optimize the fringes removal function

This commit is contained in:
Jianshun Gao 2023-09-28 16:35:30 +02:00
parent 6d841ef992
commit 87d6ff49c9
2 changed files with 141 additions and 10 deletions

View File

@ -195,6 +195,10 @@ class FringeRemoval():
@referenceImages.setter
def referenceImages(self, value):
if value is None:
self._referenceImages = None
return
if self.reshape:
value = self.reshape_data(value)
elif isinstance(value, type(xr.DataArray())):
@ -257,6 +261,10 @@ class FringeRemoval():
raise DataSizeException
self._mask = value
self._center = None
self._span = None
self.k = np.where(self._mask.flatten() == 1)[0]
def _auto_mask(self):
@ -267,7 +275,7 @@ class FringeRemoval():
y_end = int(self._center[1] + self._span[1] / 2)
y_start = int(self._center[1] - self._span[1] / 2)
mask[y_start:y_end, x_start:x_end] = 0
mask[y_start:y_end, x_start:x_end] = 0
return mask

View File

@ -2,6 +2,10 @@ import numpy as np
import xarray as xr
import copy
from DataContainer.ReadData import read_hdf5_file
from Analyser.FringeRemoval import FringeRemoval
from ToolFunction.ToolFunction import get_scanAxis
class ImageAnalyser():
"""A class for operate with and analyse images
@ -15,11 +19,15 @@ class ImageAnalyser():
'background': 'background',
'dark': 'dark',
'OD':'OD',
'optimumBackground':'optimumBackground'
}
self._center = None
self._span = None
self._fraction = None
self._fringeRemoval = FringeRemoval()
self.fringeRemovalReferenceImages = None
@property
def image_name(self):
"""The getter of the names of three standard images for absorption images
@ -150,7 +158,7 @@ class ImageAnalyser():
res.attrs = copy.copy(dataArray.attrs)
return res
def crop_image(self, dataSet, center=None, span=None):
def crop_image(self, dataSet, center=None, span=None, fringeRemoval=False):
"""Crop the image according to the region of interest (ROI).
:param dataSet: The images
@ -193,6 +201,13 @@ class ImageAnalyser():
dataSet[key].attrs['x_span'] = span[0]
dataSet[key].attrs['y_span'] = span[1]
if fringeRemoval:
scanAxis = list(get_scanAxis(self.fringeRemovalReferenceImages))
if not scanAxis[1] is None:
self._fringeRemoval.referenceImages = self.fringeRemovalReferenceImages.isel(x=slice(x_start, x_end), y=slice(y_start, y_end)).stack(_imgIdx=scanAxis)
else:
self._fringeRemoval.referenceImages = self.fringeRemovalReferenceImages.isel(x=slice(x_start, x_end), y=slice(y_start, y_end))
return dataSet.isel(x=slice(x_start, x_end), y=slice(y_start, y_end))
def get_OD(self, imageAtom, imageBackground, imageDrak):
@ -221,6 +236,32 @@ class ImageAnalyser():
else:
return imageOD
def get_OD_no_dark(self, imageAtom, imageBackground):
"""Calculate the OD image for absorption imaging without dark images.
:param imageAtom: The image with atoms
:type imageAtom: numpy array
:param imageBackground: The image without atoms
:type imageBackground: numpy array
:param imageDrak: The image without light
:type imageDrak: numpy array
:return: The OD images
:rtype: numpy array
"""
numerator = np.atleast_1d(imageBackground)
denominator = np.atleast_1d(imageAtom)
numerator[numerator == 0] = 1
denominator[denominator == 0] = 1
imageOD = np.abs(np.divide(denominator, numerator))
imageOD= -np.log(imageOD)
if len(imageOD) == 1:
return imageOD[0]
else:
return imageOD
def get_Ncount(self, dataSet, dim=['x', 'y'], **kwargs):
"""Sum all the value in the image to give the Ncount.
@ -233,7 +274,7 @@ class ImageAnalyser():
"""
return dataSet.sum(dim=['x', 'y'], **kwargs)
def get_absorption_images(self, dataSet, dask='allowed', keep_attrs=True, **kwargs):
def get_absorption_images(self, dataSet, fringeRemoval=False, dask='allowed', keep_attrs=True, **kwargs):
"""Calculate the OD images for absorption imaging.
:param dataSet: The data from absorption imaging.
@ -253,11 +294,31 @@ class ImageAnalyser():
}
)
dataSet = dataSet.assign(
{
self._image_name['OD']: xr.apply_ufunc(self.get_OD, dataSet[self._image_name['atoms']], dataSet[self._image_name['background']], dataSet[self._image_name['dark']], **kwargs)
}
)
if fringeRemoval:
scanAxis = list(get_scanAxis(dataSet))
if not scanAxis[1] is None:
OptimumRef = self._fringeRemoval.fringe_removal(dataSet[self._image_name['atoms']].stack(_imgIdx=scanAxis))
else:
OptimumRef = self._fringeRemoval.fringe_removal(dataSet[self._image_name['atoms']])
dataSet = dataSet.assign(
{
self._image_name['optimumBackground']: OptimumRef
}
)
dataSet = dataSet.assign(
{
self._image_name['OD']: xr.apply_ufunc(self.get_OD_no_dark, dataSet[self._image_name['atoms']], dataSet[self._image_name['optimumBackground']], **kwargs)
}
)
else:
dataSet = dataSet.assign(
{
self._image_name['OD']: xr.apply_ufunc(self.get_OD, dataSet[self._image_name['atoms']], dataSet[self._image_name['background']], dataSet[self._image_name['dark']], **kwargs)
}
)
# dataSet[self._image_name['OD']].attrs.update(dataSet.attrs)
@ -283,5 +344,67 @@ class ImageAnalyser():
xr.apply_ufunc(self.get_OD, dataSet[self._image_name['atoms']], dataSet[self._image_name['background']], dataSet[self._image_name['dark']], **kwargs)
@property
def fringeRemovalCenter(self):
"""The getter of the center of region of insterest (ROI)
:return: The center of region of insterest (ROI)
:rtype: tuple
"""
return self._fringeRemoval.center
@fringeRemovalCenter.setter
def fringeRemovalCenter(self, value):
"""The setter of the center of region of insterest (ROI)
:param value: The center of region of insterest (ROI)
:type value: tuple
"""
self._fringeRemoval.center = value
@property
def fringeRemovalSpan(self):
"""The getter of the span of region of insterest (ROI)
:return: The span of region of insterest (ROI)
:rtype: tuple
"""
return self._fringeRemoval.span
@fringeRemovalSpan.setter
def fringeRemovalSpan(self, value):
"""The setter of the span of region of insterest (ROI)
:param value: The span of region of insterest (ROI)
:type value: tuple
"""
self._fringeRemoval.span = value
# @property
# def fringeRemovalReferenceImages(self):
# return self._fringeRemoval.referenceImages
# @fringeRemovalReferenceImages.setter
# def fringeRemovalReferenceImages(self, value):
# self._fringeRemoval.referenceImages = value
def load_fringe_removal_background_from_hdf5(self, img_dir, SequenceName, data, shotNum, group, crop=False, load=False, **kwargs):
folderPath = img_dir + SequenceName + "/" + data
filePath = folderPath + "/" + shotNum + "/*.h5"
dataSet = read_hdf5_file(filePath, group, **kwargs)
scanAxis = dataSet.scanAxis
dataSet = dataSet[self._image_name['background']]
dataSet.attrs['scanAxis'] = scanAxis
if crop:
dataSet = self.crop_image(dataSet)
if load:
self.fringeRemovalReferenceImages = dataSet.load()
else:
self.fringeRemovalReferenceImages = dataSet
def load_fringe_removal_background_from_database():
pass