regular backup
This commit is contained in:
parent
b70bc5faf5
commit
b17c05bf30
@ -3,38 +3,6 @@ from scipy.linalg import lu
|
|||||||
|
|
||||||
import xarray as xr
|
import xarray as xr
|
||||||
|
|
||||||
def fringeremoval(absimages, refimages, bgmask=None):
|
|
||||||
# Process inputs
|
|
||||||
nimgs = absimages.shape[2]
|
|
||||||
nimgsR = refimages.shape[2]
|
|
||||||
xdim = absimages.shape[1]
|
|
||||||
ydim = absimages.shape[0]
|
|
||||||
|
|
||||||
A = (absimages.reshape(xdim * ydim, nimgs).astype(np.float32))
|
|
||||||
R = (refimages.reshape(xdim * ydim, nimgsR).astype(np.float32))
|
|
||||||
optrefimages = np.zeros_like(absimages, dtype=np.float32)
|
|
||||||
|
|
||||||
if bgmask is None:
|
|
||||||
bgmask = np.ones((ydim, xdim), dtype=np.uint8)
|
|
||||||
k = np.where(bgmask.flatten() == 1)[0] # Index k specifying the background region
|
|
||||||
|
|
||||||
# Ensure there are no duplicate reference images
|
|
||||||
# R = np.unique(R, axis=1) # Comment this line if memory issues arise
|
|
||||||
|
|
||||||
# Decompose B = R * R' using LU decomposition
|
|
||||||
P, L, U = lu(R[k, :].T @ R[k, :], permute_l = False, p_indices = True)
|
|
||||||
|
|
||||||
for j in range(nimgs):
|
|
||||||
b = R[k, :].T @ A[k, j]
|
|
||||||
|
|
||||||
# Obtain coefficients c which minimize least-square residuals
|
|
||||||
c = np.linalg.solve(U, np.linalg.solve(L[P], b))
|
|
||||||
# Compute optimized reference image
|
|
||||||
optrefimages[:, :, j] = (R @ c).reshape((ydim, xdim))
|
|
||||||
|
|
||||||
return optrefimages
|
|
||||||
|
|
||||||
|
|
||||||
class InvalidDimException(Exception):
|
class InvalidDimException(Exception):
|
||||||
"Raised when the program can not identify (index of images, x, y) axes."
|
"Raised when the program can not identify (index of images, x, y) axes."
|
||||||
def __init__(self, dims):
|
def __init__(self, dims):
|
||||||
@ -53,66 +21,82 @@ class DataSizeException(Exception):
|
|||||||
|
|
||||||
|
|
||||||
class FringeRemoval():
|
class FringeRemoval():
|
||||||
|
"""A class for fringes removal
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
self.nimgsR = 0
|
"""Initialize the class
|
||||||
self.xdim = 0
|
"""
|
||||||
self.ydim = 0
|
self.nimgsR = 0 # The number of the reference images
|
||||||
|
self.xdim = 0 # The shape of x axis
|
||||||
|
self.ydim = 0 # The shape of y axis
|
||||||
|
|
||||||
self._mask = None
|
self._mask = None # The mask array to choose the region of interest for fringes removal
|
||||||
|
|
||||||
self.reshape=True
|
self.reshape=True # If it is necessary to reshape the data from (index of images(alternative), x, y) to (y, x, index of images(alternative))
|
||||||
|
|
||||||
self.P = None
|
self.P = None
|
||||||
self.L = None
|
self.L = None
|
||||||
self.U = None
|
self.U = None
|
||||||
|
|
||||||
def reshape_data(self, data):
|
|
||||||
|
|
||||||
if data is None:
|
def reshape_data(self, data):
|
||||||
return data
|
"""The function is to reshape the data to the correct shape.
|
||||||
|
In order to minimize the calculation time, the data has to have a shape of (y, x, index of images(alternative)).
|
||||||
|
However, usually the input data has a shape of (index of images(alternative), x, y).
|
||||||
|
It can also convert the xarray DataArray and Dataset to numpy array.
|
||||||
|
|
||||||
if isinstance(data, type(xr.DataArray())):
|
:param data: The input data.
|
||||||
|
:type data: xarray, numpy array or list
|
||||||
dims = data.dims
|
:raises InvalidDimException: Raised when the program can not identify (index of images, x, y) axes.
|
||||||
|
:raises InvalidDimException: Raised when the shape of the data is not correct.
|
||||||
if len(dims)>3:
|
:return: The data with correct shape
|
||||||
raise InvalidDimException(dims)
|
:rtype: xarray, numpy array or list
|
||||||
|
"""
|
||||||
xAxis = None
|
|
||||||
yAxis = None
|
if data is None:
|
||||||
if len(dims) == 2:
|
|
||||||
imageAxis = ''
|
|
||||||
else:
|
|
||||||
imageAxis = None
|
|
||||||
|
|
||||||
for dim in dims:
|
|
||||||
if (dim == 'x') or ('_x' in dim):
|
|
||||||
xAxis = dim
|
|
||||||
elif (dim == 'y') or ('_y' in dim):
|
|
||||||
yAxis = dim
|
|
||||||
else:
|
|
||||||
imageAxis = dim
|
|
||||||
|
|
||||||
if (xAxis is None) or (yAxis is None) or (imageAxis is None):
|
|
||||||
raise InvalidDimException(dims)
|
|
||||||
|
|
||||||
if len(dims) == 2:
|
|
||||||
data = data.transpose(yAxis, xAxis)
|
|
||||||
else:
|
|
||||||
data = data.transpose(yAxis, xAxis, imageAxis)
|
|
||||||
|
|
||||||
data = data.to_numpy()
|
|
||||||
|
|
||||||
else:
|
|
||||||
data = np.array(data)
|
|
||||||
if len(data.shape) == 3:
|
|
||||||
data = np.swapaxes(data, 0, 2)
|
|
||||||
# data = np.swapaxes(data, 0, 1)
|
|
||||||
elif len(data.shape) == 2:
|
|
||||||
data = np.swapaxes(data, 0, 1)
|
|
||||||
|
|
||||||
return data
|
return data
|
||||||
|
|
||||||
|
if isinstance(data, type(xr.DataArray())):
|
||||||
|
|
||||||
|
dims = data.dims
|
||||||
|
|
||||||
|
if len(dims)>3:
|
||||||
|
raise InvalidDimException(dims)
|
||||||
|
|
||||||
|
xAxis = None
|
||||||
|
yAxis = None
|
||||||
|
if len(dims) == 2:
|
||||||
|
imageAxis = ''
|
||||||
|
else:
|
||||||
|
imageAxis = None
|
||||||
|
|
||||||
|
for dim in dims:
|
||||||
|
if (dim == 'x') or ('_x' in dim):
|
||||||
|
xAxis = dim
|
||||||
|
elif (dim == 'y') or ('_y' in dim):
|
||||||
|
yAxis = dim
|
||||||
|
else:
|
||||||
|
imageAxis = dim
|
||||||
|
|
||||||
|
if (xAxis is None) or (yAxis is None) or (imageAxis is None):
|
||||||
|
raise InvalidDimException(dims)
|
||||||
|
|
||||||
|
if len(dims) == 2:
|
||||||
|
data = data.transpose(yAxis, xAxis)
|
||||||
|
else:
|
||||||
|
data = data.transpose(yAxis, xAxis, imageAxis)
|
||||||
|
|
||||||
|
data = data.to_numpy()
|
||||||
|
|
||||||
|
else:
|
||||||
|
data = np.array(data)
|
||||||
|
if len(data.shape) == 3:
|
||||||
|
data = np.swapaxes(data, 0, 2)
|
||||||
|
# data = np.swapaxes(data, 0, 1)
|
||||||
|
elif len(data.shape) == 2:
|
||||||
|
data = np.swapaxes(data, 0, 1)
|
||||||
|
|
||||||
|
return data
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def referenceImages(self):
|
def referenceImages(self):
|
||||||
@ -132,8 +116,15 @@ class FringeRemoval():
|
|||||||
self.ydim = value.shape[0]
|
self.ydim = value.shape[0]
|
||||||
|
|
||||||
self._referenceImages = (value.reshape(self.xdim * self.ydim, self.nimgsR).astype(np.float32))
|
self._referenceImages = (value.reshape(self.xdim * self.ydim, self.nimgsR).astype(np.float32))
|
||||||
|
|
||||||
def add_reference_images(self, data):
|
def add_reference_images(self, data):
|
||||||
|
"""Add a new reference images
|
||||||
|
|
||||||
|
:param data: The new reference image.
|
||||||
|
:type data: xarray, numpy array or list
|
||||||
|
:raises DataSizeException: Raised when the shape of the data is not correct.
|
||||||
|
"""
|
||||||
|
|
||||||
if self.reshape:
|
if self.reshape:
|
||||||
data = self.reshape_data(data)
|
data = self.reshape_data(data)
|
||||||
elif isinstance(data, type(xr.DataArray())):
|
elif isinstance(data, type(xr.DataArray())):
|
||||||
@ -147,9 +138,16 @@ class FringeRemoval():
|
|||||||
self._referenceImages = np.append(self._referenceImages, data, axis=1)
|
self._referenceImages = np.append(self._referenceImages, data, axis=1)
|
||||||
|
|
||||||
def _remove_first_reference_images(self):
|
def _remove_first_reference_images(self):
|
||||||
|
"""Remove the first reference images
|
||||||
|
"""
|
||||||
self._referenceImages = np.delete(self._referenceImages, 0, axis=1)
|
self._referenceImages = np.delete(self._referenceImages, 0, axis=1)
|
||||||
|
|
||||||
def update_reference_images(self, data):
|
def update_reference_images(self, data):
|
||||||
|
"""Update the reference images set by removing the first one and adding a new one at the end.
|
||||||
|
|
||||||
|
:param data: The new reference image.
|
||||||
|
:type data: xarray, numpy array or list
|
||||||
|
"""
|
||||||
self._remove_first_reference_images()
|
self._remove_first_reference_images()
|
||||||
self.add_reference_images(data)
|
self.add_reference_images(data)
|
||||||
|
|
||||||
@ -178,7 +176,10 @@ class FringeRemoval():
|
|||||||
def decompose_referenceImages(self):
|
def decompose_referenceImages(self):
|
||||||
self.P, self.L, self.U = lu(self._referenceImages[self.k, :].T @ self._referenceImages[self.k, :], permute_l = False, p_indices = True)
|
self.P, self.L, self.U = lu(self._referenceImages[self.k, :].T @ self._referenceImages[self.k, :], permute_l = False, p_indices = True)
|
||||||
|
|
||||||
def _fringe_removal(self, absorptionImages, referenceImages=None, mask=None, reshape=None):
|
def solve_coefficient(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def _fringe_removal(self, absorptionImages, referenceImages=None, mask=None, reshape=None, dask='forbidden'):
|
||||||
if not reshape is None:
|
if not reshape is None:
|
||||||
self.reshape = reshape
|
self.reshape = reshape
|
||||||
if not referenceImages is None:
|
if not referenceImages is None:
|
||||||
@ -198,19 +199,43 @@ class FringeRemoval():
|
|||||||
|
|
||||||
optrefimages = np.zeros_like(absorptionImages, dtype=np.float32)
|
optrefimages = np.zeros_like(absorptionImages, dtype=np.float32)
|
||||||
|
|
||||||
for j in range(self.nimgs):
|
if dask=='forbidden':
|
||||||
b = self._referenceImages[self.k, :].T @ absorptionImages[self.k, j]
|
for j in range(self.nimgs):
|
||||||
|
b = self._referenceImages[self.k, :].T @ absorptionImages[self.k, j]
|
||||||
|
|
||||||
# Obtain coefficients c which minimize least-square residuals
|
# Obtain coefficients c which minimize least-square residuals
|
||||||
c = np.linalg.solve(self.U, np.linalg.solve(self.L[self.P], b))
|
c = np.linalg.solve(self.U, np.linalg.solve(self.L[self.P], b))
|
||||||
# Compute optimized reference image
|
# Compute optimized reference image
|
||||||
optrefimages[:, j] = (self._referenceImages @ c)
|
optrefimages[:, j] = (self._referenceImages @ c)
|
||||||
|
else:
|
||||||
|
pass
|
||||||
|
|
||||||
return optrefimages
|
return optrefimages
|
||||||
|
|
||||||
def fringe_removal(self, absorptionImages, referenceImages=None, mask=None, reshape=None):
|
def fringe_removal(self, absorptionImages, referenceImages=None, mask=None, reshape=None, dask='forbidden'):
|
||||||
|
"""
|
||||||
|
This function will generate a 'fake' background images, which can help to remove the fringes.
|
||||||
|
|
||||||
res = self._fringe_removal(absorptionImages, referenceImages, mask, reshape)
|
Important: Please substract the drak images from the both of images with atoms and without atoms before using this function!!!
|
||||||
|
|
||||||
|
:param absorptionImages: A set of images with atoms in absorption imaging
|
||||||
|
:type absorptionImages: xarray, numpy array or list
|
||||||
|
:param referenceImages: A set of images without atoms in absorption imaging, defaults to None
|
||||||
|
:type referenceImages: xarray, numpy array or list, optional
|
||||||
|
:param mask: An array to choose the region of interest for fringes removal, defaults to None, defaults to None
|
||||||
|
:type mask: numpy array, optional
|
||||||
|
:param reshape: If it needs to reshape the data, defaults to None
|
||||||
|
:type reshape: bool, optional
|
||||||
|
:param dask: Please refer to xarray.apply_ufunc()
|
||||||
|
:type dask: {"forbidden", "allowed", "parallelized"}, optional
|
||||||
|
:return: The 'fake' background to help removing the fringes
|
||||||
|
:rtype: numpy array
|
||||||
|
"""
|
||||||
|
|
||||||
|
res = self._fringe_removal(absorptionImages, referenceImages, mask, reshape, dask)
|
||||||
res = res.reshape(self.ydim, self.xdim, self.nimgs)
|
res = res.reshape(self.ydim, self.xdim, self.nimgs)
|
||||||
return np.swapaxes(res, 0, 2)
|
if self.reshape:
|
||||||
|
return np.swapaxes(res, 0, 2)
|
||||||
|
else:
|
||||||
|
return res
|
||||||
|
|
Loading…
Reference in New Issue
Block a user