finish of fitting
This commit is contained in:
parent
8aa180c276
commit
c049919d9d
490
Analyser/FitAnalyser.py
Normal file
490
Analyser/FitAnalyser.py
Normal file
@ -0,0 +1,490 @@
|
||||
import numpy as np
|
||||
|
||||
import lmfit
|
||||
from lmfit.models import (ConstantModel, ComplexConstantModel, LinearModel, QuadraticModel,
|
||||
PolynomialModel, SineModel, GaussianModel, Gaussian2dModel, LorentzianModel,
|
||||
SplitLorentzianModel, VoigtModel, PseudoVoigtModel, MoffatModel,
|
||||
Pearson7Model, StudentsTModel, BreitWignerModel, LognormalModel,
|
||||
DampedOscillatorModel, ExponentialGaussianModel, SkewedGaussianModel,
|
||||
SkewedVoigtModel, ThermalDistributionModel, DoniachModel, PowerLawModel,
|
||||
ExponentialModel, StepModel, RectangleModel, ExpressionModel, DampedHarmonicOscillatorModel)
|
||||
from lmfit.models import (guess_from_peak, guess_from_peak2d, fwhm_expr, height_expr,
|
||||
update_param_vals)
|
||||
from lmfit.lineshapes import (not_zero, breit_wigner, damped_oscillator, dho, doniach,
|
||||
expgaussian, exponential, gaussian, gaussian2d,
|
||||
linear, lognormal, lorentzian, moffat, parabolic,
|
||||
pearson7, powerlaw, pvoigt, rectangle, sine,
|
||||
skewed_gaussian, skewed_voigt, split_lorentzian, step,
|
||||
students_t, thermal_distribution, tiny, voigt)
|
||||
from lmfit import Model
|
||||
import numpy as np
|
||||
from numpy import (arctan, copysign, cos, exp, isclose, isnan, log, pi, real,
|
||||
sin, sqrt, where)
|
||||
from scipy.special import erf, erfc
|
||||
from scipy.special import gamma as gamfcn
|
||||
from scipy.special import wofz
|
||||
from scipy.optimize import curve_fit
|
||||
|
||||
import xarray as xr
|
||||
|
||||
|
||||
log2 = log(2)
|
||||
s2pi = sqrt(2*pi)
|
||||
s2 = sqrt(2.0)
|
||||
|
||||
|
||||
def gaussianWithOffset(x, amplitude=1.0, center=0.0, sigma=1.0, offset=0.0):
|
||||
"""Return a 1-dimensional Gaussian function with an offset.
|
||||
|
||||
gaussian(x, amplitude, center, sigma) =
|
||||
(amplitude/(s2pi*sigma)) * exp(-(1.0*x-center)**2 / (2*sigma**2))
|
||||
|
||||
"""
|
||||
return ((amplitude/(max(tiny, s2pi*sigma)))
|
||||
* exp(-(1.0*x-center)**2 / max(tiny, (2*sigma**2))) + offset)
|
||||
|
||||
|
||||
def lorentzianWithOffset(x, amplitude=1.0, center=0.0, sigma=1.0, offset=0.0):
|
||||
return ((amplitude/(1 + ((1.0*x-center)/max(tiny, sigma))**2))
|
||||
/ max(tiny, (pi*sigma)) + offset)
|
||||
|
||||
|
||||
def exponentialWithOffset(x, amplitude=1.0, decay=1.0, offset=0.0):
|
||||
decay = not_zero(decay)
|
||||
return amplitude * exp(-x/decay) + offset
|
||||
|
||||
|
||||
def expansion(x, amplitude=1.0, offset=0.0):
|
||||
return np.sqrt(amplitude*x*x + offset)
|
||||
|
||||
|
||||
def dampingOscillation(x, center=0, amplitude=1.0, frequency=1.0, decay=1.0, offset=0.0):
|
||||
return amplitude * np.exp(-decay*x)*np.sin(2*np.pi*frequency*(x-center)) + offset
|
||||
|
||||
|
||||
def double_structure(x, x1=0.25, x2=0.75, amplitude=1.0, center=0.0, sigma=1.0, a=-1.0, b=0, c=0):
|
||||
|
||||
y = np.zeros(x.shape)
|
||||
|
||||
return ((amplitude/(max(tiny, s2pi*sigma)))
|
||||
* exp(-(1.0*x-center)**2 / max(tiny, (2*sigma**2))))
|
||||
|
||||
|
||||
class GaussianWithOffsetModel(Model):
|
||||
|
||||
fwhm_factor = 2*np.sqrt(2*np.log(2))
|
||||
height_factor = 1./np.sqrt(2*np.pi)
|
||||
|
||||
def __init__(self, independent_vars=['x'], nan_policy='raise', prefix='', name=None, **kwargs):
|
||||
|
||||
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
||||
'independent_vars': independent_vars})
|
||||
super().__init__(gaussianWithOffset, **kwargs)
|
||||
self._set_paramhints_prefix()
|
||||
|
||||
def _set_paramhints_prefix(self):
|
||||
self.set_param_hint('sigma', min=0)
|
||||
self.set_param_hint('fwhm', expr=fwhm_expr(self))
|
||||
self.set_param_hint('height', expr=height_expr(self))
|
||||
|
||||
def guess(self, data, x, negative=False, **kwargs):
|
||||
offset = np.min(data)
|
||||
data = data - offset
|
||||
pars = guess_from_peak(self, data, x, negative)
|
||||
pars.add('offset', value=offset)
|
||||
return update_param_vals(pars, self.prefix, **kwargs)
|
||||
|
||||
|
||||
class LorentzianWithOffsetModel(Model):
|
||||
|
||||
fwhm_factor = 2.0
|
||||
height_factor = 1./np.pi
|
||||
|
||||
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
|
||||
**kwargs):
|
||||
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
||||
'independent_vars': independent_vars})
|
||||
super().__init__(lorentzianWithOffset, **kwargs)
|
||||
self._set_paramhints_prefix()
|
||||
|
||||
def _set_paramhints_prefix(self):
|
||||
self.set_param_hint('sigma', min=0)
|
||||
self.set_param_hint('fwhm', expr=fwhm_expr(self))
|
||||
self.set_param_hint('height', expr=height_expr(self))
|
||||
|
||||
def guess(self, data, x, negative=False, **kwargs):
|
||||
"""Estimate initial model parameter values from data."""
|
||||
offset = np.min(data)
|
||||
data = data - offset
|
||||
pars = guess_from_peak(self, data, x, negative, ampscale=1.25)
|
||||
pars.add('offset', value=offset)
|
||||
return update_param_vals(pars, self.prefix, **kwargs)
|
||||
|
||||
|
||||
class ExponentialWithOffsetModel(Model):
|
||||
|
||||
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
|
||||
**kwargs):
|
||||
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
||||
'independent_vars': independent_vars})
|
||||
super().__init__(exponentialWithOffset, **kwargs)
|
||||
|
||||
def guess(self, data, x, **kwargs):
|
||||
"""Estimate initial model parameter values from data."""
|
||||
offset = np.min(data)
|
||||
data = data - offset
|
||||
try:
|
||||
sval, oval = np.polyfit(x, np.log(abs(data)+1.e-15), 1)
|
||||
except TypeError:
|
||||
sval, oval = 1., np.log(abs(max(data)+1.e-9))
|
||||
pars = self.make_params(amplitude=np.exp(oval), decay=-1.0/sval)
|
||||
pars.add('offset', value=offset)
|
||||
return update_param_vals(pars, self.prefix, **kwargs)
|
||||
|
||||
|
||||
class ExpansionModel(Model):
|
||||
|
||||
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
|
||||
**kwargs):
|
||||
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
||||
'independent_vars': independent_vars})
|
||||
super().__init__(expansion, **kwargs)
|
||||
|
||||
def guess(self, data, x, **kwargs):
|
||||
"""Estimate initial model parameter values from data."""
|
||||
|
||||
popt1, pcov1 = curve_fit(expansion, x, data)
|
||||
pars = self.make_params(amplitude=popt1[0], offset=popt1[1])
|
||||
|
||||
return update_param_vals(pars, self.prefix, **kwargs)
|
||||
|
||||
|
||||
class DampingOscillationModel(Model):
|
||||
|
||||
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
|
||||
**kwargs):
|
||||
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
||||
'independent_vars': independent_vars})
|
||||
super().__init__(dampingOscillation, **kwargs)
|
||||
|
||||
def guess(self, data, x, **kwargs):
|
||||
"""Estimate initial model parameter values from data."""
|
||||
try:
|
||||
popt1, pcov1 = curve_fit(dampingOscillation, x, data, np.array(0, 5, 5e2, 1e3, 16))
|
||||
pars = self.make_params(center=popt1[0], amplitude=popt1[1], frequency=popt1[2], decay=popt1[3], offset=popt1[4])
|
||||
except:
|
||||
pars = self.make_params(center=0, amplitude=5.0, frequency=5e2, decay=1.0e3, offset=16.0)
|
||||
|
||||
return update_param_vals(pars, self.prefix, **kwargs)
|
||||
|
||||
|
||||
lmfit_models = {'Constant': ConstantModel,
|
||||
'Complex Constant': ComplexConstantModel,
|
||||
'Linear': LinearModel,
|
||||
'Quadratic': QuadraticModel,
|
||||
'Polynomial': PolynomialModel,
|
||||
'Gaussian': GaussianModel,
|
||||
'Gaussian-2D': Gaussian2dModel,
|
||||
'Lorentzian': LorentzianModel,
|
||||
'Split-Lorentzian': SplitLorentzianModel,
|
||||
'Voigt': VoigtModel,
|
||||
'PseudoVoigt': PseudoVoigtModel,
|
||||
'Moffat': MoffatModel,
|
||||
'Pearson7': Pearson7Model,
|
||||
'StudentsT': StudentsTModel,
|
||||
'Breit-Wigner': BreitWignerModel,
|
||||
'Log-Normal': LognormalModel,
|
||||
'Damped Oscillator': DampedOscillatorModel,
|
||||
'Damped Harmonic Oscillator': DampedHarmonicOscillatorModel,
|
||||
'Exponential Gaussian': ExponentialGaussianModel,
|
||||
'Skewed Gaussian': SkewedGaussianModel,
|
||||
'Skewed Voigt': SkewedVoigtModel,
|
||||
'Thermal Distribution': ThermalDistributionModel,
|
||||
'Doniach': DoniachModel,
|
||||
'Power Law': PowerLawModel,
|
||||
'Exponential': ExponentialModel,
|
||||
'Step': StepModel,
|
||||
'Rectangle': RectangleModel,
|
||||
'Expression': ExpressionModel,
|
||||
'Gaussian With Offset':GaussianWithOffsetModel,
|
||||
'Lorentzian With Offset':LorentzianWithOffsetModel,
|
||||
'Expansion':ExpansionModel,
|
||||
'Damping Oscillation Model':DampingOscillationModel
|
||||
}
|
||||
|
||||
|
||||
class FitAnalyser():
|
||||
|
||||
def __init__(self, fitModel, fitDim=1, **kwargs) -> None:
|
||||
|
||||
if isinstance(fitModel, str):
|
||||
self.fitModel = lmfit_models[fitModel](**kwargs)
|
||||
else:
|
||||
self.fitModel = fitModel
|
||||
|
||||
self.fitDim = fitDim
|
||||
|
||||
def _guess_1D(self, data, x):
|
||||
return self.fitModel.guess(data=data, x=x)
|
||||
|
||||
def _guess_2D(self, data, x, y):
|
||||
return self.fitModel.guess(data=data, x=x, y=y)
|
||||
|
||||
def guess(self, dataArray, x=None, y=None, input_core_dims=None, dask='parallelized', vectorize=True, **kwargs):
|
||||
|
||||
kwargs.update(
|
||||
{
|
||||
"dask": dask,
|
||||
"vectorize": vectorize,
|
||||
"input_core_dims": input_core_dims
|
||||
}
|
||||
)
|
||||
|
||||
if input_core_dims is None:
|
||||
kwargs.update(
|
||||
{
|
||||
"input_core_dims": [['x']],
|
||||
}
|
||||
)
|
||||
|
||||
if x is None:
|
||||
if 'x' in dataArray.dims:
|
||||
x = dataArray['x'].to_numpy()
|
||||
else:
|
||||
if isinstance(x, str):
|
||||
x = dataArray[x].to_numpy()
|
||||
if input_core_dims is None:
|
||||
kwargs.update(
|
||||
{
|
||||
"input_core_dims": [[x]],
|
||||
}
|
||||
)
|
||||
|
||||
if self.fitDim == 1:
|
||||
|
||||
return xr.apply_ufunc(self._guess_1D, dataArray, kwargs={'x':x},
|
||||
output_dtypes=[type(self.fitModel.make_params())],
|
||||
**kwargs
|
||||
)
|
||||
|
||||
if self.fitDim == 2:
|
||||
|
||||
if y is None:
|
||||
if 'y' in dataArray.dims:
|
||||
y = dataArray['y'].to_numpy()
|
||||
if input_core_dims is None:
|
||||
kwargs.update(
|
||||
{
|
||||
"input_core_dims": [['x', 'y']],
|
||||
}
|
||||
)
|
||||
else:
|
||||
if isinstance(y, str):
|
||||
y = dataArray[y].to_numpy()
|
||||
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
|
||||
elif input_core_dims is None:
|
||||
kwargs.update(
|
||||
{
|
||||
"input_core_dims": [['x', 'y']],
|
||||
}
|
||||
)
|
||||
|
||||
_x, _y = np.meshgrid(x, y)
|
||||
_x = _x.flatten()
|
||||
_y = _y.flatten()
|
||||
|
||||
dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
|
||||
|
||||
kwargs["input_core_dims"][0] = ['_z']
|
||||
|
||||
return xr.apply_ufunc(self._guess_2D, dataArray, kwargs={'x':_x, 'y':_y},
|
||||
output_dtypes=[type(self.fitModel.make_params())],
|
||||
**kwargs
|
||||
)
|
||||
|
||||
def _fit_1D(self, data, params, x):
|
||||
# try:
|
||||
return self.fitModel.fit(data=data, x=x, params=params)
|
||||
|
||||
def _fit_2D(self, data, params, x, y):
|
||||
return self.fitModel.fit(data=data, x=x, y=y, params=params)
|
||||
|
||||
def fit(self, dataArray, paramsArray, x=None, y=None, input_core_dims=None, dask='parallelized', vectorize=True, **kwargs):
|
||||
|
||||
kwargs.update(
|
||||
{
|
||||
"dask": dask,
|
||||
"vectorize": vectorize,
|
||||
"input_core_dims": input_core_dims,
|
||||
}
|
||||
)
|
||||
|
||||
if input_core_dims is None:
|
||||
kwargs.update(
|
||||
{
|
||||
"input_core_dims": [['x'], []],
|
||||
}
|
||||
)
|
||||
|
||||
if x is None:
|
||||
if 'x' in dataArray.dims:
|
||||
x = dataArray['x'].to_numpy()
|
||||
else:
|
||||
if isinstance(x, str):
|
||||
x = dataArray[x].to_numpy()
|
||||
if input_core_dims is None:
|
||||
kwargs.update(
|
||||
{
|
||||
"input_core_dims": [[x], []],
|
||||
}
|
||||
)
|
||||
|
||||
if isinstance(paramsArray, type(self.fitModel.make_params())):
|
||||
|
||||
if self.fitDim == 1:
|
||||
return xr.apply_ufunc(self._fit_1D, dataArray, kwargs={'params':paramsArray,'x':x},
|
||||
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
||||
**kwargs)
|
||||
|
||||
if self.fitDim == 2:
|
||||
|
||||
if y is None:
|
||||
if 'y' in dataArray.dims:
|
||||
y = dataArray['y'].to_numpy()
|
||||
if input_core_dims is None:
|
||||
kwargs.update(
|
||||
{
|
||||
"input_core_dims": [['x', 'y'], []],
|
||||
}
|
||||
)
|
||||
else:
|
||||
if isinstance(y, str):
|
||||
y = dataArray[y].to_numpy()
|
||||
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
|
||||
elif input_core_dims is None:
|
||||
kwargs.update(
|
||||
{
|
||||
"input_core_dims": [['x', 'y'], []],
|
||||
}
|
||||
)
|
||||
|
||||
_x, _y = np.meshgrid(x, y)
|
||||
_x = _x.flatten()
|
||||
_y = _y.flatten()
|
||||
|
||||
dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
|
||||
|
||||
kwargs["input_core_dims"][0] = ['_z']
|
||||
|
||||
return xr.apply_ufunc(self._fit_2D, dataArray, kwargs={'params':paramsArray,'x':_x, 'y':_y},
|
||||
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
||||
**kwargs)
|
||||
|
||||
else:
|
||||
if self.fitDim == 1:
|
||||
return xr.apply_ufunc(self._fit_1D, dataArray, paramsArray, kwargs={'x':x},
|
||||
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
||||
**kwargs)
|
||||
|
||||
if self.fitDim == 2:
|
||||
|
||||
if input_core_dims is None:
|
||||
kwargs.update(
|
||||
{
|
||||
"input_core_dims": [['x', 'y'], []],
|
||||
}
|
||||
)
|
||||
|
||||
if y is None:
|
||||
if 'y' in dataArray.dims:
|
||||
y = dataArray['y'].to_numpy()
|
||||
else:
|
||||
if isinstance(y, str):
|
||||
y = dataArray[y].to_numpy()
|
||||
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
|
||||
|
||||
_x, _y = np.meshgrid(x, y)
|
||||
_x = _x.flatten()
|
||||
_y = _y.flatten()
|
||||
|
||||
dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
|
||||
|
||||
kwargs["input_core_dims"][0] = ['_z']
|
||||
|
||||
return xr.apply_ufunc(self._fit_2D, dataArray, paramsArray, kwargs={'x':_x, 'y':_y},
|
||||
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
||||
**kwargs)
|
||||
|
||||
|
||||
def _eval_1D(self, fitResult, x):
|
||||
return self.fitModel.eval(x=x, **fitResult.best_values)
|
||||
|
||||
def _eval_2D(self, fitResult, x, y, shape):
|
||||
res = self.fitModel.eval(x=x, y=y, **fitResult.best_values)
|
||||
return res.reshape(shape)
|
||||
|
||||
def eval(self, fitResultArray, x=None, y=None, output_core_dims=None, prefix="", dask='parallelized', vectorize=True, **kwargs):
|
||||
|
||||
kwargs.update(
|
||||
{
|
||||
"dask": dask,
|
||||
"vectorize": vectorize,
|
||||
"output_core_dims": output_core_dims,
|
||||
}
|
||||
)
|
||||
|
||||
if self.fitDim == 1:
|
||||
|
||||
if output_core_dims is None:
|
||||
kwargs.update(
|
||||
{
|
||||
"output_core_dims": [[prefix+'x']],
|
||||
"output_dtypes": float,
|
||||
}
|
||||
)
|
||||
output_core_dims = [prefix+'x']
|
||||
|
||||
kwargs.update(
|
||||
{
|
||||
"dask_gufunc_kwargs": {
|
||||
'output_sizes': {
|
||||
output_core_dims[0]: np.size(x),
|
||||
},
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
return xr.apply_ufunc(self._eval_1D, fitResultArray, kwargs={"x":x}, **kwargs)
|
||||
|
||||
if self.fitDim == 2:
|
||||
if output_core_dims is None:
|
||||
kwargs.update(
|
||||
{
|
||||
"output_core_dims": [[prefix+'x', prefix+'y']],
|
||||
"output_dtypes": float,
|
||||
}
|
||||
)
|
||||
output_core_dims = [prefix+'x', prefix+'y']
|
||||
|
||||
kwargs.update(
|
||||
{
|
||||
"dask_gufunc_kwargs": {
|
||||
'output_sizes': {
|
||||
output_core_dims[0]: np.size(x),
|
||||
output_core_dims[1]: np.size(y),
|
||||
},
|
||||
# 'output_dtypes': {
|
||||
# output_core_dims[0]: float,
|
||||
# output_core_dims[1]: float,
|
||||
# },
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
_x, _y = np.meshgrid(x, y)
|
||||
_x = _x.flatten()
|
||||
_y = _y.flatten()
|
||||
|
||||
return xr.apply_ufunc(self._eval_2D, fitResultArray, kwargs={"x":_x, "y":_y, "shape":(len(x), len(y))}, **kwargs)
|
||||
|
||||
|
130
Analyser/ImagingAnalyser.py
Normal file
130
Analyser/ImagingAnalyser.py
Normal file
@ -0,0 +1,130 @@
|
||||
import numpy as np
|
||||
import xarray as xr
|
||||
|
||||
|
||||
class ImageAnalyser():
|
||||
|
||||
def __init__(self) -> None:
|
||||
self._image_name = {
|
||||
'atoms': 'atoms',
|
||||
'background': 'background',
|
||||
'dark': 'dark',
|
||||
'OD':'OD',
|
||||
}
|
||||
self._center = None
|
||||
self._span = None
|
||||
self._fraction = None
|
||||
|
||||
@property
|
||||
def image_name(self):
|
||||
return self._image_name
|
||||
|
||||
@image_name.setter
|
||||
def image_name(self, value):
|
||||
self._image_name.update(value)
|
||||
|
||||
@property
|
||||
def center(self):
|
||||
return self._center
|
||||
|
||||
@center.setter
|
||||
def center(self, value):
|
||||
self._center = value
|
||||
|
||||
@property
|
||||
def span(self):
|
||||
return self._span
|
||||
|
||||
@span.setter
|
||||
def span(self, value):
|
||||
self._span = value
|
||||
|
||||
@property
|
||||
def fraction(self):
|
||||
return self._fraction
|
||||
|
||||
@fraction.setter
|
||||
def fraction(self, value):
|
||||
self._fraction = value
|
||||
|
||||
def get_offset_from_corner(self, dataArray, x_fraction=None, y_fraction=None, fraction=None, xAxisName='x', yAxisName='y'):
|
||||
|
||||
if fraction is None:
|
||||
if x_fraction is None:
|
||||
x_fraction = self._fraction[0]
|
||||
|
||||
if y_fraction is None:
|
||||
y_fraction = self._fraction[1]
|
||||
else:
|
||||
x_fraction = fraction[0]
|
||||
y_fraction = fraction[1]
|
||||
|
||||
x_number = dataArray[xAxisName].shape[0]
|
||||
y_number = dataArray[yAxisName].shape[0]
|
||||
|
||||
mean = dataArray.isel(x=slice(0, int(x_number * x_fraction)), y=slice(0 , int(y_number * y_fraction))).mean(dim=[xAxisName, yAxisName])
|
||||
mean += dataArray.isel(x=slice(0, int(x_number * x_fraction)), y=slice(int(y_number - y_number * y_fraction) , int(y_number))).mean(dim=[xAxisName, yAxisName])
|
||||
mean += dataArray.isel(x=slice(int(x_number - x_number * x_fraction) , int(x_number)), y=slice(0 , int(y_number * y_fraction))).mean(dim=[xAxisName, yAxisName])
|
||||
mean += dataArray.isel(x=slice(int(x_number - x_number * x_fraction) , int(x_number)), y=slice(int(y_number - y_number * y_fraction) , int(y_number))).mean(dim=[xAxisName, yAxisName])
|
||||
|
||||
return mean / 4
|
||||
|
||||
def substract_offset(self, dataArray, **kwargs):
|
||||
return dataArray - self.get_offset_from_corner(dataArray, **kwargs)
|
||||
|
||||
def crop_image(self, dataset, center=None, span=None):
|
||||
|
||||
if center is None:
|
||||
center = self._center
|
||||
if span is None:
|
||||
span = self._span
|
||||
|
||||
x_start = int(center[0] - span[0] / 2)
|
||||
x_end = int(center[0] + span[0] / 2)
|
||||
y_end = int(center[1] + span[1] / 2)
|
||||
y_start = int(center[1] - span[1] / 2)
|
||||
|
||||
return dataset.isel(x=slice(x_start, x_end), y=slice(y_start, y_end))
|
||||
|
||||
def get_OD(self, imageAtom, imageBackground, imageDrak):
|
||||
|
||||
numerator = np.atleast_1d(imageBackground - imageDrak)
|
||||
denominator = np.atleast_1d(imageAtom - imageDrak)
|
||||
|
||||
numerator[numerator == 0] = 1
|
||||
denominator[denominator == 0] = 1
|
||||
imageOD = np.abs(np.divide(denominator, numerator))
|
||||
imageOD= -np.log(imageOD)
|
||||
|
||||
if len(imageOD) == 1:
|
||||
return imageOD[0]
|
||||
else:
|
||||
return imageOD
|
||||
|
||||
def get_Ncount(self, imageOD):
|
||||
return np.sum(imageOD)
|
||||
|
||||
def get_absorption_images(self, dataset, dask='allowed', **kwargs):
|
||||
|
||||
kwargs.update(
|
||||
{'dask': dask}
|
||||
)
|
||||
|
||||
dataset = dataset.assign(
|
||||
{
|
||||
self._image_name['OD']: xr.apply_ufunc(self.get_OD, dataset[self._image_name['atoms']], dataset[self._image_name['background']], dataset[self._image_name['dark']], **kwargs)
|
||||
}
|
||||
)
|
||||
|
||||
return dataset
|
||||
|
||||
def remove_background(self, dataset, dask='allowed', **kwargs):
|
||||
|
||||
kwargs.update(
|
||||
{'dask': dask}
|
||||
)
|
||||
|
||||
xr.apply_ufunc(self.get_OD, dataset[self._image_name['atoms']], dataset[self._image_name['background']], dataset[self._image_name['dark']], **kwargs)
|
||||
|
||||
|
||||
|
@ -98,6 +98,14 @@ def _assign_scan_axis_partial(x, datesetOfGlobal):
|
||||
)
|
||||
|
||||
|
||||
def _update_globals_attrs(variable_attrs, context=None):
|
||||
pass
|
||||
|
||||
|
||||
def update_hdf5_file():
|
||||
pass
|
||||
|
||||
|
||||
def read_hdf5_file(filePath, group=None, datesetOfGlobal=None, preprocess=None, join="outer", parallel=True, engine="h5netcdf", phony_dims="access", **kwargs):
|
||||
|
||||
kwargs.update(
|
||||
|
1354
test.ipynb
1354
test.ipynb
File diff suppressed because one or more lines are too long
18
test.py
Normal file
18
test.py
Normal file
@ -0,0 +1,18 @@
|
||||
from DataContainer.ReadData import read_hdf5_file
|
||||
|
||||
# filepath = "//DyLabNAS/Data/Evaporative_Cooling/2023/04/18/0003/*.h5"
|
||||
# filepath = "//DyLabNAS/Data/Evaporative_Cooling/2023/04/18/0003/2023-04-18_0003_Evaporative_Cooling_000.h5"
|
||||
|
||||
filepath = "//DyLabNAS/Data/Repetition_scan/2023/04/21/0000/*.h5"
|
||||
|
||||
groupList = [
|
||||
"images/MOT_3D_Camera/in_situ_absorption",
|
||||
"images/ODT_1_Axis_Camera/in_situ_absorption"
|
||||
]
|
||||
|
||||
prefix = [
|
||||
"camera_0",
|
||||
"camera_1"
|
||||
]
|
||||
|
||||
ds = read_hdf5_file(filepath, groupList)
|
Loading…
Reference in New Issue
Block a user