJSVmudOZmnYBmYz3HQAAkdll9SGkjl2uvQjmAwAgO6VNANWWLVtkGEbIrzfffDOg7ttvv63Jkyerf//+GjRokJxOp/7+97+HfN5HH31UI0aMUG5urs4880wtXrxYHR0dyXhJAAAAAIA04Q18KCoKLE/nwAenU9qzR9q8WVq1yvy+vQhAogAAJNRJREFUe3d6vhYgXfC+AwAgPLusPoTUssO1F8F8AABkp5xUNyBaS5YsUWVlZUDZhRde2Ln97rvvqqKiQmPHjtWvfvUrHTt2TAsXLlRZWZn+9Kc/aciQIZ11H3jgAd17772aN2+eqqqqtH37di1YsEDNzc16/PHHk/aaAAAAAAD253RKkydLAwea+w0NUlVVeq08FczhkCoqUt0KIDPk5ZnpXLrD+w4AgNC8qw/V1JjBUv6fq+m68itik+prL28wX3Nz6PM7wzCPE8wHAEBmSbsAqnPPPVcTJkwIe3zhwoXKzc3Vyy+/rAEDBkiSxo0bp3PPPVdLly7Vww8/LElqbW3V/fffr9tuu01LliyRJFVUVKijo0MLFixQXV2dRo4cmfgXBAAAAABIG/437MvLGbwBAAAA4sm7+tDs2WbwildJiRk8xaqN2SOV114E8wEAkJ3SJoWfFSdOnNDLL7+sa6+9tjN4SpLOOOMMVVZWau3atZ1lGzZs0LFjxzRr1qyA55g1a5Y8Ho9eeumlZDUbAAAAAAAAAAAAMoOkdu3y7Tc0kPIWyWeHVIIAACC50i6A6o477lBOTo4GDBigK664Qv/1X//Veexvf/ubPvvsM40ePbrL40aPHq33339fx44dkyTt3LlTkjRq1KiAeoWFhRo8eHDncQAAAAAAAAAAACQPK7/CDpxOae9eafNmadUq8zvBfAAAZK60SeE3cOBA1dbWqqKiQgUFBXr//ff1ox/9SBUVFfrP//xPXXHFFWptbZUk5efnd3l8fn6+PB6PDh06pMLCQrW2tio3N1d5eXkh63qfK5zjx4/r+PHjnfuHDx+WJHV0dKijo6MnLxUJ4P2b8LcBgMxDHw8Amc1u/bzZjN7/2O6QTZplG/x+AETDbn08ACB+etrHn3KK9Pnn/s8Xj1YhFLuew9upXZde6ts+edL8ArId5/IA0kU0/VTaBFBddNFFuuiiizr3y8rKdM0112jUqFGaM2eOrrjiis5jhjcBcQj+x6zWC+XBBx/U4sWLu5S/+uqr6tevX8THInVee+21VDcBAJAg9PEAkNns0s8fO+aQNFWS9Morr6hPH3dqG2Qz/r+fdes26uabr5QkPffcy/yuAIRllz4eABB/9PH2Z+drnJdeMr+//npKmwEgAvp5AHZ39OhRy3XTJoAqlEGDBmnq1Kl67LHH9Nlnn6mgoECSQq4e1dbWJsMwNGjQIElSQUGBjh07pqNHj3YJeGpra9O4ceMi/ux77rlHd911V+f+4cOHNXz4cFVVVWnAgAE9fGWIt46ODr322mu6/PLL1bt371Q3BwAQR/TxAJDZ7NbPt7f7tq+44gqFWNQ4q/n/fiZPnty5ze8KQCh26+MBAPFDH58+uMYBEAv6eQDpwptNzoq0DqCSJI/HI8lcMerss89W3759tWPHji71duzYoXPOOUd9+vSRJI0aNaqzfPz48Z31Dhw4oIMHD+rCCy+M+HNzc3OVm5vbpbx37958SNgYfx8AyFz08QCQ2ezSz/s3wWxT6tpiR8G/H/9tflcAwrFLHw8AiD/6ePvjGgdAT9DPA7C7aPqoXglsR8IdOnRIL7/8ssaOHas+ffooJydH06ZNk8vl0qefftpZ74MPPtDmzZvldDo7y6ZMmaI+ffpoxYoVAc+5YsUKGYahq6++OkmvAgAAAACQLvLyJI/H/GJmdlduv2wf27alrh0AAAAAMkd7u2QY5pf/ilkAAADxlDYrUM2YMUOnn366vvjFL2rw4MF677339OMf/1gffvhhQBDU4sWLdckll2jq1KmaN2+ejh07poULF2rw4MG6++67O+vl5+drwYIFuvfee5Wfn6+qqipt375dixYt0q233qqRI0em4FUCAAAAAJCeXC5p9mzfvt8cJgAAAACwjfZ2qX9/c/vIEalPH6mxUWppkQoLpbIyyeFIbRsBAEDypU0A1ejRo/X888/rscce05EjR5Sfn68vf/nLevbZZ3XJJZd01hsxYoS2bNmiuXPnqqamRjk5OfrKV76ipUuXasiQIQHPOX/+fJ166qlavny5li5dqmHDhmnevHmaP39+sl8eAAAAAABpy+WSamrMlblCWbdOmjEjuW0CAAAA0D3vKrt25r/S7datUlVV/AKc1q2T5s6Vmpp8ZSUlUn09k0IAAMg2aRNANW/ePM2bN89S3XHjxmnjxo2W6s6ePVuz/afIAgAAAAAAy9xuqbY28qDL3LnS9dczixsAAABAdIJXuq2uth7gFLzSVKg07DNndr2WaW42J4isWUMQFQAA2aRXqhsAAAAAAADSV2Nj4GztUJqazHoAAAAAYJV3pdvm5sByb4CTy9XznxFqIoi3rK4ucPUrAACQ2QigAgAAAAAAMWtpiW89AAAAAIi00m0yApw8HmnfPiaCAACQTQigAgAAAAAAMSssjG89AAAAAOhupdtkBTgxEQQAgOxBABUAAAAAAIhZWZlUUiIZRvg6JSVmPQAAAACwwi4r3TIRBACA7EEAFQAAsKy93RwcNQxzGwAAwOGQ6uvN7XBBVA8/bNYDAAAAACuStdJtuGsYw5CGD2ciCAAA2YQAKgAAAAAA0CNOp7RmjVRUFPr49OnJbQ9gN4cP+yYirF8vud2pbhEAAIC9dbfSrTfA6eKLrU349J8Yeviwr9zj6fozvPvLljERBACAbEIAFQAAAAAA6DGnU9q1y7fvcqWuLYCduFzSyJG+/epqqbSU9wgAAEAkkVa67WmA07hxgfu9gkZLS0rMCSJOZ/TPDQAA0hcBVAAAwDL/mfJbtzJzHgAABPIfvJgwwbfNeQOylcsl1dRIzc2B5c3NZjlBVAAAAOGFW+m2pwFOLS2B+95rlbo6afNmafdugqcAAMhGBFABAABLmDkPAACi4T+rm/MGZCO3W6qtNdPCBPOW1dURXAgAABBJ8Eq3DQ2xBTh1d85lGNKLL5qpA0nbBwBAdiKACgAAdIuZ8wAAIFrBs7o5b0C2aWyUmprCH/d4pH37zHoAAAAIzz+gqbw8tgCnN9+MfJxzMwAAQAAVAACIiJnzAADAqkjnA5w3INsEBxH2tB4AAEC2ysszryc8HnM7FpybAQCA7hBABQAAImLmPAAAsGrbtsjHOW9ANiksjG89AAAAxO7ee63V49wMAIDsRQAVAACIiNlZAADAqgMHrNXjvAHZoKxMKimRDCP0ccOQhg836wEAACCx2toiH+fcDAAAEEAFAAAiYuY8AACwatgwa/U4b0A2cDik+npzOziIyru/bJlZDwAAAPH3+efW6nFuBgAAJAKoAABAN5g5DwAArLr00sjHOW9AtnE6pTVrpKKiwPKSErPc6UxNuwAAANKV2y1t2SKtXm1+d7tD13O5pPPOs/acgwdzbgYAAKScVDcAAADYm3fmfE2NOejp8fiOMTsLAAD48z8f4LwBMDmd0vTpUmOjmb6ysNAMIuR9AAAAEB2XS5o9W2pu9pUVF4euV1MTeD0SySOPEDwFAABYgQoAAFjAzHkAABCt4HR+nDcgmzkcUkWFdOON5neCpwAAAKLjDYryD56SpP37A/fdbqm21nrwlBQ6CAsAAGQfVqACAACWOJ3S5MnSwIHmfkODVFXF4A8AAPDJy/MNVBw+zHkDAAAAgJ6LFBTlX7Zli9Snj9TUZP25S0pIMQ4AAEwEUAEAAMv8Bz3LyxkEBQAA4XHeAAAAACAeGhutBUVNnSrl50f33A8/zLUKAAAwEUAFAAAs819VAgAAAAAAAAASraXFet22tuiee/r06OoDAIDM1SvVDQAAAAAAAAAAAACAUAoL4/t8BQXxfT4AAJAZCKACAAAAAAAAAAAAYEtlZVJJiWQY8Xm+H/0oPs8DAAAyCwFUAAAAAAAAAAAAAGzJ4ZDq683taIKowtW96qqetwkAAGQeAqgAAAAAAACAOGtvNwftDMPcBgAAQOycTmnNGqm42PpjPB7ftsvl287LM495POY2AACARAAVAAAAAAAAEHdut29769bAfQAAAETP6ZT27JE2bpTy86N77IQJCWkSAADIIARQAQAAAAAAAHHkckkjR/r2q6ul0tLAlQ8AAAAQPYdDuuwy6ec/jy6d35/+xKpTAAAgMgKoAAAAAAAAgDhxuaSaGqm5ObC8udksJ4gKAACg57wp/b7wBWv1DxxIbHsAAED6I4AKAAAAAAAAiAO3W6qtNVc2COYtq6sjnR8AAEA8OJ3Ss89aqztsWGLbAgAA0h8BVAAAAAAAAEAcNDZKTU3hj3s80r59Zj0AAAD0XFmZtXqXXprYdgAAgPRHABUAAAAAAAAQBy0t8a0HAACAyBwO37ZhBB7z3/evBwAAEAoBVAAAAAAAAEAcFBbGtx4AAACsKyoK3C8uTk07AABAespJdQMAAAAAAACATFBWJpWUSM3NZrq+YIZhHreaagYAAADW7dolvf22udpnYaF08cXSwIGpbhUAAEgXBFABAAAAAIC4y8sLHUACZDKHQ6qvl2pqzGAp//eAN4XMsmWkkAEAAEgEh0OqqPDtt7enrCkAACANkcIPAAAAAAAAiBOnU1qzpmsKmZISs9zpTE27AAAAAAAAEB4rUAEAAAAAAABx5HRKkyf7UsY0NEhVVaw8BQAAAAAAYFcEUAEAAAAAAABxNmAAaSwBAAAAAADSBQFUAAAAAAAAAAAAADJKXh4B7QAAwLpeqW4AAAAAAAAAAAAAAAAAAKQKAVQAAAAAAAAAAAAAAAAAshYp/AAAAAAAAAAAAACkHdL0AQCAeGEFKgAAAAAAAAAAAAAAAABZiwAqAAAAAAAAAAAAAAAAAFmLACoAAAAAAAAAAAAAAAAAWYsAKgAAAAAAAAAAAAAAAABZiwAqSUeOHFFdXZ2KiorUp08fjR07Vs8991yqmwUAAAAAAAAAAAAAAAAgwXJS3QA7cDqd2r59ux566CGdd955WrVqlW688UadPHlSM2bMSHXzAAAAAAAAAAAAAAAAACRI1gdQNTQ06LXXXusMmpKkyspK7d27V//2b/+m66+/Xg6HI8WtBAAAAAAAAAAAAAAAAJAIWZ/Cb+3aterfv7+uu+66gPJZs2Zp//79euutt1LUMgAAAAAAAAAAAAAAAACJlvUBVDt37tQ//dM/KScncDGu0aNHdx4HAAAAAAAAAAAAAAAAkJmyPoVfa2urzjrrrC7l+fn5ncdDOX78uI4fP965/7//+7+SpLa2NnV0dCSgpeiJjo4OHT16VK2trerdu3eqmwMAiCP6eADIbPTzAJC56OMBIHPRxwNAZqOfB5AuPv30U0mSx+Pptm7WB1BJkmEYUR978MEHtXjx4i7lZ555ZtzaBQAAAAAAAAAAAAAAACB2n376qQYOHBixTtYHUBUUFIRcZaqtrU2SbyWqYPfcc4/uuuuuzv2TJ0+qra1NBQUFEQOykBqHDx/W8OHDtW/fPg0YMCDVzQEAxBF9PABkNvp5AMhc9PEAkLno4wEgs9HPA0gXHo9Hn376qYqKirqtm/UBVKNGjdLq1at14sQJ5eT4fh07duyQJF144YUhH5ebm6vc3NyAskGDBiWsnYiPAQMG8CEOABmKPh4AMhv9PABkLvp4AMhc9PEAkNno5wGkg+5WnvLqleB22N4111yjI0eO6MUXXwwof+aZZ1RUVKTx48enqGUAAAAAAAAAAAAAAAAAEi3rV6C68sordfnll+vb3/62Dh8+rHPOOUerV6/Whg0btHLlSjkcjlQ3EQAAAAAAAAAAAAAAAECCZH0AlSS5XC7Nnz9fCxcuVFtbm0aMGKHVq1frhhtuSHXTECe5ubm67777uqRdBACkP/p4AMhs9PMAkLno4wEgc9HHA0Bmo58HkIkMj8fjSXUjAAAAAAAAAAAAAAAAACAVeqW6AQAAAAAAAAAAAAAAAACQKgRQAQAAAAAAAAAAAAAAAMhaBFAhrR05ckR1dXUqKipSnz59NHbsWD333HOWHvvRRx/p5ptv1uDBg9WvXz9NnDhRmzZtSnCLAQBWxdrHNzU1qa6uTpMmTdKgQYNkGIZWrFiR+AYDACyLtY93uVy68cYbdc4556hv374qLS3VTTfdpPfeey8JrQYAWBVrP79x40ZdfvnlKioqUm5uroYOHaqvfOUramhoSEKrAQBW9OSevL8FCxbIMAxdeOGFCWglACBWsfbzK1askGEYIb8OHDiQhJYDQM/lpLoBQE84nU5t375dDz30kM477zytWrVKN954o06ePKkZM2aEfdzx48d12WWX6ZNPPlF9fb2GDh2q5cuXa8qUKdq4caMmTZqUxFcBAAgl1j7+/fff1y9/+UuNHTtW1dXVWr16dRJbDQCwItY+/uGHH9awYcM0f/58nXXWWdq3b5+WLFmiiy++WG+++aYuuOCCJL4KAEA4sfbzra2tuuCCC3Trrbdq2LBhamtr02OPPaarrrpKzz77rGbOnJnEVwEACCXWPt7fn/70Jy1dulSnnXZaglsLAIhWT/v5p59+WiNGjAgoKygoSFRzASCuDI/H40l1I4BYNDQ06Kqrrur84PaqqqrSO++8ow8++EAOhyPkY3/605/qjjvu0O9+9ztNnDhRknTixAmNGTNG/fv311tvvZWU1wAACK0nffzJkyfVq5e5yOYf/vAHXXLJJXr66ad18803J6PpAIBu9KSP/+ijjzR06NCAsv3796u0tFRf//rX9cQTTyS07QCA7vWknw+lo6NDZ555ps466yxt3bo1EU0GAFgUjz7+xIkTuuSSS1ReXq7//u//1sGDB7Vz585ENx0AYEFP+vkVK1Zo1qxZ2r59u774xS8mq8kAEFek8EPaWrt2rfr376/rrrsuoHzWrFnav39/xCCotWvX6vzzz+8MnpKknJwczZw5U7///e/V3NycsHYDALrXkz7eGzwFALCnnvTxwcFTklRUVKSSkhLt27cv7m0FAESvJ/18KL1799agQYOUk8NC+gCQavHo4x966CG1tbXpgQceSFQzAQAxive5PACkG0YYkbZ27typf/qnf+pyA2306NGdxyM91lsv1GPfeeedOLYUABCtnvTxAAB7i3cf//e//1179+4lfR8A2EQ8+vmTJ0/qxIkT2r9/v+677z799a9/1d13352Q9gIArOtpH79r1y7df//9+tnPfqb+/fsnrJ0AgNjE41x+6tSpcjgcys/Pl9Pp5F4+gLTC1C2krdbWVp111lldyvPz8zuPR3qst160jwUAJF5P+ngAgL3Fs48/ceKEvvnNb6p///767ne/G7c2AgBiF49+vrq6Wq+88ookacCAAXr++ed11VVXxbehAICo9aSPP3nypG655RY5nU5VV1cnrI0AgNj1pJ8fNmyY5s+frwkTJmjAgAHasWOHHnroIU2YMEHbtm3TmDFjEtZuAIgXAqiQ1gzDiOlYTx8LAEg8+mkAyFzx6OM9Ho+++c1vqrGxUS+++KKGDx8er+YBAHqop/38o48+qk8++UQtLS1auXKlrr/+ej3zzDO68cYb49lMAEAMYu3jf/KTn+i9997Tr3/960Q0CwAQJ7H281OmTNGUKVM698vLy3XVVVdp1KhRWrhwodatWxfXdgJAIhBAhbRVUFAQMtK5ra1NkkKuMBWPxwIAEo9+GgAyVzz6eI/Ho1tvvVUrV67UM888o+nTp8e9nQCA2MSjnz/33HM7t//5n/9ZV155pe644w5df/316tWrV/waCwCISqx9/AcffKCFCxfqoYce0imnnKJPPvlEkrmi7MmTJ/XJJ58oNzdXffv2TVjbAQDdi/d9+dLSUn35y1/Wm2++GZf2AUCicccBaWvUqFH685//rBMnTgSU79ixQ5J04YUXRnyst160jwUAJF5P+ngAgL31tI/3Bk89/fTTeuKJJzRz5syEtRUAEL1EnMt/6Utf0qFDh/Txxx/HpY0AgNjE2sf//e9/12effaba2lp94Qtf6Pzatm2b/vznP+sLX/iC7rnnnoS3HwAQWSLO5T0eD5MgAKQNeiukrWuuuUZHjhzRiy++GFD+zDPPqKioSOPHj4/42HfffVdvvfVWZ9mJEye0cuVKjR8/XkVFRQlrNwCgez3p4wEA9taTPt7j8ei2227T008/rf/4j//QrFmzEt1cAECU4n0u7/F49Prrr2vQoEEqKCiIZ1MBAFGKtY8fO3asNm/e3OVrzJgxKi0t1ebNm/Wd73wnGS8BABBBvM/ld+/erW3btmnChAnxbCYAJAwp/JC2rrzySl1++eX69re/rcOHD+ucc87R6tWrtWHDBq1cuVIOh0OS9M1vflPPPPOM/va3v+mMM86QJN1yyy1avny5rrvuOj300EMaOnSofvrTn+ovf/mLNm7cmMqXBQBQz/p4SVqzZo0kc4ajJP3hD39Q//79JUk1NTVJfjUAAH896eNnz56tJ598UrfccotGjRoVsAR8bm6uLrroopS8JgCAT0/6+enTp2vMmDEaO3asCgoKtH//fq1YsUKvv/66li9frpwcbmUCQCrF2scPGjRIFRUVXZ5v0KBBOnHiRMhjAIDk68m5/OTJk1VeXq7Ro0drwIAB2rFjh374wx/KMAz94Ac/SOXLAgDLuOuAtOZyuTR//nwtXLhQbW1tGjFihFavXq0bbrihs47b7Zbb7ZbH4+ksy83N1aZNmzRnzhzdeeedOnr0qMaOHav169dr0qRJqXgpAIAgsfbxknTdddcF7C9fvlzLly+XpC51AQDJF2sf/5vf/EaS9NRTT+mpp54KeM4zzjhDe/bsSUr7AQCRxdrPX3rppVqzZo3+/d//XYcPH9agQYP0xS9+US+//LKuuuqqVLwUAECQntyvAQDYX6z9/KhRo/T8889r6dKl+uyzzzR06FB95Stf0b333qvzzjsvFS8FAKJmeDiDBQAAAAAAAAAAAAAAAJCleqW6AQAAAAAAAAAAAAAAAACQKgRQAQAAAAAAAAAAAAAAAMhaBFABAAAAAAAAAAAAAAAAyFoEUAEAAAAAAAAAAAAAAADIWgRQAQAAAAAAAAAAAAAAAMhaBFABAAAAAAAAAAAAAAAAyFoEUAEAAAAAAAAAAAAAAADIWgRQAQAAAAAAAAAAAAAAAMhaBFABAAAAAADAsj179sgwDK1YsSLuz71p0yZ98YtfVF5engzD0EsvvaQVK1bIMAzt2bMn7j/PX2lpqW6++eaE/ox0sGvXLi1atCjhv28AAAAAAAA7yUl1AwAAAAAAAACPx6OvfvWrOu+88/TrX/9aeXl5Ov/883XixAm98cYbKiwsTHUTs8KuXbu0ePFiVVRUqLS0NNXNAQAAAAAASAoCqAAAAAAAAJBy+/fvV1tbm6655hpddtllAceGDBmSolalVkdHhwzDUE5O11t4R48eVb9+/VLQKgAAAAAAgMxDCj8AAAAAAADo/fff16xZs3TuueeqX79+Ki4u1rRp07Rjx45uH/vxxx/rW9/6loYPH67c3FwNGTJEl156qTZu3GjpZy9atEglJSWSpLlz58owjM7Vj0Kl8KuoqNCFF16o7du3q6ysTP369dNZZ52lhx56SCdPnuysd+zYMd19990aO3asBg4cqPz8fE2cOFHr1q2z/ovpxqpVqzRx4kT1799f/fv319ixY/Xkk092Hg+XGrCiokIVFRWd+1u2bJFhGHr22Wd19913q7i4WLm5uXr//fd18803q3///tqxY4eqqqp06qmndgaZff7557r//vs1YsSIzt/9rFmz9PHHHwf8vNLSUk2dOlUbNmzQxRdfrL59+2rEiBF66qmnOuusWLFC1113nSSpsrJShmEkLF0jAAAAAACAnbACFQAAAAAAALR//34VFBTooYce0pAhQ9TW1qZnnnlG48eP1//7f/9P559/ftjHfu1rX9Pbb7+tBx54QOedd54++eQTvf3222ptbbX0s2+99VaNGTNGTqdTd955p2bMmKHc3NyIjzlw4IBuuukm3X333brvvvu0du1a3XPPPSoqKtLXv/51SdLx48fV1tamf/3Xf1VxcbE+//xzbdy4UU6nU08//XRnvVgtXLhQP/jBD+R0OnX33Xdr4MCB2rlzp/bu3Rvzc95zzz2aOHGiHnvsMfXq1UtDhw6VZAZK/fM//7P+5V/+RfPmzdOJEyd08uRJTZ8+XY2NjZozZ47+z//5P9q7d6/uu+8+VVRU6A9/+IP69u3b+dz//d//rbvvvlvz5s3TaaedpieeeELf/OY3dc4556i8vFxXXXWVlixZou9973tavny5Lr74YknS2Wef3aPfEwAAAAAAgN0RQAUAAAAAAACVl5ervLy8c9/tduuqq67SBRdcoP/4j//QT37yk7CP3bZtm2699VbddtttnWXTp0+3/LNLSkp04sQJSdLpp5+uCRMmdPuY1tZWNTQ06Etf+pIkafLkydqyZYtWrVrVGRg1cOBAPf300wGv6bLLLtOhQ4e0bNmyHgVQ7d69W0uWLNFNN92klStXdpZffvnlMT+nZAYrvfDCC13KOzo6tHDhQs2aNauz7LnnntOGDRv04osvyul0dpaPGTNGl1xyiVasWKFvf/vbneUHDx7Utm3bdPrpp0sy/+abNm3SqlWrVF5eriFDhujcc8+VJI0cOdLS3wEAAAAAACATkMIPAAAAAAAAOnHihJYsWaKRI0fqlFNOUU5Ojk455RS99957+vOf/xzxsV/60pe0YsUK3X///XrzzTfV0dGR8PYOGzasM3jKa/To0V1Wf3rhhRd06aWXqn///srJyVHv3r315JNPdvuauvPaa6/J7Xbrjjvu6NHzBLv22mstH3v55Zc1aNAgTZs2TSdOnOj8Gjt2rIYNG6YtW7YE1B87dmxn8JQk9enTR+edd16PVswCAAAAAADIBARQAQAAAAAAQHfddZfuvfdeXX311frNb36jt956S9u3b9eYMWP02WefRXzs888/r2984xt64oknNHHiROXn5+vrX/+6Dhw4kLD2FhQUdCnLzc0NaKvL5dJXv/pVFRcXa+XKlXrjjTe0fft23XLLLTp27FiPfv7HH38syVw9K54KCwtDlvfr108DBgwIKPvwww/1ySef6JRTTlHv3r0Dvg4cOKCDBw8G1LfyOwMAAAAAAMhGpPADAAAAAACAVq5cqa9//etasmRJQPnBgwc1aNCgiI8dPHiwli1bpmXLlumDDz7Qr3/9a82bN08fffSRNmzYkMBWR7Zy5UqdeeaZev7552UYRmf58ePHe/zcQ4YMkSQ1NTVp+PDhYev16dMn5M87ePCgBg8e3KXcv53dlQ8ePFgFBQVhf8ennnpq2HYBAAAAAADAhwAqAAAAAAAAyDAM5ebmBpT953/+p5qbm3XOOedYfp7TTz9d3/nOd7Rp0yZt27Yt3s2MimEYOuWUUwKCjw4cOKB169b1+LmrqqrkcDj0s5/9TBMnTgxbr7S0VP/zP/8TUPbXv/5Vf/nLX0IGUEVj6tSpeu655+R2uzV+/PgePZeX93+AVakAAAAAAEA2IYAKAAAAAAAAmjp1qlasWKERI0Zo9OjR+uMf/6gf/ehH3aao+9///V9VVlZqxowZGjFihE499VRt375dGzZskNPpTFLrQ5s6dapcLpduv/121dTUaN++ffrBD36gwsJCvffeez167tLSUn3ve9/TD37wA3322We68cYbNXDgQO3atUsHDx7U4sWLJUlf+9rXNHPmTN1+++269tprtXfvXv3whz/sXMGqJ2644Qb98pe/VHV1tWpra/WlL31JvXv3VlNTkzZv3qzp06frmmuuieo5L7zwQknS448/rlNPPVV9+vTRmWeeGTL9HwAAAAAAQKYggAoAAAAAAACqr69X79699eCDD+rIkSO6+OKL5XK5tGDBgoiP69Onj8aPH69nn31We/bsUUdHh04//XTNnTtXc+bMSVLrQ5s1a5Y++ugjPfbYY3rqqad01llnad68eWpqauoMcOqJ73//+zr33HP16KOP6qabblJOTo7OPfdczZ49u7POjBkztH//fj322GN6+umndeGFF+pnP/tZXH6+w+HQr3/9a9XX1+vZZ5/Vgw8+qJycHJWUlGjSpEkaNWpU1M955plnatmyZaqvr1dFRYXcbreefvpp3XzzzT1uLwAAAAAAgF0ZHo/Hk+pGAAAAAAAAAAAAAAAAAEAq9Ep1AwAAAAAAAAAAAAAAAAAgVUjhBwAAAAAAgITxeDxyu90R6zgcDhmGkaQWdc/tdivSou2GYcjhcCSxRQAAAAAAAEgkVqACAAAAAABAwjzzzDPq3bt3xK/XX3891c0McPbZZ0ds72WXXZbqJgIAAAAAACCODE+k6XQAAAAAAABAD7S2tmr37t0R65x//vk69dRTk9Si7u3YsUPHjx8Pe/zUU0/V+eefn8QWAQAAAAAAIJEIoAIAAAAAAAAAAAAAAACQtUjhBwAAAAAAAAAAAAAAACBrEUAFAAAAAAAAAAAAAAAAIGsRQAUAAAAAAAAAAAAAAAAgaxFABQAAAAAAAAAAAAAAACBrEUAFAAAAAAAAAAAAAAAAIGsRQAUAAAAAAAAAAAAAAAAgaxFABQAAAAAAAAAAAAAAACBrEUAFAAAAAAAAAAAAAAAAIGv9/7ETpDcnrBH3AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(24,6))\n", "ax = fig.gca()\n", "Ncount_mean_total.plot.errorbar(ax=ax, yerr = Ncount_std_total, fmt='ob')\n", "plt.ylim([0, 4500])\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHPCAYAAAAFwj37AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACW4UlEQVR4nOzdeVyU1f4H8M8DAzMsIg4oAuK+kBsapVKpmKlkelPUMrNSr/a76U1tuaaBJqWmZZbXbF+0zBYN9GruiGRp5m27uGbu4oKA7IvDcH5/PM4wAwMMMCvzeb9eKPM8Z86cLwMz3znPWSQhhAAREREROQU3ezeAiIiIiMzH5I2IiIjIiTB5IyIiInIiTN6IiIiInAiTNyIiIiInwuSNiIiIyIkweSMiIiJyIkzeiIiIiJwIkzciIiIiJ+JwydtHH30ESZLg6+trdHzSpEmQJKnKV3h4uMl6Vq1ahfDwcCiVSrRr1w4JCQnQaDRVymVkZGDSpEkIDAyEt7c3oqKikJycbJXYiIiIiBpKYe8GGEpPT8fzzz+PkJAQ5ObmVjnv5eWFvXv3VjlW2eLFizF//nzMnTsXQ4cOxeHDhxEfH4/09HR88MEH+nKlpaUYPHgwcnJysHLlSrRo0QKrV69GTEwM9uzZg4EDB1o+SCIiIqIGkBxpb9ORI0dCkiSo1Wps3LgRBQUF+nOTJk2qcsyUrKwstGrVCo8//jjef/99/fElS5YgPj4eR44cQdeuXQEA77zzDmbMmIEDBw4gKioKAFBWVoaIiAj4+vri0KFDVoiSiIiIqP4c5rLpunXrkJqainfeeadB9ezYsQMlJSWYPHmy0fHJkydDCIFNmzbpjyUlJaFLly76xA0AFAoFJk6ciJ9//hnp6ekNagsRERGRpTnEZdOMjAzMnj0bS5cuRatWraotV1xcjJYtW+L69esIDg7GqFGj8PLLL0OtVuvLHDlyBADQo0cPo/sGBwcjMDBQf15Xtn///lUep2fPngCAo0ePIjQ01GRbSktLUVpaqr9dXl6O7OxsBAQEQJIkM6ImIiIiqiCEQH5+PkJCQuDmVn3/mkMkb9OnT0eXLl3w1FNPVVsmIiICERER6N69OwAgNTUVb775JpKTk3H48GH9BIesrCwolUr4+PhUqUOtViMrK0t/OysryyjxMyynO1+dV199FQkJCeYFSERERGSmixcv1tiZZffk7dtvv8WWLVvw22+/1dhj9cwzzxjdHjJkCHr37o2xY8fiww8/NDpfUz2Vz9WlrKF58+bh2Wef1d/Ozc1F69atcfbsWTRp0qTa+9WXRqNBSkoKBg0aBA8PD4vX72hcLV7A9WJmvI2fq8XMeBs/a8ecn5+Pdu3a1ZpH2DV5KygowIwZM/D0008jJCQEOTk5AICbN28CAHJycuDh4WGyFw0ARo8eDR8fH/z000/6YwEBASgpKUFRURG8vb2NymdnZyMyMtKorKnetezsbAAw2Suno1QqoVQqqxxXq9Xw8/Or9n71pdFo4O3tjYCAAJf4I3G1eAHXi5nxNn6uFjPjbfysHbOuztqGX9l1wkJmZiauXbuGN954A82aNdN/ffnllygsLESzZs3w6KOP1liHEMLourBurFtaWppRuatXryIzM1N/2VVXtnI5w/saliUiIiJyBHbteWvZsiVSUlKqHF+6dClSU1Oxfft2BAYGVnv/jRs3oqioCP369dMfi4mJgUqlwpo1a9C3b1/98TVr1kCSJIwaNUp/bPTo0Zg+fToOHTqkL1tWVoZ169ahb9++CAkJsUCURERERJZj1+RNpVIhOjq6yvE1a9bA3d1df+78+fOYMGECxo8fj44dO0KSJKSmpuKtt95Ct27dMHXqVP191Wo14uPjMX/+fKjVav0ivQsXLsTUqVP1a7wBwJQpU7B69WqMGzcOS5cuRYsWLfDOO+/g5MmT2LNnj7XDJyIiIqozu09YMIefnx+CgoKwYsUKXLt2DVqtFm3atMHMmTPx4osvVhkTFxcXhyZNmmD16tVYvnw5WrZsiblz5yIuLs6onFKpRHJyMubMmYOnn34aRUVF6NWrF7Zv387dFYiIiMghOWTytmbNGqxZs0Z/u1mzZkhMTKxTHTNnzsTMmTNrLRcUFIS1a9fWtYlEREREduEwOywQERERUe2YvBERERE5ESZvRERERE6EyRsRERGRE2HyRkREROREmLwREREROREmb0REREROhMkbERERkRNh8kZERETkRJi8ERERETkRJm9EREREToTJGxEREZETYfJGRERE5ESYvBERERE5ESZvRERERE6EyRsRERGRE2HyRkREROREmLwREREROREmb0REREROhMkbERERkRNh8kZERETkRJi8ERERETkRJm9EREREToTJGxEREZETYfJGRERE5ESYvBERERE5ESZvRERERE6EyRsRERGRE2HyRkREROREmLwREREROREmb0REREROxOGSt48++giSJMHX17fKuV9//RX33XcffH194e/vj9jYWJw5c8ZkPatWrUJ4eDiUSiXatWuHhIQEaDSaKuUyMjIwadIkBAYGwtvbG1FRUUhOTrZ4XERERESW4FDJW3p6Op5//nmEhIRUOXfixAlER0fj5s2b+Oabb/DJJ5/gzz//RP/+/XH9+nWjsosXL8asWbMQGxuLnTt3Yvr06ViyZAlmzJhhVK60tBSDBw9GcnIyVq5cic2bNyMoKAgxMTFITU21aqxERERE9aGwdwMM/eMf/8CAAQOgVquxceNGo3MLFiyAUqnE1q1b4efnBwCIjIxEp06dsHz5cixbtgwAkJWVhUWLFmHatGlYsmQJACA6OhoajQbx8fGYPXs2unbtCgD4+OOPceTIERw4cABRUVEAgEGDBiEiIgJz5szBoUOHbBU6ERERkVkcpudt3bp1SE1NxTvvvFPlXFlZGbZu3YoxY8boEzcAaNOmDQYNGoSkpCT9sR07dqCkpASTJ082qmPy5MkQQmDTpk36Y0lJSejSpYs+cQMAhUKBiRMn4ueff0Z6eroFIyQiIiJqOIfoecvIyMDs2bOxdOlStGrVqsr506dPo7i4GD179qxyrmfPnti9ezdKSkqgUqlw5MgRAECPHj2MygUHByMwMFB/HgCOHDmC/v37m6wTAI4ePYrQ0FCTbS4tLUVpaan+dl5eHgBAo9GYHFvXULo6rVG3I3K1eAHXi5nxNn6uFjPjbfysHbO59TpE8jZ9+nR06dIFTz31lMnzWVlZAAC1Wl3lnFqthhACN27cQHBwMLKysqBUKuHj42OyrK4uXb3V1Wn4uKa8+uqrSEhIqHJ8165d8Pb2rvZ+DbV7926r1e2IXC1ewPViZryNn6vFzHgbP2vFXFRUZFY5uydv3377LbZs2YLffvsNkiTVWLam84bnzC1X17KG5s2bh2effVZ/Oy8vD2FhYRg6dKjRpV1L0Wg02L17N4YMGQIPDw+L1+9oXC1ewPViZryNn6vFzHgbP2vHrLuKVxu7Jm8FBQWYMWMGnn76aYSEhCAnJwcAcPPmTQBATk4OPDw8EBAQAMB0T1h2djYkSYK/vz8AICAgACUlJSgqKqrSA5adnY3IyEj97YCAgGrrBEz39OkolUoolcoqxz08PKz6S2zt+h2Nq8ULuF7MjLfxc7WYGW/jZ62Yza3TrhMWMjMzce3aNbzxxhto1qyZ/uvLL79EYWEhmjVrhkcffRQdOnSAl5cX0tLSqtSRlpaGjh07QqVSAagY61a57NWrV5GZmYnu3bvrj/Xo0aPaOgEYlSUiIiJyBHZN3lq2bImUlJQqX8OGDYNKpUJKSgoWLVoEhUKBkSNHIjExEfn5+fr7X7hwASkpKYiNjdUfi4mJgUqlwpo1a4wea82aNZAkCaNGjdIfGz16NE6cOGG0JEhZWRnWrVuHvn37mlxvjoiIiMie7HrZVKVSITo6usrxNWvWwN3d3ehcQkIC7rzzTowYMQJz585FSUkJFixYgMDAQDz33HP6cmq1GvHx8Zg/fz7UajWGDh2Kw4cPY+HChZg6dap+jTcAmDJlClavXo1x48Zh6dKlaNGiBd555x2cPHkSe/bssWboRERERPXiMOu81SY8PBz79u2Dh4cHxo4di0mTJqFjx474/vvv0bx5c6OycXFxeOutt7Bx40YMHToUq1atwty5c7F69WqjckqlEsnJyRg0aBCefvppjBw5EleuXMH27dsxcOBAW4ZHREREZBa7zzY1Zc2aNVUuewLyjgrm9ojNnDkTM2fOrLVcUFAQ1q5dW9cmEhEREdmF0/S8ERERERGTNyIiIiKnwuSNiIiIyIkweSMiIiJyIkzeiIiIiJwIkzciIiIiJ8LkjYiIiMiJMHkjIiIiciJM3oiIiIicCJM3IiIiIifC5I2IiIjIiTB5IyIiInIiTN6IiIiInAiTNyIiIiInwuSNiIiIyIkweSMiIiJyIkzeiIiIiJwIkzciIiIiJ8LkjYiIiMiJMHkjIiIiciJM3oiIiIicCJM3IiIiIifC5I2IiIjIiTB5IyIiInIiTN6IiIiInAiTNyIiIiInwuSNiIiIyIkweSMiIiJyIkzeiIiIiJwIkzciIiIiJ2L35O3333/HAw88gNatW8PLywtqtRpRUVFYt26dUblJkyZBkqQqX+Hh4SbrXbVqFcLDw6FUKtGuXTskJCRAo9FUKZeRkYFJkyYhMDAQ3t7eiIqKQnJyslViJSIiImoohb0bkJOTg7CwMDzyyCMIDQ1FYWEhvvjiCzz22GM4d+4c4uPj9WW9vLywd+9eo/t7eXlVqXPx4sWYP38+5s6di6FDh+Lw4cOIj49Heno6PvjgA3250tJSDB48GDk5OVi5ciVatGiB1atXIyYmBnv27MHAgQOtFzgRERFRPdg9eYuOjkZ0dLTRsREjRuDs2bP44IMPjJI3Nzc39OvXr8b6srKysGjRIkybNg1LlizRP4ZGo0F8fDxmz56Nrl27AgA+/vhjHDlyBAcOHEBUVBQAYNCgQYiIiMCcOXNw6NAhC0ZKRERE1HB2v2xancDAQCgUdc8td+zYgZKSEkyePNno+OTJkyGEwKZNm/THkpKS0KVLF33iBgAKhQITJ07Ezz//jPT09Hq3n4iIiMga7N7zplNeXo7y8nLcuHEDGzZswM6dO/H2228blSkuLkbLli1x/fp1BAcHY9SoUXj55ZehVqv1ZY4cOQIA6NGjh9F9g4ODERgYqD+vK9u/f/8qbenZsycA4OjRowgNDTXZ3tLSUpSWlupv5+XlAQA0Go3JsXUNpavTGnU7IleLF3C9mBlv4+dqMTPexs/aMZtbr8Mkb9OnT8f7778PAPD09MS///1v/N///Z/+fEREBCIiItC9e3cAQGpqKt58800kJyfj8OHD8PX1BSBfNlUqlfDx8anyGGq1GllZWfrbWVlZRomfYTnd+eq8+uqrSEhIqHJ8165d8Pb2Nifketm9e7fV6nZErhYv4HoxM97Gz9ViZryNn7ViLioqMqucwyRvL774IqZOnYqMjAxs2bIF//znP1FYWIjnn38eAPDMM88YlR8yZAh69+6NsWPH4sMPPzQ6L0lStY9T+VxdyhqaN28enn32Wf3tvLw8hIWFYejQofDz86v2fvWl0Wiwe/duDBkyBB4eHhav39G4WryA68XMeBs/V4uZ8TZ+1o5ZdxWvNg6TvLVu3RqtW7cGAAwfPhyAnCA98cQTaN68ucn7jB49Gj4+Pvjpp5/0xwICAlBSUoKioqIqPWDZ2dmIjIw0Kmuqdy07OxsATPbK6SiVSiiVyirHPTw8rPpLbO36HY2rxQu4XsyMt/FztZgZb+NnrZjNrdNhJyz06dMHZWVlOHPmTI3lhBBwc6sIQzfWLS0tzajc1atXkZmZqb/sqitbuZzhfQ3LEhERETkCh03eUlJS4Obmhvbt21dbZuPGjSgqKjJaPiQmJgYqlQpr1qwxKrtmzRpIkoRRo0bpj40ePRonTpwwWhKkrKwM69atQ9++fRESEmKxeIiIiIgswe6XTZ988kn4+fmhT58+CAoKQmZmJjZs2ICvv/4a//rXv9C8eXOcP38eEyZMwPjx49GxY0dIkoTU1FS89dZb6NatG6ZOnaqvT61WIz4+HvPnz4dardYv0rtw4UJMnTpVv8YbAEyZMgWrV6/GuHHjsHTpUrRo0QLvvPMOTp48iT179tjjx0FERERUI7snb1FRUfj000+xdu1a5OTkwNfXFxEREfj8888xceJEAICfnx+CgoKwYsUKXLt2DVqtFm3atMHMmTPx4osvVplZGhcXhyZNmmD16tVYvnw5WrZsiblz5yIuLs6onFKpRHJyMubMmYOnn34aRUVF6NWrF7Zv387dFYiIiMgh2T15mzx5cpUFdStr1qwZEhMT61TvzJkzMXPmzFrLBQUFYe3atXWqm4iIiMheHHbMGxERERFVxeSNiIiIyIkweSMiIiJyIkzeiIiIiJwIkzciIiIiJ8LkjYiIiMiJMHkjIiIiciJM3oiIiIicCJM3IiIiIifC5I2IiIjIiTB5IyIiInIiTN6IiIiInAiTNyIiIiInwuSNiIiIyIkweSMiIiJyIkzeiIiIiJwIkzciIiIiJ8LkjYiIiMiJMHkjIiIiciJM3oiIiIicCJM3IiIiIifC5I2IiIjIiTB5IyIiInIiTN6IiIiInAiTNyIiIiInwuSNiIiIyIkweSMiIiJyIkzeiIiIiJwIkzciIiIiJ8LkjYiIiMiJMHkjIiIiciJ2T95+//13PPDAA2jdujW8vLygVqsRFRWFdevWVSn766+/4r777oOvry/8/f0RGxuLM2fOmKx31apVCA8Ph1KpRLt27ZCQkACNRlOlXEZGBiZNmoTAwEB4e3sjKioKycnJFo+TiIiIyBLsnrzl5OQgLCwMS5YswbZt2/DZZ5+hbdu2eOyxx7Bo0SJ9uRMnTiA6Oho3b97EN998g08++QR//vkn+vfvj+vXrxvVuXjxYsyaNQuxsbHYuXMnpk+fjiVLlmDGjBlG5UpLSzF48GAkJydj5cqV2Lx5M4KCghATE4PU1FSbxE9ERERUFwp7NyA6OhrR0dFGx0aMGIGzZ8/igw8+QHx8PABgwYIFUCqV2Lp1K/z8/AAAkZGR6NSpE5YvX45ly5YBALKysrBo0SJMmzYNS5Ys0T+GRqNBfHw8Zs+eja5duwIAPv74Yxw5cgQHDhxAVFQUAGDQoEGIiIjAnDlzcOjQIVv8CIiIiIjMZveet+oEBgZCoZBzy7KyMmzduhVjxozRJ24A0KZNGwwaNAhJSUn6Yzt27EBJSQkmT55sVN/kyZMhhMCmTZv0x5KSktClSxd94gYACoUCEydOxM8//4z09HQrRUdERERUP3bvedMpLy9HeXk5bty4gQ0bNmDnzp14++23AQCnT59GcXExevbsWeV+PXv2xO7du1FSUgKVSoUjR44AAHr06GFULjg4GIGBgfrzAHDkyBH079/fZJ0AcPToUYSGhppsb2lpKUpLS/W38/LyAAAajcbk2LqG0tVpjbodkavFC7hezIy38XO1mBlv42ftmM2t12GSt+nTp+P9998HAHh6euLf//43/u///g+AfCkUANRqdZX7qdVqCCFw48YNBAcHIysrC0qlEj4+PibL6urS1VtdnYaPa8qrr76KhISEKsd37doFb2/vmkJtkN27d1utbkfkavECrhcz4238XC1mxtv4WSvmoqIis8o5TPL24osvYurUqcjIyMCWLVvwz3/+E4WFhXj++ef1ZSRJqvb+hufMLVfXsobmzZuHZ599Vn87Ly8PYWFhGDp0qNGlXUvRaDTYvXs3hgwZAg8PD4vX72hcLV7A9WJmvI2fq8XMeBs/a8esu4pXG4dJ3lq3bo3WrVsDAIYPHw5ATpCeeOIJBAQEADDdE5adnQ1JkuDv7w8ACAgIQElJCYqKiqr0gGVnZyMyMlJ/OyAgoNo6AdM9fTpKpRJKpbLKcQ8PD6v+EptTf2Eh4Osrf19QAJjohHQa1v55OiJXi5nxNn6uFjPjbfysFbO5dTrshIU+ffqgrKwMZ86cQYcOHeDl5YW0tLQq5dLS0tCxY0eoVCoAFWPdKpe9evUqMjMz0b17d/2xHj16VFsnAKOyRERERI7AYZO3lJQUuLm5oX379lAoFBg5ciQSExORn5+vL3PhwgWkpKQgNjZWfywmJgYqlQpr1qwxqm/NmjWQJAmjRo3SHxs9ejROnDhhtCRIWVkZ1q1bh759+yIkJMRq8RERERHVh90vmz755JPw8/NDnz59EBQUhMzMTGzYsAFff/01/vWvf6F58+YAgISEBNx5550YMWIE5s6di5KSEixYsACBgYF47rnn9PWp1WrEx8dj/vz5UKvVGDp0KA4fPoyFCxdi6tSp+jXeAGDKlClYvXo1xo0bh6VLl6JFixZ45513cPLkSezZs8fmPwsiIiKi2tg9eYuKisKnn36KtWvXIicnB76+voiIiMDnn3+OiRMn6suFh4dj3759eOGFFzB27FgoFArce++9WL58uT7B04mLi0OTJk2wevVqLF++HC1btsTcuXMRFxdnVE6pVCI5ORlz5szB008/jaKiIvTq1Qvbt2/HwIEDbRI/ERERUV3YPXmbPHlylQV1qxMZGWl2j9jMmTMxc+bMWssFBQVh7dq1ZtXpiBrT5AQiIiKqncOOeSMiIiKiqpi8ERERETkRJm9OTqut+P77741vExERUePD5M2JJSYCBpNnMXw40LYtsHmz3ZpEREREVsbkzUklJgJjxwLp6cbH09MBg0m6DiMvD5Ak+Wv7dvYQEhER1ReTNyek1QKzZgFCVD1n6pi9VddDmJhotyYRERE5LSZvTmj/fuDSperPO1ICV1MP4dixtkvgCgsrev4KC23zmERERNbA5M0JXbli7xaYx5wewtmzeQmViIioLpi8OaHgYHu3wDzm9BBevCiXIyIiIvMweXMSWi2QlhaAr76SoNUCrVrJlwBrY8/lQ8ztIXSWnkQiIiJHYPftsah2iYnAzJkKpKffoz8WECD3XElSzWPchg+XE72VK4HYWBs01oC5PYTO0pNIRETkCNjz5uCqG/CfnS3/36xZ7XXYenKATv/+NfcQShIQFiaXIyIiMgcnoDF5c2jGA/6NMyBdr5uXV8WxwEDT9dhrcoC7u9zjB1RN4HS333pLLkdERGQLjSH5Y/LmwMwZ8G/YI5eZWXNZe0wOiI0FNm4EQkKMj7dqBXz9NaBWA19+Cezbx1mnRERE5uCYNwdmjYH89pgcEBsLPPignDheuSKPccvMBJ55xjg5tdfYPCIiImfCnjcHZo2B/PaaHODuDkRHA488Io/Xe+ihqr2K1hybZ9irZ88ZuERERA3F5M2BmTvgv6xM/mrVqvq6HGVygD0W7uX2XEREVB+OOj6OyZsDMx7wb5ztVB7w7+4u92rVxBEmB5i7cO8PP5ixiJ0ZHGV7LiIiIkth8ubgahrwv3FjxfiwxERg+fLq63n+eccYS2bLhXu5PRcRETVGTN6cQGws8NdfZXjllR/w2WdlSEkBzp6tSMZqSlJ0Xn9d7q3bvt2+yYotF+7l9lxERNQYMXlzEu7uQI8eWRg/XiA62vjyZ21JiiF7j/cydxzfPffUkImaidtzERG5BsOxaZYcn+aok92YvDUCdU0+7Dney5YL93J7LiIi52Hu5ABzEipLJFqmJrt17KjAwYP2f9Ng8tYI1DX5sPd4L904vtBQ4+OVx/E1FLfnIiJqXKpbPSA+3rhcQ68yVTfZ7fJlYNmyO5GUZJlJdfXF5M1JGX5Cuf32mpMUU+w93is2Fjh3DkhJAdavR5VxfJbA7bmIiBqP6hKqS5fk1/LKqrvKVFvPXc2T3eQ3j+eec7frJVQmb41ATUlKbew53stw4d7K4/gsxdzZukREVJVWK29faM42hnUpW5921DYxrzJTV5nMWfez9nHkEi5dkuw62Y3JWyNR3aXI2rjCeK/YWODYsYrb27ZZvpevMkdd2JGIyFyJiUCbNsCgQcCECfL/1V2KrK7s+vWWeS2sy8Q8Q4ZXmWpb91PXzrNnzavbnp0fTN6clKluX92lyG3bKs5xvJfMsFdvwABeKiUiqkldFjhPSpKqLTtxYsPaoevN+/bbhtWTnl77up86LVuaV6c9Oz+YvDmhmrp93d3l5MQQx3tZBnvTiMgRWPu1qC4LnGu1wLPPupuVFNVVYqL83jZoEPD22w2r6/r12tf91Ln77trGkQu0aiXs2vnB5M3J1PQJx9TAzHXrrD+rk4iIGg9zFzj38vLApk0dkZ5e/WDr+iZwmzfL72n1uVRamVoNNG9ufvmaJ7vJAb3xhtaunR9M3pyIOZ9wKi//8eCD1p/VaSgvr+ITob12c7DmoFkiInuzxsKxhq+bycnm3+/zz7s1/MFNmDOn4T13OrNm1X08eHWT3UJDgRdeOIzRoy3UuHqqd/L28ssv4/LlyybPXblyBS+//LJZ9ezduxdTpkxBeHg4fHx8EBoaigcffBC//PKLUblJkyZBkqQqX+Hh4SbrXbVqFcLDw6FUKtGuXTskJCRAo9FUKZeRkYFJkyYhMDAQ3t7eiIqKQnJdfnNt6NixgFo/4Vy8CPz4o/Hx6mZ1Wrrr3ZxZPOYoLAQ8PT0watSDdW6XYTe74aDZzZvrVo8pjrrSNhG5Dku9zlau0/B1c9GihrayfgxfUytfXaqvgAAgLs68dT8rMzXZ7dSpMkRF2X9bnnonbwkJCbhUTX/m5cuXkZCQYFY97777Ls6dO4dZs2Zh27ZtWLlyJTIyMtCvXz/s3bvXqKyXlxcOHjxo9PX1119XqXPx4sWYNWsWYmNjsXPnTkyfPh1LlizBjBkzjMqVlpZi8ODBSE5OxsqVK7F582YEBQUhJiYGqampZv4kbOfGDZVZ5a5etXJDTKjL4FZrt6Hyr6UlBs1a4wWTiFxPQz40W+N1trrXTUsxd/mqyq+x5oqLq/h5mnrsDz6QOyzMWffTFIed7CbqSZIkcejQIZPn9u3bJ5RKpVn1XLt2rcqx/Px8ERQUJAYPHqw/9sQTTwgfH59a68vMzBQqlUo8+eSTRscXL14sJEkSR48e1R9bvXq1ACAOHDigP6bRaETXrl1Fnz59zGq/Tm5urgAgcnNz63Q/c928eVO88sp+Ifev1fy1bVvF9wUF1ddZUGBeudqUlQnRqlX17ZEkIcLC5HLmMGzXjRs3a33slBQh1q0TonnzmttgKlbd/devl/831cZvvzW+v2GdkiSfrykGc3+2N2/eFJs2bRI3b9Ycc2PBeBs/V4vZnHjr+7pryddZwzaEhtb+nlLfL91rZG3xVvcaa85XQYF8/8pxhIWZfm2uruwXX5huZ+Xny9q/0+bmEoq6JHr/+9//8Pvvv+tvb9u2DSdOnDAqU1xcjC+++AIdOnQwq84WLVpUOebr64uuXbvi4sWLdWkeAGDHjh0oKSnB5MmTjY5PnjwZcXFx2LRpE7reSu+TkpLQpUsXREVF6cspFApMnDgRL774ItLT0xFa1wvlVtS1axZCQwUuX5ZMjgWQJLlb+O67zauv8mXAoUPr96nC3MGt+/fLl23ro7AQ8PWVvy8oAHx85E9qs2aZ94nR1M/L1P1btZI/nenGBNY260qSgDFjjNtFRGRp1nqdtdTlSVNatQKWLgUefbT6MvVZfFeSjMvHxgL33Qc0bSrf3rat+vez6soa9oI25P3QVuqUvCUlJekvh0qSVO24Ni8vL3z66af1blRubi5+/fVX3HvvvUbHi4uL0bJlS1y/fh3BwcEYNWoUXn75ZajVan2ZI0eOAAB69OhhdN/g4GAEBgbqz+vK9jcx17dnz54AgKNHj1abvJWWlqK0tFR/Oy8vDwCg0WhMjq1rKI1GA3d34PXXb+LRRz1v/fJW9PXqZsAsX65FebkA4GHQnqr1JSVJeOYZdwByHcOHA6GhAitWaOs8EPPiRQnm/CpdvFgGjab2uuX2Gre/pKTiWEpKGQoKgAkTdJM3zN9W4rPPyuDpKfDNNxLGj696//R0gbFjga++kn8OqakSLl2qPjbDFxDDn7WpGGqj+72xxu+PI2K8jZ+rxWxOvPV5bQDMf50dNAi4cUNT4wdJw9dTc8ybJ3/Sf/XV2rOZ5cu1aNFCIDgYuOceYfRYhvEWFgLNmpnfBh3de53udVtXZ3l5xeNERWlQXi4fM3wc3c+lctlvv635/fDmzYrHt/bvtLn11il5e/LJJzFixAgIIdCnTx98+umn6N69u1EZpVKJDh06wMvLqy5VG5kxYwYKCwsRFxenPxYREYGIiAj946WmpuLNN99EcnIyDh8+DN9b3TJZWVlQKpXwMfGbq1arkZWVpb+dlZVllPgZltOdr86rr75qclzfrl274O3tbWakdeftvQNz5gTjww97IDu74mccEFCMv//9CJTKK0hNBTZtko+bGrp38GAwli27s8rx9HTg4Yfd8cILh+s0IPP8+QAA95hR7ids21b9z1SnpMQdwAgA8oSW335rgQ8/7AHdH9vIkQq4uZXXOXHTtWHLlixMnz4UQlT8serICbHAtGllOHjwCNLTfQGYnhRT2c6dO6FSyS9yRUUVMaxY8V/06pVh8lNcSYk7xo+Xy3311U6oVMDu3bvrFJOzY7yNn6vFXFO8hq9vhq8ZtTH3dba2eg8eDDZ6PTWHt/dBdO2ahYCAocjKUsH0665AYGAx2rXbDXd3OWnaubP6eA2P10VAQDEef/wYVqy4o0qdpt73TD2+4bFXXvkDK1ZEVnmc2t4PrfU7XVRUZFY5SYj6TcZNTU1FZGSkPmmylPnz52PRokVYtWoV/vnPf9ZY9ttvv8XYsWOxYsUKPPPMMwDkBPPzzz9HcXFxlfJdunRBu3btsGPHDgCAp6cn/v73v+Pdd981Knfw4EHcdddd+PLLLzF+/HiTj22q5y0sLAyZmZnw8/OrU8zm0Gg02L17N4YMGQIPDw/k5QGBgfIf35YtZbjvPmFWF69WC3TsqLjVVV71D1CSBEJD5Rk1tdVn+IkmJETgyhXj3sD61Fm53k8+KcXf/+5Zr0Stujb88IOEIUPq9LnFLLpPdbpezcuXK9pbXa+mYawZGUU4cKDiOW7sKv9ON3auFi/gejGbE6+pniBz6F67L1+u/nVWd7y6epOSTF9xAATMeT/Q3R8wfeVHd8XCnHgN38PMMW+eFvfeK/S9eeb+DE09fuX3LnnhDPPeu6z9O52Xl4fAwEDk5ubWmEvU+x1s4MCB9b1rtRISErBo0SIsXry41sQNAEaPHg0fHx/89NNP+mMBAQEoKSlBUVFRlR6w7OxsREZGGpU11buWnZ0NACZ75XSUSiWUSmWV4x4eHhZ/QrMLb2J+0nFcvuKGXQXH4ebmBm0ZEHjrQ8uOHCB5s/yLJ+n/AaRb30hSxa/l1atAcQ8Jat1VZf3fmaS/XQTgqY/l9WxM1SHdmppz8ybQbLB8rMedEop/rqizomNbLnvf34A3U+TbCjcJ7m63/nfX3XbTH9fclODTXQLKJcx7V4JXZzeIcvm2EBJEmRtEmbuJ/90hNG6AMJ5ELd36oaxcCahUHrh+vR5PQjUMx154eHhgyxZg/Piq4zcuX5YwfrxCf1w3Ps7wV0X3e2ON3yFHxngbP1eLuaZ4K//Nm/tj8fAA/v3vij04DV9jKg+jOXjQo8qYLa0WeO656saWmUpc5OO6100AeOghQKEAZs40HisXGgqsXCkhNrZqSmEq3m+/FZj1TDkkTw0kRTkkhdb0/27lkNwFAgIF7hgjkAOBzWnlKCoW8O0tILkJtB4qsGixgLtCoEwroC0vR1m5QLkABORLnv6DBCQAK1Lk9t/UCPm9SxIoBqDuBgBC/jFIBt8DKJYEpn4IBAXJ9ZVry5F9zQ3DrfQ7bW6dDep+WLduHdavX4/z589X6emSJAmnT582u66EhAQsXLgQCxcuxIsvvmj2/YQQcHOreLPWjXVLS0tD37599cevXr2KzMxMo8u8PXr0QFpaWpU6dccqXxK2l6KbZfjuyFUAbvgtq2IdEJ9bayNuPWL6ftVpElF7mZSLAMyYL+In91zjhAD8ql6JrajvqvxlrsAHKr43b4GUCqJcgtDICV15qQIK4YHO7RTYWajAgQ0eyM1RoOk9HigvVaC82APaIiXKizyhLVRCW+QJaM0bpVr5BTQlpfbJDURE9aVbOLZy8qRWy68xt/odMHx41clXdd3YvVUreQvFygu6x8bKi7/vSSnDyfNF+OvSrxg+ujPybmrxXupN5JdoUFBShvySMuSXliG3qAwtHy+Dm7IMA1ZokFdchpvacigmAK3rEPuzG4xvBwyt+H5FLUuzNu0j///ZoYpjuvcuc/yQDsDg593Uw/4v5vVO3pYtW4Z58+aha9euiIiIMNkLZa5XXnkFCxcuRHx8PF566SWz77dx40YUFRWhX79++mMxMTFQqVRYs2aNUfK2Zs0aSJKEUaNG6Y+NHj0a06dPx6FDh/Rly8rKsG7dOvTt2xchlZdWtpOmXh6IH94FR48dQ9euXeHm5o7KV7vFrU8ZFd9XHAfkc0IAZ88AH35066QkKj5vGf4uSgKTJgFt2hh0zN2qSAA4fgL4duOtW0b3k/+75x6BZs0AH9+KRRF17S0XgLZcQFsuUFZe8SlJWy5w/oLAgYMCcBOAWzkkNyG30U0+JumO6z6ZuZdD8tDCTSEf0zfDTUBSagGlFu4+8kjTU3nAqaMVTfWvYUZuealCTuQKlCjL9UJZnhe0eV4oy/VGWZ4XynK9gHK3Ki+YI0dWX6fhc2ELWq38Yn3lirx5cv/+jj1zisjVmZpRb0rl2ZJxccCSJVVfX3Rrv+m2Qrxi5jDmf/4T+NtoLVrfVoT03CJ8/lMJruQU40puCdJzinEltxjX80tRoql4zf3P+t9qrFN5awP3rFszOit/kC3XVLqKonWDKHODp8INHdq5Iai5BIV7xRWby+kSDv8sAeW3rsoICd5eEu65S0KnDhLc3CS4SfJ1H61WwltvARDAs89K8PQEyjTA8tcl+f1NdwlZAND1XureQ4V8/MknJXToIL/FlZeX4+yp4+b9MK2o3snbBx98gBkzZmDVqlUNasAbb7yBBQsWICYmBg888IDRJVAA6NevH86fP48JEyZg/Pjx6NixIyRJQmpqKt566y1069YNU6dO1ZdXq9WIj4/H/PnzoVarMXToUBw+fBgLFy7E1KlT9cuEAMCUKVOwevVqjBs3DkuXLkWLFi3wzjvv4OTJk9izZ0+D4rKkJioPPBHVBttuHMXwqDYN6qrVDgC+Xij/Yde03Mgbk02/2Wu1QNu/AznVfIKTJOCPM/IWXHVJFrRaedHb6/VeKFJAUpTDzUPubn/7PS0GDNKioLQM+SUa5JeUIa+k4vs/jmmwe18Z3FQauHmXwt3nJty9SyG5C7gp5U+JHmrTK2gKrYSm7t64+qcvNFm+8MmS/9dkNoEos3+GZM4SKERkH5ZYosmw/Jo1Nff2z54t95QFB1ctI3mUwbNFHjya58NDXQiFugCHmhfiu91FKN9VezuUCjd4uWnRKrApAnyVCPDxhJ+XB5qoFPBVKuCrUsATHnh8ggKiVIFVbyowfZoC5ZpbiZrWDdC6wdRl2+qW+0hMBMbGV405WwK+SryVrD5YcbywEFg4Sv7+2e+gH/MW/zf5WGgobo0jNPHzufV+uPQJGI1525Z3rGphG6t38nb16lWMHj26wQ3YsmULAHl9Nt1EAkNCCPj5+SEoKAgrVqzAtWvXoNVq0aZNG8ycORMvvvhilZmlcXFxaNKkCVavXo3ly5ejZcuWmDt3rtHsVUAet5acnIw5c+bg6aefRlFREXr16oXt27dbZUyfI9CtMl3duAlA7iqv7sXEWmsN1bVLX8fdXfdiKEGUuSMk2N1kV38VMUBi28pJzq3EzacU7j6lUDQpgbtfMRR+xVA0LdZ/7+apRR4K4d25EMA1fZWiXILmehOUXm2Km7qva35VxuAZMnwh/+EHqcFbbulWS6/tUzgR2V5ionzJU8fw8uawYebX4+Mj/43v2ycvDVIdw9fjvlHlaNUrB3meN+AZlAfPoFwo1IVVesEybk129FUq0CbAGyH+XghpqkKwvxeCm6oQ4u+FoCYqqH094SmVY/v27Rg+vF+NEzRKzsjfKwqAslzzYjS1m4E5627qklVzE+LXXpN34KnP+6E91Tt5i4yMxOnTp6usxVZX+/btq7VMs2bNkFjHfT9mzpyJmYZ/JdUICgrC2rVr61S3s6tu3ER1YxwMmdv1bm65+pbX/WF9+SXQvHn9Lg/qxm7s3y//HJ55RkJmpgfKSj1Qlu2LUoOyuk9gZ84I/GdPCR59qgAe6gJ4BNz6al4Ad++bt14U84AIecBgeakCpZeaoeRCAEovBqD0akUyV/mFfORIBQIChuKddyQ89FDdfh6AdV7YiMgyavtgtW5d3eus8XXTXQtVqxtQhmXh5f3ZuJycA/dh5WhWqVhZvhKaDD9osn0xZZwPxgzxRYfmPmjeRKmfnFYdc9YkM/xAmpFRa/Ea1afzwFRPp6EHH6z/+6E91Tt5W7FiBSZOnIjbb7/daAYnOYe6rEhtyFTXe0PK1be8pf6w3N0r/si9vGrvkVQoJJTe8ELJOS+UnGtuUJOAe5MSeLbMhbJlLjxb5sIz5AbcVWXw6nAdXh3kKa7lJQoUn2mBl9e0wPLnW6C8xPjTalaWCuPHyzOi6hqbLXa6IKK6M+eD1Qsv1L3eyq+b7r4l8OqQAa/2GVC1zYSbp5y5nLk1AkTt44kQj2b4Y19TZJ6SrwyUF6oQFga8+5blE5XKH1DnzjW8WlJV5dfeyuraeVBdT+eyZcbl6/t+aE/1Tt4mT56MrKws9OnTBy1btkRAQIDReUmS8McffzS4gWQ99dlwt39/+Ze/tjFzJjauaFC9hqz1h2Vuj6TpRFOCNt8LxfleKD7V8tYhAY/meVC1zkazzlnwbpuNYpUGPl0v4+uLl9HqnxJKLqpRfKolCo8Ho7xYCXnsh6hXD5m1ekWJqGHM+WBVn2Ej/fsDrToXI8//MrzDr0AZbHxNUlughNv1ACyeHYB+HZqhQ3NfSJKEvOnWT1Sq62msKXGrTV06D2rq6Zw4Efj2W+Nk1WE3oK9GvZO3gIAABAYGWrIt5AQaOmauIfXaYryW4aXU6i7FmpPAhoQA6ekSNBlNsXlNUwwd2g55+QItu+XAu+M1eHW6Bs/AAni1zYJX2yw0u/cYis82R+HRUBSdCsLFi+5YtUpeW8jcy8HW6hUlooax9AemgtIybPnjMpJ+S4f76Gz9pVAhgJtX/FF8ugWKz7SA5pofNm6UEBtlfH8/P+vOfjdnv9LKPXDm7INqbufBXXcBHTo07iEk9U7ezBmrRo5NN+i1rhoyZs4e9daV4aXU6s7Xlmi+9lrFi9CAAcDmzcDMmRJuXm6Gm5ebIef7cCj8C+HV6Rp8brsMZXAuvDtmwLtjBrTFHij4IwzPv9QG2jx5oWlzZotaq1eUiBqmrh+YqpuFeuxyHr44dB6bfktH4c2KzKd9EzVO7QnB5Z9borxIXrYrLAx4y04TlMyZgGaYuOl6/+R9UKtnbufBgQONfwhJ9dPgiGoQGwscM5gtvW2bvDxIQ18oKte7ZUuZReq1NF2iWXkpwFat5OMPGkxV37xZfrExTEgBoCzHB/mH2+PqZ/cg/aMByD3YAWV5Krh7adC03xmE/iMFzWMPQxmWhfR0gbFj5UsB1dG9sAFVL0E4+swposZM98GqpkuDhn+Xw4fLSyclJgLl5QLJx69h3HsHMPzf+/HFoQsovKlF+0AfzLs/HAfm3ou9cVE4urmNPnGz1OtxfZnb07h+vZxI3X9/3Saa1fTaW5c17Zx5CEm9e96+//77WssMGDCgvtWTE7DWGAHDeu65x7w9W+2hpkGuhQZLxM2ZU3sPZ1lWE+R8H46c/V3g1eEamtx+Hl7tMuHdKQPenTJQcqkZ8g50wuzZgXjwQanKtjeGl3m/+QZ45pmq67w58swposasph4jncpjwdKvlOPxBZfRPe0MrhbnAwAUbhKGdW+JR/u2RlT7AKPZoI40ZsvaQzhqm2DgCkNI6p28RUdH1zqNWNvQRavIodX3smtjYs4LZuUetxoJCcV/tUTxXy2hUBfAL/IsfHtegqrVDage+hmlV5rincQueHqcPNO1ugV5V6yo/xIqRGR51Q0LqTr7UsA7/Ar8+5+Eh7oIV4vlNdce7dcaU+5uhyA/0xsGOtLrsS2GcNQ0bs8VhpDUO3lLSUmpciwzMxObN2/Gjz/+iNWrVzeoYUSurizbF9m7eyD3YCf49TkD317noQzOxRu//IzD+c3RxzMcMx/3Mzmb6uGH5TeKRx6xT9uJqKrKPUZLl8rLZ+ioWmfCP/qEftaottATef9th9Uvt8EDQyy/Cbq11Hdim6USUGtNrHMk9U7eqtuBYMyYMfjHP/6BHTt2ICYmpt4NI3I1S5Zo8eKLVV9NtAUq3NjbFbkHO6Bpv9No1vccvv/zOlLLr6PZsDDkfN9FP9YFaDyzqYgaI8O/xxYtbh3zK4L6vqPw7iSvYlte6o68nzsg73A7CI0CO/4D+Hg4Vw+6vSeg2fvxrc0qExZGjx6Nr776yhpVEzmd0NDqByobHn/yyXIEBBRDkkx/9BQlSvj+1RW7nxmIO1sGQ3IDmkRcRMjUVPj0uIhbWynLZQ1mUxGRfWi18hZWX34p/195JFFgi3L49f0LIVNT4d0pA0IrIe+/bZH+wSDkHugEoZH7V95+W94GSzeJwVlYa2KbNR5f1+snhPy9o7NK8nbjxg2UlpbWXpDIyZnzB//aa/L/1c0A1XF3B6ZOTaux7FtvAe1b+CA26HZcXReF0qt+cPfSIHD4/xA0/hAUzQqN7ufMs6mInElhIeDp6YFRox5EYaGcZLVtKyddEyZUJF+bN8vlPUNu4K3j+9Es+iTcPMpRckGNK5/2x43kbkY96YZ0W2k5UwJn74kU9n58a6l38nbhwoUqX6dOncK3336LefPmoV+/fpZsJ7kQHx/g5k0NNm3a7BSfgGqj2zvP1NT2yvsZRkVdwVdfaREaWrWs4SLFwcFAaboaVz+7GzdSwlGucYOqTRZCpnyPJpFnoeuFc+bZVETOassWCWPHVl1rLD0dmPh4OZr2P4mWjx7A6cwC+Co8kfVdBDK+6gdNVpMa69WN3Zo9u/qdCsg11HvMW9u2bU3ONhVCoEuXLnj77bcb1DAiZ1Z54G11U9tNLUo5erTAmDHm7vLghryfO6DoZDDUw9Lg1S4T6vuOwavddSj/iED//qY/wROR9cyd625y4L17swIEjvhdPyFhRPcQLIrthr23e1YZm1WdxrDALDVcvZO3Tz75pEryplKp0LZtW9x5551wc+P6v0SG6tJ9X9ddHspyvZHxTR/49j4P9b3H4dXhOny7fI/v/4rAoC4t9PfLy3OuzZeJnIVhT9jly1U7Nny6X4R66BG4eZRDW+yB7F3dsWx+CHy8q364MweHRLi2eidvkyZNsmAziKiudLOpKtZ5k1DwW1s00wQgeOxvuFqcj8mfHsbMwZ0we3AnbNokYebMivsPH27etltEVLPERBj9bRlx10I9+Bia9L4AACg+G4isbRHQFhiv11bXD1EcEuHa6p286eTn5+PgwYPIyspCYGAg+vXrhyZNar5uT0Qyw8urGk3NZSvvpNC/v5x0Pfhg5eNNoCm/G4u/O47PfzqPfyefQvIvedixMALlpcZrRekGQG+00x6IRM4uMVH+GzJ5mbRJMZqP+hXKkBwIAeT+0Bm5BzoCkJCSUv0kp9BQ4PLlxrvALDVcg65tLl++HCEhIbj//vvx6KOPYtiwYQgJCcGKFSss1T4iQvUz1xITKy6xPvKI/L+7O6DycMcro7rj9bE94alww9GcawiaeKDKbFQOgCaqP61W7vk2lWR5htxA8BM/QBmSA22xBzI23oncA50gSRLCwmpOvmqboe7sC8zakrMtAWKueidvn332GebMmYMBAwbgq6++wv79+/H1119j4MCB+Ne//oXPP//cku0kclm6T/amZq7VtmzAuDvCMPeOKJTlK+EZWICWj/8AZatsozJcE46ofvbvr/p3CQBena4iaPxPcPe5iZvX/HB17T0oOdPC7ORLN0O9tlnn5Lrqfdn0zTffxIQJE7Cu0loH48aNw8SJE/Hmm2/isccea3ADiVxZTZ/szd1JwavYH1fW3oMWo3+BMjQHLR46hMwtvVF8qqVROQ6AJqobU38zTSLPotngY5AkoOivFsj8T2/9Yrt1Wd3f9JAI9riRrN49bydOnMDEiRNNnps4cSKOHz9e70YRNUb16b6v7pO9jjm9ZsHBQHmhCte+6oeiU0Fw8yhH81G/wDfiglE5f3/z2kREMuNJAwL+g45BfZ+cuOX/1hrXEyMhNArExwMpKXXfXcDUkAgioAHJm5eXF7Kzs02ey87OhpeXV70bRUQyc3vDaiqnWxMOWndcT7od+X+EQXIDAmLS0PSuU9At6Hv33Q1uLpFL0f1tSZKAelgamvY5CwC4sS8c2bu6Q4IbwsKAhQtrT74a69gsso56J2/9+/fHwoULcfnyZaPjV69excsvv4wBAwY0uHFErs7c5QBqKqdbEw4AJLghe0cP5PzYEQDg3/9PNL3nTwBC/8ZSWChfjpUk+XsiMs3dHXjzLQH1/f9Dk14XIcqBzK0RyDvUQb8OKicXkDXUe8zbkiVLcNddd6Fjx44YPHgwgoODceXKFezduxceHh5IdKbN14gcVMVOCg1bNkC3Jpy8iruE3B+6oLzEA+rBx+F/918AJAjRCUDVxUWJyLQybTn2a/6Ab4/LEOUSMrf2QtFxeR+8uoxvI6qreve8devWDYcPH8aDDz6Iw4cP49NPP8Xhw4cxatQo/Pzzz+jatasl20nkkox6zRq4bEBsLHDsWMXtr19uj3/ddxsAwP/uU1idegqA8ZIh33/PJUSITCnTlmPW179j8++XoXCTsGJsb33itmVLWZ3HtxHVRYMW6e3cuTO+/PJLS7WFiEyoupOCrD6f7P38jHvwCgvbY948QD34ON7dfwpnzkj4blkn/XnuwkCurLAQ8PWVvy8oqBiLJoRAXNIRfPe/K/Bwl/DOo5G4q02Q/n733CN4qZSsqs49b2lpabhUw/S3S5cuIS0trUGNIiJjsbHAuXPyjLX16+s3c606+f9tj+y9cg/czvQ/kdvinNF5c9aTI3IVQgi8uv0Evv7vRbhJwKpHbseQrkHw8QFu3tRg06bNnHBggBMxrKNOydv333+PyMhIXLt2rdoy165dQ2RkJHbu3NngxhFRBWssG5CUJP+ff7g9cvZ3BgCohxyFd5eK6avchYGowrupp/HB92cAAEvH9ERM95a13IPI8uqUvK1evRpjx45FZGRktWUiIyPx8MMP46OPPmpw44jIeubMAQzX0c490BH5v7aGJAGBI36HsnWm/hx3YSACvvz5Al7bcRIAEDf8Njx0R5idW0Suqk7J248//ohRo0bVWu5vf/sbfvrpp/q2iYisbONG4PXXKx+VkL2nOwpPtoSkKEeL2F/g0SLXqAR3YSBXYtjT/N6m64jfdAQAMD26A6YNaG+nVhHVMXm7fv06QitvtmZCcHAwMjIy6t0oIrIerRaYPr2ak0JC5pZeKLmghpuyDC3G/hfuPiX606dO2aaNRPaWmAjoFk3wCMjHyv/+Cm25wJ2BrfCvYV3s2zhyeXVK3nx8fKrdVcHQjRs34O3tXe9GkePhwq2Nx/79wPXrNRTQuiMj8Q7czPSFokkJmsf+ArjLXRAffshxb9T4JSbKk3TS0wE3r1I0H3sYbsoylFxU49u5PZCUxPUQyb7qlLx169YNO3bsqLXc9u3b0a1bN7Pq3Lt3L6ZMmYLw8HD4+PggNDQUDz74IH755ZcqZX/99Vfcd9998PX1hb+/P2JjY3HmzBmT9a5atQrh4eFQKpVo164dEhISoNFoqpTLyMjApEmTEBgYCG9vb0RFRSE5OdmsthM5I3MufYpSD1z/9g5oiz2gDMlBQEwaAIFLlzjujRo3rVZelkcIAO5aNI/9BR7+xdDc8Mb1pEig3I2Td8ju6pS8Pfzww/j444+RmppabZmUlBR8+umneOSRR8yq891338W5c+cwa9YsbNu2DStXrkRGRgb69euHvXv36sudOHEC0dHRuHnzJr755ht88skn+PPPP9G/f39cr9SNsHjxYsyaNQuxsbHYuXMnpk+fjiVLlmDGjBlG5UpLSzF48GAkJydj5cqV2Lx5M4KCghATE1NjjK6IC7c2HuZuuVWW44PMzbdDlEvw7Z4Ovz7yByWOe6PGbP9+3XqKAgHDjkDV6gbKSxTI2Hgnyos9OXmHHEKdFul98sknsWbNGgwdOhRTp07Fgw8+iHbt2gEAzp49i02bNuHjjz9GREQEpk2bZladq1evRosWLYyOxcTEoGPHjliyZAnuvfdeAMCCBQugVCqxdetW+Pn5AZBntnbq1AnLly/HsmXLAABZWVlYtGgRpk2bhiVLlgAAoqOjodFoEB8fj9mzZ+t3f/j4449x5MgRHDhwAFFRUQCAQYMGISIiAnPmzMGhQ4fq8uNptBIT5W2VdLhwq3PTbblVw3KNeiXnA5G9pysChh6Ff/QJaDJ9ERwcVPsdiZyU7sOJb8QF+Pa4BFEu4fqmSJRl+5osR2QPdep58/T0xM6dOzF48GC8++67uP/++xEeHo7w8HDcf//9eO+993Dfffdh+/bt8PT0NKvOyokbAPj6+qJr1664ePEiAKCsrAxbt27FmDFj9IkbALRp0waDBg1Ckm6xKgA7duxASUkJJk+ebFTn5MmTIYTApk2b9MeSkpLQpUsXfeIGAAqFAhMnTsTPP/+M9PR0s2JozAzHfhjiwq3OS7flVuXttqpT8Fsb5P8mLyHS/G9/oF33Ius2kMiOgoMBz5Y5UN8n7yWXk9oFJecDTZYjspc6b48VEBCAbdu24ZdffsGuXbv0CVbr1q0xbNgw9O7du8GNys3Nxa+//qrvdTt9+jSKi4vRs2fPKmV79uyJ3bt3o6SkBCqVCkeOyFO5e/ToYVQuODgYgYGB+vMAcOTIEfQ3saO37nGOHj1a7eza0tJSlJaW6m/n5eUBADQajcmxdQ2lq9MadVdHqwVmzlTcWqTV+J1eCECSBGbNAoYPL7P4VjD2iNfebBnzyJHAV19JeOYZd1y+XPHc+vkJ5OXJiZ0QuuMSbiR3hWdQLpQhuXj6y1/w5dQ+8FTUe2tkAK73HLtavIDzxJyXBwQGegAAvthQhJZjfoGkKEfRn0HI+9l4SRBJEhBCwqBBwI0bGqNdAxwx3sJCoFkzObbK7W0oR4zX2qwds7n11ntv08jIyBoX622IGTNmoLCwEHFxcQDkS6EAoFarq5RVq9UQQuDGjRsIDg5GVlYWlEolfEz8hqrVan1dunqrq9PwcU159dVXkZCQUOX4rl27rDrTdvfu3Varu7K0tACkp99T7XkhJFy6BCxffgg9elT/s2oIW8brKGwVs1IJLF/ujgkTRgAA5s8/iF69MvDzz8H46KMeyMry0pcNaFaKsSHuSHYX+F96Hp56fxfGtCu3SDtc7Tl2tXgBx4754MFgfPhhDwAegCTwzDdH4NW+BJpsb2R+1xPGH1yF0d7AK1b8F716ZVT58OpI8ZaUuAOQ/8Z37twJlcryA5YdKV5bsVbMRUXmXdmoU/JmquerOpIk4Y8//qhL9QCA+fPn44svvsCqVauqJIdSDdd5DM+ZW66uZQ3NmzcPzz77rP52Xl4ewsLCMHToUKNLu5ai0Wiwe/duDBkyBB4eHhav35S8PPOuq7Vp0w/Dh4vaC9aBPeK1N3vEbLjsy7PP3gEfH7lXbuFC4IcfynDlinx56J57PODufgf2nryO/1v3G76/6oaxA3vh/gZsDeRqz7GrxQs4fsxJSRJee81dn5A1jfoLXu2vo1zjhuubbkczXw8Yro4VECBfddAde+WVKISGCqxYocXo0cIh4zX8Gx82bJjFe94cLV5rs3bMuqt4talT8qZWq2tMaACgoKAAv/zyS63lTElISMCiRYuwePFi/POf/9QfDwgIAGC6Jyw7OxuSJMHf319ftqSkBEVFRVV6wLKzs40SwoCAgGrrBEz39OkolUoolcoqxz08PKz6S2zt+g2FmbnzS1iYAtZqki3jdRS2jNnwYeTHrTh+333GZbVaQJkZgoHN85B6/TRe3HQMPcLUaBfYsHcDV3uOXS1ewDFj1mqB556r2LtXGZqNpnf/CQDI3tkDZZlN4RVSUT4uDliyRDLqeQOAy5cljB+vwMaN8gcfwLHire5v3LKP4Tjx2oq1Yja3zjolb/v27av2XFlZGT744AO8/PLLkCQJEyZMqEvVSEhIwMKFC7Fw4UK8+OKLRuc6dOgALy8vpKWlVblfWloaOnbsCJVKBaBirFtaWhr69u2rL3f16lVkZmaie/fu+mM9evSotk4ARmVdkW5WYno6qrxgAfK4qFat5HLUuCUmymtfXboEQOqMoEduAGHZePzd37D3xbvg4d6w8W9EtlaxJAggeWoQOOJ3SG5AwdEQFB5tBcB4otaaNaZfB+Xxv8Ds2fJMfCJbsMgr7oYNG9C1a1c8/fTTiIiIwC+//ILPP//c7Pu/8sorWLhwIeLj4/HSSy9VOa9QKDBy5EgkJiYiPz9ff/zChQtISUlBrMF6FTExMVCpVFizZo1RHWvWrIEkSUZ7s44ePRonTpwwWhKkrKwM69atQ9++fRESEgJXppuVCFSdmai7/dZbsPhkBXIsuhnH+qVFhBsyt/RCeYkCFwtzMe6lv/Dll8C+fVz/j5yH4VIf6qFHoPAvRlmOF7J3mf7QXtPiA7q13374gTsvkG00KHnbt28f+vbti4cffhh+fn7YtWsXdu7ciV69epldxxtvvIEFCxYgJiYGDzzwAH766SejL52EhAQUFRVhxIgR2L59O5KSkvDAAw8gMDAQzz33nL6cWq1GfHw83n//fcTFxSE1NRXLly/HwoULMXXqVP0abwAwZcoUdOvWDePGjcP69euxZ88ePPTQQzh58qR+3ThXFxsrb2JeOY9t1Uo+znXeGjej1eYNj+d7IWuX3Mv9282/MOn5Gxg0CGjblsvHkHPQLfXh0zUdvt0uQ5RLyNzaC+Jm/S+Fce03spV6zTZNS0vDCy+8gJ07d6Jdu3ZYv349xo8fX68GbNmyBYC8PpuprbfErXeN8PBw7Nu3Dy+88ALGjh0LhUKBe++9F8uXL0fz5s2N7hMXF4cmTZpg9erVWL58OVq2bIm5c+fqZ6/qKJVKJCcnY86cOXj66adRVFSEXr16Yfv27Rg4cGC94mmMYmPl8U9Nm8q3t20Dhg5lj5srMLy0VFnR8RAUdLgG326XETjid1z5tD/S0xUYO5aJPdmfViv//uom3fTvb/ya1b8/0KpLEaSh8vJRuQc6ojS9YpyzJAGhoeYtZq0THMy9n8k26pS8Xbx4EfHx8Vi/fj3UajXeeust/OMf/2jQoL2axtFVFhkZiT179phVdubMmZhpuC1ANYKCgrB27Vqz2+CqDF/0Bgxg4tZY+PiYHsejU1tPQvbu7lCFZcOjWRGaDT6G7B099eN/HnyQvydkH0ZjNG+pvCuMJAl0fuwPnM4vQ8mlZsg90FFfVjcsRFdeq5V7lWsb/3vPPQI7d1ovLiKdOiVvnTt3xs2bNxETE4M5c+agSZMmJgf869x+++0NbiAR2U9tq8iLUg9kbu2FoEd+QpOIiyg+FYTi00H6vR+jo23STCI93RjNykmWblcYXa/wukPncTo/G55u7ij7by9AVIwiatVKHs+rS/R043/HjtUtYF1RL8f/kj3UKXnT7Siwfft2k5c4dYQQkCQJWo5ebjRq66Ghxqm2GccAUHoxAHmH26Fpn7NQD0vD5Y/VEKUeHP9DNlfdGE3AeFZo7/5FWLr9BAAgbkQ4Jr7iXeMlVqBi/O/MmcaTFwwTPRfaaIDsrE7J26effmqtdhCRA6qpx8FQ7v4u8O6YAQ91IZoNOo7sHT3N2vuxpMQdnp7ysIuCAlh0AVFyPTWN0QR0s0IFpn/6PxTd1KJPOzUe69cGbm7m9RJz/C85ijolb0888YS12kFEDkrX41B5DJEhUeaOrO090PJR+fKpT2YI+vevupk3kTWZ09vr2+sCjmdnwcvDHa+P7Qk3t7ot7+Hnx6sQZH9cWZOIahUbC5w7B6SkAOvXAwkJck+c4fp/pZcCkP9rGwBA4PD/oVRbZp/GksuqrbfX3a8IzaKPAwBeiOmCNgHs6iXnxOSNiMzi7i5fWnrkEWDBArk3LjTUuIzPX+Fo5umF7NJivL7zZK11lhvsbf/991zklxpGN0bT9O6MAgFDj8BNqcWdbdV4PKqtjVtHZDlM3oioXir3xqWkAGdPKbByorx475oD5/DbhRvV3j8pScI//zlYf3v4cC7ySw1T064w3l2uwqvDdbhLblg6pkedL5cSORImb0RUb4a9cdHR8u0BnZtjzO2tIAQQl3QEZdryKvdLTATGj3dHdrbK6LhuOQcmcFRfujGahr3CkqcGgUOPAgBm3NsBHZr72ql1RJbB5I2ILO7F4eFo6uWBY1fy8NnB80bnjJdzMO790A0Enz2bl1DJfFqtvLeubo/dBx807hWe/OZJSN6laBfog+nRHezcWtsy/Dvi0ITGg8kbEVlcgK8SL8SEAwBW7P4T1/JK9OcqlnMwfdlKt8n3/v02aCg5vcRE+XL7oEHAhAnQ77G7ebPcG9z1nhzsvSh/gFg0qjtUHq6zrkdiImCwnTeHJjQiTN6IyCrG3xmG3q39UVBahpe3HtMfN3fxXi7yS7XR7aZQeQkb3eX3Dd+W48WkNAgBjO4dirs7us7yNbqfjeGCwgCHJjQWTN6IyCrc3CQsGtUdbhLw3f+u4Ps/rwOofTkHHXPLkWuqbTcFAHju3Qs4ejkPTb08EPfAbbZtoB2Z87Ph0ATnxuSNiKymW0hTPHFXWwDAgs1HUFqmNVjOwfRKp5IEhIXJyz4QVae23RQkVSlEd3m5mueHdUGgrxIAkJdXsUbh9u2NM4Exb6cJDk1wZkzeiMiqnh3SGS2aKHEuqwgf/3DWaDkHwDiB4ybfZK7aLqv7D/gT7qoyBKv8MKFPawCuMwaMQxMaPyZvRGRVTVQemHu/PHnh7b1/4VpeCWJjga++0kKtLjEq26qVvMxDbKw9WkrOpKbL6p5BufCNuAAAmBzRDe5ukkuNAePQhMaPyRsRWd2oXqHo3dofRTe1eG2HfClr9GiBt99O1pfZtg04e5aJG5mn+t0UBJrddxSSBIhzIfj739QuNwas5p0mODShMWDyRkRW5+Ym4aWR3QAA3/56Sb/zgpvBK9CAAbxUShUKCyvGphUWVj1f3W4KPl3ToWp1A+U33fHSqNvg7u56Y8Bq2mmCQxMaByZvRGQTvcL8MTayFQAgYcsxlJebnrBAZK7KuylIHmXwjz4BABjZviOmjJd38HDFMWC6n01IiPFxDk1oHJi8EZHNzBnWBT6e7vj9Yg42/3EFKpUWN29qIATg42Pv1pEzMtxjd9KyM1A0KUVrtTdW/KOdvoyrjgGLjQWOVSyxyKEJjQiTNyKymRZ+Kjw9uBMAYPnuUyhtJGOMyL7c3YHw3iU4kH0aADDv/nAoFRXXBF15DJjhpVEOTWg8mLwRkU1NvrstWqu9kZFfin1Xqnk3JaqjN3adRImmHHe0aYaY7i2NznEMGDU2TN6IyKaUCnf8a1gXAEByuhsyC0rNul/lzccby8xAkjVk8dxjl/Ow8Vd5RkLcA7dBMtHFxjFg1JgweSMimxvRMxg9Q/1QWi5hVcrpKucrv5Fv3Ai0aVN18/HGtDaXKzO1eO5tBrtZff+9nMyZSvCEEFiy7TiEkH+verduVu3jxMYC58/L4+PWr5f/5xgwckZM3ojI5iRJwgsxnQEAX/83HX9lFOjPmXojHzfONRZXdUXVLZ57+XLF98OHA0FBQLt2xsfatgWWfHodP/yVCU93N7wQE17r47m7A9HRwCOPyP/zUik5IyZvRGQXfdqq0b1ZObTlAq/tkJd3qO6N3JSaFletbY0wcgw1LZ5bWVYWkJ1tfCz9cjlW/3gcAPDEXW0Qpva2QiuJHA+TNyKym7+1KYe7m4Rdx67hp9PZZr+R6zS2xVVdTW2L59bGp/sleDYvgCj1wFMDO1muYUQOjskbEdlNkBcwLlJeYfXFb47j0qX6LdzbmBZXdSUNed4kjzI07f8nAODGD53wv/96WKhVRI6PyRsR2dXMQR3g7emOM7k58O5ytV51NLbFVV1FQ563Jrefg8K3FJocL+T/2oYJPLkUJm9EZFfNmyjx5ID2AAD/AScAt3Kz79uYF1d1BbUtnlsdSamBXz95lnLuD52Bcjcm8ORSmLwRkd1N698eAT6e8FAXwbeHeYOgalpc1XACg26ZCXI8NS2eW5OmfU7DXVWGm9d9UXQ8lAk8uRy7J2/5+fmYM2cOhg4diubNm0OSJCxcuLBKuUmTJkGSpCpf4eGmp4avWrUK4eHhUCqVaNeuHRISEqDRaKqUy8jIwKRJkxAYGAhvb29ERUUhOTnZ0mESUQ18lArMGNQRAND0rlOQFLVnW9UtrmpqqRGuCee4Km8uXxs3nxI0ueMcACB3fxdASNwdgVyOwt4NyMrKwgcffICIiAiMGjUKH330UbVlvby8sHfv3irHKlu8eDHmz5+PuXPnYujQoTh8+DDi4+ORnp6ODz74QF+utLQUgwcPRk5ODlauXIkWLVpg9erViImJwZ49ezBw4EDLBUpENZrQtzU+3H8GV1CCVgMv4GJyxaJeYWHAG28AzZvLg9yDg+Welspv2LqlRirPWNWtCceV9B1TbCzw4IPy7NMrV4BTp4D33zde6y0gQH5eRe/TcPPUovSyPwJKgvAWn1NyQXZP3tq0aYMbN25AkiRkZmbWmLy5ubmhX79+NdaXlZWFRYsWYdq0aViyZAkAIDo6GhqNBvHx8Zg9eza63vpY/vHHH+PIkSM4cOAAoqKiAACDBg1CREQE5syZg0OHDlkoSiKqjcrDHbMGd8LcxDQEDvwLH8wNw43rimoTtcpqWjNMCPmy3OzZcpLAXhrHo1s8V2f2bKBpU/n7bduAoUOBSzeKcO8b56EVwPwHu+D/PpX4XJJLsvtlU93lT0vZsWMHSkpKMHnyZKPjkydPhhACmzZt0h9LSkpCly5d9IkbACgUCkycOBE///wz0s1ZKZSILGZMZCu0DfBGduFN/OV21qxV8HV7ni5cWPOaYVwTzrkYPucDBsi3/733FLRC4O6OAZg+JpCJG7ksu/e81UVxcTFatmyJ69evIzg4GKNGjcLLL78MtVqtL3PkyBEAQI8ePYzuGxwcjMDAQP15Xdn+Jka59uzZEwBw9OhRhFYzEKO0tBSlpRUbaufl5QEANBqNybF1DaWr0xp1OyJXixdwvZiri/fpQR3w3MY0vP/9GYy/IxRNvapfvyspScIzz7jj8mXzPwBevFgGjaZ+68k1hKs9v0DDYpbv4qG//7H0AiT9Jmfns+/t4JA/R0d8jiv/HC3ZNEeM19qsHbO59TpN8hYREYGIiAh0794dAJCamoo333wTycnJOHz4MHx9fQHIl02VSiV8fHyq1KFWq5GVlaW/nZWVZZT4GZbTna/Oq6++ioSEhCrHd+3aBW9v623Rsnv3bqvV7YhcLV7A9WKuHK+bAIK93XGlqAzz1iZjRGvTS4ccPBiMZcvurPPjnT//E7Ztq/5v29pc7fkF6hdzSYk7gBEAgJ07d+KL8wLlwg09mpXjctoBXE6zcCMtyNGeY90Fp9RU69TvaPHagrViLioqMquc0yRvzzzzjNHtIUOGoHfv3hg7diw+/PBDo/M1XYatfK4uZQ3NmzcPzz77rP52Xl4ewsLCMHToUPj5+VV7v/rSaDTYvXs3hgwZAg+Pxr+SuKvFC7hezDXFq2qfgafW/44fMhR4eWJ/BPoqjc5rtcCMGbqXL/N63SRJIDQUeP75vna53OZqzy/QsJgN96QN7dkP//vtECQJWPboPegU5GvhllqGqz3HrhYvYP2YdVfxauM0yZspo0ePho+PD3766Sf9sYCAAJSUlKCoqKhKD1h2djYiIyONyprqXcu+tfuxqV45HaVSCaVSWeW4h4eHVX+JrV2/o3G1eAHXi9lUvDE9QhARdg5/XMzBBz+cx0sjuxmd//FH8zav15E/h0lYuRJQqez7s3W15xeoX8yGxd/ZLy/IO7pXKLq2ambJplmFqz3HrhYvYL2Yza3T7hMWGkoIATe3ijB0Y93S0oz71K9evYrMzEz9ZVdd2crlDO9rWJaIbEeSJPxraBcAwBc/XUB6TrHR+bpuhVTdmnDkuHx85Ekm/z2XjQNnMqFwkzD7vs72bhaRQ3Dq5G3jxo0oKioyWj4kJiYGKpUKa9asMSq7Zs0aSJKEUaNG6Y+NHj0aJ06cMFoSpKysDOvWrUPfvn0REhJi7RCIqBp3dwxAVPsA3NSW4+29p4zO1WUrpG3bgLNnmbg5qzd3y8/92MhWaB1gvfHERM7EIS6bbt++HYWFhcjPzwcAHDt2DBs3bgQADB8+HNevX8eECRMwfvx4dOzYEZIkITU1FW+99Ra6deuGqVOn6utSq9WIj4/H/PnzoVar9Yv0Lly4EFOnTtWv8QYAU6ZMwerVqzFu3DgsXboULVq0wDvvvIOTJ09iz549tv0hEJERSZLw/LDOGPPuQWz47yVMj+6IMLX85q3bEzM93fS6bpJUcVy3zAQ5n8PnsvHDX3Kvm24HDiJykOTtqaeewvnz5/W3N2zYgA0bNgAAzp49i6ZNmyIoKAgrVqzAtWvXoNVq0aZNG8ycORMvvvhilZmlcXFxaNKkCVavXo3ly5ejZcuWmDt3LuLi4ozKKZVKJCcnY86cOXj66adRVFSEXr16Yfv27dxdgcgBRLZRo3+nQOw/lYl39v2FV2PlZXx0e2KOHWucqAF13+ScHNdbe/4EAIy7o5U+cSciB0nezp07V2uZxDpuTDhz5kzMnDmz1nJBQUFYu3ZtneomItuZNbgT9p/KrNL7ptsTc9Ys48V5W7UCli4FHn3UTg0mi/j5bDZ+/CsLHu7sdSOqzKnHvBFR43dHW7n3raxcYHXKX0bnYmOBc+eAlBRg/Xr5/7NngQkTbu2DKeSB7+R83tyt63ULQ6tm7HUjMsTkjYgc3uz7OgEANv5yCRezjRex1O2Jac5WWuQcfjqThYNn2OtGVB0mb0Tk8HRj30z1vlHjoxvr9tAdYQj197Jza4gcD5M3InIKNfW+UeNx8HQWfjqTDU93N/a6EVWDyRsROQX2vjUOeXnyjGBJArZvl7c60xFC4M1bvW4P3xmGEPa6EZnE5I2InAZ735xbYiJgsNQmhg8H2raVJ5tIEuDdNgs/n5V73aYP6mC3dhI5OiZvROQ0DHvf3t7L3jdnkpgor8tXeU/a9HTdsi4CTe+Rd1N4+M4wBDdlrxtRdZi8EZFT0e1v+e2vl3Ahi71vzkCrldfjM7Ubhu6Yqk0WVGHZEGVuWDOnI+q4tCeRS2HyRkQ2UVhYMdapsLD+9US2aYYBnZtz7JsT+eEHyWgh5aoEmt4tj3XL/7010v9SYexYMIEjqgaTNyJyOrMG3xr7xt43p3DlSs3nla2zoAq7AVHmhrxDHfS9cbNnG09oICIZkzcisgnDN+Hvv2/Ym7Ku903L3jenEBxc83n/u+Sxbvl/hEFboAIgX069eBHYv9/arSNyPkzeiMjqTM0y7NhRgYMHa3lXr4Gu9+3bXznz1NHdc49Aq1byJfPKlK2yoGqTre91q6y2XjsiV8TkjYisqrpZhpcvA8uW3YmkJBPv6GaIbNNMP/P0nX3sfXNk7u7AypXy95UTuKZ3y71uBWmtoM2vOsO0tl47IlfE5I2IrKbmWYbyu/hzz7nX+xKqrvdtw3/Z++boYmOBjRuBkJCKY8rQbHi1zYLQSsj9ybjXTZKAsDCgf38bN5TICTB5IyKr2b8ftcwylHDpklTvcU13tFXjno663rfT9auEbGbYsIoe2E8+ASIfl3vdCo+0gjbPW19O1zv31ltyrx0RGWPyRkRWY+54pYaMa5ql33XhItJziutfEdlUl7tuIL08E26SBNUZ4z1MW7WSe+liY+3UOCIHx+SNiKzG3PFKDRnXdGdbNe7uGACNVuAdzjx1aIaXxxdvlnvdxkaG4tjhil63bduAs2eZuBHVhMkbEVlN//6odpahTKBVK9HgcU2zBsu7LnzzX/a+OSrDGceeLXNwNPs6RLmEjjc7ws9PHhcpBHD//bxUSlQbJm9EZDU1zTKUJHkWwxtvaBv8Zt2nnRpR7eXet3drmHmq1QL79gFffin/zwVgbSMpSTKacaybYVp4NBT/mOjDnRSI6ojJGxFZlalZhgAQGgq88MJhjB5tYipqPejGvn1z+BIum+h9S0wE2rQBBg0CJkyQ/2/bllswWZtWCzz7rLt+xrFnUC68O2ZAlAO5B+UZptxJgahumLwRkdXFxgLHjlXc3rYNOHWqDFFRlluBtV/7APRrr8ZNbTnerTTztLq15tLTwT00rezYsQCkp1d0uza9tZtC4fEQlN3w5U4KRPXA5I2IbMLw0uiAAdYZ16Qb+/b14Yu4kiv3vtW81pz8P3t+rOfGDZX+e48WufDufA1CALkHOhmV404KROZj8kZENuHjUzEo3cfHOo8R1SEAfdrJvW/v3ep9q22tOV3Pz8KFHAdnDc2alei/b3qXPB6x6HgIyrJ9jcpxJwUi8zF5I6JGZfatXRe+PHwRV3NLzO7RWbSI4+CsoWvXLISGCng2z4NPl6tyr9vBinXduJMCUd0xeSOiRiWqQwD6tFXjZlk53ks9XeceHY6Dsyx3d2DFCi38dL1uJ4OhyWwCgDspENUXkzcialQkSdLPPF3/8wV0jiipZa05YxwHZ3nd786Hb7jcBZr7Y0WvG3dSIKofJm9E1Ojc1SEAd7Rphptl5fjwh9PVrjVXHc6AtAytFkhLC8ALn52BAHBv55bQZPoB4E4KRA3B5I2IGh1JkjD7Pnnm6fpDF3DPfSXYuFFeW64uOAPSfIWFcnIsSfL3iYlAx44KJLzZC//LuQoA2PVmRa+btWYcE7kCJm9E1Cjd3TEAkW2aobSsHO+lnkFsLHDuHJCSAsTHm1cHZ0DWz+bNFevqNY36C5IEFP0ZhMtHm0KSgG+/td6MYyJXwOSNiBolSZIw69bM0y8OnUdGfgnc3YHoaHlZkJrGwXEGZMPMmSNfelY0K4RPV3ll5NwDnTiekMhCmLwRUaPVv1Mgerf2R2lZOT5IPaM/XvOeq/L/nAFZf/o9TKNOQ3IDiv5qgZvXmgLgeEIiS7B78pafn485c+Zg6NChaN68OSRJwsKFC02W/fXXX3HffffB19cX/v7+iI2NxZkzZ0yWXbVqFcLDw6FUKtGuXTskJCRAo9FUKZeRkYFJkyYhMDAQ3t7eiIqKQnJysiVDJCI7MRz7tu7QeVzPL9Wf0+25WnkcHGdAWobCvxA+3Sp63SrjeEKi+rN78paVlYUPPvgApaWlGDVqVLXlTpw4gejoaNy8eRPffPMNPvnkE/z555/o378/rl+/blR28eLFmDVrFmJjY7Fz505Mnz4dS5YswYwZM4zKlZaWYvDgwUhOTsbKlSuxefNmBAUFISYmBqmpqdYIl4hsbECnQPQK80eJphwffG+856nhOLj16+X/OQPSMprefQqSm0Dx6ea4ecW/ynmOJySqP4W9G9CmTRvcuHEDkiQhMzMTH330kclyCxYsgFKpxNatW+HnJ081j4yMRKdOnbB8+XIsW7YMgJwMLlq0CNOmTcOSJUsAANHR0dBoNIiPj8fs2bPRtWtXAMDHH3+MI0eO4MCBA4iKigIADBo0CBEREZgzZw4OHTpk7fCJyMp0675N/vQwPv/pPP5vYAcE+ir153Xj4KhhDMewKdQF+rFuOT90rlKW4wmJGsbuPW+SJEGqZfGlsrIybN26FWPGjNEnboCc+A0aNAhJSUn6Yzt27EBJSQkmT55sVMfkyZMhhMCmTZv0x5KSktClSxd94gYACoUCEydOxM8//4x03cANInJq0Z2bI+JW79uH35seakH1l5gI3PpMDADwv/uUPNbtVBBuXvWvUv6NNziekKgh7N7zZo7Tp0+juLgYPXv2rHKuZ8+e2L17N0pKSqBSqXDkyBEAQI8ePYzKBQcHIzAwUH8eAI4cOYL+Jj7+6R7n6NGjCK1mYajS0lKUllaMn8nLywMAaDQak2PrGkpXpzXqdkSuFi/gejHbOt5/RrfDtM9/w2cHz2HyXa0R4ONpk8fVaazPb1KShPHj3W/NJJXgEZgP79suAwBy9lftdQOAZs3KoNEI2zXSRhrrc1wdV4sXsH7M5tbrFMlbVlYWAECtVlc5p1arIYTAjRs3EBwcjKysLCiVSviYWERIrVbr69LVW12dho9ryquvvoqEhIQqx3ft2gVvb+/ag6qn3bt3W61uR+Rq8QKuF7Ot4hUCCPNxx8XCcsR9thd/a1NebdmiIndMmDACADB//kH06pVhsZ6ixvT8arXA9OlDIYQ7APkKStN7/pQX6j3REprrfibvt3377ygsbLxXNhrTc2wOV4sXsF7MRUVFZpVziuRNp6bLq4bnzC1X17KG5s2bh2effVZ/Oy8vD2FhYRg6dKjRpV1L0Wg02L17N4YMGQIPDw+L1+9oXC1ewPVitke8Xh2v4//W/YaDmR5Y8nh/qE30viUlSXj++YpM7ZVXohAaKrBihRajR9e/t6gxPr+pqRKysireRjxa5MKny1UIAeT+aLrXDQDuv78XBg6MsEUTbaoxPsc1cbV4AevHrLuKVxunSN4CAgIAmO4Jy87OhiRJ8Pf315ctKSlBUVFRlR6w7OxsREZGGtVbXZ2A6Z4+HaVSCaVSWeW4h4eHVX+JrV2/o3G1eAHXi9mW8Q7tFoweoWeQlp6LNT9dxAsx4UbnExOB8eMrNqfXuXxZwvjxCossIdKYnt9KE/3hf8+fAICi4yHQZDapUl6S5KVYBg1SNOoxb43pOTaHq8ULWC9mc+u0+4QFc3To0AFeXl5IS0urci4tLQ0dO3aESqUCUDHWrXLZq1evIjMzE927d9cf69GjR7V1AjAqS0TOz3DXhbUHzhmt+6bVArNmVU3cAHBngGoYLvfh2TIH3p0yIMqBnB+rruvGxY+JLMcpkjeFQoGRI0ciMTER+fn5+uMXLlxASkoKYg0+CsfExEClUmHNmjVGdaxZswaSJBmtJTd69GicOHHCaEmQsrIyrFu3Dn379kVISIjVYiIi+xh8WwtEhPmj6KYWq1P+0h/fvx+4dKn6++l2BlAoKjZfd3X9+1dsM+bfX+51KzwairJs3yplufgxkeU4RPK2fft2bNy4EVu2bAEAHDt2DBs3bsTGjRv1g/cSEhJQVFSEESNGYPv27UhKSsIDDzyAwMBAPPfcc/q61Go14uPj8f777yMuLg6pqalYvnw5Fi5ciKlTp+rXeAOAKVOmoFu3bhg3bhzWr1+PPXv24KGHHsLJkyf168YRUeMiSRLmDOsCAFh/6AIu3ZBfY7jif93pthnzDMmGV/vrEOVSpd0UBEaO/Au7d5dx8WMiC3KIMW9PPfUUzp8/r7+9YcMGbNiwAQBw9uxZtG3bFuHh4di3bx9eeOEFjB07FgqFAvfeey+WL1+O5s2bG9UXFxeHJk2aYPXq1Vi+fDlatmyJuXPnIi4uzqicUqlEcnIy5syZg6effhpFRUXo1asXtm/fjoEDB1o/cCKyi7s7BuKuDgE4cDoLK/ecwuvjIuq84v/33wNDh/ISYGws0P/EnziVBxSktUJZjjzTPywMWL5cC6XyKAYObOPyPyciS3KI5O3cuXNmlYuMjMSePXvMKjtz5kzMnDmz1nJBQUFYu3atWXUSUePxr2FdMPqdA/j210v4v4Ed0L+/L1q1kjdVNzXuDZATNd2Yt+HD5UuBK1e6do/S/lPXcSovCwo3CbkHOgIAtm2TE9vycoFt2+zcQKJGyCEumxIR2Vrv1s0wpGsQygWwYvdJ/SVAoGJwfWWVJyukpwNjx8qzVF1RebnAsh0nAADj72gDbZ48w3/AAPZIElkTkzciclnPD+0CSQK2pV1F2qVcxMbKg+orb6xSXSLiirNQCwvl5FaSgMT/XsGR9Dz4KhX4v3s62rtpRC6DyRsRuawuLZtgVC85U3t910kA8iXQc+eAlBRg/XrgzTdrTsx0s1D377dBgx2A/mfhVo5l2+Sf2ZMD2kPtU3XdSyKyDiZvROTSnrmvMxRuEr7/8zp+OiMv2u3uDkRHA488AgQFmVePK8xWNdyA3jfiAq6XFEEUK9E8u519G0bkYpi8EZFLax3gjUf6tAYALN1+AqLSbAVzZ6HWdbaqs0lMlMf3pacDkkcZ/O8+BQC4sb8jHn1Ygc2b7dxAIhfC5I2IXN7T93aEt6c7fr+Yg+/SjLvQDBeiNUWS5GUx+ve3QUPtpPLuE353noW7z01osr2R/4ec+M6dC5SVyWV8fOzYWCIXwOSNiCzOcFC7M+xE0MJPhf8b0AEAsGzHCZSWVQxyq2kWqqts+WS4+4SbVyn8+pwGAOTs7wKUu7ncuD8ie2PyRkQEYNqAdgjyU+JidjE+O3De6JxuFmrlHfNcZcsnw/F8Te/6C25KLUqvNEXRieBqyxGR9TB5IyIC4O2pwHND5W2zVu09hRuFN43Ox8YCx45V3N62DS6z5ZNuPJ9CXYAmveXENic1HIBkshwRWReTNyKiW8bc3grhLZsgr6QMq/b+VeW84aVRV1qIVjfuT33vcUjuAkV/tUDJ+UD9eVcY90fkSJi8ERHd4u4mIe6B2wAAn/90DucynWDAng24uwNPJVyHV4cMCK2EG3tv059zlXF/RI6EyRsRkYH+nZojuktzaLQCi7cdNzrn4yPPpnS1GZUabTn25sjXjMXJtii74as/5yrj/ogcCZM3IqJK4obfBoWbhN3HrmHfyQx7N8fqtFpg3z7gyy/l/yvvKLH+0AX8lVEAtY8nDnzUSX/clcb9ETkSJm9ERJV0CmqCSXe1BQAkbDlmtHRIY5OYCLRtCwwaBEyYIP/ftq18HAByim7izT1/AgCeHdIZrVp46Hsf77+fl0qJ7IHJGxGRCbPu64RAXyXOZhbi4x/O2rs5VqHbNUG3hptOerp8PDEReHP3n8gp0iC8ZROMvzPMPg0lIiNM3oiITGii8sCLw8MBAKuS/8KV3GI7t8iyKu+aYEh3bPbLOfjsJ3lpkAUjukLhzrcMIkfAv0QiomqM7h2KO9o0Q7FGi8XfHa/9Dk7EcNcEUwQENL3SIAQwqlcI7uoYWH1hIrIpJm9EZHGGA96//77qAHhnIUkSEh7sBjcJ2Pq/KzjwV6a9m2Qxte2G0OT2c1C2zIPKXYG4B7raplFEZBYmb0RkUYmJQFeD9/rhw40HwDubbiFNMbFfGwBA3KYjKNE4aSZaSU27Ibj7lsC/vzxJ4eEu4WjeRGmjVhGROZi8EZHF6AbAp6cbHzccAO+Mnh/WBUF+8uSFfyefsndzLEK3a4IkVT3XbPBRuCnLIDL9Ef9Ia9s3johqxOSNiCzCrAHws53zEqqfygMvP9gdAPD+92dw7HKe/lxhoZwASZL8vbNwdwdWrpS/N0zgVO0z4BN+FaJcwvPRPeDhYSK7IyK7YvJGRBZR6wB4AVy8KJdzRsO6tcT93VtCWy4wN/F/KNOW27tJDRYbK++OEBoq35aUGgTEpAEABoW0xdMT/ezYOiKqDpM3IrKI2gbA17WcI0r4Wzc0USnwv0u5+HC/vPabs0/OiI0Fzp0DUlKA0QnHoGhSgrYBPnh3ehd7N42IqsHkjYgsoqYB8PUp54ha+Kkwf4Q8G2PF7pNYtS6vUUzOcHcHtEHX8MuNS5Ak4I2HesLLk1snEDkqJm9kJC+vYvzO9u3O14tA9lPTAHhAPh4WJpdzZuMiW+G+24Kg0Qq8uvd3pF81/iNxxskZOUU3MTdRvlw6rX97RLZR27lFRFQTJm+k19iWeCDbqm4AvOHtt95y/r0wJUnC4lE9IEo84dkiH/73/Gl03tkmZwghMPfbNFzPL0WH5j54dkhn/bnaNqwnIvtg8kYAGu8SD2RbugHwISHGx1u1ko/HxtqnXZZ2/Dclrn/XAwDg1/cMVK2NF+91pskZ6w5dwI6jV+HhLuHNh3tB5SFn14mJQJs21W9YT0T2w+SNGvUSD2R7sbHAsWMVt7dtA86ebTyJGyBPuij+qyXy/wiDJAGBI3+Hu0+JyXKO7PiVPLyyVX6yXogJR89W/gD4YY7I0TF5o0a/xAPZnuGl0QEDnP9SaWW6SRc39nTDzYwmcPctReDffgOkcpPlHFHRzTL8c/2vuFlWjnvDW+Dv97QDwA9zRM6AyRu5xBIPRJakm5wBrTuub74d5aXuULXO1o9/c/TJGUII/GvD/3D6eiGC/JR4fWxPSLcGJvLDHJHjc5rkbd++fZAkyeTXTz/9ZFT2119/xX333QdfX1/4+/sjNjYWZ86cMVnvqlWrEB4eDqVSiXbt2iEhIQEajcYWITkMV1jigciSDCdnaG/4ImtHTwBA07tOw7uL/CnHkSdnrE75C9+lXYGHu4S3J9yOAN+KvUv5YY7I8TlN8qazZMkSHDx40Oire/fu+vMnTpxAdHQ0bt68iW+++QaffPIJ/vzzT/Tv3x/Xr183qmvx4sWYNWsWYmNjsXPnTkyfPh1LlizBjBkzbB2WXbnKEg9ElmQ4OaPoRAjy/tsWABA44nesWJPjsGP8dh+7huW75B7Clx/sjjvbGi8Lwg9zRI5PYe8G1FWnTp3Qr1+/as8vWLAASqUSW7duhZ+fvLVLZGQkOnXqhOXLl2PZsmUAgKysLCxatAjTpk3DkiVLAADR0dHQaDSIj4/H7Nmz0dVw3YxGTNeLMHasnKgZjnVpTEs8EFlabCxw331A06bAjb23IWpoIY5mX8cXF/+LcTl3I9Tfy95NNHL0ci6e+fp3AMDjUW3wSJ+qm87rPsylp5se9yZJ8nl+mCOyH6freatJWVkZtm7dijFjxugTNwBo06YNBg0ahKSkJP2xHTt2oKSkBJMnTzaqY/LkyRBCYNOmTbZqtkNwlSUeiCxN/6FGuOGTqb3RJagJrueX4u9rDiO3yHGGYJzNLMQTn/yMgtIyRLUP0O8UUZmrrNdH5MycrudtxowZGD9+PLy9vREVFYX58+fjnnvuAQCcPn0axcXF6NmzZ5X79ezZE7t370ZJSQlUKhWOHDkCAOjRo4dRueDgYAQGBurPV6e0tBSlpaX623l5eQAAjUZjlTFzujqtOR5v5Ehg4EAgMNADALBlSxnuu0/A3R2w9TBAW8TraBpTzHIIHre+15j8/Wks8RrGqnQD3p/YC2PfP4QTV/Px2Cc/Yc0Td6CJSmHXeK/mlWDiRz8js+AmbmvZBKsf6QmUa6EpNz1ldORI4KuvJDz7rDvS0ysyuNBQgTfe0GLkSGHWa0JjeY7NxXgbP2vHbG69khCmOsYdz2+//Ya1a9ciOjoaAQEB+Ouvv/D666/jzz//xHfffYdhw4bhwIEDuPvuu/Hll19i/PjxRvd/9dVX8eKLL+Ly5csIDg7Gk08+ic8++wwlJVXXZurSpQvatm2LnTt3VtuehQsXIiEhocrx9evXw9vbu+EBEzmxkhJ3jB8/AgDw1VdboVK51roSlwuBt4+5o7BMQrsmAk/dpoXSTj1VeTeB1cfccbVYQqBKYFY3Lfw8zbuvVgscOxaAGzdUaNasBF27ZrHHjciKioqKMGHCBOTm5hpdQazMaXreevfujd69e+tv9+/fH6NHj0aPHj0wZ84cDBs2TH9Oqm7kfaVz5pYzZd68eXj22Wf1t/Py8hAWFoahQ4fW+AOvL41Gg927d2PIkCHw8PCweP2OxtXiBRpXzIWFFd8PGzYMPj5VyzSmeE2JupyHxz/9L87ml2FDRnO8/VB3/LQ/xabxXsktweOf/hdXi4sQ5KfEV1P7oFWzuo3DGzmy/o/f2J/jyhhv42ftmHVX8WrjNMmbKf7+/hgxYgTee+89FBcXIyAgAIA8GaGy7OxsSJIEf39/AEBAQABKSkpQVFRUpacsOzsbkZGRNT62UqmEUqmsctzDw8Oqv8TWrt/RuFq8QOOI2bD5cjw1lXX+eE3p1SYAn/29Lx776BAOn7uBJ9b+hgmtbBfvyav5mLLmMNJzihHq74UvpvZF20AfaLXyGm1XrsgzRvv3t/74tcb6HFeH8TZ+1orZ3DqdfsKC7qqvJEno0KEDvLy8kJaWVqVcWloaOnbsCJVKBaBirFvlslevXkVmZqbR8iNERHWVlwf0bu2Pk+/1g5+HEieuFWBFmjv+dynX6o+dcjIDY949gPScYrQP9MGGf0ShbaAPEhPl/Um5XymRc3Pq5O3GjRvYunUrevXqBZVKBYVCgZEjRyIxMRH5+fn6chcuXEBKSgpiDaZMxsTEQKVSYc2aNUZ1rlmzBpIkYdSoUTaKgqjx8fGRl5kQAiYvmTZ2iYmAbqUhTUZTHF91F0SuD3JuShj/0c/44tB5WGO4cZm2HK/vPIEpaw6joLQMJRfUSJ1/F5p6eOn3K628ewL3KyVyPk5z2XTChAlo3bo17rjjDgQGBuLUqVN44403cO3aNaMELCEhAXfeeSdGjBiBuXPnoqSkBAsWLEBgYCCee+45fTm1Wo34+HjMnz8farUaQ4cOxeHDh7Fw4UJMnTrVZdZ4IyLL0iVJhrlZWa43Ln16FwKG/w/ena8hLukIdh+7hldjeyC4qflj0AoLAV9f+fuCAuPE+PiVPMxLTMPvF3MAAA/d3hqvv94NKHerdb9SSZL3K33wQS4BQuQMnCZ569mzJ77++mu89957KCgogFqtxj333IPPP/8cd955p75ceHg49u3bhxdeeAFjx46FQqHAvffei+XLl6N58+ZGdcbFxaFJkyZYvXo1li9fjpYtW2Lu3LmIi4uzdXhE1AjUlCSVl3rietLtCLvvLFR9/8S+k9dx7/JU/GNgB0wb0A7envV7Ob6eX4p3953G2oPnoC0XaKJU4NUxPTCoQwheL5fL/Pij+fuVRkfXqxlEZENOk7zNnTsXc+fONatsZGQk9uzZY1bZmTNnYubMmQ1pGhERgNo3dQfccHFPB3wxqwW+vZiGX87fwJt7/sSnB87i0b6tMf7O1ghTm7fU0MlredicdgFf//ciSjRylnZ/95Z4aWQ3tGyqMprxe/Wqee3nfqVEzsFpkjciIkdnbvIj5TfBxn9E4bu0K3h950mczyrC6pTTWJ1yGt1D/RDVPgA9Wvkj1F8Ff29PaMsF8oo1OHG5EM3uy4VX20zEflCRnUWE+eO5IZ0xoHPF1QWtwdJ6GRnmtYv7lRI5ByZvREQWUpdN3SVJwoieIbi/ezC2/nYNT75+DqrWWTiSnocj6dWv9eR3axUjhZuEod2C8Eif1ugdHIgmTeS1KQsKgJ07AcMLCnPnymPZtNWslcz9SomcC5M3IiILqW1Td0DcSpIqFgF3d5NwX3hLZHzdEm5epfhsz3WcyMjB0cu5uF5QipwiDTzc3eDl4Y6wZt7YtaEJSi4E4PTBAAQHyGtCGV4i3bwZmDix6uPXlLgB3K+UyJkweSMishDdpu5jx8pJkWECJUkCQgBvvKGFu7vpl97yYiVGRbSCj08rk+cLCwHff8jf+6lMt2HOnOoSx4o2GiZyrVrJiZvBSkpE5OCYvBERWVBsLLBxo3zZMj294nhoKPDoo4cxenTv6u9cT4bJmOFjVlf2zTeBoCDb7bBARJbF5I2IyMJiY+U10wy3oerXrww7d14BYNnkLTHReHybOYKCgEcesWgziMiGmLwREVmBu7vxmmkaTcPrNOxh+/57+TLqQw/VfJnUFM4qJXJuTN6IiGxEqwVSUyVcv173S5aVe9iGD5fvW5fEjbNKiRoHJm9ERDaQlCRh+vShyMqqeNlt1Uqe4DBsWM33NbXlFlD9DFJTOKuUqPFw6o3piYicQWIiMH68O7KyjKeI6jaF37y5+vvWtOVWXbRqJU+k4KxSIufH5I2IyIqMky/J6JwuIZszp+LY998b96jVvuVW7bZtA86eZeJG1FgweSMisqKK5EsyeV4I4+U9hg8H2raVe+uA+u83Khk83IABvFRK1JhwzBsRkRXVJ/lKTwfGjAESEuo3S1UynScSUSPB5I2IyIrqsyyH7nLqSy+ZV97UrglLlwKPPlr3xyYix8fLpkREVqTb71SSGjjjwARJkr/WrKk4phvf9uCDFn84InIQTN6IiKxIt9+pzLIJnG4G6ejRFcd049t8fOQePCHk74mo8WDyRkRkZbGxwFdfaREQUGKxOjmDlMh1ccwbEZENjB4toFDsgp/fA7h+XYEWLYBJk+TJCfVZw81wBqmul42IXAOTNyIiG3F3BwYOFPDwkG+vXCkv0itJTL6IyHy8bEpEZCexsfKYtZAQ88pzCRAiApi8ERHZVWwscOxYxe24uIpZpIaYuBGRDpM3IiI7M9z9YN48uTcuNNS4TKtWwLp1tm0XETkmjnkjInIwsbHyOm3798s7NAQHy+vFlVhusioROTEmb0REDsjdHYiOtncriMgR8bIpERERkRNhzxsRkZPgem5EBLDnjYiIiMipMHkjIiIiciK8bEpEZGe8HEpEdcGeNyIiIiInwuSNiIiIyIkweQNQUFCA2bNnIyQkBCqVCr169cJXX31l72YRERERVcExbwBiY2Nx+PBhLF26FJ07d8b69evxyCOPoLy8HBMmTLB384iIiIj0XD5527ZtG3bv3q1P2ABg0KBBOH/+PP71r3/h4YcfhrvhxoNEREREduTyl02TkpLg6+uLcePGGR2fPHkyLl++jEOHDtmpZURERERVuXzP25EjR3DbbbdBoTD+UfTs2VN//q677qpyv9LSUpSWlupv5+bmAgCys7Oh0Wgs3k6NRoOioiJkZWXBw8PD4vU7GleLF3C9mBlv4+dqMTPexs/aMefn5wMARC1rB7l88paVlYX27dtXOa5Wq/XnTXn11VeRkJBQ5Xi7du0s20AiIiJyKfn5+WjatGm1510+eQMASZLqfG7evHl49tln9bfLy8uRnZ2NgICAGuurr7y8PISFheHixYvw8/OzeP2OxtXiBVwvZsbb+LlazIy38bN2zEII5OfnIyQkpMZyLp+8BQQEmOxdy87OBlDRA1eZUqmEUqk0Oubv72/x9lXm5+fnMn8kgOvFC7hezIy38XO1mBlv42fNmGvqcdNx+QkLPXr0wPHjx1FWVmZ0PC0tDQDQvXt3ezSLiIiIyCSXT95Gjx6NgoICfPvtt0bH165di5CQEPTt29dOLSMiIiKqyuUvm95///0YMmQInnrqKeTl5aFjx4748ssvsWPHDqxbt85h1nhTKpV46aWXqlyqbaxcLV7A9WJmvI2fq8XMeBs/R4lZErXNR3UBBQUFiIuLwzfffIPs7GyEh4dj3rx5GD9+vL2bRkRERGSEyRsRERGRE3H5MW9EREREzoTJGxEREZETYfJmIwUFBZg9ezZCQkKgUqnQq1cvfPXVV3WuJz4+HpIkVbuEyZ49exAVFQVvb28EBgZi0qRJyMjIaGjz68UWMW/duhWPP/44evToAQ8PD6sskGwua8ebl5eHxYsXIzo6Gi1btoSvry969OiBZcuWoaSkxFJh1IktnuO4uDj07t0barUaKpUK7du3x5NPPonz589bIoQ6sdXfsU5xcTE6d+4MSZKwfPny+ja73mwRb3R0NCRJqvIVExNjiRDqzFbPcWFhIRYsWIDOnTtDqVQiICAAgwYNwqlTpxoaQp1YO95z586ZfH7t9Tzb4vktLS3F66+/ju7du8PHxwdBQUG4//77ceDAAUuEIBNkE0OGDBH+/v7ivffeE3v37hVTp04VAMQXX3xhdh2//fabUCqVIigoSHTr1q3K+X379gmFQiEefPBBsWvXLrFu3ToRGhoqunfvLkpKSiwZjllsEfOUKVNEp06dxEMPPSQiIyOFPX+lrR1vWlqaCAwMFM8884zYvHmzSE5OFgsXLhQqlUoMHjxYlJeXWzqkWtniOZ4+fbpYtmyZ+M9//iNSUlLE6tWrRXBwsAgKChKZmZmWDKdWtojX0HPPPSdCQkIEAPH66683tPl1Zot4Bw4cKNq3by8OHjxo9HX8+HFLhmI2W8Scn58v7rjjDhESEiL+/e9/i3379onNmzeLF154Qfz++++WDKdW1o63pKSkynN78OBB8cILLwgA4r333rN0SDWyxfP72GOPCTc3NxEXFyeSk5PFhg0bRGRkpFAoFOLQoUMWiYPJmw189913AoBYv3690fEhQ4aIkJAQUVZWVmsdGo1G9OrVS8ycOVMMHDjQ5C/MnXfeKbp27So0Go3+2I8//igAiHfeeafhgdSBrWLWarX672fMmGG35M0W8RYUFIiCgoIq93v99dcFALF///6GBVFHtnqOTdm2bZsAID7++ON6tb0+bB3voUOHhKenp9iwYYNdkjdbxVuX593abBXzrFmzhI+Pjzh9+rTF2l4f9vwbjo6OFt7e3iI3N7deba8PW8RbUlIi3N3dxcSJE42OX758WQAQM2fObHggQgheNrWBpKQk+Pr6Yty4cUbHJ0+ejMuXL+PQoUO11rF06VJkZ2dj8eLFJs+np6fj8OHDeOyxx6BQVCzfd9ddd6Fz585ISkpqWBB1ZIuYAcDNzTF+hW0Rr4+PD3x8fKoc79OnDwDg4sWL9Wh5/dnqOTalefPmAGD0u25ttoz35s2bmDJlCmbMmIE77rijQe2uL3s+v/Zii5iLiorw0UcfYdy4cWjfvr1F2l1f9nqOT58+jdTUVDz00EM23VbLFvG6ubnBzc2tyhZXfn5+cHNzg0qlqn8Aho9jkVqoRkeOHMFtt91W5Y2mZ8+e+vM1OXbsGBYtWoR3330Xvr6+1T6GYZ2VH6e2x7A0W8TsSOwZ7969ewEA3bp1q9P9GsrWMZeVlaG4uBi//fYbZs+ejc6dOyM2Nrb+AdSRLeN9+eWXUVhYiFdeeaVhjW4AW8Z7+vRpqNVqKBQKdOjQAXFxcSguLm5YAPVgi5h/+eUXFBYWolOnTnjqqafQrFkzeHp64o477sB3331nmUDMZK/XrU8++QRCCEydOrXujW4AW8Tr4eGB6dOnY+3atdi0aRPy8vJw7tw5TJs2DU2bNsW0adMsEovL77BgC1lZWSY/Yek2vc/Kyqr2vuXl5ZgyZQpiY2MxfPjwGh/DsM7Kj1PTY1iDLWJ2JPaK93//+x9ee+01jB492mTibk22jPnq1asIDg7W3+7bty9SUlJsmtjbKt7ff/8dr732GrZs2QIfHx9cv369YQ2vJ1vFe8899+Dhhx9GeHg4iouLsX37drz22mv44YcfkJKSYtPedVvEnJ6eDgBYtmwZevTogc8++wxubm544403MHLkSGzfvh3Dhg1rYCTmscfrllarxdq1axEeHo6777677o1uAFvF++abb6Jp06YYM2YMysvLAQCtW7fG3r170bFjxwZEUIHJm43UNAuypnMrVqzAqVOn8J///KdBj2OPWZi2itlR2Drec+fOYcSIEQgLC8NHH31Up/taiq1iDgwMxOHDh1FaWorjx4/jtddew6BBg7Bv3z6jpM7arB1vWVkZpkyZgocffthmb+A1scXzu2jRIqPbw4cPR9u2bfH8889j8+bNGD16tPkNtgBrx6x7M/f09MT27dvRpEkTAMCgQYPQqVMnvPLKKzZ97m39urVjxw6kp6fj9ddfr9P9LMUW8S5evBjLly/HwoUL0b9/f+Tl5eHtt9/GkCFDsGvXLvTu3btebTfE5M0GAgICTGb02dnZAEz3lgHAhQsXsGDBAixduhSenp7IyckBIL/Al5eXIycnB0qlEl5eXggICABg+pNDdnZ2tY9hLbaI2ZHYOt7z589j0KBBUCgUSE5OtvnzC9g2ZoVCoR/7dffddyMmJgbt2rXD0qVLsXLlSgtHZpot4n3rrbdw5swZfPPNN/pyeXl5AICSkhLk5OSgSZMmNtlz2Z5/wxMnTsTzzz+Pn376yabJmy1fq++66y594gYA3t7eGDhwIDZt2mTZoGpgj+f4448/hoeHBx5//HHLBWImW8R7/PhxLFiwAK+99hqef/55fR33338/unbtimeffRYpKSkND8Yi0x6oRtOmTRO+vr5Gs0CFEOLLL78UAMSPP/5o8n4pKSkCQI1fs2bNEkIIcenSJQFALF26tEo9Xbp0EUOGDLF4XDWxRcyV2XO2qS3jPXfunGjbtq1o06aNOHfunLVCqpU9nmNDrVu3FjExMZYIxSy2iPeJJ56otexvv/1m5Uhl9nx+r169KgCIuXPnWiocs9giZt2sw7/97W9V6hk/frzw8fGxeFzVsfVzfO3aNeHh4SHGjBljjXBqZYt4dXXt27evSj1jxowRgYGBFomFyZsN6JY1+Oqrr4yOx8TE1Dg9+caNGyIlJaXKV0REhGjbtq1ISUkRp06d0pfv06eP6N69u1F9Bw8eFADEu+++a53gqmGrmA3ZM3mzVbznz58Xbdu2FWFhYXZfZsAez7HOqVOnhJubm/jnP/9psXhqY4t4jx8/XqWc7s3gH//4h0hJSRH5+flWj1UI+z6/y5YtEwDEpk2bLBaPOWwVc1RUlAgICDBaJqOwsFAEBweLwYMHWyc4E2z9HOuWNdq2bZtV4qmNLeJNTU012ZFSUlIi2rVrJ3r16mWRWJi82ciQIUNEs2bNxAcffCD27t0rpk2bJgCIdevW6ctMmTJFuLu719qbUt1aOikpKUKhUIjRo0eL3bt3iy+++EKEhYXZdZFea8d87tw5sWHDBrFhwwYRExMjAOhvHz582OIx1cTa8V67dk20b99eKJVKsW7duiqLXl68eNEqcdXE2jH/8ccf4t577xXvvPOO2LFjh9i1a5d44403RKtWrUTz5s1t3vNoi9/pys6ePWuXdd6EsH6833//vRg2bJh47733xK5du8R//vMf8dRTTwl3d3dx7733Gq3jaCu2eI5//PFH4enpKfr16yeSkpLEpk2bRP/+/YWHh4c4cOCAxWOqiS1/p8PDw0VYWJhdnlcda8er1WrFnXfeKVQqlViwYIHYs2eP+Pbbb0V0dLQAID7//HOLxMHkzUby8/PFzJkzRcuWLYWnp6fo2bOn+PLLL43K6C6ZnD17tsa6avoD2bVrl+jXr59QqVRCrVaLxx9/XFy7ds1SYdSJLWL+9NNPq+3GfuKJJywYTe2sHW9tXfcvvfSShSOqnbVjvnr1qpg4caLo0KGD8Pb2Fp6enqJ9+/biH//4h7hw4YKlw6mVrf6ODdkzebN2vKdOnRLDhw8XoaGhQqlUCpVKJXr06CEWL15slw+cQtjuOd6/f78YOHCg8Pb2Ft7e3uLee++t9rKdNdkqXt2C8QsWLLBU0+vFFvHm5OSIuLg4cdtttwlvb2/RokULER0dbdEeR0kIIUBEREREToGL9BIRERE5ESZvRERERE6EyRsRERGRE2HyRkREROREmLwREREROREmb0REREROhMkbERERkRNh8kZERETkRJi8EZHZJEmq9WvhwoVWeexVq1ahY8eO8PT0hCRJyMnJAQDEx8ejdevWUCgU8Pf3t/jjvvPOO1izZo3F63UmBw4cwMKFC/U/c3NNmTIFMTExJs+lpaVBkiR4eHjgypUrJssMGDAAs2fPrmNriRo/7rBARGb76aefTB4vKyvD448/jvT0dOzfvx99+vSx6OP+/vvv6N27N6ZOnYonnngCCoUCd955J7Zu3YpRo0YhLi4O999/P5RKJe644w6LPnb37t0RGBiIffv2WbReZ7J8+XL861//wtmzZ9G2bVuz7vPbb7/hjjvuwKFDh0w+J7NmzcK///1vAMDSpUvxwgsvVCmTmpqKIUOGIC0tDV26dGlQDESNicLeDSAi59GvXz+Tx2fOnImzZ8/i/ffft3jiBgBHjx4FAEybNs2o/iNHjugfv0WLFhZ/XEdUXFwMlUoFSZKqnCsqKoK3t7cdWlXV0qVL0adPH5OJW2lpKb744gtEREQgMzMTn3zyicnkbeDAgejSpQveeOMNfPDBB7ZoNpFzsNguqUTkkj777DMBQPz973+v1/0//vhj0bNnT6FUKkWzZs3EqFGjxLFjx/TnBw4cKAAYfT3xxBOiTZs2VY6/9NJLQgghkpOTxcCBA4VarRYqlUqEhYWJ2NhYUVhYqK+3tLRUvPLKK6JLly7C09NTBAYGikmTJomMjAx9GVOP0aZNmxrj0Wq14t///reIiIgQKpVKNG3aVPTt21ds3rxZX8awrYbatGkjnnjiCf3tTz/9VAAQO3fuFJMnTxaBgYECgCguLtZvip2amiqioqKEl5eXePjhh4UQQuTm5ornnntOtG3bVnh4eIiQkBAxa9YsUVBQYPR4AMSMGTPEZ599JsLDw4WXl5fo2bOn2LJli77MSy+9VOVnAECkpKRU+zO4evWq8PDwEKtXrzZ5/quvvhIAxKpVq8SLL74oAIj9+/ebLLts2TLh4+Mj8vLyqn08IlfD5I2I6u3XX38VXl5e4s477xQlJSV1vv+SJUsEAPHII4+I7777Tnz22Weiffv2omnTpuLPP/8UQghx9OhRER8fLwCITz/9VBw8eFD89ddf4tdffxV///vfBQCxY8cOcfDgQXHx4kVx9uxZoVKpxJAhQ8SmTZvEvn37xBdffCEee+wxcePGDSGEnGDFxMQIHx8fkZCQIHbv3i0++ugjERoaKrp27SqKior08bVv31707t1bHDx4UBw8eFD8+uuvNcb02GOPCUmSxNSpU8XmzZvF9u3bxeLFi8XKlSv1ZeqavIWGhoonn3xSbN++XWzcuFGUlZXpk9OwsDCxatUqkZKSIlJTU0VhYaHo1auXCAwMFCtWrBB79uwRK1euFE2bNhX33nuvKC8vN2pH27ZtRZ8+fcQ333wjtm3bJqKjo4VCoRCnT58WQghx8eJF8fTTTwsAIjExUf9zyM3NrfZnoEvoDZNwQ0OGDBFKpVJkZ2eLv/76S0iSJCZNmmSy7KFDhwQA8Z///KemHzuRS2HyRkT1cv36ddGmTRvR/P/bu7uQqLY2DuB/xzPOTOUZY2bUBvyguUjKEaFIvLBREyUzTLpoCrSSPiiJFEHpwyIoJPqYpC8vsiwLExIMpCL8oG4sjBIjIaIyURmxQStDrbbrvTiv+3Wcmc7M5HsOU/8f7Aufvdbaa+2rhzV7PRoMoq+vz+f+IyMjQqPRiOzsbKd4X1+fUKlUYvPmzXJsOonp7Ox0aju9KzQ8PCzHbt++LQCIrq4uj8+ur68XAERjY6NTvLOzUwAQFy9elGPLli0TFovFqzU9evRIABAHDx78YTtfk7eCggKXttM7kq2trU7xyspKoVAoXN7V9Hu5e/eu0zwiIiKcdrXsdrtQKBSisrJSjp08eVIAEO/evfvhuqbt3r1baDQap0RxWm9vr1AoFMJqtTqtxdPu2tevX0VQUJAoLy/36tlEvwOeNiUin0mSBKvViv7+fjQ0NCAqKsrnMTo6OjA+Po6tW7c6xaOiopCeno7W1la/5paYmIiQkBDs3LkT165dw9u3b13aNDc3IywsDOvWrcP379/lKzExEZGRkX4fTrh37x4AoKioyK/+nmzYsMFtfOHChUhPT3eKNTc3Iz4+HomJiU5ry8rKQlBQkMva0tLSEBoaKv8dERGB8PBwvH//3u/5Dg4OwmAwuP0u7+rVq5iamkJhYaEcKywsxJcvX9DQ0ODSXqlUIiwsDAMDA37Ph+hXw+SNiHxWVlaG1tZWnDhxAmlpaX6N4XA4AACLFi1yuWc0GuX7vjKZTGhpaUF4eDiKiopgMplgMplQVVUltxkaGsLo6ChCQkKgVCqdLrvdjg8fPvj17OHhYQQHByMyMtKv/p64e0ee4kNDQ+ju7nZZV2hoKIQQLmvT6XQuY6hUKoyPj/s93+lDFbNNTU2htrYWRqMRy5cvx+joKEZHR5GRkYH58+ejpqbG7Xhqtfqn5kP0q+FpUyLySX19Pc6cOYONGzeitLTU73GmkwZ3Nb4GBweh1+v9HjslJQUpKSmQJAlPnz7FuXPnUFxcjIiICFitVuj1euh0Oty/f99t/5k7Ub4wGAyQJAl2u91jwgX8lRxNTk66xD0lrO52sDzF9Xo9NBoNrly54rbPz7xXb+n1ejx79swl3tLSIu/ouUsaHz9+jJ6eHixdutQpPjIy8o/MmyhQcOeNiLzW3d2N7du3Iz4+3uMuibeSk5Oh0Whw48YNp3h/fz/a2tqwevXqnxofAIKDg5GUlIQLFy4AgJxQ5OTkwOFwQJIkrFixwuWaWVPMl12oNWvWAAAuXbr0w3axsbHo7u52irW1tWFsbMzrtXmSk5ODN2/eQKfTuV2bt3XaZlKpVADg9XuIi4uDw+HAx48fneI1NTVQKBRoampCe3u701VXVwcALknn4OAgJiYmXBI6ot8Zd96IyCsjIyNYv349JicnUV5ejhcvXrhtZzAYYDKZ/na8sLAwVFRU4MCBAygoKMCmTZvgcDhw9OhRqNVqHDlyxK95VldXo62tDWvXrkV0dDQmJibkhCAjIwMAYLVacfPmTWRnZ2Pfvn1YuXIllEol+vv70d7ejtzcXOTl5QEAzGYzbt26hYaGBixevBhqtRpms9nts1NSUpCfn49jx45haGgIOTk5UKlUeP78OebNm4e9e/cCAPLz81FRUYHDhw/DYrGgp6cH58+fh1ar9WvNMxUXF6OxsRGrVq1CSUkJEhISMDU1hb6+Pjx48AClpaVISkryaczp9VZVVWHLli1QKpVYsmSJxx3K1NRUCCHw5MkTZGZmAvhrV/HOnTvIyspCbm6u2342mw3Xr19HZWUllEolgP8Vhvb353miX9K/fWKCiAJDe3u723pfs6+ZpyW9cfnyZZGQkCBCQkKEVqsVubm54uXLl05tfDlt2tHRIfLy8kRMTIxQqVRCp9MJi8XiUmri27dv4tSpU3I9tgULFoi4uDixa9cu8fr1a7ldb2+vyMzMFKGhoV7XebPZbCI+Pl5eU3JyslPttMnJSVFWViaioqKERqMRFotFdHV1eTxtOnvdQgi5zps7Y2Nj4tChQ3INO61WK8xmsygpKRF2u11uh//WeZtt9jyEEGL//v3CaDQKhULxt3XeJEkSsbGxYs+ePXLs7NmzAoBoamry2K+6utrlFHB+fr4wm80e+xD9jvjvsYiIaM6dPn0ax48fx8DAADQajV9jfPr0CUajETabDTt27JjjGRIFLn7zRkREc66oqAharVb+3tAfNpsN0dHR2LZt2xzOjCjwMXkjojknSZJTjbHZlyRJ//YU6f9MrVajrq5OPuzgjz///BO1tbX44w9+nk00E382JaI5l5qaiocPH3q8HxMTg97e3n9uQkREvxAmb0Q05169eoXPnz97vK9SqTye2CQioh9j8kZEREQUQPjNGxEREVEAYfJGREREFECYvBEREREFECZvRERERAGEyRsRERFRAGHyRkRERBRAmLwRERERBZD/ANTyInpJC5jLAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "f = 0.44224 ± 0.00038 A\n", "fwhm = 0.02101 ± 0.00111 A\n" ] } ], "source": [ "Brange=(0.4, 0.48)\n", "\n", "data = Ncount_mean_total.where(Brange[0]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "f = 0.28128 ± 0.00016 A\n", "fwhm = 0.00680 ± 0.00039 A\n" ] } ], "source": [ "Brange=(0.26, 0.3)\n", "\n", "data = Ncount_mean_total.where(Brange[0]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "f = 0.22367 ± 0.07911 A\n", "fwhm = 0.00031 ± 0.07203 A\n", "f = 0.22962 ± 0.00013 A\n", "fwhm = 0.00583 ± 0.00038 A\n" ] } ], "source": [ "Brange=(0.22, 0.240)\n", "\n", "from Analyser.FitAnalyser import GaussianModel, GaussianWithOffsetModel\n", "\n", "data = Ncount_mean_total.where(Brange[0]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "f = 0.21004 ± 0.00012 A\n", "fwhm = 0.00118 ± 0.00025 A\n" ] } ], "source": [ "Brange=(0.208, 0.212)\n", "\n", "data = Ncount_mean_total.where(Brange[0]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "f = 0.18586 ± 0.00021 A\n", "fwhm = 0.00085 ± 0.00025 A\n" ] } ], "source": [ "Brange=(0.183, 0.189)\n", "\n", "data = Ncount_mean_total.where(Brange[0]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "f = 0.17055 ± 0.00175 A\n", "fwhm = 0.00069 ± 0.00203 A\n" ] } ], "source": [ "Brange=(0.167, 0.173)\n", "\n", "data = Ncount_mean_total.where(Brange[0]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Brange=(0.07, 0.095)\n", "\n", "from Analyser.FitAnalyser import GaussianModel, GaussianWithOffsetModel\n", "\n", "data = Ncount_mean_total.where(Brange[0]\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'OD' (als_final_current: 1)>\n",
       "array([332.40889692])\n",
       "Coordinates:\n",
       "  * als_final_current  (als_final_current) float64 0.0903
" ], "text/plain": [ "\n", "array([332.40889692])\n", "Coordinates:\n", " * als_final_current (als_final_current) float64 0.0903" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.where(data==data.min(), drop='True')" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total_origin = copy.deepcopy(Ncount_mean_total)\n", "Ncount_mean_std_origin = copy.deepcopy(Ncount_std_total)" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "res = Ncount_mean_total_origin.to_dataset()\n", "res = res.assign(std = Ncount_mean_std_origin)\n", "res.to_zarr('./CompZ.zarr')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Ncount_mean_total = copy.deepcopy(Ncount_mean_total_origin)\n", "Ncount_mean_std = copy.deepcopy(Ncount_mean_std_origin)\n", "\n", "B = np.sqrt((Ncount_mean_total['als_final_current'] * 10.6021 + 0.3254)**2 + (0.4333**2 - 0.3254**2))\n", "Ncount_mean_total['als_final_current'] = B\n", "Ncount_std_total['als_final_current'] = B" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.patches as patches\n", "\n", "B0 = [1.2950, 1.3060, 2.1740, 2.3360, 2.5910, 2.7400, 2.8030, 2.7800, 3.3570, 4.9490, 5.0830]# , 7.1720, 7.2040, 7.1340]\n", "B0_width = [0.0090, 0.0100, 0.0005, 0.0005, 0.0010, 0.0005, 0.0210, 0.0150, 0.0430, 0.0005, 0.1300]# , 0.0240, 0.0005, 0.0360]\n", "\n", "fig = plt.figure(figsize=(24,6))\n", "ax = fig.gca()\n", "Ncount_mean_total.plot.errorbar(ax=ax, yerr = Ncount_std_total, fmt='ob')\n", "\n", "for i in range(len(B0)):\n", " rect = patches.Rectangle((B0[i] - B0_width[i], 000), B0_width[i]*2, 4000, linewidth=1, edgecolor='r', facecolor='r', alpha=0.4)\n", " ax.add_patch(rect)\n", "\n", "plt.ylim([0, 4500])\n", "plt.ylabel('NCount')\n", "plt.xlabel('Magnetic Field (G)')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "f = [0.44224, 0.28128, 0.22367, 0.22962, 0.21004, 0.18586, 0.17055, 0.0903] \n", "df = [0.00038, 0.00016, 0.01, 0.00013, 0.00012, 0.00021, 0.00175, 0]\n", "B = [(1.2950 + 1.3060)/2, 2.1740, 2.3360, 2.5910, 2.7400, (2.8030 + 2.7800)/2, 3.3570, 5.0830]# , 7.1720, 7.2040, 7.1340]\n", "\n", "# f = [0.44224, 0.28128, 0.21004, 0.18586, 0.17055, 0.0903] \n", "# df = [0.00038, 0.00016, 0.00012, 0.00021, 0.00175, 0]\n", "# B = [(1.2950 + 1.3060)/2, 2.1740, 2.3360, 2.5910, 3.3570, 5.0830]# , 7.1720, 7.2040, 7.1340]\n", "B = np.flip(B)\n", "\n", "data = xr.DataArray(\n", " data=B,\n", " dims='x',\n", " coords=dict(x=f)\n", ")\n", "\n", "data_std = xr.DataArray(\n", " data=df,\n", " dims='x',\n", " coords=dict(x=f)\n", ")\n", "\n", "fitAnalyser = FitAnalyser(\"Linear\", fitDim=1)\n", "params = fitAnalyser.guess(data, dask=\"parallelized\")\n", "# params = fitAnalyser.fitModel.make_params()\n", "fitResult = fitAnalyser.fit(data, params, dask=\"parallelized\").load()\n", "fitCurve = fitAnalyser.eval(fitResult, x=np.linspace(f[-1], f[0], 500), dask=\"parallelized\").load()\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "data.plot.errorbar(ax=ax, xerr = df, fmt='ob')\n", "fitCurve.plot.errorbar(ax=ax)\n", "\n", "# plt.ylim([0, 4500])\n", "plt.ylabel('Magnetic Field (G)')\n", "plt.xlabel('Z_offset current (A)')\n", "plt.tight_layout()\n", "plt.grid(visible=1)\n", "plt.show()\n", "\n", "slope = fitAnalyser.get_fit_value(fitResult).slope\n", "dslope = fitAnalyser.get_fit_std(fitResult).slope\n", "\n", "print('slope = %.5f \\u00B1 %.5f A'% tuple([np.abs(slope),dslope]))\n", "\n", "intercept = fitAnalyser.get_fit_value(fitResult).intercept\n", "dintercept = fitAnalyser.get_fit_std(fitResult).intercept\n", "\n", "print('intercept = %.5f \\u00B1 %.5f A'% tuple([np.abs(intercept),dintercept]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def magnetic_field_func(x, b0=0, by0=0, alpha=1):\n", " return np.sqrt( (b0**2 - by0**2) + (alpha * x + by0)**2 )\n", "\n", "data_quadratic = data\n", "\n", "fitModel_quadratic = NewFitModel(magnetic_field_func)\n", "fitAnalyser_quadratic = FitAnalyser(fitModel_quadratic, fitDim=1)\n", "params_quadratic = fitAnalyser_quadratic.fitModel.make_params()\n", "params_quadratic.add(name=\"b0\", value= 0.4333, max=np.inf, min=-np.inf, vary=True)\n", "params_quadratic.add(name=\"by0\", value= 0.33732, max=np.inf, min=-np.inf, vary=True)\n", "params_quadratic.add(name=\"alpha\", value= 10.6021, max=np.inf, min=-np.inf, vary=True)\n", "fitResult_quadratic = fitAnalyser_quadratic.fit(data_quadratic, params_quadratic).load()\n", "\n", "fitCurve_quadratic = fitAnalyser_quadratic.eval(fitResult_quadratic, x=np.linspace(0, 0.6, 100), dask=\"parallelized\").load()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_linear = data[3:]\n", "\n", "fitAnalyser_linear = FitAnalyser('Linear', fitDim=1)\n", "params_linear = fitAnalyser_linear.guess(data_linear, dask=\"parallelized\")\n", "fitResult_linear = fitAnalyser_linear.fit(data_linear, params_linear).load()\n", "\n", "fitCurve_linear = fitAnalyser_linear.eval(fitResult_linear, x=np.linspace(0, 0.5, 100), dask=\"parallelized\").load()\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "\n", "data.plot.errorbar(ax=ax, fmt='ob', yerr=data_std)\n", "# fitCurve_linear.plot.errorbar(ax=ax)\n", "fitCurve_quadratic.plot.errorbar(ax=ax)\n", "\n", "plt.ylabel('Magnetic Field (G)')\n", "plt.xlabel('Z_offset current (A)')\n", "plt.xticks(fontsize=12)\n", "plt.yticks(fontsize=12)\n", "# plt.legend(fontsize=12)\n", "#plt.xlim(-0.01, 0.04)\n", "# plt.ylim(0, 10000)\n", "plt.grid(visible=1)\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "alpha = fitAnalyser.get_fit_value(fitResult_quadratic).alpha\n", "dalpha = fitAnalyser.get_fit_std(fitResult_quadratic).alpha\n", "\n", "print('alpha = %.5f \\u00B1 %.5f G/A'% tuple([np.abs(alpha),dalpha]))\n", "\n", "beta = fitAnalyser.get_fit_value(fitResult_quadratic).by0\n", "dbeta = fitAnalyser.get_fit_std(fitResult_quadratic).by0\n", "\n", "print('beta = %.5f \\u00B1 %.5f A'% tuple([beta,dbeta]))\n", "\n", "b0 = fitAnalyser.get_fit_value(fitResult_quadratic).b0\n", "db0 = fitAnalyser.get_fit_std(fitResult_quadratic).b0\n", "\n", "print('b0 = %.5f \\u00B1 %.5f A'% tuple([b0,db0]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = plt.figure()\n", "ax = fig.gca()\n", "\n", "ax.errorbar([0], [9.46], fmt='ob', label='Theory')\n", "ax.errorbar([1], [9.52], yerr=[0.05], fmt='or', label='RF')\n", "ax.errorbar([2], [9.523], yerr=[0.019], fmt='og', label='ALS Linear')\n", "ax.errorbar([3], [9.576], yerr=[0.032], fmt='ok', label='ALS Quadratic')\n", "\n", "plt.ylabel('Alpha X (G/A)')\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = plt.figure()\n", "ax = fig.gca()\n", "\n", "ax.errorbar([1], [-0.164], yerr=[0.017], fmt='or', label='RF')\n", "ax.errorbar([2], [0.105], yerr=[0.006], fmt='og', label='ALS Linear')\n", "ax.errorbar([3], [ -0.138], yerr=[0.018], fmt='ok', label='ALS Quadratic')\n", "\n", "plt.xlim([-0.1, 3.1])\n", "plt.ylabel('Beta X (G)')\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = plt.figure()\n", "ax = fig.gca()\n", "\n", "ax.errorbar([0], [10.75], fmt='ob', label='Theory')\n", "ax.errorbar([1], [10.6021], yerr=[0.0022], fmt='or', label='RF')\n", "ax.errorbar([2], [10.73], yerr=[0.12], fmt='og', label='ALS Linear')\n", "ax.errorbar([3], [10.683], yerr=[0.028], fmt='ok', label='ALS Quadratic')\n", "\n", "plt.ylabel('Alpha Z (G/A)')\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = plt.figure()\n", "ax = fig.gca()\n", "\n", "ax.errorbar([1], [0.3254], yerr=[0.0008], fmt='or', label='RF')\n", "ax.errorbar([2], [0.337], yerr=[0.031], fmt='og', label='ALS Linear')\n", "ax.errorbar([3], [0.365], yerr=[0.014], fmt='ok', label='ALS Quadratic')\n", "\n", "plt.xlim([-0.1, 3.1])\n", "plt.ylabel('Beta Z (G)')\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = plt.figure()\n", "ax = fig.gca()\n", "\n", "ax.errorbar([0], [10.18], fmt='ob', label='Theory')\n", "ax.errorbar([1], [10.30], yerr=[0.05], fmt='or', label='RF')\n", "ax.errorbar([2], [10.447], yerr=[0.023], fmt='og', label='ALS Linear')\n", "ax.errorbar([3], [10.516], yerr=[0.038], fmt='ok', label='ALS Quadratic')\n", "\n", "plt.ylabel('Alpha Y (G/A)')\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = plt.figure()\n", "ax = fig.gca()\n", "\n", "ax.errorbar([1], [0.202], yerr=[0.015], fmt='or', label='RF')\n", "ax.errorbar([2], [0.0762 ], yerr=[0.0064], fmt='og', label='ALS Linear')\n", "ax.errorbar([3], [0.039 ], yerr=[0.019], fmt='ok', label='ALS Quadratic')\n", "\n", "plt.xlim([-0.1, 3.1])\n", "plt.ylabel('Beta Y (G)')\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = plt.figure()\n", "ax = fig.gca()\n", "\n", "ax.errorbar([1], [-0.164], yerr=[0.017], fmt='or', label='RF')\n", "ax.errorbar([3], [-0.138], yerr=[0.018], fmt='ok', label='ALS Quadratic')\n", "ax.errorbar([4], [0.417], yerr=[0.01], fmt='ob', label='RF average')\n", "\n", "plt.xlim([-0.1, 4.1])\n", "plt.ylabel('B0 X (G)')\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = plt.figure()\n", "ax = fig.gca()\n", "\n", "ax.errorbar([1], [0.440], yerr=[0.009], fmt='or', label='RF')\n", "ax.errorbar([3], [0.313], yerr=[0.071], fmt='ok', label='ALS Quadratic')\n", "ax.errorbar([4], [0.417], yerr=[0.01], fmt='ob', label='RF average')\n", "\n", "plt.xlim([-0.1, 4.1])\n", "plt.ylabel('B0 Y (G)')\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = plt.figure()\n", "ax = fig.gca()\n", "\n", "ax.errorbar([1], [0.4333], yerr=[0.0007], fmt='or', label='RF')\n", "ax.errorbar([3], [0.243 ], yerr=[0.054], fmt='ok', label='ALS Quadratic')\n", "ax.errorbar([4], [0.417], yerr=[0.01], fmt='ob', label='RF average')\n", "\n", "plt.xlim([-0.1, 4.1])\n", "plt.ylabel('B0 Z (G)')\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Test" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib notebook\n", "shotNum = \"0024\"\n", "filePath = folderPath + \"/\" + shotNum + \"/*.h5\"\n", "\n", "dataSetDict = {\n", " dskey[groupList[i]]: read_hdf5_file(filePath, groupList[i], excludeAxis = ['sweep_start_freq', 'sweep_stop_freq'])\n", " for i in [0]\n", "}\n", "\n", "dataSet = dataSetDict[\"camera_0\"]\n", "\n", "print_scanAxis(dataSet)\n", "\n", "scanAxis = get_scanAxis(dataSet)\n", "\n", "dataSet = auto_rechunk(dataSet)\n", "\n", "dataSet = imageAnalyser.get_absorption_images(dataSet)\n", "\n", "imageAnalyser.center = (135, 990)\n", "imageAnalyser.span = (250, 250)\n", "imageAnalyser.fraction = (0.1, 0.1)\n", "\n", "dataSet_cropOD = imageAnalyser.crop_image(dataSet.OD)\n", "dataSet_cropOD = imageAnalyser.substract_offset(dataSet_cropOD).load()\n", "\n", "Ncount = imageAnalyser.get_Ncount(dataSet_cropOD)\n", "Ncount_mean = calculate_mean(Ncount)\n", "Ncount_std = calculate_std(Ncount)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca()\n", "Ncount_mean.plot.errorbar(ax=ax, yerr = Ncount_std, fmt='ob')\n", "\n", "plt.ylabel('NCount')\n", "plt.tight_layout()\n", "#plt.ylim([0, 3500])\n", "plt.grid(visible=1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "l = list(np.arange(525e-3, 552e-3, 0.9e-3))\n", "# l = np.logspace(np.log10(250e-6), np.log10(500e-3), num=15)\n", "\n", "l = [round(item, 7) for item in l]\n", "#random.shuffle(l)\n", "\n", "print(l)\n", "print(len(l))\n", "np.mean(l)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pixel = 5.86e-6\n", "M = 0.6827\n", "F = (1/(0.3725*8.4743e-14)) * (pixel / M)**2\n", "NCount = 85000\n", "AtomNumber = NCount * F / 1e8\n", "print(AtomNumber)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "muB = 9.274e-24\n", "hbar = 6.626e-34 / (2 * np.pi)\n", "gJ = 1.24\n", "Delta = 2 * np.pi * 100 * 1e3\n", "\n", "Bz = (Delta*hbar) / (muB*gJ)\n", "print(Bz * 1e4)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## ODT 1 Calibration" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "v_high = 2.7\n", "\"\"\"High Power\"\"\"\n", "P_arm1_high = 5.776 * v_high - 0.683\n", "\n", "v_mid = 0.2076\n", "\"\"\"Intermediate Power\"\"\"\n", "P_arm1_mid = 5.815 * v_mid - 0.03651\n", "\n", "v_low = 0.062\n", "\"\"\"Low Power\"\"\"\n", "P_arm1_low = 5271 * v_low - 27.5\n", "\n", "print(round(P_arm1_high, 3))\n", "print(round(P_arm1_mid, 3))\n", "print(round(P_arm1_low, 3))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## ODT 2 Power Calibration" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "v = 0.842\n", "P_arm2 = 2.302 * v - 0.06452\n", "print(round(P_arm2, 3))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" }, "vscode": { "interpreter": { "hash": "c05913ad4f24fdc6b2418069394dc5835b1981849b107c9ba6df693aafd66650" } } }, "nbformat": 4, "nbformat_minor": 2 }