regular backup

This commit is contained in:
Jianshun Gao 2023-09-27 18:10:03 +02:00
parent b70bc5faf5
commit b17c05bf30

View File

@ -3,38 +3,6 @@ from scipy.linalg import lu
import xarray as xr
def fringeremoval(absimages, refimages, bgmask=None):
# Process inputs
nimgs = absimages.shape[2]
nimgsR = refimages.shape[2]
xdim = absimages.shape[1]
ydim = absimages.shape[0]
A = (absimages.reshape(xdim * ydim, nimgs).astype(np.float32))
R = (refimages.reshape(xdim * ydim, nimgsR).astype(np.float32))
optrefimages = np.zeros_like(absimages, dtype=np.float32)
if bgmask is None:
bgmask = np.ones((ydim, xdim), dtype=np.uint8)
k = np.where(bgmask.flatten() == 1)[0] # Index k specifying the background region
# Ensure there are no duplicate reference images
# R = np.unique(R, axis=1) # Comment this line if memory issues arise
# Decompose B = R * R' using LU decomposition
P, L, U = lu(R[k, :].T @ R[k, :], permute_l = False, p_indices = True)
for j in range(nimgs):
b = R[k, :].T @ A[k, j]
# Obtain coefficients c which minimize least-square residuals
c = np.linalg.solve(U, np.linalg.solve(L[P], b))
# Compute optimized reference image
optrefimages[:, :, j] = (R @ c).reshape((ydim, xdim))
return optrefimages
class InvalidDimException(Exception):
"Raised when the program can not identify (index of images, x, y) axes."
def __init__(self, dims):
@ -53,67 +21,83 @@ class DataSizeException(Exception):
class FringeRemoval():
"""A class for fringes removal
"""
def __init__(self) -> None:
self.nimgsR = 0
self.xdim = 0
self.ydim = 0
"""Initialize the class
"""
self.nimgsR = 0 # The number of the reference images
self.xdim = 0 # The shape of x axis
self.ydim = 0 # The shape of y axis
self._mask = None
self._mask = None # The mask array to choose the region of interest for fringes removal
self.reshape=True
self.reshape=True # If it is necessary to reshape the data from (index of images(alternative), x, y) to (y, x, index of images(alternative))
self.P = None
self.L = None
self.U = None
def reshape_data(self, data):
"""The function is to reshape the data to the correct shape.
In order to minimize the calculation time, the data has to have a shape of (y, x, index of images(alternative)).
However, usually the input data has a shape of (index of images(alternative), x, y).
It can also convert the xarray DataArray and Dataset to numpy array.
if data is None:
return data
if isinstance(data, type(xr.DataArray())):
dims = data.dims
if len(dims)>3:
raise InvalidDimException(dims)
xAxis = None
yAxis = None
if len(dims) == 2:
imageAxis = ''
else:
imageAxis = None
for dim in dims:
if (dim == 'x') or ('_x' in dim):
xAxis = dim
elif (dim == 'y') or ('_y' in dim):
yAxis = dim
else:
imageAxis = dim
if (xAxis is None) or (yAxis is None) or (imageAxis is None):
raise InvalidDimException(dims)
if len(dims) == 2:
data = data.transpose(yAxis, xAxis)
else:
data = data.transpose(yAxis, xAxis, imageAxis)
data = data.to_numpy()
else:
data = np.array(data)
if len(data.shape) == 3:
data = np.swapaxes(data, 0, 2)
# data = np.swapaxes(data, 0, 1)
elif len(data.shape) == 2:
data = np.swapaxes(data, 0, 1)
:param data: The input data.
:type data: xarray, numpy array or list
:raises InvalidDimException: Raised when the program can not identify (index of images, x, y) axes.
:raises InvalidDimException: Raised when the shape of the data is not correct.
:return: The data with correct shape
:rtype: xarray, numpy array or list
"""
if data is None:
return data
if isinstance(data, type(xr.DataArray())):
dims = data.dims
if len(dims)>3:
raise InvalidDimException(dims)
xAxis = None
yAxis = None
if len(dims) == 2:
imageAxis = ''
else:
imageAxis = None
for dim in dims:
if (dim == 'x') or ('_x' in dim):
xAxis = dim
elif (dim == 'y') or ('_y' in dim):
yAxis = dim
else:
imageAxis = dim
if (xAxis is None) or (yAxis is None) or (imageAxis is None):
raise InvalidDimException(dims)
if len(dims) == 2:
data = data.transpose(yAxis, xAxis)
else:
data = data.transpose(yAxis, xAxis, imageAxis)
data = data.to_numpy()
else:
data = np.array(data)
if len(data.shape) == 3:
data = np.swapaxes(data, 0, 2)
# data = np.swapaxes(data, 0, 1)
elif len(data.shape) == 2:
data = np.swapaxes(data, 0, 1)
return data
@property
def referenceImages(self):
res = self._referenceImages.reshape(self.ydim, self.xdim, self.nimgsR)
@ -134,6 +118,13 @@ class FringeRemoval():
self._referenceImages = (value.reshape(self.xdim * self.ydim, self.nimgsR).astype(np.float32))
def add_reference_images(self, data):
"""Add a new reference images
:param data: The new reference image.
:type data: xarray, numpy array or list
:raises DataSizeException: Raised when the shape of the data is not correct.
"""
if self.reshape:
data = self.reshape_data(data)
elif isinstance(data, type(xr.DataArray())):
@ -147,9 +138,16 @@ class FringeRemoval():
self._referenceImages = np.append(self._referenceImages, data, axis=1)
def _remove_first_reference_images(self):
"""Remove the first reference images
"""
self._referenceImages = np.delete(self._referenceImages, 0, axis=1)
def update_reference_images(self, data):
"""Update the reference images set by removing the first one and adding a new one at the end.
:param data: The new reference image.
:type data: xarray, numpy array or list
"""
self._remove_first_reference_images()
self.add_reference_images(data)
@ -178,7 +176,10 @@ class FringeRemoval():
def decompose_referenceImages(self):
self.P, self.L, self.U = lu(self._referenceImages[self.k, :].T @ self._referenceImages[self.k, :], permute_l = False, p_indices = True)
def _fringe_removal(self, absorptionImages, referenceImages=None, mask=None, reshape=None):
def solve_coefficient(self):
pass
def _fringe_removal(self, absorptionImages, referenceImages=None, mask=None, reshape=None, dask='forbidden'):
if not reshape is None:
self.reshape = reshape
if not referenceImages is None:
@ -198,19 +199,43 @@ class FringeRemoval():
optrefimages = np.zeros_like(absorptionImages, dtype=np.float32)
for j in range(self.nimgs):
b = self._referenceImages[self.k, :].T @ absorptionImages[self.k, j]
if dask=='forbidden':
for j in range(self.nimgs):
b = self._referenceImages[self.k, :].T @ absorptionImages[self.k, j]
# Obtain coefficients c which minimize least-square residuals
c = np.linalg.solve(self.U, np.linalg.solve(self.L[self.P], b))
# Compute optimized reference image
optrefimages[:, j] = (self._referenceImages @ c)
# Obtain coefficients c which minimize least-square residuals
c = np.linalg.solve(self.U, np.linalg.solve(self.L[self.P], b))
# Compute optimized reference image
optrefimages[:, j] = (self._referenceImages @ c)
else:
pass
return optrefimages
def fringe_removal(self, absorptionImages, referenceImages=None, mask=None, reshape=None):
def fringe_removal(self, absorptionImages, referenceImages=None, mask=None, reshape=None, dask='forbidden'):
"""
This function will generate a 'fake' background images, which can help to remove the fringes.
res = self._fringe_removal(absorptionImages, referenceImages, mask, reshape)
Important: Please substract the drak images from the both of images with atoms and without atoms before using this function!!!
:param absorptionImages: A set of images with atoms in absorption imaging
:type absorptionImages: xarray, numpy array or list
:param referenceImages: A set of images without atoms in absorption imaging, defaults to None
:type referenceImages: xarray, numpy array or list, optional
:param mask: An array to choose the region of interest for fringes removal, defaults to None, defaults to None
:type mask: numpy array, optional
:param reshape: If it needs to reshape the data, defaults to None
:type reshape: bool, optional
:param dask: Please refer to xarray.apply_ufunc()
:type dask: {"forbidden", "allowed", "parallelized"}, optional
:return: The 'fake' background to help removing the fringes
:rtype: numpy array
"""
res = self._fringe_removal(absorptionImages, referenceImages, mask, reshape, dask)
res = res.reshape(self.ydim, self.xdim, self.nimgs)
return np.swapaxes(res, 0, 2)
if self.reshape:
return np.swapaxes(res, 0, 2)
else:
return res