import numpy as np import xarray as xr class ImageAnalyser(): def __init__(self) -> None: self._image_name = { 'atoms': 'atoms', 'background': 'background', 'dark': 'dark', 'OD':'OD', } self._center = None self._span = None self._fraction = None @property def image_name(self): return self._image_name @image_name.setter def image_name(self, value): self._image_name.update(value) @property def center(self): return self._center @center.setter def center(self, value): self._center = value @property def span(self): return self._span @span.setter def span(self, value): self._span = value @property def fraction(self): return self._fraction @fraction.setter def fraction(self, value): self._fraction = value def get_offset_from_corner(self, dataArray, x_fraction=None, y_fraction=None, fraction=None, xAxisName='x', yAxisName='y'): if fraction is None: if x_fraction is None: x_fraction = self._fraction[0] if y_fraction is None: y_fraction = self._fraction[1] else: x_fraction = fraction[0] y_fraction = fraction[1] x_number = dataArray[xAxisName].shape[0] y_number = dataArray[yAxisName].shape[0] mean = dataArray.isel(x=slice(0, int(x_number * x_fraction)), y=slice(0 , int(y_number * y_fraction))).mean(dim=[xAxisName, yAxisName]) mean += dataArray.isel(x=slice(0, int(x_number * x_fraction)), y=slice(int(y_number - y_number * y_fraction) , int(y_number))).mean(dim=[xAxisName, yAxisName]) mean += dataArray.isel(x=slice(int(x_number - x_number * x_fraction) , int(x_number)), y=slice(0 , int(y_number * y_fraction))).mean(dim=[xAxisName, yAxisName]) mean += dataArray.isel(x=slice(int(x_number - x_number * x_fraction) , int(x_number)), y=slice(int(y_number - y_number * y_fraction) , int(y_number))).mean(dim=[xAxisName, yAxisName]) return mean / 4 def substract_offset(self, dataArray, **kwargs): return dataArray - self.get_offset_from_corner(dataArray, **kwargs) def crop_image(self, dataSet, center=None, span=None): if center is None: center = self._center if span is None: span = self._span x_start = int(center[0] - span[0] / 2) x_end = int(center[0] + span[0] / 2) y_end = int(center[1] + span[1] / 2) y_start = int(center[1] - span[1] / 2) return dataSet.isel(x=slice(x_start, x_end), y=slice(y_start, y_end)) def get_OD(self, imageAtom, imageBackground, imageDrak): numerator = np.atleast_1d(imageBackground - imageDrak) denominator = np.atleast_1d(imageAtom - imageDrak) numerator[numerator == 0] = 1 denominator[denominator == 0] = 1 imageOD = np.abs(np.divide(denominator, numerator)) imageOD= -np.log(imageOD) if len(imageOD) == 1: return imageOD[0] else: return imageOD def get_Ncount(self, imageOD): return np.sum(imageOD) def get_absorption_images(self, dataSet, dask='allowed', keep_attrs=True, **kwargs): kwargs.update( { 'dask': dask, 'keep_attrs': keep_attrs, } ) dataSet = dataSet.assign( { self._image_name['OD']: xr.apply_ufunc(self.get_OD, dataSet[self._image_name['atoms']], dataSet[self._image_name['background']], dataSet[self._image_name['dark']], **kwargs) } ) return dataSet def remove_background(self, dataSet, dask='allowed', keep_attrs=True, **kwargs): kwargs.update( { 'dask': dask, 'keep_attrs': keep_attrs, } ) xr.apply_ufunc(self.get_OD, dataSet[self._image_name['atoms']], dataSet[self._image_name['background']], dataSet[self._image_name['dark']], **kwargs)