Compare commits
2 Commits
e6e20a8ae3
...
afe7a5907e
Author | SHA1 | Date | |
---|---|---|---|
afe7a5907e | |||
621414127a |
@ -170,7 +170,7 @@ def rotate_coord(x,y, rot_angle):
|
|||||||
|
|
||||||
def density_profile_BEC_2d(x, y=0.0, amp_bec=1.0, amp_th=1.0, x0_bec=0.0, y0_bec=0.0, x0_th=0.0, y0_th=0.0,
|
def density_profile_BEC_2d(x, y=0.0, amp_bec=1.0, amp_th=1.0, x0_bec=0.0, y0_bec=0.0, x0_th=0.0, y0_th=0.0,
|
||||||
sigmax_bec=1.0, sigmay_bec=1.0, sigma_th=1.0, rot_angle=None):
|
sigmax_bec=1.0, sigmay_bec=1.0, sigma_th=1.0, rot_angle=None):
|
||||||
|
rot_angle *= -1
|
||||||
if rot_angle is not None:
|
if rot_angle is not None:
|
||||||
x, y = rotate_coord(x,y, rot_angle)
|
x, y = rotate_coord(x,y, rot_angle)
|
||||||
x0_bec, y0_bec = rotate_coord(x0_bec, y0_bec, rot_angle)
|
x0_bec, y0_bec = rotate_coord(x0_bec, y0_bec, rot_angle)
|
||||||
@ -424,7 +424,7 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
|||||||
self.set_param_hint('atom_number_th', expr=f'{self.prefix}amp_th * 2 * 3.14159265359 * 1.20206 / 1.643 * {self.prefix}sigma_th * {self.prefix}sigma_th')
|
self.set_param_hint('atom_number_th', expr=f'{self.prefix}amp_th * 2 * 3.14159265359 * 1.20206 / 1.643 * {self.prefix}sigma_th * {self.prefix}sigma_th')
|
||||||
self.set_param_hint('condensate_fraction', expr=f'{self.prefix}atom_number_bec / ({self.prefix}atom_number_bec + {self.prefix}atom_number_th)')
|
self.set_param_hint('condensate_fraction', expr=f'{self.prefix}atom_number_bec / ({self.prefix}atom_number_bec + {self.prefix}atom_number_th)')
|
||||||
|
|
||||||
def guess(self, data, x, y, rot_angle=0, vary_rot=False, pre_check=False, post_check=False, **kwargs):
|
def guess(self, data, x, y, rot_angle=0, vary_rot=False, is_debug=False, pre_check=False, post_check=False, **kwargs):
|
||||||
"""Estimate and create initial model parameters for 2d bimodal fit, by doing a 1d bimodal fit along an integrated slice of the image
|
"""Estimate and create initial model parameters for 2d bimodal fit, by doing a 1d bimodal fit along an integrated slice of the image
|
||||||
|
|
||||||
:param data: Flattened 2d array, in form [a_00, a_10, a_20, ..., a_01, a_02, .. ,a_XY] with a_xy, x_dim=X, y_dim=Y
|
:param data: Flattened 2d array, in form [a_00, a_10, a_20, ..., a_01, a_02, .. ,a_XY] with a_xy, x_dim=X, y_dim=Y
|
||||||
@ -433,6 +433,11 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
|||||||
:type x: 1d numpy array
|
:type x: 1d numpy array
|
||||||
:param y: flattened Y output of np.meshgrid(x_axis,y_axis) in form: [y1, y1, .., y1 (X times), y2, y2, .., y2 (X times), .. Y times ..]
|
:param y: flattened Y output of np.meshgrid(x_axis,y_axis) in form: [y1, y1, .., y1 (X times), y2, y2, .., y2 (X times), .. Y times ..]
|
||||||
:type y: 1d numpy array
|
:type y: 1d numpy array
|
||||||
|
:param rot_angle: angle in degrees, The image is rotated counterclockwise by this angle to match the two axes of the cloud with x and y
|
||||||
|
for the guessing procedure. The 2d-fit is done by rotating the fitting function clockwise with this angle
|
||||||
|
:type rot_angle: float
|
||||||
|
:param vary_rot: if True the angle is varied in the 2d-fit
|
||||||
|
:type vary_rot: bool, optional
|
||||||
:param pre_check: if True the amplitude of the 1d fit is used to guess if the image is purely BEC or thermal and
|
:param pre_check: if True the amplitude of the 1d fit is used to guess if the image is purely BEC or thermal and
|
||||||
the corresponding amplitude of the 2d fit is set to zero and not varied to speed up the fitting, defaults to False
|
the corresponding amplitude of the 2d fit is set to zero and not varied to speed up the fitting, defaults to False
|
||||||
:type pre_check: bool, optional
|
:type pre_check: bool, optional
|
||||||
@ -444,6 +449,7 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
|||||||
"""
|
"""
|
||||||
self.pre_check = pre_check
|
self.pre_check = pre_check
|
||||||
self.post_check = post_check
|
self.post_check = post_check
|
||||||
|
self.is_debug = is_debug
|
||||||
|
|
||||||
# reshaping the image to 2D in the form [[a_00, a_01, .., a_0Y], [a_10,.., a_1Y], .., [a_X0, .., a_XY]], with a_xy
|
# reshaping the image to 2D in the form [[a_00, a_01, .., a_0Y], [a_10,.., a_1Y], .., [a_X0, .., a_XY]], with a_xy
|
||||||
x_width = len(np.unique(x))
|
x_width = len(np.unique(x))
|
||||||
@ -454,6 +460,17 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
|||||||
data = np.reshape(data, (y_width, x_width))
|
data = np.reshape(data, (y_width, x_width))
|
||||||
data = data.T
|
data = data.T
|
||||||
|
|
||||||
|
if is_debug:
|
||||||
|
X, Y = np.meshgrid(x_1d,y_1d)
|
||||||
|
plt.pcolormesh(X,Y, data.T, cmap='jet')
|
||||||
|
plt.gca().set_aspect('equal')
|
||||||
|
plt.title(f'Input data')
|
||||||
|
plt.xlabel('x_axis')
|
||||||
|
plt.ylabel('y_axis')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# the image is rotated counterclockwise by rot_angle, CAREFUL: The image has the form a_xy (last coordinate y) and therefore the rotation is done counter-clockwise.
|
||||||
|
# Doing the same with a standard image with a_yx rotates it clockwise!
|
||||||
if rot_angle != 0:
|
if rot_angle != 0:
|
||||||
data = rotate(data, rot_angle, reshape=False)
|
data = rotate(data, rot_angle, reshape=False)
|
||||||
|
|
||||||
@ -602,7 +619,7 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
|||||||
else:
|
else:
|
||||||
print('Error in small width BEC recogintion, s_width_ind should be 0 or 1')
|
print('Error in small width BEC recogintion, s_width_ind should be 0 or 1')
|
||||||
|
|
||||||
params[f'{self.prefix}rot_angle'].set(value=-rot_angle, min=-rot_angle-30, max=-rot_angle+30, vary=vary_rot)
|
params[f'{self.prefix}rot_angle'].set(value=rot_angle, min=rot_angle-30, max=rot_angle+30, vary=vary_rot)
|
||||||
|
|
||||||
if self.is_debug:
|
if self.is_debug:
|
||||||
print('')
|
print('')
|
||||||
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user