implenment parallel computing
This commit is contained in:
parent
b17c05bf30
commit
6d841ef992
@ -32,6 +32,8 @@ class FringeRemoval():
|
||||
self.ydim = 0 # The shape of y axis
|
||||
|
||||
self._mask = None # The mask array to choose the region of interest for fringes removal
|
||||
self._center = None # Set the mask array by center and span
|
||||
self._span = None
|
||||
|
||||
self.reshape=True # If it is necessary to reshape the data from (index of images(alternative), x, y) to (y, x, index of images(alternative))
|
||||
|
||||
@ -39,6 +41,44 @@ class FringeRemoval():
|
||||
self.L = None
|
||||
self.U = None
|
||||
|
||||
@property
|
||||
def center(self):
|
||||
"""The getter of the center of region of insterest (ROI)
|
||||
|
||||
:return: The center of region of insterest (ROI)
|
||||
:rtype: tuple
|
||||
"""
|
||||
return self._center
|
||||
|
||||
@center.setter
|
||||
def center(self, value):
|
||||
"""The setter of the center of region of insterest (ROI)
|
||||
|
||||
:param value: The center of region of insterest (ROI)
|
||||
:type value: tuple
|
||||
"""
|
||||
self._mask = None
|
||||
self._center = value
|
||||
|
||||
@property
|
||||
def span(self):
|
||||
"""The getter of the span of region of insterest (ROI)
|
||||
|
||||
:return: The span of region of insterest (ROI)
|
||||
:rtype: tuple
|
||||
"""
|
||||
return self._span
|
||||
|
||||
@span.setter
|
||||
def span(self, value):
|
||||
"""The setter of the span of region of insterest (ROI)
|
||||
|
||||
:param value: The span of region of insterest (ROI)
|
||||
:type value: tuple
|
||||
"""
|
||||
self._mask = None
|
||||
self._span = value
|
||||
|
||||
def reshape_data(self, data):
|
||||
"""The function is to reshape the data to the correct shape.
|
||||
In order to minimize the calculation time, the data has to have a shape of (y, x, index of images(alternative)).
|
||||
@ -98,6 +138,55 @@ class FringeRemoval():
|
||||
|
||||
return data
|
||||
|
||||
def _reshape_absorption_images(self, data):
|
||||
|
||||
if data is None:
|
||||
return data
|
||||
|
||||
if isinstance(data, type(xr.DataArray())):
|
||||
|
||||
dims = data.dims
|
||||
|
||||
if len(dims)>3:
|
||||
raise InvalidDimException(dims)
|
||||
|
||||
xAxis = None
|
||||
yAxis = None
|
||||
if len(dims) == 2:
|
||||
imageAxis = ''
|
||||
else:
|
||||
imageAxis = None
|
||||
|
||||
for dim in dims:
|
||||
if (dim == 'x') or ('_x' in dim):
|
||||
xAxis = dim
|
||||
elif (dim == 'y') or ('_y' in dim):
|
||||
yAxis = dim
|
||||
else:
|
||||
imageAxis = dim
|
||||
|
||||
if (xAxis is None) or (yAxis is None) or (imageAxis is None):
|
||||
raise InvalidDimException(dims)
|
||||
|
||||
if len(dims) == 2:
|
||||
data = data.transpose(yAxis, xAxis)
|
||||
else:
|
||||
data = data.transpose(yAxis, xAxis, imageAxis)
|
||||
|
||||
self.nimgs = len(data[imageAxis])
|
||||
|
||||
data = data.stack(axis=[yAxis, xAxis])
|
||||
|
||||
else:
|
||||
data = np.array(data)
|
||||
if len(data.shape) == 3:
|
||||
data = np.swapaxes(data, 0, 2)
|
||||
# data = np.swapaxes(data, 0, 1)
|
||||
elif len(data.shape) == 2:
|
||||
data = np.swapaxes(data, 0, 1)
|
||||
|
||||
return data
|
||||
|
||||
@property
|
||||
def referenceImages(self):
|
||||
res = self._referenceImages.reshape(self.ydim, self.xdim, self.nimgsR)
|
||||
@ -151,9 +240,6 @@ class FringeRemoval():
|
||||
self._remove_first_reference_images()
|
||||
self.add_reference_images(data)
|
||||
|
||||
if self._mask is None:
|
||||
self.mask = np.ones((self.ydim, self.xdim), dtype=np.uint8)
|
||||
|
||||
self.decompose_referenceImages()
|
||||
|
||||
@property
|
||||
@ -173,46 +259,32 @@ class FringeRemoval():
|
||||
self._mask = value
|
||||
self.k = np.where(self._mask.flatten() == 1)[0]
|
||||
|
||||
def _auto_mask(self):
|
||||
mask = np.ones((self.ydim, self.xdim), dtype=np.uint8)
|
||||
if not self._center is None:
|
||||
x_start = int(self._center[0] - self._span[0] / 2)
|
||||
x_end = int(self._center[0] + self._span[0] / 2)
|
||||
y_end = int(self._center[1] + self._span[1] / 2)
|
||||
y_start = int(self._center[1] - self._span[1] / 2)
|
||||
|
||||
mask[y_start:y_end, x_start:x_end] = 0
|
||||
|
||||
return mask
|
||||
|
||||
def decompose_referenceImages(self):
|
||||
if self._mask is None:
|
||||
self.mask = self._auto_mask()
|
||||
self.P, self.L, self.U = lu(self._referenceImages[self.k, :].T @ self._referenceImages[self.k, :], permute_l = False, p_indices = True)
|
||||
|
||||
def solve_coefficient(self):
|
||||
pass
|
||||
def _fringe_removal(self, absorptionImages):
|
||||
|
||||
def _fringe_removal(self, absorptionImages, referenceImages=None, mask=None, reshape=None, dask='forbidden'):
|
||||
if not reshape is None:
|
||||
self.reshape = reshape
|
||||
if not referenceImages is None:
|
||||
self.referenceImages = referenceImages
|
||||
if not mask is None:
|
||||
self.mask = mask
|
||||
if self.P is None:
|
||||
self.decompose_referenceImages()
|
||||
|
||||
absorptionImages = np.atleast_3d(absorptionImages)
|
||||
|
||||
if self.reshape:
|
||||
absorptionImages = self.reshape_data(absorptionImages)
|
||||
|
||||
self.nimgs = absorptionImages.shape[2]
|
||||
absorptionImages = (absorptionImages.reshape(self.xdim * self.ydim, self.nimgs).astype(np.float32))
|
||||
|
||||
optrefimages = np.zeros_like(absorptionImages, dtype=np.float32)
|
||||
|
||||
if dask=='forbidden':
|
||||
for j in range(self.nimgs):
|
||||
b = self._referenceImages[self.k, :].T @ absorptionImages[self.k, j]
|
||||
|
||||
# Obtain coefficients c which minimize least-square residuals
|
||||
c = np.linalg.solve(self.U, np.linalg.solve(self.L[self.P], b))
|
||||
# Compute optimized reference image
|
||||
optrefimages[:, j] = (self._referenceImages @ c)
|
||||
else:
|
||||
pass
|
||||
b = self.temp @ absorptionImages[self.k]
|
||||
c = np.linalg.solve(self.U, np.linalg.solve(self.L[self.P], b))
|
||||
optrefimages = (self._referenceImages @ c)
|
||||
|
||||
return optrefimages
|
||||
|
||||
def fringe_removal(self, absorptionImages, referenceImages=None, mask=None, reshape=None, dask='forbidden'):
|
||||
def fringe_removal(self, absorptionImages, referenceImages=None, mask=None, reshape=None, dask='parallelized'):
|
||||
"""
|
||||
This function will generate a 'fake' background images, which can help to remove the fringes.
|
||||
|
||||
@ -229,13 +301,22 @@ class FringeRemoval():
|
||||
:param dask: Please refer to xarray.apply_ufunc()
|
||||
:type dask: {"forbidden", "allowed", "parallelized"}, optional
|
||||
:return: The 'fake' background to help removing the fringes
|
||||
:rtype: numpy array
|
||||
:rtype: xarray array
|
||||
"""
|
||||
if not reshape is None:
|
||||
self.reshape = reshape
|
||||
if not referenceImages is None:
|
||||
self.referenceImages = referenceImages
|
||||
if not mask is None:
|
||||
self.mask = mask
|
||||
if self.P is None:
|
||||
self.decompose_referenceImages()
|
||||
|
||||
res = self._fringe_removal(absorptionImages, referenceImages, mask, reshape, dask)
|
||||
res = res.reshape(self.ydim, self.xdim, self.nimgs)
|
||||
if self.reshape:
|
||||
return np.swapaxes(res, 0, 2)
|
||||
else:
|
||||
return res
|
||||
absorptionImages = self._reshape_absorption_images(absorptionImages)
|
||||
|
||||
self.temp = self._referenceImages[self.k, :].T
|
||||
|
||||
optrefimages = xr.apply_ufunc(self._fringe_removal, absorptionImages, input_core_dims=[['axis']], output_core_dims=[['axis']], dask=dask, vectorize=True, output_dtypes=float)
|
||||
|
||||
return optrefimages.unstack()
|
Loading…
Reference in New Issue
Block a user