import numpy as np import xarray as xr import copy from DataContainer.ReadData import read_hdf5_file from Analyser.FringeRemoval import FringeRemoval from ToolFunction.ToolFunction import get_scanAxis class ImageAnalyser(): """A class for operate with and analyse images """ def __init__(self) -> None: """Initialize the class """ self._image_name = { 'atoms': 'atoms', 'background': 'background', 'dark': 'dark', 'OD':'OD', 'optimumBackground':'optimumBackground' } self._center = None self._span = None self._fraction = None self._fringeRemoval = FringeRemoval() self.fringeRemovalReferenceImages = None @property def image_name(self): """The getter of the names of three standard images for absorption images :return: The names of three standard images for absorption images :rtype: dict """ return self._image_name @image_name.setter def image_name(self, value): """The setter of the names of three standard images for absorption images. It has to be a dict and have the follow format: { 'atoms': the name of the image with atoms, 'background': the name of the image without atoms, 'dark': the name of the image without light, 'OD': the name of the calculated OD, } :param value: The names of three standard images for absorption images. :type value: dict """ self._image_name.update(value) @property def center(self): """The getter of the center of region of insterest (ROI) :return: The center of region of insterest (ROI) :rtype: tuple """ return self._center @center.setter def center(self, value): """The setter of the center of region of insterest (ROI) :param value: The center of region of insterest (ROI) :type value: tuple """ self._center = value @property def span(self): """The getter of the span of region of insterest (ROI) :return: The span of region of insterest (ROI) :rtype: tuple """ return self._span @span.setter def span(self, value): """The setter of the span of region of insterest (ROI) :param value: The span of region of insterest (ROI) :type value: tuple """ self._span = value @property def fraction(self): """The getter of the fraction used to remove the background in the region of insterest (ROI) :return: The fraction used to remove the background :rtype: tuple """ return self._fraction @fraction.setter def fraction(self, value): """The setter of the fraction used to remove the background in the region of insterest (ROI) :param value: The fraction used to remove the background :type value: tuple """ self._fraction = value def get_offset_from_corner(self, dataArray, x_fraction=None, y_fraction=None, fraction=None, xAxisName='x', yAxisName='y'): """Calculate the background value based on the four coners of the image. :param dataArray: The image :type dataArray: xarray DataArray :param x_fraction: The fraction of the pixels used x in axis, defaults to None :type x_fraction: float, optional :param y_fraction: The fraction of the pixels used y in axis, defaults to None :type y_fraction: float, optional :param fraction: The fraction of the pixels used to calculate the background, defaults to None :type fraction: tuple, optional :param xAxisName: The name of the x axis in dataArray, defaults to 'x' :type xAxisName: str, optional :param yAxisName: The name of the y axis in dataArray, defaults to 'y' :type yAxisName: str, optional :return: The value of the background :rtype: float """ if fraction is None: if x_fraction is None: x_fraction = self._fraction[0] if y_fraction is None: y_fraction = self._fraction[1] else: x_fraction = fraction[0] y_fraction = fraction[1] x_number = dataArray[xAxisName].shape[0] y_number = dataArray[yAxisName].shape[0] mean = dataArray.isel(x=slice(0, int(x_number * x_fraction)), y=slice(0 , int(y_number * y_fraction))).mean(dim=[xAxisName, yAxisName]) mean += dataArray.isel(x=slice(0, int(x_number * x_fraction)), y=slice(int(y_number - y_number * y_fraction) , int(y_number))).mean(dim=[xAxisName, yAxisName]) mean += dataArray.isel(x=slice(int(x_number - x_number * x_fraction) , int(x_number)), y=slice(0 , int(y_number * y_fraction))).mean(dim=[xAxisName, yAxisName]) mean += dataArray.isel(x=slice(int(x_number - x_number * x_fraction) , int(x_number)), y=slice(int(y_number - y_number * y_fraction) , int(y_number))).mean(dim=[xAxisName, yAxisName]) return mean / 4 def substract_offset(self, dataArray, **kwargs): """Remove the backgournd :param dataArray: The image :type dataArray: xarray DataArray :return: The image after removing background :rtype: xarray DataArray """ res = dataArray - self.get_offset_from_corner(dataArray, **kwargs) res.attrs = copy.copy(dataArray.attrs) return res def crop_image(self, dataSet, center=None, span=None, fringeRemoval=False): """Crop the image according to the region of interest (ROI). :param dataSet: The images :type dataSet: xarray DataArray or DataSet :param center: The center of region of insterest (ROI), defaults to None :type center: tuple, optional :param span: the span of region of insterest (ROI), defaults to None :type span: tuple, optional :return: The croped images :rtype: xarray DataArray or DataSet """ if center is None: center = self._center if span is None: span = self._span x_start = int(center[0] - span[0] / 2) x_end = int(center[0] + span[0] / 2) y_end = int(center[1] + span[1] / 2) y_start = int(center[1] - span[1] / 2) dataSet.attrs['x_start'] = x_start dataSet.attrs['x_end'] = x_end dataSet.attrs['y_end'] = y_end dataSet.attrs['y_start'] = y_start dataSet.attrs['x_center'] = center[0] dataSet.attrs['y_center'] = center[1] dataSet.attrs['x_span'] = span[0] dataSet.attrs['y_span'] = span[1] if isinstance(dataSet, type(xr.Dataset())): for key in list(dataSet.data_vars): dataSet[key].attrs['x_start'] = x_start dataSet[key].attrs['x_end'] = x_end dataSet[key].attrs['y_end'] = y_end dataSet[key].attrs['y_start'] = y_start dataSet[key].attrs['x_center'] = center[0] dataSet[key].attrs['y_center'] = center[1] dataSet[key].attrs['x_span'] = span[0] dataSet[key].attrs['y_span'] = span[1] if fringeRemoval: scanAxis = list(get_scanAxis(self.fringeRemovalReferenceImages)) if not scanAxis[1] is None: self._fringeRemoval.referenceImages = self.fringeRemovalReferenceImages.isel(x=slice(x_start, x_end), y=slice(y_start, y_end)).stack(_imgIdx=scanAxis) else: self._fringeRemoval.referenceImages = self.fringeRemovalReferenceImages.isel(x=slice(x_start, x_end), y=slice(y_start, y_end)) return dataSet.isel(x=slice(x_start, x_end), y=slice(y_start, y_end)) def get_OD(self, imageAtom, imageBackground, imageDrak): """Calculate the OD image for absorption imaging. :param imageAtom: The image with atoms :type imageAtom: numpy array :param imageBackground: The image without atoms :type imageBackground: numpy array :param imageDrak: The image without light :type imageDrak: numpy array :return: The OD images :rtype: numpy array """ numerator = np.atleast_1d(imageBackground - imageDrak) denominator = np.atleast_1d(imageAtom - imageDrak) numerator[numerator == 0] = 1 denominator[denominator == 0] = 1 imageOD = np.abs(np.divide(denominator, numerator)) imageOD= -np.log(imageOD) if len(imageOD) == 1: return imageOD[0] else: return imageOD def get_OD_no_dark(self, imageAtom, imageBackground): """Calculate the OD image for absorption imaging without dark images. :param imageAtom: The image with atoms :type imageAtom: numpy array :param imageBackground: The image without atoms :type imageBackground: numpy array :param imageDrak: The image without light :type imageDrak: numpy array :return: The OD images :rtype: numpy array """ numerator = np.atleast_1d(imageBackground) denominator = np.atleast_1d(imageAtom) numerator[numerator == 0] = 1 denominator[denominator == 0] = 1 imageOD = np.abs(np.divide(denominator, numerator)) imageOD= -np.log(imageOD) if len(imageOD) == 1: return imageOD[0] else: return imageOD def get_Ncount(self, dataSet, dim=['x', 'y'], **kwargs): """Sum all the value in the image to give the Ncount. :param dataSet: The images :type dataSet: xarray DataArray or DataSet :param dim: The dimensions to take the sumation, defaults to ['x', 'y'] :type dim: list, optional :return: The Ncount :rtype: xarray DataArray or DataSet """ return dataSet.sum(dim=['x', 'y'], **kwargs) def get_absorption_images(self, dataSet, fringeRemoval=False, dask='allowed', keep_attrs=True, **kwargs): """Calculate the OD images for absorption imaging. :param dataSet: The data from absorption imaging. :type dataSet: xarray DataSet :param dask: over write of the same argument in xarray.apply_ufunc, defaults to 'allowed' :type dask: str, optional :param keep_attrs: over write of the same argument in xarray.apply_ufunc, defaults to True :type keep_attrs: bool, optional :return: The data including the OD images. :rtype: xarray DataSet """ kwargs.update( { 'dask': dask, 'keep_attrs': keep_attrs, } ) if fringeRemoval: scanAxis = list(get_scanAxis(dataSet)) if not scanAxis[1] is None: OptimumRef = self._fringeRemoval.fringe_removal(dataSet[self._image_name['atoms']].stack(_imgIdx=scanAxis)) else: OptimumRef = self._fringeRemoval.fringe_removal(dataSet[self._image_name['atoms']]) dataSet = dataSet.assign( { self._image_name['optimumBackground']: OptimumRef } ) dataSet = dataSet.assign( { self._image_name['OD']: xr.apply_ufunc(self.get_OD_no_dark, dataSet[self._image_name['atoms']], dataSet[self._image_name['optimumBackground']], **kwargs) } ) else: dataSet = dataSet.assign( { self._image_name['OD']: xr.apply_ufunc(self.get_OD, dataSet[self._image_name['atoms']], dataSet[self._image_name['background']], dataSet[self._image_name['dark']], **kwargs) } ) # dataSet[self._image_name['OD']].attrs.update(dataSet.attrs) return dataSet def remove_background(self, dataSet, dask='allowed', keep_attrs=True, **kwargs): """Remove the background for the given image data :param dataSet: The data from absorption imaging. :type dataSet: xarray DataSet :param dask: over write of the same argument in xarray.apply_ufunc, defaults to 'allowed' :type dask: str, optional :param keep_attrs: over write of the same argument in xarray.apply_ufunc, defaults to True :type keep_attrs: bool, optional """ kwargs.update( { 'dask': dask, 'keep_attrs': keep_attrs, } ) xr.apply_ufunc(self.get_OD, dataSet[self._image_name['atoms']], dataSet[self._image_name['background']], dataSet[self._image_name['dark']], **kwargs) @property def fringeRemovalCenter(self): """The getter of the center of region of insterest (ROI) :return: The center of region of insterest (ROI) :rtype: tuple """ return self._fringeRemoval.center @fringeRemovalCenter.setter def fringeRemovalCenter(self, value): """The setter of the center of region of insterest (ROI) :param value: The center of region of insterest (ROI) :type value: tuple """ self._fringeRemoval.center = value @property def fringeRemovalSpan(self): """The getter of the span of region of insterest (ROI) :return: The span of region of insterest (ROI) :rtype: tuple """ return self._fringeRemoval.span @fringeRemovalSpan.setter def fringeRemovalSpan(self, value): """The setter of the span of region of insterest (ROI) :param value: The span of region of insterest (ROI) :type value: tuple """ self._fringeRemoval.span = value # @property # def fringeRemovalReferenceImages(self): # return self._fringeRemoval.referenceImages # @fringeRemovalReferenceImages.setter # def fringeRemovalReferenceImages(self, value): # self._fringeRemoval.referenceImages = value def load_fringe_removal_background_from_hdf5(self, img_dir, SequenceName, data, shotNum, group, crop=False, load=False, **kwargs): folderPath = img_dir + SequenceName + "/" + data filePath = folderPath + "/" + shotNum + "/*.h5" dataSet = read_hdf5_file(filePath, group, **kwargs) scanAxis = dataSet.scanAxis dataSet = dataSet[self._image_name['background']] dataSet.attrs['scanAxis'] = scanAxis if crop: dataSet = self.crop_image(dataSet) if load: self.fringeRemovalReferenceImages = dataSet.load() else: self.fringeRemovalReferenceImages = dataSet def load_fringe_removal_background_from_database(): pass