Fixed bugs + commented out

This commit is contained in:
Joschka 2023-08-22 09:54:04 +02:00
parent 8a96cb841d
commit a841f10379

View File

@ -111,6 +111,19 @@ polylog_int = CubicSpline(x_int, poly_tab)
def thermal(x, x0, amp, sigma): def thermal(x, x0, amp, sigma):
"""Calculating thermal density distribution in 1D (scaled such that if amp=1, return = 1)
:param x: axis
:type x: float or 1d array
:param x0: position of peak along axis
:type x0: float
:param amp: amplitude of function
:type amp: float
:param sigma: width of function
:type sigma: float
:return: calculated function value
:rtype: float or 1D array
"""
res = np.exp(-0.5 * (x-x0)**2 / sigma**2) res = np.exp(-0.5 * (x-x0)**2 / sigma**2)
return amp/1.643 * polylog_int(res) return amp/1.643 * polylog_int(res)
@ -363,6 +376,8 @@ class DensityProfileBEC2dModel(lmfit.Model):
prefix='', prefix='',
nan_policy='raise', nan_policy='raise',
atom_n_conv=144, atom_n_conv=144,
pre_check=False,
post_check=False,
is_debug=False, is_debug=False,
**kwargs **kwargs
): ):
@ -370,6 +385,8 @@ class DensityProfileBEC2dModel(lmfit.Model):
'independent_vars': independent_vars}) 'independent_vars': independent_vars})
self.atom_n_conv = atom_n_conv self.atom_n_conv = atom_n_conv
self.pre_check = pre_check
self.post_check = post_check
self.is_debug=is_debug self.is_debug=is_debug
super().__init__(density_profile_BEC_2d, **kwargs) super().__init__(density_profile_BEC_2d, **kwargs)
self._set_paramhints_prefix() self._set_paramhints_prefix()
@ -387,48 +404,71 @@ class DensityProfileBEC2dModel(lmfit.Model):
self.set_param_hint('sigma_th', min=0) self.set_param_hint('sigma_th', min=0)
def guess(self, data, x, y, **kwargs): def guess(self, data, x, y, pre_check=False, post_check=False, **kwargs):
"""Estimate and create initial model parameters for 2d bimodal fit, by doing a 1d bimodal fit along an integrated slice of the image
:param data: Flattened 2d array, in form [a_00, a_10, a_20, ..., a_01, a_02, .. ,a_XY] with a_xy, x_dim=X, y_dim=Y
:type data: 1d numpy array
:param x: flattened X output of np.meshgrid(x_axis,y_axis) in form: [x1, x2, .., xX, x1, x2, .., xX, .. Y times ..]
:type x: 1d numpy array
:param y: flattened Y output of np.meshgrid(x_axis,y_axis) in form: [y1, y1, .., y1 (X times), y2, y2, .., y2 (X times), .. Y times ..]
:type y: 1d numpy array
:param pre_check: if True the amplitude of the 1d fit is used to guess if the image is purely BEC or thermal and
the corresponding amplitude of the 2d fit is set to zero and not varied to speed up the fitting, defaults to False
:type pre_check: bool, optional
:param post_check: if True, after doing a 2d bimodal fit the number of atoms surrounding the fitted BEC is counted and if the value is
below a certain threshhold the fit is done again with the thermal amplitude set to zero, defaults to False
:type post_check: bool, optional
:return: initial parameters for 2d fit
:rtype: params object (lmfit)
""" """
Estimate and create initial model parameters for 2d fit self.pre_check = pre_check
:param data: Flattened 2d array, flattened from array with (x,y) --> self.post_check = post_check
:param x:
:param y: # reshaping the image to 2D in the form [[a_00, a_01, .., a_0Y], [a_10,.., a_1Y], .., [a_X0, .., a_XY]], with a_xy
:param kwargs:
:return:
"""
#
# global X_guess
# global bval_1d
x_width = len(np.unique(x)) x_width = len(np.unique(x))
y_width = len(np.unique(y)) y_width = len(np.unique(y))
data = np.reshape(data, (y_width, x_width)) data = np.reshape(data, (y_width, x_width))
data = data.T data = data.T
shape = np.shape(data) shape = np.shape(data)
cut_width = np.max(shape) if self.is_debug:
print(f'shape: {shape}')
max_width = np.max(shape)
thresh = self.calc_thresh(data) # binarizing image to guess BEC width and calculate center
thresh = self.calc_thresh(data,thresh_val=0.5)
# calculating center of cloud by statistical distribution of binarized image
center = self.calc_cen(thresh) center = self.calc_cen(thresh)
# guessing BEC width, or better of width of center blob if no BEC is present
BEC_width_guess = self.guess_BEC_width(thresh, center) BEC_width_guess = self.guess_BEC_width(thresh, center)
# plot binarized image and center position for debugging
if self.is_debug:
plt.pcolormesh(thresh.T, cmap='jet')
plt.plot(center[0], center[1], marker='x', markersize=25, color='green')
plt.gca().set_aspect('equal')
plt.title(f'Binarized image for guessing BEC width + center position (BEC_width: x={BEC_width_guess[0]:.0f}, y={BEC_width_guess[1]:.0f} pix)')
plt.xlabel('x_axis')
plt.ylabel('y_axis')
plt.show()
# The 1d fit is done along the short axis of the BEC (decided via the BEC_width guess)
if BEC_width_guess[0] < BEC_width_guess[1]: if BEC_width_guess[0] < BEC_width_guess[1]:
if self.is_debug: if self.is_debug:
print(f'x smaller y') print(f'x smaller y, 1d fit along x')
s_width_ind = 0 s_width_ind = 0
# slice of the image along the short BEC axis with width of BEC width is taken
X_guess = np.sum(data[:, round(center[1] - BEC_width_guess[1]/2) : round(center[1] + BEC_width_guess[1]/2)], 1) / len(data[0,round(center[1] - BEC_width_guess[1]/2) : round(center[1] + BEC_width_guess[1]/2)]) X_guess = np.sum(data[:, round(center[1] - BEC_width_guess[1]/2) : round(center[1] + BEC_width_guess[1]/2)], 1) / len(data[0,round(center[1] - BEC_width_guess[1]/2) : round(center[1] + BEC_width_guess[1]/2)])
else: else:
if self.is_debug: if self.is_debug:
print(f'y smaller x') print(f'y smaller x, 1d fit along y')
s_width_ind = 1 s_width_ind = 1
X_guess = np.sum(data[round(center[0] - BEC_width_guess[0]/2) : round(center[0] + BEC_width_guess[0]/2), :], 0) / len(data[0,round(center[0] - BEC_width_guess[0]/2) : round(center[0] + BEC_width_guess[0]/2)]) X_guess = np.sum(data[round(center[0] - BEC_width_guess[0]/2) : round(center[0] + BEC_width_guess[0]/2), :], 0) / len(data[0,round(center[0] - BEC_width_guess[0]/2) : round(center[0] + BEC_width_guess[0]/2)])
if self.is_debug:
print(f'center = {center}')
print(f'BEC widths: {BEC_width_guess}')
plt.plot(X_guess)
plt.show()
# Creating 1d fit init params + Performing fit
x = np.linspace(0, len(X_guess), len(X_guess)) x = np.linspace(0, len(X_guess), len(X_guess))
max_val = np.max(X_guess) max_val = np.max(X_guess)
@ -436,32 +476,52 @@ class DensityProfileBEC2dModel(lmfit.Model):
fitmodel_1d = lmfit.Model(density_1d, independent_vars=['x']) fitmodel_1d = lmfit.Model(density_1d, independent_vars=['x'])
params_1d = lmfit.Parameters() params_1d = lmfit.Parameters()
params_1d.add_many( params_1d.add_many(
('x0_bec', center[s_width_ind], True,0, 200), ('x0_bec', center[s_width_ind], True, center[s_width_ind]-10, center[s_width_ind]+10),
('x0_th',center[s_width_ind], True,0, 200), ('x0_th',center[s_width_ind], True, center[s_width_ind]-10, center[s_width_ind]+10),
('amp_bec', 0.7 * max_val, True, 0, 1.3 * max_val), ('amp_bec', 0.5 * max_val, True, 0, 1.3 * max_val),
('amp_th', 0.3 * max_val, True, 0, 1.3 * max_val), ('amp_th', 0.5 * max_val, True, 0, 1.3 * max_val),
('deltax', 3*BEC_width_guess[s_width_ind], True, 0,cut_width), ('deltax', 3*BEC_width_guess[s_width_ind], True, 0, max_width),
# ('sigma_bec',BEC_width_guess[i,j,0]/1.22, True, 0, 50) # ('sigma_bec',BEC_width_guess[i,j,0]/1.22, True, 0, 50)
('sigma_bec',BEC_width_guess[s_width_ind]/1.22, True, 0, 50) ('sigma_bec',BEC_width_guess[s_width_ind]/1.22, True, 0, BEC_width_guess[s_width_ind]*2)
) )
params_1d.add('sigma_th', 3*BEC_width_guess[0], min=0, expr=f'0.632*sigma_bec + 0.518*deltax') params_1d.add('sigma_th', 3*BEC_width_guess[0], min=0, expr=f'0.632*sigma_bec + 0.518*deltax')
res_1d = fitmodel_1d.fit(X_guess, x=x, params=params_1d) res_1d = fitmodel_1d.fit(X_guess, x=x, params=params_1d)
if self.is_debug:
params_1d.pretty_print()
self.print_bval(res_1d)
bval_1d = res_1d.best_values bval_1d = res_1d.best_values
if self.is_debug:
print('')
print('1d fit initialization')
print(f'center = {center}')
print(f'BEC widths: {BEC_width_guess}')
print('')
print('1d init fit values')
params_1d.pretty_print()
print('1d fitted values')
self.print_bval(res_1d)
x = np.linspace(0, len(X_guess), len(X_guess))
plt.plot(x, X_guess, label='1d int. data')
plt.plot(x, density_1d(x,**bval_1d), label='bimodal fit')
plt.plot(x, thermal(x,x0=bval_1d['x0_th'], amp=bval_1d['amp_th'], sigma=bval_1d['sigma_th']), label='thermal part')
plt.legend()
if s_width_ind==0:
plt.title('1d fit of data along x-axis')
plt.xlabel('x_axis (pix)')
else:
plt.title('1d fit of data along y-axis')
plt.xlabel('y_axis (pix)')
plt.show()
# scaling amplitudes of 1d fit with the maximum value of blurred 2d data
amp_conv_1d_2d = np.max(gaussian_filter(data, sigma=1)) / (bval_1d['amp_bec'] + bval_1d['amp_th']) amp_conv_1d_2d = np.max(gaussian_filter(data, sigma=1)) / (bval_1d['amp_bec'] + bval_1d['amp_th'])
max_val = np.max(data) max_val = np.max(data)
params = self.make_params() params = self.make_params()
if bval_1d['amp_th']/bval_1d['amp_bec'] > 3: # if precheck enabled and amp_th is 7x higher than amp_bec (value might be changed), amplitude of BEC in 2d fit is set to zero
if bval_1d['amp_th']/bval_1d['amp_bec'] > 7 and self.pre_check:
print(f'Image seems to be purely thermal (guessed from 1d fit amplitude)') print(f'Image seems to be purely thermal (guessed from 1d fit amplitude)')
params[f'{self.prefix}amp_bec'].set(value=0, vary=False) params[f'{self.prefix}amp_bec'].set(value=0, vary=False)
@ -472,9 +532,10 @@ class DensityProfileBEC2dModel(lmfit.Model):
params[f'{self.prefix}y0_th'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True) params[f'{self.prefix}y0_th'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
params[f'{self.prefix}sigmax_bec'].set(value=1, vary=False) params[f'{self.prefix}sigmax_bec'].set(value=1, vary=False)
params[f'{self.prefix}sigmay_bec'].set(value=1, vary=False) params[f'{self.prefix}sigmay_bec'].set(value=1, vary=False)
params[f'{self.prefix}sigma_th'].set(value=bval_1d['sigma_th'], max=cut_width, vary=True) params[f'{self.prefix}sigma_th'].set(value=bval_1d['sigma_th'], max=max_width, vary=True)
elif bval_1d['amp_bec']/bval_1d['amp_th'] > 10: # if precheck enabled and amp_bec is 10x higher than amp_th (value might be changed), amplitude of thermal part in 2d fit is set to zero
elif bval_1d['amp_bec']/bval_1d['amp_th'] > 10 and self.pre_check:
print('Image seems to be pure BEC (guessed from 1d fit amplitude)') print('Image seems to be pure BEC (guessed from 1d fit amplitude)')
params[f'{self.prefix}amp_bec'].set(value=amp_conv_1d_2d * bval_1d['amp_bec'], max=1.3 * max_val, vary=True) params[f'{self.prefix}amp_bec'].set(value=amp_conv_1d_2d * bval_1d['amp_bec'], max=1.3 * max_val, vary=True)
@ -494,6 +555,7 @@ class DensityProfileBEC2dModel(lmfit.Model):
else: else:
print('Error in small width BEC recogintion, s_width_ind should be 0 or 1') print('Error in small width BEC recogintion, s_width_ind should be 0 or 1')
# params for normal 2d bimodal fit are initialized
else: else:
params[f'{self.prefix}amp_bec'].set(value=amp_conv_1d_2d * bval_1d['amp_bec'], max=1.3 * max_val, vary=True) params[f'{self.prefix}amp_bec'].set(value=amp_conv_1d_2d * bval_1d['amp_bec'], max=1.3 * max_val, vary=True)
params[f'{self.prefix}amp_th'].set(value=amp_conv_1d_2d * bval_1d['amp_th'], max=1.3 * max_val, vary=True) params[f'{self.prefix}amp_th'].set(value=amp_conv_1d_2d * bval_1d['amp_th'], max=1.3 * max_val, vary=True)
@ -501,7 +563,7 @@ class DensityProfileBEC2dModel(lmfit.Model):
params[f'{self.prefix}y0_bec'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True) params[f'{self.prefix}y0_bec'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
params[f'{self.prefix}x0_th'].set(value=center[0], min=center[0] -10, max=center[0] + 10, vary=True) params[f'{self.prefix}x0_th'].set(value=center[0], min=center[0] -10, max=center[0] + 10, vary=True)
params[f'{self.prefix}y0_th'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True) params[f'{self.prefix}y0_th'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
params[f'{self.prefix}sigma_th'].set(value=bval_1d['sigma_th'], max=cut_width, vary=True) params[f'{self.prefix}sigma_th'].set(value=bval_1d['sigma_th'], max=max_width, vary=True)
if s_width_ind == 0: if s_width_ind == 0:
params[f'{self.prefix}sigmax_bec'].set(value=bval_1d['sigma_bec'], max= 2*BEC_width_guess[0], vary=True) params[f'{self.prefix}sigmax_bec'].set(value=bval_1d['sigma_bec'], max= 2*BEC_width_guess[0], vary=True)
@ -516,33 +578,43 @@ class DensityProfileBEC2dModel(lmfit.Model):
print('') print('')
print('Init Params') print('Init Params')
params.pretty_print() params.pretty_print()
print('')
return lmfit.models.update_param_vals(params, self.prefix, **kwargs) return lmfit.models.update_param_vals(params, self.prefix, **kwargs)
def fit(self, data, **kwargs): def fit(self, data, **kwargs):
"""fitting function overwrites parent class fitting function of lmfit, in order to check (if post_check is enabled)
if thermal fit completely lies in BEC fit by counting sourrounding number of atoms and comparing it to threshold value
data_1d = data :param data: Flattened 2d array, in form [a_00, a_10, a_20, ..., a_01, a_02, .. ,a_XY] with a_xy, x_dim=X, y_dim=Y
:type data: 1d numpy array
:return: result of 2d fit
:rtype: result object (lmfit)
"""
res = super().fit(data_1d, **kwargs) res = super().fit(data, **kwargs)
if self.is_debug: if self.is_debug:
print('bval first fit') print('bval first fit')
self.print_bval(res) self.print_bval(res)
if res.params['amp_bec'].vary and res.params['amp_th'].vary:
bval = res.best_values bval = res.best_values
# Do described post_check if enabled
if res.params['amp_bec'].vary and res.params['amp_th'].vary and bval['amp_bec']>0.5*bval['amp_th'] and self.post_check:
# creating image by cutting out region around BEC and counting number of atoms
sigma_cut = max(bval['sigmay_bec'], bval['sigmax_bec']) sigma_cut = max(bval['sigmay_bec'], bval['sigmax_bec'])
tf_fit = ThomasFermi_2d(kwargs['x'],kwargs['y'],centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec']) tf_fit = ThomasFermi_2d(kwargs['x'],kwargs['y'],centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])
tf_fit_2 = ThomasFermi_2d(kwargs['x'],kwargs['y'],centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=1.5 * sigma_cut, sigmay=1.5*sigma_cut) tf_fit_2 = ThomasFermi_2d(kwargs['x'],kwargs['y'],centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=1.5 * sigma_cut, sigmay=1.5*sigma_cut)
mask = np.where(tf_fit > 0, np.nan, data_1d) mask = np.where(tf_fit > 0, np.nan, data)
#mask[i,j] = gaussian_filter(mask[i,j], sigma = 0.4)
mask = np.where(tf_fit_2 > 0, mask, np.nan) mask = np.where(tf_fit_2 > 0, mask, np.nan)
N_c = np.nansum(mask) N_c = np.nansum(mask)
# conversion N_count to Pixels # conversion N_count to Pixels
N_a = self.atom_n_conv * N_c N_a = self.atom_n_conv * N_c
#TODO change fixed threshhold to variable
# If number of atoms around BEC is small the image is guessed to be purely BEC and another 2d fit is performed with setting the thermal amplitude to zero
if N_a < 6615: if N_a < 6615:
print('No thermal part detected, performing fit without thermal function') print('No thermal part detected, performing fit without thermal function')
params = res.params params = res.params
@ -551,7 +623,7 @@ class DensityProfileBEC2dModel(lmfit.Model):
params[f'{self.prefix}y0_th'].set(value=1, vary=False) params[f'{self.prefix}y0_th'].set(value=1, vary=False)
params[f'{self.prefix}sigma_th'].set(value=1, vary=False) params[f'{self.prefix}sigma_th'].set(value=1, vary=False)
res = super().fit(data_1d, x=kwargs['x'], y=kwargs['y'], params=params) res = super().fit(data, x=kwargs['x'], y=kwargs['y'], params=params)
return res return res
@ -560,49 +632,38 @@ class DensityProfileBEC2dModel(lmfit.Model):
def calc_thresh(self, data, thresh_val=0.3, sigma=0.4): def calc_thresh(self, data, thresh_val=0.3, sigma=0.4):
"""Returns thresholded binary image after blurring to guess BEC size """Returns thresholded binary image after blurring to guess BEC size
:param data: 2d image or 1D or 2D array containing 2d images :param data: 2d image
:type data: 2d, 3d or 4d numpy array :type data: 2d numpy array
:param thresh_val: relative threshhold value for binarization with respect to maximum of blurred image :param thresh_val: relative threshhold value for binarization with respect to maximum of blurred image
:param sigma: sigma of gaussian blur filter (see scipy.ndimage.gaussian_filter :param sigma: sigma of gaussian blur filter (see scipy.ndimage.gaussian_filter)
:return: binary 2d image or 1D or 2D array containing 2d images :return: binary 2d image
:rtype: 2d, 3d or 4d numpy array :rtype: 2d numpy array
""" """
shape = np.shape(data) shape = np.shape(data)
thresh = np.zeros(shape) thresh = np.zeros(shape)
blurred = gaussian_filter(data, sigma=sigma) blurred = gaussian_filter(data, sigma=sigma)
if len(shape) == 4:
for i in range(0,shape[0]):
for j in range(0, shape[1]):
thresh[i,j] = np.where(blurred[i,j] < np.max(blurred[i,j])*thresh_val, 0, 1)
elif len(shape) == 3:
for i in range(0,shape[0]):
thresh[i] = np.where(blurred[i] < np.max(blurred[i])*thresh_val, 0, 1)
elif len(shape) == 2:
thresh = np.where(blurred < np.max(blurred)*thresh_val, 0, 1) thresh = np.where(blurred < np.max(blurred)*thresh_val, 0, 1)
else:
print("Shape of data is wrong, output is empty")
return thresh return thresh
def calc_cen(self, thresh1): def calc_cen(self, thresh1):
""" """Calculating the center of a blob (atom cloud) in a binarized image by first calculating the probability distribution along both axes and afterwards the expectation value
returns array: [X_center,Y_center]
:param thresh1: Binary 2D image in the form [[a_00, a_01, .., a_0Y], [a_10,.., a_1Y], .., [a_X0, .., a_XY]], with a_xy, x_dim=X, y_dim=Y
:type thresh1: 2D numpy array
:return: center coordinates of blob in form [x_center, y_center]
:rtype: 1d numpy array (shape=(1,2))
""" """
cen = np.zeros(2) cen = np.zeros(2)
(Y,X) = np.shape(thresh1) (X,Y) = np.shape(thresh1)
thresh1 = thresh1 /np.sum(thresh1) thresh1 = thresh1 /np.sum(thresh1)
# marginal distributions # marginal distributions
dx = np.sum(thresh1, 0) dx = np.sum(thresh1, 1)
dy = np.sum(thresh1, 1) dy = np.sum(thresh1, 0)
# expected values # expected values
cen[0] = np.sum(dx * np.arange(X)) cen[0] = np.sum(dx * np.arange(X))
@ -610,33 +671,40 @@ class DensityProfileBEC2dModel(lmfit.Model):
return cen return cen
def guess_BEC_width(self, thresh, center): def guess_BEC_width(self, thresh, center):
""" """ returns width of blob in binarized image along both axis through the center
returns width of thresholded area along both axis through the center with shape of thresh and [X_width, Y_width] for each image
:param thresh: Binary 2D image in the form [[a_00, a_01, .., a_0Y], [a_10,.., a_1Y], .., [a_X0, .., a_XY]], with a_xy, x_dim=X, y_dim=Y
:type thresh: 2d numpy array
:param center: center of blob in image in form [x_center, y_center]
:type center: 1d numpy array (shape=(1,2))
:return: width of blob in image as [x_width, y_width]
:rtype: 1d numpy array (shape=(1,2))
""" """
shape = np.shape(thresh) shape = np.shape(thresh)
if len(shape) == 2: if len(shape) == 2:
BEC_width_guess = np.array([np.sum(thresh[round(center[1]), :]), np.sum(thresh[:, round(center[0])]) ]) BEC_width_guess = np.array([np.sum(thresh[:, round(center[1])]), np.sum(thresh[round(center[0]), :]) ])
for i in range(2):
if BEC_width_guess[i] <= 0:
BEC_width_guess[i] = 1
elif len(shape) == 3:
BEC_width_guess = np.zeros((shape[0], 2))
for i in range(0, shape[0]):
BEC_width_guess[i, 0] = np.sum(thresh[i, round(center[i,j,1]), :])
BEC_width_guess[i, 1] = np.sum(thresh[i, :, round(center[i,j,0])])
elif len(shape) == 4:
BEC_width_guess = np.zeros((shape[0], shape[1], 2))
for i in range(0, shape[0]):
for j in range(0, shape[1]):
BEC_width_guess[i, j, 0] = np.sum(thresh[i, j, round(center[i,j,1]), :])
BEC_width_guess[i, j, 1] = np.sum(thresh[i, j, :, round(center[i,j,0])])
else: else:
print("Shape of data is wrong, output is empty") print("Shape of data is wrong, output is empty")
return BEC_width_guess return BEC_width_guess
def cond_frac(self, results): def cond_frac(self, results, X, Y):
"""Returns condensate fraction""" """Returns condensate fraction of 2d fitting result
:param results: result of 2d bimodal fit
:type results: result object (lmfit)
:param X: X output of np.meshgrid(x_axis,y_axis) in form: [[x1, x2, .., xX], [x1, x2, .., xX] .. Y times ..]
:type X: 2d numpy array
:param Y: Y output of np.meshgrid(x_axis,y_axis) in form: [[y1, y1, .., y1 (X times)], [y2, y2, .., y2 (X times)], .. Y times ..]
:type Y: 2d numpy array
:return: condensate fraction
:rtype: float between 0 and 1
"""
bval = results.best_values bval = results.best_values
tf_fit = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec']) tf_fit = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])
N_bec = np.sum(tf_fit) N_bec = np.sum(tf_fit)
@ -645,7 +713,19 @@ class DensityProfileBEC2dModel(lmfit.Model):
return N_bec/N_ges return N_bec/N_ges
def return_atom_number(self, result, X, Y, is_print=True): def return_atom_number(self, result, X, Y, is_print=True):
"""Printing fitted atom number in bec + thermal state""" """Calculating (and printing if enabled) fitted atom number in BEC + thermal state, and condensate fraction
:param result: result of 2d bimodal fit
:type result: result object (lmfit)
:param X: X output of np.meshgrid(x_axis,y_axis) in form: [[x1, x2, .., xX], [x1, x2, .., xX] .. Y times ..]
:type X: 2d numpy array
:param Y: Y output of np.meshgrid(x_axis,y_axis) in form: [[y1, y1, .., y1 (X times)], [y2, y2, .., y2 (X times)], .. Y times ..]
:type Y: 2d numpy array
:param is_print: if true results are printed, defaults to True
:type is_print: bool, optional
:return: dictionary with total atom number N, BEC N_bec, thermal N_th and condensate fraction cond_f
:rtype: dictionary
"""
bval = result.best_values bval = result.best_values
tf_fit = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec']) tf_fit = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])
N_bec = self.atom_n_conv * np.sum(tf_fit) N_bec = self.atom_n_conv * np.sum(tf_fit)
@ -653,6 +733,8 @@ class DensityProfileBEC2dModel(lmfit.Model):
th_fit = polylog2_2d(X, Y, centerx=bval['x0_th'], centery=bval['y0_th'], amplitude=bval['amp_th'], sigmax=bval['sigma_th'], sigmay=bval['sigma_th']) th_fit = polylog2_2d(X, Y, centerx=bval['x0_th'], centery=bval['y0_th'], amplitude=bval['amp_th'], sigmax=bval['sigma_th'], sigmay=bval['sigma_th'])
N_th = self.atom_n_conv * np.sum(th_fit) N_th = self.atom_n_conv * np.sum(th_fit)
N = N_bec + N_th
frac = N_bec/N
# fit = density_profile_BEC_2d(X,Y, **bval) # fit = density_profile_BEC_2d(X,Y, **bval)
# N_ges = self.atom_n_conv * np.sum(fit) # N_ges = self.atom_n_conv * np.sum(fit)
@ -661,22 +743,47 @@ class DensityProfileBEC2dModel(lmfit.Model):
print('Atom numbers:') print('Atom numbers:')
print(f' N_bec: {N_bec :.0f}') print(f' N_bec: {N_bec :.0f}')
print(f' N_th: {N_th :.0f}') print(f' N_th: {N_th :.0f}')
print(f' N_ges: {N_bec + N_th :.0f}') print(f' N_ges: {N:.0f}')
print(f' Cond. frac: {N_bec/(N_bec + N_th):.2f}') print(f' Cond. frac: {frac *1e2:.2f} %')
print('') print('')
atom_n = {'N' : N, 'N_bec' : N_bec, 'N_th' : N_th, 'cond_f' : frac}
return atom_n
def return_temperature(self, result, omg, tof, is_print=True, eff_pix=2.472e-6):
"""Returns temperature of thermal cloud""" def return_temperature(self, result, tof, omg=None, is_print=True, eff_pix=2.472e-6):
"""Returns temperature of thermal cloud
:param result: result of 2d bimodal fit
:type result: result object (lmfit)
:param tof: time of flight
:type tof: float
:param omg: geometric average of trapping frequencies, defaults to None
:type omg: float, if NONE initial cloud size is neglected optional
:param is_print: if True temperature is printed, defaults to True
:type is_print: bool, optional
:param eff_pix: effective pixel size of imaging setup, defaults to 2.472e-6
:type eff_pix: float, optional
:return: temperature of atom cloud
:rtype: float
"""
R_th = result.best_values['sigma_th'] * eff_pix * np.sqrt(2) R_th = result.best_values['sigma_th'] * eff_pix * np.sqrt(2)
print(R_th) # print(R_th)
if omg is None:
T = R_th**2 * 164*const.u/const.k * (tof**2)**(-1)
else:
T = R_th**2 * 164*const.u/const.k * (1/omg**2 + tof**2)**(-1) T = R_th**2 * 164*const.u/const.k * (1/omg**2 + tof**2)**(-1)
if is_print: if is_print:
print(f'Temperature: {T*1e9:.2f} nK') print(f'Temperature: {T*1e9:.2f} nK')
return T return T
def print_bval(self, res_s): def print_bval(self, res_s):
"""nicely print best fitted values + init values + bounds """ """nicely print best fitted values + init values + bounds
:param res_s: result of 2d bimodal fit
:type res_s: result object (lmfit)
"""
keys = res_s.best_values.keys() keys = res_s.best_values.keys()
bval = res_s.best_values bval = res_s.best_values
init = res_s.init_params init = res_s.init_params