import xarray as xr import numpy as np from collections import OrderedDict from functools import partial import copy import glob import os def _read_globals_attrs(variable_attrs, context=None): """Combine attributes from different variables according to combine_attrs""" if not variable_attrs: # no attributes to merge return None from xarray.core.utils import equivalent result = {} dropped_attrs = OrderedDict() for attrs in variable_attrs: result.update( { key: value for key, value in attrs.items() if key not in result and key not in dropped_attrs.keys() } ) result = { key: value for key, value in result.items() if key not in attrs or equivalent(attrs[key], value) } dropped_attrs.update( { key: [] for key in attrs if key not in result } ) for attrs in variable_attrs: dropped_attrs.update( { key: np.append(dropped_attrs[key], attrs[key]) for key in dropped_attrs.keys() } ) scan_attrs = OrderedDict() scan_length = [] for attrs_key in dropped_attrs.keys(): flag = True for key in scan_attrs.keys(): if equivalent(scan_attrs[key], dropped_attrs[attrs_key]): flag = False result.update({attrs_key: key}) break if flag: scan_attrs.update({ attrs_key: dropped_attrs[attrs_key] }) scan_length = np.append(scan_length, len(dropped_attrs[attrs_key])) result.update( { key: value for key, value in scan_attrs.items() } ) result.update( { "scanAxis": list(scan_attrs.keys()), "scanAxisLength": scan_length, } ) # if result['scanAxis'] == []: # result['scanAxis'] = ['runs',] return result def _read_shot_number_from_hdf5(x): filePath = x.encoding["source"] shotNum = filePath.split("_")[-1].split("_")[-1].split(".")[0] return x.assign(shotNum=shotNum) def _assign_scan_axis_partial(x, datesetOfGlobal, fullFilePath): scanAxis = datesetOfGlobal.scanAxis filePath = x.encoding["source"].replace("\\", "/") shotNum = np.where(fullFilePath==filePath) shotNum = np.squeeze(shotNum) # shotNum = filePath.split("_")[-1].split("_")[-1].split(".")[0] x = x.assign(shotNum=shotNum) x = x.expand_dims(list(scanAxis)) return x.assign_coords( { key: np.atleast_1d(np.atleast_1d(datesetOfGlobal.attrs[key])[int(shotNum)]) for key in scanAxis } ) def _update_globals_attrs(variable_attrs, context=None): pass def update_hdf5_file(): pass def read_hdf5_file(filePath, group=None, datesetOfGlobal=None, preprocess=None, join="outer", parallel=True, engine="h5netcdf", phony_dims="access", **kwargs): filePath = np.sort(np.atleast_1d(filePath)) filePathAbs = [] for i in range(len(filePath)): filePathAbs.append(os.path.abspath(filePath[i]).replace("\\", "/")) fullFilePath = [] for i in range(len(filePathAbs)): fullFilePath.append(list(np.sort(glob.glob(filePathAbs[i])))) fullFilePath = np.array(fullFilePath).flatten() for i in range(len(fullFilePath)): fullFilePath[i] = fullFilePath[i].replace("\\", "/") kwargs.update( { 'join': join, 'parallel': parallel, 'engine': engine, 'phony_dims': phony_dims, 'group': group } ) if datesetOfGlobal is None: datesetOfGlobal = xr.open_mfdataset( fullFilePath, group="globals", concat_dim="fileNum", combine="nested", preprocess=_read_shot_number_from_hdf5, engine="h5netcdf", phony_dims="access", combine_attrs=_read_globals_attrs, parallel=True, ) _assgin_scan_axis = partial(_assign_scan_axis_partial, datesetOfGlobal=datesetOfGlobal, fullFilePath=fullFilePath) if preprocess is None: kwargs.update({'preprocess':_assgin_scan_axis}) else: kwargs.update({'preprocess':preprocess}) ds = xr.open_mfdataset(fullFilePath, **kwargs) newDimKey = np.append(['x', 'y', 'z'], [ chr(i) for i in range(97, 97+23)]) oldDimKey = np.sort( [ key for key in ds.dims if not key in datesetOfGlobal.scanAxis ] ) renameDict = { oldDimKey[j]: newDimKey[j] for j in range(len(oldDimKey)) } ds = ds.rename_dims(renameDict) ds.attrs = copy.deepcopy(datesetOfGlobal.attrs) return ds