regular backup

This commit is contained in:
Jianshun Gao 2023-07-01 09:21:45 +02:00
parent 6f7c2bbf69
commit ca924246d5
7 changed files with 14729 additions and 30 deletions

2219
20230629_Data_Analysis.ipynb Normal file

File diff suppressed because one or more lines are too long

3676
20230630_Data_Analysis.ipynb Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

3666
2D-MOT power.ipynb Normal file

File diff suppressed because one or more lines are too long

779
3DMOT optimize.ipynb Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@ -1021,37 +1021,154 @@
"params.add(name=\"B_sigmax\", value= 80e-6, max=np.inf, min=-np.inf, vary=True)\n",
"params.add(name=\"B_sigmay\", value= 80e-6, max=np.inf, min=-np.inf, vary=True)\n",
"\n",
"for i in range (11):\n",
" print(i)\n",
" sim_fT_flatfield = xr.DataArray(\n",
" data = sim_fT_flatfield_np[i], \n",
" dims = [\"x\", \"y\"],\n",
" coords = dict(\n",
" x = (\"x\", x),\n",
" y = (\"y\", y),\n",
"# for i in range (11):\n",
"# print(i)\n",
"# sim_fT_flatfield = xr.DataArray(\n",
"# data = sim_fT_flatfield_np[i], \n",
"# dims = [\"x\", \"y\"],\n",
"# coords = dict(\n",
"# x = (\"x\", x),\n",
"# y = (\"y\", y),\n",
"# )\n",
"# )\n",
"# # perform the fit for one simulation with flatfield\n",
"# params = fitAnalyser.guess(sim_fT_flatfield, dask=\"parallelized\", guess_kwargs=dict(pureBECThreshold=1.2))\n",
"# fitResult = fitAnalyser.fit(sim_fT_flatfield, params, dask=\"parallelized\").load()\n",
"# fitCurve = fitAnalyser.eval(fitResult, x=x, y=y).load()\n",
"# fitValue = fitAnalyser.get_fit_value(fitResult)\n",
"# fitStd = fitAnalyser.get_fit_std(fitResult)\n",
"# # store the results as numpy array\n",
"# fit_fT_flatfield = fitCurve.to_numpy()\n",
"# fitValue_array = fitValue.to_array()\n",
"# fitStd_array = fitStd.to_array()\n",
"# fit_fT_flatfield_result[i] = fitValue_array.to_numpy()\n",
"# fit_fT_flatfield_std[i] = fitStd_array.to_numpy()\n",
"# # plot fit\n",
"# plt.figure(figsize=(12,8))\n",
"# plt.errorbar(x, sim_fT_flatfield_np[i,100], fmt = '.', label = \"simulated data\")\n",
"# plt.plot(x, fit_fT_flatfield[100], label = \"BEC fit\")\n",
"# plt.xlabel(\"y axis [px]\")\n",
"# plt.ylabel(\"OD\")\n",
"# plt.title(\"OD distribution cross-section \\n f={}, flatfield lightsource\".format(str(f[i])))\n",
"# plt.legend()\n",
"# plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class DensityProfileBEC2dModel(Model):\n",
"\n",
" fwhm_factor = 2*np.sqrt(2*np.log(2))\n",
" height_factor = 1./2*np.pi\n",
"\n",
" def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',\n",
" **kwargs):\n",
" kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,\n",
" 'independent_vars': independent_vars})\n",
" super().__init__(density_profile_BEC_2d, **kwargs)\n",
" self._set_paramhints_prefix()\n",
"\n",
" def _set_paramhints_prefix(self):\n",
" # self.set_param_hint('BEC_sigmax', min=0)\n",
" self.set_param_hint('deltax', min=0)\n",
" self.set_param_hint('BEC_sigmax', expr=f'3 * {self.prefix}thermal_sigmax - {self.prefix}deltax')\n",
" \n",
" self.set_param_hint('BEC_sigmay', min=0)\n",
" self.set_param_hint('thermal_sigmax', min=0)\n",
" # self.set_param_hint('thermal_sigmay', min=0)\n",
" self.set_param_hint('BEC_amplitude', min=0)\n",
" self.set_param_hint('thermal_amplitude', min=0)\n",
" \n",
" self.set_param_hint('thermalAspectRatio', min=0.8, max=1.2)\n",
" self.set_param_hint('thermal_sigmay', expr=f'{self.prefix}thermalAspectRatio * {self.prefix}thermal_sigmax')\n",
" \n",
" # self.set_param_hint('betax', value=0)\n",
" # self.set_param_hint('BEC_centerx', expr=f'{self.prefix}thermal_sigmax - {self.prefix}betax')\n",
" \n",
" self.set_param_hint('condensate_fraction', expr=f'{self.prefix}BEC_amplitude / ({self.prefix}BEC_amplitude + {self.prefix}thermal_amplitude)')\n",
"\n",
" def guess(self, data, x, y, negative=False, pureBECThreshold=0.5, noBECThThreshold=0.0, **kwargs):\n",
" \"\"\"Estimate initial model parameter values from data.\"\"\"\n",
" fitModel = TwoGaussian2dModel()\n",
" pars = fitModel.guess(data, x=x, y=y, negative=negative)\n",
" pars['A_amplitude'].set(min=0)\n",
" pars['B_amplitude'].set(min=0)\n",
" pars['A_centerx'].set(min=pars['A_centerx'].value - 3 * pars['A_sigmax'], \n",
" max=pars['A_centerx'].value + 3 * pars['A_sigmax'],)\n",
" pars['A_centery'].set(min=pars['A_centery'].value - 3 * pars['A_sigmay'], \n",
" max=pars['A_centery'].value + 3 * pars['A_sigmay'],)\n",
" pars['B_centerx'].set(min=pars['B_centerx'].value - 3 * pars['B_sigmax'], \n",
" max=pars['B_centerx'].value + 3 * pars['B_sigmax'],)\n",
" pars['B_centery'].set(min=pars['B_centery'].value - 3 * pars['B_sigmay'], \n",
" max=pars['B_centery'].value + 3 * pars['B_sigmay'],)\n",
" \n",
" fitResult = fitModel.fit(data, x=x, y=y, params=pars, **kwargs)\n",
" pars_guess = fitResult.params\n",
" \n",
" BEC_amplitude = pars_guess['A_amplitude'].value\n",
" thermal_amplitude = pars_guess['B_amplitude'].value\n",
" \n",
" pars = self.make_params(BEC_amplitude=BEC_amplitude,\n",
" thermal_amplitude=thermal_amplitude, \n",
" BEC_centerx=pars_guess['A_centerx'].value, BEC_centery=pars_guess['A_centery'].value,\n",
" # BEC_sigmax=(pars_guess['A_sigmax'].value / 2.355), \n",
" deltax = 3 * (pars_guess['B_sigmax'].value * s2) - (pars_guess['A_sigmax'].value / 2.355),\n",
" BEC_sigmay=(pars_guess['A_sigmay'].value / 2.355), \n",
" thermal_centerx=pars_guess['B_centerx'].value, thermal_centery=pars_guess['B_centery'].value,\n",
" thermal_sigmax=(pars_guess['B_sigmax'].value * s2), \n",
" thermalAspectRatio=(pars_guess['B_sigmax'].value * s2) / (pars_guess['B_sigmay'].value * s2)\n",
" # thermal_sigmay=(pars_guess['B_sigmay'].value * s2)\n",
" )\n",
" \n",
" nBEC = pars[f'{self.prefix}BEC_amplitude'] / 2 / np.pi / 5.546 / pars[f'{self.prefix}BEC_sigmay'] / pars[f'{self.prefix}BEC_sigmax']\n",
" if (pars[f'{self.prefix}condensate_fraction']>0.95) and (np.max(data) > 1.05 * nBEC):\n",
" temp = ((np.max(data) - nBEC) * s2pi * pars[f'{self.prefix}thermal_sigmay'] / pars[f'{self.prefix}thermal_sigmax'])\n",
" if temp > pars[f'{self.prefix}BEC_amplitude']:\n",
" pars[f'{self.prefix}thermal_amplitude'].set(value=pars[f'{self.prefix}BEC_amplitude'] / 2)\n",
" else:\n",
" pars[f'{self.prefix}thermal_amplitude'].set(value=temp * 10)\n",
" \n",
" if BEC_amplitude / (thermal_amplitude + BEC_amplitude) > pureBECThreshold:\n",
" pars[f'{self.prefix}thermal_amplitude'].set(value=0)\n",
" pars[f'{self.prefix}BEC_amplitude'].set(value=(thermal_amplitude + BEC_amplitude))\n",
" \n",
" if BEC_amplitude / (thermal_amplitude + BEC_amplitude) < noBECThThreshold:\n",
" pars[f'{self.prefix}BEC_amplitude'].set(value=0)\n",
" pars[f'{self.prefix}thermal_amplitude'].set(value=(thermal_amplitude + BEC_amplitude))\n",
" \n",
" pars[f'{self.prefix}BEC_centerx'].set(\n",
" min=pars[f'{self.prefix}BEC_centerx'].value - 10 * pars[f'{self.prefix}BEC_sigmax'].value,\n",
" max=pars[f'{self.prefix}BEC_centerx'].value + 10 * pars[f'{self.prefix}BEC_sigmax'].value, \n",
" )\n",
" # perform the fit for one simulation with flatfield\n",
" params = fitAnalyser.guess(sim_fT_flatfield, dask=\"parallelized\", guess_kwargs=dict(pureBECThreshold=1.2))\n",
" fitResult = fitAnalyser.fit(sim_fT_flatfield, params, dask=\"parallelized\").load()\n",
" fitCurve = fitAnalyser.eval(fitResult, x=x, y=y).load()\n",
" fitValue = fitAnalyser.get_fit_value(fitResult)\n",
" fitStd = fitAnalyser.get_fit_std(fitResult)\n",
" # store the results as numpy array\n",
" fit_fT_flatfield = fitCurve.to_numpy()\n",
" fitValue_array = fitValue.to_array()\n",
" fitStd_array = fitStd.to_array()\n",
" fit_fT_flatfield_result[i] = fitValue_array.to_numpy()\n",
" fit_fT_flatfield_std[i] = fitStd_array.to_numpy()\n",
" # plot fit\n",
" plt.figure(figsize=(12,8))\n",
" plt.errorbar(x, sim_fT_flatfield_np[i,100], fmt = '.', label = \"simulated data\")\n",
" plt.plot(x, fit_fT_flatfield[100], label = \"BEC fit\")\n",
" plt.xlabel(\"y axis [px]\")\n",
" plt.ylabel(\"OD\")\n",
" plt.title(\"OD distribution cross-section \\n f={}, flatfield lightsource\".format(str(f[i])))\n",
" plt.legend()\n",
" plt.show()"
" \n",
" pars[f'{self.prefix}thermal_centerx'].set(\n",
" min=pars[f'{self.prefix}thermal_centerx'].value - 3 * pars[f'{self.prefix}thermal_sigmax'].value,\n",
" max=pars[f'{self.prefix}thermal_centerx'].value + 3 * pars[f'{self.prefix}thermal_sigmax'].value, \n",
" )\n",
" \n",
" pars[f'{self.prefix}BEC_centery'].set(\n",
" min=pars[f'{self.prefix}BEC_centery'].value - 10 * pars[f'{self.prefix}BEC_sigmay'].value,\n",
" max=pars[f'{self.prefix}BEC_centery'].value + 10 * pars[f'{self.prefix}BEC_sigmay'].value, \n",
" )\n",
" \n",
" pars[f'{self.prefix}thermal_centery'].set(\n",
" min=pars[f'{self.prefix}thermal_centery'].value - 3 * pars[f'{self.prefix}thermal_sigmay'].value,\n",
" max=pars[f'{self.prefix}thermal_centery'].value + 3 * pars[f'{self.prefix}thermal_sigmay'].value, \n",
" )\n",
" \n",
" pars[f'{self.prefix}BEC_sigmay'].set(\n",
" max=5 * pars[f'{self.prefix}BEC_sigmay'].value, \n",
" )\n",
" \n",
" pars[f'{self.prefix}thermal_sigmax'].set(\n",
" max=5 * pars[f'{self.prefix}thermal_sigmax'].value, \n",
" )\n",
" \n",
" return update_param_vals(pars, self.prefix, **kwargs)"
]
},
{