imporve the BEC fitting

This commit is contained in:
Jianshun Gao 2023-08-21 11:26:02 +02:00
parent 602edcd6d5
commit 8a96cb841d
3 changed files with 3750 additions and 211 deletions

3602
20230630_Data_Analysis.ipynb Normal file

File diff suppressed because one or more lines are too long

View File

@ -86,33 +86,6 @@ def two_gaussian2d(x, y=0.0, A_amplitude=1.0, A_centerx=0.0, A_centery=0.0, A_si
return z return z
def ThomasFermi_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):
res = (1- ((x-centerx)/(sigmax))**2 - ((y-centery)/(sigmay))**2)**(3 / 2)
return amplitude * 5 / 2 / np.pi / max(tiny, sigmax * sigmay) * np.where(res > 0, res, 0)
def polylog(power, numerator):
order = 20
dataShape = numerator.shape
numerator = np.tile(numerator, (order, 1))
numerator = np.power(numerator.T, np.arange(1, order+1)).T
denominator = np.arange(1, order+1)
denominator = np.tile(denominator, (dataShape[0], 1))
denominator = denominator.T
data = numerator/ np.power(denominator, power)
return np.sum(data, axis=0)
def polylog2_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):
## Approximation of the polylog function with 2D gaussian as argument. -> discribes the thermal part of the cloud
return amplitude / 2 / np.pi / 1.20206 / max(tiny, sigmax * sigmay) * polylog(2, np.exp( -((x-centerx)**2/(2 * (sigmax)**2))-((y-centery)**2/( 2 * (sigmay)**2)) ))
def polylog_tab(pow, x, order=100): def polylog_tab(pow, x, order=100):
"""Calculationg the polylog sum_i(x^i/i^pow), up to the order-th element of the sum """Calculationg the polylog sum_i(x^i/i^pow), up to the order-th element of the sum
@ -137,13 +110,49 @@ poly_tab = polylog_tab(2,x_int)
polylog_int = CubicSpline(x_int, poly_tab) polylog_int = CubicSpline(x_int, poly_tab)
def density_profile_BEC_2d(x, y=0.0, BEC_amplitude=1.0, thermal_amplitude=1.0, BEC_centerx=0.0, BEC_centery=0.0, thermal_centerx=0.0, thermal_centery=0.0, def thermal(x, x0, amp, sigma):
BEC_sigmax=1.0, BEC_sigmay=1.0, thermal_sigmax=1.0, thermal_sigmay=1.0): res = np.exp(-0.5 * (x-x0)**2 / sigma**2)
return amp/1.643 * polylog_int(res)
return ThomasFermi_2d(x=x, y=y, centerx=BEC_centerx, centery=BEC_centery,
amplitude=BEC_amplitude, sigmax=BEC_sigmax, sigmay=BEC_sigmay def Thomas_Fermi_1d(x, x0, amp, sigma):
) + polylog2_2d(x=x, y=y, centerx=thermal_centerx, centery=thermal_centery, res = (1- ((x-x0)/sigma)**2)
amplitude=thermal_amplitude, sigmax=thermal_sigmax, sigmay=thermal_sigmay) res = np.where(res > 0, res, 0)
res = res**(3/2)
return amp * res
def density_1d(x, x0_bec, x0_th, amp_bec, amp_th, sigma_bec, sigma_th):
return thermal(x, x0_th, amp_th, sigma_th) + Thomas_Fermi_1d(x, x0_bec, amp_bec, sigma_bec)
def polylog(pow, x):
order = 15
sum = 0
for k in range(1,order):
sum += x ** k /k **pow
return sum
def ThomasFermi_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):
res = (1- ((x-centerx)/(sigmax))**2 - ((y-centery)/(sigmay))**2)
res = np.where(res > 0, res, 0)
res = res**(3/2)
return amplitude * res
def polylog2_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):
## Approximation of the polylog function with 2D gaussian as argument. -> discribes the thermal part of the cloud
return amplitude/1.643 * polylog_int(np.exp( -((x-centerx)**2/(2 * sigmax**2))-((y-centery)**2/( 2 * sigmay**2)) ))
def density_profile_BEC_2d(x, y=0.0, amp_bec=1.0, amp_th=1.0, x0_bec=0.0, y0_bec=0.0, x0_th=0.0, y0_th=0.0,
sigmax_bec=1.0, sigmay_bec=1.0, sigma_th=1.0):
return ThomasFermi_2d(x=x, y=y, centerx=x0_bec, centery=y0_bec,
amplitude=amp_bec, sigmax=sigmax_bec, sigmay=sigmay_bec
) + polylog2_2d(x=x, y=y, centerx=x0_th, centery=y0_th,
amplitude=amp_th, sigmax=sigma_th,sigmay=sigma_th)
class GaussianWithOffsetModel(Model): class GaussianWithOffsetModel(Model):
@ -510,7 +519,9 @@ class DensityProfileBEC2dModel(lmfit.Model):
return lmfit.models.update_param_vals(params, self.prefix, **kwargs) return lmfit.models.update_param_vals(params, self.prefix, **kwargs)
def fit(self, data_1d, **kwargs): def fit(self, data, **kwargs):
data_1d = data
res = super().fit(data_1d, **kwargs) res = super().fit(data_1d, **kwargs)

File diff suppressed because one or more lines are too long