import xarray as xr import pandas as pd import numpy as np from datetime import datetime import xrft import finufft def fft(dataArray, **kwargs): return xrft.fft(dataArray, **kwargs) def ifft(dataArray, **kwargs): return xrft.ifft(dataArray, **kwargs) def fft_nutou(dataArray, modeNum, **kwargs): data = dataArray.to_numpy() data = data.astype('complex128') time = dataArray[dataArray.dims[0]].to_numpy() if isinstance(time[0], type(np.datetime64(500,'s'))): time = time.astype(float) time = time - time[0] freqUpLim = 1 / np.min(np.abs(time - np.roll(time, 1))) * 1e9 else: time = time.astype(float) time = time - time[0] freqUpLim = 1 / np.min(np.abs(time - np.roll(time, 1))) print(freqUpLim) time = time / time.max() * 2 * np.pi # calculate the transform res = xr.DataArray( data=finufft.nufft1d1(time, data, modeNum, **kwargs), dims=['freq'], coords={ "freq":np.linspace(-freqUpLim/2, freqUpLim/2, modeNum) } ) return res def ifft_nutou(dataArray, modeNum): pass